]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_event.c
1a0f609ca828a718151f96e7156ecaa605a85eb0
[apple/xnu.git] / bsd / kern / kern_event.c
1 /*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 *
28 */
29 /*-
30 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 */
54 /*
55 * @(#)kern_event.c 1.0 (3/31/2000)
56 */
57 #include <stdint.h>
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/filedesc.h>
62 #include <sys/kernel.h>
63 #include <sys/proc_internal.h>
64 #include <sys/kauth.h>
65 #include <sys/malloc.h>
66 #include <sys/unistd.h>
67 #include <sys/file_internal.h>
68 #include <sys/fcntl.h>
69 #include <sys/select.h>
70 #include <sys/queue.h>
71 #include <sys/event.h>
72 #include <sys/eventvar.h>
73 #include <sys/protosw.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/stat.h>
77 #include <sys/sysctl.h>
78 #include <sys/uio.h>
79 #include <sys/sysproto.h>
80 #include <sys/user.h>
81 #include <sys/vnode_internal.h>
82 #include <string.h>
83 #include <sys/proc_info.h>
84
85 #include <kern/lock.h>
86 #include <kern/clock.h>
87 #include <kern/thread_call.h>
88 #include <kern/sched_prim.h>
89 #include <kern/zalloc.h>
90 #include <kern/assert.h>
91
92 #include <libkern/libkern.h>
93 #include "net/net_str_id.h"
94
95 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
96
97 #define KQ_EVENT NULL
98
99 static inline void kqlock(struct kqueue *kq);
100 static inline void kqunlock(struct kqueue *kq);
101
102 static int kqlock2knoteuse(struct kqueue *kq, struct knote *kn);
103 static int kqlock2knoteusewait(struct kqueue *kq, struct knote *kn);
104 static int kqlock2knotedrop(struct kqueue *kq, struct knote *kn);
105 static int knoteuse2kqlock(struct kqueue *kq, struct knote *kn);
106
107 static void kqueue_wakeup(struct kqueue *kq, int closed);
108 static int kqueue_read(struct fileproc *fp, struct uio *uio,
109 int flags, vfs_context_t ctx);
110 static int kqueue_write(struct fileproc *fp, struct uio *uio,
111 int flags, vfs_context_t ctx);
112 static int kqueue_ioctl(struct fileproc *fp, u_long com, caddr_t data,
113 vfs_context_t ctx);
114 static int kqueue_select(struct fileproc *fp, int which, void *wql,
115 vfs_context_t ctx);
116 static int kqueue_close(struct fileglob *fg, vfs_context_t ctx);
117 static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn, vfs_context_t ctx);
118 static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx);
119 extern int kqueue_stat(struct fileproc *fp, void *ub, int isstat64, vfs_context_t ctx);
120
121 static struct fileops kqueueops = {
122 .fo_read = kqueue_read,
123 .fo_write = kqueue_write,
124 .fo_ioctl = kqueue_ioctl,
125 .fo_select = kqueue_select,
126 .fo_close = kqueue_close,
127 .fo_kqfilter = kqueue_kqfilter,
128 .fo_drain = kqueue_drain,
129 };
130
131 static int kevent_internal(struct proc *p, int iskev64, user_addr_t changelist,
132 int nchanges, user_addr_t eventlist, int nevents, int fd,
133 user_addr_t utimeout, unsigned int flags, int32_t *retval);
134 static int kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, struct proc *p, int iskev64);
135 static int kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, struct proc *p, int iskev64);
136 char * kevent_description(struct kevent64_s *kevp, char *s, size_t n);
137
138 static int kevent_callback(struct kqueue *kq, struct kevent64_s *kevp, void *data);
139 static void kevent_continue(struct kqueue *kq, void *data, int error);
140 static void kqueue_scan_continue(void *contp, wait_result_t wait_result);
141 static int kqueue_process(struct kqueue *kq, kevent_callback_t callback,
142 void *data, int *countp, struct proc *p);
143 static int knote_process(struct knote *kn, kevent_callback_t callback,
144 void *data, struct kqtailq *inprocessp, struct proc *p);
145 static void knote_put(struct knote *kn);
146 static int knote_fdpattach(struct knote *kn, struct filedesc *fdp, struct proc *p);
147 static void knote_drop(struct knote *kn, struct proc *p);
148 static void knote_activate(struct knote *kn, int);
149 static void knote_deactivate(struct knote *kn);
150 static void knote_enqueue(struct knote *kn);
151 static void knote_dequeue(struct knote *kn);
152 static struct knote *knote_alloc(void);
153 static void knote_free(struct knote *kn);
154
155 static int filt_fileattach(struct knote *kn);
156 static struct filterops file_filtops = {
157 .f_isfd = 1,
158 .f_attach = filt_fileattach,
159 };
160
161 static void filt_kqdetach(struct knote *kn);
162 static int filt_kqueue(struct knote *kn, long hint);
163 static struct filterops kqread_filtops = {
164 .f_isfd = 1,
165 .f_detach = filt_kqdetach,
166 .f_event = filt_kqueue,
167 };
168
169 /*
170 * placeholder for not-yet-implemented filters
171 */
172 static int filt_badattach(struct knote *kn);
173 static struct filterops bad_filtops = {
174 .f_attach = filt_badattach,
175 };
176
177 static int filt_procattach(struct knote *kn);
178 static void filt_procdetach(struct knote *kn);
179 static int filt_proc(struct knote *kn, long hint);
180 static struct filterops proc_filtops = {
181 .f_attach = filt_procattach,
182 .f_detach = filt_procdetach,
183 .f_event = filt_proc,
184 };
185
186 extern struct filterops fs_filtops;
187
188 extern struct filterops sig_filtops;
189
190 /* Timer filter */
191 static int filt_timerattach(struct knote *kn);
192 static void filt_timerdetach(struct knote *kn);
193 static int filt_timer(struct knote *kn, long hint);
194 static void filt_timertouch(struct knote *kn, struct kevent64_s *kev,
195 long type);
196 static struct filterops timer_filtops = {
197 .f_attach = filt_timerattach,
198 .f_detach = filt_timerdetach,
199 .f_event = filt_timer,
200 .f_touch = filt_timertouch,
201 };
202
203 /* Helpers */
204
205 static void filt_timerexpire(void *knx, void *param1);
206 static int filt_timervalidate(struct knote *kn);
207 static void filt_timerupdate(struct knote *kn);
208 static void filt_timercancel(struct knote *kn);
209
210 #define TIMER_RUNNING 0x1
211 #define TIMER_CANCELWAIT 0x2
212
213 static lck_mtx_t _filt_timerlock;
214 static void filt_timerlock(void);
215 static void filt_timerunlock(void);
216
217 static zone_t knote_zone;
218
219 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
220
221 #if 0
222 extern struct filterops aio_filtops;
223 #endif
224
225 /* Mach portset filter */
226 extern struct filterops machport_filtops;
227
228 /* User filter */
229 static int filt_userattach(struct knote *kn);
230 static void filt_userdetach(struct knote *kn);
231 static int filt_user(struct knote *kn, long hint);
232 static void filt_usertouch(struct knote *kn, struct kevent64_s *kev,
233 long type);
234 static struct filterops user_filtops = {
235 .f_attach = filt_userattach,
236 .f_detach = filt_userdetach,
237 .f_event = filt_user,
238 .f_touch = filt_usertouch,
239 };
240
241 #if CONFIG_AUDIT
242 /* Audit session filter */
243 extern struct filterops audit_session_filtops;
244 #endif
245
246 /*
247 * Table for for all system-defined filters.
248 */
249 static struct filterops *sysfilt_ops[] = {
250 &file_filtops, /* EVFILT_READ */
251 &file_filtops, /* EVFILT_WRITE */
252 #if 0
253 &aio_filtops, /* EVFILT_AIO */
254 #else
255 &bad_filtops, /* EVFILT_AIO */
256 #endif
257 &file_filtops, /* EVFILT_VNODE */
258 &proc_filtops, /* EVFILT_PROC */
259 &sig_filtops, /* EVFILT_SIGNAL */
260 &timer_filtops, /* EVFILT_TIMER */
261 &machport_filtops, /* EVFILT_MACHPORT */
262 &fs_filtops, /* EVFILT_FS */
263 &user_filtops, /* EVFILT_USER */
264 #if CONFIG_AUDIT
265 &audit_session_filtops, /* EVFILT_SESSION */
266 #else
267 &bad_filtops,
268 #endif
269 };
270
271 /*
272 * kqueue/note lock attributes and implementations
273 *
274 * kqueues have locks, while knotes have use counts
275 * Most of the knote state is guarded by the object lock.
276 * the knote "inuse" count and status use the kqueue lock.
277 */
278 lck_grp_attr_t * kq_lck_grp_attr;
279 lck_grp_t * kq_lck_grp;
280 lck_attr_t * kq_lck_attr;
281
282 static inline void
283 kqlock(struct kqueue *kq)
284 {
285 lck_spin_lock(&kq->kq_lock);
286 }
287
288 static inline void
289 kqunlock(struct kqueue *kq)
290 {
291 lck_spin_unlock(&kq->kq_lock);
292 }
293
294 /*
295 * Convert a kq lock to a knote use referece.
296 *
297 * If the knote is being dropped, we can't get
298 * a use reference, so just return with it
299 * still locked.
300 *
301 * - kq locked at entry
302 * - unlock on exit if we get the use reference
303 */
304 static int
305 kqlock2knoteuse(struct kqueue *kq, struct knote *kn)
306 {
307 if (kn->kn_status & KN_DROPPING)
308 return 0;
309 kn->kn_inuse++;
310 kqunlock(kq);
311 return 1;
312 }
313
314 /*
315 * Convert a kq lock to a knote use referece,
316 * but wait for attach and drop events to complete.
317 *
318 * If the knote is being dropped, we can't get
319 * a use reference, so just return with it
320 * still locked.
321 *
322 * - kq locked at entry
323 * - kq always unlocked on exit
324 */
325 static int
326 kqlock2knoteusewait(struct kqueue *kq, struct knote *kn)
327 {
328 if ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) != 0) {
329 kn->kn_status |= KN_USEWAIT;
330 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_UNINT, 0);
331 kqunlock(kq);
332 thread_block(THREAD_CONTINUE_NULL);
333 return 0;
334 }
335 kn->kn_inuse++;
336 kqunlock(kq);
337 return 1;
338 }
339
340
341 /*
342 * Convert from a knote use reference back to kq lock.
343 *
344 * Drop a use reference and wake any waiters if
345 * this is the last one.
346 *
347 * The exit return indicates if the knote is
348 * still alive - but the kqueue lock is taken
349 * unconditionally.
350 */
351 static int
352 knoteuse2kqlock(struct kqueue *kq, struct knote *kn)
353 {
354 kqlock(kq);
355 if (--kn->kn_inuse == 0) {
356 if ((kn->kn_status & KN_ATTACHING) != 0) {
357 kn->kn_status &= ~KN_ATTACHING;
358 }
359 if ((kn->kn_status & KN_USEWAIT) != 0) {
360 kn->kn_status &= ~KN_USEWAIT;
361 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED);
362 }
363 }
364 return ((kn->kn_status & KN_DROPPING) == 0);
365 }
366
367 /*
368 * Convert a kq lock to a knote drop referece.
369 *
370 * If the knote is in use, wait for the use count
371 * to subside. We first mark our intention to drop
372 * it - keeping other users from "piling on."
373 * If we are too late, we have to wait for the
374 * other drop to complete.
375 *
376 * - kq locked at entry
377 * - always unlocked on exit.
378 * - caller can't hold any locks that would prevent
379 * the other dropper from completing.
380 */
381 static int
382 kqlock2knotedrop(struct kqueue *kq, struct knote *kn)
383 {
384 int oktodrop;
385
386 oktodrop = ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) == 0);
387 kn->kn_status |= KN_DROPPING;
388 if (oktodrop) {
389 if (kn->kn_inuse == 0) {
390 kqunlock(kq);
391 return oktodrop;
392 }
393 }
394 kn->kn_status |= KN_USEWAIT;
395 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_UNINT, 0);
396 kqunlock(kq);
397 thread_block(THREAD_CONTINUE_NULL);
398 return oktodrop;
399 }
400
401 /*
402 * Release a knote use count reference.
403 */
404 static void
405 knote_put(struct knote *kn)
406 {
407 struct kqueue *kq = kn->kn_kq;
408
409 kqlock(kq);
410 if (--kn->kn_inuse == 0) {
411 if ((kn->kn_status & KN_USEWAIT) != 0) {
412 kn->kn_status &= ~KN_USEWAIT;
413 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED);
414 }
415 }
416 kqunlock(kq);
417 }
418
419 static int
420 filt_fileattach(struct knote *kn)
421 {
422
423 return (fo_kqfilter(kn->kn_fp, kn, vfs_context_current()));
424 }
425
426 #define f_flag f_fglob->fg_flag
427 #define f_type f_fglob->fg_type
428 #define f_msgcount f_fglob->fg_msgcount
429 #define f_cred f_fglob->fg_cred
430 #define f_ops f_fglob->fg_ops
431 #define f_offset f_fglob->fg_offset
432 #define f_data f_fglob->fg_data
433
434 static void
435 filt_kqdetach(struct knote *kn)
436 {
437 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
438
439 kqlock(kq);
440 KNOTE_DETACH(&kq->kq_sel.si_note, kn);
441 kqunlock(kq);
442 }
443
444 /*ARGSUSED*/
445 static int
446 filt_kqueue(struct knote *kn, __unused long hint)
447 {
448 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
449
450 kn->kn_data = kq->kq_count;
451 return (kn->kn_data > 0);
452 }
453
454 static int
455 filt_procattach(struct knote *kn)
456 {
457 struct proc *p;
458
459 assert(PID_MAX < NOTE_PDATAMASK);
460
461 if ((kn->kn_sfflags & (NOTE_TRACK | NOTE_TRACKERR | NOTE_CHILD)) != 0)
462 return(ENOTSUP);
463
464 p = proc_find(kn->kn_id);
465 if (p == NULL) {
466 return (ESRCH);
467 }
468
469 proc_klist_lock();
470
471 kn->kn_flags |= EV_CLEAR; /* automatically set */
472 kn->kn_ptr.p_proc = p; /* store the proc handle */
473
474 KNOTE_ATTACH(&p->p_klist, kn);
475
476 proc_klist_unlock();
477
478 proc_rele(p);
479
480 return (0);
481 }
482
483 /*
484 * The knote may be attached to a different process, which may exit,
485 * leaving nothing for the knote to be attached to. In that case,
486 * the pointer to the process will have already been nulled out.
487 */
488 static void
489 filt_procdetach(struct knote *kn)
490 {
491 struct proc *p;
492
493 proc_klist_lock();
494
495 p = kn->kn_ptr.p_proc;
496 if (p != PROC_NULL) {
497 kn->kn_ptr.p_proc = PROC_NULL;
498 KNOTE_DETACH(&p->p_klist, kn);
499 }
500
501 proc_klist_unlock();
502 }
503
504 static int
505 filt_proc(struct knote *kn, long hint)
506 {
507 /* hint is 0 when called from above */
508 if (hint != 0) {
509 u_int event;
510
511 /* ALWAYS CALLED WITH proc_klist_lock when (hint != 0) */
512
513 /*
514 * mask off extra data
515 */
516 event = (u_int)hint & NOTE_PCTRLMASK;
517
518 /*
519 * if the user is interested in this event, record it.
520 */
521 if (kn->kn_sfflags & event)
522 kn->kn_fflags |= event;
523
524 if (event == NOTE_REAP || (event == NOTE_EXIT && !(kn->kn_sfflags & NOTE_REAP))) {
525 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
526 }
527 }
528
529 /* atomic check, no locking need when called from above */
530 return (kn->kn_fflags != 0);
531 }
532
533
534 /*
535 * filt_timervalidate - process data from user
536 *
537 * Converts to either interval or deadline format.
538 *
539 * The saved-data field in the knote contains the
540 * time value. The saved filter-flags indicates
541 * the unit of measurement.
542 *
543 * After validation, either the saved-data field
544 * contains the interval in absolute time, or ext[0]
545 * contains the expected deadline. If that deadline
546 * is in the past, ext[0] is 0.
547 *
548 * Returns EINVAL for unrecognized units of time.
549 *
550 * Timer filter lock is held.
551 *
552 */
553 static int
554 filt_timervalidate(struct knote *kn)
555 {
556 uint64_t multiplier;
557 uint64_t raw;
558
559 switch (kn->kn_sfflags & (NOTE_SECONDS|NOTE_USECONDS|NOTE_NSECONDS)) {
560 case NOTE_SECONDS:
561 multiplier = NSEC_PER_SEC;
562 break;
563 case NOTE_USECONDS:
564 multiplier = NSEC_PER_USEC;
565 break;
566 case NOTE_NSECONDS:
567 multiplier = 1;
568 break;
569 case 0: /* milliseconds (default) */
570 multiplier = NSEC_PER_SEC / 1000;
571 break;
572 default:
573 return EINVAL;
574 }
575
576 nanoseconds_to_absolutetime((uint64_t)kn->kn_sdata * multiplier, &raw);
577
578 kn->kn_ext[0] = 0;
579 kn->kn_sdata = 0;
580
581 if (kn->kn_sfflags & NOTE_ABSOLUTE) {
582 clock_sec_t seconds;
583 clock_nsec_t nanoseconds;
584 uint64_t now;
585
586 clock_get_calendar_nanotime(&seconds, &nanoseconds);
587 nanoseconds_to_absolutetime((uint64_t)seconds * NSEC_PER_SEC +
588 nanoseconds, &now);
589
590 if (raw < now) {
591 /* time has already passed */
592 kn->kn_ext[0] = 0;
593 } else {
594 raw -= now;
595 clock_absolutetime_interval_to_deadline(raw,
596 &kn->kn_ext[0]);
597 }
598 } else {
599 kn->kn_sdata = raw;
600 }
601
602 return 0;
603 }
604
605 /*
606 * filt_timerupdate - compute the next deadline
607 *
608 * Repeating timers store their interval in kn_sdata. Absolute
609 * timers have already calculated the deadline, stored in ext[0].
610 *
611 * On return, the next deadline (or zero if no deadline is needed)
612 * is stored in kn_ext[0].
613 *
614 * Timer filter lock is held.
615 */
616 static void
617 filt_timerupdate(struct knote *kn)
618 {
619 /* if there's no interval, deadline is just in kn_ext[0] */
620 if (kn->kn_sdata == 0)
621 return;
622
623 /* if timer hasn't fired before, fire in interval nsecs */
624 if (kn->kn_ext[0] == 0) {
625 clock_absolutetime_interval_to_deadline(kn->kn_sdata,
626 &kn->kn_ext[0]);
627 } else {
628 /*
629 * If timer has fired before, schedule the next pop
630 * relative to the last intended deadline.
631 *
632 * We could check for whether the deadline has expired,
633 * but the thread call layer can handle that.
634 */
635 kn->kn_ext[0] += kn->kn_sdata;
636 }
637 }
638
639 /*
640 * filt_timerexpire - the timer callout routine
641 *
642 * Just propagate the timer event into the knote
643 * filter routine (by going through the knote
644 * synchronization point). Pass a hint to
645 * indicate this is a real event, not just a
646 * query from above.
647 */
648 static void
649 filt_timerexpire(void *knx, __unused void *spare)
650 {
651 struct klist timer_list;
652 struct knote *kn = knx;
653
654 filt_timerlock();
655
656 kn->kn_hookid &= ~TIMER_RUNNING;
657
658 /* no "object" for timers, so fake a list */
659 SLIST_INIT(&timer_list);
660 SLIST_INSERT_HEAD(&timer_list, kn, kn_selnext);
661 KNOTE(&timer_list, 1);
662
663 /* if someone is waiting for timer to pop */
664 if (kn->kn_hookid & TIMER_CANCELWAIT) {
665 struct kqueue *kq = kn->kn_kq;
666 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_hook,
667 THREAD_AWAKENED);
668 }
669
670 filt_timerunlock();
671 }
672
673 /*
674 * Cancel a running timer (or wait for the pop).
675 * Timer filter lock is held.
676 */
677 static void
678 filt_timercancel(struct knote *kn)
679 {
680 struct kqueue *kq = kn->kn_kq;
681 thread_call_t callout = kn->kn_hook;
682 boolean_t cancelled;
683
684 if (kn->kn_hookid & TIMER_RUNNING) {
685 /* cancel the callout if we can */
686 cancelled = thread_call_cancel(callout);
687 if (cancelled) {
688 kn->kn_hookid &= ~TIMER_RUNNING;
689 } else {
690 /* we have to wait for the expire routine. */
691 kn->kn_hookid |= TIMER_CANCELWAIT;
692 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs,
693 &kn->kn_hook, THREAD_UNINT, 0);
694 filt_timerunlock();
695 thread_block(THREAD_CONTINUE_NULL);
696 filt_timerlock();
697 assert((kn->kn_hookid & TIMER_RUNNING) == 0);
698 }
699 }
700 }
701
702 /*
703 * Allocate a thread call for the knote's lifetime, and kick off the timer.
704 */
705 static int
706 filt_timerattach(struct knote *kn)
707 {
708 thread_call_t callout;
709 int error;
710
711 callout = thread_call_allocate(filt_timerexpire, kn);
712 if (NULL == callout)
713 return (ENOMEM);
714
715 filt_timerlock();
716 error = filt_timervalidate(kn);
717 if (error) {
718 filt_timerunlock();
719 return (error);
720 }
721
722 kn->kn_hook = (void*)callout;
723 kn->kn_hookid = 0;
724
725 /* absolute=EV_ONESHOT */
726 if (kn->kn_sfflags & NOTE_ABSOLUTE)
727 kn->kn_flags |= EV_ONESHOT;
728
729 filt_timerupdate(kn);
730 if (kn->kn_ext[0]) {
731 kn->kn_flags |= EV_CLEAR;
732 thread_call_enter_delayed(callout, kn->kn_ext[0]);
733 kn->kn_hookid |= TIMER_RUNNING;
734 } else {
735 /* fake immediate */
736 kn->kn_data = 1;
737 }
738
739 filt_timerunlock();
740 return (0);
741 }
742
743 /*
744 * Shut down the timer if it's running, and free the callout.
745 */
746 static void
747 filt_timerdetach(struct knote *kn)
748 {
749 thread_call_t callout;
750
751 filt_timerlock();
752
753 callout = (thread_call_t)kn->kn_hook;
754 filt_timercancel(kn);
755
756 filt_timerunlock();
757
758 thread_call_free(callout);
759 }
760
761
762
763 static int
764 filt_timer(struct knote *kn, long hint)
765 {
766 int result;
767
768 if (hint) {
769 /* real timer pop -- timer lock held by filt_timerexpire */
770
771 kn->kn_data++;
772
773 if (((kn->kn_hookid & TIMER_CANCELWAIT) == 0) &&
774 ((kn->kn_flags & EV_ONESHOT) == 0)) {
775
776 /* evaluate next time to fire */
777 filt_timerupdate(kn);
778
779 if (kn->kn_ext[0]) {
780 /* keep the callout and re-arm */
781 thread_call_enter_delayed(kn->kn_hook,
782 kn->kn_ext[0]);
783 kn->kn_hookid |= TIMER_RUNNING;
784 }
785 }
786
787 return 1;
788 }
789
790 /* user-query */
791 filt_timerlock();
792
793 result = (kn->kn_data != 0);
794
795 filt_timerunlock();
796 return result;
797 }
798
799
800 /*
801 * filt_timertouch - update knote with new user input
802 *
803 * Cancel and restart the timer based on new user data. When
804 * the user picks up a knote, clear the count of how many timer
805 * pops have gone off (in kn_data).
806 */
807 static void
808 filt_timertouch(struct knote *kn, struct kevent64_s *kev, long type)
809 {
810 int error;
811 filt_timerlock();
812
813 switch (type) {
814 case EVENT_REGISTER:
815 /* cancel current call */
816 filt_timercancel(kn);
817
818 /* recalculate deadline */
819 kn->kn_sdata = kev->data;
820 kn->kn_sfflags = kev->fflags;
821
822 error = filt_timervalidate(kn);
823 if (error) {
824 /* no way to report error, so mark it in the knote */
825 kn->kn_flags |= EV_ERROR;
826 kn->kn_data = error;
827 break;
828 }
829
830 /* start timer if necessary */
831 filt_timerupdate(kn);
832 if (kn->kn_ext[0]) {
833 thread_call_enter_delayed(kn->kn_hook, kn->kn_ext[0]);
834 kn->kn_hookid |= TIMER_RUNNING;
835 } else {
836 /* pretend the timer has fired */
837 kn->kn_data = 1;
838 }
839
840 break;
841
842 case EVENT_PROCESS:
843 /* reset the timer pop count in kn_data */
844 *kev = kn->kn_kevent;
845 kev->ext[0] = 0;
846 kn->kn_data = 0;
847 if (kn->kn_flags & EV_CLEAR)
848 kn->kn_fflags = 0;
849 break;
850 default:
851 panic("filt_timertouch() - invalid type (%ld)", type);
852 break;
853 }
854
855 filt_timerunlock();
856 }
857
858 static void
859 filt_timerlock(void)
860 {
861 lck_mtx_lock(&_filt_timerlock);
862 }
863
864 static void
865 filt_timerunlock(void)
866 {
867 lck_mtx_unlock(&_filt_timerlock);
868 }
869
870 static int
871 filt_userattach(struct knote *kn)
872 {
873 /* EVFILT_USER knotes are not attached to anything in the kernel */
874 kn->kn_hook = NULL;
875 if (kn->kn_fflags & NOTE_TRIGGER || kn->kn_flags & EV_TRIGGER) {
876 kn->kn_hookid = 1;
877 } else {
878 kn->kn_hookid = 0;
879 }
880 return 0;
881 }
882
883 static void
884 filt_userdetach(__unused struct knote *kn)
885 {
886 /* EVFILT_USER knotes are not attached to anything in the kernel */
887 }
888
889 static int
890 filt_user(struct knote *kn, __unused long hint)
891 {
892 return kn->kn_hookid;
893 }
894
895 static void
896 filt_usertouch(struct knote *kn, struct kevent64_s *kev, long type)
897 {
898 int ffctrl;
899 switch (type) {
900 case EVENT_REGISTER:
901 if (kev->fflags & NOTE_TRIGGER || kev->flags & EV_TRIGGER) {
902 kn->kn_hookid = 1;
903 }
904
905 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
906 kev->fflags &= NOTE_FFLAGSMASK;
907 switch (ffctrl) {
908 case NOTE_FFNOP:
909 break;
910 case NOTE_FFAND:
911 OSBitAndAtomic(kev->fflags, &kn->kn_sfflags);
912 break;
913 case NOTE_FFOR:
914 OSBitOrAtomic(kev->fflags, &kn->kn_sfflags);
915 break;
916 case NOTE_FFCOPY:
917 kn->kn_sfflags = kev->fflags;
918 break;
919 }
920 kn->kn_sdata = kev->data;
921 break;
922 case EVENT_PROCESS:
923 *kev = kn->kn_kevent;
924 kev->fflags = (volatile UInt32)kn->kn_sfflags;
925 kev->data = kn->kn_sdata;
926 if (kn->kn_flags & EV_CLEAR) {
927 kn->kn_hookid = 0;
928 kn->kn_data = 0;
929 kn->kn_fflags = 0;
930 }
931 break;
932 default:
933 panic("filt_usertouch() - invalid type (%ld)", type);
934 break;
935 }
936 }
937
938 /*
939 * JMM - placeholder for not-yet-implemented filters
940 */
941 static int
942 filt_badattach(__unused struct knote *kn)
943 {
944 return(ENOTSUP);
945 }
946
947
948 struct kqueue *
949 kqueue_alloc(struct proc *p)
950 {
951 struct filedesc *fdp = p->p_fd;
952 struct kqueue *kq;
953
954 MALLOC_ZONE(kq, struct kqueue *, sizeof(struct kqueue), M_KQUEUE, M_WAITOK);
955 if (kq != NULL) {
956 wait_queue_set_t wqs;
957
958 wqs = wait_queue_set_alloc(SYNC_POLICY_FIFO | SYNC_POLICY_PREPOST);
959 if (wqs != NULL) {
960 bzero(kq, sizeof(struct kqueue));
961 lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr);
962 TAILQ_INIT(&kq->kq_head);
963 kq->kq_wqs = wqs;
964 kq->kq_p = p;
965 } else {
966 FREE_ZONE(kq, sizeof(struct kqueue), M_KQUEUE);
967 }
968 }
969
970 if (fdp->fd_knlistsize < 0) {
971 proc_fdlock(p);
972 if (fdp->fd_knlistsize < 0)
973 fdp->fd_knlistsize = 0; /* this process has had a kq */
974 proc_fdunlock(p);
975 }
976
977 return kq;
978 }
979
980
981 /*
982 * kqueue_dealloc - detach all knotes from a kqueue and free it
983 *
984 * We walk each list looking for knotes referencing this
985 * this kqueue. If we find one, we try to drop it. But
986 * if we fail to get a drop reference, that will wait
987 * until it is dropped. So, we can just restart again
988 * safe in the assumption that the list will eventually
989 * not contain any more references to this kqueue (either
990 * we dropped them all, or someone else did).
991 *
992 * Assumes no new events are being added to the kqueue.
993 * Nothing locked on entry or exit.
994 */
995 void
996 kqueue_dealloc(struct kqueue *kq)
997 {
998 struct proc *p = kq->kq_p;
999 struct filedesc *fdp = p->p_fd;
1000 struct knote *kn;
1001 int i;
1002
1003 proc_fdlock(p);
1004 for (i = 0; i < fdp->fd_knlistsize; i++) {
1005 kn = SLIST_FIRST(&fdp->fd_knlist[i]);
1006 while (kn != NULL) {
1007 if (kq == kn->kn_kq) {
1008 kqlock(kq);
1009 proc_fdunlock(p);
1010 /* drop it ourselves or wait */
1011 if (kqlock2knotedrop(kq, kn)) {
1012 kn->kn_fop->f_detach(kn);
1013 knote_drop(kn, p);
1014 }
1015 proc_fdlock(p);
1016 /* start over at beginning of list */
1017 kn = SLIST_FIRST(&fdp->fd_knlist[i]);
1018 continue;
1019 }
1020 kn = SLIST_NEXT(kn, kn_link);
1021 }
1022 }
1023 if (fdp->fd_knhashmask != 0) {
1024 for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) {
1025 kn = SLIST_FIRST(&fdp->fd_knhash[i]);
1026 while (kn != NULL) {
1027 if (kq == kn->kn_kq) {
1028 kqlock(kq);
1029 proc_fdunlock(p);
1030 /* drop it ourselves or wait */
1031 if (kqlock2knotedrop(kq, kn)) {
1032 kn->kn_fop->f_detach(kn);
1033 knote_drop(kn, p);
1034 }
1035 proc_fdlock(p);
1036 /* start over at beginning of list */
1037 kn = SLIST_FIRST(&fdp->fd_knhash[i]);
1038 continue;
1039 }
1040 kn = SLIST_NEXT(kn, kn_link);
1041 }
1042 }
1043 }
1044 proc_fdunlock(p);
1045
1046 /*
1047 * before freeing the wait queue set for this kqueue,
1048 * make sure it is unlinked from all its containing (select) sets.
1049 */
1050 wait_queue_unlink_all((wait_queue_t)kq->kq_wqs);
1051 wait_queue_set_free(kq->kq_wqs);
1052 lck_spin_destroy(&kq->kq_lock, kq_lck_grp);
1053 FREE_ZONE(kq, sizeof(struct kqueue), M_KQUEUE);
1054 }
1055
1056 int
1057 kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval)
1058 {
1059 struct kqueue *kq;
1060 struct fileproc *fp;
1061 int fd, error;
1062
1063 error = falloc(p, &fp, &fd, vfs_context_current());
1064 if (error) {
1065 return (error);
1066 }
1067
1068 kq = kqueue_alloc(p);
1069 if (kq == NULL) {
1070 fp_free(p, fd, fp);
1071 return (ENOMEM);
1072 }
1073
1074 fp->f_flag = FREAD | FWRITE;
1075 fp->f_type = DTYPE_KQUEUE;
1076 fp->f_ops = &kqueueops;
1077 fp->f_data = (caddr_t)kq;
1078
1079 proc_fdlock(p);
1080 procfdtbl_releasefd(p, fd, NULL);
1081 fp_drop(p, fd, fp, 1);
1082 proc_fdunlock(p);
1083
1084 *retval = fd;
1085 return (error);
1086 }
1087
1088 static int
1089 kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, struct proc *p, int iskev64)
1090 {
1091 int advance;
1092 int error;
1093
1094 if (iskev64) {
1095 advance = sizeof(struct kevent64_s);
1096 error = copyin(*addrp, (caddr_t)kevp, advance);
1097 } else if (IS_64BIT_PROCESS(p)) {
1098 struct user64_kevent kev64;
1099 bzero(kevp, sizeof(struct kevent64_s));
1100
1101 advance = sizeof(kev64);
1102 error = copyin(*addrp, (caddr_t)&kev64, advance);
1103 if (error)
1104 return error;
1105 kevp->ident = kev64.ident;
1106 kevp->filter = kev64.filter;
1107 kevp->flags = kev64.flags;
1108 kevp->fflags = kev64.fflags;
1109 kevp->data = kev64.data;
1110 kevp->udata = kev64.udata;
1111 } else {
1112 struct user32_kevent kev32;
1113 bzero(kevp, sizeof(struct kevent64_s));
1114
1115 advance = sizeof(kev32);
1116 error = copyin(*addrp, (caddr_t)&kev32, advance);
1117 if (error)
1118 return error;
1119 kevp->ident = (uintptr_t)kev32.ident;
1120 kevp->filter = kev32.filter;
1121 kevp->flags = kev32.flags;
1122 kevp->fflags = kev32.fflags;
1123 kevp->data = (intptr_t)kev32.data;
1124 kevp->udata = CAST_USER_ADDR_T(kev32.udata);
1125 }
1126 if (!error)
1127 *addrp += advance;
1128 return error;
1129 }
1130
1131 static int
1132 kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, struct proc *p, int iskev64)
1133 {
1134 int advance;
1135 int error;
1136
1137 if (iskev64) {
1138 advance = sizeof(struct kevent64_s);
1139 error = copyout((caddr_t)kevp, *addrp, advance);
1140 } else if (IS_64BIT_PROCESS(p)) {
1141 struct user64_kevent kev64;
1142
1143 /*
1144 * deal with the special case of a user-supplied
1145 * value of (uintptr_t)-1.
1146 */
1147 kev64.ident = (kevp->ident == (uintptr_t)-1) ?
1148 (uint64_t)-1LL : (uint64_t)kevp->ident;
1149
1150 kev64.filter = kevp->filter;
1151 kev64.flags = kevp->flags;
1152 kev64.fflags = kevp->fflags;
1153 kev64.data = (int64_t) kevp->data;
1154 kev64.udata = kevp->udata;
1155 advance = sizeof(kev64);
1156 error = copyout((caddr_t)&kev64, *addrp, advance);
1157 } else {
1158 struct user32_kevent kev32;
1159
1160 kev32.ident = (uint32_t)kevp->ident;
1161 kev32.filter = kevp->filter;
1162 kev32.flags = kevp->flags;
1163 kev32.fflags = kevp->fflags;
1164 kev32.data = (int32_t)kevp->data;
1165 kev32.udata = kevp->udata;
1166 advance = sizeof(kev32);
1167 error = copyout((caddr_t)&kev32, *addrp, advance);
1168 }
1169 if (!error)
1170 *addrp += advance;
1171 return error;
1172 }
1173
1174 /*
1175 * kevent_continue - continue a kevent syscall after blocking
1176 *
1177 * assume we inherit a use count on the kq fileglob.
1178 */
1179
1180 static void
1181 kevent_continue(__unused struct kqueue *kq, void *data, int error)
1182 {
1183 struct _kevent *cont_args;
1184 struct fileproc *fp;
1185 int32_t *retval;
1186 int noutputs;
1187 int fd;
1188 struct proc *p = current_proc();
1189
1190 cont_args = (struct _kevent *)data;
1191 noutputs = cont_args->eventout;
1192 retval = cont_args->retval;
1193 fd = cont_args->fd;
1194 fp = cont_args->fp;
1195
1196 fp_drop(p, fd, fp, 0);
1197
1198 /* don't restart after signals... */
1199 if (error == ERESTART)
1200 error = EINTR;
1201 else if (error == EWOULDBLOCK)
1202 error = 0;
1203 if (error == 0)
1204 *retval = noutputs;
1205 unix_syscall_return(error);
1206 }
1207
1208 /*
1209 * kevent - [syscall] register and wait for kernel events
1210 *
1211 */
1212 int
1213 kevent(struct proc *p, struct kevent_args *uap, int32_t *retval)
1214 {
1215 return kevent_internal(p,
1216 0,
1217 uap->changelist,
1218 uap->nchanges,
1219 uap->eventlist,
1220 uap->nevents,
1221 uap->fd,
1222 uap->timeout,
1223 0, /* no flags from old kevent() call */
1224 retval);
1225 }
1226
1227 int
1228 kevent64(struct proc *p, struct kevent64_args *uap, int32_t *retval)
1229 {
1230 return kevent_internal(p,
1231 1,
1232 uap->changelist,
1233 uap->nchanges,
1234 uap->eventlist,
1235 uap->nevents,
1236 uap->fd,
1237 uap->timeout,
1238 uap->flags,
1239 retval);
1240 }
1241
1242 static int
1243 kevent_internal(struct proc *p, int iskev64, user_addr_t changelist,
1244 int nchanges, user_addr_t ueventlist, int nevents, int fd,
1245 user_addr_t utimeout, __unused unsigned int flags,
1246 int32_t *retval)
1247 {
1248 struct _kevent *cont_args;
1249 uthread_t ut;
1250 struct kqueue *kq;
1251 struct fileproc *fp;
1252 struct kevent64_s kev;
1253 int error, noutputs;
1254 struct timeval atv;
1255
1256 /* convert timeout to absolute - if we have one */
1257 if (utimeout != USER_ADDR_NULL) {
1258 struct timeval rtv;
1259 if (IS_64BIT_PROCESS(p)) {
1260 struct user64_timespec ts;
1261 error = copyin(utimeout, &ts, sizeof(ts));
1262 if ((ts.tv_sec & 0xFFFFFFFF00000000ull) != 0)
1263 error = EINVAL;
1264 else
1265 TIMESPEC_TO_TIMEVAL(&rtv, &ts);
1266 } else {
1267 struct user32_timespec ts;
1268 error = copyin(utimeout, &ts, sizeof(ts));
1269 TIMESPEC_TO_TIMEVAL(&rtv, &ts);
1270 }
1271 if (error)
1272 return error;
1273 if (itimerfix(&rtv))
1274 return EINVAL;
1275 getmicrouptime(&atv);
1276 timevaladd(&atv, &rtv);
1277 } else {
1278 atv.tv_sec = 0;
1279 atv.tv_usec = 0;
1280 }
1281
1282 /* get a usecount for the kq itself */
1283 if ((error = fp_getfkq(p, fd, &fp, &kq)) != 0)
1284 return(error);
1285
1286 /* each kq should only be used for events of one type */
1287 kqlock(kq);
1288 if (kq->kq_state & (KQ_KEV32 | KQ_KEV64)) {
1289 if (((iskev64 && (kq->kq_state & KQ_KEV32)) ||
1290 (!iskev64 && (kq->kq_state & KQ_KEV64)))) {
1291 error = EINVAL;
1292 kqunlock(kq);
1293 goto errorout;
1294 }
1295 } else {
1296 kq->kq_state |= (iskev64 ? KQ_KEV64 : KQ_KEV32);
1297 }
1298 kqunlock(kq);
1299
1300 /* register all the change requests the user provided... */
1301 noutputs = 0;
1302 while (nchanges > 0 && error == 0) {
1303 error = kevent_copyin(&changelist, &kev, p, iskev64);
1304 if (error)
1305 break;
1306
1307 kev.flags &= ~EV_SYSFLAGS;
1308 error = kevent_register(kq, &kev, p);
1309 if ((error || (kev.flags & EV_RECEIPT)) && nevents > 0) {
1310 kev.flags = EV_ERROR;
1311 kev.data = error;
1312 error = kevent_copyout(&kev, &ueventlist, p, iskev64);
1313 if (error == 0) {
1314 nevents--;
1315 noutputs++;
1316 }
1317 }
1318 nchanges--;
1319 }
1320
1321 /* store the continuation/completion data in the uthread */
1322 ut = (uthread_t)get_bsdthread_info(current_thread());
1323 cont_args = &ut->uu_kevent.ss_kevent;
1324 cont_args->fp = fp;
1325 cont_args->fd = fd;
1326 cont_args->retval = retval;
1327 cont_args->eventlist = ueventlist;
1328 cont_args->eventcount = nevents;
1329 cont_args->eventout = noutputs;
1330 cont_args->eventsize = iskev64;
1331
1332 if (nevents > 0 && noutputs == 0 && error == 0)
1333 error = kqueue_scan(kq, kevent_callback,
1334 kevent_continue, cont_args,
1335 &atv, p);
1336 kevent_continue(kq, cont_args, error);
1337
1338 errorout:
1339 fp_drop(p, fd, fp, 0);
1340 return error;
1341 }
1342
1343
1344 /*
1345 * kevent_callback - callback for each individual event
1346 *
1347 * called with nothing locked
1348 * caller holds a reference on the kqueue
1349 */
1350
1351 static int
1352 kevent_callback(__unused struct kqueue *kq, struct kevent64_s *kevp,
1353 void *data)
1354 {
1355 struct _kevent *cont_args;
1356 int error;
1357 int iskev64;
1358
1359 cont_args = (struct _kevent *)data;
1360 assert(cont_args->eventout < cont_args->eventcount);
1361
1362 iskev64 = cont_args->eventsize;
1363
1364 /*
1365 * Copy out the appropriate amount of event data for this user.
1366 */
1367 error = kevent_copyout(kevp, &cont_args->eventlist, current_proc(), iskev64);
1368
1369 /*
1370 * If there isn't space for additional events, return
1371 * a harmless error to stop the processing here
1372 */
1373 if (error == 0 && ++cont_args->eventout == cont_args->eventcount)
1374 error = EWOULDBLOCK;
1375 return error;
1376 }
1377
1378 /*
1379 * kevent_description - format a description of a kevent for diagnostic output
1380 *
1381 * called with a 128-byte string buffer
1382 */
1383
1384 char *
1385 kevent_description(struct kevent64_s *kevp, char *s, size_t n)
1386 {
1387 snprintf(s, n,
1388 "kevent="
1389 "{.ident=%#llx, .filter=%d, .flags=%#x, .fflags=%#x, .data=%#llx, .udata=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}",
1390 kevp->ident,
1391 kevp->filter,
1392 kevp->flags,
1393 kevp->fflags,
1394 kevp->data,
1395 kevp->udata,
1396 kevp->ext[0],
1397 kevp->ext[1]);
1398 return s;
1399 }
1400
1401 /*
1402 * kevent_register - add a new event to a kqueue
1403 *
1404 * Creates a mapping between the event source and
1405 * the kqueue via a knote data structure.
1406 *
1407 * Because many/most the event sources are file
1408 * descriptor related, the knote is linked off
1409 * the filedescriptor table for quick access.
1410 *
1411 * called with nothing locked
1412 * caller holds a reference on the kqueue
1413 */
1414
1415 int
1416 kevent_register(struct kqueue *kq, struct kevent64_s *kev, __unused struct proc *ctxp)
1417 {
1418 struct proc *p = kq->kq_p;
1419 struct filedesc *fdp = p->p_fd;
1420 struct filterops *fops;
1421 struct fileproc *fp = NULL;
1422 struct knote *kn = NULL;
1423 int error = 0;
1424
1425 if (kev->filter < 0) {
1426 if (kev->filter + EVFILT_SYSCOUNT < 0)
1427 return (EINVAL);
1428 fops = sysfilt_ops[~kev->filter]; /* to 0-base index */
1429 } else {
1430 /*
1431 * XXX
1432 * filter attach routine is responsible for insuring that
1433 * the identifier can be attached to it.
1434 */
1435 printf("unknown filter: %d\n", kev->filter);
1436 return (EINVAL);
1437 }
1438
1439 restart:
1440 /* this iocount needs to be dropped if it is not registered */
1441 proc_fdlock(p);
1442 if (fops->f_isfd && (error = fp_lookup(p, kev->ident, &fp, 1)) != 0) {
1443 proc_fdunlock(p);
1444 return(error);
1445 }
1446
1447 if (fops->f_isfd) {
1448 /* fd-based knotes are linked off the fd table */
1449 if (kev->ident < (u_int)fdp->fd_knlistsize) {
1450 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
1451 if (kq == kn->kn_kq &&
1452 kev->filter == kn->kn_filter)
1453 break;
1454 }
1455 } else {
1456 /* hash non-fd knotes here too */
1457 if (fdp->fd_knhashmask != 0) {
1458 struct klist *list;
1459
1460 list = &fdp->fd_knhash[
1461 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1462 SLIST_FOREACH(kn, list, kn_link)
1463 if (kev->ident == kn->kn_id &&
1464 kq == kn->kn_kq &&
1465 kev->filter == kn->kn_filter)
1466 break;
1467 }
1468 }
1469
1470 /*
1471 * kn now contains the matching knote, or NULL if no match
1472 */
1473 if (kn == NULL) {
1474 if ((kev->flags & (EV_ADD|EV_DELETE)) == EV_ADD) {
1475 kn = knote_alloc();
1476 if (kn == NULL) {
1477 proc_fdunlock(p);
1478 error = ENOMEM;
1479 goto done;
1480 }
1481 kn->kn_fp = fp;
1482 kn->kn_kq = kq;
1483 kn->kn_tq = &kq->kq_head;
1484 kn->kn_fop = fops;
1485 kn->kn_sfflags = kev->fflags;
1486 kn->kn_sdata = kev->data;
1487 kev->fflags = 0;
1488 kev->data = 0;
1489 kn->kn_kevent = *kev;
1490 kn->kn_inuse = 1; /* for f_attach() */
1491 kn->kn_status = KN_ATTACHING;
1492
1493 /* before anyone can find it */
1494 if (kev->flags & EV_DISABLE)
1495 kn->kn_status |= KN_DISABLED;
1496
1497 error = knote_fdpattach(kn, fdp, p);
1498 proc_fdunlock(p);
1499
1500 if (error) {
1501 knote_free(kn);
1502 goto done;
1503 }
1504
1505 /*
1506 * apply reference count to knote structure, and
1507 * do not release it at the end of this routine.
1508 */
1509 fp = NULL;
1510
1511 error = fops->f_attach(kn);
1512
1513 kqlock(kq);
1514 if (error != 0) {
1515 /*
1516 * Failed to attach correctly, so drop.
1517 * All other possible users/droppers
1518 * have deferred to us.
1519 */
1520 kn->kn_status |= KN_DROPPING;
1521 kqunlock(kq);
1522 knote_drop(kn, p);
1523 goto done;
1524 } else if (kn->kn_status & KN_DROPPING) {
1525 /*
1526 * Attach succeeded, but someone else
1527 * deferred their drop - now we have
1528 * to do it for them (after detaching).
1529 */
1530 kqunlock(kq);
1531 kn->kn_fop->f_detach(kn);
1532 knote_drop(kn, p);
1533 goto done;
1534 }
1535 kn->kn_status &= ~KN_ATTACHING;
1536 kqunlock(kq);
1537 } else {
1538 proc_fdunlock(p);
1539 error = ENOENT;
1540 goto done;
1541 }
1542 } else {
1543 /* existing knote - get kqueue lock */
1544 kqlock(kq);
1545 proc_fdunlock(p);
1546
1547 if (kev->flags & EV_DELETE) {
1548 knote_dequeue(kn);
1549 kn->kn_status |= KN_DISABLED;
1550 if (kqlock2knotedrop(kq, kn)) {
1551 kn->kn_fop->f_detach(kn);
1552 knote_drop(kn, p);
1553 }
1554 goto done;
1555 }
1556
1557 /* update status flags for existing knote */
1558 if (kev->flags & EV_DISABLE) {
1559 knote_dequeue(kn);
1560 kn->kn_status |= KN_DISABLED;
1561 } else if (kev->flags & EV_ENABLE) {
1562 kn->kn_status &= ~KN_DISABLED;
1563 if (kn->kn_status & KN_ACTIVE)
1564 knote_enqueue(kn);
1565 }
1566
1567 /*
1568 * If somebody is in the middle of dropping this
1569 * knote - go find/insert a new one. But we have
1570 * wait for this one to go away first. Attaches
1571 * running in parallel may also drop/modify the
1572 * knote. Wait for those to complete as well and
1573 * then start over if we encounter one.
1574 */
1575 if (!kqlock2knoteusewait(kq, kn)) {
1576 /* kqueue, proc_fdlock both unlocked */
1577 goto restart;
1578 }
1579
1580 /*
1581 * The user may change some filter values after the
1582 * initial EV_ADD, but doing so will not reset any
1583 * filter which have already been triggered.
1584 */
1585 kn->kn_kevent.udata = kev->udata;
1586 if (!fops->f_isfd && fops->f_touch != NULL)
1587 fops->f_touch(kn, kev, EVENT_REGISTER);
1588 else {
1589 kn->kn_sfflags = kev->fflags;
1590 kn->kn_sdata = kev->data;
1591 }
1592
1593 /* We may need to push some info down to a networked filesystem */
1594 if (kn->kn_filter == EVFILT_VNODE) {
1595 vnode_knoteupdate(kn);
1596 }
1597 }
1598 /* still have use ref on knote */
1599
1600 /*
1601 * If the knote is not marked to always stay enqueued,
1602 * invoke the filter routine to see if it should be
1603 * enqueued now.
1604 */
1605 if ((kn->kn_status & KN_STAYQUEUED) == 0 && kn->kn_fop->f_event(kn, 0)) {
1606 if (knoteuse2kqlock(kq, kn))
1607 knote_activate(kn, 1);
1608 kqunlock(kq);
1609 } else {
1610 knote_put(kn);
1611 }
1612
1613 done:
1614 if (fp != NULL)
1615 fp_drop(p, kev->ident, fp, 0);
1616 return (error);
1617 }
1618
1619
1620 /*
1621 * knote_process - process a triggered event
1622 *
1623 * Validate that it is really still a triggered event
1624 * by calling the filter routines (if necessary). Hold
1625 * a use reference on the knote to avoid it being detached.
1626 * If it is still considered triggered, invoke the callback
1627 * routine provided and move it to the provided inprocess
1628 * queue.
1629 *
1630 * caller holds a reference on the kqueue.
1631 * kqueue locked on entry and exit - but may be dropped
1632 */
1633 static int
1634 knote_process(struct knote *kn,
1635 kevent_callback_t callback,
1636 void *data,
1637 struct kqtailq *inprocessp,
1638 struct proc *p)
1639 {
1640 struct kqueue *kq = kn->kn_kq;
1641 struct kevent64_s kev;
1642 int touch;
1643 int result;
1644 int error;
1645
1646 /*
1647 * Determine the kevent state we want to return.
1648 *
1649 * Some event states need to be revalidated before returning
1650 * them, others we take the snapshot at the time the event
1651 * was enqueued.
1652 *
1653 * Events with non-NULL f_touch operations must be touched.
1654 * Triggered events must fill in kev for the callback.
1655 *
1656 * Convert our lock to a use-count and call the event's
1657 * filter routine(s) to update.
1658 */
1659 if ((kn->kn_status & KN_DISABLED) != 0) {
1660 result = 0;
1661 touch = 0;
1662 } else {
1663 int revalidate;
1664
1665 result = 1;
1666 revalidate = ((kn->kn_status & KN_STAYQUEUED) != 0 ||
1667 (kn->kn_flags & EV_ONESHOT) == 0);
1668 touch = (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL);
1669
1670 if (revalidate || touch) {
1671 if (revalidate)
1672 knote_deactivate(kn);
1673
1674 /* call the filter/touch routines with just a ref */
1675 if (kqlock2knoteuse(kq, kn)) {
1676
1677 /* if we have to revalidate, call the filter */
1678 if (revalidate) {
1679 result = kn->kn_fop->f_event(kn, 0);
1680 }
1681
1682 /* capture the kevent data - using touch if specified */
1683 if (result) {
1684 if (touch) {
1685 kn->kn_fop->f_touch(kn, &kev, EVENT_PROCESS);
1686 } else {
1687 kev = kn->kn_kevent;
1688 }
1689 }
1690 /* convert back to a kqlock - bail if the knote went away */
1691 if (!knoteuse2kqlock(kq, kn)) {
1692 return EJUSTRETURN;
1693 } else if (result) {
1694 /* if revalidated as alive, make sure it's active */
1695 if (!(kn->kn_status & KN_ACTIVE)) {
1696 knote_activate(kn, 0);
1697 }
1698 } else if ((kn->kn_status & KN_STAYQUEUED) == 0) {
1699 /* was already dequeued, so just bail on this one */
1700 return EJUSTRETURN;
1701 }
1702 } else {
1703 return EJUSTRETURN;
1704 }
1705 } else {
1706 kev = kn->kn_kevent;
1707 }
1708 }
1709
1710 /* move knote onto inprocess queue */
1711 assert(kn->kn_tq == &kq->kq_head);
1712 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1713 kn->kn_tq = inprocessp;
1714 TAILQ_INSERT_TAIL(inprocessp, kn, kn_tqe);
1715
1716 /*
1717 * Determine how to dispatch the knote for future event handling.
1718 * not-fired: just return (do not callout).
1719 * One-shot: deactivate it.
1720 * Clear: deactivate and clear the state.
1721 * Dispatch: don't clear state, just deactivate it and mark it disabled.
1722 * All others: just leave where they are.
1723 */
1724
1725 if (result == 0) {
1726 return EJUSTRETURN;
1727 } else if (kn->kn_flags & EV_ONESHOT) {
1728 knote_deactivate(kn);
1729 if (kqlock2knotedrop(kq, kn)) {
1730 kn->kn_fop->f_detach(kn);
1731 knote_drop(kn, p);
1732 }
1733 } else if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
1734 knote_deactivate(kn);
1735 /* manually clear knotes who weren't 'touch'ed */
1736 if ((touch == 0) && (kn->kn_flags & EV_CLEAR)) {
1737 kn->kn_data = 0;
1738 kn->kn_fflags = 0;
1739 }
1740 if (kn->kn_flags & EV_DISPATCH)
1741 kn->kn_status |= KN_DISABLED;
1742 kqunlock(kq);
1743 } else {
1744 /*
1745 * leave on inprocess queue. We'll
1746 * move all the remaining ones back
1747 * the kq queue and wakeup any
1748 * waiters when we are done.
1749 */
1750 kqunlock(kq);
1751 }
1752
1753 /* callback to handle each event as we find it */
1754 error = (callback)(kq, &kev, data);
1755
1756 kqlock(kq);
1757 return error;
1758 }
1759
1760
1761 /*
1762 * kqueue_process - process the triggered events in a kqueue
1763 *
1764 * Walk the queued knotes and validate that they are
1765 * really still triggered events by calling the filter
1766 * routines (if necessary). Hold a use reference on
1767 * the knote to avoid it being detached. For each event
1768 * that is still considered triggered, invoke the
1769 * callback routine provided.
1770 *
1771 * caller holds a reference on the kqueue.
1772 * kqueue locked on entry and exit - but may be dropped
1773 * kqueue list locked (held for duration of call)
1774 */
1775
1776 static int
1777 kqueue_process(struct kqueue *kq,
1778 kevent_callback_t callback,
1779 void *data,
1780 int *countp,
1781 struct proc *p)
1782 {
1783 struct kqtailq inprocess;
1784 struct knote *kn;
1785 int nevents;
1786 int error;
1787
1788 TAILQ_INIT(&inprocess);
1789 restart:
1790 if (kq->kq_count == 0) {
1791 *countp = 0;
1792 return 0;
1793 }
1794
1795 /* if someone else is processing the queue, wait */
1796 if (hw_atomic_add(&kq->kq_nprocess, 1) != 1) {
1797 hw_atomic_sub(&kq->kq_nprocess, 1);
1798 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kq->kq_nprocess, THREAD_UNINT, 0);
1799 kq->kq_state |= KQ_PROCWAIT;
1800 kqunlock(kq);
1801 thread_block(THREAD_CONTINUE_NULL);
1802 kqlock(kq);
1803 goto restart;
1804 }
1805
1806 /*
1807 * Clear any pre-posted status from previous runs, so we only
1808 * detect events that occur during this run.
1809 */
1810 wait_queue_sub_clearrefs(kq->kq_wqs);
1811
1812 /*
1813 * loop through the enqueued knotes, processing each one and
1814 * revalidating those that need it. As they are processed,
1815 * they get moved to the inprocess queue (so the loop can end).
1816 */
1817 error = 0;
1818 nevents = 0;
1819
1820 while (error == 0 &&
1821 (kn = TAILQ_FIRST(&kq->kq_head)) != NULL) {
1822 error = knote_process(kn, callback, data, &inprocess, p);
1823 if (error == EJUSTRETURN)
1824 error = 0;
1825 else
1826 nevents++;
1827 }
1828
1829 /*
1830 * With the kqueue still locked, move any knotes
1831 * remaining on the inprocess queue back to the
1832 * kq's queue and wake up any waiters.
1833 */
1834 while ((kn = TAILQ_FIRST(&inprocess)) != NULL) {
1835 assert(kn->kn_tq == &inprocess);
1836 TAILQ_REMOVE(&inprocess, kn, kn_tqe);
1837 kn->kn_tq = &kq->kq_head;
1838 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1839 }
1840 hw_atomic_sub(&kq->kq_nprocess, 1);
1841 if (kq->kq_state & KQ_PROCWAIT) {
1842 kq->kq_state &= ~KQ_PROCWAIT;
1843 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kq->kq_nprocess, THREAD_AWAKENED);
1844 }
1845
1846 *countp = nevents;
1847 return error;
1848 }
1849
1850
1851 static void
1852 kqueue_scan_continue(void *data, wait_result_t wait_result)
1853 {
1854 thread_t self = current_thread();
1855 uthread_t ut = (uthread_t)get_bsdthread_info(self);
1856 struct _kqueue_scan * cont_args = &ut->uu_kevent.ss_kqueue_scan;
1857 struct kqueue *kq = (struct kqueue *)data;
1858 int error;
1859 int count;
1860
1861 /* convert the (previous) wait_result to a proper error */
1862 switch (wait_result) {
1863 case THREAD_AWAKENED:
1864 kqlock(kq);
1865 error = kqueue_process(kq, cont_args->call, cont_args, &count, current_proc());
1866 if (error == 0 && count == 0) {
1867 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, KQ_EVENT,
1868 THREAD_ABORTSAFE, cont_args->deadline);
1869 kq->kq_state |= KQ_SLEEP;
1870 kqunlock(kq);
1871 thread_block_parameter(kqueue_scan_continue, kq);
1872 /* NOTREACHED */
1873 }
1874 kqunlock(kq);
1875 break;
1876 case THREAD_TIMED_OUT:
1877 error = EWOULDBLOCK;
1878 break;
1879 case THREAD_INTERRUPTED:
1880 error = EINTR;
1881 break;
1882 default:
1883 panic("kevent_scan_cont() - invalid wait_result (%d)", wait_result);
1884 error = 0;
1885 }
1886
1887 /* call the continuation with the results */
1888 assert(cont_args->cont != NULL);
1889 (cont_args->cont)(kq, cont_args->data, error);
1890 }
1891
1892
1893 /*
1894 * kqueue_scan - scan and wait for events in a kqueue
1895 *
1896 * Process the triggered events in a kqueue.
1897 *
1898 * If there are no events triggered arrange to
1899 * wait for them. If the caller provided a
1900 * continuation routine, then kevent_scan will
1901 * also.
1902 *
1903 * The callback routine must be valid.
1904 * The caller must hold a use-count reference on the kq.
1905 */
1906
1907 int
1908 kqueue_scan(struct kqueue *kq,
1909 kevent_callback_t callback,
1910 kqueue_continue_t continuation,
1911 void *data,
1912 struct timeval *atvp,
1913 struct proc *p)
1914 {
1915 thread_continue_t cont = THREAD_CONTINUE_NULL;
1916 uint64_t deadline;
1917 int error;
1918 int first;
1919
1920 assert(callback != NULL);
1921
1922 first = 1;
1923 for (;;) {
1924 wait_result_t wait_result;
1925 int count;
1926
1927 /*
1928 * Make a pass through the kq to find events already
1929 * triggered.
1930 */
1931 kqlock(kq);
1932 error = kqueue_process(kq, callback, data, &count, p);
1933 if (error || count)
1934 break; /* lock still held */
1935
1936 /* looks like we have to consider blocking */
1937 if (first) {
1938 first = 0;
1939 /* convert the timeout to a deadline once */
1940 if (atvp->tv_sec || atvp->tv_usec) {
1941 uint64_t now;
1942
1943 clock_get_uptime(&now);
1944 nanoseconds_to_absolutetime((uint64_t)atvp->tv_sec * NSEC_PER_SEC +
1945 atvp->tv_usec * NSEC_PER_USEC,
1946 &deadline);
1947 if (now >= deadline) {
1948 /* non-blocking call */
1949 error = EWOULDBLOCK;
1950 break; /* lock still held */
1951 }
1952 deadline -= now;
1953 clock_absolutetime_interval_to_deadline(deadline, &deadline);
1954 } else {
1955 deadline = 0; /* block forever */
1956 }
1957
1958 if (continuation) {
1959 uthread_t ut = (uthread_t)get_bsdthread_info(current_thread());
1960 struct _kqueue_scan *cont_args = &ut->uu_kevent.ss_kqueue_scan;
1961
1962 cont_args->call = callback;
1963 cont_args->cont = continuation;
1964 cont_args->deadline = deadline;
1965 cont_args->data = data;
1966 cont = kqueue_scan_continue;
1967 }
1968 }
1969
1970 /* go ahead and wait */
1971 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, KQ_EVENT, THREAD_ABORTSAFE, deadline);
1972 kq->kq_state |= KQ_SLEEP;
1973 kqunlock(kq);
1974 wait_result = thread_block_parameter(cont, kq);
1975 /* NOTREACHED if (continuation != NULL) */
1976
1977 switch (wait_result) {
1978 case THREAD_AWAKENED:
1979 continue;
1980 case THREAD_TIMED_OUT:
1981 return EWOULDBLOCK;
1982 case THREAD_INTERRUPTED:
1983 return EINTR;
1984 default:
1985 panic("kevent_scan - bad wait_result (%d)",
1986 wait_result);
1987 error = 0;
1988 }
1989 }
1990 kqunlock(kq);
1991 return error;
1992 }
1993
1994
1995 /*
1996 * XXX
1997 * This could be expanded to call kqueue_scan, if desired.
1998 */
1999 /*ARGSUSED*/
2000 static int
2001 kqueue_read(__unused struct fileproc *fp,
2002 __unused struct uio *uio,
2003 __unused int flags,
2004 __unused vfs_context_t ctx)
2005 {
2006 return (ENXIO);
2007 }
2008
2009 /*ARGSUSED*/
2010 static int
2011 kqueue_write(__unused struct fileproc *fp,
2012 __unused struct uio *uio,
2013 __unused int flags,
2014 __unused vfs_context_t ctx)
2015 {
2016 return (ENXIO);
2017 }
2018
2019 /*ARGSUSED*/
2020 static int
2021 kqueue_ioctl(__unused struct fileproc *fp,
2022 __unused u_long com,
2023 __unused caddr_t data,
2024 __unused vfs_context_t ctx)
2025 {
2026 return (ENOTTY);
2027 }
2028
2029 /*ARGSUSED*/
2030 static int
2031 kqueue_select(struct fileproc *fp, int which, void *wql, __unused vfs_context_t ctx)
2032 {
2033 struct kqueue *kq = (struct kqueue *)fp->f_data;
2034 int again;
2035
2036 if (which != FREAD)
2037 return 0;
2038
2039 kqlock(kq);
2040 /*
2041 * If this is the first pass, link the wait queue associated with the
2042 * the kqueue onto the wait queue set for the select(). Normally we
2043 * use selrecord() for this, but it uses the wait queue within the
2044 * selinfo structure and we need to use the main one for the kqueue to
2045 * catch events from KN_STAYQUEUED sources. So we do the linkage manually.
2046 * (The select() call will unlink them when it ends).
2047 */
2048 if (wql != NULL) {
2049 thread_t cur_act = current_thread();
2050 struct uthread * ut = get_bsdthread_info(cur_act);
2051
2052 kq->kq_state |= KQ_SEL;
2053 wait_queue_link_noalloc((wait_queue_t)kq->kq_wqs, ut->uu_wqset,
2054 (wait_queue_link_t)wql);
2055 }
2056
2057 retry:
2058 again = 0;
2059 if (kq->kq_count != 0) {
2060 struct knote *kn;
2061
2062 /*
2063 * there is something queued - but it might be a
2064 * KN_STAYQUEUED knote, which may or may not have
2065 * any events pending. So, we have to walk the
2066 * list of knotes to see, and peek at the stay-
2067 * queued ones to be really sure.
2068 */
2069 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
2070 int retnum = 0;
2071 if ((kn->kn_status & KN_STAYQUEUED) == 0 ||
2072 (retnum = kn->kn_fop->f_peek(kn)) > 0) {
2073 kqunlock(kq);
2074 return 1;
2075 }
2076 if (retnum < 0)
2077 again++;
2078 }
2079 }
2080
2081 /*
2082 * If we stumbled across a knote that couldn't be peeked at,
2083 * we have to drop the kq lock and try again.
2084 */
2085 if (again > 0) {
2086 kqunlock(kq);
2087 mutex_pause(0);
2088 kqlock(kq);
2089 goto retry;
2090 }
2091
2092 kqunlock(kq);
2093 return 0;
2094 }
2095
2096 /*
2097 * kqueue_close -
2098 */
2099 /*ARGSUSED*/
2100 static int
2101 kqueue_close(struct fileglob *fg, __unused vfs_context_t ctx)
2102 {
2103 struct kqueue *kq = (struct kqueue *)fg->fg_data;
2104
2105 kqueue_dealloc(kq);
2106 fg->fg_data = NULL;
2107 return (0);
2108 }
2109
2110 /*ARGSUSED*/
2111 /*
2112 * The callers has taken a use-count reference on this kqueue and will donate it
2113 * to the kqueue we are being added to. This keeps the kqueue from closing until
2114 * that relationship is torn down.
2115 */
2116 static int
2117 kqueue_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused vfs_context_t ctx)
2118 {
2119 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
2120 struct kqueue *parentkq = kn->kn_kq;
2121
2122 if (parentkq == kq ||
2123 kn->kn_filter != EVFILT_READ)
2124 return (1);
2125
2126 /*
2127 * We have to avoid creating a cycle when nesting kqueues
2128 * inside another. Rather than trying to walk the whole
2129 * potential DAG of nested kqueues, we just use a simple
2130 * ceiling protocol. When a kqueue is inserted into another,
2131 * we check that the (future) parent is not already nested
2132 * into another kqueue at a lower level than the potenial
2133 * child (because it could indicate a cycle). If that test
2134 * passes, we just mark the nesting levels accordingly.
2135 */
2136
2137 kqlock(parentkq);
2138 if (parentkq->kq_level > 0 &&
2139 parentkq->kq_level < kq->kq_level)
2140 {
2141 kqunlock(parentkq);
2142 return (1);
2143 } else {
2144 /* set parent level appropriately */
2145 if (parentkq->kq_level == 0)
2146 parentkq->kq_level = 2;
2147 if (parentkq->kq_level < kq->kq_level + 1)
2148 parentkq->kq_level = kq->kq_level + 1;
2149 kqunlock(parentkq);
2150
2151 kn->kn_fop = &kqread_filtops;
2152 kqlock(kq);
2153 KNOTE_ATTACH(&kq->kq_sel.si_note, kn);
2154 /* indicate nesting in child, if needed */
2155 if (kq->kq_level == 0)
2156 kq->kq_level = 1;
2157 kqunlock(kq);
2158 return (0);
2159 }
2160 }
2161
2162 /*
2163 * kqueue_drain - called when kq is closed
2164 */
2165 /*ARGSUSED*/
2166 static int
2167 kqueue_drain(struct fileproc *fp, __unused vfs_context_t ctx)
2168 {
2169 struct kqueue *kq = (struct kqueue *)fp->f_fglob->fg_data;
2170 kqlock(kq);
2171 kqueue_wakeup(kq, 1);
2172 kqunlock(kq);
2173 return 0;
2174 }
2175
2176 /*ARGSUSED*/
2177 int
2178 kqueue_stat(struct fileproc *fp, void *ub, int isstat64, __unused vfs_context_t ctx)
2179 {
2180
2181 struct kqueue *kq = (struct kqueue *)fp->f_data;
2182 if (isstat64 != 0) {
2183 struct stat64 *sb64 = (struct stat64 *)ub;
2184
2185 bzero((void *)sb64, sizeof(*sb64));
2186 sb64->st_size = kq->kq_count;
2187 if (kq->kq_state & KQ_KEV64)
2188 sb64->st_blksize = sizeof(struct kevent64_s);
2189 else
2190 sb64->st_blksize = sizeof(struct kevent);
2191 sb64->st_mode = S_IFIFO;
2192 } else {
2193 struct stat *sb = (struct stat *)ub;
2194
2195 bzero((void *)sb, sizeof(*sb));
2196 sb->st_size = kq->kq_count;
2197 if (kq->kq_state & KQ_KEV64)
2198 sb->st_blksize = sizeof(struct kevent64_s);
2199 else
2200 sb->st_blksize = sizeof(struct kevent);
2201 sb->st_mode = S_IFIFO;
2202 }
2203
2204 return (0);
2205 }
2206
2207 /*
2208 * Called with the kqueue locked
2209 */
2210 static void
2211 kqueue_wakeup(struct kqueue *kq, int closed)
2212 {
2213 if ((kq->kq_state & (KQ_SLEEP | KQ_SEL)) != 0 || kq->kq_nprocess > 0) {
2214 kq->kq_state &= ~(KQ_SLEEP | KQ_SEL);
2215 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, KQ_EVENT,
2216 (closed) ? THREAD_INTERRUPTED : THREAD_AWAKENED);
2217 }
2218 }
2219
2220 void
2221 klist_init(struct klist *list)
2222 {
2223 SLIST_INIT(list);
2224 }
2225
2226
2227 /*
2228 * Query/Post each knote in the object's list
2229 *
2230 * The object lock protects the list. It is assumed
2231 * that the filter/event routine for the object can
2232 * determine that the object is already locked (via
2233 * the hint) and not deadlock itself.
2234 *
2235 * The object lock should also hold off pending
2236 * detach/drop operations. But we'll prevent it here
2237 * too - just in case.
2238 */
2239 void
2240 knote(struct klist *list, long hint)
2241 {
2242 struct knote *kn;
2243
2244 SLIST_FOREACH(kn, list, kn_selnext) {
2245 struct kqueue *kq = kn->kn_kq;
2246
2247 kqlock(kq);
2248 if (kqlock2knoteuse(kq, kn)) {
2249 int result;
2250
2251 /* call the event with only a use count */
2252 result = kn->kn_fop->f_event(kn, hint);
2253
2254 /* if its not going away and triggered */
2255 if (knoteuse2kqlock(kq, kn) && result)
2256 knote_activate(kn, 1);
2257 /* lock held again */
2258 }
2259 kqunlock(kq);
2260 }
2261 }
2262
2263 /*
2264 * attach a knote to the specified list. Return true if this is the first entry.
2265 * The list is protected by whatever lock the object it is associated with uses.
2266 */
2267 int
2268 knote_attach(struct klist *list, struct knote *kn)
2269 {
2270 int ret = SLIST_EMPTY(list);
2271 SLIST_INSERT_HEAD(list, kn, kn_selnext);
2272 return ret;
2273 }
2274
2275 /*
2276 * detach a knote from the specified list. Return true if that was the last entry.
2277 * The list is protected by whatever lock the object it is associated with uses.
2278 */
2279 int
2280 knote_detach(struct klist *list, struct knote *kn)
2281 {
2282 SLIST_REMOVE(list, kn, knote, kn_selnext);
2283 return SLIST_EMPTY(list);
2284 }
2285
2286 /*
2287 * For a given knote, link a provided wait queue directly with the kqueue.
2288 * Wakeups will happen via recursive wait queue support. But nothing will move
2289 * the knote to the active list at wakeup (nothing calls knote()). Instead,
2290 * we permanently enqueue them here.
2291 *
2292 * kqueue and knote references are held by caller.
2293 */
2294 int
2295 knote_link_wait_queue(struct knote *kn, struct wait_queue *wq)
2296 {
2297 struct kqueue *kq = kn->kn_kq;
2298 kern_return_t kr;
2299
2300 kr = wait_queue_link(wq, kq->kq_wqs);
2301 if (kr == KERN_SUCCESS) {
2302 kqlock(kq);
2303 kn->kn_status |= KN_STAYQUEUED;
2304 knote_enqueue(kn);
2305 kqunlock(kq);
2306 return 0;
2307 } else {
2308 return ENOMEM;
2309 }
2310 }
2311
2312 /*
2313 * Unlink the provided wait queue from the kqueue associated with a knote.
2314 * Also remove it from the magic list of directly attached knotes.
2315 *
2316 * Note that the unlink may have already happened from the other side, so
2317 * ignore any failures to unlink and just remove it from the kqueue list.
2318 */
2319 void
2320 knote_unlink_wait_queue(struct knote *kn, struct wait_queue *wq)
2321 {
2322 struct kqueue *kq = kn->kn_kq;
2323
2324 (void) wait_queue_unlink(wq, kq->kq_wqs);
2325 kqlock(kq);
2326 kn->kn_status &= ~KN_STAYQUEUED;
2327 knote_dequeue(kn);
2328 kqunlock(kq);
2329 }
2330
2331 /*
2332 * remove all knotes referencing a specified fd
2333 *
2334 * Essentially an inlined knote_remove & knote_drop
2335 * when we know for sure that the thing is a file
2336 *
2337 * Entered with the proc_fd lock already held.
2338 * It returns the same way, but may drop it temporarily.
2339 */
2340 void
2341 knote_fdclose(struct proc *p, int fd)
2342 {
2343 struct filedesc *fdp = p->p_fd;
2344 struct klist *list;
2345 struct knote *kn;
2346
2347 list = &fdp->fd_knlist[fd];
2348 while ((kn = SLIST_FIRST(list)) != NULL) {
2349 struct kqueue *kq = kn->kn_kq;
2350
2351 if (kq->kq_p != p)
2352 panic("knote_fdclose: proc mismatch (kq->kq_p=%p != p=%p)", kq->kq_p, p);
2353
2354 kqlock(kq);
2355 proc_fdunlock(p);
2356
2357 /*
2358 * Convert the lock to a drop ref.
2359 * If we get it, go ahead and drop it.
2360 * Otherwise, we waited for it to
2361 * be dropped by the other guy, so
2362 * it is safe to move on in the list.
2363 */
2364 if (kqlock2knotedrop(kq, kn)) {
2365 kn->kn_fop->f_detach(kn);
2366 knote_drop(kn, p);
2367 }
2368
2369 proc_fdlock(p);
2370
2371 /* the fd tables may have changed - start over */
2372 list = &fdp->fd_knlist[fd];
2373 }
2374 }
2375
2376 /* proc_fdlock held on entry (and exit) */
2377 static int
2378 knote_fdpattach(struct knote *kn, struct filedesc *fdp, __unused struct proc *p)
2379 {
2380 struct klist *list = NULL;
2381
2382 if (! kn->kn_fop->f_isfd) {
2383 if (fdp->fd_knhashmask == 0)
2384 fdp->fd_knhash = hashinit(CONFIG_KN_HASHSIZE, M_KQUEUE,
2385 &fdp->fd_knhashmask);
2386 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2387 } else {
2388 if ((u_int)fdp->fd_knlistsize <= kn->kn_id) {
2389 u_int size = 0;
2390
2391 /* have to grow the fd_knlist */
2392 size = fdp->fd_knlistsize;
2393 while (size <= kn->kn_id)
2394 size += KQEXTENT;
2395 MALLOC(list, struct klist *,
2396 size * sizeof(struct klist *), M_KQUEUE, M_WAITOK);
2397 if (list == NULL)
2398 return (ENOMEM);
2399
2400 bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list,
2401 fdp->fd_knlistsize * sizeof(struct klist *));
2402 bzero((caddr_t)list +
2403 fdp->fd_knlistsize * sizeof(struct klist *),
2404 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
2405 FREE(fdp->fd_knlist, M_KQUEUE);
2406 fdp->fd_knlist = list;
2407 fdp->fd_knlistsize = size;
2408 }
2409 list = &fdp->fd_knlist[kn->kn_id];
2410 }
2411 SLIST_INSERT_HEAD(list, kn, kn_link);
2412 return (0);
2413 }
2414
2415
2416
2417 /*
2418 * should be called at spl == 0, since we don't want to hold spl
2419 * while calling fdrop and free.
2420 */
2421 static void
2422 knote_drop(struct knote *kn, __unused struct proc *ctxp)
2423 {
2424 struct kqueue *kq = kn->kn_kq;
2425 struct proc *p = kq->kq_p;
2426 struct filedesc *fdp = p->p_fd;
2427 struct klist *list;
2428 int needswakeup;
2429
2430 proc_fdlock(p);
2431 if (kn->kn_fop->f_isfd)
2432 list = &fdp->fd_knlist[kn->kn_id];
2433 else
2434 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2435
2436 SLIST_REMOVE(list, kn, knote, kn_link);
2437 kqlock(kq);
2438 knote_dequeue(kn);
2439 needswakeup = (kn->kn_status & KN_USEWAIT);
2440 kqunlock(kq);
2441 proc_fdunlock(p);
2442
2443 if (needswakeup)
2444 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED);
2445
2446 if (kn->kn_fop->f_isfd)
2447 fp_drop(p, kn->kn_id, kn->kn_fp, 0);
2448
2449 knote_free(kn);
2450 }
2451
2452 /* called with kqueue lock held */
2453 static void
2454 knote_activate(struct knote *kn, int propagate)
2455 {
2456 struct kqueue *kq = kn->kn_kq;
2457
2458 kn->kn_status |= KN_ACTIVE;
2459 knote_enqueue(kn);
2460 kqueue_wakeup(kq, 0);
2461
2462 /* this is a real event: wake up the parent kq, too */
2463 if (propagate)
2464 KNOTE(&kq->kq_sel.si_note, 0);
2465 }
2466
2467 /* called with kqueue lock held */
2468 static void
2469 knote_deactivate(struct knote *kn)
2470 {
2471 kn->kn_status &= ~KN_ACTIVE;
2472 knote_dequeue(kn);
2473 }
2474
2475 /* called with kqueue lock held */
2476 static void
2477 knote_enqueue(struct knote *kn)
2478 {
2479 if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_STAYQUEUED ||
2480 (kn->kn_status & (KN_QUEUED | KN_STAYQUEUED | KN_DISABLED)) == 0) {
2481 struct kqtailq *tq = kn->kn_tq;
2482 struct kqueue *kq = kn->kn_kq;
2483
2484 TAILQ_INSERT_TAIL(tq, kn, kn_tqe);
2485 kn->kn_status |= KN_QUEUED;
2486 kq->kq_count++;
2487 }
2488 }
2489
2490 /* called with kqueue lock held */
2491 static void
2492 knote_dequeue(struct knote *kn)
2493 {
2494 struct kqueue *kq = kn->kn_kq;
2495
2496 if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_QUEUED) {
2497 struct kqtailq *tq = kn->kn_tq;
2498
2499 TAILQ_REMOVE(tq, kn, kn_tqe);
2500 kn->kn_tq = &kq->kq_head;
2501 kn->kn_status &= ~KN_QUEUED;
2502 kq->kq_count--;
2503 }
2504 }
2505
2506 void
2507 knote_init(void)
2508 {
2509 knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote), 8192, "knote zone");
2510
2511 /* allocate kq lock group attribute and group */
2512 kq_lck_grp_attr= lck_grp_attr_alloc_init();
2513
2514 kq_lck_grp = lck_grp_alloc_init("kqueue", kq_lck_grp_attr);
2515
2516 /* Allocate kq lock attribute */
2517 kq_lck_attr = lck_attr_alloc_init();
2518
2519 /* Initialize the timer filter lock */
2520 lck_mtx_init(&_filt_timerlock, kq_lck_grp, kq_lck_attr);
2521 }
2522 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
2523
2524 static struct knote *
2525 knote_alloc(void)
2526 {
2527 return ((struct knote *)zalloc(knote_zone));
2528 }
2529
2530 static void
2531 knote_free(struct knote *kn)
2532 {
2533 zfree(knote_zone, kn);
2534 }
2535
2536 #if SOCKETS
2537 #include <sys/param.h>
2538 #include <sys/socket.h>
2539 #include <sys/protosw.h>
2540 #include <sys/domain.h>
2541 #include <sys/mbuf.h>
2542 #include <sys/kern_event.h>
2543 #include <sys/malloc.h>
2544 #include <sys/sys_domain.h>
2545 #include <sys/syslog.h>
2546
2547
2548 static int kev_attach(struct socket *so, int proto, struct proc *p);
2549 static int kev_detach(struct socket *so);
2550 static int kev_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct proc *p);
2551
2552 struct pr_usrreqs event_usrreqs = {
2553 pru_abort_notsupp, pru_accept_notsupp, kev_attach, pru_bind_notsupp, pru_connect_notsupp,
2554 pru_connect2_notsupp, kev_control, kev_detach, pru_disconnect_notsupp,
2555 pru_listen_notsupp, pru_peeraddr_notsupp, pru_rcvd_notsupp, pru_rcvoob_notsupp,
2556 pru_send_notsupp, pru_sense_null, pru_shutdown_notsupp, pru_sockaddr_notsupp,
2557 pru_sosend_notsupp, soreceive, pru_sopoll_notsupp
2558 };
2559
2560 struct protosw eventsw[] = {
2561 {
2562 .pr_type = SOCK_RAW,
2563 .pr_domain = &systemdomain,
2564 .pr_protocol = SYSPROTO_EVENT,
2565 .pr_flags = PR_ATOMIC,
2566 .pr_usrreqs = &event_usrreqs,
2567 }
2568 };
2569
2570 static
2571 struct kern_event_head kern_event_head;
2572
2573 static u_int32_t static_event_id = 0;
2574 struct domain *sysdom = &systemdomain;
2575 static lck_mtx_t *sys_mtx;
2576
2577 /*
2578 * Install the protosw's for the NKE manager. Invoked at
2579 * extension load time
2580 */
2581 int
2582 kern_event_init(void)
2583 {
2584 int retval;
2585
2586 if ((retval = net_add_proto(eventsw, &systemdomain)) != 0) {
2587 log(LOG_WARNING, "Can't install kernel events protocol (%d)\n", retval);
2588 return(retval);
2589 }
2590
2591 /*
2592 * Use the domain mutex for all system event sockets
2593 */
2594 sys_mtx = sysdom->dom_mtx;
2595
2596 return(KERN_SUCCESS);
2597 }
2598
2599 static int
2600 kev_attach(struct socket *so, __unused int proto, __unused struct proc *p)
2601 {
2602 int error;
2603 struct kern_event_pcb *ev_pcb;
2604
2605 error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE);
2606 if (error)
2607 return error;
2608
2609 MALLOC(ev_pcb, struct kern_event_pcb *, sizeof(struct kern_event_pcb), M_PCB, M_WAITOK);
2610 if (ev_pcb == 0)
2611 return ENOBUFS;
2612
2613 ev_pcb->ev_socket = so;
2614 ev_pcb->vendor_code_filter = 0xffffffff;
2615
2616 so->so_pcb = (caddr_t) ev_pcb;
2617 lck_mtx_lock(sys_mtx);
2618 LIST_INSERT_HEAD(&kern_event_head, ev_pcb, ev_link);
2619 lck_mtx_unlock(sys_mtx);
2620
2621 return 0;
2622 }
2623
2624
2625 static int
2626 kev_detach(struct socket *so)
2627 {
2628 struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb;
2629
2630 if (ev_pcb != 0) {
2631 LIST_REMOVE(ev_pcb, ev_link);
2632 FREE(ev_pcb, M_PCB);
2633 so->so_pcb = 0;
2634 so->so_flags |= SOF_PCBCLEARING;
2635 }
2636
2637 return 0;
2638 }
2639
2640 /*
2641 * For now, kev_vendor_code and mbuf_tags use the same
2642 * mechanism.
2643 */
2644
2645 errno_t kev_vendor_code_find(
2646 const char *string,
2647 u_int32_t *out_vendor_code)
2648 {
2649 if (strlen(string) >= KEV_VENDOR_CODE_MAX_STR_LEN) {
2650 return EINVAL;
2651 }
2652 return net_str_id_find_internal(string, out_vendor_code, NSI_VENDOR_CODE, 1);
2653 }
2654
2655 errno_t kev_msg_post(struct kev_msg *event_msg)
2656 {
2657 mbuf_tag_id_t min_vendor, max_vendor;
2658
2659 net_str_id_first_last(&min_vendor, &max_vendor, NSI_VENDOR_CODE);
2660
2661 if (event_msg == NULL)
2662 return EINVAL;
2663
2664 /* Limit third parties to posting events for registered vendor codes only */
2665 if (event_msg->vendor_code < min_vendor ||
2666 event_msg->vendor_code > max_vendor)
2667 {
2668 return EINVAL;
2669 }
2670
2671 return kev_post_msg(event_msg);
2672 }
2673
2674
2675 int kev_post_msg(struct kev_msg *event_msg)
2676 {
2677 struct mbuf *m, *m2;
2678 struct kern_event_pcb *ev_pcb;
2679 struct kern_event_msg *ev;
2680 char *tmp;
2681 u_int32_t total_size;
2682 int i;
2683
2684 /* Verify the message is small enough to fit in one mbuf w/o cluster */
2685 total_size = KEV_MSG_HEADER_SIZE;
2686
2687 for (i = 0; i < 5; i++) {
2688 if (event_msg->dv[i].data_length == 0)
2689 break;
2690 total_size += event_msg->dv[i].data_length;
2691 }
2692
2693 if (total_size > MLEN) {
2694 return EMSGSIZE;
2695 }
2696
2697 m = m_get(M_DONTWAIT, MT_DATA);
2698 if (m == 0)
2699 return ENOBUFS;
2700
2701 ev = mtod(m, struct kern_event_msg *);
2702 total_size = KEV_MSG_HEADER_SIZE;
2703
2704 tmp = (char *) &ev->event_data[0];
2705 for (i = 0; i < 5; i++) {
2706 if (event_msg->dv[i].data_length == 0)
2707 break;
2708
2709 total_size += event_msg->dv[i].data_length;
2710 bcopy(event_msg->dv[i].data_ptr, tmp,
2711 event_msg->dv[i].data_length);
2712 tmp += event_msg->dv[i].data_length;
2713 }
2714
2715 ev->id = ++static_event_id;
2716 ev->total_size = total_size;
2717 ev->vendor_code = event_msg->vendor_code;
2718 ev->kev_class = event_msg->kev_class;
2719 ev->kev_subclass = event_msg->kev_subclass;
2720 ev->event_code = event_msg->event_code;
2721
2722 m->m_len = total_size;
2723 lck_mtx_lock(sys_mtx);
2724 for (ev_pcb = LIST_FIRST(&kern_event_head);
2725 ev_pcb;
2726 ev_pcb = LIST_NEXT(ev_pcb, ev_link)) {
2727
2728 if (ev_pcb->vendor_code_filter != KEV_ANY_VENDOR) {
2729 if (ev_pcb->vendor_code_filter != ev->vendor_code)
2730 continue;
2731
2732 if (ev_pcb->class_filter != KEV_ANY_CLASS) {
2733 if (ev_pcb->class_filter != ev->kev_class)
2734 continue;
2735
2736 if ((ev_pcb->subclass_filter != KEV_ANY_SUBCLASS) &&
2737 (ev_pcb->subclass_filter != ev->kev_subclass))
2738 continue;
2739 }
2740 }
2741
2742 m2 = m_copym(m, 0, m->m_len, M_NOWAIT);
2743 if (m2 == 0) {
2744 m_free(m);
2745 lck_mtx_unlock(sys_mtx);
2746 return ENOBUFS;
2747 }
2748 /* the socket is already locked because we hold the sys_mtx here */
2749 if (sbappendrecord(&ev_pcb->ev_socket->so_rcv, m2))
2750 sorwakeup(ev_pcb->ev_socket);
2751 }
2752
2753 m_free(m);
2754 lck_mtx_unlock(sys_mtx);
2755 return 0;
2756 }
2757
2758 static int
2759 kev_control(struct socket *so,
2760 u_long cmd,
2761 caddr_t data,
2762 __unused struct ifnet *ifp,
2763 __unused struct proc *p)
2764 {
2765 struct kev_request *kev_req = (struct kev_request *) data;
2766 struct kern_event_pcb *ev_pcb;
2767 struct kev_vendor_code *kev_vendor;
2768 u_int32_t *id_value = (u_int32_t *) data;
2769
2770
2771 switch (cmd) {
2772
2773 case SIOCGKEVID:
2774 *id_value = static_event_id;
2775 break;
2776
2777 case SIOCSKEVFILT:
2778 ev_pcb = (struct kern_event_pcb *) so->so_pcb;
2779 ev_pcb->vendor_code_filter = kev_req->vendor_code;
2780 ev_pcb->class_filter = kev_req->kev_class;
2781 ev_pcb->subclass_filter = kev_req->kev_subclass;
2782 break;
2783
2784 case SIOCGKEVFILT:
2785 ev_pcb = (struct kern_event_pcb *) so->so_pcb;
2786 kev_req->vendor_code = ev_pcb->vendor_code_filter;
2787 kev_req->kev_class = ev_pcb->class_filter;
2788 kev_req->kev_subclass = ev_pcb->subclass_filter;
2789 break;
2790
2791 case SIOCGKEVVENDOR:
2792 kev_vendor = (struct kev_vendor_code*)data;
2793
2794 /* Make sure string is NULL terminated */
2795 kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN-1] = 0;
2796
2797 return net_str_id_find_internal(kev_vendor->vendor_string,
2798 &kev_vendor->vendor_code, NSI_VENDOR_CODE, 0);
2799
2800 default:
2801 return ENOTSUP;
2802 }
2803
2804 return 0;
2805 }
2806
2807 #endif /* SOCKETS */
2808
2809
2810 int
2811 fill_kqueueinfo(struct kqueue *kq, struct kqueue_info * kinfo)
2812 {
2813 struct vinfo_stat * st;
2814
2815 /* No need for the funnel as fd is kept alive */
2816
2817 st = &kinfo->kq_stat;
2818
2819 st->vst_size = kq->kq_count;
2820 if (kq->kq_state & KQ_KEV64)
2821 st->vst_blksize = sizeof(struct kevent64_s);
2822 else
2823 st->vst_blksize = sizeof(struct kevent);
2824 st->vst_mode = S_IFIFO;
2825 if (kq->kq_state & KQ_SEL)
2826 kinfo->kq_state |= PROC_KQUEUE_SELECT;
2827 if (kq->kq_state & KQ_SLEEP)
2828 kinfo->kq_state |= PROC_KQUEUE_SLEEP;
2829
2830 return(0);
2831 }
2832