]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/db_interface.c
1bb40a1dc784acc61f491b47e7269c9179a6ed4d
[apple/xnu.git] / osfmk / i386 / db_interface.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the
10 * License may not be used to create, or enable the creation or
11 * redistribution of, unlawful or unlicensed copies of an Apple operating
12 * system, or to circumvent, violate, or enable the circumvention or
13 * violation of, any terms of an Apple operating system software license
14 * agreement.
15 *
16 * Please obtain a copy of the License at
17 * http://www.opensource.apple.com/apsl/ and read it before using this
18 * file.
19 *
20 * The Original Code and all software distributed under the License are
21 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
22 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
23 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
25 * Please see the License for the specific language governing rights and
26 * limitations under the License.
27 *
28 * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
29 */
30 /*
31 * @OSF_COPYRIGHT@
32 */
33 /*
34 * Mach Operating System
35 * Copyright (c) 1991,1990 Carnegie Mellon University
36 * All Rights Reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and its
39 * documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
46 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
51 * School of Computer Science
52 * Carnegie Mellon University
53 * Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie Mellon
56 * the rights to redistribute these changes.
57 */
58 /*
59 */
60
61 /*
62 * Interface to new debugger.
63 */
64 #include <platforms.h>
65 #include <time_stamp.h>
66 #include <mach_mp_debug.h>
67 #include <mach_ldebug.h>
68 #include <kern/spl.h>
69 #include <kern/cpu_number.h>
70 #include <kern/kern_types.h>
71 #include <kern/misc_protos.h>
72 #include <vm/pmap.h>
73
74 #include <i386/thread.h>
75 #include <i386/db_machdep.h>
76 #include <i386/seg.h>
77 #include <i386/trap.h>
78 #include <i386/setjmp.h>
79 #include <i386/pmap.h>
80 #include <i386/misc_protos.h>
81
82 #include <mach/vm_param.h>
83 #include <vm/vm_map.h>
84 #include <kern/thread.h>
85 #include <kern/task.h>
86
87 #include <ddb/db_command.h>
88 #include <ddb/db_task_thread.h>
89 #include <ddb/db_run.h>
90 #include <ddb/db_trap.h>
91 #include <ddb/db_output.h>
92 #include <ddb/db_access.h>
93 #include <ddb/db_sym.h>
94 #include <ddb/db_break.h>
95 #include <ddb/db_watch.h>
96
97 int db_active = 0;
98 struct i386_saved_state *i386_last_saved_statep;
99 struct i386_saved_state i386_nested_saved_state;
100 unsigned i386_last_kdb_sp;
101
102 extern thread_t db_default_act;
103 extern pt_entry_t *DMAP1;
104 extern caddr_t DADDR1;
105
106 #if MACH_MP_DEBUG
107 extern int masked_state_cnt[];
108 #endif /* MACH_MP_DEBUG */
109
110 /*
111 * Enter KDB through a keyboard trap.
112 * We show the registers as of the keyboard interrupt
113 * instead of those at its call to KDB.
114 */
115 struct int_regs {
116 int gs;
117 int fs;
118 int edi;
119 int esi;
120 int ebp;
121 int ebx;
122 struct i386_interrupt_state *is;
123 };
124
125 extern char * trap_type[];
126 extern int TRAP_TYPES;
127
128 /* Forward */
129
130 extern void kdbprinttrap(
131 int type,
132 int code,
133 int *pc,
134 int sp);
135 extern void kdb_kentry(
136 struct int_regs *int_regs);
137 extern int db_user_to_kernel_address(
138 task_t task,
139 vm_offset_t addr,
140 unsigned *kaddr,
141 int flag);
142 extern void db_write_bytes_user_space(
143 vm_offset_t addr,
144 int size,
145 char *data,
146 task_t task);
147 extern int db_search_null(
148 task_t task,
149 unsigned *svaddr,
150 unsigned evaddr,
151 unsigned *skaddr,
152 int flag);
153 extern int kdb_enter(int);
154 extern void kdb_leave(void);
155 extern void lock_kdb(void);
156 extern void unlock_kdb(void);
157
158 /*
159 * kdb_trap - field a TRACE or BPT trap
160 */
161
162
163 extern jmp_buf_t *db_recover;
164
165 /*
166 * Translate the state saved in a task state segment into an
167 * exception frame. Since we "know" we always want the state
168 * in a ktss, we hard-wire that in, rather than indexing the gdt
169 * with tss_sel to derive a pointer to the desired tss.
170 */
171 void
172 db_tss_to_frame(
173 int tss_sel,
174 struct i386_saved_state *regs)
175 {
176 extern struct i386_tss ktss;
177 int mycpu = cpu_number();
178 struct i386_tss *tss;
179
180 tss = cpu_datap(mycpu)->cpu_desc_index.cdi_ktss; /* XXX */
181
182 /*
183 * ddb will overwrite whatever's in esp, so put esp0 elsewhere, too.
184 */
185 regs->esp = tss->esp0;
186 regs->efl = tss->eflags;
187 regs->eip = tss->eip;
188 regs->trapno = tss->ss0; /* XXX */
189 regs->err = tss->esp0; /* XXX */
190 regs->eax = tss->eax;
191 regs->ecx = tss->ecx;
192 regs->edx = tss->edx;
193 regs->ebx = tss->ebx;
194 regs->uesp = tss->esp;
195 regs->ebp = tss->ebp;
196 regs->esi = tss->esi;
197 regs->edi = tss->edi;
198 regs->es = tss->es;
199 regs->ss = tss->ss;
200 regs->cs = tss->cs;
201 regs->ds = tss->ds;
202 regs->fs = tss->fs;
203 regs->gs = tss->gs;
204 }
205
206 /*
207 * Compose a call to the debugger from the saved state in regs. (No
208 * reason not to do this in C.)
209 */
210 boolean_t
211 db_trap_from_asm(
212 struct i386_saved_state *regs)
213 {
214 int code;
215 int type;
216
217 type = regs->trapno;
218 code = regs->err;
219 return (kdb_trap(type, code, regs));
220 }
221
222 int
223 kdb_trap(
224 int type,
225 int code,
226 struct i386_saved_state *regs)
227 {
228 extern char etext;
229 boolean_t trap_from_user;
230 spl_t s = splhigh();
231
232 switch (type) {
233 case T_DEBUG: /* single_step */
234 {
235 extern int dr_addr[];
236 int addr;
237 int status = dr6();
238
239 if (status & 0xf) { /* hmm hdw break */
240 addr = status & 0x8 ? dr_addr[3] :
241 status & 0x4 ? dr_addr[2] :
242 status & 0x2 ? dr_addr[1] :
243 dr_addr[0];
244 regs->efl |= EFL_RF;
245 db_single_step_cmd(addr, 0, 1, "p");
246 }
247 }
248 case T_INT3: /* breakpoint */
249 case T_WATCHPOINT: /* watchpoint */
250 case -1: /* keyboard interrupt */
251 break;
252
253 default:
254 if (db_recover) {
255 i386_nested_saved_state = *regs;
256 db_printf("Caught ");
257 if (type < 0 || type > TRAP_TYPES)
258 db_printf("type %d", type);
259 else
260 db_printf("%s", trap_type[type]);
261 db_printf(" trap, code = %x, pc = %x\n",
262 code, regs->eip);
263 splx(s);
264 db_error("");
265 /*NOTREACHED*/
266 }
267 kdbprinttrap(type, code, (int *)&regs->eip, regs->uesp);
268 }
269
270 disable_preemption();
271
272 current_cpu_datap()->cpu_kdb_saved_ipl = s;
273 current_cpu_datap()->cpu_kdb_saved_state = regs;
274
275 i386_last_saved_statep = regs;
276 i386_last_kdb_sp = (unsigned) &type;
277
278 if (!kdb_enter(regs->eip))
279 goto kdb_exit;
280
281 /* Should switch to kdb's own stack here. */
282
283 if (!IS_USER_TRAP(regs, &etext)) {
284 bzero((char *)&ddb_regs, sizeof (ddb_regs));
285 *(struct i386_saved_state_from_kernel *)&ddb_regs =
286 *(struct i386_saved_state_from_kernel *)regs;
287 trap_from_user = FALSE;
288 }
289 else {
290 ddb_regs = *regs;
291 trap_from_user = TRUE;
292 }
293 if (!trap_from_user) {
294 /*
295 * Kernel mode - esp and ss not saved
296 */
297 ddb_regs.uesp = (int)&regs->uesp; /* kernel stack pointer */
298 ddb_regs.ss = KERNEL_DS;
299 }
300
301 db_active++;
302 db_task_trap(type, code, trap_from_user);
303 db_active--;
304
305 regs->eip = ddb_regs.eip;
306 regs->efl = ddb_regs.efl;
307 regs->eax = ddb_regs.eax;
308 regs->ecx = ddb_regs.ecx;
309 regs->edx = ddb_regs.edx;
310 regs->ebx = ddb_regs.ebx;
311 if (trap_from_user) {
312 /*
313 * user mode - saved esp and ss valid
314 */
315 regs->uesp = ddb_regs.uesp; /* user stack pointer */
316 regs->ss = ddb_regs.ss & 0xffff; /* user stack segment */
317 }
318 regs->ebp = ddb_regs.ebp;
319 regs->esi = ddb_regs.esi;
320 regs->edi = ddb_regs.edi;
321 regs->es = ddb_regs.es & 0xffff;
322 regs->cs = ddb_regs.cs & 0xffff;
323 regs->ds = ddb_regs.ds & 0xffff;
324 regs->fs = ddb_regs.fs & 0xffff;
325 regs->gs = ddb_regs.gs & 0xffff;
326
327 if ((type == T_INT3) &&
328 (db_get_task_value(regs->eip,
329 BKPT_SIZE,
330 FALSE,
331 db_target_space(current_thread(),
332 trap_from_user))
333 == BKPT_INST))
334 regs->eip += BKPT_SIZE;
335
336 kdb_exit:
337 kdb_leave();
338
339 current_cpu_datap()->cpu_kdb_saved_state = 0;
340
341 #if MACH_MP_DEBUG
342 current_cpu_datap()->cpu_masked_state_cnt = 0;
343 #endif /* MACH_MP_DEBUG */
344
345 enable_preemption();
346
347 splx(s);
348
349 /* Allow continue to upper layers of exception handling if
350 * trap was not a debugging trap.
351 */
352
353 if (trap_from_user && type != T_DEBUG && type != T_INT3
354 && type != T_WATCHPOINT)
355 return 0;
356 else
357 return (1);
358 }
359
360 /*
361 * Enter KDB through a keyboard trap.
362 * We show the registers as of the keyboard interrupt
363 * instead of those at its call to KDB.
364 */
365
366 spl_t kdb_oldspl;
367
368 void
369 kdb_kentry(
370 struct int_regs *int_regs)
371 {
372 extern char etext;
373 boolean_t trap_from_user;
374 struct i386_interrupt_state *is = int_regs->is;
375 struct i386_saved_state regs;
376 spl_t s;
377
378 s = splhigh();
379 kdb_oldspl = s;
380
381 if (IS_USER_TRAP(is, &etext))
382 {
383 regs.uesp = ((int *)(is+1))[0];
384 regs.ss = ((int *)(is+1))[1];
385 }
386 else {
387 regs.ss = KERNEL_DS;
388 regs.uesp= (int)(is+1);
389 }
390 regs.efl = is->efl;
391 regs.cs = is->cs;
392 regs.eip = is->eip;
393 regs.eax = is->eax;
394 regs.ecx = is->ecx;
395 regs.edx = is->edx;
396 regs.ebx = int_regs->ebx;
397 regs.ebp = int_regs->ebp;
398 regs.esi = int_regs->esi;
399 regs.edi = int_regs->edi;
400 regs.ds = is->ds;
401 regs.es = is->es;
402 regs.fs = int_regs->fs;
403 regs.gs = int_regs->gs;
404
405 disable_preemption();
406
407 current_cpu_datap()->cpu_kdb_saved_state = &regs;
408
409 if (!kdb_enter(regs.eip))
410 goto kdb_exit;
411
412 bcopy((char *)&regs, (char *)&ddb_regs, sizeof (ddb_regs));
413 trap_from_user = IS_USER_TRAP(&ddb_regs, &etext);
414
415 db_active++;
416 db_task_trap(-1, 0, trap_from_user);
417 db_active--;
418
419 if (trap_from_user) {
420 ((int *)(is+1))[0] = ddb_regs.uesp;
421 ((int *)(is+1))[1] = ddb_regs.ss & 0xffff;
422 }
423 is->efl = ddb_regs.efl;
424 is->cs = ddb_regs.cs & 0xffff;
425 is->eip = ddb_regs.eip;
426 is->eax = ddb_regs.eax;
427 is->ecx = ddb_regs.ecx;
428 is->edx = ddb_regs.edx;
429 int_regs->ebx = ddb_regs.ebx;
430 int_regs->ebp = ddb_regs.ebp;
431 int_regs->esi = ddb_regs.esi;
432 int_regs->edi = ddb_regs.edi;
433 is->ds = ddb_regs.ds & 0xffff;
434 is->es = ddb_regs.es & 0xffff;
435 int_regs->fs = ddb_regs.fs & 0xffff;
436 int_regs->gs = ddb_regs.gs & 0xffff;
437
438 kdb_exit:
439 kdb_leave();
440 current_cpu_datap()->cpu_kdb_saved_state = 0;
441
442 enable_preemption();
443
444 splx(s);
445 }
446
447 /*
448 * Print trap reason.
449 */
450
451 void
452 kdbprinttrap(
453 int type,
454 int code,
455 int *pc,
456 int sp)
457 {
458 printf("kernel: ");
459 if (type < 0 || type > TRAP_TYPES)
460 db_printf("type %d", type);
461 else
462 db_printf("%s", trap_type[type]);
463 db_printf(" trap, code=%x eip@%x = %x esp=%x\n",
464 code, pc, *(int *)pc, sp);
465 db_run_mode = STEP_CONTINUE;
466 }
467
468 int
469 db_user_to_kernel_address(
470 task_t task,
471 vm_offset_t addr,
472 unsigned *kaddr,
473 int flag)
474 {
475 register pt_entry_t *ptp;
476
477 ptp = pmap_pte(task->map->pmap, addr);
478 if (ptp == PT_ENTRY_NULL || (*ptp & INTEL_PTE_VALID) == 0) {
479 if (flag) {
480 db_printf("\nno memory is assigned to address %08x\n", addr);
481 db_error(0);
482 /* NOTREACHED */
483 }
484 return(-1);
485 }
486
487 src = (vm_offset_t)pte_to_pa(*ptp);
488 *(int *) DMAP1 = INTEL_PTE_VALID | INTEL_PTE_RW | (src & PG_FRAME) |
489 INTEL_PTE_REF | INTEL_PTE_MOD;
490 #if defined(I386_CPU)
491 if (cpu_class == CPUCLASS_386) {
492 invltlb();
493 } else
494 #endif
495 {
496 invlpg((u_int)DADDR1);
497 }
498
499 *kaddr = (unsigned)DADDR1 + (addr & PAGE_MASK);
500
501 return(0);
502 }
503
504 /*
505 * Read bytes from kernel address space for debugger.
506 */
507
508 void
509 db_read_bytes(
510 vm_offset_t addr,
511 int size,
512 char *data,
513 task_t task)
514 {
515 register char *src;
516 register int n;
517 unsigned kern_addr;
518
519 src = (char *)addr;
520 if (task == kernel_task || task == TASK_NULL) {
521 while (--size >= 0) {
522 if (addr++ > VM_MAX_KERNEL_ADDRESS) {
523 db_printf("\nbad address %x\n", addr);
524 db_error(0);
525 /* NOTREACHED */
526 }
527 *data++ = *src++;
528 }
529 return;
530 }
531 while (size > 0) {
532 if (db_user_to_kernel_address(task, addr, &kern_addr, 1) < 0)
533 return;
534 src = (char *)kern_addr;
535 n = intel_trunc_page(addr+INTEL_PGBYTES) - addr;
536 if (n > size)
537 n = size;
538 size -= n;
539 addr += n;
540 while (--n >= 0)
541 *data++ = *src++;
542 }
543 }
544
545 /*
546 * Write bytes to kernel address space for debugger.
547 */
548
549 void
550 db_write_bytes(
551 vm_offset_t addr,
552 int size,
553 char *data,
554 task_t task)
555 {
556 register char *dst;
557
558 register pt_entry_t *ptep0 = 0;
559 pt_entry_t oldmap0 = 0;
560 vm_offset_t addr1;
561 register pt_entry_t *ptep1 = 0;
562 pt_entry_t oldmap1 = 0;
563 extern char etext;
564
565 if (task && task != kernel_task) {
566 db_write_bytes_user_space(addr, size, data, task);
567 return;
568 }
569
570
571 if (addr >= VM_MIN_KERNEL_LOADED_ADDRESS) {
572 db_write_bytes_user_space(addr, size, data, kernel_task);
573 return;
574 }
575
576 if (addr >= VM_MIN_KERNEL_ADDRESS &&
577 addr <= (vm_offset_t)&etext)
578 {
579 ptep0 = pmap_pte(kernel_pmap, addr);
580 oldmap0 = *ptep0;
581 *ptep0 |= INTEL_PTE_WRITE;
582
583 addr1 = i386_trunc_page(addr + size - 1);
584 if (i386_trunc_page(addr) != addr1) {
585 /* data crosses a page boundary */
586
587 ptep1 = pmap_pte(kernel_pmap, addr1);
588 oldmap1 = *ptep1;
589 *ptep1 |= INTEL_PTE_WRITE;
590 }
591 flush_tlb();
592 }
593
594 dst = (char *)addr;
595
596 while (--size >= 0) {
597 if (addr++ > VM_MAX_KERNEL_ADDRESS) {
598 db_printf("\nbad address %x\n", addr);
599 db_error(0);
600 /* NOTREACHED */
601 }
602 *dst++ = *data++;
603 }
604
605 if (ptep0) {
606 *ptep0 = oldmap0;
607 if (ptep1) {
608 *ptep1 = oldmap1;
609 }
610 flush_tlb();
611 }
612 }
613
614 void
615 db_write_bytes_user_space(
616 vm_offset_t addr,
617 int size,
618 char *data,
619 task_t task)
620 {
621 register char *dst;
622 register int n;
623 unsigned kern_addr;
624
625 while (size > 0) {
626 if (db_user_to_kernel_address(task, addr, &kern_addr, 1) < 0)
627 return;
628 dst = (char *)kern_addr;
629 n = intel_trunc_page(addr+INTEL_PGBYTES) - addr;
630 if (n > size)
631 n = size;
632 size -= n;
633 addr += n;
634 while (--n >= 0)
635 *dst++ = *data++;
636 }
637 }
638
639 boolean_t
640 db_check_access(
641 vm_offset_t addr,
642 int size,
643 task_t task)
644 {
645 register n;
646 unsigned kern_addr;
647
648 if (task == kernel_task || task == TASK_NULL) {
649 if (kernel_task == TASK_NULL)
650 return(TRUE);
651 task = kernel_task;
652 } else if (task == TASK_NULL) {
653 if (current_thread() == THREAD_NULL)
654 return(FALSE);
655 task = current_thread()->task;
656 }
657 while (size > 0) {
658 if (db_user_to_kernel_address(task, addr, &kern_addr, 0) < 0)
659 return(FALSE);
660 n = intel_trunc_page(addr+INTEL_PGBYTES) - addr;
661 if (n > size)
662 n = size;
663 size -= n;
664 addr += n;
665 }
666 return(TRUE);
667 }
668
669 boolean_t
670 db_phys_eq(
671 task_t task1,
672 vm_offset_t addr1,
673 task_t task2,
674 vm_offset_t addr2)
675 {
676 unsigned kern_addr1, kern_addr2;
677
678 if ((addr1 & (INTEL_PGBYTES-1)) != (addr2 & (INTEL_PGBYTES-1)))
679 return(FALSE);
680 if (task1 == TASK_NULL) {
681 if (current_thread() == THREAD_NULL)
682 return(FALSE);
683 task1 = current_thread()->task;
684 }
685 if (db_user_to_kernel_address(task1, addr1, &kern_addr1, 0) < 0 ||
686 db_user_to_kernel_address(task2, addr2, &kern_addr2, 0) < 0)
687 return(FALSE);
688 return(kern_addr1 == kern_addr2);
689 }
690
691 #define DB_USER_STACK_ADDR (VM_MIN_KERNEL_ADDRESS)
692 #define DB_NAME_SEARCH_LIMIT (DB_USER_STACK_ADDR-(INTEL_PGBYTES*3))
693
694 int
695 db_search_null(
696 task_t task,
697 unsigned *svaddr,
698 unsigned evaddr,
699 unsigned *skaddr,
700 int flag)
701 {
702 register unsigned vaddr;
703 register unsigned *kaddr;
704
705 kaddr = (unsigned *)*skaddr;
706 for (vaddr = *svaddr; vaddr > evaddr; vaddr -= sizeof(unsigned)) {
707 if (vaddr % INTEL_PGBYTES == 0) {
708 vaddr -= sizeof(unsigned);
709 if (db_user_to_kernel_address(task, vaddr, skaddr, 0) < 0)
710 return(-1);
711 kaddr = (unsigned *)*skaddr;
712 } else {
713 vaddr -= sizeof(unsigned);
714 kaddr--;
715 }
716 if ((*kaddr == 0) ^ (flag == 0)) {
717 *svaddr = vaddr;
718 *skaddr = (unsigned)kaddr;
719 return(0);
720 }
721 }
722 return(-1);
723 }
724
725 void
726 db_task_name(
727 task_t task)
728 {
729 register char *p;
730 register n;
731 unsigned vaddr, kaddr;
732
733 vaddr = DB_USER_STACK_ADDR;
734 kaddr = 0;
735
736 /*
737 * skip nulls at the end
738 */
739 if (db_search_null(task, &vaddr, DB_NAME_SEARCH_LIMIT, &kaddr, 0) < 0) {
740 db_printf(DB_NULL_TASK_NAME);
741 return;
742 }
743 /*
744 * search start of args
745 */
746 if (db_search_null(task, &vaddr, DB_NAME_SEARCH_LIMIT, &kaddr, 1) < 0) {
747 db_printf(DB_NULL_TASK_NAME);
748 return;
749 }
750
751 n = DB_TASK_NAME_LEN-1;
752 p = (char *)kaddr + sizeof(unsigned);
753 for (vaddr += sizeof(int); vaddr < DB_USER_STACK_ADDR && n > 0;
754 vaddr++, p++, n--) {
755 if (vaddr % INTEL_PGBYTES == 0) {
756 (void)db_user_to_kernel_address(task, vaddr, &kaddr, 0);
757 p = (char*)kaddr;
758 }
759 db_printf("%c", (*p < ' ' || *p > '~')? ' ': *p);
760 }
761 while (n-- >= 0) /* compare with >= 0 for one more space */
762 db_printf(" ");
763 }
764
765 /*
766 * Code used to synchronize kdb among all cpus, one active at a time, switch
767 * from on to another using kdb_on! #cpu or cpu #cpu
768 */
769
770 decl_simple_lock_data(, kdb_lock) /* kdb lock */
771
772 #define db_simple_lock_init(l, e) hw_lock_init(&((l)->interlock))
773 #define db_simple_lock_try(l) hw_lock_try(&((l)->interlock))
774 #define db_simple_unlock(l) hw_lock_unlock(&((l)->interlock))
775
776 int kdb_cpu = -1; /* current cpu running kdb */
777 int kdb_debug = 0;
778 volatile unsigned int cpus_holding_bkpts; /* counter for number of cpus holding
779 breakpoints (ie: cpus that did not
780 insert back breakpoints) */
781 extern boolean_t db_breakpoints_inserted;
782
783 void
784 db_machdep_init(void)
785 {
786 int c;
787
788 db_simple_lock_init(&kdb_lock, 0);
789 for (c = 0; c < real_ncpus; ++c) {
790 db_stacks[c] = (vm_offset_t) (db_stack_store +
791 (INTSTACK_SIZE * (c + 1)) - sizeof (natural_t));
792 if (c == master_cpu) {
793 dbtss.esp0 = (int)(db_task_stack_store +
794 (INTSTACK_SIZE * (c + 1)) - sizeof (natural_t));
795 dbtss.esp = dbtss.esp0;
796 dbtss.eip = (int)&db_task_start;
797 /*
798 * The TSS for the debugging task on each slave CPU
799 * is set up in mp_desc_init().
800 */
801 }
802 }
803 }
804
805 /*
806 * Called when entering kdb:
807 * Takes kdb lock. If if we were called remotely (slave state) we just
808 * wait for kdb_cpu to be equal to cpu_number(). Otherwise enter kdb if
809 * not active on another cpu.
810 * If db_pass_thru[cpu_number()] > 0, then kdb can't stop now.
811 */
812
813 int
814 kdb_enter(int pc)
815 {
816 int mycpu;
817 int retval;
818
819 disable_preemption();
820
821 mycpu = cpu_number();
822
823 if (current_cpu_datap()->cpu_db_pass_thru) {
824 retval = 0;
825 goto kdb_exit;
826 }
827
828 current_cpu_datap()->cpu_kdb_active++;
829 lock_kdb();
830
831 if (kdb_debug)
832 db_printf("kdb_enter: cpu %d, is_slave %d, kdb_cpu %d, run mode %d pc %x (%x) holds %d\n",
833 my_cpu, current_cpu_datap()->cpu_kdb_is_slave, kdb_cpu,
834 db_run_mode, pc, *(int *)pc, cpus_holding_bkpts);
835 if (db_breakpoints_inserted)
836 cpus_holding_bkpts++;
837 if (kdb_cpu == -1 && !current_cpu_datap()->cpu_kdb_is_slave) {
838 kdb_cpu = my_cpu;
839 remote_kdb(); /* stop other cpus */
840 retval = 1;
841 } else if (kdb_cpu == my_cpu)
842 retval = 1;
843 else
844 retval = 0;
845
846 kdb_exit:
847 enable_preemption();
848
849 return (retval);
850 }
851
852 void
853 kdb_leave(void)
854 {
855 int my_cpu;
856 boolean_t wait = FALSE;
857
858 disable_preemption();
859
860 my_cpu = cpu_number();
861
862 if (db_run_mode == STEP_CONTINUE) {
863 wait = TRUE;
864 kdb_cpu = -1;
865 }
866 if (db_breakpoints_inserted)
867 cpus_holding_bkpts--;
868 if (current_cpu_datap()->cpu_kdb_is_slave)
869 current_cpu_datap()->cpu_kdb_is_slave--;
870 if (kdb_debug)
871 db_printf("kdb_leave: cpu %d, kdb_cpu %d, run_mode %d pc %x (%x) holds %d\n",
872 my_cpu, kdb_cpu, db_run_mode,
873 ddb_regs.eip, *(int *)ddb_regs.eip,
874 cpus_holding_bkpts);
875 clear_kdb_intr();
876 unlock_kdb();
877 current_cpu_datap()->cpu_kdb_active--;
878
879 enable_preemption();
880
881 if (wait) {
882 while(cpus_holding_bkpts);
883 }
884 }
885
886 void
887 lock_kdb(void)
888 {
889 int my_cpu;
890 register i;
891 extern void kdb_console(void);
892
893 disable_preemption();
894
895 my_cpu = cpu_number();
896
897 for(;;) {
898 kdb_console();
899 if (kdb_cpu != -1 && kdb_cpu != my_cpu) {
900 continue;
901 }
902 if (db_simple_lock_try(&kdb_lock)) {
903 if (kdb_cpu == -1 || kdb_cpu == my_cpu)
904 break;
905 db_simple_unlock(&kdb_lock);
906 }
907 }
908
909 enable_preemption();
910 }
911
912 #if TIME_STAMP
913 extern unsigned old_time_stamp;
914 #endif /* TIME_STAMP */
915
916 void
917 unlock_kdb(void)
918 {
919 db_simple_unlock(&kdb_lock);
920 #if TIME_STAMP
921 old_time_stamp = 0;
922 #endif /* TIME_STAMP */
923 }
924
925
926 #ifdef __STDC__
927 #define KDB_SAVE(type, name) extern type name; type name##_save = name
928 #define KDB_RESTORE(name) name = name##_save
929 #else /* __STDC__ */
930 #define KDB_SAVE(type, name) extern type name; type name/**/_save = name
931 #define KDB_RESTORE(name) name = name/**/_save
932 #endif /* __STDC__ */
933
934 #define KDB_SAVE_CTXT() \
935 KDB_SAVE(int, db_run_mode); \
936 KDB_SAVE(boolean_t, db_sstep_print); \
937 KDB_SAVE(int, db_loop_count); \
938 KDB_SAVE(int, db_call_depth); \
939 KDB_SAVE(int, db_inst_count); \
940 KDB_SAVE(int, db_last_inst_count); \
941 KDB_SAVE(int, db_load_count); \
942 KDB_SAVE(int, db_store_count); \
943 KDB_SAVE(boolean_t, db_cmd_loop_done); \
944 KDB_SAVE(jmp_buf_t *, db_recover); \
945 KDB_SAVE(db_addr_t, db_dot); \
946 KDB_SAVE(db_addr_t, db_last_addr); \
947 KDB_SAVE(db_addr_t, db_prev); \
948 KDB_SAVE(db_addr_t, db_next); \
949 KDB_SAVE(db_regs_t, ddb_regs);
950
951 #define KDB_RESTORE_CTXT() \
952 KDB_RESTORE(db_run_mode); \
953 KDB_RESTORE(db_sstep_print); \
954 KDB_RESTORE(db_loop_count); \
955 KDB_RESTORE(db_call_depth); \
956 KDB_RESTORE(db_inst_count); \
957 KDB_RESTORE(db_last_inst_count); \
958 KDB_RESTORE(db_load_count); \
959 KDB_RESTORE(db_store_count); \
960 KDB_RESTORE(db_cmd_loop_done); \
961 KDB_RESTORE(db_recover); \
962 KDB_RESTORE(db_dot); \
963 KDB_RESTORE(db_last_addr); \
964 KDB_RESTORE(db_prev); \
965 KDB_RESTORE(db_next); \
966 KDB_RESTORE(ddb_regs);
967
968 /*
969 * switch to another cpu
970 */
971
972 void
973 kdb_on(
974 int cpu)
975 {
976 KDB_SAVE_CTXT();
977 if (cpu < 0 || cpu >= real_ncpus || !cpu_datap(cpu)->cpu_kdb_active)
978 return;
979 db_set_breakpoints();
980 db_set_watchpoints();
981 kdb_cpu = cpu;
982 unlock_kdb();
983 lock_kdb();
984 db_clear_breakpoints();
985 db_clear_watchpoints();
986 KDB_RESTORE_CTXT();
987 if (kdb_cpu == -1) {/* someone continued */
988 kdb_cpu = cpu_number();
989 db_continue_cmd(0, 0, 0, "");
990 }
991 }
992
993 void db_reboot(
994 db_expr_t addr,
995 boolean_t have_addr,
996 db_expr_t count,
997 char *modif)
998 {
999 boolean_t reboot = TRUE;
1000 char *cp, c;
1001
1002 cp = modif;
1003 while ((c = *cp++) != 0) {
1004 if (c == 'r') /* reboot */
1005 reboot = TRUE;
1006 if (c == 'h') /* halt */
1007 reboot = FALSE;
1008 }
1009 halt_all_cpus(reboot);
1010 }