2 * Copyright (c) 2015-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * @OSF_FREE_COPYRIGHT@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
58 * un-comment the following lines to debug the link/prepost tables
59 * NOTE: this expands each element by ~40 bytes
61 //#define KEEP_WAITQ_LINK_STATS
62 //#define KEEP_WAITQ_PREPOST_STATS
65 #include <kern/backtrace.h>
66 #include <kern/kern_types.h>
67 #include <kern/ltable.h>
68 #include <kern/mach_param.h>
69 #include <kern/queue.h>
70 #include <kern/sched_prim.h>
71 #include <kern/simple_lock.h>
73 #include <kern/waitq.h>
74 #include <kern/zalloc.h>
75 #include <kern/policy_internal.h>
76 #include <kern/turnstile.h>
79 #include <libkern/OSAtomic.h>
80 #include <mach/sync_policy.h>
81 #include <vm/vm_kern.h>
83 #include <sys/kdebug.h>
85 #if defined(KEEP_WAITQ_LINK_STATS) || defined(KEEP_WAITQ_PREPOST_STATS)
86 # if !CONFIG_LTABLE_STATS
87 # error "You must configure LTABLE_STATS to use WAITQ_[LINK|PREPOST]_STATS"
89 # if !CONFIG_WAITQ_STATS
90 # error "You must configure WAITQ_STATS to use WAITQ_[LINK|PREPOST]_STATS"
94 #if CONFIG_WAITQ_DEBUG
95 #define wqdbg(fmt, ...) \
96 printf("WQ[%s]: " fmt "\n", __func__, ## __VA_ARGS__)
98 #define wqdbg(fmt, ...) do { } while (0)
101 #ifdef WAITQ_VERBOSE_DEBUG
102 #define wqdbg_v(fmt, ...) \
103 printf("WQ[v:%s]: " fmt "\n", __func__, ## __VA_ARGS__)
105 #define wqdbg_v(fmt, ...) do { } while (0)
108 #define wqinfo(fmt, ...) \
109 printf("WQ[%s]: " fmt "\n", __func__, ## __VA_ARGS__)
111 #define wqerr(fmt, ...) \
112 printf("WQ[%s] ERROR: " fmt "\n", __func__, ## __VA_ARGS__)
115 * file-static functions / data
117 static thread_t
waitq_select_one_locked(struct waitq
*waitq
, event64_t event
,
118 uint64_t *reserved_preposts
,
119 int priority
, spl_t
*spl
);
121 static kern_return_t
waitq_select_thread_locked(struct waitq
*waitq
,
123 thread_t thread
, spl_t
*spl
);
125 #define WAITQ_SET_MAX (task_max * 3)
126 static zone_t waitq_set_zone
;
129 #define P2ROUNDUP(x, align) (-(-((uint32_t)(x)) & -(align)))
130 #define ROUNDDOWN(x, y) (((x)/(y))*(y))
133 #if CONFIG_LTABLE_STATS || CONFIG_WAITQ_STATS
134 static __inline__
void waitq_grab_backtrace(uintptr_t bt
[NWAITQ_BTFRAMES
], int skip
);
137 lck_grp_t waitq_lck_grp
;
141 #define waitq_lock_to(wq, to) \
142 (hw_lock_bit_to(&(wq)->waitq_interlock, LCK_ILOCK, to, &waitq_lck_grp))
144 #define waitq_lock_unlock(wq) \
145 (hw_unlock_bit(&(wq)->waitq_interlock, LCK_ILOCK))
147 #define waitq_lock_init(wq) \
148 (wq->waitq_interlock = 0)
152 #define waitq_lock_to(wq, to) \
153 (hw_lock_to(&(wq)->waitq_interlock, to, &waitq_lck_grp))
155 #define waitq_lock_unlock(wq) \
156 (hw_lock_unlock(&(wq)->waitq_interlock))
158 #define waitq_lock_init(wq) \
159 (hw_lock_init(&(wq)->waitq_interlock))
161 #endif /* __arm64__ */
164 * Prepost callback function for specially marked waitq sets
165 * (prepost alternative)
167 extern void waitq_set__CALLING_PREPOST_HOOK__(void *ctx
, void *memberctx
, int priority
);
169 #define DEFAULT_MIN_FREE_TABLE_ELEM 100
170 static uint32_t g_min_free_table_elem
;
171 static uint32_t g_min_free_cache
;
174 /* ----------------------------------------------------------------------
176 * SetID Link Table Implementation
178 * ---------------------------------------------------------------------- */
179 static struct link_table g_wqlinktable
;
192 /* wqt_type == WQL_WQS (LT_ELEM) */
194 struct waitq_set
*wql_set
;
195 /* uint64_t sl_prepost_id; */
198 /* wqt_type == WQL_LINK (LT_LINK) */
201 uint64_t right_setid
;
204 #ifdef KEEP_WAITQ_LINK_STATS
205 thread_t sl_alloc_th
;
206 task_t sl_alloc_task
;
207 uintptr_t sl_alloc_bt
[NWAITQ_BTFRAMES
];
208 uint64_t sl_alloc_ts
;
209 uintptr_t sl_invalidate_bt
[NWAITQ_BTFRAMES
];
210 uint64_t sl_invalidate_ts
;
211 uintptr_t sl_mkvalid_bt
[NWAITQ_BTFRAMES
];
212 uint64_t sl_mkvalid_ts
;
216 #if !defined(KEEP_WAITQ_LINK_STATS)
217 static_assert((sizeof(struct waitq_link
) & (sizeof(struct waitq_link
) - 1)) == 0,
218 "waitq_link struct must be a power of two!");
221 #define wql_refcnt(link) \
222 (lt_bits_refcnt((link)->wqte.lt_bits))
224 #define wql_type(link) \
225 (lt_bits_type((link)->wqte.lt_bits))
227 #define wql_mkvalid(link) \
229 lt_elem_mkvalid(&(link)->wqte); \
230 wql_do_mkvalid_stats(&(link)->wqte); \
233 #define wql_is_valid(link) \
234 lt_bits_valid((link)->wqte.lt_bits)
236 #define wql_setid wqte.lt_id
238 #define WQL_WQS_POISON ((void *)(0xf00df00d))
239 #define WQL_LINK_POISON (0x0bad0badffffffffull)
242 wql_poison(struct link_table
*table
, struct lt_elem
*elem
)
244 struct waitq_link
*link
= (struct waitq_link
*)elem
;
247 switch (wql_type(link
)) {
249 link
->wql_wqs
.wql_set
= WQL_WQS_POISON
;
252 link
->wql_link
.left_setid
= WQL_LINK_POISON
;
253 link
->wql_link
.right_setid
= WQL_LINK_POISON
;
258 #ifdef KEEP_WAITQ_LINK_STATS
259 memset(link
->sl_alloc_bt
, 0, sizeof(link
->sl_alloc_bt
));
260 link
->sl_alloc_ts
= 0;
261 memset(link
->sl_mkvalid_bt
, 0, sizeof(link
->sl_mkvalid_bt
));
262 link
->sl_mkvalid_ts
= 0;
264 link
->sl_alloc_th
= THREAD_NULL
;
265 /* leave the sl_alloc_task in place for debugging */
267 link
->sl_free_ts
= mach_absolute_time();
271 #ifdef KEEP_WAITQ_LINK_STATS
272 static __inline__
void
273 wql_do_alloc_stats(struct lt_elem
*elem
)
276 struct waitq_link
*link
= (struct waitq_link
*)elem
;
277 memset(link
->sl_alloc_bt
, 0, sizeof(link
->sl_alloc_bt
));
278 waitq_grab_backtrace(link
->sl_alloc_bt
, 0);
279 link
->sl_alloc_th
= current_thread();
280 link
->sl_alloc_task
= current_task();
282 assert(link
->sl_alloc_ts
== 0);
283 link
->sl_alloc_ts
= mach_absolute_time();
285 memset(link
->sl_invalidate_bt
, 0, sizeof(link
->sl_invalidate_bt
));
286 link
->sl_invalidate_ts
= 0;
290 static __inline__
void
291 wql_do_invalidate_stats(struct lt_elem
*elem
)
293 struct waitq_link
*link
= (struct waitq_link
*)elem
;
299 assert(link
->sl_mkvalid_ts
> 0);
301 memset(link
->sl_invalidate_bt
, 0, sizeof(link
->sl_invalidate_bt
));
302 link
->sl_invalidate_ts
= mach_absolute_time();
303 waitq_grab_backtrace(link
->sl_invalidate_bt
, 0);
306 static __inline__
void
307 wql_do_mkvalid_stats(struct lt_elem
*elem
)
309 struct waitq_link
*link
= (struct waitq_link
*)elem
;
315 memset(link
->sl_mkvalid_bt
, 0, sizeof(link
->sl_mkvalid_bt
));
316 link
->sl_mkvalid_ts
= mach_absolute_time();
317 waitq_grab_backtrace(link
->sl_mkvalid_bt
, 0);
320 #define wql_do_alloc_stats(e)
321 #define wql_do_invalidate_stats(e)
322 #define wql_do_mkvalid_stats(e)
323 #endif /* KEEP_WAITQ_LINK_STATS */
328 uint32_t tablesz
= 0, max_links
= 0;
330 if (PE_parse_boot_argn("wql_tsize", &tablesz
, sizeof(tablesz
)) != TRUE
) {
331 tablesz
= (uint32_t)g_lt_max_tbl_size
;
334 tablesz
= P2ROUNDUP(tablesz
, PAGE_SIZE
);
335 max_links
= tablesz
/ sizeof(struct waitq_link
);
336 assert(max_links
> 0 && tablesz
> 0);
338 /* we have a restricted index range */
339 if (max_links
> (LT_IDX_MAX
+ 1)) {
340 max_links
= LT_IDX_MAX
+ 1;
343 wqinfo("init linktable with max:%d elements (%d bytes)",
345 ltable_init(&g_wqlinktable
, "wqslab.wql", max_links
,
346 sizeof(struct waitq_link
), wql_poison
);
350 wql_ensure_free_space(void)
352 if (g_wqlinktable
.nelem
- g_wqlinktable
.used_elem
< g_min_free_table_elem
) {
354 * we don't hold locks on these values, so check for underflow
356 if (g_wqlinktable
.used_elem
<= g_wqlinktable
.nelem
) {
357 wqdbg_v("Forcing table growth: nelem=%d, used=%d, min_free=%d",
358 g_wqlinktable
.nelem
, g_wqlinktable
.used_elem
,
359 g_min_free_table_elem
);
360 ltable_grow(&g_wqlinktable
, g_min_free_table_elem
);
365 static struct waitq_link
*
366 wql_alloc_link(int type
)
368 struct lt_elem
*elem
;
370 elem
= ltable_alloc_elem(&g_wqlinktable
, type
, 1, 0);
371 wql_do_alloc_stats(elem
);
372 return (struct waitq_link
*)elem
;
376 wql_realloc_link(struct waitq_link
*link
, int type
)
378 ltable_realloc_elem(&g_wqlinktable
, &link
->wqte
, type
);
379 #ifdef KEEP_WAITQ_LINK_STATS
380 memset(link
->sl_alloc_bt
, 0, sizeof(link
->sl_alloc_bt
));
381 link
->sl_alloc_ts
= 0;
382 wql_do_alloc_stats(&link
->wqte
);
384 memset(link
->sl_invalidate_bt
, 0, sizeof(link
->sl_invalidate_bt
));
385 link
->sl_invalidate_ts
= 0;
390 wql_invalidate(struct waitq_link
*link
)
392 lt_elem_invalidate(&link
->wqte
);
393 wql_do_invalidate_stats(&link
->wqte
);
396 static struct waitq_link
*
397 wql_get_link(uint64_t setid
)
399 struct lt_elem
*elem
;
401 elem
= ltable_get_elem(&g_wqlinktable
, setid
);
402 return (struct waitq_link
*)elem
;
406 wql_put_link(struct waitq_link
*link
)
411 ltable_put_elem(&g_wqlinktable
, (struct lt_elem
*)link
);
414 static struct waitq_link
*
415 wql_get_reserved(uint64_t setid
, int type
)
417 struct lt_elem
*elem
;
419 elem
= lt_elem_list_first(&g_wqlinktable
, setid
);
423 ltable_realloc_elem(&g_wqlinktable
, elem
, type
);
424 return (struct waitq_link
*)elem
;
428 static inline int waitq_maybe_remove_link(struct waitq
*waitq
,
430 struct waitq_link
*parent
,
431 struct waitq_link
*left
,
432 struct waitq_link
*right
);
435 LINK_WALK_ONE_LEVEL
= 0,
436 LINK_WALK_FULL_DAG
= 1,
437 LINK_WALK_FULL_DAG_UNLOCKED
= 2,
440 typedef int (*wql_callback_func
)(struct waitq
*waitq
, void *ctx
,
441 struct waitq_link
*link
);
444 * walk_waitq_links: walk all table elements (of type 'link_type') pointed to by 'setid'
447 * waitq is locked (or NULL)
448 * 'setid' is managed by 'waitq'
449 * this could be direct (waitq->waitq_set_id == setid)
450 * OR indirect (setid is the left/right ID in a LINK chain,
451 * whose root is waitq->waitq_set_id)
454 * This function uses recursion to walk the set of table elements
455 * pointed to by 'setid'. For each element encountered, 'cb' will be
456 * called. If non-zero, the return value of this callback function can
457 * early-out of the table walk.
459 * For each link element encountered, the function takes a reference to
460 * it. The reference is dropped only after the callback and any recursion
463 * The assumed table/link/tree structure:
472 * /\ /\ ... ... ... ...
475 * WQS(wqset_q.waitq_setid == Sx)
476 * [waitq set is a membet of setid, 'Sx')
485 * The basic algorithm is as follows:
486 * *) take a reference to the table object pointed to by 'setid'
487 * *) if appropriate, call 'cb' (potentially early-out on non-zero return)
488 * *) if the link object points to a waitq set, and the walk type
489 * is 'FULL_DAG' (full directed-acyclic-graph), then try to lock
490 * the associated waitq set object and recursively walk all sets to
491 * which that set belongs. This is a DFS of the tree structure.
492 * *) recurse down the left side of the tree (following the
493 * 'left_setid' pointer in the link object
494 * *) recurse down the right side of the tree (following the
495 * 'right_setid' pointer in the link object
497 static __attribute__((noinline
))
499 walk_waitq_links(int walk_type
, struct waitq
*waitq
,
500 uint64_t setid
, int link_type
,
501 void *ctx
, wql_callback_func cb
)
503 struct waitq_link
*link
;
507 link
= wql_get_link(setid
);
511 return WQ_ITERATE_CONTINUE
;
515 wqltype
= wql_type(link
);
516 if (wqltype
== WQL_LINK
) {
517 setid
= link
->wql_link
.left_setid
;
518 nextid
= link
->wql_link
.right_setid
;
522 * Make the callback only on specified link_type (or all links)
523 * Note that after the callback, the link object may be
524 * invalid. The only valid thing we can do is put our
525 * reference to it (which may put it back on the free list)
527 if (link_type
== WQL_ALL
|| link_type
== wqltype
) {
528 /* allow the callback to early-out */
529 int ret
= cb(waitq
, ctx
, link
);
530 if (ret
!= WQ_ITERATE_CONTINUE
) {
536 if (wqltype
== WQL_WQS
&&
537 (walk_type
== LINK_WALK_FULL_DAG
||
538 walk_type
== LINK_WALK_FULL_DAG_UNLOCKED
)) {
540 * Recurse down any sets to which this wait queue set was
541 * added. We do this just before we put our reference to
542 * the link object (which may free it).
544 struct waitq_set
*wqset
= link
->wql_wqs
.wql_set
;
545 int ret
= WQ_ITERATE_CONTINUE
;
546 int should_unlock
= 0;
547 uint64_t wqset_setid
= 0;
549 if (waitq_set_is_valid(wqset
) && walk_type
== LINK_WALK_FULL_DAG
) {
550 assert(!waitq_irq_safe(&wqset
->wqset_q
));
551 waitq_set_lock(wqset
);
556 * verify the linked waitq set as it could have been
557 * invalidated before we grabbed the lock!
559 if (wqset
->wqset_id
!= link
->wql_setid
.id
) {
560 /* This is the bottom of the tree: just get out */
562 waitq_set_unlock(wqset
);
565 return WQ_ITERATE_CONTINUE
;
568 wqset_setid
= wqset
->wqset_q
.waitq_set_id
;
570 if (wqset_setid
> 0) {
571 ret
= walk_waitq_links(walk_type
, &wqset
->wqset_q
,
572 wqset_setid
, link_type
, ctx
, cb
);
575 waitq_set_unlock(wqset
);
577 if (ret
!= WQ_ITERATE_CONTINUE
) {
585 /* recurse down left side of the tree */
587 int ret
= walk_waitq_links(walk_type
, waitq
, setid
, link_type
, ctx
, cb
);
588 if (ret
!= WQ_ITERATE_CONTINUE
) {
593 /* recurse down right side of the tree */
595 return walk_waitq_links(walk_type
, waitq
, nextid
, link_type
, ctx
, cb
);
598 return WQ_ITERATE_CONTINUE
;
601 /* ----------------------------------------------------------------------
603 * Prepost Link Table Implementation
605 * ---------------------------------------------------------------------- */
606 static struct link_table g_prepost_table
;
608 enum wq_prepost_type
{
618 /* wqt_type == WQP_WQ (LT_ELEM) */
620 struct waitq
*wqp_wq_ptr
;
622 /* wqt_type == WQP_POST (LT_LINK) */
624 uint64_t wqp_next_id
;
628 #ifdef KEEP_WAITQ_PREPOST_STATS
629 thread_t wqp_alloc_th
;
630 task_t wqp_alloc_task
;
631 uintptr_t wqp_alloc_bt
[NWAITQ_BTFRAMES
];
634 #if !defined(KEEP_WAITQ_PREPOST_STATS)
635 static_assert((sizeof(struct wq_prepost
) & (sizeof(struct wq_prepost
) - 1)) == 0,
636 "wq_prepost struct must be a power of two!");
639 #define wqp_refcnt(wqp) \
640 (lt_bits_refcnt((wqp)->wqte.lt_bits))
642 #define wqp_type(wqp) \
643 (lt_bits_type((wqp)->wqte.lt_bits))
645 #define wqp_set_valid(wqp) \
646 lt_elem_mkvalid(&(wqp)->wqte)
648 #define wqp_is_valid(wqp) \
649 lt_bits_valid((wqp)->wqte.lt_bits)
651 #define wqp_prepostid wqte.lt_id
653 #define WQP_WQ_POISON (0x0bad0badffffffffull)
654 #define WQP_POST_POISON (0xf00df00df00df00d)
657 wqp_poison(struct link_table
*table
, struct lt_elem
*elem
)
659 struct wq_prepost
*wqp
= (struct wq_prepost
*)elem
;
662 switch (wqp_type(wqp
)) {
666 wqp
->wqp_post
.wqp_next_id
= WQP_POST_POISON
;
667 wqp
->wqp_post
.wqp_wq_id
= WQP_POST_POISON
;
674 #ifdef KEEP_WAITQ_PREPOST_STATS
675 static __inline__
void
676 wqp_do_alloc_stats(struct lt_elem
*elem
)
682 struct wq_prepost
*wqp
= (struct wq_prepost
*)elem
;
683 uintptr_t alloc_bt
[sizeof(wqp
->wqp_alloc_bt
)];
685 waitq_grab_backtrace(alloc_bt
, NWAITQ_BTFRAMES
);
687 /* be sure the take stats for _all_ allocated objects */
689 memcpy(wqp
->wqp_alloc_bt
, alloc_bt
, sizeof(alloc_bt
));
690 wqp
->wqp_alloc_th
= current_thread();
691 wqp
->wqp_alloc_task
= current_task();
692 wqp
= (struct wq_prepost
*)lt_elem_list_next(&g_prepost_table
, &wqp
->wqte
);
699 #define wqp_do_alloc_stats(e)
700 #endif /* KEEP_WAITQ_LINK_STATS */
705 uint32_t tablesz
= 0, max_wqp
= 0;
707 if (PE_parse_boot_argn("wqp_tsize", &tablesz
, sizeof(tablesz
)) != TRUE
) {
708 tablesz
= (uint32_t)g_lt_max_tbl_size
;
711 tablesz
= P2ROUNDUP(tablesz
, PAGE_SIZE
);
712 max_wqp
= tablesz
/ sizeof(struct wq_prepost
);
713 assert(max_wqp
> 0 && tablesz
> 0);
715 /* we have a restricted index range */
716 if (max_wqp
> (LT_IDX_MAX
+ 1)) {
717 max_wqp
= LT_IDX_MAX
+ 1;
720 wqinfo("init prepost table with max:%d elements (%d bytes)",
722 ltable_init(&g_prepost_table
, "wqslab.prepost", max_wqp
,
723 sizeof(struct wq_prepost
), wqp_poison
);
727 * Refill the per-CPU cache.
730 wq_prepost_refill_cpu_cache(uint32_t nalloc
)
732 struct lt_elem
*new_head
, *old_head
;
733 struct wqp_cache
*cache
;
735 /* require preemption enabled to allocate elements */
736 if (get_preemption_level() != 0) {
740 new_head
= ltable_alloc_elem(&g_prepost_table
,
741 LT_RESERVED
, nalloc
, 1);
742 if (new_head
== NULL
) {
746 disable_preemption();
747 cache
= &PROCESSOR_DATA(current_processor(), wqp_cache
);
749 /* check once more before putting these elements on the list */
750 if (cache
->avail
>= WQP_CACHE_MAX
) {
751 lt_elem_list_release(&g_prepost_table
, new_head
, LT_RESERVED
);
756 cache
->avail
+= nalloc
;
757 if (cache
->head
== 0 || cache
->head
== LT_IDX_MAX
) {
758 cache
->head
= new_head
->lt_id
.id
;
762 old_head
= lt_elem_list_first(&g_prepost_table
, cache
->head
);
763 (void)lt_elem_list_link(&g_prepost_table
, new_head
, old_head
);
764 cache
->head
= new_head
->lt_id
.id
;
772 wq_prepost_ensure_free_space(void)
776 struct wqp_cache
*cache
;
778 if (g_min_free_cache
== 0) {
779 g_min_free_cache
= (WQP_CACHE_MAX
* ml_get_max_cpus());
783 * Ensure that we always have a pool of per-CPU prepost elements
785 disable_preemption();
786 cache
= &PROCESSOR_DATA(current_processor(), wqp_cache
);
787 free_elem
= cache
->avail
;
790 if (free_elem
< (WQP_CACHE_MAX
/ 3)) {
791 wq_prepost_refill_cpu_cache(WQP_CACHE_MAX
- free_elem
);
795 * Now ensure that we have a sufficient amount of free table space
797 free_elem
= g_prepost_table
.nelem
- g_prepost_table
.used_elem
;
798 min_free
= g_min_free_table_elem
+ g_min_free_cache
;
799 if (free_elem
< min_free
) {
801 * we don't hold locks on these values, so check for underflow
803 if (g_prepost_table
.used_elem
<= g_prepost_table
.nelem
) {
804 wqdbg_v("Forcing table growth: nelem=%d, used=%d, min_free=%d+%d",
805 g_prepost_table
.nelem
, g_prepost_table
.used_elem
,
806 g_min_free_table_elem
, g_min_free_cache
);
807 ltable_grow(&g_prepost_table
, min_free
);
812 static struct wq_prepost
*
813 wq_prepost_alloc(int type
, int nelem
)
815 struct lt_elem
*elem
;
816 struct wq_prepost
*wqp
;
817 struct wqp_cache
*cache
;
819 if (type
!= LT_RESERVED
) {
827 * First try to grab the elements from the per-CPU cache if we are
828 * allocating RESERVED elements
830 disable_preemption();
831 cache
= &PROCESSOR_DATA(current_processor(), wqp_cache
);
832 if (nelem
<= (int)cache
->avail
) {
833 struct lt_elem
*first
, *next
= NULL
;
836 cache
->avail
-= nelem
;
838 /* grab the first element */
839 first
= lt_elem_list_first(&g_prepost_table
, cache
->head
);
841 /* find the last element and re-adjust the cache head */
842 for (elem
= first
; elem
!= NULL
&& nalloc
> 0; elem
= next
) {
843 next
= lt_elem_list_next(&g_prepost_table
, elem
);
845 /* terminate the allocated list */
846 elem
->lt_next_idx
= LT_IDX_MAX
;
852 cache
->head
= LT_IDX_MAX
;
854 cache
->head
= next
->lt_id
.id
;
856 /* assert that we don't have mis-matched book keeping */
857 assert(!(cache
->head
== LT_IDX_MAX
&& cache
->avail
> 0));
865 /* fall-back to standard table allocation */
866 elem
= ltable_alloc_elem(&g_prepost_table
, type
, nelem
, 0);
872 wqp
= (struct wq_prepost
*)elem
;
873 wqp_do_alloc_stats(elem
);
878 wq_prepost_invalidate(struct wq_prepost
*wqp
)
880 lt_elem_invalidate(&wqp
->wqte
);
883 static struct wq_prepost
*
884 wq_prepost_get(uint64_t wqp_id
)
886 struct lt_elem
*elem
;
888 elem
= ltable_get_elem(&g_prepost_table
, wqp_id
);
889 return (struct wq_prepost
*)elem
;
893 wq_prepost_put(struct wq_prepost
*wqp
)
895 ltable_put_elem(&g_prepost_table
, (struct lt_elem
*)wqp
);
899 wq_prepost_rlink(struct wq_prepost
*parent
, struct wq_prepost
*child
)
901 return lt_elem_list_link(&g_prepost_table
, &parent
->wqte
, &child
->wqte
);
904 static struct wq_prepost
*
905 wq_prepost_get_rnext(struct wq_prepost
*head
)
907 struct lt_elem
*elem
;
908 struct wq_prepost
*wqp
;
911 elem
= lt_elem_list_next(&g_prepost_table
, &head
->wqte
);
916 elem
= ltable_get_elem(&g_prepost_table
, id
);
921 wqp
= (struct wq_prepost
*)elem
;
922 if (elem
->lt_id
.id
!= id
||
923 wqp_type(wqp
) != WQP_POST
||
924 wqp
->wqp_post
.wqp_next_id
!= head
->wqp_prepostid
.id
) {
925 ltable_put_elem(&g_prepost_table
, elem
);
933 wq_prepost_reset_rnext(struct wq_prepost
*wqp
)
935 (void)lt_elem_list_break(&g_prepost_table
, &wqp
->wqte
);
940 * remove 'wqp' from the prepost list on 'wqset'
944 * caller holds a reference on wqp (and is responsible to release it)
947 * wqp is invalidated, wqset is potentially updated with a new
948 * prepost ID, and the next element of the prepost list may be
949 * consumed as well (if the list contained only 2 objects)
952 wq_prepost_remove(struct waitq_set
*wqset
,
953 struct wq_prepost
*wqp
)
956 uint64_t next_id
= wqp
->wqp_post
.wqp_next_id
;
957 uint64_t wqp_id
= wqp
->wqp_prepostid
.id
;
958 struct wq_prepost
*prev_wqp
, *next_wqp
;
960 assert(wqp_type(wqp
) == WQP_POST
);
961 assert(wqset
->wqset_q
.waitq_prepost
== 1);
963 if (next_id
== wqp_id
) {
964 /* the list is singular and becoming empty */
965 wqset
->wqset_prepost_id
= 0;
970 prev_wqp
= wq_prepost_get_rnext(wqp
);
971 assert(prev_wqp
!= NULL
);
972 assert(prev_wqp
->wqp_post
.wqp_next_id
== wqp_id
);
973 assert(prev_wqp
->wqp_prepostid
.id
!= wqp_id
);
974 assert(wqp_type(prev_wqp
) == WQP_POST
);
976 if (prev_wqp
->wqp_prepostid
.id
== next_id
) {
978 * There are two items in the list, and we're removing one. We
979 * only need to keep the WQP_WQ pointer from 'prev_wqp'
981 wqset
->wqset_prepost_id
= prev_wqp
->wqp_post
.wqp_wq_id
;
982 wq_prepost_invalidate(prev_wqp
);
983 wq_prepost_put(prev_wqp
);
988 /* prev->next = next */
989 prev_wqp
->wqp_post
.wqp_next_id
= next_id
;
991 /* next->prev = prev */
992 next_wqp
= wq_prepost_get(next_id
);
993 assert(next_wqp
!= NULL
);
994 assert(next_wqp
!= wqp
);
995 assert(next_wqp
!= prev_wqp
);
996 assert(wqp_type(next_wqp
) == WQP_POST
);
998 wq_prepost_reset_rnext(next_wqp
);
999 wq_prepost_rlink(next_wqp
, prev_wqp
);
1001 /* If we remove the head of the list, update the wqset */
1002 if (wqp_id
== wqset
->wqset_prepost_id
) {
1003 wqset
->wqset_prepost_id
= next_id
;
1006 wq_prepost_put(prev_wqp
);
1007 wq_prepost_put(next_wqp
);
1010 wq_prepost_reset_rnext(wqp
);
1011 wq_prepost_invalidate(wqp
);
1015 static struct wq_prepost
*
1016 wq_prepost_rfirst(uint64_t id
)
1018 struct lt_elem
*elem
;
1019 elem
= lt_elem_list_first(&g_prepost_table
, id
);
1020 wqp_do_alloc_stats(elem
);
1021 return (struct wq_prepost
*)(void *)elem
;
1024 static struct wq_prepost
*
1025 wq_prepost_rpop(uint64_t *id
, int type
)
1027 struct lt_elem
*elem
;
1028 elem
= lt_elem_list_pop(&g_prepost_table
, id
, type
);
1029 wqp_do_alloc_stats(elem
);
1030 return (struct wq_prepost
*)(void *)elem
;
1034 wq_prepost_release_rlist(struct wq_prepost
*wqp
)
1037 struct wqp_cache
*cache
;
1038 struct lt_elem
*elem
;
1047 * These are reserved elements: release them back to the per-cpu pool
1048 * if our cache is running low.
1050 disable_preemption();
1051 cache
= &PROCESSOR_DATA(current_processor(), wqp_cache
);
1052 if (cache
->avail
< WQP_CACHE_MAX
) {
1053 struct lt_elem
*tmp
= NULL
;
1054 if (cache
->head
!= LT_IDX_MAX
) {
1055 tmp
= lt_elem_list_first(&g_prepost_table
, cache
->head
);
1057 nelem
= lt_elem_list_link(&g_prepost_table
, elem
, tmp
);
1058 cache
->head
= elem
->lt_id
.id
;
1059 cache
->avail
+= nelem
;
1060 enable_preemption();
1063 enable_preemption();
1065 /* release these elements back to the main table */
1066 nelem
= lt_elem_list_release(&g_prepost_table
, elem
, LT_RESERVED
);
1068 #if CONFIG_WAITQ_STATS
1069 g_prepost_table
.nreserved_releases
+= 1;
1070 OSDecrementAtomic64(&g_prepost_table
.nreservations
);
1074 typedef int (*wqp_callback_func
)(struct waitq_set
*wqset
,
1076 struct wq_prepost
*wqp
,
1077 struct waitq
*waitq
);
1080 * iterate over a chain of preposts associated with a waitq set.
1086 * This loop performs automatic prepost chain management / culling, and
1087 * may reset or adjust the waitq set's prepost ID pointer. If you don't
1088 * want this extra processing, you can use wq_prepost_iterate().
1091 wq_prepost_foreach_locked(struct waitq_set
*wqset
,
1092 void *ctx
, wqp_callback_func cb
)
1094 int ret
= WQ_ITERATE_SUCCESS
;
1095 struct wq_prepost
*wqp
, *tmp_wqp
;
1099 if (!wqset
|| !waitq_set_maybe_preposted(wqset
)) {
1100 return WQ_ITERATE_SUCCESS
;
1104 wqp
= wq_prepost_get(wqset
->wqset_prepost_id
);
1107 * The prepost object is no longer valid, reset the waitq
1110 wqset
->wqset_prepost_id
= 0;
1111 return WQ_ITERATE_SUCCESS
;
1114 if (wqp_type(wqp
) == WQP_WQ
) {
1115 uint64_t __assert_only wqp_id
= wqp
->wqp_prepostid
.id
;
1117 ret
= cb(wqset
, ctx
, wqp
, wqp
->wqp_wq
.wqp_wq_ptr
);
1120 case WQ_ITERATE_INVALIDATE_CONTINUE
:
1121 /* the caller wants to remove the only prepost here */
1122 assert(wqp_id
== wqset
->wqset_prepost_id
);
1123 wqset
->wqset_prepost_id
= 0;
1125 case WQ_ITERATE_CONTINUE
:
1126 wq_prepost_put(wqp
);
1127 ret
= WQ_ITERATE_SUCCESS
;
1129 case WQ_ITERATE_RESTART
:
1130 wq_prepost_put(wqp
);
1132 case WQ_ITERATE_DROPPED
:
1135 wq_prepost_put(wqp
);
1141 assert(wqp
->wqp_prepostid
.id
== wqset
->wqset_prepost_id
);
1142 assert(wqp_type(wqp
) == WQP_POST
);
1145 * At this point we know we have a list of POST objects.
1146 * Grab a handle to the last element in the list and start
1149 tmp_wqp
= wq_prepost_get_rnext(wqp
);
1150 assert(tmp_wqp
!= NULL
&& wqp_type(tmp_wqp
) == WQP_POST
);
1152 uint64_t last_id
= tmp_wqp
->wqp_prepostid
.id
;
1153 wq_prepost_put(tmp_wqp
);
1155 ret
= WQ_ITERATE_SUCCESS
;
1157 uint64_t wqp_id
, first_id
, next_id
;
1159 wqp_id
= wqp
->wqp_prepostid
.id
;
1160 first_id
= wqset
->wqset_prepost_id
;
1161 next_id
= wqp
->wqp_post
.wqp_next_id
;
1163 /* grab the WQP_WQ object this _POST points to */
1164 tmp_wqp
= wq_prepost_get(wqp
->wqp_post
.wqp_wq_id
);
1167 * This WQP_POST object points to an invalid
1168 * WQP_WQ object - remove the POST object from
1171 if (wq_prepost_remove(wqset
, wqp
) == 0) {
1172 wq_prepost_put(wqp
);
1177 assert(wqp_type(tmp_wqp
) == WQP_WQ
);
1179 * make the callback: note that this could remove 'wqp' or
1180 * drop the lock on our waitq set. We need to re-validate
1181 * our state when this function returns.
1183 ret
= cb(wqset
, ctx
, wqp
, tmp_wqp
->wqp_wq
.wqp_wq_ptr
);
1184 wq_prepost_put(tmp_wqp
);
1187 case WQ_ITERATE_CONTINUE
:
1188 /* continue iteration */
1190 case WQ_ITERATE_INVALIDATE_CONTINUE
:
1191 assert(next_id
== wqp
->wqp_post
.wqp_next_id
);
1192 if (wq_prepost_remove(wqset
, wqp
) == 0) {
1193 wq_prepost_put(wqp
);
1197 case WQ_ITERATE_RESTART
:
1198 wq_prepost_put(wqp
);
1200 case WQ_ITERATE_DROPPED
:
1201 /* the callback dropped the ref to wqp: just restart */
1204 /* break out of the iteration for some other reason */
1205 goto finish_prepost_foreach
;
1209 * the set lock may have been dropped during callback,
1210 * if something looks different, restart the prepost iteration
1212 if (!wqp_is_valid(wqp
) ||
1213 (wqp
->wqp_post
.wqp_next_id
!= next_id
) ||
1214 wqset
->wqset_prepost_id
!= first_id
) {
1215 wq_prepost_put(wqp
);
1220 /* this was the last object in the list */
1221 if (wqp_id
== last_id
) {
1225 /* get the next object */
1226 tmp_wqp
= wq_prepost_get(next_id
);
1229 * At this point we've already checked our state
1230 * after the callback (which may have dropped the set
1231 * lock). If we find an invalid member of the list
1232 * then something is wrong.
1234 panic("Invalid WQP_POST member 0x%llx in waitq set "
1235 "0x%llx prepost list (first:%llx, "
1237 next_id
, wqset
->wqset_id
, first_id
, wqp
);
1239 wq_prepost_put(wqp
);
1242 assert(wqp_type(wqp
) == WQP_POST
);
1245 finish_prepost_foreach
:
1246 wq_prepost_put(wqp
);
1247 if (ret
== WQ_ITERATE_CONTINUE
) {
1248 ret
= WQ_ITERATE_SUCCESS
;
1255 * Perform a simple loop over a chain of prepost objects
1258 * If 'prepost_id' is associated with a waitq (set) then that object must
1259 * be locked before calling this function.
1260 * Callback function, 'cb', must be able to handle a NULL wqset pointer
1261 * and a NULL waitq pointer!
1264 * This prepost chain iteration will _not_ automatically adjust any chain
1265 * element or linkage. This is the responsibility of the caller! If you
1266 * want automatic prepost chain management (at a cost of extra CPU time),
1267 * you can use: wq_prepost_foreach_locked().
1270 wq_prepost_iterate(uint64_t prepost_id
,
1271 void *ctx
, wqp_callback_func cb
)
1274 struct wq_prepost
*wqp
;
1277 return WQ_ITERATE_SUCCESS
;
1280 wqp
= wq_prepost_get(prepost_id
);
1282 return WQ_ITERATE_SUCCESS
;
1285 if (wqp_type(wqp
) == WQP_WQ
) {
1286 ret
= WQ_ITERATE_SUCCESS
;
1288 ret
= cb(NULL
, ctx
, wqp
, wqp
->wqp_wq
.wqp_wq_ptr
);
1291 if (ret
!= WQ_ITERATE_DROPPED
) {
1292 wq_prepost_put(wqp
);
1297 assert(wqp
->wqp_prepostid
.id
== prepost_id
);
1298 assert(wqp_type(wqp
) == WQP_POST
);
1300 /* at this point we know we have a list of POST objects */
1303 ret
= WQ_ITERATE_CONTINUE
;
1305 struct wq_prepost
*tmp_wqp
;
1306 struct waitq
*wq
= NULL
;
1308 next_id
= wqp
->wqp_post
.wqp_next_id
;
1310 /* grab the WQP_WQ object this _POST points to */
1311 tmp_wqp
= wq_prepost_get(wqp
->wqp_post
.wqp_wq_id
);
1313 assert(wqp_type(tmp_wqp
) == WQP_WQ
);
1314 wq
= tmp_wqp
->wqp_wq
.wqp_wq_ptr
;
1318 ret
= cb(NULL
, ctx
, wqp
, wq
);
1321 wq_prepost_put(tmp_wqp
);
1324 if (ret
!= WQ_ITERATE_CONTINUE
) {
1328 tmp_wqp
= wq_prepost_get(next_id
);
1331 * the chain is broken: nothing we can do here besides
1332 * bail from the iteration.
1334 ret
= WQ_ITERATE_ABORTED
;
1338 wq_prepost_put(wqp
);
1341 assert(wqp_type(wqp
) == WQP_POST
);
1342 } while (next_id
!= prepost_id
);
1344 if (ret
!= WQ_ITERATE_DROPPED
) {
1345 wq_prepost_put(wqp
);
1348 if (ret
== WQ_ITERATE_CONTINUE
) {
1349 ret
= WQ_ITERATE_SUCCESS
;
1355 struct _is_posted_ctx
{
1356 struct waitq
*posting_wq
;
1361 wq_is_preposted_on_set_cb(struct waitq_set
*wqset
, void *ctx
,
1362 struct wq_prepost
*wqp
, struct waitq
*waitq
)
1364 struct _is_posted_ctx
*pctx
= (struct _is_posted_ctx
*)ctx
;
1370 * Don't early-out, run through the _entire_ list:
1371 * This ensures that we retain a minimum number of invalid elements.
1373 if (pctx
->posting_wq
== waitq
) {
1374 pctx
->did_prepost
= 1;
1377 return WQ_ITERATE_CONTINUE
;
1382 * checks if 'waitq' has already preposted on 'wqset'
1385 * waitq The waitq that's preposting
1386 * wqset The set onto which waitq may be preposted
1389 * both waitq and wqset are locked
1391 * Returns non-zero if 'waitq' has already preposted to 'wqset'
1394 wq_is_preposted_on_set(struct waitq
*waitq
, struct waitq_set
*wqset
)
1397 struct _is_posted_ctx pctx
;
1400 * If the set's only prepost matches the waitq's prepost ID,
1401 * then it obviously already preposted to the set.
1403 if (waitq
->waitq_prepost_id
!= 0 &&
1404 wqset
->wqset_prepost_id
== waitq
->waitq_prepost_id
) {
1408 /* use full prepost iteration: always trim the list */
1409 pctx
.posting_wq
= waitq
;
1410 pctx
.did_prepost
= 0;
1411 ret
= wq_prepost_foreach_locked(wqset
, (void *)&pctx
,
1412 wq_is_preposted_on_set_cb
);
1413 return pctx
.did_prepost
;
1416 static struct wq_prepost
*
1417 wq_get_prepost_obj(uint64_t *reserved
, int type
)
1419 struct wq_prepost
*wqp
= NULL
;
1421 * don't fail just because the caller doesn't have enough
1422 * reservations, we've kept a low-water mark on the prepost table,
1423 * so there should be some available for us.
1425 if (reserved
&& *reserved
) {
1426 wqp
= wq_prepost_rpop(reserved
, type
);
1427 assert(wqp
->wqte
.lt_id
.idx
< g_prepost_table
.nelem
);
1430 * TODO: if in interrupt context, grab from a special
1431 * region / reserved list!
1433 wqp
= wq_prepost_alloc(type
, 1);
1437 panic("Couldn't allocate prepost object!");
1444 * prepost a waitq onto a waitq set
1447 * wqset The set onto which waitq will be preposted
1448 * waitq The waitq that's preposting
1449 * reserved List (lt_elem_list_ style) of pre-allocated prepost elements
1453 * both wqset and waitq are locked
1456 * If reserved is NULL, this may block on prepost table growth.
1459 wq_prepost_do_post_locked(struct waitq_set
*wqset
,
1460 struct waitq
*waitq
,
1463 struct wq_prepost
*wqp_post
, *wqp_head
, *wqp_tail
;
1465 assert(waitq_held(waitq
) && waitq_held(&wqset
->wqset_q
));
1468 * nothing to do if it's already preposted:
1469 * note that this also culls any invalid prepost objects
1471 if (wq_is_preposted_on_set(waitq
, wqset
)) {
1475 assert(waitqs_is_linked(wqset
));
1478 * This function is called because an event is being posted to 'waitq'.
1479 * We need a prepost object associated with this queue. Allocate one
1480 * now if the waitq isn't already associated with one.
1482 if (waitq
->waitq_prepost_id
== 0) {
1483 struct wq_prepost
*wqp
;
1484 wqp
= wq_get_prepost_obj(reserved
, WQP_WQ
);
1485 wqp
->wqp_wq
.wqp_wq_ptr
= waitq
;
1487 waitq
->waitq_prepost_id
= wqp
->wqp_prepostid
.id
;
1488 wq_prepost_put(wqp
);
1491 #if CONFIG_LTABLE_STATS
1492 g_prepost_table
.npreposts
+= 1;
1495 wqdbg_v("preposting waitq %p (0x%llx) to set 0x%llx",
1496 (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq
),
1497 waitq
->waitq_prepost_id
, wqset
->wqset_id
);
1499 if (wqset
->wqset_prepost_id
== 0) {
1500 /* the set has no previous preposts */
1501 wqset
->wqset_prepost_id
= waitq
->waitq_prepost_id
;
1505 wqp_head
= wq_prepost_get(wqset
->wqset_prepost_id
);
1507 /* the previous prepost has become invalid */
1508 wqset
->wqset_prepost_id
= waitq
->waitq_prepost_id
;
1512 assert(wqp_head
->wqp_prepostid
.id
== wqset
->wqset_prepost_id
);
1515 * If we get here, we're going to need at least one new wq_prepost
1516 * object. If the previous wqset_prepost_id points to a WQP_WQ, we
1517 * actually need to allocate 2 wq_prepost objects because the WQP_WQ
1518 * is tied to the waitq and shared across all sets.
1520 wqp_post
= wq_get_prepost_obj(reserved
, WQP_POST
);
1522 wqp_post
->wqp_post
.wqp_wq_id
= waitq
->waitq_prepost_id
;
1523 wqdbg_v("POST 0x%llx :: WQ 0x%llx", wqp_post
->wqp_prepostid
.id
,
1524 waitq
->waitq_prepost_id
);
1526 if (wqp_type(wqp_head
) == WQP_WQ
) {
1528 * We must replace the wqset_prepost_id with a pointer
1529 * to two new WQP_POST objects
1531 uint64_t wqp_id
= wqp_head
->wqp_prepostid
.id
;
1532 wqdbg_v("set 0x%llx previous had 1 WQ prepost (0x%llx): "
1533 "replacing with two POST preposts",
1534 wqset
->wqset_id
, wqp_id
);
1536 /* drop the old reference */
1537 wq_prepost_put(wqp_head
);
1539 /* grab another new object (the 2nd of two) */
1540 wqp_head
= wq_get_prepost_obj(reserved
, WQP_POST
);
1542 /* point this one to the original WQP_WQ object */
1543 wqp_head
->wqp_post
.wqp_wq_id
= wqp_id
;
1544 wqdbg_v("POST 0x%llx :: WQ 0x%llx",
1545 wqp_head
->wqp_prepostid
.id
, wqp_id
);
1547 /* link it to the new wqp_post object allocated earlier */
1548 wqp_head
->wqp_post
.wqp_next_id
= wqp_post
->wqp_prepostid
.id
;
1549 /* make the list a double-linked and circular */
1550 wq_prepost_rlink(wqp_head
, wqp_post
);
1553 * Finish setting up the new prepost: point it back to the
1554 * POST object we allocated to replace the original wqset
1557 wqp_post
->wqp_post
.wqp_next_id
= wqp_head
->wqp_prepostid
.id
;
1558 wq_prepost_rlink(wqp_post
, wqp_head
);
1560 /* mark objects valid, and reset the wqset prepost list head */
1561 wqp_set_valid(wqp_head
);
1562 wqp_set_valid(wqp_post
);
1563 wqset
->wqset_prepost_id
= wqp_head
->wqp_prepostid
.id
;
1565 /* release both references */
1566 wq_prepost_put(wqp_head
);
1567 wq_prepost_put(wqp_post
);
1569 wqdbg_v("set 0x%llx: 0x%llx/0x%llx -> 0x%llx/0x%llx -> 0x%llx",
1570 wqset
->wqset_id
, wqset
->wqset_prepost_id
,
1571 wqp_head
->wqp_prepostid
.id
, wqp_head
->wqp_post
.wqp_next_id
,
1572 wqp_post
->wqp_prepostid
.id
,
1573 wqp_post
->wqp_post
.wqp_next_id
);
1577 assert(wqp_type(wqp_head
) == WQP_POST
);
1580 * Add the new prepost to the end of the prepost list
1582 wqp_tail
= wq_prepost_get_rnext(wqp_head
);
1583 assert(wqp_tail
!= NULL
);
1584 assert(wqp_tail
->wqp_post
.wqp_next_id
== wqset
->wqset_prepost_id
);
1587 * link the head to the new tail
1588 * NOTE: this needs to happen first in case wqp_tail == wqp_head
1590 wq_prepost_reset_rnext(wqp_head
);
1591 wq_prepost_rlink(wqp_head
, wqp_post
);
1593 /* point the new object to the list head, and list tail */
1594 wqp_post
->wqp_post
.wqp_next_id
= wqp_head
->wqp_prepostid
.id
;
1595 wq_prepost_rlink(wqp_post
, wqp_tail
);
1597 /* point the last item in the waitq set's list to the new object */
1598 wqp_tail
->wqp_post
.wqp_next_id
= wqp_post
->wqp_prepostid
.id
;
1600 wqp_set_valid(wqp_post
);
1602 wq_prepost_put(wqp_head
);
1603 wq_prepost_put(wqp_tail
);
1604 wq_prepost_put(wqp_post
);
1606 wqdbg_v("set 0x%llx (wqp:0x%llx) last_prepost:0x%llx, "
1607 "new_prepost:0x%llx->0x%llx", wqset
->wqset_id
,
1608 wqset
->wqset_prepost_id
, wqp_head
->wqp_prepostid
.id
,
1609 wqp_post
->wqp_prepostid
.id
, wqp_post
->wqp_post
.wqp_next_id
);
1615 /* ----------------------------------------------------------------------
1617 * Stats collection / reporting
1619 * ---------------------------------------------------------------------- */
1620 #if CONFIG_LTABLE_STATS && CONFIG_WAITQ_STATS
1622 wq_table_stats(struct link_table
*table
, struct wq_table_stats
*stats
)
1624 stats
->version
= WAITQ_STATS_VERSION
;
1625 stats
->table_elements
= table
->nelem
;
1626 stats
->table_used_elems
= table
->used_elem
;
1627 stats
->table_elem_sz
= table
->elem_sz
;
1628 stats
->table_slabs
= table
->nslabs
;
1629 stats
->table_slab_sz
= table
->slab_sz
;
1631 stats
->table_num_allocs
= table
->nallocs
;
1632 stats
->table_num_preposts
= table
->npreposts
;
1633 stats
->table_num_reservations
= table
->nreservations
;
1635 stats
->table_max_used
= table
->max_used
;
1636 stats
->table_avg_used
= table
->avg_used
;
1637 stats
->table_max_reservations
= table
->max_reservations
;
1638 stats
->table_avg_reservations
= table
->avg_reservations
;
1642 waitq_link_stats(struct wq_table_stats
*stats
)
1647 wq_table_stats(&g_wqlinktable
, stats
);
1651 waitq_prepost_stats(struct wq_table_stats
*stats
)
1653 wq_table_stats(&g_prepost_table
, stats
);
1658 /* ----------------------------------------------------------------------
1660 * Global Wait Queues
1662 * ---------------------------------------------------------------------- */
1664 static struct waitq g_boot_waitq
;
1665 static struct waitq
*global_waitqs
= &g_boot_waitq
;
1666 static uint32_t g_num_waitqs
= 1;
1669 * Zero out the used MSBs of the event.
1671 #define _CAST_TO_EVENT_MASK(event) ((uintptr_t)(event) & ((1ul << _EVENT_MASK_BITS) - 1ul))
1673 static __inline__
uint32_t
1674 waitq_hash(char *key
, size_t length
)
1676 uint32_t hash
= os_hash_jenkins(key
, length
);
1678 hash
&= (g_num_waitqs
- 1);
1682 /* return a global waitq pointer corresponding to the given event */
1684 _global_eventq(char *event
, size_t event_length
)
1686 return &global_waitqs
[waitq_hash(event
, event_length
)];
1689 /* return an indexed global waitq pointer */
1691 global_waitq(int index
)
1693 return &global_waitqs
[index
% g_num_waitqs
];
1697 #if CONFIG_LTABLE_STATS || CONFIG_WAITQ_STATS
1698 /* this global is for lldb */
1699 const uint32_t g_nwaitq_btframes
= NWAITQ_BTFRAMES
;
1701 static __inline__
void
1702 waitq_grab_backtrace(uintptr_t bt
[NWAITQ_BTFRAMES
], int skip
)
1704 uintptr_t buf
[NWAITQ_BTFRAMES
+ skip
];
1708 memset(buf
, 0, (NWAITQ_BTFRAMES
+ skip
) * sizeof(uintptr_t));
1709 backtrace(buf
, g_nwaitq_btframes
+ skip
);
1710 memcpy(&bt
[0], &buf
[skip
], NWAITQ_BTFRAMES
* sizeof(uintptr_t));
1712 #else /* no stats */
1713 #define waitq_grab_backtrace(...)
1716 #if CONFIG_WAITQ_STATS
1718 struct wq_stats g_boot_stats
;
1719 struct wq_stats
*g_waitq_stats
= &g_boot_stats
;
1721 static __inline__
struct wq_stats
*
1722 waitq_global_stats(struct waitq
*waitq
)
1724 struct wq_stats
*wqs
;
1727 if (!waitq_is_global(waitq
)) {
1731 idx
= (uint32_t)(((uintptr_t)waitq
- (uintptr_t)global_waitqs
) / sizeof(*waitq
));
1732 assert(idx
< g_num_waitqs
);
1733 wqs
= &g_waitq_stats
[idx
];
1737 static __inline__
void
1738 waitq_stats_count_wait(struct waitq
*waitq
)
1740 struct wq_stats
*wqs
= waitq_global_stats(waitq
);
1743 waitq_grab_backtrace(wqs
->last_wait
, 2);
1747 static __inline__
void
1748 waitq_stats_count_wakeup(struct waitq
*waitq
)
1750 struct wq_stats
*wqs
= waitq_global_stats(waitq
);
1753 waitq_grab_backtrace(wqs
->last_wakeup
, 2);
1757 static __inline__
void
1758 waitq_stats_count_clear_wakeup(struct waitq
*waitq
)
1760 struct wq_stats
*wqs
= waitq_global_stats(waitq
);
1764 waitq_grab_backtrace(wqs
->last_wakeup
, 2);
1768 static __inline__
void
1769 waitq_stats_count_fail(struct waitq
*waitq
)
1771 struct wq_stats
*wqs
= waitq_global_stats(waitq
);
1773 wqs
->failed_wakeups
++;
1774 waitq_grab_backtrace(wqs
->last_failed_wakeup
, 2);
1777 #else /* !CONFIG_WAITQ_STATS */
1778 #define waitq_stats_count_wait(q) do { } while (0)
1779 #define waitq_stats_count_wakeup(q) do { } while (0)
1780 #define waitq_stats_count_clear_wakeup(q) do { } while (0)
1781 #define waitq_stats_count_fail(q) do { } while (0)
1785 waitq_is_valid(struct waitq
*waitq
)
1787 return (waitq
!= NULL
) && waitq
->waitq_isvalid
;
1791 waitq_set_is_valid(struct waitq_set
*wqset
)
1793 return (wqset
!= NULL
) && wqset
->wqset_q
.waitq_isvalid
&& waitqs_is_set(wqset
);
1797 waitq_is_global(struct waitq
*waitq
)
1799 if (waitq
>= global_waitqs
&& waitq
< global_waitqs
+ g_num_waitqs
) {
1806 waitq_irq_safe(struct waitq
*waitq
)
1808 /* global wait queues have this bit set on initialization */
1809 return waitq
->waitq_irq
;
1813 waitq_get_safeq(struct waitq
*waitq
)
1815 struct waitq
*safeq
;
1817 /* Check if it's a port waitq */
1818 if (waitq_is_port_queue(waitq
)) {
1819 assert(!waitq_irq_safe(waitq
));
1820 safeq
= ipc_port_rcv_turnstile_waitq(waitq
);
1822 safeq
= global_eventq(waitq
);
1828 waitq_hash_size(void)
1830 uint32_t hsize
, queues
;
1832 if (PE_parse_boot_argn("wqsize", &hsize
, sizeof(hsize
))) {
1836 queues
= thread_max
/ 5;
1837 hsize
= P2ROUNDUP(queues
* sizeof(struct waitq
), PAGE_SIZE
);
1843 * Since the priority ordered waitq uses basepri as the
1844 * ordering key assert that this value fits in a uint8_t.
1846 static_assert(MAXPRI
<= UINT8_MAX
);
1849 waitq_thread_insert(struct waitq
*wq
,
1850 thread_t thread
, boolean_t fifo
)
1852 if (waitq_is_turnstile_queue(wq
)) {
1853 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1854 (TURNSTILE_CODE(TURNSTILE_HEAP_OPERATIONS
, (THREAD_ADDED_TO_TURNSTILE_WAITQ
))) | DBG_FUNC_NONE
,
1855 VM_KERNEL_UNSLIDE_OR_PERM(waitq_to_turnstile(wq
)),
1857 thread
->base_pri
, 0, 0);
1859 turnstile_stats_update(0, TSU_TURNSTILE_BLOCK_COUNT
, NULL
);
1862 * For turnstile queues (which use priority queues),
1863 * insert the thread in the heap based on its current
1864 * base_pri. Note that the priority queue implementation
1865 * is currently not stable, so does not maintain fifo for
1866 * threads at the same base_pri. Also, if the base_pri
1867 * of the thread changes while its blocked in the waitq,
1868 * the thread position should be updated in the priority
1869 * queue by calling priority queue increase/decrease
1872 priority_queue_entry_init(&(thread
->wait_prioq_links
));
1873 priority_queue_insert(&wq
->waitq_prio_queue
,
1874 &thread
->wait_prioq_links
, thread
->base_pri
,
1875 PRIORITY_QUEUE_SCHED_PRI_MAX_HEAP_COMPARE
);
1877 turnstile_stats_update(0, TSU_REGULAR_WAITQ_BLOCK_COUNT
, NULL
);
1879 enqueue_tail(&wq
->waitq_queue
, &thread
->wait_links
);
1881 enqueue_head(&wq
->waitq_queue
, &thread
->wait_links
);
1887 waitq_thread_remove(struct waitq
*wq
,
1890 if (waitq_is_turnstile_queue(wq
)) {
1891 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1892 (TURNSTILE_CODE(TURNSTILE_HEAP_OPERATIONS
, (THREAD_REMOVED_FROM_TURNSTILE_WAITQ
))) | DBG_FUNC_NONE
,
1893 VM_KERNEL_UNSLIDE_OR_PERM(waitq_to_turnstile(wq
)),
1896 priority_queue_remove(&wq
->waitq_prio_queue
, &thread
->wait_prioq_links
,
1897 PRIORITY_QUEUE_SCHED_PRI_MAX_HEAP_COMPARE
);
1899 remqueue(&(thread
->wait_links
));
1904 waitq_bootstrap(void)
1907 uint32_t whsize
, qsz
, tmp32
;
1909 g_min_free_table_elem
= DEFAULT_MIN_FREE_TABLE_ELEM
;
1910 if (PE_parse_boot_argn("wqt_min_free", &tmp32
, sizeof(tmp32
)) == TRUE
) {
1911 g_min_free_table_elem
= tmp32
;
1913 wqdbg("Minimum free table elements: %d", tmp32
);
1915 lck_grp_init(&waitq_lck_grp
, "waitq", LCK_GRP_ATTR_NULL
);
1918 * Determine the amount of memory we're willing to reserve for
1919 * the waitqueue hash table
1921 whsize
= waitq_hash_size();
1923 /* Determine the number of waitqueues we can fit. */
1924 qsz
= sizeof(struct waitq
);
1925 whsize
= ROUNDDOWN(whsize
, qsz
);
1926 g_num_waitqs
= whsize
/ qsz
;
1929 * The hash algorithm requires that this be a power of 2, so we
1930 * just mask off all the low-order bits.
1932 for (uint32_t i
= 0; i
< 31; i
++) {
1933 uint32_t bit
= (1 << i
);
1934 if ((g_num_waitqs
& bit
) == g_num_waitqs
) {
1937 g_num_waitqs
&= ~bit
;
1939 assert(g_num_waitqs
> 0);
1941 /* Now determine how much memory we really need. */
1942 whsize
= P2ROUNDUP(g_num_waitqs
* qsz
, PAGE_SIZE
);
1944 wqdbg("allocating %d global queues (%d bytes)", g_num_waitqs
, whsize
);
1945 kret
= kernel_memory_allocate(kernel_map
, (vm_offset_t
*)&global_waitqs
,
1946 whsize
, 0, KMA_KOBJECT
| KMA_NOPAGEWAIT
, VM_KERN_MEMORY_WAITQ
);
1947 if (kret
!= KERN_SUCCESS
|| global_waitqs
== NULL
) {
1948 panic("kernel_memory_allocate() failed to alloc global_waitqs"
1949 ", error: %d, whsize: 0x%x", kret
, whsize
);
1952 #if CONFIG_WAITQ_STATS
1953 whsize
= P2ROUNDUP(g_num_waitqs
* sizeof(struct wq_stats
), PAGE_SIZE
);
1954 kret
= kernel_memory_allocate(kernel_map
, (vm_offset_t
*)&g_waitq_stats
,
1955 whsize
, 0, KMA_KOBJECT
| KMA_NOPAGEWAIT
, VM_KERN_MEMORY_WAITQ
);
1956 if (kret
!= KERN_SUCCESS
|| global_waitqs
== NULL
) {
1957 panic("kernel_memory_allocate() failed to alloc g_waitq_stats"
1958 ", error: %d, whsize: 0x%x", kret
, whsize
);
1960 memset(g_waitq_stats
, 0, whsize
);
1963 for (uint32_t i
= 0; i
< g_num_waitqs
; i
++) {
1964 waitq_init(&global_waitqs
[i
], SYNC_POLICY_FIFO
| SYNC_POLICY_DISABLE_IRQ
);
1967 waitq_set_zone
= zinit(sizeof(struct waitq_set
),
1968 WAITQ_SET_MAX
* sizeof(struct waitq_set
),
1969 sizeof(struct waitq_set
),
1971 zone_change(waitq_set_zone
, Z_NOENCRYPT
, TRUE
);
1973 /* initialize the global waitq link table */
1976 /* initialize the global waitq prepost table */
1981 /* ----------------------------------------------------------------------
1983 * Wait Queue Implementation
1985 * ---------------------------------------------------------------------- */
1988 * Double the standard lock timeout, because wait queues tend
1989 * to iterate over a number of threads - locking each. If there is
1990 * a problem with a thread lock, it normally times out at the wait
1991 * queue level first, hiding the real problem.
1993 /* For x86, the hardware timeout is in TSC units. */
1994 #if defined(__i386__) || defined(__x86_64__)
1995 #define hwLockTimeOut LockTimeOutTSC
1997 #define hwLockTimeOut LockTimeOut
2001 waitq_lock(struct waitq
*wq
)
2003 if (__improbable(waitq_lock_to(wq
,
2004 hwLockTimeOut
* 2) == 0)) {
2005 boolean_t wql_acquired
= FALSE
;
2007 while (machine_timeout_suspended()) {
2008 mp_enable_preemption();
2009 wql_acquired
= waitq_lock_to(wq
,
2015 if (wql_acquired
== FALSE
) {
2016 panic("waitq deadlock - waitq=%p, cpu=%d\n",
2020 #if defined(__x86_64__)
2023 assert(waitq_held(wq
));
2027 waitq_unlock(struct waitq
*wq
)
2029 assert(waitq_held(wq
));
2030 #if defined(__x86_64__)
2033 waitq_lock_unlock(wq
);
2038 * clear the thread-related waitq state
2041 * 'thread' is locked
2044 thread_clear_waitq_state(thread_t thread
)
2046 thread
->waitq
= NULL
;
2047 thread
->wait_event
= NO_EVENT64
;
2048 thread
->at_safe_point
= FALSE
;
2052 typedef thread_t (*waitq_select_cb
)(void *ctx
, struct waitq
*waitq
,
2053 int is_global
, thread_t thread
);
2055 struct waitq_select_args
{
2056 /* input parameters */
2057 struct waitq
*posted_waitq
;
2058 struct waitq
*waitq
;
2060 waitq_select_cb select_cb
;
2063 uint64_t *reserved_preposts
;
2065 /* output parameters */
2072 static void do_waitq_select_n_locked(struct waitq_select_args
*args
);
2075 * callback invoked once for every waitq set to which a waitq belongs
2078 * ctx->posted_waitq is locked
2079 * 'link' points to a valid waitq set
2082 * Takes the waitq set lock on the set pointed to by 'link'
2083 * Calls do_waitq_select_n_locked() which could recurse back into
2084 * this function if the waitq set is a member of other sets.
2085 * If no threads were selected, it preposts the input waitq
2086 * onto the waitq set pointed to by 'link'.
2089 waitq_select_walk_cb(struct waitq
*waitq
, void *ctx
,
2090 struct waitq_link
*link
)
2092 int ret
= WQ_ITERATE_CONTINUE
;
2093 struct waitq_select_args args
= *((struct waitq_select_args
*)ctx
);
2094 struct waitq_set
*wqset
;
2097 assert(wql_type(link
) == WQL_WQS
);
2099 wqset
= link
->wql_wqs
.wql_set
;
2100 args
.waitq
= &wqset
->wqset_q
;
2102 assert(!waitq_irq_safe(waitq
));
2103 assert(!waitq_irq_safe(&wqset
->wqset_q
));
2105 waitq_set_lock(wqset
);
2107 * verify that the link wasn't invalidated just before
2108 * we were able to take the lock.
2110 if (wqset
->wqset_id
!= link
->wql_setid
.id
) {
2114 assert(waitqs_is_linked(wqset
));
2117 * Find any threads waiting on this wait queue set,
2118 * and recurse into any waitq set to which this set belongs.
2120 do_waitq_select_n_locked(&args
);
2122 if (*(args
.nthreads
) > 0 ||
2123 (args
.threadq
&& !queue_empty(args
.threadq
))) {
2124 /* at least 1 thread was selected and returned: don't prepost */
2125 if (args
.max_threads
> 0 &&
2126 *(args
.nthreads
) >= args
.max_threads
) {
2127 /* break out of the setid walk */
2128 ret
= WQ_ITERATE_FOUND
;
2133 * No thread selected: prepost 'waitq' to 'wqset'
2134 * if wqset can handle preposts and the event is set to 0.
2135 * We also make sure to not post waitq sets to other sets.
2137 * If the set doesn't support preposts, but does support
2138 * prepost callout/hook interaction, invoke the predefined
2139 * callout function and pass the set's 'prepost_hook.' This
2140 * could potentially release another thread to handle events.
2142 if (args
.event
== NO_EVENT64
) {
2143 if (waitq_set_can_prepost(wqset
)) {
2144 wq_prepost_do_post_locked(
2145 wqset
, waitq
, args
.reserved_preposts
);
2146 } else if (waitq_set_has_prepost_hook(wqset
)) {
2147 waitq_set__CALLING_PREPOST_HOOK__(
2148 wqset
->wqset_prepost_hook
, waitq
, 0);
2154 waitq_set_unlock(wqset
);
2159 * Routine to iterate over the waitq for non-priority ordered waitqs
2162 * args->waitq (and args->posted_waitq) is locked
2165 * Uses the optional select callback function to refine the selection
2166 * of one or more threads from a waitq. The select callback is invoked
2167 * once for every thread that is found to be waiting on the input args->waitq.
2169 * If one or more threads are selected, this may disable interrupts.
2170 * The previous interrupt state is returned in args->spl and should
2171 * be used in a call to splx() if threads are returned to the caller.
2174 waitq_queue_iterate_locked(struct waitq
*safeq
, struct waitq
*waitq
,
2175 spl_t spl
, struct waitq_select_args
*args
,
2176 uint32_t *remaining_eventmask
)
2178 int max_threads
= args
->max_threads
;
2179 int *nthreads
= args
->nthreads
;
2180 thread_t thread
= THREAD_NULL
;
2181 thread_t first_thread
= THREAD_NULL
;
2183 qe_foreach_element_safe(thread
, &safeq
->waitq_queue
, wait_links
) {
2184 thread_t t
= THREAD_NULL
;
2185 assert_thread_magic(thread
);
2188 * For non-priority ordered waitqs, we allow multiple events to be
2189 * mux'ed into the same waitq. Also safeqs may contain threads from
2190 * multiple waitqs. Only pick threads that match the
2191 * requested wait event.
2193 if (thread
->waitq
== waitq
&& thread
->wait_event
== args
->event
) {
2195 if (first_thread
== THREAD_NULL
) {
2196 first_thread
= thread
;
2199 /* allow the caller to futher refine the selection */
2200 if (args
->select_cb
) {
2201 t
= args
->select_cb(args
->select_ctx
, waitq
,
2202 waitq_is_global(waitq
), thread
);
2204 if (t
!= THREAD_NULL
) {
2206 if (args
->threadq
) {
2207 /* if output queue, add locked thread to it */
2208 if (*nthreads
== 1) {
2209 *(args
->spl
) = (safeq
!= waitq
) ? spl
: splsched();
2212 thread_clear_waitq_state(t
);
2213 re_queue_tail(args
->threadq
, &t
->wait_links
);
2215 /* only enqueue up to 'max' threads */
2216 if (*nthreads
>= max_threads
&& max_threads
> 0) {
2221 /* thread wasn't selected so track it's event */
2222 if (t
== THREAD_NULL
) {
2223 *remaining_eventmask
|= (thread
->waitq
!= safeq
) ?
2224 _CAST_TO_EVENT_MASK(thread
->waitq
) : _CAST_TO_EVENT_MASK(thread
->wait_event
);
2228 return first_thread
;
2232 * Routine to iterate and remove threads from priority ordered waitqs
2235 * args->waitq (and args->posted_waitq) is locked
2238 * The priority ordered waitqs only support maximum priority element removal.
2240 * Also, the implementation makes sure that all threads in a priority ordered
2241 * waitq are waiting on the same wait event. This is not necessarily true for
2242 * non-priority ordered waitqs. If one or more threads are selected, this may
2243 * disable interrupts. The previous interrupt state is returned in args->spl
2244 * and should be used in a call to splx() if threads are returned to the caller.
2246 * In the future, we could support priority ordered waitqs with multiple wait
2247 * events in the same queue. The way to implement that would be to keep removing
2248 * elements from the waitq and if the event does not match the requested one,
2249 * add it to a local list. This local list of elements needs to be re-inserted
2250 * into the priority queue at the end and the select_cb return value &
2251 * remaining_eventmask would need to be handled appropriately. The implementation
2252 * is not very efficient but would work functionally.
2255 waitq_prioq_iterate_locked(struct waitq
*safeq
, struct waitq
*waitq
,
2256 spl_t spl
, struct waitq_select_args
*args
,
2257 uint32_t *remaining_eventmask
)
2259 int max_threads
= args
->max_threads
;
2260 int *nthreads
= args
->nthreads
;
2261 thread_t first_thread
= THREAD_NULL
;
2262 thread_t thread
= THREAD_NULL
;
2265 * The waitq select routines need to handle two cases:
2266 * Case 1: Peek at maximum priority thread in the waitq (remove_op = 0)
2267 * Get the maximum priority thread from the waitq without removing it.
2268 * In that case args->threadq == NULL and max_threads == 1.
2269 * Case 2: Remove 'n' highest priority threads from waitq (remove_op = 1)
2270 * Get max_threads (if available) while removing them from the waitq.
2271 * In that case args->threadq != NULL and max_threads is one of {-1, 1}.
2273 * The only possible values for remaining_eventmask for the priority queue
2274 * waitq are either 0 (for the remove all threads case) or the original
2275 * safeq->waitq_eventmask (for the lookup/remove one thread cases).
2277 *remaining_eventmask
= safeq
->waitq_eventmask
;
2278 boolean_t remove_op
= !!(args
->threadq
);
2280 while ((max_threads
<= 0) || (*nthreads
< max_threads
)) {
2281 if (priority_queue_empty(&(safeq
->waitq_prio_queue
))) {
2282 *remaining_eventmask
= 0;
2287 thread
= priority_queue_remove_max(&safeq
->waitq_prio_queue
,
2288 struct thread
, wait_prioq_links
,
2289 PRIORITY_QUEUE_SCHED_PRI_MAX_HEAP_COMPARE
);
2291 /* For the peek operation, the only valid value for max_threads is 1 */
2292 assert(max_threads
== 1);
2293 thread
= priority_queue_max(&safeq
->waitq_prio_queue
,
2294 struct thread
, wait_prioq_links
);
2297 * Ensure the wait event matches since priority ordered waitqs do not
2298 * support multiple events in the same waitq.
2300 assert((thread
->waitq
== waitq
) && (thread
->wait_event
== args
->event
));
2302 if (args
->select_cb
) {
2304 * Call the select_cb passed into the waitq_select args. The callback
2305 * updates the select_ctx with information about the highest priority
2306 * thread which is eventually used by the caller.
2308 thread_t __assert_only ret_thread
= args
->select_cb(args
->select_ctx
, waitq
,
2309 waitq_is_global(waitq
), thread
);
2311 /* For the peek operation, the thread should not be selected for addition */
2312 assert(ret_thread
== THREAD_NULL
);
2315 * For the remove operation, the select routine should always return a valid
2316 * thread for priority waitqs. Since all threads in a prioq are equally
2317 * eligible, it should match the thread removed from the prioq. If this
2318 * invariant changes, the implementation would need to handle the
2319 * remaining_eventmask here correctly.
2321 assert(ret_thread
== thread
);
2325 if (first_thread
== THREAD_NULL
) {
2326 first_thread
= thread
;
2329 /* For the peek operation, break out early */
2334 /* Add the thread to the result thread list */
2336 if (*nthreads
== 1) {
2337 *(args
->spl
) = (safeq
!= waitq
) ? spl
: splsched();
2339 thread_lock(thread
);
2340 thread_clear_waitq_state(thread
);
2341 enqueue_tail(args
->threadq
, &(thread
->wait_links
));
2344 return first_thread
;
2348 * generic thread selection from a waitq (and sets to which the waitq belongs)
2351 * args->waitq (and args->posted_waitq) is locked
2354 * Uses the optional select callback function to refine the selection
2355 * of one or more threads from a waitq and any set to which the waitq
2356 * belongs. The select callback is invoked once for every thread that
2357 * is found to be waiting on the input args->waitq.
2359 * If one or more threads are selected, this may disable interrupts.
2360 * The previous interrupt state is returned in args->spl and should
2361 * be used in a call to splx() if threads are returned to the caller.
2364 do_waitq_select_n_locked(struct waitq_select_args
*args
)
2366 struct waitq
*waitq
= args
->waitq
;
2367 int max_threads
= args
->max_threads
;
2368 thread_t first_thread
= THREAD_NULL
;
2369 struct waitq
*safeq
;
2370 uint32_t remaining_eventmask
= 0;
2372 int *nthreads
= args
->nthreads
;
2375 assert(max_threads
!= 0);
2377 if (!waitq_irq_safe(waitq
)) {
2378 /* JMM - add flag to waitq to avoid global lookup if no waiters */
2379 eventmask
= _CAST_TO_EVENT_MASK(waitq
);
2380 safeq
= waitq_get_safeq(waitq
);
2381 if (*nthreads
== 0) {
2386 eventmask
= _CAST_TO_EVENT_MASK(args
->event
);
2391 * If the safeq doesn't have an eventmask (not global) or the event
2392 * we're looking for IS set in its eventmask, then scan the threads
2393 * in that queue for ones that match the original <waitq,event> pair.
2395 if (!waitq_is_global(safeq
) ||
2396 (safeq
->waitq_eventmask
& eventmask
) == eventmask
) {
2397 if (waitq_is_turnstile_queue(safeq
)) {
2398 first_thread
= waitq_prioq_iterate_locked(safeq
, waitq
,
2400 &remaining_eventmask
);
2402 first_thread
= waitq_queue_iterate_locked(safeq
, waitq
,
2404 &remaining_eventmask
);
2408 * Update the eventmask of global queues we just scanned:
2409 * - If we selected all the threads in the queue, we can clear its
2412 * - If we didn't find enough threads to fill our needs, then we can
2413 * assume we looked at every thread in the queue and the mask we
2414 * computed is complete - so reset it.
2416 if (waitq_is_global(safeq
)) {
2417 if (waitq_empty(safeq
)) {
2418 safeq
->waitq_eventmask
= 0;
2419 } else if (max_threads
< 0 || *nthreads
< max_threads
) {
2420 safeq
->waitq_eventmask
= remaining_eventmask
;
2426 * Grab the first thread in the queue if no other thread was selected.
2427 * We can guarantee that no one has manipulated this thread because
2428 * it's waiting on the given waitq, and we have that waitq locked.
2430 if (*nthreads
== 0 && first_thread
!= THREAD_NULL
&& args
->threadq
) {
2431 /* we know this is the first (and only) thread */
2433 *(args
->spl
) = (safeq
!= waitq
) ? spl
: splsched();
2434 thread_lock(first_thread
);
2435 thread_clear_waitq_state(first_thread
);
2436 waitq_thread_remove(safeq
, first_thread
);
2437 enqueue_tail(args
->threadq
, &(first_thread
->wait_links
));
2439 /* update the eventmask on [now] empty global queues */
2440 if (waitq_is_global(safeq
) && waitq_empty(safeq
)) {
2441 safeq
->waitq_eventmask
= 0;
2445 /* unlock the safe queue if we locked one above */
2446 if (safeq
!= waitq
) {
2447 waitq_unlock(safeq
);
2448 if (*nthreads
== 0) {
2453 if (max_threads
> 0 && *nthreads
>= max_threads
) {
2458 * wait queues that are not in any sets
2459 * are the bottom of the recursion
2461 if (!waitq
->waitq_set_id
) {
2465 /* check to see if the set ID for this wait queue is valid */
2466 struct waitq_link
*link
= wql_get_link(waitq
->waitq_set_id
);
2468 /* the waitq set to which this waitq belonged, has been invalidated */
2469 waitq
->waitq_set_id
= 0;
2476 * If this waitq is a member of any wait queue sets, we need to look
2477 * for waiting thread(s) in any of those sets, and prepost all sets that
2478 * don't have active waiters.
2480 * Note that we do a local walk of this waitq's links - we manually
2481 * recurse down wait queue set's with non-zero wqset_q.waitq_set_id
2483 (void)walk_waitq_links(LINK_WALK_ONE_LEVEL
, waitq
, waitq
->waitq_set_id
,
2484 WQL_WQS
, (void *)args
, waitq_select_walk_cb
);
2488 * main entry point for thread selection from a waitq
2494 * The number of threads waiting on 'waitq' for 'event' which have
2495 * been placed onto the input 'threadq'
2498 * The 'select_cb' function is invoked for every thread found waiting on
2499 * 'waitq' for 'event'. The thread is _not_ locked upon callback
2500 * invocation. This parameter may be NULL.
2502 * If one or more threads are returned in 'threadq' then the caller is
2503 * responsible to call splx() using the returned 'spl' value. Each
2504 * returned thread is locked.
2506 static __inline__
int
2507 waitq_select_n_locked(struct waitq
*waitq
,
2509 waitq_select_cb select_cb
,
2511 uint64_t *reserved_preposts
,
2513 int max_threads
, spl_t
*spl
)
2517 struct waitq_select_args args
= {
2518 .posted_waitq
= waitq
,
2521 .select_cb
= select_cb
,
2522 .select_ctx
= select_ctx
,
2523 .reserved_preposts
= reserved_preposts
,
2525 .max_threads
= max_threads
,
2526 .nthreads
= &nthreads
,
2530 do_waitq_select_n_locked(&args
);
2535 * select from a waitq a single thread waiting for a given event
2541 * A locked thread that's been removed from the waitq, but has not
2542 * yet been put on a run queue. Caller is responsible to call splx
2543 * with the '*spl' value.
2546 waitq_select_one_locked(struct waitq
*waitq
, event64_t event
,
2547 uint64_t *reserved_preposts
,
2548 int priority
, spl_t
*spl
)
2552 queue_head_t threadq
;
2554 queue_init(&threadq
);
2556 nthreads
= waitq_select_n_locked(waitq
, event
, NULL
, NULL
,
2557 reserved_preposts
, &threadq
, 1, spl
);
2559 /* if we selected a thread, return it (still locked) */
2560 if (!queue_empty(&threadq
)) {
2562 queue_entry_t qe
= dequeue_head(&threadq
);
2563 t
= qe_element(qe
, struct thread
, wait_links
);
2564 assert(queue_empty(&threadq
)); /* there should be 1 entry */
2565 /* t has been locked and removed from all queues */
2572 struct find_max_pri_ctx
{
2573 integer_t max_sched_pri
;
2574 integer_t max_base_pri
;
2575 thread_t highest_thread
;
2579 * callback function that finds the max priority thread
2583 * 'thread' is not locked
2586 waitq_find_max_pri_cb(void *ctx_in
,
2587 __unused
struct waitq
*waitq
,
2588 __unused
int is_global
,
2591 struct find_max_pri_ctx
*ctx
= (struct find_max_pri_ctx
*)ctx_in
;
2594 * thread is not locked, use pri as a hint only
2595 * wake up the highest base pri, and find the highest sched pri at that base pri
2597 integer_t sched_pri
= *(volatile int16_t *)&thread
->sched_pri
;
2598 integer_t base_pri
= *(volatile int16_t *)&thread
->base_pri
;
2600 if (ctx
->highest_thread
== THREAD_NULL
||
2601 (base_pri
> ctx
->max_base_pri
) ||
2602 (base_pri
== ctx
->max_base_pri
&& sched_pri
> ctx
->max_sched_pri
)) {
2603 /* don't select the thread, just update ctx */
2605 ctx
->max_sched_pri
= sched_pri
;
2606 ctx
->max_base_pri
= base_pri
;
2607 ctx
->highest_thread
= thread
;
2614 * select from a waitq the highest priority thread waiting for a given event
2620 * A locked thread that's been removed from the waitq, but has not
2621 * yet been put on a run queue. Caller is responsible to call splx
2622 * with the '*spl' value.
2625 waitq_select_max_locked(struct waitq
*waitq
, event64_t event
,
2626 uint64_t *reserved_preposts
,
2629 __assert_only
int nthreads
;
2630 assert(!waitq
->waitq_set_id
); /* doesn't support recursive sets */
2632 struct find_max_pri_ctx ctx
= {
2635 .highest_thread
= THREAD_NULL
,
2639 * Scan the waitq to find the highest priority thread.
2640 * This doesn't remove any thread from the queue
2642 nthreads
= waitq_select_n_locked(waitq
, event
,
2643 waitq_find_max_pri_cb
,
2644 &ctx
, reserved_preposts
, NULL
, 1, spl
);
2646 assert(nthreads
== 0);
2648 if (ctx
.highest_thread
!= THREAD_NULL
) {
2649 __assert_only kern_return_t ret
;
2651 /* Remove only the thread we just found */
2652 ret
= waitq_select_thread_locked(waitq
, event
, ctx
.highest_thread
, spl
);
2654 assert(ret
== KERN_SUCCESS
);
2655 return ctx
.highest_thread
;
2662 struct select_thread_ctx
{
2669 * link walk callback invoked once for each set to which a waitq belongs
2672 * initial waitq is locked
2673 * ctx->thread is unlocked
2676 * This may disable interrupts and early-out of the full DAG link walk by
2677 * returning KERN_ALREADY_IN_SET. In this case, the returned thread has
2678 * been removed from the waitq, it's waitq state has been reset, and the
2679 * caller is responsible to call splx() with the returned interrupt state
2683 waitq_select_thread_cb(struct waitq
*waitq
, void *ctx
,
2684 struct waitq_link
*link
)
2686 struct select_thread_ctx
*stctx
= (struct select_thread_ctx
*)ctx
;
2687 struct waitq_set
*wqset
;
2688 struct waitq
*wqsetq
;
2689 struct waitq
*safeq
;
2694 thread_t thread
= stctx
->thread
;
2695 event64_t event
= stctx
->event
;
2697 if (wql_type(link
) != WQL_WQS
) {
2698 return WQ_ITERATE_CONTINUE
;
2701 wqset
= link
->wql_wqs
.wql_set
;
2702 wqsetq
= &wqset
->wqset_q
;
2704 assert(!waitq_irq_safe(waitq
));
2705 assert(!waitq_irq_safe(wqsetq
));
2707 waitq_set_lock(wqset
);
2711 /* find and lock the interrupt-safe waitq the thread is thought to be on */
2712 safeq
= waitq_get_safeq(wqsetq
);
2715 thread_lock(thread
);
2717 if ((thread
->waitq
== wqsetq
) && (thread
->wait_event
== event
)) {
2718 waitq_thread_remove(wqsetq
, thread
);
2719 if (waitq_empty(safeq
)) {
2720 safeq
->waitq_eventmask
= 0;
2722 thread_clear_waitq_state(thread
);
2723 waitq_unlock(safeq
);
2724 waitq_set_unlock(wqset
);
2726 * thread still locked,
2727 * return non-zero to break out of WQS walk
2730 return WQ_ITERATE_FOUND
;
2733 thread_unlock(thread
);
2734 waitq_set_unlock(wqset
);
2735 waitq_unlock(safeq
);
2738 return WQ_ITERATE_CONTINUE
;
2742 * returns KERN_SUCCESS and locks 'thread' if-and-only-if 'thread' is waiting
2743 * on 'waitq' (or any set to which waitq belongs) for 'event'
2747 * 'thread' is unlocked
2749 static kern_return_t
2750 waitq_select_thread_locked(struct waitq
*waitq
,
2752 thread_t thread
, spl_t
*spl
)
2754 struct waitq
*safeq
;
2755 struct waitq_link
*link
;
2756 struct select_thread_ctx ctx
;
2762 /* Find and lock the interrupts disabled queue the thread is actually on */
2763 if (!waitq_irq_safe(waitq
)) {
2764 safeq
= waitq_get_safeq(waitq
);
2770 thread_lock(thread
);
2772 if ((thread
->waitq
== waitq
) && (thread
->wait_event
== event
)) {
2773 waitq_thread_remove(safeq
, thread
);
2774 if (waitq_empty(safeq
)) {
2775 safeq
->waitq_eventmask
= 0;
2777 thread_clear_waitq_state(thread
);
2779 /* thread still locked */
2780 return KERN_SUCCESS
;
2783 thread_unlock(thread
);
2785 if (safeq
!= waitq
) {
2786 waitq_unlock(safeq
);
2791 if (!waitq
->waitq_set_id
) {
2792 return KERN_NOT_WAITING
;
2795 /* check to see if the set ID for this wait queue is valid */
2796 link
= wql_get_link(waitq
->waitq_set_id
);
2798 /* the waitq to which this set belonged, has been invalidated */
2799 waitq
->waitq_set_id
= 0;
2800 return KERN_NOT_WAITING
;
2804 * The thread may be waiting on a wait queue set to which
2805 * the input 'waitq' belongs. Go look for the thread in
2806 * all wait queue sets. If it's there, we'll remove it
2807 * because it's equivalent to waiting directly on the input waitq.
2809 ctx
.thread
= thread
;
2812 kr
= walk_waitq_links(LINK_WALK_FULL_DAG
, waitq
, waitq
->waitq_set_id
,
2813 WQL_WQS
, (void *)&ctx
, waitq_select_thread_cb
);
2817 /* we found a thread, return success */
2818 if (kr
== WQ_ITERATE_FOUND
) {
2819 return KERN_SUCCESS
;
2822 return KERN_NOT_WAITING
;
2826 prepost_exists_cb(struct waitq_set __unused
*wqset
,
2828 struct wq_prepost __unused
*wqp
,
2829 struct waitq __unused
*waitq
)
2831 /* if we get here, then we know that there is a valid prepost object! */
2832 return WQ_ITERATE_FOUND
;
2836 * declare a thread's intent to wait on 'waitq' for 'wait_event'
2842 waitq_assert_wait64_locked(struct waitq
*waitq
,
2843 event64_t wait_event
,
2844 wait_interrupt_t interruptible
,
2845 wait_timeout_urgency_t urgency
,
2850 wait_result_t wait_result
;
2852 struct waitq
*safeq
;
2853 uintptr_t eventmask
;
2858 * Warning: Do _not_ place debugging print statements here.
2859 * The waitq is locked!
2861 assert(!thread
->started
|| thread
== current_thread());
2863 if (thread
->waitq
!= NULL
) {
2864 panic("thread already waiting on %p", thread
->waitq
);
2867 if (waitq_is_set(waitq
)) {
2868 struct waitq_set
*wqset
= (struct waitq_set
*)waitq
;
2870 * early-out if the thread is waiting on a wait queue set
2871 * that has already been pre-posted.
2873 if (wait_event
== NO_EVENT64
&& waitq_set_maybe_preposted(wqset
)) {
2876 * Run through the list of potential preposts. Because
2877 * this is a hot path, we short-circuit the iteration
2878 * if we find just one prepost object.
2880 ret
= wq_prepost_foreach_locked(wqset
, NULL
,
2882 if (ret
== WQ_ITERATE_FOUND
) {
2884 thread_lock(thread
);
2885 thread
->wait_result
= THREAD_AWAKENED
;
2886 thread_unlock(thread
);
2888 return THREAD_AWAKENED
;
2896 * If already dealing with an irq safe wait queue, we are all set.
2897 * Otherwise, determine a global queue to use and lock it.
2899 if (!waitq_irq_safe(waitq
)) {
2900 safeq
= waitq_get_safeq(waitq
);
2901 eventmask
= _CAST_TO_EVENT_MASK(waitq
);
2905 eventmask
= _CAST_TO_EVENT_MASK(wait_event
);
2908 /* lock the thread now that we have the irq-safe waitq locked */
2909 thread_lock(thread
);
2912 * Realtime threads get priority for wait queue placements.
2913 * This allows wait_queue_wakeup_one to prefer a waiting
2914 * realtime thread, similar in principle to performing
2915 * a wait_queue_wakeup_all and allowing scheduler prioritization
2916 * to run the realtime thread, but without causing the
2917 * lock contention of that scenario.
2919 if (thread
->sched_pri
>= BASEPRI_REALTIME
) {
2924 * This is the extent to which we currently take scheduling attributes
2925 * into account. If the thread is vm priviledged, we stick it at
2926 * the front of the queue. Later, these queues will honor the policy
2927 * value set at waitq_init time.
2929 wait_result
= thread_mark_wait_locked(thread
, interruptible
);
2930 /* thread->wait_result has been set */
2931 if (wait_result
== THREAD_WAITING
) {
2932 if (!safeq
->waitq_fifo
2933 || (thread
->options
& TH_OPT_VMPRIV
) || realtime
) {
2934 waitq_thread_insert(safeq
, thread
, false);
2936 waitq_thread_insert(safeq
, thread
, true);
2939 /* mark the event and real waitq, even if enqueued on a global safeq */
2940 thread
->wait_event
= wait_event
;
2941 thread
->waitq
= waitq
;
2943 if (deadline
!= 0) {
2946 act
= timer_call_enter_with_leeway(&thread
->wait_timer
,
2951 thread
->wait_timer_active
++;
2953 thread
->wait_timer_is_set
= TRUE
;
2956 if (waitq_is_global(safeq
)) {
2957 safeq
->waitq_eventmask
|= eventmask
;
2960 waitq_stats_count_wait(waitq
);
2963 /* unlock the thread */
2964 thread_unlock(thread
);
2966 /* update the inheritor's thread priority if the waitq is embedded in turnstile */
2967 if (waitq_is_turnstile_queue(safeq
) && wait_result
== THREAD_WAITING
) {
2968 turnstile_recompute_priority_locked(waitq_to_turnstile(safeq
));
2969 turnstile_update_inheritor_locked(waitq_to_turnstile(safeq
));
2972 /* unlock the safeq if we locked it here */
2973 if (safeq
!= waitq
) {
2974 waitq_unlock(safeq
);
2983 * remove 'thread' from its current blocking state on 'waitq'
2986 * 'thread' is locked
2989 * This function is primarily used by clear_wait_internal in
2990 * sched_prim.c from the thread timer wakeup path
2991 * (i.e. the thread was waiting on 'waitq' with a timeout that expired)
2994 waitq_pull_thread_locked(struct waitq
*waitq
, thread_t thread
)
2996 struct waitq
*safeq
;
2998 assert_thread_magic(thread
);
2999 assert(thread
->waitq
== waitq
);
3001 /* Find the interrupts disabled queue thread is waiting on */
3002 if (!waitq_irq_safe(waitq
)) {
3003 safeq
= waitq_get_safeq(waitq
);
3008 /* thread is already locked so have to try for the waitq lock */
3009 if (!waitq_lock_try(safeq
)) {
3013 waitq_thread_remove(safeq
, thread
);
3014 thread_clear_waitq_state(thread
);
3015 waitq_stats_count_clear_wakeup(waitq
);
3017 /* clear the global event mask if this was the last thread there! */
3018 if (waitq_is_global(safeq
) && waitq_empty(safeq
)) {
3019 safeq
->waitq_eventmask
= 0;
3020 /* JMM - also mark no-waiters on waitq (if not the same as the safeq) */
3023 waitq_unlock(safeq
);
3031 maybe_adjust_thread_pri(thread_t thread
,
3033 __kdebug_only
struct waitq
*waitq
)
3036 * If the caller is requesting the waitq subsystem to promote the
3037 * priority of the awoken thread, then boost the thread's priority to
3038 * the default WAITQ_BOOST_PRIORITY (if it's not already equal or
3039 * higher priority). This boost must be removed via a call to
3040 * waitq_clear_promotion_locked before the thread waits again.
3042 * WAITQ_PROMOTE_PRIORITY is -2.
3043 * Anything above 0 represents a mutex promotion.
3044 * The default 'no action' value is -1.
3045 * TODO: define this in a header
3047 if (priority
== WAITQ_PROMOTE_PRIORITY
) {
3048 uintptr_t trace_waitq
= 0;
3049 if (__improbable(kdebug_enable
)) {
3050 trace_waitq
= VM_KERNEL_UNSLIDE_OR_PERM(waitq
);
3053 sched_thread_promote_reason(thread
, TH_SFLAG_WAITQ_PROMOTED
, trace_waitq
);
3054 } else if (priority
> 0) {
3055 /* Mutex subsystem wants to see this thread before we 'go' it */
3056 lck_mtx_wakeup_adjust_pri(thread
, priority
);
3061 * Clear a potential thread priority promotion from a waitq wakeup
3062 * with WAITQ_PROMOTE_PRIORITY.
3064 * This must be called on the thread which was woken up with TH_SFLAG_WAITQ_PROMOTED.
3067 waitq_clear_promotion_locked(struct waitq
*waitq
, thread_t thread
)
3071 assert(waitq_held(waitq
));
3072 assert(thread
!= THREAD_NULL
);
3073 assert(thread
== current_thread());
3075 /* This flag is only cleared by the thread itself, so safe to check outside lock */
3076 if ((thread
->sched_flags
& TH_SFLAG_WAITQ_PROMOTED
) != TH_SFLAG_WAITQ_PROMOTED
) {
3080 if (!waitq_irq_safe(waitq
)) {
3083 thread_lock(thread
);
3085 sched_thread_unpromote_reason(thread
, TH_SFLAG_WAITQ_PROMOTED
, 0);
3087 thread_unlock(thread
);
3088 if (!waitq_irq_safe(waitq
)) {
3094 * wakeup all threads waiting on 'waitq' for 'wake_event'
3100 * May temporarily disable and re-enable interrupts
3101 * and re-adjust thread priority of each awoken thread.
3103 * If the input 'lock_state' == WAITQ_UNLOCK then the waitq will have
3104 * been unlocked before calling thread_go() on any returned threads, and
3105 * is guaranteed to be unlocked upon function return.
3108 waitq_wakeup64_all_locked(struct waitq
*waitq
,
3109 event64_t wake_event
,
3110 wait_result_t result
,
3111 uint64_t *reserved_preposts
,
3113 waitq_lock_state_t lock_state
)
3119 queue_head_t wakeup_queue
;
3121 assert(waitq_held(waitq
));
3122 queue_init(&wakeup_queue
);
3124 nthreads
= waitq_select_n_locked(waitq
, wake_event
, NULL
, NULL
,
3126 &wakeup_queue
, -1, &th_spl
);
3128 /* set each thread running */
3129 ret
= KERN_NOT_WAITING
;
3131 #if CONFIG_WAITQ_STATS
3132 qe_foreach_element(thread
, &wakeup_queue
, wait_links
)
3133 waitq_stats_count_wakeup(waitq
);
3135 if (lock_state
== WAITQ_UNLOCK
) {
3136 waitq_unlock(waitq
);
3139 qe_foreach_element_safe(thread
, &wakeup_queue
, wait_links
) {
3140 assert_thread_magic(thread
);
3141 remqueue(&thread
->wait_links
);
3142 maybe_adjust_thread_pri(thread
, priority
, waitq
);
3143 ret
= thread_go(thread
, result
);
3144 assert(ret
== KERN_SUCCESS
);
3145 thread_unlock(thread
);
3150 waitq_stats_count_fail(waitq
);
3157 * wakeup one thread waiting on 'waitq' for 'wake_event'
3163 * May temporarily disable and re-enable interrupts.
3166 waitq_wakeup64_one_locked(struct waitq
*waitq
,
3167 event64_t wake_event
,
3168 wait_result_t result
,
3169 uint64_t *reserved_preposts
,
3171 waitq_lock_state_t lock_state
)
3176 assert(waitq_held(waitq
));
3178 if (priority
== WAITQ_SELECT_MAX_PRI
) {
3179 thread
= waitq_select_max_locked(waitq
, wake_event
,
3183 thread
= waitq_select_one_locked(waitq
, wake_event
,
3189 if (thread
!= THREAD_NULL
) {
3190 waitq_stats_count_wakeup(waitq
);
3192 waitq_stats_count_fail(waitq
);
3195 if (lock_state
== WAITQ_UNLOCK
) {
3196 waitq_unlock(waitq
);
3199 if (thread
!= THREAD_NULL
) {
3200 maybe_adjust_thread_pri(thread
, priority
, waitq
);
3201 kern_return_t ret
= thread_go(thread
, result
);
3202 assert(ret
== KERN_SUCCESS
);
3203 thread_unlock(thread
);
3208 return KERN_NOT_WAITING
;
3212 * wakeup one thread waiting on 'waitq' for 'wake_event'
3218 * A locked, runnable thread.
3219 * If return value is non-NULL, interrupts have also
3220 * been disabled, and the caller is responsible to call
3221 * splx() with the returned '*spl' value.
3224 waitq_wakeup64_identify_locked(struct waitq
*waitq
,
3225 event64_t wake_event
,
3226 wait_result_t result
,
3228 uint64_t *reserved_preposts
,
3230 waitq_lock_state_t lock_state
)
3234 assert(waitq_held(waitq
));
3236 if (priority
== WAITQ_SELECT_MAX_PRI
) {
3237 thread
= waitq_select_max_locked(waitq
, wake_event
,
3241 thread
= waitq_select_one_locked(waitq
, wake_event
,
3246 if (thread
!= THREAD_NULL
) {
3247 waitq_stats_count_wakeup(waitq
);
3249 waitq_stats_count_fail(waitq
);
3252 if (lock_state
== WAITQ_UNLOCK
) {
3253 waitq_unlock(waitq
);
3256 if (thread
!= THREAD_NULL
) {
3257 kern_return_t __assert_only ret
;
3258 ret
= thread_go(thread
, result
);
3259 assert(ret
== KERN_SUCCESS
);
3262 return thread
; /* locked if not NULL (caller responsible for spl) */
3266 * wakeup a specific thread iff it's waiting on 'waitq' for 'wake_event'
3270 * 'thread' is unlocked
3273 * May temporarily disable and re-enable interrupts
3275 * If the input lock_state == WAITQ_UNLOCK then the waitq will have been
3276 * unlocked before calling thread_go() if 'thread' is to be awoken, and
3277 * is guaranteed to be unlocked upon function return.
3280 waitq_wakeup64_thread_locked(struct waitq
*waitq
,
3281 event64_t wake_event
,
3283 wait_result_t result
,
3284 waitq_lock_state_t lock_state
)
3289 assert(waitq_held(waitq
));
3290 assert_thread_magic(thread
);
3293 * See if the thread was still waiting there. If so, it got
3294 * dequeued and returned locked.
3296 ret
= waitq_select_thread_locked(waitq
, wake_event
, thread
, &th_spl
);
3298 if (ret
== KERN_SUCCESS
) {
3299 waitq_stats_count_wakeup(waitq
);
3301 waitq_stats_count_fail(waitq
);
3304 if (lock_state
== WAITQ_UNLOCK
) {
3305 waitq_unlock(waitq
);
3308 if (ret
!= KERN_SUCCESS
) {
3309 return KERN_NOT_WAITING
;
3312 ret
= thread_go(thread
, result
);
3313 assert(ret
== KERN_SUCCESS
);
3314 thread_unlock(thread
);
3322 /* ----------------------------------------------------------------------
3326 * ---------------------------------------------------------------------- */
3329 * initialize a waitq object
3332 waitq_init(struct waitq
*waitq
, int policy
)
3334 assert(waitq
!= NULL
);
3336 /* only FIFO and LIFO for now */
3337 if ((policy
& SYNC_POLICY_FIXED_PRIORITY
) != 0) {
3338 return KERN_INVALID_ARGUMENT
;
3341 waitq
->waitq_fifo
= ((policy
& SYNC_POLICY_REVERSED
) == 0);
3342 waitq
->waitq_irq
= !!(policy
& SYNC_POLICY_DISABLE_IRQ
);
3343 waitq
->waitq_prepost
= 0;
3344 waitq
->waitq_type
= WQT_QUEUE
;
3345 waitq
->waitq_turnstile_or_port
= !!(policy
& SYNC_POLICY_TURNSTILE
);
3346 waitq
->waitq_eventmask
= 0;
3348 waitq
->waitq_set_id
= 0;
3349 waitq
->waitq_prepost_id
= 0;
3351 waitq_lock_init(waitq
);
3352 if (waitq_is_turnstile_queue(waitq
)) {
3353 /* For turnstile, initialize it as a priority queue */
3354 priority_queue_init(&waitq
->waitq_prio_queue
,
3355 PRIORITY_QUEUE_BUILTIN_MAX_HEAP
);
3356 assert(waitq
->waitq_fifo
== 0);
3358 queue_init(&waitq
->waitq_queue
);
3361 waitq
->waitq_isvalid
= 1;
3362 return KERN_SUCCESS
;
3365 struct wq_unlink_ctx
{
3366 struct waitq
*unlink_wq
;
3367 struct waitq_set
*unlink_wqset
;
3370 static int waitq_unlink_prepost_cb(struct waitq_set __unused
*wqset
, void *ctx
,
3371 struct wq_prepost
*wqp
, struct waitq
*waitq
);
3374 * walk_waitq_links callback to invalidate 'link' parameter
3377 * Called from walk_waitq_links.
3378 * Note that unlink other callbacks, this one make no assumptions about
3379 * the 'waitq' parameter, specifically it does not have to be locked or
3383 waitq_unlink_all_cb(struct waitq
*waitq
, void *ctx
,
3384 struct waitq_link
*link
)
3388 if (wql_type(link
) == WQL_LINK
&& wql_is_valid(link
)) {
3389 wql_invalidate(link
);
3392 if (wql_type(link
) == WQL_WQS
) {
3393 struct waitq_set
*wqset
;
3394 struct wq_unlink_ctx ulctx
;
3397 * When destroying the waitq, take the time to clear out any
3398 * preposts it may have made. This could potentially save time
3399 * on the IPC send path which would otherwise have to iterate
3400 * over lots of dead port preposts.
3402 if (waitq
->waitq_prepost_id
== 0) {
3406 wqset
= link
->wql_wqs
.wql_set
;
3407 assert(wqset
!= NULL
);
3408 assert(!waitq_irq_safe(&wqset
->wqset_q
));
3410 waitq_set_lock(wqset
);
3412 if (!waitq_set_is_valid(wqset
)) {
3413 /* someone raced us to teardown */
3416 if (!waitq_set_maybe_preposted(wqset
)) {
3420 ulctx
.unlink_wq
= waitq
;
3421 ulctx
.unlink_wqset
= wqset
;
3422 (void)wq_prepost_iterate(wqset
->wqset_prepost_id
, &ulctx
,
3423 waitq_unlink_prepost_cb
);
3425 waitq_set_unlock(wqset
);
3429 return WQ_ITERATE_CONTINUE
;
3434 * cleanup any link/prepost table resources associated with a waitq
3437 waitq_deinit(struct waitq
*waitq
)
3441 if (!waitq
|| !waitq_is_queue(waitq
)) {
3445 if (waitq_irq_safe(waitq
)) {
3449 if (!waitq_valid(waitq
)) {
3450 waitq_unlock(waitq
);
3451 if (waitq_irq_safe(waitq
)) {
3457 waitq
->waitq_isvalid
= 0;
3459 if (!waitq_irq_safe(waitq
)) {
3460 waitq_unlink_all_unlock(waitq
);
3461 /* waitq unlocked and set links deallocated */
3463 waitq_unlock(waitq
);
3467 assert(waitq_empty(waitq
));
3471 waitq_invalidate_locked(struct waitq
*waitq
)
3473 assert(waitq_held(waitq
));
3474 assert(waitq_is_valid(waitq
));
3475 waitq
->waitq_isvalid
= 0;
3479 * invalidate the given wq_prepost object
3482 * Called from wq_prepost_iterate (_not_ from wq_prepost_foreach_locked!)
3485 wqset_clear_prepost_chain_cb(struct waitq_set __unused
*wqset
,
3487 struct wq_prepost
*wqp
,
3488 struct waitq __unused
*waitq
)
3490 if (wqp_type(wqp
) == WQP_POST
) {
3491 wq_prepost_invalidate(wqp
);
3493 return WQ_ITERATE_CONTINUE
;
3498 * allocate and initialize a waitq set object
3504 * allocated / initialized waitq_set object.
3505 * the waits_set object returned does not have
3506 * a waitq_link associated.
3511 waitq_set_alloc(int policy
, void *prepost_hook
)
3513 struct waitq_set
*wqset
;
3515 wqset
= (struct waitq_set
*)zalloc(waitq_set_zone
);
3517 panic("Can't allocate a new waitq set from zone %p", waitq_set_zone
);
3521 ret
= waitq_set_init(wqset
, policy
, NULL
, prepost_hook
);
3522 if (ret
!= KERN_SUCCESS
) {
3523 zfree(waitq_set_zone
, wqset
);
3531 * initialize a waitq set object
3533 * if no 'reserved_link' object is passed
3534 * the waitq_link will be lazily allocated
3535 * on demand through waitq_set_lazy_init_link.
3538 waitq_set_init(struct waitq_set
*wqset
,
3539 int policy
, uint64_t *reserved_link
,
3542 struct waitq_link
*link
;
3545 memset(wqset
, 0, sizeof(*wqset
));
3547 ret
= waitq_init(&wqset
->wqset_q
, policy
);
3548 if (ret
!= KERN_SUCCESS
) {
3552 wqset
->wqset_q
.waitq_type
= WQT_SET
;
3553 if (policy
& SYNC_POLICY_PREPOST
) {
3554 wqset
->wqset_q
.waitq_prepost
= 1;
3555 wqset
->wqset_prepost_id
= 0;
3556 assert(prepost_hook
== NULL
);
3558 wqset
->wqset_q
.waitq_prepost
= 0;
3559 wqset
->wqset_prepost_hook
= prepost_hook
;
3562 if (reserved_link
&& *reserved_link
!= 0) {
3563 link
= wql_get_reserved(*reserved_link
, WQL_WQS
);
3566 panic("Can't allocate link object for waitq set: %p", wqset
);
3569 /* always consume the caller's reference */
3572 link
->wql_wqs
.wql_set
= wqset
;
3575 wqset
->wqset_id
= link
->wql_setid
.id
;
3579 * Lazy allocate the link only when an actual id is needed.
3581 wqset
->wqset_id
= WQSET_NOT_LINKED
;
3584 return KERN_SUCCESS
;
3587 #if DEVELOPMENT || DEBUG
3590 sysctl_helper_waitq_set_nelem(void)
3592 return ltable_nelem(&g_wqlinktable
);
3598 * initialize a waitq set link.
3602 * locks and unlocks the waiq set lock
3606 waitq_set_lazy_init_link(struct waitq_set
*wqset
)
3608 struct waitq_link
*link
;
3610 assert(get_preemption_level() == 0 && waitq_wait_possible(current_thread()));
3612 waitq_set_lock(wqset
);
3613 if (!waitq_set_should_lazy_init_link(wqset
)) {
3614 waitq_set_unlock(wqset
);
3618 assert(wqset
->wqset_id
== WQSET_NOT_LINKED
);
3619 waitq_set_unlock(wqset
);
3621 link
= wql_alloc_link(WQL_WQS
);
3623 panic("Can't allocate link object for waitq set: %p", wqset
);
3626 link
->wql_wqs
.wql_set
= wqset
;
3628 waitq_set_lock(wqset
);
3629 if (waitq_set_should_lazy_init_link(wqset
)) {
3631 wqset
->wqset_id
= link
->wql_setid
.id
;
3634 assert(wqset
->wqset_id
!= 0);
3635 assert(wqset
->wqset_id
!= WQSET_NOT_LINKED
);
3637 waitq_set_unlock(wqset
);
3645 * checks if a waitq set needs to be linked.
3649 waitq_set_should_lazy_init_link(struct waitq_set
*wqset
)
3651 if (waitqs_is_linked(wqset
) || wqset
->wqset_id
== 0) {
3658 * clear out / release any resources associated with a waitq set
3663 * This will render the waitq set invalid, and it must
3664 * be re-initialized with waitq_set_init before it can be used again
3667 waitq_set_deinit(struct waitq_set
*wqset
)
3669 struct waitq_link
*link
= NULL
;
3670 uint64_t set_id
, prepost_id
;
3672 if (!waitqs_is_set(wqset
)) {
3673 panic("trying to de-initialize an invalid wqset @%p", wqset
);
3676 assert(!waitq_irq_safe(&wqset
->wqset_q
));
3678 waitq_set_lock(wqset
);
3680 set_id
= wqset
->wqset_id
;
3682 if (waitqs_is_linked(wqset
) || set_id
== 0) {
3683 /* grab the set's link object */
3684 link
= wql_get_link(set_id
);
3686 wql_invalidate(link
);
3688 /* someone raced us to deinit */
3689 if (!link
|| wqset
->wqset_id
!= set_id
|| set_id
!= link
->wql_setid
.id
) {
3693 waitq_set_unlock(wqset
);
3697 /* the link should be a valid link object at this point */
3698 assert(link
!= NULL
&& wql_type(link
) == WQL_WQS
);
3700 wqset
->wqset_id
= 0;
3704 * This set may have a lot of preposts, or may have been a member of
3705 * many other sets. To minimize spinlock hold times, we clear out the
3706 * waitq set data structure under the lock-hold, but don't clear any
3707 * table objects. We keep handles to the prepost and set linkage
3708 * objects and free those outside the critical section.
3711 if (wqset
->wqset_q
.waitq_prepost
&& wqset
->wqset_prepost_id
) {
3712 assert(link
!= NULL
);
3713 prepost_id
= wqset
->wqset_prepost_id
;
3715 /* else { TODO: notify kqueue subsystem? } */
3716 wqset
->wqset_prepost_id
= 0;
3718 wqset
->wqset_q
.waitq_fifo
= 0;
3719 wqset
->wqset_q
.waitq_prepost
= 0;
3720 wqset
->wqset_q
.waitq_isvalid
= 0;
3722 /* don't clear the 'waitq_irq' bit: it's used in locking! */
3723 wqset
->wqset_q
.waitq_eventmask
= 0;
3725 waitq_unlink_all_unlock(&wqset
->wqset_q
);
3726 /* wqset->wqset_q unlocked and set links deallocated */
3731 * walk_waitq_links may race with us for access to the waitq set.
3732 * If walk_waitq_links has a reference to the set, then we should wait
3733 * until the link's refcount goes to 1 (our reference) before we exit
3734 * this function. That way we ensure that the waitq set memory will
3735 * remain valid even though it's been cleared out.
3737 while (wql_refcnt(link
) > 1) {
3743 /* drop / unlink all the prepost table objects */
3744 /* JMM - can this happen before the delay? */
3746 (void)wq_prepost_iterate(prepost_id
, NULL
,
3747 wqset_clear_prepost_chain_cb
);
3752 * de-initialize and free an allocated waitq set object
3758 waitq_set_free(struct waitq_set
*wqset
)
3760 waitq_set_deinit(wqset
);
3762 memset(wqset
, 0, sizeof(*wqset
));
3763 zfree(waitq_set_zone
, wqset
);
3765 return KERN_SUCCESS
;
3768 #if DEVELOPMENT || DEBUG
3769 #if CONFIG_WAITQ_DEBUG
3771 * return the set ID of 'wqset'
3774 wqset_id(struct waitq_set
*wqset
)
3780 assert(waitqs_is_set(wqset
));
3782 if (!waitqs_is_linked(wqset
)) {
3783 waitq_set_lazy_init_link(wqset
);
3786 return wqset
->wqset_id
;
3790 * returns a pointer to the waitq object embedded in 'wqset'
3793 wqset_waitq(struct waitq_set
*wqset
)
3799 assert(waitqs_is_set(wqset
));
3801 return &wqset
->wqset_q
;
3803 #endif /* CONFIG_WAITQ_DEBUG */
3804 #endif /* DEVELOPMENT || DEBUG */
3808 * clear all preposts originating from 'waitq'
3812 * may (rarely) spin waiting for another on-core thread to
3813 * release the last reference to the waitq's prepost link object
3816 * If this function needs to spin, it will drop the waitq lock!
3817 * The return value of the function indicates whether or not this
3818 * happened: 1 == lock was dropped, 0 == lock held
3821 waitq_clear_prepost_locked(struct waitq
*waitq
)
3823 struct wq_prepost
*wqp
;
3824 int dropped_lock
= 0;
3826 assert(!waitq_irq_safe(waitq
));
3828 if (waitq
->waitq_prepost_id
== 0) {
3832 wqp
= wq_prepost_get(waitq
->waitq_prepost_id
);
3833 waitq
->waitq_prepost_id
= 0;
3835 uint64_t wqp_id
= wqp
->wqp_prepostid
.id
;
3836 wqdbg_v("invalidate prepost 0x%llx (refcnt:%d)",
3837 wqp
->wqp_prepostid
.id
, wqp_refcnt(wqp
));
3838 wq_prepost_invalidate(wqp
);
3839 while (wqp_refcnt(wqp
) > 1) {
3841 * Some other thread must have raced us to grab a link
3842 * object reference before we invalidated it. This
3843 * means that they are probably trying to access the
3844 * waitq to which the prepost object points. We need
3845 * to wait here until the other thread drops their
3846 * reference. We know that no one else can get a
3847 * reference (the object has been invalidated), and
3848 * that prepost references are short-lived (dropped on
3849 * a call to wq_prepost_put). We also know that no one
3850 * blocks while holding a reference therefore the
3851 * other reference holder must be on-core. We'll just
3852 * sit and wait for the other reference to be dropped.
3854 disable_preemption();
3856 waitq_unlock(waitq
);
3859 * don't yield here, just spin and assume the other
3860 * consumer is already on core...
3866 enable_preemption();
3868 if (wqp_refcnt(wqp
) > 0 && wqp
->wqp_prepostid
.id
== wqp_id
) {
3869 wq_prepost_put(wqp
);
3873 return dropped_lock
;
3877 * clear all preposts originating from 'waitq'
3880 * 'waitq' is not locked
3881 * may disable and re-enable interrupts
3884 waitq_clear_prepost(struct waitq
*waitq
)
3886 assert(waitq_valid(waitq
));
3887 assert(!waitq_irq_safe(waitq
));
3890 /* it doesn't matter to us if the lock is dropped here */
3891 (void)waitq_clear_prepost_locked(waitq
);
3892 waitq_unlock(waitq
);
3896 * return a the waitq's prepost object ID (allocate if necessary)
3899 * 'waitq' is unlocked
3902 waitq_get_prepost_id(struct waitq
*waitq
)
3904 struct wq_prepost
*wqp
;
3905 uint64_t wqp_id
= 0;
3907 if (!waitq_valid(waitq
)) {
3911 assert(!waitq_irq_safe(waitq
));
3915 if (!waitq_valid(waitq
)) {
3919 if (waitq
->waitq_prepost_id
) {
3920 wqp_id
= waitq
->waitq_prepost_id
;
3924 /* don't hold a spinlock while allocating a prepost object */
3925 waitq_unlock(waitq
);
3927 wqp
= wq_prepost_alloc(WQP_WQ
, 1);
3932 /* re-acquire the waitq lock */
3935 if (!waitq_valid(waitq
)) {
3936 wq_prepost_put(wqp
);
3941 if (waitq
->waitq_prepost_id
) {
3942 /* we were beat by someone else */
3943 wq_prepost_put(wqp
);
3944 wqp_id
= waitq
->waitq_prepost_id
;
3948 wqp
->wqp_wq
.wqp_wq_ptr
= waitq
;
3951 wqp_id
= wqp
->wqp_prepostid
.id
;
3952 waitq
->waitq_prepost_id
= wqp_id
;
3954 wq_prepost_put(wqp
);
3957 waitq_unlock(waitq
);
3964 waitq_inset_cb(struct waitq
*waitq
, void *ctx
, struct waitq_link
*link
)
3966 uint64_t setid
= *(uint64_t *)ctx
;
3967 int wqltype
= wql_type(link
);
3969 if (wqltype
== WQL_WQS
&& link
->wql_setid
.id
== setid
) {
3970 wqdbg_v(" waitq already in set 0x%llx", setid
);
3971 return WQ_ITERATE_FOUND
;
3972 } else if (wqltype
== WQL_LINK
) {
3974 * break out early if we see a link that points to the setid
3975 * in question. This saves us a step in the
3976 * iteration/recursion
3978 wqdbg_v(" waitq already in set 0x%llx (WQL_LINK)", setid
);
3979 if (link
->wql_link
.left_setid
== setid
||
3980 link
->wql_link
.right_setid
== setid
) {
3981 return WQ_ITERATE_FOUND
;
3985 return WQ_ITERATE_CONTINUE
;
3989 * determine if 'waitq' is a member of 'wqset'
3992 * neither 'waitq' nor 'wqset' is not locked
3993 * may disable and re-enable interrupts while locking 'waitq'
3996 waitq_member(struct waitq
*waitq
, struct waitq_set
*wqset
)
3998 kern_return_t kr
= WQ_ITERATE_SUCCESS
;
4001 if (!waitq_valid(waitq
)) {
4002 panic("Invalid waitq: %p", waitq
);
4004 assert(!waitq_irq_safe(waitq
));
4006 if (!waitqs_is_set(wqset
)) {
4012 if (!waitqs_is_linked(wqset
)) {
4016 setid
= wqset
->wqset_id
;
4018 /* fast path: most waitqs are members of only 1 set */
4019 if (waitq
->waitq_set_id
== setid
) {
4020 waitq_unlock(waitq
);
4024 /* walk the link table and look for the Set ID of wqset */
4025 kr
= walk_waitq_links(LINK_WALK_ONE_LEVEL
, waitq
, waitq
->waitq_set_id
,
4026 WQL_ALL
, (void *)&setid
, waitq_inset_cb
);
4029 waitq_unlock(waitq
);
4030 return kr
== WQ_ITERATE_FOUND
;
4034 * Returns true is the given waitq is a member of at least 1 set
4037 waitq_in_set(struct waitq
*waitq
)
4039 struct waitq_link
*link
;
4040 boolean_t inset
= FALSE
;
4042 if (waitq_irq_safe(waitq
)) {
4048 if (!waitq
->waitq_set_id
) {
4052 link
= wql_get_link(waitq
->waitq_set_id
);
4054 /* if we get here, the waitq is in _at_least_one_ set */
4058 /* we can just optimize this for next time */
4059 waitq
->waitq_set_id
= 0;
4063 waitq_unlock(waitq
);
4069 * pre-allocate a waitq link structure from the link table
4072 * 'waitq' is not locked
4073 * may (rarely) block if link table needs to grow
4076 waitq_link_reserve(struct waitq
*waitq
)
4078 struct waitq_link
*link
;
4079 uint64_t reserved_id
= 0;
4081 assert(get_preemption_level() == 0 && waitq_wait_possible(current_thread()));
4084 * We've asserted that the caller can block, so we enforce a
4085 * minimum-free table element policy here.
4087 wql_ensure_free_space();
4090 link
= wql_alloc_link(LT_RESERVED
);
4095 reserved_id
= link
->wql_setid
.id
;
4101 * release a pre-allocated waitq link structure
4104 waitq_link_release(uint64_t id
)
4106 struct waitq_link
*link
;
4112 link
= wql_get_reserved(id
, WQL_LINK
);
4118 * if we successfully got a link object, then we know
4119 * it's not been marked valid, and can be released with
4120 * a standard wql_put_link() which should free the element.
4123 #if CONFIG_LTABLE_STATS
4124 g_wqlinktable
.nreserved_releases
+= 1;
4129 * link 'waitq' to the set identified by 'setid' using the 'link' structure
4133 * caller should have a reference to the 'link' object
4135 static kern_return_t
4136 waitq_link_internal(struct waitq
*waitq
,
4137 uint64_t setid
, struct waitq_link
*link
)
4139 struct waitq_link
*qlink
;
4142 assert(waitq_held(waitq
));
4144 assert(setid
!= WQSET_NOT_LINKED
);
4147 * If the waitq_set_id field is empty, then this waitq is not
4148 * a member of any other set. All we have to do is update the
4151 if (!waitq
->waitq_set_id
) {
4152 waitq
->waitq_set_id
= setid
;
4153 return KERN_SUCCESS
;
4156 qlink
= wql_get_link(waitq
->waitq_set_id
);
4159 * The set to which this wait queue belonged has been
4160 * destroyed / invalidated. We can re-use the waitq field.
4162 waitq
->waitq_set_id
= setid
;
4163 return KERN_SUCCESS
;
4165 wql_put_link(qlink
);
4168 * Check to see if it's already a member of the set.
4170 * TODO: check for cycles!
4172 kr
= walk_waitq_links(LINK_WALK_ONE_LEVEL
, waitq
, waitq
->waitq_set_id
,
4173 WQL_ALL
, (void *)&setid
, waitq_inset_cb
);
4174 if (kr
== WQ_ITERATE_FOUND
) {
4175 return KERN_ALREADY_IN_SET
;
4179 * This wait queue is a member of at least one set already,
4180 * and _not_ a member of the given set. Use our previously
4181 * allocated link object, and hook it up to the wait queue.
4182 * Note that it's possible that one or more of the wait queue sets to
4183 * which the wait queue belongs was invalidated before we allocated
4184 * this link object. That's OK because the next time we use that
4185 * object we'll just ignore it.
4187 link
->wql_link
.left_setid
= setid
;
4188 link
->wql_link
.right_setid
= waitq
->waitq_set_id
;
4191 waitq
->waitq_set_id
= link
->wql_setid
.id
;
4193 return KERN_SUCCESS
;
4197 * link 'waitq' to 'wqset'
4200 * if 'lock_state' contains WAITQ_SHOULD_LOCK, 'waitq' must be unlocked.
4201 * Otherwise, 'waitq' must be locked.
4203 * may (rarely) block on link table allocation if the table has to grow,
4204 * and no 'reserved_link' object is passed.
4206 * may block and acquire wqset lock if the wqset passed has no link.
4209 * The caller can guarantee that this function will never block by
4210 * - pre-allocating a link table object and passing its ID in 'reserved_link'
4211 * - and pre-allocating the waitq set link calling waitq_set_lazy_init_link.
4212 * It is not possible to provide a reserved_link without having also linked
4216 waitq_link(struct waitq
*waitq
, struct waitq_set
*wqset
,
4217 waitq_lock_state_t lock_state
, uint64_t *reserved_link
)
4220 struct waitq_link
*link
;
4221 int should_lock
= (lock_state
== WAITQ_SHOULD_LOCK
);
4223 if (!waitq_valid(waitq
) || waitq_irq_safe(waitq
)) {
4224 panic("Invalid waitq: %p", waitq
);
4227 if (!waitqs_is_set(wqset
)) {
4228 return KERN_INVALID_ARGUMENT
;
4231 if (!reserved_link
|| *reserved_link
== 0) {
4232 if (!waitqs_is_linked(wqset
)) {
4233 waitq_set_lazy_init_link(wqset
);
4237 wqdbg_v("Link waitq %p to wqset 0x%llx",
4238 (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq
), wqset
->wqset_id
);
4241 * We _might_ need a new link object here, so we'll grab outside
4242 * the lock because the alloc call _might_ block.
4244 * If the caller reserved a link beforehand, then wql_get_link
4245 * is guaranteed not to block because the caller holds an extra
4246 * reference to the link which, in turn, hold a reference to the
4249 if (reserved_link
&& *reserved_link
!= 0) {
4250 link
= wql_get_reserved(*reserved_link
, WQL_LINK
);
4251 /* always consume the caller's reference */
4254 link
= wql_alloc_link(WQL_LINK
);
4257 return KERN_NO_SPACE
;
4264 kr
= waitq_link_internal(waitq
, wqset
->wqset_id
, link
);
4267 waitq_unlock(waitq
);
4276 * helper: unlink 'waitq' from waitq set identified by 'setid'
4277 * this function also prunes invalid objects from the tree
4280 * MUST be called from walk_waitq_links link table walk
4284 * This is a helper function which compresses the link table by culling
4285 * unused or unnecessary links. See comments below for different
4289 waitq_maybe_remove_link(struct waitq
*waitq
,
4291 struct waitq_link
*parent
,
4292 struct waitq_link
*left
,
4293 struct waitq_link
*right
)
4295 uint64_t *wq_setid
= &waitq
->waitq_set_id
;
4298 * There are two scenarios:
4301 * --------------------------------------------------------------------
4302 * waitq->waitq_set_id == parent
4308 * L(LINK/WQS_l) R(LINK/WQS_r)
4310 * In this scenario, we assert that the original waitq points to the
4311 * parent link we were passed in. If WQS_l (or WQS_r) is the waitq
4312 * set we're looking for, we can set the corresponding parent
4313 * link id (left or right) to 0. To compress the tree, we can reset the
4314 * waitq_set_id of the original waitq to point to the side of the
4315 * parent that is still valid. We then discard the parent link object.
4317 if (*wq_setid
== parent
->wql_setid
.id
) {
4318 if (!left
&& !right
) {
4319 /* completely invalid children */
4320 wql_invalidate(parent
);
4323 return WQ_ITERATE_INVALID
;
4324 } else if (!left
|| left
->wql_setid
.id
== setid
) {
4326 * left side matches we know it points either to the
4327 * WQS we're unlinking, or to an invalid object:
4328 * no need to invalidate it
4330 *wq_setid
= right
? right
->wql_setid
.id
: 0;
4331 wql_invalidate(parent
);
4333 return left
? WQ_ITERATE_UNLINKED
: WQ_ITERATE_INVALID
;
4334 } else if (!right
|| right
->wql_setid
.id
== setid
) {
4336 * if right side matches we know it points either to the
4337 * WQS we're unlinking, or to an invalid object:
4338 * no need to invalidate it
4340 *wq_setid
= left
? left
->wql_setid
.id
: 0;
4341 wql_invalidate(parent
);
4343 return right
? WQ_ITERATE_UNLINKED
: WQ_ITERATE_INVALID
;
4348 * the tree walk starts at the top-of-tree and moves down,
4349 * so these are safe asserts.
4351 assert(left
|| right
); /* one of them has to be valid at this point */
4355 * --------------------------------------------------------------------
4356 * waitq->waitq_set_id == ... (OR parent)
4369 * In this scenario, a leaf node of either the left or right side
4370 * could be the wait queue set we're looking to unlink. We also handle
4371 * the case where one of these links is invalid. If a leaf node is
4372 * invalid or it's the set we're looking for, we can safely remove the
4373 * middle link (left or right) and point the parent link directly to
4374 * the remaining leaf node.
4376 if (left
&& wql_type(left
) == WQL_LINK
) {
4378 struct waitq_link
*linkLl
, *linkLr
;
4379 assert(left
->wql_setid
.id
!= setid
);
4380 Ll
= left
->wql_link
.left_setid
;
4381 Lr
= left
->wql_link
.right_setid
;
4382 linkLl
= wql_get_link(Ll
);
4383 linkLr
= wql_get_link(Lr
);
4384 if (!linkLl
&& !linkLr
) {
4386 * The left object points to two invalid objects!
4387 * We can invalidate the left w/o touching the parent.
4389 wql_invalidate(left
);
4390 wqdbg_v("S2, Ll+Lr");
4391 return WQ_ITERATE_INVALID
;
4392 } else if (!linkLl
|| Ll
== setid
) {
4393 /* Ll is invalid and/or the wait queue set we're looking for */
4394 parent
->wql_link
.left_setid
= Lr
;
4395 wql_invalidate(left
);
4396 wql_put_link(linkLl
);
4397 wql_put_link(linkLr
);
4399 return linkLl
? WQ_ITERATE_UNLINKED
: WQ_ITERATE_INVALID
;
4400 } else if (!linkLr
|| Lr
== setid
) {
4401 /* Lr is invalid and/or the wait queue set we're looking for */
4402 parent
->wql_link
.left_setid
= Ll
;
4403 wql_invalidate(left
);
4404 wql_put_link(linkLr
);
4405 wql_put_link(linkLl
);
4407 return linkLr
? WQ_ITERATE_UNLINKED
: WQ_ITERATE_INVALID
;
4409 wql_put_link(linkLl
);
4410 wql_put_link(linkLr
);
4413 if (right
&& wql_type(right
) == WQL_LINK
) {
4415 struct waitq_link
*linkRl
, *linkRr
;
4416 assert(right
->wql_setid
.id
!= setid
);
4417 Rl
= right
->wql_link
.left_setid
;
4418 Rr
= right
->wql_link
.right_setid
;
4419 linkRl
= wql_get_link(Rl
);
4420 linkRr
= wql_get_link(Rr
);
4421 if (!linkRl
&& !linkRr
) {
4423 * The right object points to two invalid objects!
4424 * We can invalidate the right w/o touching the parent.
4426 wql_invalidate(right
);
4427 wqdbg_v("S2, Rl+Rr");
4428 return WQ_ITERATE_INVALID
;
4429 } else if (!linkRl
|| Rl
== setid
) {
4430 /* Rl is invalid and/or the wait queue set we're looking for */
4431 parent
->wql_link
.right_setid
= Rr
;
4432 wql_invalidate(right
);
4433 wql_put_link(linkRl
);
4434 wql_put_link(linkRr
);
4436 return linkRl
? WQ_ITERATE_UNLINKED
: WQ_ITERATE_INVALID
;
4437 } else if (!linkRr
|| Rr
== setid
) {
4438 /* Rr is invalid and/or the wait queue set we're looking for */
4439 parent
->wql_link
.right_setid
= Rl
;
4440 wql_invalidate(right
);
4441 wql_put_link(linkRl
);
4442 wql_put_link(linkRr
);
4444 return linkRr
? WQ_ITERATE_UNLINKED
: WQ_ITERATE_INVALID
;
4446 wql_put_link(linkRl
);
4447 wql_put_link(linkRr
);
4450 return WQ_ITERATE_CONTINUE
;
4454 * link table walk callback that unlinks 'waitq' from 'ctx->setid'
4457 * called from walk_waitq_links
4461 * uses waitq_maybe_remove_link() to compress the linktable and
4462 * perform the actual unlinking
4465 waitq_unlink_cb(struct waitq
*waitq
, void *ctx
,
4466 struct waitq_link
*link
)
4468 uint64_t setid
= *((uint64_t *)ctx
);
4469 struct waitq_link
*right
, *left
;
4472 if (wql_type(link
) != WQL_LINK
) {
4473 return WQ_ITERATE_CONTINUE
;
4477 left
= wql_get_link(link
->wql_link
.left_setid
);
4478 right
= wql_get_link(link
->wql_link
.right_setid
);
4480 ret
= waitq_maybe_remove_link(waitq
, setid
, link
, left
, right
);
4483 wql_put_link(right
);
4485 if (!wql_is_valid(link
)) {
4486 return WQ_ITERATE_INVALID
;
4488 /* A ret value of UNLINKED will break us out of table walk */
4489 } while (ret
== WQ_ITERATE_INVALID
);
4496 * undo/remove a prepost from 'ctx' (waitq) to 'wqset'
4499 * Called from wq_prepost_foreach_locked OR wq_prepost_iterate
4500 * 'wqset' may be NULL
4501 * (ctx)->unlink_wqset is locked
4504 waitq_unlink_prepost_cb(struct waitq_set __unused
*wqset
, void *ctx
,
4505 struct wq_prepost
*wqp
, struct waitq
*waitq
)
4507 struct wq_unlink_ctx
*ulctx
= (struct wq_unlink_ctx
*)ctx
;
4509 if (waitq
!= ulctx
->unlink_wq
) {
4510 return WQ_ITERATE_CONTINUE
;
4513 if (wqp_type(wqp
) == WQP_WQ
&&
4514 wqp
->wqp_prepostid
.id
== ulctx
->unlink_wqset
->wqset_prepost_id
) {
4515 /* this is the only prepost on this wait queue set */
4516 wqdbg_v("unlink wqp (WQ) 0x%llx", wqp
->wqp_prepostid
.id
);
4517 ulctx
->unlink_wqset
->wqset_prepost_id
= 0;
4518 return WQ_ITERATE_BREAK
;
4521 assert(wqp_type(wqp
) == WQP_POST
);
4524 * The prepost object 'wqp' points to a waitq which should no longer
4525 * be preposted to 'ulctx->unlink_wqset'. We can remove the prepost
4526 * object from the list and break out of the iteration. Using the
4527 * context object in this way allows this same callback function to be
4528 * used from both wq_prepost_foreach_locked and wq_prepost_iterate.
4530 wq_prepost_remove(ulctx
->unlink_wqset
, wqp
);
4531 return WQ_ITERATE_BREAK
;
4535 * unlink 'waitq' from 'wqset'
4539 * 'wqset' is _not_ locked
4540 * may (rarely) spin in prepost clear and drop/re-acquire 'waitq' lock
4541 * (see waitq_clear_prepost_locked)
4543 static kern_return_t
4544 waitq_unlink_locked(struct waitq
*waitq
,
4545 struct waitq_set
*wqset
)
4550 assert(!waitq_irq_safe(waitq
));
4552 if (waitq
->waitq_set_id
== 0) {
4555 * it doesn't belong to anyone, and it has a prepost object?
4556 * This is an artifact of not cleaning up after kqueues when
4557 * they prepost into select sets...
4559 if (waitq
->waitq_prepost_id
!= 0) {
4560 (void)waitq_clear_prepost_locked(waitq
);
4562 return KERN_NOT_IN_SET
;
4565 if (!waitqs_is_linked(wqset
)) {
4567 * No link has been allocated for the wqset,
4568 * so no waitq could have been linked to it.
4570 return KERN_NOT_IN_SET
;
4573 setid
= wqset
->wqset_id
;
4575 if (waitq
->waitq_set_id
== setid
) {
4576 waitq
->waitq_set_id
= 0;
4578 * This was the only set to which the waitq belonged: we can
4579 * safely release the waitq's prepost object. It doesn't
4580 * matter if this function drops and re-acquires the lock
4581 * because we're not manipulating waitq state any more.
4583 (void)waitq_clear_prepost_locked(waitq
);
4584 return KERN_SUCCESS
;
4588 * The waitq was a member of more that 1 set, so we need to
4589 * handle potentially compressing the link table, and
4590 * adjusting the waitq->waitq_set_id value.
4592 * Note: we can't free the waitq's associated prepost object (if any)
4593 * because it may be in use by the one or more _other_ sets to
4594 * which this queue belongs.
4596 * Note: This function only handles a single level of the queue linkage.
4597 * Removing a waitq from a set to which it does not directly
4598 * belong is undefined. For example, if a waitq belonged to set
4599 * A, and set A belonged to set B. You can't remove the waitq
4602 kr
= walk_waitq_links(LINK_WALK_ONE_LEVEL
, waitq
, waitq
->waitq_set_id
,
4603 WQL_LINK
, (void *)&setid
, waitq_unlink_cb
);
4605 if (kr
== WQ_ITERATE_UNLINKED
) {
4606 struct wq_unlink_ctx ulctx
;
4608 kr
= KERN_SUCCESS
; /* found it and dis-associated it */
4610 /* don't look for preposts if it's not prepost-enabled */
4611 if (!wqset
->wqset_q
.waitq_prepost
) {
4615 assert(!waitq_irq_safe(&wqset
->wqset_q
));
4617 waitq_set_lock(wqset
);
4619 * clear out any prepost from waitq into wqset
4620 * TODO: this could be more efficient than a linear search of
4621 * the waitq set's prepost list.
4623 ulctx
.unlink_wq
= waitq
;
4624 ulctx
.unlink_wqset
= wqset
;
4625 (void)wq_prepost_iterate(wqset
->wqset_prepost_id
, (void *)&ulctx
,
4626 waitq_unlink_prepost_cb
);
4627 waitq_set_unlock(wqset
);
4629 kr
= KERN_NOT_IN_SET
; /* waitq is _not_ associated with wqset */
4637 * unlink 'waitq' from 'wqset'
4640 * neither 'waitq' nor 'wqset' is locked
4641 * may disable and re-enable interrupts
4642 * may (rarely) spin in prepost clear
4643 * (see waitq_clear_prepost_locked)
4646 waitq_unlink(struct waitq
*waitq
, struct waitq_set
*wqset
)
4648 kern_return_t kr
= KERN_SUCCESS
;
4650 assert(waitqs_is_set(wqset
));
4653 * we allow the waitq to be invalid because the caller may be trying
4654 * to clear out old/dirty state
4656 if (!waitq_valid(waitq
)) {
4657 return KERN_INVALID_ARGUMENT
;
4660 wqdbg_v("unlink waitq %p from set 0x%llx",
4661 (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq
), wqset
->wqset_id
);
4663 assert(!waitq_irq_safe(waitq
));
4667 kr
= waitq_unlink_locked(waitq
, wqset
);
4669 waitq_unlock(waitq
);
4674 * unlink a waitq from a waitq set, but reference the waitq by its prepost ID
4677 * 'wqset' is unlocked
4678 * wqp_id may be valid or invalid
4681 waitq_unlink_by_prepost_id(uint64_t wqp_id
, struct waitq_set
*wqset
)
4683 struct wq_prepost
*wqp
;
4685 disable_preemption();
4686 wqp
= wq_prepost_get(wqp_id
);
4690 wq
= wqp
->wqp_wq
.wqp_wq_ptr
;
4693 * lock the waitq, then release our prepost ID reference, then
4694 * unlink the waitq from the wqset: this ensures that we don't
4695 * hold a prepost ID reference during the unlink, but we also
4696 * complete the unlink operation atomically to avoid a race
4697 * with waitq_unlink[_all].
4699 assert(!waitq_irq_safe(wq
));
4702 wq_prepost_put(wqp
);
4704 if (!waitq_valid(wq
)) {
4705 /* someone already tore down this waitq! */
4707 enable_preemption();
4711 /* this _may_ drop the wq lock, but that's OK */
4712 waitq_unlink_locked(wq
, wqset
);
4716 enable_preemption();
4722 * reference and lock a waitq by its prepost ID
4725 * wqp_id may be valid or invalid
4728 * a locked waitq if wqp_id was valid
4732 waitq_lock_by_prepost_id(uint64_t wqp_id
)
4734 struct waitq
*wq
= NULL
;
4735 struct wq_prepost
*wqp
;
4737 disable_preemption();
4738 wqp
= wq_prepost_get(wqp_id
);
4740 wq
= wqp
->wqp_wq
.wqp_wq_ptr
;
4742 assert(!waitq_irq_safe(wq
));
4745 wq_prepost_put(wqp
);
4747 if (!waitq_valid(wq
)) {
4748 /* someone already tore down this waitq! */
4750 enable_preemption();
4754 enable_preemption();
4760 * unlink 'waitq' from all sets to which it belongs
4763 * 'waitq' is locked on entry
4764 * returns with waitq lock dropped
4767 * may (rarely) spin (see waitq_clear_prepost_locked)
4770 waitq_unlink_all_unlock(struct waitq
*waitq
)
4772 uint64_t old_set_id
= 0;
4773 wqdbg_v("unlink waitq %p from all sets",
4774 (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq
));
4775 assert(!waitq_irq_safe(waitq
));
4777 /* it's not a member of any sets */
4778 if (waitq
->waitq_set_id
== 0) {
4779 waitq_unlock(waitq
);
4780 return KERN_SUCCESS
;
4783 old_set_id
= waitq
->waitq_set_id
;
4784 waitq
->waitq_set_id
= 0;
4787 * invalidate the prepost entry for this waitq.
4788 * This may drop and re-acquire the waitq lock, but that's OK because
4789 * if it was added to another set and preposted to that set in the
4790 * time we drop the lock, the state will remain consistent.
4792 (void)waitq_clear_prepost_locked(waitq
);
4794 waitq_unlock(waitq
);
4798 * Walk the link table and invalidate each LINK object that
4799 * used to connect this waitq to one or more sets: this works
4800 * because WQL_LINK objects are private to each wait queue
4802 (void)walk_waitq_links(LINK_WALK_ONE_LEVEL
, waitq
, old_set_id
,
4803 WQL_LINK
, NULL
, waitq_unlink_all_cb
);
4806 return KERN_SUCCESS
;
4810 * unlink 'waitq' from all sets to which it belongs
4813 * 'waitq' is not locked
4814 * may disable and re-enable interrupts
4816 * (see waitq_unlink_all_locked, waitq_clear_prepost_locked)
4819 waitq_unlink_all(struct waitq
*waitq
)
4821 kern_return_t kr
= KERN_SUCCESS
;
4823 if (!waitq_valid(waitq
)) {
4824 panic("Invalid waitq: %p", waitq
);
4827 assert(!waitq_irq_safe(waitq
));
4829 if (!waitq_valid(waitq
)) {
4830 waitq_unlock(waitq
);
4831 return KERN_SUCCESS
;
4834 kr
= waitq_unlink_all_unlock(waitq
);
4835 /* waitq unlocked and set links deallocated */
4842 * unlink all waitqs from 'wqset'
4845 * 'wqset' is locked on entry
4846 * 'wqset' is unlocked on exit and spl is restored
4849 * may (rarely) spin/block (see waitq_clear_prepost_locked)
4852 waitq_set_unlink_all_unlock(struct waitq_set
*wqset
)
4854 struct waitq_link
*link
;
4855 uint64_t prepost_id
;
4857 wqdbg_v("unlink all queues from set 0x%llx", wqset
->wqset_id
);
4860 * This operation does not require interaction with any of the set's
4861 * constituent wait queues. All we have to do is invalidate the SetID
4864 if (waitqs_is_linked(wqset
)) {
4865 /* invalidate and re-alloc the link object first */
4866 link
= wql_get_link(wqset
->wqset_id
);
4868 /* we may have raced with a waitq_set_deinit: handle this */
4870 waitq_set_unlock(wqset
);
4871 return KERN_SUCCESS
;
4874 wql_invalidate(link
);
4876 /* re-alloc the object to get a new generation ID */
4877 wql_realloc_link(link
, WQL_WQS
);
4878 link
->wql_wqs
.wql_set
= wqset
;
4880 wqset
->wqset_id
= link
->wql_setid
.id
;
4885 /* clear any preposts attached to this set */
4887 if (wqset
->wqset_q
.waitq_prepost
&& wqset
->wqset_prepost_id
) {
4888 prepost_id
= wqset
->wqset_prepost_id
;
4890 /* else { TODO: notify kqueue subsystem? } */
4891 wqset
->wqset_prepost_id
= 0;
4894 * clear set linkage and prepost object associated with this set:
4895 * waitq sets may prepost to other sets if, for example, they are
4896 * associated with a kqueue which is in a select set.
4898 * This releases all the set link objects
4899 * (links to other sets to which this set was previously added)
4901 waitq_unlink_all_unlock(&wqset
->wqset_q
);
4902 /* wqset->wqset_q unlocked */
4904 /* drop / unlink all the prepost table objects */
4906 (void)wq_prepost_iterate(prepost_id
, NULL
,
4907 wqset_clear_prepost_chain_cb
);
4910 return KERN_SUCCESS
;
4914 * unlink all waitqs from 'wqset'
4917 * 'wqset' is not locked
4918 * may (rarely) spin/block (see waitq_clear_prepost_locked)
4921 waitq_set_unlink_all(struct waitq_set
*wqset
)
4923 assert(waitqs_is_set(wqset
));
4924 assert(!waitq_irq_safe(&wqset
->wqset_q
));
4926 waitq_set_lock(wqset
);
4927 return waitq_set_unlink_all_unlock(wqset
);
4928 /* wqset unlocked and set links and preposts deallocated */
4932 waitq_prepost_reserve_cb(struct waitq
*waitq
, void *ctx
,
4933 struct waitq_link
*link
)
4935 uint32_t *num
= (uint32_t *)ctx
;
4939 * In the worst case, we'll have to allocate 2 prepost objects
4940 * per waitq set (if the set was already preposted by another
4943 if (wql_type(link
) == WQL_WQS
) {
4945 * check to see if the associated waitq actually supports
4948 if (waitq_set_can_prepost(link
->wql_wqs
.wql_set
)) {
4952 return WQ_ITERATE_CONTINUE
;
4956 waitq_alloc_prepost_reservation(int nalloc
, struct waitq
*waitq
,
4957 int *did_unlock
, struct wq_prepost
**wqp
)
4959 struct wq_prepost
*tmp
;
4960 struct wqp_cache
*cache
;
4965 * Before we unlock the waitq, check the per-processor prepost object
4966 * cache to see if there's enough there for us. If so, do the
4967 * allocation, keep the lock and save an entire iteration over the set
4971 disable_preemption();
4972 cache
= &PROCESSOR_DATA(current_processor(), wqp_cache
);
4973 if (nalloc
<= (int)cache
->avail
) {
4976 enable_preemption();
4978 /* unlock the waitq to perform the allocation */
4980 waitq_unlock(waitq
);
4984 tmp
= wq_prepost_alloc(LT_RESERVED
, nalloc
);
4986 panic("Couldn't reserve %d preposts for waitq @%p (wqp@%p)",
4987 nalloc
, waitq
, *wqp
);
4990 /* link the two lists */
4991 int __assert_only rc
;
4992 rc
= wq_prepost_rlink(tmp
, *wqp
);
4993 assert(rc
== nalloc
);
4998 * If the caller can block, then enforce a minimum-free table element
4999 * policy here. This helps ensure that we will have enough prepost
5000 * objects for callers such as selwakeup() that can be called with
5003 if (get_preemption_level() == 0) {
5004 wq_prepost_ensure_free_space();
5008 if (*did_unlock
== 0) {
5009 /* decrement the preemption count if alloc from cache */
5010 enable_preemption();
5012 /* otherwise: re-lock the waitq */
5021 waitq_count_prepost_reservation(struct waitq
*waitq
, int extra
, int keep_locked
)
5026 * If the waitq is not currently part of a set, and we're not asked to
5027 * keep the waitq locked then we'll want to have 3 in reserve
5028 * just-in-case it becomes part of a set while we unlock and reserve.
5029 * We may need up to 1 object for the waitq, and 2 for the set.
5031 if (waitq
->waitq_set_id
== 0) {
5034 /* this queue has never been preposted before */
5035 if (waitq
->waitq_prepost_id
== 0) {
5040 * Walk the set of table linkages associated with this waitq
5041 * and count the worst-case number of prepost objects that
5042 * may be needed during a wakeup_all. We can walk this without
5043 * locking each set along the way because the table-based IDs
5044 * disconnect us from the set pointers themselves, and the
5045 * table walking is careful to read the setid values only once.
5046 * Locking each set up the chain also doesn't guarantee that
5047 * their membership won't change between the time we unlock
5048 * that set and when we actually go to prepost, so our
5049 * situation is no worse than before and we've alleviated lock
5050 * contention on any sets to which this waitq belongs.
5052 (void)walk_waitq_links(LINK_WALK_FULL_DAG_UNLOCKED
,
5053 waitq
, waitq
->waitq_set_id
,
5054 WQL_WQS
, (void *)&npreposts
,
5055 waitq_prepost_reserve_cb
);
5062 if (npreposts
== 0 && !keep_locked
) {
5064 * If we get here, we were asked to reserve some prepost
5065 * objects for a waitq that's previously preposted, and is not
5066 * currently a member of any sets. We have also been
5067 * instructed to unlock the waitq when we're done. In this
5068 * case, we pre-allocated enough reserved objects to handle
5069 * the case where the waitq gets added to a single set when
5070 * the lock is released.
5080 * pre-allocate prepost objects for 'waitq'
5083 * 'waitq' is not locked
5088 * 0 on success, '*reserved' is set to the head of a singly-linked
5089 * list of pre-allocated prepost objects.
5092 * If 'lock_state' is WAITQ_KEEP_LOCKED, this function performs the pre-allocation
5093 * atomically and returns 'waitq' locked.
5095 * This function attempts to pre-allocate precisely enough prepost
5096 * objects based on the current set membership of 'waitq'. If the
5097 * operation is performed atomically, then the caller
5098 * is guaranteed to have enough pre-allocated prepost object to avoid
5099 * any (rare) blocking in the wakeup path.
5102 waitq_prepost_reserve(struct waitq
*waitq
, int extra
,
5103 waitq_lock_state_t lock_state
)
5105 uint64_t reserved
= 0;
5106 uint64_t prev_setid
= 0, prev_prepostid
= 0;
5107 struct wq_prepost
*wqp
= NULL
;
5108 int nalloc
= 0, npreposts
= 0;
5109 int keep_locked
= (lock_state
== WAITQ_KEEP_LOCKED
);
5112 wqdbg_v("Attempting to reserve prepost linkages for waitq %p (extra:%d)",
5113 (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq
), extra
);
5115 if (waitq
== NULL
&& extra
> 0) {
5117 * Simple prepost object allocation:
5118 * we'll add 2 more because the waitq might need an object,
5119 * and the set itself may need a new POST object in addition
5120 * to the number of preposts requested by the caller
5122 nalloc
= waitq_alloc_prepost_reservation(extra
+ 2, NULL
,
5124 assert(nalloc
== extra
+ 2);
5125 return wqp
->wqp_prepostid
.id
;
5128 assert(lock_state
== WAITQ_KEEP_LOCKED
|| lock_state
== WAITQ_UNLOCK
);
5130 assert(!waitq_irq_safe(waitq
));
5134 /* remember the set ID that we started with */
5135 prev_setid
= waitq
->waitq_set_id
;
5136 prev_prepostid
= waitq
->waitq_prepost_id
;
5139 * If the waitq is not part of a set, and we're asked to
5140 * keep the set locked, then we don't have to reserve
5143 if (prev_setid
== 0 && keep_locked
) {
5147 npreposts
= waitq_count_prepost_reservation(waitq
, extra
, keep_locked
);
5149 /* nothing for us to do! */
5150 if (npreposts
== 0) {
5158 /* this _may_ unlock and relock the waitq! */
5159 nalloc
= waitq_alloc_prepost_reservation(npreposts
, waitq
,
5163 /* allocation held the waitq lock: we'd done! */
5171 * Before we return, if the allocation had to unlock the waitq, we
5172 * must check one more time to see if we have enough. If not, we'll
5173 * try to allocate the difference. If the caller requests it, we'll
5174 * also leave the waitq locked so that the use of the pre-allocated
5175 * prepost objects can be guaranteed to be enough if a wakeup_all is
5176 * performed before unlocking the waitq.
5180 * If the waitq is no longer associated with a set, or if the waitq's
5181 * set/prepostid has not changed since we first walked its linkage,
5184 if ((waitq
->waitq_set_id
== 0) ||
5185 (waitq
->waitq_set_id
== prev_setid
&&
5186 waitq
->waitq_prepost_id
== prev_prepostid
)) {
5193 npreposts
= waitq_count_prepost_reservation(waitq
, extra
, keep_locked
);
5195 if (npreposts
> nalloc
) {
5196 prev_setid
= waitq
->waitq_set_id
;
5197 prev_prepostid
= waitq
->waitq_prepost_id
;
5198 npreposts
= npreposts
- nalloc
; /* only allocate the diff */
5207 waitq_unlock(waitq
);
5210 reserved
= wqp
->wqp_prepostid
.id
;
5217 * release a linked list of prepost objects allocated via _prepost_reserve
5220 * may (rarely) spin waiting for prepost table growth memcpy
5223 waitq_prepost_release_reserve(uint64_t id
)
5225 struct wq_prepost
*wqp
;
5227 wqdbg_v("releasing reserved preposts starting at: 0x%llx", id
);
5229 wqp
= wq_prepost_rfirst(id
);
5234 wq_prepost_release_rlist(wqp
);
5239 * clear all preposts from 'wqset'
5242 * 'wqset' is not locked
5245 waitq_set_clear_preposts(struct waitq_set
*wqset
)
5247 uint64_t prepost_id
;
5250 assert(waitqs_is_set(wqset
));
5252 if (!wqset
->wqset_q
.waitq_prepost
|| !wqset
->wqset_prepost_id
) {
5256 wqdbg_v("Clearing all preposted queues on waitq_set: 0x%llx",
5259 if (waitq_irq_safe(&wqset
->wqset_q
)) {
5262 waitq_set_lock(wqset
);
5263 prepost_id
= wqset
->wqset_prepost_id
;
5264 wqset
->wqset_prepost_id
= 0;
5265 waitq_set_unlock(wqset
);
5266 if (waitq_irq_safe(&wqset
->wqset_q
)) {
5270 /* drop / unlink all the prepost table objects */
5272 (void)wq_prepost_iterate(prepost_id
, NULL
,
5273 wqset_clear_prepost_chain_cb
);
5278 /* ----------------------------------------------------------------------
5280 * Iteration: waitq -> sets / waitq_set -> preposts
5282 * ---------------------------------------------------------------------- */
5287 waitq_iterator_t it
;
5291 waitq_iterate_sets_cb(struct waitq
*waitq
, void *ctx
,
5292 struct waitq_link
*link
)
5294 struct wq_it_ctx
*wctx
= (struct wq_it_ctx
*)(ctx
);
5295 struct waitq_set
*wqset
;
5299 assert(!waitq_irq_safe(waitq
));
5300 assert(wql_type(link
) == WQL_WQS
);
5303 * the waitq is locked, so we can just take the set lock
5304 * and call the iterator function
5306 wqset
= link
->wql_wqs
.wql_set
;
5307 assert(wqset
!= NULL
);
5308 assert(!waitq_irq_safe(&wqset
->wqset_q
));
5309 waitq_set_lock(wqset
);
5311 ret
= wctx
->it(wctx
->ctx
, (struct waitq
*)wctx
->input
, wqset
);
5313 waitq_set_unlock(wqset
);
5318 * call external iterator function for each prepost object in wqset
5321 * Called from wq_prepost_foreach_locked
5322 * (wqset locked, waitq _not_ locked)
5325 wqset_iterate_prepost_cb(struct waitq_set
*wqset
, void *ctx
,
5326 struct wq_prepost
*wqp
, struct waitq
*waitq
)
5328 struct wq_it_ctx
*wctx
= (struct wq_it_ctx
*)(ctx
);
5335 * This is a bit tricky. The 'wqset' is locked, but the 'waitq' is not.
5336 * Taking the 'waitq' lock is a lock order violation, so we need to be
5337 * careful. We also must realize that we may have taken a reference to
5338 * the 'wqp' just as the associated waitq was being torn down (or
5339 * clearing all its preposts) - see waitq_clear_prepost_locked(). If
5340 * the 'wqp' is valid and we can get the waitq lock, then we are good
5341 * to go. If not, we need to back off, check that the 'wqp' hasn't
5342 * been invalidated, and try to re-take the locks.
5344 assert(!waitq_irq_safe(waitq
));
5346 if (waitq_lock_try(waitq
)) {
5350 if (!wqp_is_valid(wqp
)) {
5351 return WQ_ITERATE_RESTART
;
5354 /* We are passed a prepost object with a reference on it. If neither
5355 * the waitq set nor the waitq require interrupts disabled, then we
5356 * may block on the delay(1) call below. We can't hold a prepost
5357 * object reference while blocking, so we have to give that up as well
5358 * and re-acquire it when we come back.
5360 wqp_id
= wqp
->wqp_prepostid
.id
;
5361 wq_prepost_put(wqp
);
5362 waitq_set_unlock(wqset
);
5363 wqdbg_v("dropped set:%p lock waiting for wqp:%p (0x%llx -> wq:%p)",
5364 wqset
, wqp
, wqp
->wqp_prepostid
.id
, waitq
);
5366 waitq_set_lock(wqset
);
5367 wqp
= wq_prepost_get(wqp_id
);
5369 /* someone cleared preposts while we slept! */
5370 return WQ_ITERATE_DROPPED
;
5375 * This differs slightly from the logic in ipc_mqueue.c:
5376 * ipc_mqueue_receive_on_thread(). There, if the waitq lock
5377 * can't be obtained, the prepost link is placed on the back of
5378 * the chain, and the iteration starts from the beginning. Here,
5379 * we just restart from the beginning.
5381 return WQ_ITERATE_RESTART
;
5384 if (!wqp_is_valid(wqp
)) {
5385 ret
= WQ_ITERATE_RESTART
;
5389 /* call the external callback */
5390 ret
= wctx
->it(wctx
->ctx
, waitq
, wqset
);
5392 if (ret
== WQ_ITERATE_BREAK_KEEP_LOCKED
) {
5393 ret
= WQ_ITERATE_BREAK
;
5398 waitq_unlock(waitq
);
5404 * iterator over all sets to which the given waitq has been linked
5410 waitq_iterate_sets(struct waitq
*waitq
, void *ctx
, waitq_iterator_t it
)
5413 struct wq_it_ctx wctx
= {
5414 .input
= (void *)waitq
,
5418 if (!it
|| !waitq
) {
5419 return KERN_INVALID_ARGUMENT
;
5422 ret
= walk_waitq_links(LINK_WALK_ONE_LEVEL
, waitq
, waitq
->waitq_set_id
,
5423 WQL_WQS
, (void *)&wctx
, waitq_iterate_sets_cb
);
5424 if (ret
== WQ_ITERATE_CONTINUE
) {
5425 ret
= WQ_ITERATE_SUCCESS
;
5431 * iterator over all preposts in the given wqset
5437 waitq_set_iterate_preposts(struct waitq_set
*wqset
,
5438 void *ctx
, waitq_iterator_t it
)
5440 struct wq_it_ctx wctx
= {
5441 .input
= (void *)wqset
,
5445 if (!it
|| !wqset
) {
5446 return WQ_ITERATE_INVALID
;
5449 assert(waitq_held(&wqset
->wqset_q
));
5451 return wq_prepost_foreach_locked(wqset
, (void *)&wctx
,
5452 wqset_iterate_prepost_cb
);
5456 /* ----------------------------------------------------------------------
5460 * ---------------------------------------------------------------------- */
5464 * declare a thread's intent to wait on 'waitq' for 'wait_event'
5467 * 'waitq' is not locked
5470 waitq_assert_wait64(struct waitq
*waitq
,
5471 event64_t wait_event
,
5472 wait_interrupt_t interruptible
,
5475 thread_t thread
= current_thread();
5479 if (!waitq_valid(waitq
)) {
5480 panic("Invalid waitq: %p", waitq
);
5483 if (waitq_irq_safe(waitq
)) {
5488 ret
= waitq_assert_wait64_locked(waitq
, wait_event
, interruptible
,
5489 TIMEOUT_URGENCY_SYS_NORMAL
,
5490 deadline
, TIMEOUT_NO_LEEWAY
, thread
);
5491 waitq_unlock(waitq
);
5493 if (waitq_irq_safe(waitq
)) {
5501 * declare a thread's intent to wait on 'waitq' for 'wait_event'
5504 * 'waitq' is not locked
5505 * will disable and re-enable interrupts while locking current_thread()
5508 waitq_assert_wait64_leeway(struct waitq
*waitq
,
5509 event64_t wait_event
,
5510 wait_interrupt_t interruptible
,
5511 wait_timeout_urgency_t urgency
,
5516 thread_t thread
= current_thread();
5519 if (!waitq_valid(waitq
)) {
5520 panic("Invalid waitq: %p", waitq
);
5523 if (waitq_irq_safe(waitq
)) {
5528 ret
= waitq_assert_wait64_locked(waitq
, wait_event
, interruptible
,
5529 urgency
, deadline
, leeway
, thread
);
5530 waitq_unlock(waitq
);
5532 if (waitq_irq_safe(waitq
)) {
5540 * wakeup a single thread from a waitq that's waiting for a given event
5543 * 'waitq' is not locked
5544 * may (rarely) block if 'waitq' is non-global and a member of 1 or more sets
5545 * may disable and re-enable interrupts
5548 * will _not_ block if waitq is global (or not a member of any set)
5551 waitq_wakeup64_one(struct waitq
*waitq
, event64_t wake_event
,
5552 wait_result_t result
, int priority
)
5555 uint64_t reserved_preposts
= 0;
5558 if (!waitq_valid(waitq
)) {
5559 panic("Invalid waitq: %p", waitq
);
5562 if (!waitq_irq_safe(waitq
)) {
5563 /* reserve preposts in addition to locking the waitq */
5564 reserved_preposts
= waitq_prepost_reserve(waitq
, 0, WAITQ_KEEP_LOCKED
);
5570 /* waitq is locked upon return */
5571 kr
= waitq_wakeup64_one_locked(waitq
, wake_event
, result
,
5572 &reserved_preposts
, priority
, WAITQ_UNLOCK
);
5574 if (waitq_irq_safe(waitq
)) {
5578 /* release any left-over prepost object (won't block/lock anything) */
5579 waitq_prepost_release_reserve(reserved_preposts
);
5585 * wakeup all threads from a waitq that are waiting for a given event
5588 * 'waitq' is not locked
5589 * may (rarely) block if 'waitq' is non-global and a member of 1 or more sets
5590 * may disable and re-enable interrupts
5593 * will _not_ block if waitq is global (or not a member of any set)
5596 waitq_wakeup64_all(struct waitq
*waitq
,
5597 event64_t wake_event
,
5598 wait_result_t result
,
5602 uint64_t reserved_preposts
= 0;
5605 if (!waitq_valid(waitq
)) {
5606 panic("Invalid waitq: %p", waitq
);
5609 if (!waitq_irq_safe(waitq
)) {
5610 /* reserve preposts in addition to locking waitq */
5611 reserved_preposts
= waitq_prepost_reserve(waitq
, 0,
5618 ret
= waitq_wakeup64_all_locked(waitq
, wake_event
, result
,
5619 &reserved_preposts
, priority
,
5622 if (waitq_irq_safe(waitq
)) {
5626 waitq_prepost_release_reserve(reserved_preposts
);
5632 * wakeup a specific thread iff it's waiting on 'waitq' for 'wake_event'
5635 * 'waitq' is not locked
5638 * May temporarily disable and re-enable interrupts
5641 waitq_wakeup64_thread(struct waitq
*waitq
,
5642 event64_t wake_event
,
5644 wait_result_t result
)
5649 if (!waitq_valid(waitq
)) {
5650 panic("Invalid waitq: %p", waitq
);
5653 if (waitq_irq_safe(waitq
)) {
5658 ret
= waitq_select_thread_locked(waitq
, wake_event
, thread
, &th_spl
);
5659 /* on success, returns 'thread' locked */
5661 waitq_unlock(waitq
);
5663 if (ret
== KERN_SUCCESS
) {
5664 ret
= thread_go(thread
, result
);
5665 assert(ret
== KERN_SUCCESS
);
5666 thread_unlock(thread
);
5668 waitq_stats_count_wakeup(waitq
);
5670 ret
= KERN_NOT_WAITING
;
5671 waitq_stats_count_fail(waitq
);
5674 if (waitq_irq_safe(waitq
)) {
5682 * wakeup a single thread from a waitq that's waiting for a given event
5683 * and return a reference to that thread
5684 * returns THREAD_NULL if no thread was waiting
5687 * 'waitq' is not locked
5688 * may (rarely) block if 'waitq' is non-global and a member of 1 or more sets
5689 * may disable and re-enable interrupts
5692 * will _not_ block if waitq is global (or not a member of any set)
5695 waitq_wakeup64_identify(struct waitq
*waitq
,
5696 event64_t wake_event
,
5697 wait_result_t result
,
5700 uint64_t reserved_preposts
= 0;
5701 spl_t thread_spl
= 0;
5705 if (!waitq_valid(waitq
)) {
5706 panic("Invalid waitq: %p", waitq
);
5709 if (!waitq_irq_safe(waitq
)) {
5710 /* reserve preposts in addition to locking waitq */
5711 reserved_preposts
= waitq_prepost_reserve(waitq
, 0, WAITQ_KEEP_LOCKED
);
5717 thread
= waitq_wakeup64_identify_locked(waitq
, wake_event
, result
,
5718 &thread_spl
, &reserved_preposts
,
5719 priority
, WAITQ_UNLOCK
);
5720 /* waitq is unlocked, thread is locked */
5722 if (thread
!= THREAD_NULL
) {
5723 thread_reference(thread
);
5724 thread_unlock(thread
);
5728 if (waitq_irq_safe(waitq
)) {
5732 /* release any left-over prepost object (won't block/lock anything) */
5733 waitq_prepost_release_reserve(reserved_preposts
);
5735 /* returns +1 ref to running thread or THREAD_NULL */