2 * Copyright (c) 1998-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1988, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
76 #include <sys/kernel.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/protosw.h>
80 #include <sys/domain.h>
81 #include <sys/queue.h>
84 #include <dev/random/randomdev.h>
86 #include <kern/kern_types.h>
87 #include <kern/simple_lock.h>
88 #include <kern/queue.h>
89 #include <kern/sched_prim.h>
90 #include <kern/backtrace.h>
91 #include <kern/cpu_number.h>
92 #include <kern/zalloc.h>
94 #include <libkern/OSAtomic.h>
95 #include <libkern/OSDebug.h>
96 #include <libkern/libkern.h>
100 #include <IOKit/IOMapper.h>
102 #include <machine/limits.h>
103 #include <machine/machine_routines.h>
105 #include <sys/mcache.h>
106 #include <net/ntstat.h>
109 * MBUF IMPLEMENTATION NOTES.
111 * There is a total of 5 per-CPU caches:
114 * This is a cache of rudimentary objects of MSIZE in size; each
115 * object represents an mbuf structure. This cache preserves only
116 * the m_type field of the mbuf during its transactions.
119 * This is a cache of rudimentary objects of MCLBYTES in size; each
120 * object represents a mcluster structure. This cache does not
121 * preserve the contents of the objects during its transactions.
124 * This is a cache of rudimentary objects of MBIGCLBYTES in size; each
125 * object represents a mbigcluster structure. This cache does not
126 * preserve the contents of the objects during its transaction.
129 * This is a cache of mbufs each having a cluster attached to it.
130 * It is backed by MC_MBUF and MC_CL rudimentary caches. Several
131 * fields of the mbuf related to the external cluster are preserved
132 * during transactions.
135 * This is a cache of mbufs each having a big cluster attached to it.
136 * It is backed by MC_MBUF and MC_BIGCL rudimentary caches. Several
137 * fields of the mbuf related to the external cluster are preserved
138 * during transactions.
142 * Allocation requests are handled first at the per-CPU (mcache) layer
143 * before falling back to the slab layer. Performance is optimal when
144 * the request is satisfied at the CPU layer because global data/lock
145 * never gets accessed. When the slab layer is entered for allocation,
146 * the slab freelist will be checked first for available objects before
147 * the VM backing store is invoked. Slab layer operations are serialized
148 * for all of the caches as the mbuf global lock is held most of the time.
149 * Allocation paths are different depending on the class of objects:
151 * a. Rudimentary object:
153 * { m_get_common(), m_clattach(), m_mclget(),
154 * m_mclalloc(), m_bigalloc(), m_copym_with_hdrs(),
155 * composite object allocation }
158 * | +-----------------------+
160 * mcache_alloc/mcache_alloc_ext() mbuf_slab_audit()
163 * [CPU cache] -------> (found?) -------+
166 * mbuf_slab_alloc() |
169 * +---------> [freelist] -------> (found?) -------+
175 * +---<<---- kmem_mb_alloc()
177 * b. Composite object:
179 * { m_getpackets_internal(), m_allocpacket_internal() }
182 * | +------ (done) ---------+
184 * mcache_alloc/mcache_alloc_ext() mbuf_cslab_audit()
187 * [CPU cache] -------> (found?) -------+
190 * mbuf_cslab_alloc() |
193 * [freelist] -------> (found?) -------+
196 * (rudimentary object) |
197 * mcache_alloc/mcache_alloc_ext() ------>>-----+
199 * Auditing notes: If auditing is enabled, buffers will be subjected to
200 * integrity checks by the audit routine. This is done by verifying their
201 * contents against DEADBEEF (free) pattern before returning them to caller.
202 * As part of this step, the routine will also record the transaction and
203 * pattern-fill the buffers with BADDCAFE (uninitialized) pattern. It will
204 * also restore any constructed data structure fields if necessary.
206 * OBJECT DEALLOCATION:
208 * Freeing an object simply involves placing it into the CPU cache; this
209 * pollutes the cache to benefit subsequent allocations. The slab layer
210 * will only be entered if the object is to be purged out of the cache.
211 * During normal operations, this happens only when the CPU layer resizes
212 * its bucket while it's adjusting to the allocation load. Deallocation
213 * paths are different depending on the class of objects:
215 * a. Rudimentary object:
217 * { m_free(), m_freem_list(), composite object deallocation }
220 * | +------ (done) ---------+
222 * mcache_free/mcache_free_ext() |
225 * mbuf_slab_audit() |
228 * [CPU cache] ---> (not purging?) -----+
234 * [freelist] ----------->>------------+
235 * (objects get purged to VM only on demand)
237 * b. Composite object:
239 * { m_free(), m_freem_list() }
242 * | +------ (done) ---------+
244 * mcache_free/mcache_free_ext() |
247 * mbuf_cslab_audit() |
250 * [CPU cache] ---> (not purging?) -----+
253 * mbuf_cslab_free() |
256 * [freelist] ---> (not purging?) -----+
259 * (rudimentary object) |
260 * mcache_free/mcache_free_ext() ------->>------+
262 * Auditing notes: If auditing is enabled, the audit routine will save
263 * any constructed data structure fields (if necessary) before filling the
264 * contents of the buffers with DEADBEEF (free) pattern and recording the
265 * transaction. Buffers that are freed (whether at CPU or slab layer) are
266 * expected to contain the free pattern.
270 * Debugging can be enabled by adding "mbuf_debug=0x3" to boot-args; this
271 * translates to the mcache flags (MCF_VERIFY | MCF_AUDIT). Additionally,
272 * the CPU layer cache can be disabled by setting the MCF_NOCPUCACHE flag,
273 * i.e. modify the boot argument parameter to "mbuf_debug=0x13". Leak
274 * detection may also be disabled by setting the MCF_NOLEAKLOG flag, e.g.
275 * "mbuf_debug=0x113". Note that debugging consumes more CPU and memory.
277 * Each object is associated with exactly one mcache_audit_t structure that
278 * contains the information related to its last buffer transaction. Given
279 * an address of an object, the audit structure can be retrieved by finding
280 * the position of the object relevant to the base address of the cluster:
282 * +------------+ +=============+
283 * | mbuf addr | | mclaudit[i] |
284 * +------------+ +=============+
286 * i = MTOBG(addr) +-------------+
287 * | +-----> | cl_audit[1] | -----> mcache_audit_t
288 * b = BGTOM(i) | +-------------+
290 * x = MCLIDX(b, addr) | +-------------+
291 * | | | cl_audit[7] |
292 * +-----------------+ +-------------+
295 * The mclaudit[] array is allocated at initialization time, but its contents
296 * get populated when the corresponding cluster is created. Because a page
297 * can be turned into NMBPG number of mbufs, we preserve enough space for the
298 * mbufs so that there is a 1-to-1 mapping between them. A page that never
299 * gets (or has not yet) turned into mbufs will use only cl_audit[0] with the
300 * remaining entries unused. For 16KB cluster, only one entry from the first
301 * page is allocated and used for the entire object.
304 /* TODO: should be in header file */
305 /* kernel translater */
306 extern vm_offset_t
kmem_mb_alloc(vm_map_t
, int, int, kern_return_t
*);
307 extern ppnum_t
pmap_find_phys(pmap_t pmap
, addr64_t va
);
308 extern vm_map_t mb_map
; /* special map */
310 static uint32_t mb_kmem_contig_failed
;
311 static uint32_t mb_kmem_failed
;
312 static uint32_t mb_kmem_one_failed
;
313 /* Timestamp of allocation failures. */
314 static uint64_t mb_kmem_contig_failed_ts
;
315 static uint64_t mb_kmem_failed_ts
;
316 static uint64_t mb_kmem_one_failed_ts
;
317 static uint64_t mb_kmem_contig_failed_size
;
318 static uint64_t mb_kmem_failed_size
;
319 static uint32_t mb_kmem_stats
[6];
320 static const char *mb_kmem_stats_labels
[] = { "INVALID_ARGUMENT",
328 decl_lck_mtx_data(static, mbuf_mlock_data
);
329 static lck_mtx_t
*mbuf_mlock
= &mbuf_mlock_data
;
330 static lck_attr_t
*mbuf_mlock_attr
;
331 static lck_grp_t
*mbuf_mlock_grp
;
332 static lck_grp_attr_t
*mbuf_mlock_grp_attr
;
334 /* Back-end (common) layer */
335 static uint64_t mb_expand_cnt
;
336 static uint64_t mb_expand_cl_cnt
;
337 static uint64_t mb_expand_cl_total
;
338 static uint64_t mb_expand_bigcl_cnt
;
339 static uint64_t mb_expand_bigcl_total
;
340 static uint64_t mb_expand_16kcl_cnt
;
341 static uint64_t mb_expand_16kcl_total
;
342 static boolean_t mbuf_worker_needs_wakeup
; /* wait channel for mbuf worker */
343 static uint32_t mbuf_worker_run_cnt
;
344 static uint64_t mbuf_worker_last_runtime
;
345 static uint64_t mbuf_drain_last_runtime
;
346 static int mbuf_worker_ready
; /* worker thread is runnable */
347 static unsigned int ncpu
; /* number of CPUs */
348 static ppnum_t
*mcl_paddr
; /* Array of cluster physical addresses */
349 static ppnum_t mcl_pages
; /* Size of array (# physical pages) */
350 static ppnum_t mcl_paddr_base
; /* Handle returned by IOMapper::iovmAlloc() */
351 static mcache_t
*ref_cache
; /* Cache of cluster reference & flags */
352 static mcache_t
*mcl_audit_con_cache
; /* Audit contents cache */
353 static unsigned int mbuf_debug
; /* patchable mbuf mcache flags */
354 static unsigned int mb_normalized
; /* number of packets "normalized" */
356 #define MB_GROWTH_AGGRESSIVE 1 /* Threshold: 1/2 of total */
357 #define MB_GROWTH_NORMAL 2 /* Threshold: 3/4 of total */
360 MC_MBUF
= 0, /* Regular mbuf */
362 MC_BIGCL
, /* Large (4KB) cluster */
363 MC_16KCL
, /* Jumbo (16KB) cluster */
364 MC_MBUF_CL
, /* mbuf + cluster */
365 MC_MBUF_BIGCL
, /* mbuf + large (4KB) cluster */
366 MC_MBUF_16KCL
/* mbuf + jumbo (16KB) cluster */
369 #define MBUF_CLASS_MIN MC_MBUF
370 #define MBUF_CLASS_MAX MC_MBUF_16KCL
371 #define MBUF_CLASS_LAST MC_16KCL
372 #define MBUF_CLASS_VALID(c) \
373 ((int)(c) >= MBUF_CLASS_MIN && (int)(c) <= MBUF_CLASS_MAX)
374 #define MBUF_CLASS_COMPOSITE(c) \
375 ((int)(c) > MBUF_CLASS_LAST)
379 * mbuf specific mcache allocation request flags.
381 #define MCR_COMP MCR_USR1 /* for MC_MBUF_{CL,BIGCL,16KCL} caches */
384 * Per-cluster slab structure.
386 * A slab is a cluster control structure that contains one or more object
387 * chunks; the available chunks are chained in the slab's freelist (sl_head).
388 * Each time a chunk is taken out of the slab, the slab's reference count
389 * gets incremented. When all chunks have been taken out, the empty slab
390 * gets removed (SLF_DETACHED) from the class's slab list. A chunk that is
391 * returned to a slab causes the slab's reference count to be decremented;
392 * it also causes the slab to be reinserted back to class's slab list, if
393 * it's not already done.
395 * Compartmentalizing of the object chunks into slabs allows us to easily
396 * merge one or more slabs together when the adjacent slabs are idle, as
397 * well as to convert or move a slab from one class to another; e.g. the
398 * mbuf cluster slab can be converted to a regular cluster slab when all
399 * mbufs in the slab have been freed.
401 * A slab may also span across multiple clusters for chunks larger than
402 * a cluster's size. In this case, only the slab of the first cluster is
403 * used. The rest of the slabs are marked with SLF_PARTIAL to indicate
404 * that they are part of the larger slab.
406 * Each slab controls a page of memory.
408 typedef struct mcl_slab
{
409 struct mcl_slab
*sl_next
; /* neighboring slab */
410 u_int8_t sl_class
; /* controlling mbuf class */
411 int8_t sl_refcnt
; /* outstanding allocations */
412 int8_t sl_chunks
; /* chunks (bufs) in this slab */
413 u_int16_t sl_flags
; /* slab flags (see below) */
414 u_int16_t sl_len
; /* slab length */
415 void *sl_base
; /* base of allocated memory */
416 void *sl_head
; /* first free buffer */
417 TAILQ_ENTRY(mcl_slab
) sl_link
; /* next/prev slab on freelist */
420 #define SLF_MAPPED 0x0001 /* backed by a mapped page */
421 #define SLF_PARTIAL 0x0002 /* part of another slab */
422 #define SLF_DETACHED 0x0004 /* not in slab freelist */
425 * The array of slabs are broken into groups of arrays per 1MB of kernel
426 * memory to reduce the footprint. Each group is allocated on demand
427 * whenever a new piece of memory mapped in from the VM crosses the 1MB
430 #define NSLABSPMB ((1 << MBSHIFT) >> PAGE_SHIFT)
432 typedef struct mcl_slabg
{
433 mcl_slab_t
*slg_slab
; /* group of slabs */
437 * Number of slabs needed to control a 16KB cluster object.
439 #define NSLABSP16KB (M16KCLBYTES >> PAGE_SHIFT)
442 * Per-cluster audit structure.
445 mcache_audit_t
**cl_audit
; /* array of audits */
449 struct thread
*msa_thread
; /* thread doing transaction */
450 struct thread
*msa_pthread
; /* previous transaction thread */
451 uint32_t msa_tstamp
; /* transaction timestamp (ms) */
452 uint32_t msa_ptstamp
; /* prev transaction timestamp (ms) */
453 uint16_t msa_depth
; /* pc stack depth */
454 uint16_t msa_pdepth
; /* previous transaction pc stack */
455 void *msa_stack
[MCACHE_STACK_DEPTH
];
456 void *msa_pstack
[MCACHE_STACK_DEPTH
];
457 } mcl_scratch_audit_t
;
461 * Size of data from the beginning of an mbuf that covers m_hdr,
462 * pkthdr and m_ext structures. If auditing is enabled, we allocate
463 * a shadow mbuf structure of this size inside each audit structure,
464 * and the contents of the real mbuf gets copied into it when the mbuf
465 * is freed. This allows us to pattern-fill the mbuf for integrity
466 * check, and to preserve any constructed mbuf fields (e.g. mbuf +
467 * cluster cache case). Note that we don't save the contents of
468 * clusters when they are freed; we simply pattern-fill them.
470 u_int8_t sc_mbuf
[(MSIZE
- _MHLEN
) + sizeof(_m_ext_t
)];
471 mcl_scratch_audit_t sc_scratch
__attribute__((aligned(8)));
472 } mcl_saved_contents_t
;
474 #define AUDIT_CONTENTS_SIZE (sizeof (mcl_saved_contents_t))
476 #define MCA_SAVED_MBUF_PTR(_mca) \
477 ((struct mbuf *)(void *)((mcl_saved_contents_t *) \
478 (_mca)->mca_contents)->sc_mbuf)
479 #define MCA_SAVED_MBUF_SIZE \
480 (sizeof (((mcl_saved_contents_t *)0)->sc_mbuf))
481 #define MCA_SAVED_SCRATCH_PTR(_mca) \
482 (&((mcl_saved_contents_t *)(_mca)->mca_contents)->sc_scratch)
485 * mbuf specific mcache audit flags
487 #define MB_INUSE 0x01 /* object has not been returned to slab */
488 #define MB_COMP_INUSE 0x02 /* object has not been returned to cslab */
489 #define MB_SCVALID 0x04 /* object has valid saved contents */
492 * Each of the following two arrays hold up to nmbclusters elements.
494 static mcl_audit_t
*mclaudit
; /* array of cluster audit information */
495 static unsigned int maxclaudit
; /* max # of entries in audit table */
496 static mcl_slabg_t
**slabstbl
; /* cluster slabs table */
497 static unsigned int maxslabgrp
; /* max # of entries in slabs table */
498 static unsigned int slabgrp
; /* # of entries in slabs table */
501 int nclusters
; /* # of clusters for non-jumbo (legacy) sizes */
502 int njcl
; /* # of clusters for jumbo sizes */
503 int njclbytes
; /* size of a jumbo cluster */
504 unsigned char *mbutl
; /* first mapped cluster address */
505 unsigned char *embutl
; /* ending virtual address of mclusters */
506 int _max_linkhdr
; /* largest link-level header */
507 int _max_protohdr
; /* largest protocol header */
508 int max_hdr
; /* largest link+protocol header */
509 int max_datalen
; /* MHLEN - max_hdr */
511 static boolean_t mclverify
; /* debug: pattern-checking */
512 static boolean_t mcltrace
; /* debug: stack tracing */
513 static boolean_t mclfindleak
; /* debug: leak detection */
514 static boolean_t mclexpleak
; /* debug: expose leak info to user space */
516 static struct timeval mb_start
; /* beginning of time */
518 /* mbuf leak detection variables */
519 static struct mleak_table mleak_table
;
520 static mleak_stat_t
*mleak_stat
;
522 #define MLEAK_STAT_SIZE(n) \
523 __builtin_offsetof(mleak_stat_t, ml_trace[n])
526 mcache_obj_t
*element
; /* the alloc'ed element, NULL if unused */
527 u_int32_t trace_index
; /* mtrace index for corresponding backtrace */
528 u_int32_t count
; /* How many objects were requested */
529 u_int64_t hitcount
; /* for determining hash effectiveness */
533 u_int64_t collisions
;
537 uintptr_t addr
[MLEAK_STACK_DEPTH
];
540 /* Size must be a power of two for the zhash to be able to just mask off bits */
541 #define MLEAK_ALLOCATION_MAP_NUM 512
542 #define MLEAK_TRACE_MAP_NUM 256
545 * Sample factor for how often to record a trace. This is overwritable
546 * by the boot-arg mleak_sample_factor.
548 #define MLEAK_SAMPLE_FACTOR 500
551 * Number of top leakers recorded.
553 #define MLEAK_NUM_TRACES 5
555 #define MB_LEAK_SPACING_64 " "
556 #define MB_LEAK_SPACING_32 " "
559 #define MB_LEAK_HDR_32 "\n\
560 trace [1] trace [2] trace [3] trace [4] trace [5] \n\
561 ---------- ---------- ---------- ---------- ---------- \n\
564 #define MB_LEAK_HDR_64 "\n\
565 trace [1] trace [2] trace [3] \
566 trace [4] trace [5] \n\
567 ------------------ ------------------ ------------------ \
568 ------------------ ------------------ \n\
571 static uint32_t mleak_alloc_buckets
= MLEAK_ALLOCATION_MAP_NUM
;
572 static uint32_t mleak_trace_buckets
= MLEAK_TRACE_MAP_NUM
;
574 /* Hashmaps of allocations and their corresponding traces */
575 static struct mallocation
*mleak_allocations
;
576 static struct mtrace
*mleak_traces
;
577 static struct mtrace
*mleak_top_trace
[MLEAK_NUM_TRACES
];
579 /* Lock to protect mleak tables from concurrent modification */
580 decl_lck_mtx_data(static, mleak_lock_data
);
581 static lck_mtx_t
*mleak_lock
= &mleak_lock_data
;
582 static lck_attr_t
*mleak_lock_attr
;
583 static lck_grp_t
*mleak_lock_grp
;
584 static lck_grp_attr_t
*mleak_lock_grp_attr
;
586 /* *Failed* large allocations. */
590 uintptr_t addr
[MLEAK_STACK_DEPTH
];
593 #define MTRACELARGE_NUM_TRACES 5
594 static struct mtracelarge mtracelarge_table
[MTRACELARGE_NUM_TRACES
];
596 static void mtracelarge_register(size_t size
);
598 /* Lock to protect the completion callback table */
599 static lck_grp_attr_t
*mbuf_tx_compl_tbl_lck_grp_attr
= NULL
;
600 static lck_attr_t
*mbuf_tx_compl_tbl_lck_attr
= NULL
;
601 static lck_grp_t
*mbuf_tx_compl_tbl_lck_grp
= NULL
;
602 decl_lck_rw_data(, mbuf_tx_compl_tbl_lck_rw_data
);
603 lck_rw_t
*mbuf_tx_compl_tbl_lock
= &mbuf_tx_compl_tbl_lck_rw_data
;
605 extern u_int32_t high_sb_max
;
607 /* The minimum number of objects that are allocated, to start. */
609 #define MINBIGCL (MINCL >> 1)
610 #define MIN16KCL (MINCL >> 2)
612 /* Low watermarks (only map in pages once free counts go below) */
613 #define MBIGCL_LOWAT MINBIGCL
614 #define M16KCL_LOWAT MIN16KCL
617 mbuf_class_t mtbl_class
; /* class type */
618 mcache_t
*mtbl_cache
; /* mcache for this buffer class */
619 TAILQ_HEAD(mcl_slhead
, mcl_slab
) mtbl_slablist
; /* slab list */
620 mcache_obj_t
*mtbl_cobjlist
; /* composite objects freelist */
621 mb_class_stat_t
*mtbl_stats
; /* statistics fetchable via sysctl */
622 u_int32_t mtbl_maxsize
; /* maximum buffer size */
623 int mtbl_minlimit
; /* minimum allowed */
624 int mtbl_maxlimit
; /* maximum allowed */
625 u_int32_t mtbl_wantpurge
; /* purge during next reclaim */
626 uint32_t mtbl_avgtotal
; /* average total on iOS */
627 u_int32_t mtbl_expand
; /* worker should expand the class */
630 #define m_class(c) mbuf_table[c].mtbl_class
631 #define m_cache(c) mbuf_table[c].mtbl_cache
632 #define m_slablist(c) mbuf_table[c].mtbl_slablist
633 #define m_cobjlist(c) mbuf_table[c].mtbl_cobjlist
634 #define m_maxsize(c) mbuf_table[c].mtbl_maxsize
635 #define m_minlimit(c) mbuf_table[c].mtbl_minlimit
636 #define m_maxlimit(c) mbuf_table[c].mtbl_maxlimit
637 #define m_wantpurge(c) mbuf_table[c].mtbl_wantpurge
638 #define m_cname(c) mbuf_table[c].mtbl_stats->mbcl_cname
639 #define m_size(c) mbuf_table[c].mtbl_stats->mbcl_size
640 #define m_total(c) mbuf_table[c].mtbl_stats->mbcl_total
641 #define m_active(c) mbuf_table[c].mtbl_stats->mbcl_active
642 #define m_infree(c) mbuf_table[c].mtbl_stats->mbcl_infree
643 #define m_slab_cnt(c) mbuf_table[c].mtbl_stats->mbcl_slab_cnt
644 #define m_alloc_cnt(c) mbuf_table[c].mtbl_stats->mbcl_alloc_cnt
645 #define m_free_cnt(c) mbuf_table[c].mtbl_stats->mbcl_free_cnt
646 #define m_notified(c) mbuf_table[c].mtbl_stats->mbcl_notified
647 #define m_purge_cnt(c) mbuf_table[c].mtbl_stats->mbcl_purge_cnt
648 #define m_fail_cnt(c) mbuf_table[c].mtbl_stats->mbcl_fail_cnt
649 #define m_ctotal(c) mbuf_table[c].mtbl_stats->mbcl_ctotal
650 #define m_peak(c) mbuf_table[c].mtbl_stats->mbcl_peak_reported
651 #define m_release_cnt(c) mbuf_table[c].mtbl_stats->mbcl_release_cnt
652 #define m_region_expand(c) mbuf_table[c].mtbl_expand
654 static mbuf_table_t mbuf_table
[] = {
656 * The caches for mbufs, regular clusters and big clusters.
657 * The average total values were based on data gathered by actual
658 * usage patterns on iOS.
660 { MC_MBUF
, NULL
, TAILQ_HEAD_INITIALIZER(m_slablist(MC_MBUF
)),
661 NULL
, NULL
, 0, 0, 0, 0, 3000, 0 },
662 { MC_CL
, NULL
, TAILQ_HEAD_INITIALIZER(m_slablist(MC_CL
)),
663 NULL
, NULL
, 0, 0, 0, 0, 2000, 0 },
664 { MC_BIGCL
, NULL
, TAILQ_HEAD_INITIALIZER(m_slablist(MC_BIGCL
)),
665 NULL
, NULL
, 0, 0, 0, 0, 1000, 0 },
666 { MC_16KCL
, NULL
, TAILQ_HEAD_INITIALIZER(m_slablist(MC_16KCL
)),
667 NULL
, NULL
, 0, 0, 0, 0, 200, 0 },
669 * The following are special caches; they serve as intermediate
670 * caches backed by the above rudimentary caches. Each object
671 * in the cache is an mbuf with a cluster attached to it. Unlike
672 * the above caches, these intermediate caches do not directly
673 * deal with the slab structures; instead, the constructed
674 * cached elements are simply stored in the freelists.
676 { MC_MBUF_CL
, NULL
, { NULL
, NULL
}, NULL
, NULL
, 0, 0, 0, 0, 2000, 0 },
677 { MC_MBUF_BIGCL
, NULL
, { NULL
, NULL
}, NULL
, NULL
, 0, 0, 0, 0, 1000, 0 },
678 { MC_MBUF_16KCL
, NULL
, { NULL
, NULL
}, NULL
, NULL
, 0, 0, 0, 0, 200, 0 },
681 #define NELEM(a) (sizeof (a) / sizeof ((a)[0]))
685 m_avgtotal(mbuf_class_t c
)
687 return mbuf_table
[c
].mtbl_avgtotal
;
690 static void *mb_waitchan
= &mbuf_table
; /* wait channel for all caches */
691 static int mb_waiters
; /* number of waiters */
693 boolean_t mb_peak_newreport
= FALSE
;
694 boolean_t mb_peak_firstreport
= FALSE
;
696 /* generate a report by default after 1 week of uptime */
697 #define MBUF_PEAK_FIRST_REPORT_THRESHOLD 604800
699 #define MB_WDT_MAXTIME 10 /* # of secs before watchdog panic */
700 static struct timeval mb_wdtstart
; /* watchdog start timestamp */
701 static char *mbuf_dump_buf
;
703 #define MBUF_DUMP_BUF_SIZE 4096
706 * mbuf watchdog is enabled by default. It is also toggeable via the
707 * kern.ipc.mb_watchdog sysctl.
708 * Garbage collection is enabled by default on embedded platforms.
709 * mb_drain_maxint controls the amount of time to wait (in seconds) before
710 * consecutive calls to mbuf_drain().
712 #if !XNU_TARGET_OS_OSX || DEVELOPMENT || DEBUG
713 static unsigned int mb_watchdog
= 1;
714 #else /* XNU_TARGET_OS_OSX && !DEVELOPMENT && !DEBUG */
715 static unsigned int mb_watchdog
= 0;
716 #endif /* XNU_TARGET_OS_OSX && !DEVELOPMENT && !DEBUG */
717 #if !XNU_TARGET_OS_OSX
718 static unsigned int mb_drain_maxint
= 60;
719 #else /* XNU_TARGET_OS_OSX */
720 static unsigned int mb_drain_maxint
= 0;
721 #endif /* XNU_TARGET_OS_OSX */
723 uintptr_t mb_obscure_extfree
__attribute__((visibility("hidden")));
724 uintptr_t mb_obscure_extref
__attribute__((visibility("hidden")));
727 static u_int32_t mb_redzone_cookie
;
728 static void m_redzone_init(struct mbuf
*);
729 static void m_redzone_verify(struct mbuf
*m
);
731 /* The following are used to serialize m_clalloc() */
732 static boolean_t mb_clalloc_busy
;
733 static void *mb_clalloc_waitchan
= &mb_clalloc_busy
;
734 static int mb_clalloc_waiters
;
736 static void mbuf_mtypes_sync(boolean_t
);
737 static int mbstat_sysctl SYSCTL_HANDLER_ARGS
;
738 static void mbuf_stat_sync(void);
739 static int mb_stat_sysctl SYSCTL_HANDLER_ARGS
;
740 static int mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS
;
741 static int mleak_table_sysctl SYSCTL_HANDLER_ARGS
;
742 static char *mbuf_dump(void);
743 static void mbuf_table_init(void);
744 static inline void m_incref(struct mbuf
*);
745 static inline u_int16_t
m_decref(struct mbuf
*);
746 static int m_clalloc(const u_int32_t
, const int, const u_int32_t
);
747 static void mbuf_worker_thread_init(void);
748 static mcache_obj_t
*slab_alloc(mbuf_class_t
, int);
749 static void slab_free(mbuf_class_t
, mcache_obj_t
*);
750 static unsigned int mbuf_slab_alloc(void *, mcache_obj_t
***,
752 static void mbuf_slab_free(void *, mcache_obj_t
*, int);
753 static void mbuf_slab_audit(void *, mcache_obj_t
*, boolean_t
);
754 static void mbuf_slab_notify(void *, u_int32_t
);
755 static unsigned int cslab_alloc(mbuf_class_t
, mcache_obj_t
***,
757 static unsigned int cslab_free(mbuf_class_t
, mcache_obj_t
*, int);
758 static unsigned int mbuf_cslab_alloc(void *, mcache_obj_t
***,
760 static void mbuf_cslab_free(void *, mcache_obj_t
*, int);
761 static void mbuf_cslab_audit(void *, mcache_obj_t
*, boolean_t
);
762 static int freelist_populate(mbuf_class_t
, unsigned int, int);
763 static void freelist_init(mbuf_class_t
);
764 static boolean_t
mbuf_cached_above(mbuf_class_t
, int);
765 static boolean_t
mbuf_steal(mbuf_class_t
, unsigned int);
766 static void m_reclaim(mbuf_class_t
, unsigned int, boolean_t
);
767 static int m_howmany(int, size_t);
768 static void mbuf_worker_thread(void);
769 static void mbuf_watchdog(void);
770 static boolean_t
mbuf_sleep(mbuf_class_t
, unsigned int, int);
772 static void mcl_audit_init(void *, mcache_audit_t
**, mcache_obj_t
**,
773 size_t, unsigned int);
774 static void mcl_audit_free(void *, unsigned int);
775 static mcache_audit_t
*mcl_audit_buf2mca(mbuf_class_t
, mcache_obj_t
*);
776 static void mcl_audit_mbuf(mcache_audit_t
*, void *, boolean_t
, boolean_t
);
777 static void mcl_audit_cluster(mcache_audit_t
*, void *, size_t, boolean_t
,
779 static void mcl_audit_restore_mbuf(struct mbuf
*, mcache_audit_t
*, boolean_t
);
780 static void mcl_audit_save_mbuf(struct mbuf
*, mcache_audit_t
*);
781 static void mcl_audit_scratch(mcache_audit_t
*);
782 static void mcl_audit_mcheck_panic(struct mbuf
*);
783 static void mcl_audit_verify_nextptr(void *, mcache_audit_t
*);
785 static void mleak_activate(void);
786 static void mleak_logger(u_int32_t
, mcache_obj_t
*, boolean_t
);
787 static boolean_t
mleak_log(uintptr_t *, mcache_obj_t
*, uint32_t, int);
788 static void mleak_free(mcache_obj_t
*);
789 static void mleak_sort_traces(void);
790 static void mleak_update_stats(void);
792 static mcl_slab_t
*slab_get(void *);
793 static void slab_init(mcl_slab_t
*, mbuf_class_t
, u_int32_t
,
794 void *, void *, unsigned int, int, int);
795 static void slab_insert(mcl_slab_t
*, mbuf_class_t
);
796 static void slab_remove(mcl_slab_t
*, mbuf_class_t
);
797 static boolean_t
slab_inrange(mcl_slab_t
*, void *);
798 static void slab_nextptr_panic(mcl_slab_t
*, void *);
799 static void slab_detach(mcl_slab_t
*);
800 static boolean_t
slab_is_detached(mcl_slab_t
*);
802 static int m_copyback0(struct mbuf
**, int, int, const void *, int, int);
803 static struct mbuf
*m_split0(struct mbuf
*, int, int, int);
804 __private_extern__
void mbuf_report_peak_usage(void);
805 static boolean_t
mbuf_report_usage(mbuf_class_t
);
806 #if DEBUG || DEVELOPMENT
807 #define mbwdog_logger(fmt, ...) _mbwdog_logger(__func__, __LINE__, fmt, ## __VA_ARGS__)
808 static void _mbwdog_logger(const char *func
, const int line
, const char *fmt
, ...);
809 static char *mbwdog_logging
;
810 const unsigned mbwdog_logging_size
= 4096;
811 static size_t mbwdog_logging_used
;
813 #define mbwdog_logger(fmt, ...) do { } while (0)
815 static void mbuf_drain_locked(boolean_t
);
817 /* flags for m_copyback0 */
818 #define M_COPYBACK0_COPYBACK 0x0001 /* copyback from cp */
819 #define M_COPYBACK0_PRESERVE 0x0002 /* preserve original data */
820 #define M_COPYBACK0_COW 0x0004 /* do copy-on-write */
821 #define M_COPYBACK0_EXTEND 0x0008 /* extend chain */
824 * This flag is set for all mbufs that come out of and into the composite
825 * mbuf + cluster caches, i.e. MC_MBUF_CL and MC_MBUF_BIGCL. mbufs that
826 * are marked with such a flag have clusters attached to them, and will be
827 * treated differently when they are freed; instead of being placed back
828 * into the mbuf and cluster freelists, the composite mbuf + cluster objects
829 * are placed back into the appropriate composite cache's freelist, and the
830 * actual freeing is deferred until the composite objects are purged. At
831 * such a time, this flag will be cleared from the mbufs and the objects
832 * will be freed into their own separate freelists.
834 #define EXTF_COMPOSITE 0x1
837 * This flag indicates that the external cluster is read-only, i.e. it is
838 * or was referred to by more than one mbufs. Once set, this flag is never
841 #define EXTF_READONLY 0x2
843 * This flag indicates that the external cluster is paired with the mbuf.
844 * Pairing implies an external free routine defined which will be invoked
845 * when the reference count drops to the minimum at m_free time. This
846 * flag is never cleared.
848 #define EXTF_PAIRED 0x4
851 (EXTF_COMPOSITE | EXTF_READONLY | EXTF_PAIRED)
853 #define MEXT_MINREF(m) ((m_get_rfa(m))->minref)
854 #define MEXT_REF(m) ((m_get_rfa(m))->refcnt)
855 #define MEXT_PREF(m) ((m_get_rfa(m))->prefcnt)
856 #define MEXT_FLAGS(m) ((m_get_rfa(m))->flags)
857 #define MEXT_PRIV(m) ((m_get_rfa(m))->priv)
858 #define MEXT_PMBUF(m) ((m_get_rfa(m))->paired)
859 #define MEXT_TOKEN(m) ((m_get_rfa(m))->ext_token)
860 #define MBUF_IS_COMPOSITE(m) \
861 (MEXT_REF(m) == MEXT_MINREF(m) && \
862 (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_COMPOSITE)
864 * This macro can be used to test if the mbuf is paired to an external
865 * cluster. The test for MEXT_PMBUF being equal to the mbuf in subject
866 * is important, as EXTF_PAIRED alone is insufficient since it is immutable,
867 * and thus survives calls to m_free_paired.
869 #define MBUF_IS_PAIRED(m) \
870 (((m)->m_flags & M_EXT) && \
871 (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_PAIRED && \
872 MEXT_PMBUF(m) == (m))
875 * Macros used to verify the integrity of the mbuf.
877 #define _MCHECK(m) { \
878 if ((m)->m_type != MT_FREE && !MBUF_IS_PAIRED(m)) { \
879 if (mclaudit == NULL) \
880 panic("MCHECK: m_type=%d m=%p", \
881 (u_int16_t)(m)->m_type, m); \
883 mcl_audit_mcheck_panic(m); \
887 #define MBUF_IN_MAP(addr) \
888 ((unsigned char *)(addr) >= mbutl && \
889 (unsigned char *)(addr) < embutl)
891 #define MRANGE(addr) { \
892 if (!MBUF_IN_MAP(addr)) \
893 panic("MRANGE: address out of range 0x%p", addr); \
897 * Macro version of mtod.
899 #define MTOD(m, t) ((t)((m)->m_data))
902 * Macros to obtain page index given a base cluster address
904 #define MTOPG(x) (((unsigned char *)x - mbutl) >> PAGE_SHIFT)
905 #define PGTOM(x) (mbutl + (x << PAGE_SHIFT))
908 * Macro to find the mbuf index relative to a base.
910 #define MBPAGEIDX(c, m) \
911 (((unsigned char *)(m) - (unsigned char *)(c)) >> MSIZESHIFT)
914 * Same thing for 2KB cluster index.
916 #define CLPAGEIDX(c, m) \
917 (((unsigned char *)(m) - (unsigned char *)(c)) >> MCLSHIFT)
920 * Macro to find 4KB cluster index relative to a base
922 #define BCLPAGEIDX(c, m) \
923 (((unsigned char *)(m) - (unsigned char *)(c)) >> MBIGCLSHIFT)
926 * Macros used during mbuf and cluster initialization.
928 #define MBUF_INIT_PKTHDR(m) { \
929 (m)->m_pkthdr.rcvif = NULL; \
930 (m)->m_pkthdr.pkt_hdr = NULL; \
931 (m)->m_pkthdr.len = 0; \
932 (m)->m_pkthdr.csum_flags = 0; \
933 (m)->m_pkthdr.csum_data = 0; \
934 (m)->m_pkthdr.vlan_tag = 0; \
935 (m)->m_pkthdr.comp_gencnt = 0; \
936 m_classifier_init(m, 0); \
942 #define MBUF_INIT(m, pkthdr, type) { \
944 (m)->m_next = (m)->m_nextpkt = NULL; \
946 (m)->m_type = type; \
947 if ((pkthdr) == 0) { \
948 (m)->m_data = (m)->m_dat; \
951 (m)->m_data = (m)->m_pktdat; \
952 (m)->m_flags = M_PKTHDR; \
953 MBUF_INIT_PKTHDR(m); \
957 #define MEXT_INIT(m, buf, size, free, arg, rfa, min, ref, pref, flag, \
959 (m)->m_data = (m)->m_ext.ext_buf = (buf); \
960 (m)->m_flags |= M_EXT; \
961 m_set_ext((m), (rfa), (free), (arg)); \
962 (m)->m_ext.ext_size = (size); \
963 MEXT_MINREF(m) = (min); \
964 MEXT_REF(m) = (ref); \
965 MEXT_PREF(m) = (pref); \
966 MEXT_FLAGS(m) = (flag); \
967 MEXT_PRIV(m) = (priv); \
968 MEXT_PMBUF(m) = (pm); \
971 #define MBUF_CL_INIT(m, buf, rfa, ref, flag) \
972 MEXT_INIT(m, buf, m_maxsize(MC_CL), NULL, NULL, rfa, 0, \
973 ref, 0, flag, 0, NULL)
975 #define MBUF_BIGCL_INIT(m, buf, rfa, ref, flag) \
976 MEXT_INIT(m, buf, m_maxsize(MC_BIGCL), m_bigfree, NULL, rfa, 0, \
977 ref, 0, flag, 0, NULL)
979 #define MBUF_16KCL_INIT(m, buf, rfa, ref, flag) \
980 MEXT_INIT(m, buf, m_maxsize(MC_16KCL), m_16kfree, NULL, rfa, 0, \
981 ref, 0, flag, 0, NULL)
984 * Macro to convert BSD malloc sleep flag to mcache's
986 #define MSLEEPF(f) ((!((f) & M_DONTWAIT)) ? MCR_SLEEP : MCR_NOSLEEP)
989 * The structure that holds all mbuf class statistics exportable via sysctl.
990 * Similar to mbstat structure, the mb_stat structure is protected by the
991 * global mbuf lock. It contains additional information about the classes
992 * that allows for a more accurate view of the state of the allocator.
994 struct mb_stat
*mb_stat
;
995 struct omb_stat
*omb_stat
; /* For backwards compatibility */
997 #define MB_STAT_SIZE(n) \
998 __builtin_offsetof(mb_stat_t, mbs_class[n])
999 #define OMB_STAT_SIZE(n) \
1000 __builtin_offsetof(struct omb_stat, mbs_class[n])
1003 * The legacy structure holding all of the mbuf allocation statistics.
1004 * The actual statistics used by the kernel are stored in the mbuf_table
1005 * instead, and are updated atomically while the global mbuf lock is held.
1006 * They are mirrored in mbstat to support legacy applications (e.g. netstat).
1007 * Unlike before, the kernel no longer relies on the contents of mbstat for
1008 * its operations (e.g. cluster expansion) because the structure is exposed
1009 * to outside and could possibly be modified, therefore making it unsafe.
1010 * With the exception of the mbstat.m_mtypes array (see below), all of the
1011 * statistics are updated as they change.
1013 struct mbstat mbstat
;
1015 #define MBSTAT_MTYPES_MAX \
1016 (sizeof (mbstat.m_mtypes) / sizeof (mbstat.m_mtypes[0]))
1019 * Allocation statistics related to mbuf types (up to MT_MAX-1) are updated
1020 * atomically and stored in a per-CPU structure which is lock-free; this is
1021 * done in order to avoid writing to the global mbstat data structure which
1022 * would cause false sharing. During sysctl request for kern.ipc.mbstat,
1023 * the statistics across all CPUs will be converged into the mbstat.m_mtypes
1024 * array and returned to the application. Any updates for types greater or
1025 * equal than MT_MAX would be done atomically to the mbstat; this slows down
1026 * performance but is okay since the kernel uses only up to MT_MAX-1 while
1027 * anything beyond that (up to type 255) is considered a corner case.
1030 unsigned int cpu_mtypes
[MT_MAX
];
1031 } __attribute__((aligned(MAX_CPU_CACHE_LINE_SIZE
), packed
)) mtypes_cpu_t
;
1034 mtypes_cpu_t mbs_cpu
[1];
1037 static mbuf_mtypes_t
*mbuf_mtypes
; /* per-CPU statistics */
1039 #define MBUF_MTYPES_SIZE(n) \
1040 __builtin_offsetof(mbuf_mtypes_t, mbs_cpu[n])
1042 #define MTYPES_CPU(p) \
1043 ((mtypes_cpu_t *)(void *)((char *)(p) + MBUF_MTYPES_SIZE(cpu_number())))
1045 #define mtype_stat_add(type, n) { \
1046 if ((unsigned)(type) < MT_MAX) { \
1047 mtypes_cpu_t *mbs = MTYPES_CPU(mbuf_mtypes); \
1048 atomic_add_32(&mbs->cpu_mtypes[type], n); \
1049 } else if ((unsigned)(type) < (unsigned)MBSTAT_MTYPES_MAX) { \
1050 atomic_add_16((int16_t *)&mbstat.m_mtypes[type], n); \
1054 #define mtype_stat_sub(t, n) mtype_stat_add(t, -(n))
1055 #define mtype_stat_inc(t) mtype_stat_add(t, 1)
1056 #define mtype_stat_dec(t) mtype_stat_sub(t, 1)
1059 mbuf_mtypes_sync(boolean_t locked
)
1065 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
1068 bzero(&mtc
, sizeof(mtc
));
1069 for (m
= 0; m
< ncpu
; m
++) {
1070 mtypes_cpu_t
*scp
= &mbuf_mtypes
->mbs_cpu
[m
];
1073 bcopy(&scp
->cpu_mtypes
, &temp
.cpu_mtypes
,
1074 sizeof(temp
.cpu_mtypes
));
1076 for (n
= 0; n
< MT_MAX
; n
++) {
1077 mtc
.cpu_mtypes
[n
] += temp
.cpu_mtypes
[n
];
1081 lck_mtx_lock(mbuf_mlock
);
1083 for (n
= 0; n
< MT_MAX
; n
++) {
1084 mbstat
.m_mtypes
[n
] = mtc
.cpu_mtypes
[n
];
1087 lck_mtx_unlock(mbuf_mlock
);
1092 mbstat_sysctl SYSCTL_HANDLER_ARGS
1094 #pragma unused(oidp, arg1, arg2)
1095 mbuf_mtypes_sync(FALSE
);
1097 return SYSCTL_OUT(req
, &mbstat
, sizeof(mbstat
));
1101 mbuf_stat_sync(void)
1103 mb_class_stat_t
*sp
;
1108 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
1110 for (k
= 0; k
< NELEM(mbuf_table
); k
++) {
1112 ccp
= &cp
->mc_cpu
[0];
1113 bktsize
= ccp
->cc_bktsize
;
1114 sp
= mbuf_table
[k
].mtbl_stats
;
1116 if (cp
->mc_flags
& MCF_NOCPUCACHE
) {
1117 sp
->mbcl_mc_state
= MCS_DISABLED
;
1118 } else if (cp
->mc_purge_cnt
> 0) {
1119 sp
->mbcl_mc_state
= MCS_PURGING
;
1120 } else if (bktsize
== 0) {
1121 sp
->mbcl_mc_state
= MCS_OFFLINE
;
1123 sp
->mbcl_mc_state
= MCS_ONLINE
;
1126 sp
->mbcl_mc_cached
= 0;
1127 for (m
= 0; m
< ncpu
; m
++) {
1128 ccp
= &cp
->mc_cpu
[m
];
1129 if (ccp
->cc_objs
> 0) {
1130 sp
->mbcl_mc_cached
+= ccp
->cc_objs
;
1132 if (ccp
->cc_pobjs
> 0) {
1133 sp
->mbcl_mc_cached
+= ccp
->cc_pobjs
;
1136 sp
->mbcl_mc_cached
+= (cp
->mc_full
.bl_total
* bktsize
);
1137 sp
->mbcl_active
= sp
->mbcl_total
- sp
->mbcl_mc_cached
-
1140 sp
->mbcl_mc_waiter_cnt
= cp
->mc_waiter_cnt
;
1141 sp
->mbcl_mc_wretry_cnt
= cp
->mc_wretry_cnt
;
1142 sp
->mbcl_mc_nwretry_cnt
= cp
->mc_nwretry_cnt
;
1144 /* Calculate total count specific to each class */
1145 sp
->mbcl_ctotal
= sp
->mbcl_total
;
1146 switch (m_class(k
)) {
1148 /* Deduct mbufs used in composite caches */
1149 sp
->mbcl_ctotal
-= (m_total(MC_MBUF_CL
) +
1150 m_total(MC_MBUF_BIGCL
));
1154 /* Deduct clusters used in composite cache */
1155 sp
->mbcl_ctotal
-= m_total(MC_MBUF_CL
);
1159 /* Deduct clusters used in composite cache */
1160 sp
->mbcl_ctotal
-= m_total(MC_MBUF_BIGCL
);
1164 /* Deduct clusters used in composite cache */
1165 sp
->mbcl_ctotal
-= m_total(MC_MBUF_16KCL
);
1175 mb_stat_sysctl SYSCTL_HANDLER_ARGS
1177 #pragma unused(oidp, arg1, arg2)
1179 int k
, statsz
, proc64
= proc_is64bit(req
->p
);
1181 lck_mtx_lock(mbuf_mlock
);
1185 struct omb_class_stat
*oc
;
1186 struct mb_class_stat
*c
;
1188 omb_stat
->mbs_cnt
= mb_stat
->mbs_cnt
;
1189 oc
= &omb_stat
->mbs_class
[0];
1190 c
= &mb_stat
->mbs_class
[0];
1191 for (k
= 0; k
< omb_stat
->mbs_cnt
; k
++, oc
++, c
++) {
1192 (void) snprintf(oc
->mbcl_cname
, sizeof(oc
->mbcl_cname
),
1193 "%s", c
->mbcl_cname
);
1194 oc
->mbcl_size
= c
->mbcl_size
;
1195 oc
->mbcl_total
= c
->mbcl_total
;
1196 oc
->mbcl_active
= c
->mbcl_active
;
1197 oc
->mbcl_infree
= c
->mbcl_infree
;
1198 oc
->mbcl_slab_cnt
= c
->mbcl_slab_cnt
;
1199 oc
->mbcl_alloc_cnt
= c
->mbcl_alloc_cnt
;
1200 oc
->mbcl_free_cnt
= c
->mbcl_free_cnt
;
1201 oc
->mbcl_notified
= c
->mbcl_notified
;
1202 oc
->mbcl_purge_cnt
= c
->mbcl_purge_cnt
;
1203 oc
->mbcl_fail_cnt
= c
->mbcl_fail_cnt
;
1204 oc
->mbcl_ctotal
= c
->mbcl_ctotal
;
1205 oc
->mbcl_release_cnt
= c
->mbcl_release_cnt
;
1206 oc
->mbcl_mc_state
= c
->mbcl_mc_state
;
1207 oc
->mbcl_mc_cached
= c
->mbcl_mc_cached
;
1208 oc
->mbcl_mc_waiter_cnt
= c
->mbcl_mc_waiter_cnt
;
1209 oc
->mbcl_mc_wretry_cnt
= c
->mbcl_mc_wretry_cnt
;
1210 oc
->mbcl_mc_nwretry_cnt
= c
->mbcl_mc_nwretry_cnt
;
1213 statsz
= OMB_STAT_SIZE(NELEM(mbuf_table
));
1216 statsz
= MB_STAT_SIZE(NELEM(mbuf_table
));
1219 lck_mtx_unlock(mbuf_mlock
);
1221 return SYSCTL_OUT(req
, statp
, statsz
);
1225 mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS
1227 #pragma unused(oidp, arg1, arg2)
1230 /* Ensure leak tracing turned on */
1231 if (!mclfindleak
|| !mclexpleak
) {
1235 lck_mtx_lock(mleak_lock
);
1236 mleak_update_stats();
1237 i
= SYSCTL_OUT(req
, mleak_stat
, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES
));
1238 lck_mtx_unlock(mleak_lock
);
1244 mleak_table_sysctl SYSCTL_HANDLER_ARGS
1246 #pragma unused(oidp, arg1, arg2)
1249 /* Ensure leak tracing turned on */
1250 if (!mclfindleak
|| !mclexpleak
) {
1254 lck_mtx_lock(mleak_lock
);
1255 i
= SYSCTL_OUT(req
, &mleak_table
, sizeof(mleak_table
));
1256 lck_mtx_unlock(mleak_lock
);
1262 m_incref(struct mbuf
*m
)
1265 volatile UInt16
*addr
= (volatile UInt16
*)&MEXT_REF(m
);
1271 } while (!OSCompareAndSwap16(old
, new, addr
));
1274 * If cluster is shared, mark it with (sticky) EXTF_READONLY;
1275 * we don't clear the flag when the refcount goes back to the
1276 * minimum, to simplify code calling m_mclhasreference().
1278 if (new > (MEXT_MINREF(m
) + 1) && !(MEXT_FLAGS(m
) & EXTF_READONLY
)) {
1279 (void) OSBitOrAtomic16(EXTF_READONLY
, &MEXT_FLAGS(m
));
1283 static inline u_int16_t
1284 m_decref(struct mbuf
*m
)
1287 volatile UInt16
*addr
= (volatile UInt16
*)&MEXT_REF(m
);
1293 } while (!OSCompareAndSwap16(old
, new, addr
));
1299 mbuf_table_init(void)
1301 unsigned int b
, c
, s
;
1302 int m
, config_mbuf_jumbo
= 0;
1304 MALLOC(omb_stat
, struct omb_stat
*, OMB_STAT_SIZE(NELEM(mbuf_table
)),
1305 M_TEMP
, M_WAITOK
| M_ZERO
);
1306 VERIFY(omb_stat
!= NULL
);
1308 MALLOC(mb_stat
, mb_stat_t
*, MB_STAT_SIZE(NELEM(mbuf_table
)),
1309 M_TEMP
, M_WAITOK
| M_ZERO
);
1310 VERIFY(mb_stat
!= NULL
);
1312 mb_stat
->mbs_cnt
= NELEM(mbuf_table
);
1313 for (m
= 0; m
< NELEM(mbuf_table
); m
++) {
1314 mbuf_table
[m
].mtbl_stats
= &mb_stat
->mbs_class
[m
];
1317 #if CONFIG_MBUF_JUMBO
1318 config_mbuf_jumbo
= 1;
1319 #endif /* CONFIG_MBUF_JUMBO */
1321 if (config_mbuf_jumbo
== 1 || PAGE_SIZE
== M16KCLBYTES
) {
1323 * Set aside 1/3 of the mbuf cluster map for jumbo
1324 * clusters; we do this only on platforms where jumbo
1325 * cluster pool is enabled.
1327 njcl
= nmbclusters
/ 3;
1328 njclbytes
= M16KCLBYTES
;
1332 * nclusters holds both the 2KB and 4KB pools, so ensure it's
1333 * a multiple of 4KB clusters.
1335 nclusters
= P2ROUNDDOWN(nmbclusters
- njcl
, NCLPG
);
1338 * Each jumbo cluster takes 8 2KB clusters, so make
1339 * sure that the pool size is evenly divisible by 8;
1340 * njcl is in 2KB unit, hence treated as such.
1342 njcl
= P2ROUNDDOWN(nmbclusters
- nclusters
, NCLPJCL
);
1344 /* Update nclusters with rounded down value of njcl */
1345 nclusters
= P2ROUNDDOWN(nmbclusters
- njcl
, NCLPG
);
1349 * njcl is valid only on platforms with 16KB jumbo clusters or
1350 * with 16KB pages, where it is configured to 1/3 of the pool
1351 * size. On these platforms, the remaining is used for 2KB
1352 * and 4KB clusters. On platforms without 16KB jumbo clusters,
1353 * the entire pool is used for both 2KB and 4KB clusters. A 4KB
1354 * cluster can either be splitted into 16 mbufs, or into 2 2KB
1357 * +---+---+------------ ... -----------+------- ... -------+
1358 * | c | b | s | njcl |
1359 * +---+---+------------ ... -----------+------- ... -------+
1361 * 1/32th of the shared region is reserved for pure 2KB and 4KB
1362 * clusters (1/64th each.)
1364 c
= P2ROUNDDOWN((nclusters
>> 6), NCLPG
); /* in 2KB unit */
1365 b
= P2ROUNDDOWN((nclusters
>> (6 + NCLPBGSHIFT
)), NBCLPG
); /* in 4KB unit */
1366 s
= nclusters
- (c
+ (b
<< NCLPBGSHIFT
)); /* in 2KB unit */
1369 * 1/64th (c) is reserved for 2KB clusters.
1371 m_minlimit(MC_CL
) = c
;
1372 m_maxlimit(MC_CL
) = s
+ c
; /* in 2KB unit */
1373 m_maxsize(MC_CL
) = m_size(MC_CL
) = MCLBYTES
;
1374 (void) snprintf(m_cname(MC_CL
), MAX_MBUF_CNAME
, "cl");
1377 * Another 1/64th (b) of the map is reserved for 4KB clusters.
1378 * It cannot be turned into 2KB clusters or mbufs.
1380 m_minlimit(MC_BIGCL
) = b
;
1381 m_maxlimit(MC_BIGCL
) = (s
>> NCLPBGSHIFT
) + b
; /* in 4KB unit */
1382 m_maxsize(MC_BIGCL
) = m_size(MC_BIGCL
) = MBIGCLBYTES
;
1383 (void) snprintf(m_cname(MC_BIGCL
), MAX_MBUF_CNAME
, "bigcl");
1386 * The remaining 31/32ths (s) are all-purpose (mbufs, 2KB, or 4KB)
1388 m_minlimit(MC_MBUF
) = 0;
1389 m_maxlimit(MC_MBUF
) = (s
<< NMBPCLSHIFT
); /* in mbuf unit */
1390 m_maxsize(MC_MBUF
) = m_size(MC_MBUF
) = MSIZE
;
1391 (void) snprintf(m_cname(MC_MBUF
), MAX_MBUF_CNAME
, "mbuf");
1394 * Set limits for the composite classes.
1396 m_minlimit(MC_MBUF_CL
) = 0;
1397 m_maxlimit(MC_MBUF_CL
) = m_maxlimit(MC_CL
);
1398 m_maxsize(MC_MBUF_CL
) = MCLBYTES
;
1399 m_size(MC_MBUF_CL
) = m_size(MC_MBUF
) + m_size(MC_CL
);
1400 (void) snprintf(m_cname(MC_MBUF_CL
), MAX_MBUF_CNAME
, "mbuf_cl");
1402 m_minlimit(MC_MBUF_BIGCL
) = 0;
1403 m_maxlimit(MC_MBUF_BIGCL
) = m_maxlimit(MC_BIGCL
);
1404 m_maxsize(MC_MBUF_BIGCL
) = MBIGCLBYTES
;
1405 m_size(MC_MBUF_BIGCL
) = m_size(MC_MBUF
) + m_size(MC_BIGCL
);
1406 (void) snprintf(m_cname(MC_MBUF_BIGCL
), MAX_MBUF_CNAME
, "mbuf_bigcl");
1409 * And for jumbo classes.
1411 m_minlimit(MC_16KCL
) = 0;
1412 m_maxlimit(MC_16KCL
) = (njcl
>> NCLPJCLSHIFT
); /* in 16KB unit */
1413 m_maxsize(MC_16KCL
) = m_size(MC_16KCL
) = M16KCLBYTES
;
1414 (void) snprintf(m_cname(MC_16KCL
), MAX_MBUF_CNAME
, "16kcl");
1416 m_minlimit(MC_MBUF_16KCL
) = 0;
1417 m_maxlimit(MC_MBUF_16KCL
) = m_maxlimit(MC_16KCL
);
1418 m_maxsize(MC_MBUF_16KCL
) = M16KCLBYTES
;
1419 m_size(MC_MBUF_16KCL
) = m_size(MC_MBUF
) + m_size(MC_16KCL
);
1420 (void) snprintf(m_cname(MC_MBUF_16KCL
), MAX_MBUF_CNAME
, "mbuf_16kcl");
1423 * Initialize the legacy mbstat structure.
1425 bzero(&mbstat
, sizeof(mbstat
));
1426 mbstat
.m_msize
= m_maxsize(MC_MBUF
);
1427 mbstat
.m_mclbytes
= m_maxsize(MC_CL
);
1428 mbstat
.m_minclsize
= MINCLSIZE
;
1429 mbstat
.m_mlen
= MLEN
;
1430 mbstat
.m_mhlen
= MHLEN
;
1431 mbstat
.m_bigmclbytes
= m_maxsize(MC_BIGCL
);
1434 #if defined(__LP64__)
1435 typedef struct ncl_tbl
{
1436 uint64_t nt_maxmem
; /* memory (sane) size */
1437 uint32_t nt_mbpool
; /* mbuf pool size */
1440 static const ncl_tbl_t ncl_table
[] = {
1441 { (1ULL << GBSHIFT
) /* 1 GB */, (64 << MBSHIFT
) /* 64 MB */ },
1442 { (1ULL << (GBSHIFT
+ 2)) /* 4 GB */, (96 << MBSHIFT
) /* 96 MB */ },
1443 { (1ULL << (GBSHIFT
+ 3)) /* 8 GB */, (128 << MBSHIFT
) /* 128 MB */ },
1444 { (1ULL << (GBSHIFT
+ 4)) /* 16 GB */, (256 << MBSHIFT
) /* 256 MB */ },
1445 { (1ULL << (GBSHIFT
+ 5)) /* 32 GB */, (512 << MBSHIFT
) /* 512 MB */ },
1448 #endif /* __LP64__ */
1450 __private_extern__
unsigned int
1451 mbuf_default_ncl(uint64_t mem
)
1453 #if !defined(__LP64__)
1456 * 32-bit kernel (default to 64MB of mbuf pool for >= 1GB RAM).
1458 if ((n
= ((mem
/ 16) / MCLBYTES
)) > 32768) {
1464 * 64-bit kernel (mbuf pool size based on table).
1466 n
= ncl_table
[0].nt_mbpool
;
1467 for (i
= 0; ncl_table
[i
].nt_mbpool
!= 0; i
++) {
1468 if (mem
< ncl_table
[i
].nt_maxmem
) {
1471 n
= ncl_table
[i
].nt_mbpool
;
1474 #endif /* !__LP64__ */
1478 __private_extern__
void
1482 unsigned int initmcl
= 0;
1484 thread_t thread
= THREAD_NULL
;
1486 microuptime(&mb_start
);
1489 * These MBUF_ values must be equal to their private counterparts.
1491 _CASSERT(MBUF_EXT
== M_EXT
);
1492 _CASSERT(MBUF_PKTHDR
== M_PKTHDR
);
1493 _CASSERT(MBUF_EOR
== M_EOR
);
1494 _CASSERT(MBUF_LOOP
== M_LOOP
);
1495 _CASSERT(MBUF_BCAST
== M_BCAST
);
1496 _CASSERT(MBUF_MCAST
== M_MCAST
);
1497 _CASSERT(MBUF_FRAG
== M_FRAG
);
1498 _CASSERT(MBUF_FIRSTFRAG
== M_FIRSTFRAG
);
1499 _CASSERT(MBUF_LASTFRAG
== M_LASTFRAG
);
1500 _CASSERT(MBUF_PROMISC
== M_PROMISC
);
1501 _CASSERT(MBUF_HASFCS
== M_HASFCS
);
1503 _CASSERT(MBUF_TYPE_FREE
== MT_FREE
);
1504 _CASSERT(MBUF_TYPE_DATA
== MT_DATA
);
1505 _CASSERT(MBUF_TYPE_HEADER
== MT_HEADER
);
1506 _CASSERT(MBUF_TYPE_SOCKET
== MT_SOCKET
);
1507 _CASSERT(MBUF_TYPE_PCB
== MT_PCB
);
1508 _CASSERT(MBUF_TYPE_RTABLE
== MT_RTABLE
);
1509 _CASSERT(MBUF_TYPE_HTABLE
== MT_HTABLE
);
1510 _CASSERT(MBUF_TYPE_ATABLE
== MT_ATABLE
);
1511 _CASSERT(MBUF_TYPE_SONAME
== MT_SONAME
);
1512 _CASSERT(MBUF_TYPE_SOOPTS
== MT_SOOPTS
);
1513 _CASSERT(MBUF_TYPE_FTABLE
== MT_FTABLE
);
1514 _CASSERT(MBUF_TYPE_RIGHTS
== MT_RIGHTS
);
1515 _CASSERT(MBUF_TYPE_IFADDR
== MT_IFADDR
);
1516 _CASSERT(MBUF_TYPE_CONTROL
== MT_CONTROL
);
1517 _CASSERT(MBUF_TYPE_OOBDATA
== MT_OOBDATA
);
1519 _CASSERT(MBUF_TSO_IPV4
== CSUM_TSO_IPV4
);
1520 _CASSERT(MBUF_TSO_IPV6
== CSUM_TSO_IPV6
);
1521 _CASSERT(MBUF_CSUM_REQ_SUM16
== CSUM_PARTIAL
);
1522 _CASSERT(MBUF_CSUM_TCP_SUM16
== MBUF_CSUM_REQ_SUM16
);
1523 _CASSERT(MBUF_CSUM_REQ_ZERO_INVERT
== CSUM_ZERO_INVERT
);
1524 _CASSERT(MBUF_CSUM_REQ_IP
== CSUM_IP
);
1525 _CASSERT(MBUF_CSUM_REQ_TCP
== CSUM_TCP
);
1526 _CASSERT(MBUF_CSUM_REQ_UDP
== CSUM_UDP
);
1527 _CASSERT(MBUF_CSUM_REQ_TCPIPV6
== CSUM_TCPIPV6
);
1528 _CASSERT(MBUF_CSUM_REQ_UDPIPV6
== CSUM_UDPIPV6
);
1529 _CASSERT(MBUF_CSUM_DID_IP
== CSUM_IP_CHECKED
);
1530 _CASSERT(MBUF_CSUM_IP_GOOD
== CSUM_IP_VALID
);
1531 _CASSERT(MBUF_CSUM_DID_DATA
== CSUM_DATA_VALID
);
1532 _CASSERT(MBUF_CSUM_PSEUDO_HDR
== CSUM_PSEUDO_HDR
);
1534 _CASSERT(MBUF_WAITOK
== M_WAIT
);
1535 _CASSERT(MBUF_DONTWAIT
== M_DONTWAIT
);
1536 _CASSERT(MBUF_COPYALL
== M_COPYALL
);
1538 _CASSERT(MBUF_SC2TC(MBUF_SC_BK_SYS
) == MBUF_TC_BK
);
1539 _CASSERT(MBUF_SC2TC(MBUF_SC_BK
) == MBUF_TC_BK
);
1540 _CASSERT(MBUF_SC2TC(MBUF_SC_BE
) == MBUF_TC_BE
);
1541 _CASSERT(MBUF_SC2TC(MBUF_SC_RD
) == MBUF_TC_BE
);
1542 _CASSERT(MBUF_SC2TC(MBUF_SC_OAM
) == MBUF_TC_BE
);
1543 _CASSERT(MBUF_SC2TC(MBUF_SC_AV
) == MBUF_TC_VI
);
1544 _CASSERT(MBUF_SC2TC(MBUF_SC_RV
) == MBUF_TC_VI
);
1545 _CASSERT(MBUF_SC2TC(MBUF_SC_VI
) == MBUF_TC_VI
);
1546 _CASSERT(MBUF_SC2TC(MBUF_SC_SIG
) == MBUF_TC_VI
);
1547 _CASSERT(MBUF_SC2TC(MBUF_SC_VO
) == MBUF_TC_VO
);
1548 _CASSERT(MBUF_SC2TC(MBUF_SC_CTL
) == MBUF_TC_VO
);
1550 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BK
) == SCVAL_BK
);
1551 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BE
) == SCVAL_BE
);
1552 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VI
) == SCVAL_VI
);
1553 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VO
) == SCVAL_VO
);
1555 /* Module specific scratch space (32-bit alignment requirement) */
1556 _CASSERT(!(offsetof(struct mbuf
, m_pkthdr
.pkt_mpriv
) %
1559 /* pktdata needs to start at 128-bit offset! */
1560 _CASSERT((offsetof(struct mbuf
, m_pktdat
) % 16) == 0);
1562 /* Initialize random red zone cookie value */
1563 _CASSERT(sizeof(mb_redzone_cookie
) ==
1564 sizeof(((struct pkthdr
*)0)->redzone
));
1565 read_random(&mb_redzone_cookie
, sizeof(mb_redzone_cookie
));
1566 read_random(&mb_obscure_extref
, sizeof(mb_obscure_extref
));
1567 read_random(&mb_obscure_extfree
, sizeof(mb_obscure_extfree
));
1568 mb_obscure_extref
|= 0x3;
1569 mb_obscure_extfree
|= 0x3;
1571 /* Make sure we don't save more than we should */
1572 _CASSERT(MCA_SAVED_MBUF_SIZE
<= sizeof(struct mbuf
));
1574 if (nmbclusters
== 0) {
1575 nmbclusters
= NMBCLUSTERS
;
1578 /* This should be a sane (at least even) value by now */
1579 VERIFY(nmbclusters
!= 0 && !(nmbclusters
& 0x1));
1581 /* Setup the mbuf table */
1584 /* Global lock for common layer */
1585 mbuf_mlock_grp_attr
= lck_grp_attr_alloc_init();
1586 mbuf_mlock_grp
= lck_grp_alloc_init("mbuf", mbuf_mlock_grp_attr
);
1587 mbuf_mlock_attr
= lck_attr_alloc_init();
1588 lck_mtx_init(mbuf_mlock
, mbuf_mlock_grp
, mbuf_mlock_attr
);
1591 * Allocate cluster slabs table:
1593 * maxslabgrp = (N * 2048) / (1024 * 1024)
1595 * Where N is nmbclusters rounded up to the nearest 512. This yields
1596 * mcl_slab_g_t units, each one representing a MB of memory.
1599 (P2ROUNDUP(nmbclusters
, (MBSIZE
>> MCLSHIFT
)) << MCLSHIFT
) >> MBSHIFT
;
1600 MALLOC(slabstbl
, mcl_slabg_t
* *, maxslabgrp
* sizeof(mcl_slabg_t
*),
1601 M_TEMP
, M_WAITOK
| M_ZERO
);
1602 VERIFY(slabstbl
!= NULL
);
1605 * Allocate audit structures, if needed:
1607 * maxclaudit = (maxslabgrp * 1024 * 1024) / PAGE_SIZE
1609 * This yields mcl_audit_t units, each one representing a page.
1611 PE_parse_boot_argn("mbuf_debug", &mbuf_debug
, sizeof(mbuf_debug
));
1612 mbuf_debug
|= mcache_getflags();
1613 if (mbuf_debug
& MCF_DEBUG
) {
1616 maxclaudit
= ((maxslabgrp
<< MBSHIFT
) >> PAGE_SHIFT
);
1617 MALLOC(mclaudit
, mcl_audit_t
*, maxclaudit
* sizeof(*mclaudit
),
1618 M_TEMP
, M_WAITOK
| M_ZERO
);
1619 VERIFY(mclaudit
!= NULL
);
1620 for (l
= 0, mclad
= mclaudit
; l
< maxclaudit
; l
++) {
1621 MALLOC(mclad
[l
].cl_audit
, mcache_audit_t
* *,
1622 NMBPG
* sizeof(mcache_audit_t
*),
1623 M_TEMP
, M_WAITOK
| M_ZERO
);
1624 VERIFY(mclad
[l
].cl_audit
!= NULL
);
1627 mcl_audit_con_cache
= mcache_create("mcl_audit_contents",
1628 AUDIT_CONTENTS_SIZE
, sizeof(u_int64_t
), 0, MCR_SLEEP
);
1629 VERIFY(mcl_audit_con_cache
!= NULL
);
1631 mclverify
= (mbuf_debug
& MCF_VERIFY
);
1632 mcltrace
= (mbuf_debug
& MCF_TRACE
);
1633 mclfindleak
= !(mbuf_debug
& MCF_NOLEAKLOG
);
1634 mclexpleak
= mclfindleak
&& (mbuf_debug
& MCF_EXPLEAKLOG
);
1636 /* Enable mbuf leak logging, with a lock to protect the tables */
1638 mleak_lock_grp_attr
= lck_grp_attr_alloc_init();
1639 mleak_lock_grp
= lck_grp_alloc_init("mleak_lock", mleak_lock_grp_attr
);
1640 mleak_lock_attr
= lck_attr_alloc_init();
1641 lck_mtx_init(mleak_lock
, mleak_lock_grp
, mleak_lock_attr
);
1646 * Allocate structure for per-CPU statistics that's aligned
1647 * on the CPU cache boundary; this code assumes that we never
1648 * uninitialize this framework, since the original address
1649 * before alignment is not saved.
1651 ncpu
= ml_wait_max_cpus();
1652 MALLOC(buf
, void *, MBUF_MTYPES_SIZE(ncpu
) + CPU_CACHE_LINE_SIZE
,
1654 VERIFY(buf
!= NULL
);
1656 mbuf_mtypes
= (mbuf_mtypes_t
*)P2ROUNDUP((intptr_t)buf
,
1657 CPU_CACHE_LINE_SIZE
);
1658 bzero(mbuf_mtypes
, MBUF_MTYPES_SIZE(ncpu
));
1660 /* Calculate the number of pages assigned to the cluster pool */
1661 mcl_pages
= (nmbclusters
<< MCLSHIFT
) / PAGE_SIZE
;
1662 MALLOC(mcl_paddr
, ppnum_t
*, mcl_pages
* sizeof(ppnum_t
),
1664 VERIFY(mcl_paddr
!= NULL
);
1666 /* Register with the I/O Bus mapper */
1667 mcl_paddr_base
= IOMapperIOVMAlloc(mcl_pages
);
1668 bzero((char *)mcl_paddr
, mcl_pages
* sizeof(ppnum_t
));
1670 embutl
= (mbutl
+ (nmbclusters
* MCLBYTES
));
1671 VERIFY(((embutl
- mbutl
) % MBIGCLBYTES
) == 0);
1673 /* Prime up the freelist */
1674 PE_parse_boot_argn("initmcl", &initmcl
, sizeof(initmcl
));
1676 initmcl
>>= NCLPBGSHIFT
; /* become a 4K unit */
1677 if (initmcl
> m_maxlimit(MC_BIGCL
)) {
1678 initmcl
= m_maxlimit(MC_BIGCL
);
1681 if (initmcl
< m_minlimit(MC_BIGCL
)) {
1682 initmcl
= m_minlimit(MC_BIGCL
);
1685 lck_mtx_lock(mbuf_mlock
);
1688 * For classes with non-zero minimum limits, populate their freelists
1689 * so that m_total(class) is at least m_minlimit(class).
1691 VERIFY(m_total(MC_BIGCL
) == 0 && m_minlimit(MC_BIGCL
) != 0);
1692 freelist_populate(m_class(MC_BIGCL
), initmcl
, M_WAIT
);
1693 VERIFY(m_total(MC_BIGCL
) >= m_minlimit(MC_BIGCL
));
1694 freelist_init(m_class(MC_CL
));
1696 for (m
= 0; m
< NELEM(mbuf_table
); m
++) {
1697 /* Make sure we didn't miss any */
1698 VERIFY(m_minlimit(m_class(m
)) == 0 ||
1699 m_total(m_class(m
)) >= m_minlimit(m_class(m
)));
1701 /* populate the initial sizes and report from there on */
1702 m_peak(m_class(m
)) = m_total(m_class(m
));
1704 mb_peak_newreport
= FALSE
;
1706 lck_mtx_unlock(mbuf_mlock
);
1708 (void) kernel_thread_start((thread_continue_t
)mbuf_worker_thread_init
,
1710 thread_deallocate(thread
);
1712 ref_cache
= mcache_create("mext_ref", sizeof(struct ext_ref
),
1715 /* Create the cache for each class */
1716 for (m
= 0; m
< NELEM(mbuf_table
); m
++) {
1717 void *allocfunc
, *freefunc
, *auditfunc
, *logfunc
;
1721 if (m_class(m
) == MC_MBUF_CL
|| m_class(m
) == MC_MBUF_BIGCL
||
1722 m_class(m
) == MC_MBUF_16KCL
) {
1723 allocfunc
= mbuf_cslab_alloc
;
1724 freefunc
= mbuf_cslab_free
;
1725 auditfunc
= mbuf_cslab_audit
;
1726 logfunc
= mleak_logger
;
1728 allocfunc
= mbuf_slab_alloc
;
1729 freefunc
= mbuf_slab_free
;
1730 auditfunc
= mbuf_slab_audit
;
1731 logfunc
= mleak_logger
;
1735 * Disable per-CPU caches for jumbo classes if there
1736 * is no jumbo cluster pool available in the system.
1737 * The cache itself is still created (but will never
1738 * be populated) since it simplifies the code.
1740 if ((m_class(m
) == MC_MBUF_16KCL
|| m_class(m
) == MC_16KCL
) &&
1742 flags
|= MCF_NOCPUCACHE
;
1746 flags
|= MCF_NOLEAKLOG
;
1749 m_cache(m
) = mcache_create_ext(m_cname(m
), m_maxsize(m
),
1750 allocfunc
, freefunc
, auditfunc
, logfunc
, mbuf_slab_notify
,
1751 (void *)(uintptr_t)m
, flags
, MCR_SLEEP
);
1755 * Set the max limit on sb_max to be 1/16 th of the size of
1756 * memory allocated for mbuf clusters.
1758 high_sb_max
= (nmbclusters
<< (MCLSHIFT
- 4));
1759 if (high_sb_max
< sb_max
) {
1760 /* sb_max is too large for this configuration, scale it down */
1761 if (high_sb_max
> (1 << MBSHIFT
)) {
1762 /* We have atleast 16 M of mbuf pool */
1763 sb_max
= high_sb_max
;
1764 } else if ((nmbclusters
<< MCLSHIFT
) > (1 << MBSHIFT
)) {
1766 * If we have more than 1M of mbufpool, cap the size of
1767 * max sock buf at 1M
1769 sb_max
= high_sb_max
= (1 << MBSHIFT
);
1771 sb_max
= high_sb_max
;
1775 /* allocate space for mbuf_dump_buf */
1776 MALLOC(mbuf_dump_buf
, char *, MBUF_DUMP_BUF_SIZE
, M_TEMP
, M_WAITOK
);
1777 VERIFY(mbuf_dump_buf
!= NULL
);
1779 if (mbuf_debug
& MCF_DEBUG
) {
1780 printf("%s: MLEN %d, MHLEN %d\n", __func__
,
1781 (int)_MLEN
, (int)_MHLEN
);
1784 printf("%s: done [%d MB total pool size, (%d/%d) split]\n", __func__
,
1785 (nmbclusters
<< MCLSHIFT
) >> MBSHIFT
,
1786 (nclusters
<< MCLSHIFT
) >> MBSHIFT
,
1787 (njcl
<< MCLSHIFT
) >> MBSHIFT
);
1789 /* initialize lock form tx completion callback table */
1790 mbuf_tx_compl_tbl_lck_grp_attr
= lck_grp_attr_alloc_init();
1791 if (mbuf_tx_compl_tbl_lck_grp_attr
== NULL
) {
1792 panic("%s: lck_grp_attr_alloc_init failed", __func__
);
1795 mbuf_tx_compl_tbl_lck_grp
= lck_grp_alloc_init("mbuf_tx_compl_tbl",
1796 mbuf_tx_compl_tbl_lck_grp_attr
);
1797 if (mbuf_tx_compl_tbl_lck_grp
== NULL
) {
1798 panic("%s: lck_grp_alloc_init failed", __func__
);
1801 mbuf_tx_compl_tbl_lck_attr
= lck_attr_alloc_init();
1802 if (mbuf_tx_compl_tbl_lck_attr
== NULL
) {
1803 panic("%s: lck_attr_alloc_init failed", __func__
);
1806 lck_rw_init(mbuf_tx_compl_tbl_lock
, mbuf_tx_compl_tbl_lck_grp
,
1807 mbuf_tx_compl_tbl_lck_attr
);
1811 * Obtain a slab of object(s) from the class's freelist.
1813 static mcache_obj_t
*
1814 slab_alloc(mbuf_class_t
class, int wait
)
1819 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
1821 /* This should always be NULL for us */
1822 VERIFY(m_cobjlist(class) == NULL
);
1825 * Treat composite objects as having longer lifespan by using
1826 * a slab from the reverse direction, in hoping that this could
1827 * reduce the probability of fragmentation for slabs that hold
1828 * more than one buffer chunks (e.g. mbuf slabs). For other
1829 * slabs, this probably doesn't make much of a difference.
1831 if ((class == MC_MBUF
|| class == MC_CL
|| class == MC_BIGCL
)
1832 && (wait
& MCR_COMP
)) {
1833 sp
= (mcl_slab_t
*)TAILQ_LAST(&m_slablist(class), mcl_slhead
);
1835 sp
= (mcl_slab_t
*)TAILQ_FIRST(&m_slablist(class));
1839 VERIFY(m_infree(class) == 0 && m_slab_cnt(class) == 0);
1840 /* The slab list for this class is empty */
1844 VERIFY(m_infree(class) > 0);
1845 VERIFY(!slab_is_detached(sp
));
1846 VERIFY(sp
->sl_class
== class &&
1847 (sp
->sl_flags
& (SLF_MAPPED
| SLF_PARTIAL
)) == SLF_MAPPED
);
1849 VERIFY(slab_inrange(sp
, buf
) && sp
== slab_get(buf
));
1850 sp
->sl_head
= buf
->obj_next
;
1851 /* Increment slab reference */
1854 VERIFY(sp
->sl_head
!= NULL
|| sp
->sl_refcnt
== sp
->sl_chunks
);
1856 if (sp
->sl_head
!= NULL
&& !slab_inrange(sp
, sp
->sl_head
)) {
1857 slab_nextptr_panic(sp
, sp
->sl_head
);
1858 /* In case sl_head is in the map but not in the slab */
1859 VERIFY(slab_inrange(sp
, sp
->sl_head
));
1863 if (mclaudit
!= NULL
) {
1864 mcache_audit_t
*mca
= mcl_audit_buf2mca(class, buf
);
1865 mca
->mca_uflags
= 0;
1866 /* Save contents on mbuf objects only */
1867 if (class == MC_MBUF
) {
1868 mca
->mca_uflags
|= MB_SCVALID
;
1872 if (class == MC_CL
) {
1873 mbstat
.m_clfree
= (--m_infree(MC_CL
)) + m_infree(MC_MBUF_CL
);
1875 * A 2K cluster slab can have at most NCLPG references.
1877 VERIFY(sp
->sl_refcnt
>= 1 && sp
->sl_refcnt
<= NCLPG
&&
1878 sp
->sl_chunks
== NCLPG
&& sp
->sl_len
== PAGE_SIZE
);
1879 VERIFY(sp
->sl_refcnt
< NCLPG
|| sp
->sl_head
== NULL
);
1880 } else if (class == MC_BIGCL
) {
1881 mbstat
.m_bigclfree
= (--m_infree(MC_BIGCL
)) +
1882 m_infree(MC_MBUF_BIGCL
);
1884 * A 4K cluster slab can have NBCLPG references.
1886 VERIFY(sp
->sl_refcnt
>= 1 && sp
->sl_chunks
== NBCLPG
&&
1887 sp
->sl_len
== PAGE_SIZE
&&
1888 (sp
->sl_refcnt
< NBCLPG
|| sp
->sl_head
== NULL
));
1889 } else if (class == MC_16KCL
) {
1893 --m_infree(MC_16KCL
);
1894 VERIFY(sp
->sl_refcnt
== 1 && sp
->sl_chunks
== 1 &&
1895 sp
->sl_len
== m_maxsize(class) && sp
->sl_head
== NULL
);
1897 * Increment 2nd-Nth slab reference, where N is NSLABSP16KB.
1898 * A 16KB big cluster takes NSLABSP16KB slabs, each having at
1901 for (nsp
= sp
, k
= 1; k
< NSLABSP16KB
; k
++) {
1903 /* Next slab must already be present */
1904 VERIFY(nsp
!= NULL
);
1906 VERIFY(!slab_is_detached(nsp
));
1907 VERIFY(nsp
->sl_class
== MC_16KCL
&&
1908 nsp
->sl_flags
== (SLF_MAPPED
| SLF_PARTIAL
) &&
1909 nsp
->sl_refcnt
== 1 && nsp
->sl_chunks
== 0 &&
1910 nsp
->sl_len
== 0 && nsp
->sl_base
== sp
->sl_base
&&
1911 nsp
->sl_head
== NULL
);
1914 VERIFY(class == MC_MBUF
);
1915 --m_infree(MC_MBUF
);
1917 * If auditing is turned on, this check is
1918 * deferred until later in mbuf_slab_audit().
1920 if (mclaudit
== NULL
) {
1921 _MCHECK((struct mbuf
*)buf
);
1924 * Since we have incremented the reference count above,
1925 * an mbuf slab (formerly a 4KB cluster slab that was cut
1926 * up into mbufs) must have a reference count between 1
1927 * and NMBPG at this point.
1929 VERIFY(sp
->sl_refcnt
>= 1 && sp
->sl_refcnt
<= NMBPG
&&
1930 sp
->sl_chunks
== NMBPG
&&
1931 sp
->sl_len
== PAGE_SIZE
);
1932 VERIFY(sp
->sl_refcnt
< NMBPG
|| sp
->sl_head
== NULL
);
1935 /* If empty, remove this slab from the class's freelist */
1936 if (sp
->sl_head
== NULL
) {
1937 VERIFY(class != MC_MBUF
|| sp
->sl_refcnt
== NMBPG
);
1938 VERIFY(class != MC_CL
|| sp
->sl_refcnt
== NCLPG
);
1939 VERIFY(class != MC_BIGCL
|| sp
->sl_refcnt
== NBCLPG
);
1940 slab_remove(sp
, class);
1947 * Place a slab of object(s) back into a class's slab list.
1950 slab_free(mbuf_class_t
class, mcache_obj_t
*buf
)
1953 boolean_t reinit_supercl
= false;
1954 mbuf_class_t super_class
;
1956 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
1958 VERIFY(class != MC_16KCL
|| njcl
> 0);
1959 VERIFY(buf
->obj_next
== NULL
);
1962 * Synchronizing with m_clalloc, as it reads m_total, while we here
1963 * are modifying m_total.
1965 while (mb_clalloc_busy
) {
1966 mb_clalloc_waiters
++;
1967 (void) msleep(mb_clalloc_waitchan
, mbuf_mlock
,
1968 (PZERO
- 1), "m_clalloc", NULL
);
1969 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
1972 /* We are busy now; tell everyone else to go away */
1973 mb_clalloc_busy
= TRUE
;
1976 VERIFY(sp
->sl_class
== class && slab_inrange(sp
, buf
) &&
1977 (sp
->sl_flags
& (SLF_MAPPED
| SLF_PARTIAL
)) == SLF_MAPPED
);
1979 /* Decrement slab reference */
1982 if (class == MC_CL
) {
1983 VERIFY(IS_P2ALIGNED(buf
, MCLBYTES
));
1985 * A slab that has been splitted for 2KB clusters can have
1986 * at most 1 outstanding reference at this point.
1988 VERIFY(sp
->sl_refcnt
>= 0 && sp
->sl_refcnt
<= (NCLPG
- 1) &&
1989 sp
->sl_chunks
== NCLPG
&& sp
->sl_len
== PAGE_SIZE
);
1990 VERIFY(sp
->sl_refcnt
< (NCLPG
- 1) ||
1991 (slab_is_detached(sp
) && sp
->sl_head
== NULL
));
1992 } else if (class == MC_BIGCL
) {
1993 VERIFY(IS_P2ALIGNED(buf
, MBIGCLBYTES
));
1995 /* A 4KB cluster slab can have NBCLPG references at most */
1996 VERIFY(sp
->sl_refcnt
>= 0 && sp
->sl_chunks
== NBCLPG
);
1997 VERIFY(sp
->sl_refcnt
< (NBCLPG
- 1) ||
1998 (slab_is_detached(sp
) && sp
->sl_head
== NULL
));
1999 } else if (class == MC_16KCL
) {
2003 * A 16KB cluster takes NSLABSP16KB slabs, all must
2004 * now have 0 reference.
2006 VERIFY(IS_P2ALIGNED(buf
, PAGE_SIZE
));
2007 VERIFY(sp
->sl_refcnt
== 0 && sp
->sl_chunks
== 1 &&
2008 sp
->sl_len
== m_maxsize(class) && sp
->sl_head
== NULL
);
2009 VERIFY(slab_is_detached(sp
));
2010 for (nsp
= sp
, k
= 1; k
< NSLABSP16KB
; k
++) {
2012 /* Next slab must already be present */
2013 VERIFY(nsp
!= NULL
);
2015 VERIFY(slab_is_detached(nsp
));
2016 VERIFY(nsp
->sl_class
== MC_16KCL
&&
2017 (nsp
->sl_flags
& (SLF_MAPPED
| SLF_PARTIAL
)) &&
2018 nsp
->sl_refcnt
== 0 && nsp
->sl_chunks
== 0 &&
2019 nsp
->sl_len
== 0 && nsp
->sl_base
== sp
->sl_base
&&
2020 nsp
->sl_head
== NULL
);
2024 * A slab that has been splitted for mbufs has at most
2025 * NMBPG reference counts. Since we have decremented
2026 * one reference above, it must now be between 0 and
2029 VERIFY(class == MC_MBUF
);
2030 VERIFY(sp
->sl_refcnt
>= 0 &&
2031 sp
->sl_refcnt
<= (NMBPG
- 1) &&
2032 sp
->sl_chunks
== NMBPG
&&
2033 sp
->sl_len
== PAGE_SIZE
);
2034 VERIFY(sp
->sl_refcnt
< (NMBPG
- 1) ||
2035 (slab_is_detached(sp
) && sp
->sl_head
== NULL
));
2039 * When auditing is enabled, ensure that the buffer still
2040 * contains the free pattern. Otherwise it got corrupted
2041 * while at the CPU cache layer.
2043 if (mclaudit
!= NULL
) {
2044 mcache_audit_t
*mca
= mcl_audit_buf2mca(class, buf
);
2046 mcache_audit_free_verify(mca
, buf
, 0,
2049 mca
->mca_uflags
&= ~MB_SCVALID
;
2052 if (class == MC_CL
) {
2053 mbstat
.m_clfree
= (++m_infree(MC_CL
)) + m_infree(MC_MBUF_CL
);
2054 buf
->obj_next
= sp
->sl_head
;
2055 } else if (class == MC_BIGCL
) {
2056 mbstat
.m_bigclfree
= (++m_infree(MC_BIGCL
)) +
2057 m_infree(MC_MBUF_BIGCL
);
2058 buf
->obj_next
= sp
->sl_head
;
2059 } else if (class == MC_16KCL
) {
2060 ++m_infree(MC_16KCL
);
2062 ++m_infree(MC_MBUF
);
2063 buf
->obj_next
= sp
->sl_head
;
2068 * If a slab has been split to either one which holds 2KB clusters,
2069 * or one which holds mbufs, turn it back to one which holds a
2070 * 4 or 16 KB cluster depending on the page size.
2072 if (m_maxsize(MC_BIGCL
) == PAGE_SIZE
) {
2073 super_class
= MC_BIGCL
;
2075 VERIFY(PAGE_SIZE
== m_maxsize(MC_16KCL
));
2076 super_class
= MC_16KCL
;
2078 if (class == MC_MBUF
&& sp
->sl_refcnt
== 0 &&
2079 m_total(class) >= (m_minlimit(class) + NMBPG
) &&
2080 m_total(super_class
) < m_maxlimit(super_class
)) {
2083 m_total(MC_MBUF
) -= NMBPG
;
2084 mbstat
.m_mbufs
= m_total(MC_MBUF
);
2085 m_infree(MC_MBUF
) -= NMBPG
;
2086 mtype_stat_add(MT_FREE
, -((unsigned)NMBPG
));
2089 struct mbuf
*m
= sp
->sl_head
;
2091 sp
->sl_head
= m
->m_next
;
2094 reinit_supercl
= true;
2095 } else if (class == MC_CL
&& sp
->sl_refcnt
== 0 &&
2096 m_total(class) >= (m_minlimit(class) + NCLPG
) &&
2097 m_total(super_class
) < m_maxlimit(super_class
)) {
2100 m_total(MC_CL
) -= NCLPG
;
2101 mbstat
.m_clusters
= m_total(MC_CL
);
2102 m_infree(MC_CL
) -= NCLPG
;
2105 union mcluster
*c
= sp
->sl_head
;
2107 sp
->sl_head
= c
->mcl_next
;
2110 reinit_supercl
= true;
2111 } else if (class == MC_BIGCL
&& super_class
!= MC_BIGCL
&&
2112 sp
->sl_refcnt
== 0 &&
2113 m_total(class) >= (m_minlimit(class) + NBCLPG
) &&
2114 m_total(super_class
) < m_maxlimit(super_class
)) {
2117 VERIFY(super_class
== MC_16KCL
);
2118 m_total(MC_BIGCL
) -= NBCLPG
;
2119 mbstat
.m_bigclusters
= m_total(MC_BIGCL
);
2120 m_infree(MC_BIGCL
) -= NBCLPG
;
2123 union mbigcluster
*bc
= sp
->sl_head
;
2125 sp
->sl_head
= bc
->mbc_next
;
2126 bc
->mbc_next
= NULL
;
2128 reinit_supercl
= true;
2131 if (reinit_supercl
) {
2132 VERIFY(sp
->sl_head
== NULL
);
2133 VERIFY(m_total(class) >= m_minlimit(class));
2134 slab_remove(sp
, class);
2136 /* Reinitialize it as a cluster for the super class */
2137 m_total(super_class
)++;
2138 m_infree(super_class
)++;
2139 VERIFY(sp
->sl_flags
== (SLF_MAPPED
| SLF_DETACHED
) &&
2140 sp
->sl_len
== PAGE_SIZE
&& sp
->sl_refcnt
== 0);
2142 slab_init(sp
, super_class
, SLF_MAPPED
, sp
->sl_base
,
2143 sp
->sl_base
, PAGE_SIZE
, 0, 1);
2145 mcache_set_pattern(MCACHE_FREE_PATTERN
,
2146 (caddr_t
)sp
->sl_base
, sp
->sl_len
);
2148 ((mcache_obj_t
*)(sp
->sl_base
))->obj_next
= NULL
;
2150 if (super_class
== MC_BIGCL
) {
2151 mbstat
.m_bigclusters
= m_total(MC_BIGCL
);
2152 mbstat
.m_bigclfree
= m_infree(MC_BIGCL
) +
2153 m_infree(MC_MBUF_BIGCL
);
2156 VERIFY(slab_is_detached(sp
));
2157 VERIFY(m_total(super_class
) <= m_maxlimit(super_class
));
2159 /* And finally switch class */
2160 class = super_class
;
2163 /* Reinsert the slab to the class's slab list */
2164 if (slab_is_detached(sp
)) {
2165 slab_insert(sp
, class);
2168 /* We're done; let others enter */
2169 mb_clalloc_busy
= FALSE
;
2170 if (mb_clalloc_waiters
> 0) {
2171 mb_clalloc_waiters
= 0;
2172 wakeup(mb_clalloc_waitchan
);
2177 * Common allocator for rudimentary objects called by the CPU cache layer
2178 * during an allocation request whenever there is no available element in the
2179 * bucket layer. It returns one or more elements from the appropriate global
2180 * freelist. If the freelist is empty, it will attempt to populate it and
2181 * retry the allocation.
2184 mbuf_slab_alloc(void *arg
, mcache_obj_t
***plist
, unsigned int num
, int wait
)
2186 mbuf_class_t
class = (mbuf_class_t
)arg
;
2187 unsigned int need
= num
;
2188 mcache_obj_t
**list
= *plist
;
2190 ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
2193 lck_mtx_lock(mbuf_mlock
);
2196 if ((*list
= slab_alloc(class, wait
)) != NULL
) {
2197 (*list
)->obj_next
= NULL
;
2198 list
= *plist
= &(*list
)->obj_next
;
2202 * If the number of elements in freelist has
2203 * dropped below low watermark, asynchronously
2204 * populate the freelist now rather than doing
2205 * it later when we run out of elements.
2207 if (!mbuf_cached_above(class, wait
) &&
2208 m_infree(class) < (m_total(class) >> 5)) {
2209 (void) freelist_populate(class, 1,
2215 VERIFY(m_infree(class) == 0 || class == MC_CL
);
2217 (void) freelist_populate(class, 1,
2218 (wait
& MCR_NOSLEEP
) ? M_DONTWAIT
: M_WAIT
);
2220 if (m_infree(class) > 0) {
2224 /* Check if there's anything at the cache layer */
2225 if (mbuf_cached_above(class, wait
)) {
2229 /* watchdog checkpoint */
2232 /* We have nothing and cannot block; give up */
2233 if (wait
& MCR_NOSLEEP
) {
2234 if (!(wait
& MCR_TRYHARD
)) {
2235 m_fail_cnt(class)++;
2242 * If the freelist is still empty and the caller is
2243 * willing to be blocked, sleep on the wait channel
2244 * until an element is available. Otherwise, if
2245 * MCR_TRYHARD is set, do our best to satisfy the
2246 * request without having to go to sleep.
2248 if (mbuf_worker_ready
&&
2249 mbuf_sleep(class, need
, wait
)) {
2253 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
2257 m_alloc_cnt(class) += num
- need
;
2258 lck_mtx_unlock(mbuf_mlock
);
2264 * Common de-allocator for rudimentary objects called by the CPU cache
2265 * layer when one or more elements need to be returned to the appropriate
2269 mbuf_slab_free(void *arg
, mcache_obj_t
*list
, __unused
int purged
)
2271 mbuf_class_t
class = (mbuf_class_t
)arg
;
2272 mcache_obj_t
*nlist
;
2273 unsigned int num
= 0;
2276 ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
2278 lck_mtx_lock(mbuf_mlock
);
2281 nlist
= list
->obj_next
;
2282 list
->obj_next
= NULL
;
2283 slab_free(class, list
);
2285 if ((list
= nlist
) == NULL
) {
2289 m_free_cnt(class) += num
;
2291 if ((w
= mb_waiters
) > 0) {
2295 mbwdog_logger("waking up all threads");
2297 lck_mtx_unlock(mbuf_mlock
);
2300 wakeup(mb_waitchan
);
2305 * Common auditor for rudimentary objects called by the CPU cache layer
2306 * during an allocation or free request. For the former, this is called
2307 * after the objects are obtained from either the bucket or slab layer
2308 * and before they are returned to the caller. For the latter, this is
2309 * called immediately during free and before placing the objects into
2310 * the bucket or slab layer.
2313 mbuf_slab_audit(void *arg
, mcache_obj_t
*list
, boolean_t alloc
)
2315 mbuf_class_t
class = (mbuf_class_t
)arg
;
2316 mcache_audit_t
*mca
;
2318 ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
2320 while (list
!= NULL
) {
2321 lck_mtx_lock(mbuf_mlock
);
2322 mca
= mcl_audit_buf2mca(class, list
);
2324 /* Do the sanity checks */
2325 if (class == MC_MBUF
) {
2326 mcl_audit_mbuf(mca
, list
, FALSE
, alloc
);
2327 ASSERT(mca
->mca_uflags
& MB_SCVALID
);
2329 mcl_audit_cluster(mca
, list
, m_maxsize(class),
2331 ASSERT(!(mca
->mca_uflags
& MB_SCVALID
));
2333 /* Record this transaction */
2335 mcache_buffer_log(mca
, list
, m_cache(class), &mb_start
);
2339 mca
->mca_uflags
|= MB_INUSE
;
2341 mca
->mca_uflags
&= ~MB_INUSE
;
2343 /* Unpair the object (unconditionally) */
2344 mca
->mca_uptr
= NULL
;
2345 lck_mtx_unlock(mbuf_mlock
);
2347 list
= list
->obj_next
;
2352 * Common notify routine for all caches. It is called by mcache when
2353 * one or more objects get freed. We use this indication to trigger
2354 * the wakeup of any sleeping threads so that they can retry their
2355 * allocation requests.
2358 mbuf_slab_notify(void *arg
, u_int32_t reason
)
2360 mbuf_class_t
class = (mbuf_class_t
)arg
;
2363 ASSERT(MBUF_CLASS_VALID(class));
2365 if (reason
!= MCN_RETRYALLOC
) {
2369 lck_mtx_lock(mbuf_mlock
);
2370 if ((w
= mb_waiters
) > 0) {
2371 m_notified(class)++;
2375 mbwdog_logger("waking up all threads");
2377 lck_mtx_unlock(mbuf_mlock
);
2380 wakeup(mb_waitchan
);
2385 * Obtain object(s) from the composite class's freelist.
2388 cslab_alloc(mbuf_class_t
class, mcache_obj_t
***plist
, unsigned int num
)
2390 unsigned int need
= num
;
2391 mcl_slab_t
*sp
, *clsp
, *nsp
;
2393 mcache_obj_t
**list
= *plist
;
2397 VERIFY(class != MC_MBUF_16KCL
|| njcl
> 0);
2398 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
2400 /* Get what we can from the freelist */
2401 while ((*list
= m_cobjlist(class)) != NULL
) {
2404 m
= (struct mbuf
*)*list
;
2406 cl
= m
->m_ext
.ext_buf
;
2407 clsp
= slab_get(cl
);
2408 VERIFY(m
->m_flags
== M_EXT
&& cl
!= NULL
);
2409 VERIFY(m_get_rfa(m
) != NULL
&& MBUF_IS_COMPOSITE(m
));
2411 if (class == MC_MBUF_CL
) {
2412 VERIFY(clsp
->sl_refcnt
>= 1 &&
2413 clsp
->sl_refcnt
<= NCLPG
);
2415 VERIFY(clsp
->sl_refcnt
>= 1 &&
2416 clsp
->sl_refcnt
<= NBCLPG
);
2419 if (class == MC_MBUF_16KCL
) {
2421 for (nsp
= clsp
, k
= 1; k
< NSLABSP16KB
; k
++) {
2423 /* Next slab must already be present */
2424 VERIFY(nsp
!= NULL
);
2425 VERIFY(nsp
->sl_refcnt
== 1);
2429 if ((m_cobjlist(class) = (*list
)->obj_next
) != NULL
&&
2430 !MBUF_IN_MAP(m_cobjlist(class))) {
2431 slab_nextptr_panic(sp
, m_cobjlist(class));
2434 (*list
)->obj_next
= NULL
;
2435 list
= *plist
= &(*list
)->obj_next
;
2441 m_infree(class) -= (num
- need
);
2447 * Place object(s) back into a composite class's freelist.
2450 cslab_free(mbuf_class_t
class, mcache_obj_t
*list
, int purged
)
2452 mcache_obj_t
*o
, *tail
;
2453 unsigned int num
= 0;
2454 struct mbuf
*m
, *ms
;
2455 mcache_audit_t
*mca
= NULL
;
2456 mcache_obj_t
*ref_list
= NULL
;
2457 mcl_slab_t
*clsp
, *nsp
;
2459 mbuf_class_t cl_class
;
2461 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2462 VERIFY(class != MC_MBUF_16KCL
|| njcl
> 0);
2463 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
2465 if (class == MC_MBUF_CL
) {
2467 } else if (class == MC_MBUF_BIGCL
) {
2468 cl_class
= MC_BIGCL
;
2470 VERIFY(class == MC_MBUF_16KCL
);
2471 cl_class
= MC_16KCL
;
2476 while ((m
= ms
= (struct mbuf
*)o
) != NULL
) {
2477 mcache_obj_t
*rfa
, *nexto
= o
->obj_next
;
2479 /* Do the mbuf sanity checks */
2480 if (mclaudit
!= NULL
) {
2481 mca
= mcl_audit_buf2mca(MC_MBUF
, (mcache_obj_t
*)m
);
2483 mcache_audit_free_verify(mca
, m
, 0,
2484 m_maxsize(MC_MBUF
));
2486 ms
= MCA_SAVED_MBUF_PTR(mca
);
2489 /* Do the cluster sanity checks */
2490 cl
= ms
->m_ext
.ext_buf
;
2491 clsp
= slab_get(cl
);
2493 size_t size
= m_maxsize(cl_class
);
2494 mcache_audit_free_verify(mcl_audit_buf2mca(cl_class
,
2495 (mcache_obj_t
*)cl
), cl
, 0, size
);
2497 VERIFY(ms
->m_type
== MT_FREE
);
2498 VERIFY(ms
->m_flags
== M_EXT
);
2499 VERIFY(m_get_rfa(ms
) != NULL
&& MBUF_IS_COMPOSITE(ms
));
2500 if (cl_class
== MC_CL
) {
2501 VERIFY(clsp
->sl_refcnt
>= 1 &&
2502 clsp
->sl_refcnt
<= NCLPG
);
2504 VERIFY(clsp
->sl_refcnt
>= 1 &&
2505 clsp
->sl_refcnt
<= NBCLPG
);
2507 if (cl_class
== MC_16KCL
) {
2509 for (nsp
= clsp
, k
= 1; k
< NSLABSP16KB
; k
++) {
2511 /* Next slab must already be present */
2512 VERIFY(nsp
!= NULL
);
2513 VERIFY(nsp
->sl_refcnt
== 1);
2518 * If we're asked to purge, restore the actual mbuf using
2519 * contents of the shadow structure (if auditing is enabled)
2520 * and clear EXTF_COMPOSITE flag from the mbuf, as we are
2521 * about to free it and the attached cluster into their caches.
2524 /* Restore constructed mbuf fields */
2525 if (mclaudit
!= NULL
) {
2526 mcl_audit_restore_mbuf(m
, mca
, TRUE
);
2534 MEXT_PMBUF(m
) = NULL
;
2537 rfa
= (mcache_obj_t
*)(void *)m_get_rfa(m
);
2538 m_set_ext(m
, NULL
, NULL
, NULL
);
2539 rfa
->obj_next
= ref_list
;
2542 m
->m_type
= MT_FREE
;
2543 m
->m_flags
= m
->m_len
= 0;
2544 m
->m_next
= m
->m_nextpkt
= NULL
;
2546 /* Save mbuf fields and make auditing happy */
2547 if (mclaudit
!= NULL
) {
2548 mcl_audit_mbuf(mca
, o
, FALSE
, FALSE
);
2551 VERIFY(m_total(class) > 0);
2556 slab_free(MC_MBUF
, o
);
2558 /* And free the cluster */
2559 ((mcache_obj_t
*)cl
)->obj_next
= NULL
;
2560 if (class == MC_MBUF_CL
) {
2561 slab_free(MC_CL
, cl
);
2562 } else if (class == MC_MBUF_BIGCL
) {
2563 slab_free(MC_BIGCL
, cl
);
2565 slab_free(MC_16KCL
, cl
);
2575 tail
->obj_next
= m_cobjlist(class);
2576 m_cobjlist(class) = list
;
2577 m_infree(class) += num
;
2578 } else if (ref_list
!= NULL
) {
2579 mcache_free_ext(ref_cache
, ref_list
);
2586 * Common allocator for composite objects called by the CPU cache layer
2587 * during an allocation request whenever there is no available element in
2588 * the bucket layer. It returns one or more composite elements from the
2589 * appropriate global freelist. If the freelist is empty, it will attempt
2590 * to obtain the rudimentary objects from their caches and construct them
2591 * into composite mbuf + cluster objects.
2594 mbuf_cslab_alloc(void *arg
, mcache_obj_t
***plist
, unsigned int needed
,
2597 mbuf_class_t
class = (mbuf_class_t
)arg
;
2598 mbuf_class_t cl_class
= 0;
2599 unsigned int num
= 0, cnum
= 0, want
= needed
;
2600 mcache_obj_t
*ref_list
= NULL
;
2601 mcache_obj_t
*mp_list
= NULL
;
2602 mcache_obj_t
*clp_list
= NULL
;
2603 mcache_obj_t
**list
;
2604 struct ext_ref
*rfa
;
2608 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2611 VERIFY(class != MC_MBUF_16KCL
|| njcl
> 0);
2613 /* There should not be any slab for this class */
2614 VERIFY(m_slab_cnt(class) == 0 &&
2615 m_slablist(class).tqh_first
== NULL
&&
2616 m_slablist(class).tqh_last
== NULL
);
2618 lck_mtx_lock(mbuf_mlock
);
2620 /* Try using the freelist first */
2621 num
= cslab_alloc(class, plist
, needed
);
2623 if (num
== needed
) {
2624 m_alloc_cnt(class) += num
;
2625 lck_mtx_unlock(mbuf_mlock
);
2629 lck_mtx_unlock(mbuf_mlock
);
2632 * We could not satisfy the request using the freelist alone;
2633 * allocate from the appropriate rudimentary caches and use
2634 * whatever we can get to construct the composite objects.
2639 * Mark these allocation requests as coming from a composite cache.
2640 * Also, if the caller is willing to be blocked, mark the request
2641 * with MCR_FAILOK such that we don't end up sleeping at the mbuf
2642 * slab layer waiting for the individual object when one or more
2643 * of the already-constructed composite objects are available.
2646 if (!(wait
& MCR_NOSLEEP
)) {
2650 /* allocate mbufs */
2651 needed
= mcache_alloc_ext(m_cache(MC_MBUF
), &mp_list
, needed
, wait
);
2653 ASSERT(mp_list
== NULL
);
2657 /* allocate clusters */
2658 if (class == MC_MBUF_CL
) {
2660 } else if (class == MC_MBUF_BIGCL
) {
2661 cl_class
= MC_BIGCL
;
2663 VERIFY(class == MC_MBUF_16KCL
);
2664 cl_class
= MC_16KCL
;
2666 needed
= mcache_alloc_ext(m_cache(cl_class
), &clp_list
, needed
, wait
);
2668 ASSERT(clp_list
== NULL
);
2672 needed
= mcache_alloc_ext(ref_cache
, &ref_list
, needed
, wait
);
2674 ASSERT(ref_list
== NULL
);
2679 * By this time "needed" is MIN(mbuf, cluster, ref). Any left
2680 * overs will get freed accordingly before we return to caller.
2682 for (cnum
= 0; cnum
< needed
; cnum
++) {
2685 m
= ms
= (struct mbuf
*)mp_list
;
2686 mp_list
= mp_list
->obj_next
;
2689 clp_list
= clp_list
->obj_next
;
2690 ((mcache_obj_t
*)cl
)->obj_next
= NULL
;
2692 rfa
= (struct ext_ref
*)ref_list
;
2693 ref_list
= ref_list
->obj_next
;
2694 ((mcache_obj_t
*)(void *)rfa
)->obj_next
= NULL
;
2697 * If auditing is enabled, construct the shadow mbuf
2698 * in the audit structure instead of in the actual one.
2699 * mbuf_cslab_audit() will take care of restoring the
2700 * contents after the integrity check.
2702 if (mclaudit
!= NULL
) {
2703 mcache_audit_t
*mca
, *cl_mca
;
2705 lck_mtx_lock(mbuf_mlock
);
2706 mca
= mcl_audit_buf2mca(MC_MBUF
, (mcache_obj_t
*)m
);
2707 ms
= MCA_SAVED_MBUF_PTR(mca
);
2708 cl_mca
= mcl_audit_buf2mca(cl_class
,
2709 (mcache_obj_t
*)cl
);
2712 * Pair them up. Note that this is done at the time
2713 * the mbuf+cluster objects are constructed. This
2714 * information should be treated as "best effort"
2715 * debugging hint since more than one mbufs can refer
2716 * to a cluster. In that case, the cluster might not
2717 * be freed along with the mbuf it was paired with.
2719 mca
->mca_uptr
= cl_mca
;
2720 cl_mca
->mca_uptr
= mca
;
2722 ASSERT(mca
->mca_uflags
& MB_SCVALID
);
2723 ASSERT(!(cl_mca
->mca_uflags
& MB_SCVALID
));
2724 lck_mtx_unlock(mbuf_mlock
);
2726 /* Technically, they are in the freelist */
2730 mcache_set_pattern(MCACHE_FREE_PATTERN
, m
,
2731 m_maxsize(MC_MBUF
));
2733 if (class == MC_MBUF_CL
) {
2734 size
= m_maxsize(MC_CL
);
2735 } else if (class == MC_MBUF_BIGCL
) {
2736 size
= m_maxsize(MC_BIGCL
);
2738 size
= m_maxsize(MC_16KCL
);
2741 mcache_set_pattern(MCACHE_FREE_PATTERN
, cl
,
2746 MBUF_INIT(ms
, 0, MT_FREE
);
2747 if (class == MC_MBUF_16KCL
) {
2748 MBUF_16KCL_INIT(ms
, cl
, rfa
, 0, EXTF_COMPOSITE
);
2749 } else if (class == MC_MBUF_BIGCL
) {
2750 MBUF_BIGCL_INIT(ms
, cl
, rfa
, 0, EXTF_COMPOSITE
);
2752 MBUF_CL_INIT(ms
, cl
, rfa
, 0, EXTF_COMPOSITE
);
2754 VERIFY(ms
->m_flags
== M_EXT
);
2755 VERIFY(m_get_rfa(ms
) != NULL
&& MBUF_IS_COMPOSITE(ms
));
2757 *list
= (mcache_obj_t
*)m
;
2758 (*list
)->obj_next
= NULL
;
2759 list
= *plist
= &(*list
)->obj_next
;
2764 * Free up what's left of the above.
2766 if (mp_list
!= NULL
) {
2767 mcache_free_ext(m_cache(MC_MBUF
), mp_list
);
2769 if (clp_list
!= NULL
) {
2770 mcache_free_ext(m_cache(cl_class
), clp_list
);
2772 if (ref_list
!= NULL
) {
2773 mcache_free_ext(ref_cache
, ref_list
);
2776 lck_mtx_lock(mbuf_mlock
);
2777 if (num
> 0 || cnum
> 0) {
2778 m_total(class) += cnum
;
2779 VERIFY(m_total(class) <= m_maxlimit(class));
2780 m_alloc_cnt(class) += num
+ cnum
;
2782 if ((num
+ cnum
) < want
) {
2783 m_fail_cnt(class) += (want
- (num
+ cnum
));
2785 lck_mtx_unlock(mbuf_mlock
);
2791 * Common de-allocator for composite objects called by the CPU cache
2792 * layer when one or more elements need to be returned to the appropriate
2796 mbuf_cslab_free(void *arg
, mcache_obj_t
*list
, int purged
)
2798 mbuf_class_t
class = (mbuf_class_t
)arg
;
2802 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2804 lck_mtx_lock(mbuf_mlock
);
2806 num
= cslab_free(class, list
, purged
);
2807 m_free_cnt(class) += num
;
2809 if ((w
= mb_waiters
) > 0) {
2813 mbwdog_logger("waking up all threads");
2816 lck_mtx_unlock(mbuf_mlock
);
2819 wakeup(mb_waitchan
);
2824 * Common auditor for composite objects called by the CPU cache layer
2825 * during an allocation or free request. For the former, this is called
2826 * after the objects are obtained from either the bucket or slab layer
2827 * and before they are returned to the caller. For the latter, this is
2828 * called immediately during free and before placing the objects into
2829 * the bucket or slab layer.
2832 mbuf_cslab_audit(void *arg
, mcache_obj_t
*list
, boolean_t alloc
)
2834 mbuf_class_t
class = (mbuf_class_t
)arg
, cl_class
;
2835 mcache_audit_t
*mca
;
2836 struct mbuf
*m
, *ms
;
2837 mcl_slab_t
*clsp
, *nsp
;
2841 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2842 if (class == MC_MBUF_CL
) {
2844 } else if (class == MC_MBUF_BIGCL
) {
2845 cl_class
= MC_BIGCL
;
2847 cl_class
= MC_16KCL
;
2849 cl_size
= m_maxsize(cl_class
);
2851 while ((m
= ms
= (struct mbuf
*)list
) != NULL
) {
2852 lck_mtx_lock(mbuf_mlock
);
2853 /* Do the mbuf sanity checks and record its transaction */
2854 mca
= mcl_audit_buf2mca(MC_MBUF
, (mcache_obj_t
*)m
);
2855 mcl_audit_mbuf(mca
, m
, TRUE
, alloc
);
2857 mcache_buffer_log(mca
, m
, m_cache(class), &mb_start
);
2861 mca
->mca_uflags
|= MB_COMP_INUSE
;
2863 mca
->mca_uflags
&= ~MB_COMP_INUSE
;
2867 * Use the shadow mbuf in the audit structure if we are
2868 * freeing, since the contents of the actual mbuf has been
2869 * pattern-filled by the above call to mcl_audit_mbuf().
2871 if (!alloc
&& mclverify
) {
2872 ms
= MCA_SAVED_MBUF_PTR(mca
);
2875 /* Do the cluster sanity checks and record its transaction */
2876 cl
= ms
->m_ext
.ext_buf
;
2877 clsp
= slab_get(cl
);
2878 VERIFY(ms
->m_flags
== M_EXT
&& cl
!= NULL
);
2879 VERIFY(m_get_rfa(ms
) != NULL
&& MBUF_IS_COMPOSITE(ms
));
2880 if (class == MC_MBUF_CL
) {
2881 VERIFY(clsp
->sl_refcnt
>= 1 &&
2882 clsp
->sl_refcnt
<= NCLPG
);
2884 VERIFY(clsp
->sl_refcnt
>= 1 &&
2885 clsp
->sl_refcnt
<= NBCLPG
);
2888 if (class == MC_MBUF_16KCL
) {
2890 for (nsp
= clsp
, k
= 1; k
< NSLABSP16KB
; k
++) {
2892 /* Next slab must already be present */
2893 VERIFY(nsp
!= NULL
);
2894 VERIFY(nsp
->sl_refcnt
== 1);
2899 mca
= mcl_audit_buf2mca(cl_class
, cl
);
2900 mcl_audit_cluster(mca
, cl
, cl_size
, alloc
, FALSE
);
2902 mcache_buffer_log(mca
, cl
, m_cache(class), &mb_start
);
2906 mca
->mca_uflags
|= MB_COMP_INUSE
;
2908 mca
->mca_uflags
&= ~MB_COMP_INUSE
;
2910 lck_mtx_unlock(mbuf_mlock
);
2912 list
= list
->obj_next
;
2917 m_vm_error_stats(uint32_t *cnt
, uint64_t *ts
, uint64_t *size
,
2918 uint64_t alloc_size
, kern_return_t error
)
2925 _CASSERT(sizeof(mb_kmem_stats
) / sizeof(mb_kmem_stats
[0]) ==
2926 sizeof(mb_kmem_stats_labels
) / sizeof(mb_kmem_stats_labels
[0]));
2930 case KERN_INVALID_ARGUMENT
:
2933 case KERN_INVALID_ADDRESS
:
2936 case KERN_RESOURCE_SHORTAGE
:
2952 * Allocate some number of mbuf clusters and place on cluster freelist.
2955 m_clalloc(const u_int32_t num
, const int wait
, const u_int32_t bufsize
)
2959 int numpages
= 0, large_buffer
;
2960 vm_offset_t page
= 0;
2961 mcache_audit_t
*mca_list
= NULL
;
2962 mcache_obj_t
*con_list
= NULL
;
2965 kern_return_t error
;
2967 /* Set if a buffer allocation needs allocation of multiple pages */
2968 large_buffer
= ((bufsize
== m_maxsize(MC_16KCL
)) &&
2969 PAGE_SIZE
< M16KCLBYTES
);
2970 VERIFY(bufsize
== m_maxsize(MC_BIGCL
) ||
2971 bufsize
== m_maxsize(MC_16KCL
));
2973 VERIFY((bufsize
== PAGE_SIZE
) ||
2974 (bufsize
> PAGE_SIZE
&& bufsize
== m_maxsize(MC_16KCL
)));
2976 if (bufsize
== m_size(MC_BIGCL
)) {
2982 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
2985 * Multiple threads may attempt to populate the cluster map one
2986 * after another. Since we drop the lock below prior to acquiring
2987 * the physical page(s), our view of the cluster map may no longer
2988 * be accurate, and we could end up over-committing the pages beyond
2989 * the maximum allowed for each class. To prevent it, this entire
2990 * operation (including the page mapping) is serialized.
2992 while (mb_clalloc_busy
) {
2993 mb_clalloc_waiters
++;
2994 (void) msleep(mb_clalloc_waitchan
, mbuf_mlock
,
2995 (PZERO
- 1), "m_clalloc", NULL
);
2996 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
2999 /* We are busy now; tell everyone else to go away */
3000 mb_clalloc_busy
= TRUE
;
3003 * Honor the caller's wish to block or not block. We have a way
3004 * to grow the pool asynchronously using the mbuf worker thread.
3006 i
= m_howmany(num
, bufsize
);
3007 if (i
<= 0 || (wait
& M_DONTWAIT
)) {
3011 lck_mtx_unlock(mbuf_mlock
);
3013 size
= round_page(i
* bufsize
);
3014 page
= kmem_mb_alloc(mb_map
, size
, large_buffer
, &error
);
3017 * If we did ask for "n" 16KB physically contiguous chunks
3018 * and didn't get them, then please try again without this
3021 net_update_uptime();
3022 if (large_buffer
&& page
== 0) {
3023 m_vm_error_stats(&mb_kmem_contig_failed
,
3024 &mb_kmem_contig_failed_ts
,
3025 &mb_kmem_contig_failed_size
,
3027 page
= kmem_mb_alloc(mb_map
, size
, 0, &error
);
3031 m_vm_error_stats(&mb_kmem_failed
,
3033 &mb_kmem_failed_size
,
3035 #if PAGE_SIZE == 4096
3036 if (bufsize
== m_maxsize(MC_BIGCL
)) {
3038 if (bufsize
>= m_maxsize(MC_BIGCL
)) {
3040 /* Try for 1 page if failed */
3042 page
= kmem_mb_alloc(mb_map
, size
, 0, &error
);
3044 m_vm_error_stats(&mb_kmem_one_failed
,
3045 &mb_kmem_one_failed_ts
,
3051 lck_mtx_lock(mbuf_mlock
);
3056 VERIFY(IS_P2ALIGNED(page
, PAGE_SIZE
));
3057 numpages
= size
/ PAGE_SIZE
;
3059 /* If auditing is enabled, allocate the audit structures now */
3060 if (mclaudit
!= NULL
) {
3064 * Yes, I realize this is a waste of memory for clusters
3065 * that never get transformed into mbufs, as we may end
3066 * up with NMBPG-1 unused audit structures per cluster.
3067 * But doing so tremendously simplifies the allocation
3068 * strategy, since at this point we are not holding the
3069 * mbuf lock and the caller is okay to be blocked.
3071 if (bufsize
== PAGE_SIZE
) {
3072 needed
= numpages
* NMBPG
;
3074 i
= mcache_alloc_ext(mcl_audit_con_cache
,
3075 &con_list
, needed
, MCR_SLEEP
);
3077 VERIFY(con_list
!= NULL
&& i
== needed
);
3080 * if multiple 4K pages are being used for a
3083 needed
= numpages
/ NSLABSP16KB
;
3086 i
= mcache_alloc_ext(mcache_audit_cache
,
3087 (mcache_obj_t
**)&mca_list
, needed
, MCR_SLEEP
);
3089 VERIFY(mca_list
!= NULL
&& i
== needed
);
3092 lck_mtx_lock(mbuf_mlock
);
3094 for (i
= 0; i
< numpages
; i
++, page
+= PAGE_SIZE
) {
3096 ((unsigned char *)page
- mbutl
) >> PAGE_SHIFT
;
3097 ppnum_t new_page
= pmap_find_phys(kernel_pmap
, page
);
3100 * If there is a mapper the appropriate I/O page is
3101 * returned; zero out the page to discard its past
3102 * contents to prevent exposing leftover kernel memory.
3104 VERIFY(offset
< mcl_pages
);
3105 if (mcl_paddr_base
!= 0) {
3106 bzero((void *)(uintptr_t) page
, PAGE_SIZE
);
3107 new_page
= IOMapperInsertPage(mcl_paddr_base
,
3110 mcl_paddr
[offset
] = new_page
;
3112 /* Pattern-fill this fresh page */
3114 mcache_set_pattern(MCACHE_FREE_PATTERN
,
3115 (caddr_t
)page
, PAGE_SIZE
);
3117 if (bufsize
== PAGE_SIZE
) {
3119 /* One for the entire page */
3120 sp
= slab_get((void *)page
);
3121 if (mclaudit
!= NULL
) {
3122 mcl_audit_init((void *)page
,
3123 &mca_list
, &con_list
,
3124 AUDIT_CONTENTS_SIZE
, NMBPG
);
3126 VERIFY(sp
->sl_refcnt
== 0 && sp
->sl_flags
== 0);
3127 slab_init(sp
, class, SLF_MAPPED
, (void *)page
,
3128 (void *)page
, PAGE_SIZE
, 0, 1);
3129 buf
= (mcache_obj_t
*)page
;
3130 buf
->obj_next
= NULL
;
3132 /* Insert this slab */
3133 slab_insert(sp
, class);
3135 /* Update stats now since slab_get drops the lock */
3138 VERIFY(m_total(class) <= m_maxlimit(class));
3139 if (class == MC_BIGCL
) {
3140 mbstat
.m_bigclfree
= m_infree(MC_BIGCL
) +
3141 m_infree(MC_MBUF_BIGCL
);
3142 mbstat
.m_bigclusters
= m_total(MC_BIGCL
);
3145 } else if ((bufsize
> PAGE_SIZE
) &&
3146 (i
% NSLABSP16KB
) == 0) {
3147 union m16kcluster
*m16kcl
= (union m16kcluster
*)page
;
3151 /* One for the entire 16KB */
3152 sp
= slab_get(m16kcl
);
3153 if (mclaudit
!= NULL
) {
3154 mcl_audit_init(m16kcl
, &mca_list
, NULL
, 0, 1);
3157 VERIFY(sp
->sl_refcnt
== 0 && sp
->sl_flags
== 0);
3158 slab_init(sp
, MC_16KCL
, SLF_MAPPED
,
3159 m16kcl
, m16kcl
, bufsize
, 0, 1);
3160 m16kcl
->m16kcl_next
= NULL
;
3163 * 2nd-Nth page's slab is part of the first one,
3164 * where N is NSLABSP16KB.
3166 for (k
= 1; k
< NSLABSP16KB
; k
++) {
3167 nsp
= slab_get(((union mbigcluster
*)page
) + k
);
3168 VERIFY(nsp
->sl_refcnt
== 0 &&
3169 nsp
->sl_flags
== 0);
3170 slab_init(nsp
, MC_16KCL
,
3171 SLF_MAPPED
| SLF_PARTIAL
,
3172 m16kcl
, NULL
, 0, 0, 0);
3174 /* Insert this slab */
3175 slab_insert(sp
, MC_16KCL
);
3177 /* Update stats now since slab_get drops the lock */
3178 ++m_infree(MC_16KCL
);
3179 ++m_total(MC_16KCL
);
3180 VERIFY(m_total(MC_16KCL
) <= m_maxlimit(MC_16KCL
));
3184 VERIFY(mca_list
== NULL
&& con_list
== NULL
);
3186 if (!mb_peak_newreport
&& mbuf_report_usage(class)) {
3187 mb_peak_newreport
= TRUE
;
3190 /* We're done; let others enter */
3191 mb_clalloc_busy
= FALSE
;
3192 if (mb_clalloc_waiters
> 0) {
3193 mb_clalloc_waiters
= 0;
3194 wakeup(mb_clalloc_waitchan
);
3199 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
3201 mtracelarge_register(size
);
3203 /* We're done; let others enter */
3204 mb_clalloc_busy
= FALSE
;
3205 if (mb_clalloc_waiters
> 0) {
3206 mb_clalloc_waiters
= 0;
3207 wakeup(mb_clalloc_waitchan
);
3211 * When non-blocking we kick a thread if we have to grow the
3212 * pool or if the number of free clusters is less than requested.
3214 if (i
> 0 && mbuf_worker_ready
&& mbuf_worker_needs_wakeup
) {
3215 mbwdog_logger("waking up the worker thread to to grow %s by %d",
3217 wakeup((caddr_t
)&mbuf_worker_needs_wakeup
);
3218 mbuf_worker_needs_wakeup
= FALSE
;
3220 if (class == MC_BIGCL
) {
3223 * Remember total number of 4KB clusters needed
3226 i
+= m_total(MC_BIGCL
);
3227 if (i
> m_region_expand(MC_BIGCL
)) {
3228 m_region_expand(MC_BIGCL
) = i
;
3231 if (m_infree(MC_BIGCL
) >= num
) {
3237 * Remember total number of 16KB clusters needed
3240 i
+= m_total(MC_16KCL
);
3241 if (i
> m_region_expand(MC_16KCL
)) {
3242 m_region_expand(MC_16KCL
) = i
;
3245 if (m_infree(MC_16KCL
) >= num
) {
3253 * Populate the global freelist of the corresponding buffer class.
3256 freelist_populate(mbuf_class_t
class, unsigned int num
, int wait
)
3258 mcache_obj_t
*o
= NULL
;
3259 int i
, numpages
= 0, count
;
3260 mbuf_class_t super_class
;
3262 VERIFY(class == MC_MBUF
|| class == MC_CL
|| class == MC_BIGCL
||
3265 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
3267 VERIFY(PAGE_SIZE
== m_maxsize(MC_BIGCL
) ||
3268 PAGE_SIZE
== m_maxsize(MC_16KCL
));
3270 if (m_maxsize(class) >= PAGE_SIZE
) {
3271 return m_clalloc(num
, wait
, m_maxsize(class)) != 0;
3275 * The rest of the function will allocate pages and will slice
3276 * them up into the right size
3279 numpages
= (num
* m_size(class) + PAGE_SIZE
- 1) / PAGE_SIZE
;
3281 /* Currently assume that pages are 4K or 16K */
3282 if (PAGE_SIZE
== m_maxsize(MC_BIGCL
)) {
3283 super_class
= MC_BIGCL
;
3285 super_class
= MC_16KCL
;
3288 i
= m_clalloc(numpages
, wait
, m_maxsize(super_class
));
3290 /* how many objects will we cut the page into? */
3291 int numobj
= PAGE_SIZE
/ m_maxsize(class);
3293 for (count
= 0; count
< numpages
; count
++) {
3294 /* respect totals, minlimit, maxlimit */
3295 if (m_total(super_class
) <= m_minlimit(super_class
) ||
3296 m_total(class) >= m_maxlimit(class)) {
3300 if ((o
= slab_alloc(super_class
, wait
)) == NULL
) {
3304 struct mbuf
*m
= (struct mbuf
*)o
;
3305 union mcluster
*c
= (union mcluster
*)o
;
3306 union mbigcluster
*mbc
= (union mbigcluster
*)o
;
3307 mcl_slab_t
*sp
= slab_get(o
);
3308 mcache_audit_t
*mca
= NULL
;
3311 * since one full page will be converted to MC_MBUF or
3312 * MC_CL, verify that the reference count will match that
3315 VERIFY(sp
->sl_refcnt
== 1 && slab_is_detached(sp
));
3316 VERIFY((sp
->sl_flags
& (SLF_MAPPED
| SLF_PARTIAL
)) == SLF_MAPPED
);
3318 * Make sure that the cluster is unmolested
3322 mca
= mcl_audit_buf2mca(super_class
,
3324 mcache_audit_free_verify(mca
,
3325 (mcache_obj_t
*)o
, 0, m_maxsize(super_class
));
3328 /* Reinitialize it as an mbuf or 2K or 4K slab */
3329 slab_init(sp
, class, sp
->sl_flags
,
3330 sp
->sl_base
, NULL
, PAGE_SIZE
, 0, numobj
);
3332 VERIFY(sp
->sl_head
== NULL
);
3334 VERIFY(m_total(super_class
) >= 1);
3335 m_total(super_class
)--;
3337 if (super_class
== MC_BIGCL
) {
3338 mbstat
.m_bigclusters
= m_total(MC_BIGCL
);
3341 m_total(class) += numobj
;
3342 VERIFY(m_total(class) <= m_maxlimit(class));
3343 m_infree(class) += numobj
;
3345 if (!mb_peak_newreport
&& mbuf_report_usage(class)) {
3346 mb_peak_newreport
= TRUE
;
3350 if (class == MC_MBUF
) {
3351 mbstat
.m_mbufs
= m_total(MC_MBUF
);
3352 mtype_stat_add(MT_FREE
, NMBPG
);
3355 * If auditing is enabled, construct the
3356 * shadow mbuf in the audit structure
3357 * instead of the actual one.
3358 * mbuf_slab_audit() will take care of
3359 * restoring the contents after the
3362 if (mclaudit
!= NULL
) {
3364 mca
= mcl_audit_buf2mca(MC_MBUF
,
3366 ms
= MCA_SAVED_MBUF_PTR(mca
);
3367 ms
->m_type
= MT_FREE
;
3369 m
->m_type
= MT_FREE
;
3371 m
->m_next
= sp
->sl_head
;
3372 sp
->sl_head
= (void *)m
++;
3374 } else if (class == MC_CL
) { /* MC_CL */
3376 m_infree(MC_CL
) + m_infree(MC_MBUF_CL
);
3377 mbstat
.m_clusters
= m_total(MC_CL
);
3379 c
->mcl_next
= sp
->sl_head
;
3380 sp
->sl_head
= (void *)c
++;
3383 VERIFY(class == MC_BIGCL
);
3384 mbstat
.m_bigclusters
= m_total(MC_BIGCL
);
3385 mbstat
.m_bigclfree
= m_infree(MC_BIGCL
) +
3386 m_infree(MC_MBUF_BIGCL
);
3388 mbc
->mbc_next
= sp
->sl_head
;
3389 sp
->sl_head
= (void *)mbc
++;
3393 /* Insert into the mbuf or 2k or 4k slab list */
3394 slab_insert(sp
, class);
3396 if ((i
= mb_waiters
) > 0) {
3400 mbwdog_logger("waking up all threads");
3401 wakeup(mb_waitchan
);
3408 * For each class, initialize the freelist to hold m_minlimit() objects.
3411 freelist_init(mbuf_class_t
class)
3413 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
3415 VERIFY(class == MC_CL
|| class == MC_BIGCL
);
3416 VERIFY(m_total(class) == 0);
3417 VERIFY(m_minlimit(class) > 0);
3419 while (m_total(class) < m_minlimit(class)) {
3420 (void) freelist_populate(class, m_minlimit(class), M_WAIT
);
3423 VERIFY(m_total(class) >= m_minlimit(class));
3427 * (Inaccurately) check if it might be worth a trip back to the
3428 * mcache layer due the availability of objects there. We'll
3429 * end up back here if there's nothing up there.
3432 mbuf_cached_above(mbuf_class_t
class, int wait
)
3436 if (wait
& MCR_COMP
) {
3437 return !mcache_bkt_isempty(m_cache(MC_MBUF_CL
)) ||
3438 !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL
));
3443 if (wait
& MCR_COMP
) {
3444 return !mcache_bkt_isempty(m_cache(MC_MBUF_CL
));
3449 if (wait
& MCR_COMP
) {
3450 return !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL
));
3455 if (wait
& MCR_COMP
) {
3456 return !mcache_bkt_isempty(m_cache(MC_MBUF_16KCL
));
3470 return !mcache_bkt_isempty(m_cache(class));
3474 * If possible, convert constructed objects to raw ones.
3477 mbuf_steal(mbuf_class_t
class, unsigned int num
)
3479 mcache_obj_t
*top
= NULL
;
3480 mcache_obj_t
**list
= &top
;
3481 unsigned int tot
= 0;
3483 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
3495 /* Get the required number of constructed objects if possible */
3496 if (m_infree(class) > m_minlimit(class)) {
3497 tot
= cslab_alloc(class, &list
,
3498 MIN(num
, m_infree(class)));
3501 /* And destroy them to get back the raw objects */
3503 (void) cslab_free(class, top
, 1);
3516 m_reclaim(mbuf_class_t
class, unsigned int num
, boolean_t comp
)
3520 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
3522 VERIFY(m_total(MC_CL
) <= m_maxlimit(MC_CL
));
3523 VERIFY(m_total(MC_BIGCL
) <= m_maxlimit(MC_BIGCL
));
3524 VERIFY(m_total(MC_16KCL
) <= m_maxlimit(MC_16KCL
));
3527 * This logic can be made smarter; for now, simply mark
3528 * all other related classes as potential victims.
3532 m_wantpurge(MC_CL
)++;
3533 m_wantpurge(MC_BIGCL
)++;
3534 m_wantpurge(MC_MBUF_CL
)++;
3535 m_wantpurge(MC_MBUF_BIGCL
)++;
3539 m_wantpurge(MC_MBUF
)++;
3540 m_wantpurge(MC_BIGCL
)++;
3541 m_wantpurge(MC_MBUF_BIGCL
)++;
3543 m_wantpurge(MC_MBUF_CL
)++;
3548 m_wantpurge(MC_MBUF
)++;
3549 m_wantpurge(MC_CL
)++;
3550 m_wantpurge(MC_MBUF_CL
)++;
3552 m_wantpurge(MC_MBUF_BIGCL
)++;
3558 m_wantpurge(MC_MBUF_16KCL
)++;
3568 * Run through each marked class and check if we really need to
3569 * purge (and therefore temporarily disable) the per-CPU caches
3570 * layer used by the class. If so, remember the classes since
3571 * we are going to drop the lock below prior to purging.
3573 for (m
= 0; m
< NELEM(mbuf_table
); m
++) {
3574 if (m_wantpurge(m
) > 0) {
3577 * Try hard to steal the required number of objects
3578 * from the freelist of other mbuf classes. Only
3579 * purge and disable the per-CPU caches layer when
3580 * we don't have enough; it's the last resort.
3582 if (!mbuf_steal(m
, num
)) {
3588 lck_mtx_unlock(mbuf_mlock
);
3591 /* signal the domains to drain */
3592 net_drain_domains();
3594 /* Sigh; we have no other choices but to ask mcache to purge */
3595 for (m
= 0; m
< NELEM(mbuf_table
); m
++) {
3596 if ((bmap
& (1 << m
)) &&
3597 mcache_purge_cache(m_cache(m
), TRUE
)) {
3598 lck_mtx_lock(mbuf_mlock
);
3601 lck_mtx_unlock(mbuf_mlock
);
3606 * Request mcache to reap extra elements from all of its caches;
3607 * note that all reaps are serialized and happen only at a fixed
3612 lck_mtx_lock(mbuf_mlock
);
3615 static inline struct mbuf
*
3616 m_get_common(int wait
, short type
, int hdr
)
3619 int mcflags
= MSLEEPF(wait
);
3621 /* Is this due to a non-blocking retry? If so, then try harder */
3622 if (mcflags
& MCR_NOSLEEP
) {
3623 mcflags
|= MCR_TRYHARD
;
3626 m
= mcache_alloc(m_cache(MC_MBUF
), mcflags
);
3628 MBUF_INIT(m
, hdr
, type
);
3629 mtype_stat_inc(type
);
3630 mtype_stat_dec(MT_FREE
);
3636 * Space allocation routines; these are also available as macros
3637 * for critical paths.
3639 #define _M_GET(wait, type) m_get_common(wait, type, 0)
3640 #define _M_GETHDR(wait, type) m_get_common(wait, type, 1)
3641 #define _M_RETRY(wait, type) _M_GET(wait, type)
3642 #define _M_RETRYHDR(wait, type) _M_GETHDR(wait, type)
3643 #define _MGET(m, how, type) ((m) = _M_GET(how, type))
3644 #define _MGETHDR(m, how, type) ((m) = _M_GETHDR(how, type))
3647 m_get(int wait
, int type
)
3649 return _M_GET(wait
, type
);
3653 m_gethdr(int wait
, int type
)
3655 return _M_GETHDR(wait
, type
);
3659 m_retry(int wait
, int type
)
3661 return _M_RETRY(wait
, type
);
3665 m_retryhdr(int wait
, int type
)
3667 return _M_RETRYHDR(wait
, type
);
3671 m_getclr(int wait
, int type
)
3675 _MGET(m
, wait
, type
);
3677 bzero(MTOD(m
, caddr_t
), MLEN
);
3683 m_free_paired(struct mbuf
*m
)
3685 VERIFY((m
->m_flags
& M_EXT
) && (MEXT_FLAGS(m
) & EXTF_PAIRED
));
3688 if (MEXT_PMBUF(m
) == m
) {
3689 volatile UInt16
*addr
= (volatile UInt16
*)&MEXT_PREF(m
);
3690 int16_t oprefcnt
, prefcnt
;
3693 * Paired ref count might be negative in case we lose
3694 * against another thread clearing MEXT_PMBUF, in the
3695 * event it occurs after the above memory barrier sync.
3696 * In that case just ignore as things have been unpaired.
3700 prefcnt
= oprefcnt
- 1;
3701 } while (!OSCompareAndSwap16(oprefcnt
, prefcnt
, addr
));
3705 } else if (prefcnt
== 1) {
3706 (*(m_get_ext_free(m
)))(m
->m_ext
.ext_buf
,
3707 m
->m_ext
.ext_size
, m_get_ext_arg(m
));
3709 } else if (prefcnt
== 0) {
3710 VERIFY(MBUF_IS_PAIRED(m
));
3713 * Restore minref to its natural value, so that
3714 * the caller will be able to free the cluster
3720 * Clear MEXT_PMBUF, but leave EXTF_PAIRED intact
3721 * as it is immutable. atomic_set_ptr also causes
3722 * memory barrier sync.
3724 atomic_set_ptr(&MEXT_PMBUF(m
), NULL
);
3726 switch (m
->m_ext
.ext_size
) {
3728 m_set_ext(m
, m_get_rfa(m
), NULL
, NULL
);
3732 m_set_ext(m
, m_get_rfa(m
), m_bigfree
, NULL
);
3736 m_set_ext(m
, m_get_rfa(m
), m_16kfree
, NULL
);
3747 * Tell caller the unpair has occurred, and that the reference
3748 * count on the external cluster held for the paired mbuf should
3755 m_free(struct mbuf
*m
)
3757 struct mbuf
*n
= m
->m_next
;
3759 if (m
->m_type
== MT_FREE
) {
3760 panic("m_free: freeing an already freed mbuf");
3763 if (m
->m_flags
& M_PKTHDR
) {
3764 /* Check for scratch area overflow */
3765 m_redzone_verify(m
);
3766 /* Free the aux data and tags if there is any */
3767 m_tag_delete_chain(m
, NULL
);
3769 m_do_tx_compl_callback(m
, NULL
);
3772 if (m
->m_flags
& M_EXT
) {
3774 u_int32_t composite
;
3775 m_ext_free_func_t m_free_func
;
3777 if (MBUF_IS_PAIRED(m
) && m_free_paired(m
)) {
3781 refcnt
= m_decref(m
);
3782 composite
= (MEXT_FLAGS(m
) & EXTF_COMPOSITE
);
3783 m_free_func
= m_get_ext_free(m
);
3785 if (refcnt
== MEXT_MINREF(m
) && !composite
) {
3786 if (m_free_func
== NULL
) {
3787 mcache_free(m_cache(MC_CL
), m
->m_ext
.ext_buf
);
3788 } else if (m_free_func
== m_bigfree
) {
3789 mcache_free(m_cache(MC_BIGCL
),
3791 } else if (m_free_func
== m_16kfree
) {
3792 mcache_free(m_cache(MC_16KCL
),
3795 (*m_free_func
)(m
->m_ext
.ext_buf
,
3796 m
->m_ext
.ext_size
, m_get_ext_arg(m
));
3798 mcache_free(ref_cache
, m_get_rfa(m
));
3799 m_set_ext(m
, NULL
, NULL
, NULL
);
3800 } else if (refcnt
== MEXT_MINREF(m
) && composite
) {
3801 VERIFY(!(MEXT_FLAGS(m
) & EXTF_PAIRED
));
3802 VERIFY(m
->m_type
!= MT_FREE
);
3804 mtype_stat_dec(m
->m_type
);
3805 mtype_stat_inc(MT_FREE
);
3807 m
->m_type
= MT_FREE
;
3810 m
->m_next
= m
->m_nextpkt
= NULL
;
3812 MEXT_FLAGS(m
) &= ~EXTF_READONLY
;
3814 /* "Free" into the intermediate cache */
3815 if (m_free_func
== NULL
) {
3816 mcache_free(m_cache(MC_MBUF_CL
), m
);
3817 } else if (m_free_func
== m_bigfree
) {
3818 mcache_free(m_cache(MC_MBUF_BIGCL
), m
);
3820 VERIFY(m_free_func
== m_16kfree
);
3821 mcache_free(m_cache(MC_MBUF_16KCL
), m
);
3827 if (m
->m_type
!= MT_FREE
) {
3828 mtype_stat_dec(m
->m_type
);
3829 mtype_stat_inc(MT_FREE
);
3832 m
->m_type
= MT_FREE
;
3833 m
->m_flags
= m
->m_len
= 0;
3834 m
->m_next
= m
->m_nextpkt
= NULL
;
3836 mcache_free(m_cache(MC_MBUF
), m
);
3841 __private_extern__
struct mbuf
*
3842 m_clattach(struct mbuf
*m
, int type
, caddr_t extbuf
,
3843 void (*extfree
)(caddr_t
, u_int
, caddr_t
), u_int extsize
, caddr_t extarg
,
3846 struct ext_ref
*rfa
= NULL
;
3849 * If pairing is requested and an existing mbuf is provided, reject
3850 * it if it's already been paired to another cluster. Otherwise,
3851 * allocate a new one or free any existing below.
3853 if ((m
!= NULL
&& MBUF_IS_PAIRED(m
)) ||
3854 (m
== NULL
&& (m
= _M_GETHDR(wait
, type
)) == NULL
)) {
3858 if (m
->m_flags
& M_EXT
) {
3860 u_int32_t composite
;
3861 m_ext_free_func_t m_free_func
;
3863 refcnt
= m_decref(m
);
3864 composite
= (MEXT_FLAGS(m
) & EXTF_COMPOSITE
);
3865 VERIFY(!(MEXT_FLAGS(m
) & EXTF_PAIRED
) && MEXT_PMBUF(m
) == NULL
);
3866 m_free_func
= m_get_ext_free(m
);
3867 if (refcnt
== MEXT_MINREF(m
) && !composite
) {
3868 if (m_free_func
== NULL
) {
3869 mcache_free(m_cache(MC_CL
), m
->m_ext
.ext_buf
);
3870 } else if (m_free_func
== m_bigfree
) {
3871 mcache_free(m_cache(MC_BIGCL
),
3873 } else if (m_free_func
== m_16kfree
) {
3874 mcache_free(m_cache(MC_16KCL
),
3877 (*m_free_func
)(m
->m_ext
.ext_buf
,
3878 m
->m_ext
.ext_size
, m_get_ext_arg(m
));
3880 /* Re-use the reference structure */
3882 } else if (refcnt
== MEXT_MINREF(m
) && composite
) {
3883 VERIFY(m
->m_type
!= MT_FREE
);
3885 mtype_stat_dec(m
->m_type
);
3886 mtype_stat_inc(MT_FREE
);
3888 m
->m_type
= MT_FREE
;
3891 m
->m_next
= m
->m_nextpkt
= NULL
;
3893 MEXT_FLAGS(m
) &= ~EXTF_READONLY
;
3895 /* "Free" into the intermediate cache */
3896 if (m_free_func
== NULL
) {
3897 mcache_free(m_cache(MC_MBUF_CL
), m
);
3898 } else if (m_free_func
== m_bigfree
) {
3899 mcache_free(m_cache(MC_MBUF_BIGCL
), m
);
3901 VERIFY(m_free_func
== m_16kfree
);
3902 mcache_free(m_cache(MC_MBUF_16KCL
), m
);
3905 * Allocate a new mbuf, since we didn't divorce
3906 * the composite mbuf + cluster pair above.
3908 if ((m
= _M_GETHDR(wait
, type
)) == NULL
) {
3915 (rfa
= mcache_alloc(ref_cache
, MSLEEPF(wait
))) == NULL
) {
3921 MEXT_INIT(m
, extbuf
, extsize
, extfree
, extarg
, rfa
,
3922 0, 1, 0, 0, 0, NULL
);
3924 MEXT_INIT(m
, extbuf
, extsize
, extfree
, (caddr_t
)m
, rfa
,
3925 1, 1, 1, EXTF_PAIRED
, 0, m
);
3932 * Perform `fast' allocation mbuf clusters from a cache of recently-freed
3933 * clusters. (If the cache is empty, new clusters are allocated en-masse.)
3936 m_getcl(int wait
, int type
, int flags
)
3939 int mcflags
= MSLEEPF(wait
);
3940 int hdr
= (flags
& M_PKTHDR
);
3942 /* Is this due to a non-blocking retry? If so, then try harder */
3943 if (mcflags
& MCR_NOSLEEP
) {
3944 mcflags
|= MCR_TRYHARD
;
3947 m
= mcache_alloc(m_cache(MC_MBUF_CL
), mcflags
);
3950 struct ext_ref
*rfa
;
3953 VERIFY(m
->m_type
== MT_FREE
&& m
->m_flags
== M_EXT
);
3954 cl
= m
->m_ext
.ext_buf
;
3957 ASSERT(cl
!= NULL
&& rfa
!= NULL
);
3958 VERIFY(MBUF_IS_COMPOSITE(m
) && m_get_ext_free(m
) == NULL
);
3960 flag
= MEXT_FLAGS(m
);
3962 MBUF_INIT(m
, hdr
, type
);
3963 MBUF_CL_INIT(m
, cl
, rfa
, 1, flag
);
3965 mtype_stat_inc(type
);
3966 mtype_stat_dec(MT_FREE
);
3971 /* m_mclget() add an mbuf cluster to a normal mbuf */
3973 m_mclget(struct mbuf
*m
, int wait
)
3975 struct ext_ref
*rfa
;
3977 if ((rfa
= mcache_alloc(ref_cache
, MSLEEPF(wait
))) == NULL
) {
3981 m
->m_ext
.ext_buf
= m_mclalloc(wait
);
3982 if (m
->m_ext
.ext_buf
!= NULL
) {
3983 MBUF_CL_INIT(m
, m
->m_ext
.ext_buf
, rfa
, 1, 0);
3985 mcache_free(ref_cache
, rfa
);
3990 /* Allocate an mbuf cluster */
3992 m_mclalloc(int wait
)
3994 int mcflags
= MSLEEPF(wait
);
3996 /* Is this due to a non-blocking retry? If so, then try harder */
3997 if (mcflags
& MCR_NOSLEEP
) {
3998 mcflags
|= MCR_TRYHARD
;
4001 return mcache_alloc(m_cache(MC_CL
), mcflags
);
4004 /* Free an mbuf cluster */
4006 m_mclfree(caddr_t p
)
4008 mcache_free(m_cache(MC_CL
), p
);
4012 * mcl_hasreference() checks if a cluster of an mbuf is referenced by
4013 * another mbuf; see comments in m_incref() regarding EXTF_READONLY.
4016 m_mclhasreference(struct mbuf
*m
)
4018 if (!(m
->m_flags
& M_EXT
)) {
4022 ASSERT(m_get_rfa(m
) != NULL
);
4024 return (MEXT_FLAGS(m
) & EXTF_READONLY
) ? 1 : 0;
4027 __private_extern__ caddr_t
4028 m_bigalloc(int wait
)
4030 int mcflags
= MSLEEPF(wait
);
4032 /* Is this due to a non-blocking retry? If so, then try harder */
4033 if (mcflags
& MCR_NOSLEEP
) {
4034 mcflags
|= MCR_TRYHARD
;
4037 return mcache_alloc(m_cache(MC_BIGCL
), mcflags
);
4040 __private_extern__
void
4041 m_bigfree(caddr_t p
, __unused u_int size
, __unused caddr_t arg
)
4043 mcache_free(m_cache(MC_BIGCL
), p
);
4046 /* m_mbigget() add an 4KB mbuf cluster to a normal mbuf */
4047 __private_extern__
struct mbuf
*
4048 m_mbigget(struct mbuf
*m
, int wait
)
4050 struct ext_ref
*rfa
;
4052 if ((rfa
= mcache_alloc(ref_cache
, MSLEEPF(wait
))) == NULL
) {
4056 m
->m_ext
.ext_buf
= m_bigalloc(wait
);
4057 if (m
->m_ext
.ext_buf
!= NULL
) {
4058 MBUF_BIGCL_INIT(m
, m
->m_ext
.ext_buf
, rfa
, 1, 0);
4060 mcache_free(ref_cache
, rfa
);
4065 __private_extern__ caddr_t
4066 m_16kalloc(int wait
)
4068 int mcflags
= MSLEEPF(wait
);
4070 /* Is this due to a non-blocking retry? If so, then try harder */
4071 if (mcflags
& MCR_NOSLEEP
) {
4072 mcflags
|= MCR_TRYHARD
;
4075 return mcache_alloc(m_cache(MC_16KCL
), mcflags
);
4078 __private_extern__
void
4079 m_16kfree(caddr_t p
, __unused u_int size
, __unused caddr_t arg
)
4081 mcache_free(m_cache(MC_16KCL
), p
);
4084 /* m_m16kget() add a 16KB mbuf cluster to a normal mbuf */
4085 __private_extern__
struct mbuf
*
4086 m_m16kget(struct mbuf
*m
, int wait
)
4088 struct ext_ref
*rfa
;
4090 if ((rfa
= mcache_alloc(ref_cache
, MSLEEPF(wait
))) == NULL
) {
4094 m
->m_ext
.ext_buf
= m_16kalloc(wait
);
4095 if (m
->m_ext
.ext_buf
!= NULL
) {
4096 MBUF_16KCL_INIT(m
, m
->m_ext
.ext_buf
, rfa
, 1, 0);
4098 mcache_free(ref_cache
, rfa
);
4104 * "Move" mbuf pkthdr from "from" to "to".
4105 * "from" must have M_PKTHDR set, and "to" must be empty.
4108 m_copy_pkthdr(struct mbuf
*to
, struct mbuf
*from
)
4110 VERIFY(from
->m_flags
& M_PKTHDR
);
4112 /* Check for scratch area overflow */
4113 m_redzone_verify(from
);
4115 if (to
->m_flags
& M_PKTHDR
) {
4116 /* Check for scratch area overflow */
4117 m_redzone_verify(to
);
4118 /* We will be taking over the tags of 'to' */
4119 m_tag_delete_chain(to
, NULL
);
4121 to
->m_pkthdr
= from
->m_pkthdr
; /* especially tags */
4122 m_classifier_init(from
, 0); /* purge classifier info */
4123 m_tag_init(from
, 1); /* purge all tags from src */
4124 m_scratch_init(from
); /* clear src scratch area */
4125 to
->m_flags
= (from
->m_flags
& M_COPYFLAGS
) | (to
->m_flags
& M_EXT
);
4126 if ((to
->m_flags
& M_EXT
) == 0) {
4127 to
->m_data
= to
->m_pktdat
;
4129 m_redzone_init(to
); /* setup red zone on dst */
4133 * Duplicate "from"'s mbuf pkthdr in "to".
4134 * "from" must have M_PKTHDR set, and "to" must be empty.
4135 * In particular, this does a deep copy of the packet tags.
4138 m_dup_pkthdr(struct mbuf
*to
, struct mbuf
*from
, int how
)
4140 VERIFY(from
->m_flags
& M_PKTHDR
);
4142 /* Check for scratch area overflow */
4143 m_redzone_verify(from
);
4145 if (to
->m_flags
& M_PKTHDR
) {
4146 /* Check for scratch area overflow */
4147 m_redzone_verify(to
);
4148 /* We will be taking over the tags of 'to' */
4149 m_tag_delete_chain(to
, NULL
);
4151 to
->m_flags
= (from
->m_flags
& M_COPYFLAGS
) | (to
->m_flags
& M_EXT
);
4152 if ((to
->m_flags
& M_EXT
) == 0) {
4153 to
->m_data
= to
->m_pktdat
;
4155 to
->m_pkthdr
= from
->m_pkthdr
;
4156 m_redzone_init(to
); /* setup red zone on dst */
4157 m_tag_init(to
, 0); /* preserve dst static tags */
4158 return m_tag_copy_chain(to
, from
, how
);
4162 m_copy_pftag(struct mbuf
*to
, struct mbuf
*from
)
4164 memcpy(m_pftag(to
), m_pftag(from
), sizeof(struct pf_mtag
));
4166 m_pftag(to
)->pftag_hdr
= NULL
;
4167 m_pftag(to
)->pftag_flags
&= ~(PF_TAG_HDR_INET
| PF_TAG_HDR_INET6
);
4172 m_classifier_init(struct mbuf
*m
, uint32_t pktf_mask
)
4174 VERIFY(m
->m_flags
& M_PKTHDR
);
4176 m
->m_pkthdr
.pkt_proto
= 0;
4177 m
->m_pkthdr
.pkt_flowsrc
= 0;
4178 m
->m_pkthdr
.pkt_flowid
= 0;
4179 m
->m_pkthdr
.pkt_flags
&= pktf_mask
; /* caller-defined mask */
4180 /* preserve service class and interface info for loopback packets */
4181 if (!(m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) {
4182 (void) m_set_service_class(m
, MBUF_SC_BE
);
4184 if (!(m
->m_pkthdr
.pkt_flags
& PKTF_IFAINFO
)) {
4185 m
->m_pkthdr
.pkt_ifainfo
= 0;
4188 * Preserve timestamp if requested
4190 if (!(m
->m_pkthdr
.pkt_flags
& PKTF_TS_VALID
)) {
4191 m
->m_pkthdr
.pkt_timestamp
= 0;
4196 m_copy_classifier(struct mbuf
*to
, struct mbuf
*from
)
4198 VERIFY(to
->m_flags
& M_PKTHDR
);
4199 VERIFY(from
->m_flags
& M_PKTHDR
);
4201 to
->m_pkthdr
.pkt_proto
= from
->m_pkthdr
.pkt_proto
;
4202 to
->m_pkthdr
.pkt_flowsrc
= from
->m_pkthdr
.pkt_flowsrc
;
4203 to
->m_pkthdr
.pkt_flowid
= from
->m_pkthdr
.pkt_flowid
;
4204 to
->m_pkthdr
.pkt_flags
= from
->m_pkthdr
.pkt_flags
;
4205 (void) m_set_service_class(to
, from
->m_pkthdr
.pkt_svc
);
4206 to
->m_pkthdr
.pkt_ifainfo
= from
->m_pkthdr
.pkt_ifainfo
;
4210 * Return a list of mbuf hdrs that point to clusters. Try for num_needed;
4211 * if wantall is not set, return whatever number were available. Set up the
4212 * first num_with_pkthdrs with mbuf hdrs configured as packet headers; these
4213 * are chained on the m_nextpkt field. Any packets requested beyond this
4214 * are chained onto the last packet header's m_next field. The size of
4215 * the cluster is controlled by the parameter bufsize.
4217 __private_extern__
struct mbuf
*
4218 m_getpackets_internal(unsigned int *num_needed
, int num_with_pkthdrs
,
4219 int wait
, int wantall
, size_t bufsize
)
4222 struct mbuf
**np
, *top
;
4223 unsigned int pnum
, needed
= *num_needed
;
4224 mcache_obj_t
*mp_list
= NULL
;
4225 int mcflags
= MSLEEPF(wait
);
4227 struct ext_ref
*rfa
;
4231 ASSERT(bufsize
== m_maxsize(MC_CL
) ||
4232 bufsize
== m_maxsize(MC_BIGCL
) ||
4233 bufsize
== m_maxsize(MC_16KCL
));
4236 * Caller must first check for njcl because this
4237 * routine is internal and not exposed/used via KPI.
4239 VERIFY(bufsize
!= m_maxsize(MC_16KCL
) || njcl
> 0);
4246 * The caller doesn't want all the requested buffers; only some.
4247 * Try hard to get what we can, but don't block. This effectively
4248 * overrides MCR_SLEEP, since this thread will not go to sleep
4249 * if we can't get all the buffers.
4251 if (!wantall
|| (mcflags
& MCR_NOSLEEP
)) {
4252 mcflags
|= MCR_TRYHARD
;
4255 /* Allocate the composite mbuf + cluster elements from the cache */
4256 if (bufsize
== m_maxsize(MC_CL
)) {
4257 cp
= m_cache(MC_MBUF_CL
);
4258 } else if (bufsize
== m_maxsize(MC_BIGCL
)) {
4259 cp
= m_cache(MC_MBUF_BIGCL
);
4261 cp
= m_cache(MC_MBUF_16KCL
);
4263 needed
= mcache_alloc_ext(cp
, &mp_list
, needed
, mcflags
);
4265 for (pnum
= 0; pnum
< needed
; pnum
++) {
4266 m
= (struct mbuf
*)mp_list
;
4267 mp_list
= mp_list
->obj_next
;
4269 VERIFY(m
->m_type
== MT_FREE
&& m
->m_flags
== M_EXT
);
4270 cl
= m
->m_ext
.ext_buf
;
4273 ASSERT(cl
!= NULL
&& rfa
!= NULL
);
4274 VERIFY(MBUF_IS_COMPOSITE(m
));
4276 flag
= MEXT_FLAGS(m
);
4278 MBUF_INIT(m
, num_with_pkthdrs
, MT_DATA
);
4279 if (bufsize
== m_maxsize(MC_16KCL
)) {
4280 MBUF_16KCL_INIT(m
, cl
, rfa
, 1, flag
);
4281 } else if (bufsize
== m_maxsize(MC_BIGCL
)) {
4282 MBUF_BIGCL_INIT(m
, cl
, rfa
, 1, flag
);
4284 MBUF_CL_INIT(m
, cl
, rfa
, 1, flag
);
4287 if (num_with_pkthdrs
> 0) {
4292 if (num_with_pkthdrs
> 0) {
4298 ASSERT(pnum
!= *num_needed
|| mp_list
== NULL
);
4299 if (mp_list
!= NULL
) {
4300 mcache_free_ext(cp
, mp_list
);
4304 mtype_stat_add(MT_DATA
, pnum
);
4305 mtype_stat_sub(MT_FREE
, pnum
);
4308 if (wantall
&& (pnum
!= *num_needed
)) {
4315 if (pnum
> *num_needed
) {
4316 printf("%s: File a radar related to <rdar://10146739>. \
4317 needed = %u, pnum = %u, num_needed = %u \n",
4318 __func__
, needed
, pnum
, *num_needed
);
4326 * Return list of mbuf linked by m_nextpkt. Try for numlist, and if
4327 * wantall is not set, return whatever number were available. The size of
4328 * each mbuf in the list is controlled by the parameter packetlen. Each
4329 * mbuf of the list may have a chain of mbufs linked by m_next. Each mbuf
4330 * in the chain is called a segment. If maxsegments is not null and the
4331 * value pointed to is not null, this specify the maximum number of segments
4332 * for a chain of mbufs. If maxsegments is zero or the value pointed to
4333 * is zero the caller does not have any restriction on the number of segments.
4334 * The actual number of segments of a mbuf chain is return in the value
4335 * pointed to by maxsegments.
4337 __private_extern__
struct mbuf
*
4338 m_allocpacket_internal(unsigned int *numlist
, size_t packetlen
,
4339 unsigned int *maxsegments
, int wait
, int wantall
, size_t wantsize
)
4341 struct mbuf
**np
, *top
, *first
= NULL
;
4342 size_t bufsize
, r_bufsize
;
4343 unsigned int num
= 0;
4344 unsigned int nsegs
= 0;
4345 unsigned int needed
, resid
;
4346 int mcflags
= MSLEEPF(wait
);
4347 mcache_obj_t
*mp_list
= NULL
, *rmp_list
= NULL
;
4348 mcache_t
*cp
= NULL
, *rcp
= NULL
;
4350 if (*numlist
== 0) {
4357 if (wantsize
== 0) {
4358 if (packetlen
<= MINCLSIZE
) {
4359 bufsize
= packetlen
;
4360 } else if (packetlen
> m_maxsize(MC_CL
)) {
4361 /* Use 4KB if jumbo cluster pool isn't available */
4362 if (packetlen
<= m_maxsize(MC_BIGCL
) || njcl
== 0) {
4363 bufsize
= m_maxsize(MC_BIGCL
);
4365 bufsize
= m_maxsize(MC_16KCL
);
4368 bufsize
= m_maxsize(MC_CL
);
4370 } else if (wantsize
== m_maxsize(MC_CL
) ||
4371 wantsize
== m_maxsize(MC_BIGCL
) ||
4372 (wantsize
== m_maxsize(MC_16KCL
) && njcl
> 0)) {
4379 if (bufsize
<= MHLEN
) {
4381 } else if (bufsize
<= MINCLSIZE
) {
4382 if (maxsegments
!= NULL
&& *maxsegments
== 1) {
4383 bufsize
= m_maxsize(MC_CL
);
4388 } else if (bufsize
== m_maxsize(MC_16KCL
)) {
4390 nsegs
= ((packetlen
- 1) >> M16KCLSHIFT
) + 1;
4391 } else if (bufsize
== m_maxsize(MC_BIGCL
)) {
4392 nsegs
= ((packetlen
- 1) >> MBIGCLSHIFT
) + 1;
4394 nsegs
= ((packetlen
- 1) >> MCLSHIFT
) + 1;
4396 if (maxsegments
!= NULL
) {
4397 if (*maxsegments
&& nsegs
> *maxsegments
) {
4398 *maxsegments
= nsegs
;
4402 *maxsegments
= nsegs
;
4406 * The caller doesn't want all the requested buffers; only some.
4407 * Try hard to get what we can, but don't block. This effectively
4408 * overrides MCR_SLEEP, since this thread will not go to sleep
4409 * if we can't get all the buffers.
4411 if (!wantall
|| (mcflags
& MCR_NOSLEEP
)) {
4412 mcflags
|= MCR_TRYHARD
;
4416 * Simple case where all elements in the lists/chains are mbufs.
4417 * Unless bufsize is greater than MHLEN, each segment chain is made
4418 * up of exactly 1 mbuf. Otherwise, each segment chain is made up
4419 * of 2 mbufs; the second one is used for the residual data, i.e.
4420 * the remaining data that cannot fit into the first mbuf.
4422 if (bufsize
<= MINCLSIZE
) {
4423 /* Allocate the elements in one shot from the mbuf cache */
4424 ASSERT(bufsize
<= MHLEN
|| nsegs
== 2);
4425 cp
= m_cache(MC_MBUF
);
4426 needed
= mcache_alloc_ext(cp
, &mp_list
,
4427 (*numlist
) * nsegs
, mcflags
);
4430 * The number of elements must be even if we are to use an
4431 * mbuf (instead of a cluster) to store the residual data.
4432 * If we couldn't allocate the requested number of mbufs,
4433 * trim the number down (if it's odd) in order to avoid
4434 * creating a partial segment chain.
4436 if (bufsize
> MHLEN
&& (needed
& 0x1)) {
4440 while (num
< needed
) {
4443 m
= (struct mbuf
*)mp_list
;
4444 mp_list
= mp_list
->obj_next
;
4447 MBUF_INIT(m
, 1, MT_DATA
);
4449 if (bufsize
> MHLEN
) {
4450 /* A second mbuf for this segment chain */
4451 m
->m_next
= (struct mbuf
*)mp_list
;
4452 mp_list
= mp_list
->obj_next
;
4453 ASSERT(m
->m_next
!= NULL
);
4455 MBUF_INIT(m
->m_next
, 0, MT_DATA
);
4461 ASSERT(num
!= *numlist
|| mp_list
== NULL
);
4464 mtype_stat_add(MT_DATA
, num
);
4465 mtype_stat_sub(MT_FREE
, num
);
4469 /* We've got them all; return to caller */
4470 if (num
== *numlist
) {
4478 * Complex cases where elements are made up of one or more composite
4479 * mbufs + cluster, depending on packetlen. Each N-segment chain can
4480 * be illustrated as follows:
4482 * [mbuf + cluster 1] [mbuf + cluster 2] ... [mbuf + cluster N]
4484 * Every composite mbuf + cluster element comes from the intermediate
4485 * cache (either MC_MBUF_CL or MC_MBUF_BIGCL). For space efficiency,
4486 * the last composite element will come from the MC_MBUF_CL cache,
4487 * unless the residual data is larger than 2KB where we use the
4488 * big cluster composite cache (MC_MBUF_BIGCL) instead. Residual
4489 * data is defined as extra data beyond the first element that cannot
4490 * fit into the previous element, i.e. there is no residual data if
4491 * the chain only has 1 segment.
4493 r_bufsize
= bufsize
;
4494 resid
= packetlen
> bufsize
? packetlen
% bufsize
: 0;
4496 /* There is residual data; figure out the cluster size */
4497 if (wantsize
== 0 && packetlen
> MINCLSIZE
) {
4499 * Caller didn't request that all of the segments
4500 * in the chain use the same cluster size; use the
4501 * smaller of the cluster sizes.
4503 if (njcl
> 0 && resid
> m_maxsize(MC_BIGCL
)) {
4504 r_bufsize
= m_maxsize(MC_16KCL
);
4505 } else if (resid
> m_maxsize(MC_CL
)) {
4506 r_bufsize
= m_maxsize(MC_BIGCL
);
4508 r_bufsize
= m_maxsize(MC_CL
);
4511 /* Use the same cluster size as the other segments */
4519 * Attempt to allocate composite mbuf + cluster elements for
4520 * the residual data in each chain; record the number of such
4521 * elements that can be allocated so that we know how many
4522 * segment chains we can afford to create.
4524 if (r_bufsize
<= m_maxsize(MC_CL
)) {
4525 rcp
= m_cache(MC_MBUF_CL
);
4526 } else if (r_bufsize
<= m_maxsize(MC_BIGCL
)) {
4527 rcp
= m_cache(MC_MBUF_BIGCL
);
4529 rcp
= m_cache(MC_MBUF_16KCL
);
4531 needed
= mcache_alloc_ext(rcp
, &rmp_list
, *numlist
, mcflags
);
4537 /* This is temporarily reduced for calculation */
4543 * Attempt to allocate the rest of the composite mbuf + cluster
4544 * elements for the number of segment chains that we need.
4546 if (bufsize
<= m_maxsize(MC_CL
)) {
4547 cp
= m_cache(MC_MBUF_CL
);
4548 } else if (bufsize
<= m_maxsize(MC_BIGCL
)) {
4549 cp
= m_cache(MC_MBUF_BIGCL
);
4551 cp
= m_cache(MC_MBUF_16KCL
);
4553 needed
= mcache_alloc_ext(cp
, &mp_list
, needed
* nsegs
, mcflags
);
4555 /* Round it down to avoid creating a partial segment chain */
4556 needed
= (needed
/ nsegs
) * nsegs
;
4563 * We're about to construct the chain(s); take into account
4564 * the number of segments we have created above to hold the
4565 * residual data for each chain, as well as restore the
4566 * original count of segments per chain.
4569 needed
+= needed
/ nsegs
;
4576 struct ext_ref
*rfa
;
4579 m_ext_free_func_t m_free_func
;
4582 if (nsegs
== 1 || (num
% nsegs
) != 0 || resid
== 0) {
4583 m
= (struct mbuf
*)mp_list
;
4584 mp_list
= mp_list
->obj_next
;
4586 m
= (struct mbuf
*)rmp_list
;
4587 rmp_list
= rmp_list
->obj_next
;
4589 m_free_func
= m_get_ext_free(m
);
4591 VERIFY(m
->m_type
== MT_FREE
&& m
->m_flags
== M_EXT
);
4592 VERIFY(m_free_func
== NULL
|| m_free_func
== m_bigfree
||
4593 m_free_func
== m_16kfree
);
4595 cl
= m
->m_ext
.ext_buf
;
4598 ASSERT(cl
!= NULL
&& rfa
!= NULL
);
4599 VERIFY(MBUF_IS_COMPOSITE(m
));
4601 flag
= MEXT_FLAGS(m
);
4603 pkthdr
= (nsegs
== 1 || (num
% nsegs
) == 1);
4607 MBUF_INIT(m
, pkthdr
, MT_DATA
);
4608 if (m_free_func
== m_16kfree
) {
4609 MBUF_16KCL_INIT(m
, cl
, rfa
, 1, flag
);
4610 } else if (m_free_func
== m_bigfree
) {
4611 MBUF_BIGCL_INIT(m
, cl
, rfa
, 1, flag
);
4613 MBUF_CL_INIT(m
, cl
, rfa
, 1, flag
);
4617 if ((num
% nsegs
) == 0) {
4618 np
= &first
->m_nextpkt
;
4623 if (num
== needed
) {
4629 mtype_stat_add(MT_DATA
, num
);
4630 mtype_stat_sub(MT_FREE
, num
);
4635 /* We've got them all; return to caller */
4636 if (num
== *numlist
) {
4637 ASSERT(mp_list
== NULL
&& rmp_list
== NULL
);
4642 /* Free up what's left of the above */
4643 if (mp_list
!= NULL
) {
4644 mcache_free_ext(cp
, mp_list
);
4646 if (rmp_list
!= NULL
) {
4647 mcache_free_ext(rcp
, rmp_list
);
4649 if (wantall
&& top
!= NULL
) {
4659 * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated
4660 * packets on receive ring.
4662 __private_extern__
struct mbuf
*
4663 m_getpacket_how(int wait
)
4665 unsigned int num_needed
= 1;
4667 return m_getpackets_internal(&num_needed
, 1, wait
, 1,
4672 * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated
4673 * packets on receive ring.
4678 unsigned int num_needed
= 1;
4680 return m_getpackets_internal(&num_needed
, 1, M_WAIT
, 1,
4685 * Return a list of mbuf hdrs that point to clusters. Try for num_needed;
4686 * if this can't be met, return whatever number were available. Set up the
4687 * first num_with_pkthdrs with mbuf hdrs configured as packet headers. These
4688 * are chained on the m_nextpkt field. Any packets requested beyond this are
4689 * chained onto the last packet header's m_next field.
4692 m_getpackets(int num_needed
, int num_with_pkthdrs
, int how
)
4694 unsigned int n
= num_needed
;
4696 return m_getpackets_internal(&n
, num_with_pkthdrs
, how
, 0,
4701 * Return a list of mbuf hdrs set up as packet hdrs chained together
4702 * on the m_nextpkt field
4705 m_getpackethdrs(int num_needed
, int how
)
4708 struct mbuf
**np
, *top
;
4713 while (num_needed
--) {
4714 m
= _M_RETRYHDR(how
, MT_DATA
);
4727 * Free an mbuf list (m_nextpkt) while following m_next. Returns the count
4728 * for mbufs packets freed. Used by the drivers.
4731 m_freem_list(struct mbuf
*m
)
4733 struct mbuf
*nextpkt
;
4734 mcache_obj_t
*mp_list
= NULL
;
4735 mcache_obj_t
*mcl_list
= NULL
;
4736 mcache_obj_t
*mbc_list
= NULL
;
4737 mcache_obj_t
*m16k_list
= NULL
;
4738 mcache_obj_t
*m_mcl_list
= NULL
;
4739 mcache_obj_t
*m_mbc_list
= NULL
;
4740 mcache_obj_t
*m_m16k_list
= NULL
;
4741 mcache_obj_t
*ref_list
= NULL
;
4743 int mt_free
= 0, mt_data
= 0, mt_header
= 0, mt_soname
= 0, mt_tag
= 0;
4748 nextpkt
= m
->m_nextpkt
;
4749 m
->m_nextpkt
= NULL
;
4752 struct mbuf
*next
= m
->m_next
;
4753 mcache_obj_t
*o
, *rfa
;
4754 u_int32_t composite
;
4756 m_ext_free_func_t m_free_func
;
4758 if (m
->m_type
== MT_FREE
) {
4759 panic("m_free: freeing an already freed mbuf");
4762 if (m
->m_flags
& M_PKTHDR
) {
4763 /* Check for scratch area overflow */
4764 m_redzone_verify(m
);
4765 /* Free the aux data and tags if there is any */
4766 m_tag_delete_chain(m
, NULL
);
4769 if (!(m
->m_flags
& M_EXT
)) {
4774 if (MBUF_IS_PAIRED(m
) && m_free_paired(m
)) {
4781 o
= (mcache_obj_t
*)(void *)m
->m_ext
.ext_buf
;
4782 refcnt
= m_decref(m
);
4783 composite
= (MEXT_FLAGS(m
) & EXTF_COMPOSITE
);
4784 m_free_func
= m_get_ext_free(m
);
4785 if (refcnt
== MEXT_MINREF(m
) && !composite
) {
4786 if (m_free_func
== NULL
) {
4787 o
->obj_next
= mcl_list
;
4789 } else if (m_free_func
== m_bigfree
) {
4790 o
->obj_next
= mbc_list
;
4792 } else if (m_free_func
== m_16kfree
) {
4793 o
->obj_next
= m16k_list
;
4796 (*(m_free_func
))((caddr_t
)o
,
4800 rfa
= (mcache_obj_t
*)(void *)m_get_rfa(m
);
4801 rfa
->obj_next
= ref_list
;
4803 m_set_ext(m
, NULL
, NULL
, NULL
);
4804 } else if (refcnt
== MEXT_MINREF(m
) && composite
) {
4805 VERIFY(!(MEXT_FLAGS(m
) & EXTF_PAIRED
));
4806 VERIFY(m
->m_type
!= MT_FREE
);
4808 * Amortize the costs of atomic operations
4809 * by doing them at the end, if possible.
4811 if (m
->m_type
== MT_DATA
) {
4813 } else if (m
->m_type
== MT_HEADER
) {
4815 } else if (m
->m_type
== MT_SONAME
) {
4817 } else if (m
->m_type
== MT_TAG
) {
4820 mtype_stat_dec(m
->m_type
);
4823 m
->m_type
= MT_FREE
;
4826 m
->m_next
= m
->m_nextpkt
= NULL
;
4828 MEXT_FLAGS(m
) &= ~EXTF_READONLY
;
4830 /* "Free" into the intermediate cache */
4831 o
= (mcache_obj_t
*)m
;
4832 if (m_free_func
== NULL
) {
4833 o
->obj_next
= m_mcl_list
;
4835 } else if (m_free_func
== m_bigfree
) {
4836 o
->obj_next
= m_mbc_list
;
4839 VERIFY(m_free_func
== m_16kfree
);
4840 o
->obj_next
= m_m16k_list
;
4848 * Amortize the costs of atomic operations
4849 * by doing them at the end, if possible.
4851 if (m
->m_type
== MT_DATA
) {
4853 } else if (m
->m_type
== MT_HEADER
) {
4855 } else if (m
->m_type
== MT_SONAME
) {
4857 } else if (m
->m_type
== MT_TAG
) {
4859 } else if (m
->m_type
!= MT_FREE
) {
4860 mtype_stat_dec(m
->m_type
);
4863 m
->m_type
= MT_FREE
;
4864 m
->m_flags
= m
->m_len
= 0;
4865 m
->m_next
= m
->m_nextpkt
= NULL
;
4867 ((mcache_obj_t
*)m
)->obj_next
= mp_list
;
4868 mp_list
= (mcache_obj_t
*)m
;
4877 mtype_stat_add(MT_FREE
, mt_free
);
4880 mtype_stat_sub(MT_DATA
, mt_data
);
4882 if (mt_header
> 0) {
4883 mtype_stat_sub(MT_HEADER
, mt_header
);
4885 if (mt_soname
> 0) {
4886 mtype_stat_sub(MT_SONAME
, mt_soname
);
4889 mtype_stat_sub(MT_TAG
, mt_tag
);
4892 if (mp_list
!= NULL
) {
4893 mcache_free_ext(m_cache(MC_MBUF
), mp_list
);
4895 if (mcl_list
!= NULL
) {
4896 mcache_free_ext(m_cache(MC_CL
), mcl_list
);
4898 if (mbc_list
!= NULL
) {
4899 mcache_free_ext(m_cache(MC_BIGCL
), mbc_list
);
4901 if (m16k_list
!= NULL
) {
4902 mcache_free_ext(m_cache(MC_16KCL
), m16k_list
);
4904 if (m_mcl_list
!= NULL
) {
4905 mcache_free_ext(m_cache(MC_MBUF_CL
), m_mcl_list
);
4907 if (m_mbc_list
!= NULL
) {
4908 mcache_free_ext(m_cache(MC_MBUF_BIGCL
), m_mbc_list
);
4910 if (m_m16k_list
!= NULL
) {
4911 mcache_free_ext(m_cache(MC_MBUF_16KCL
), m_m16k_list
);
4913 if (ref_list
!= NULL
) {
4914 mcache_free_ext(ref_cache
, ref_list
);
4921 m_freem(struct mbuf
*m
)
4929 * Mbuffer utility routines.
4932 * Set the m_data pointer of a newly allocated mbuf to place an object of the
4933 * specified size at the end of the mbuf, longword aligned.
4935 * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as
4936 * separate macros, each asserting that it was called at the proper moment.
4937 * This required callers to themselves test the storage type and call the
4938 * right one. Rather than require callers to be aware of those layout
4939 * decisions, we centralize here.
4942 m_align(struct mbuf
*m
, int len
)
4946 /* At this point data must point to start */
4947 VERIFY(m
->m_data
== M_START(m
));
4949 VERIFY(len
<= M_SIZE(m
));
4950 adjust
= M_SIZE(m
) - len
;
4951 m
->m_data
+= adjust
& ~(sizeof(long) - 1);
4955 * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain,
4956 * copy junk along. Does not adjust packet header length.
4959 m_prepend(struct mbuf
*m
, int len
, int how
)
4963 _MGET(mn
, how
, m
->m_type
);
4968 if (m
->m_flags
& M_PKTHDR
) {
4969 M_COPY_PKTHDR(mn
, m
);
4970 m
->m_flags
&= ~M_PKTHDR
;
4974 if (m
->m_flags
& M_PKTHDR
) {
4975 VERIFY(len
<= MHLEN
);
4978 VERIFY(len
<= MLEN
);
4986 * Replacement for old M_PREPEND macro: allocate new mbuf to prepend to
4987 * chain, copy junk along, and adjust length.
4990 m_prepend_2(struct mbuf
*m
, int len
, int how
, int align
)
4992 if (M_LEADINGSPACE(m
) >= len
&&
4993 (!align
|| IS_P2ALIGNED((m
->m_data
- len
), sizeof(u_int32_t
)))) {
4997 m
= m_prepend(m
, len
, how
);
4999 if ((m
) && (m
->m_flags
& M_PKTHDR
)) {
5000 m
->m_pkthdr
.len
+= len
;
5006 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
5007 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf.
5008 * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
5013 m_copym_mode(struct mbuf
*m
, int off0
, int len
, int wait
, uint32_t mode
)
5015 struct mbuf
*n
, *mhdr
= NULL
, **np
;
5020 if (off
< 0 || len
< 0) {
5021 panic("m_copym: invalid offset %d or len %d", off
, len
);
5024 VERIFY((mode
!= M_COPYM_MUST_COPY_HDR
&&
5025 mode
!= M_COPYM_MUST_MOVE_HDR
) || (m
->m_flags
& M_PKTHDR
));
5027 if ((off
== 0 && (m
->m_flags
& M_PKTHDR
)) ||
5028 mode
== M_COPYM_MUST_COPY_HDR
|| mode
== M_COPYM_MUST_MOVE_HDR
) {
5033 while (off
>= m
->m_len
) {
5034 if (m
->m_next
== NULL
) {
5035 panic("m_copym: invalid mbuf chain");
5045 if (len
!= M_COPYALL
) {
5046 panic("m_copym: len != M_COPYALL");
5052 n
= _M_RETRYHDR(wait
, m
->m_type
);
5054 n
= _M_RETRY(wait
, m
->m_type
);
5063 if ((mode
== M_COPYM_MOVE_HDR
) ||
5064 (mode
== M_COPYM_MUST_MOVE_HDR
)) {
5065 M_COPY_PKTHDR(n
, mhdr
);
5066 } else if ((mode
== M_COPYM_COPY_HDR
) ||
5067 (mode
== M_COPYM_MUST_COPY_HDR
)) {
5068 if (m_dup_pkthdr(n
, mhdr
, wait
) == 0) {
5072 if (len
== M_COPYALL
) {
5073 n
->m_pkthdr
.len
-= off0
;
5075 n
->m_pkthdr
.len
= len
;
5079 * There is data to copy from the packet header mbuf
5080 * if it is empty or it is before the starting offset
5087 n
->m_len
= MIN(len
, (m
->m_len
- off
));
5088 if (m
->m_flags
& M_EXT
) {
5089 n
->m_ext
= m
->m_ext
;
5091 n
->m_data
= m
->m_data
+ off
;
5092 n
->m_flags
|= M_EXT
;
5095 * Limit to the capacity of the destination
5097 if (n
->m_flags
& M_PKTHDR
) {
5098 n
->m_len
= MIN(n
->m_len
, MHLEN
);
5100 n
->m_len
= MIN(n
->m_len
, MLEN
);
5103 if (MTOD(n
, char *) + n
->m_len
> ((char *)n
) + MSIZE
) {
5104 panic("%s n %p copy overflow",
5108 bcopy(MTOD(m
, caddr_t
) + off
, MTOD(n
, caddr_t
),
5109 (unsigned)n
->m_len
);
5111 if (len
!= M_COPYALL
) {
5133 m_copym(struct mbuf
*m
, int off0
, int len
, int wait
)
5135 return m_copym_mode(m
, off0
, len
, wait
, M_COPYM_MOVE_HDR
);
5139 * Equivalent to m_copym except that all necessary mbuf hdrs are allocated
5140 * within this routine also, the last mbuf and offset accessed are passed
5141 * out and can be passed back in to avoid having to rescan the entire mbuf
5142 * list (normally hung off of the socket)
5145 m_copym_with_hdrs(struct mbuf
*m0
, int off0
, int len0
, int wait
,
5146 struct mbuf
**m_lastm
, int *m_off
, uint32_t mode
)
5148 struct mbuf
*m
= m0
, *n
, **np
= NULL
;
5149 int off
= off0
, len
= len0
;
5150 struct mbuf
*top
= NULL
;
5151 int mcflags
= MSLEEPF(wait
);
5154 mcache_obj_t
*list
= NULL
;
5157 if (off
== 0 && (m
->m_flags
& M_PKTHDR
)) {
5161 if (m_lastm
!= NULL
&& *m_lastm
!= NULL
) {
5165 while (off
>= m
->m_len
) {
5175 len
-= MIN(len
, (n
->m_len
- ((needed
== 1) ? off
: 0)));
5182 * If the caller doesn't want to be put to sleep, mark it with
5183 * MCR_TRYHARD so that we may reclaim buffers from other places
5186 if (mcflags
& MCR_NOSLEEP
) {
5187 mcflags
|= MCR_TRYHARD
;
5190 if (mcache_alloc_ext(m_cache(MC_MBUF
), &list
, needed
,
5191 mcflags
) != needed
) {
5197 n
= (struct mbuf
*)list
;
5198 list
= list
->obj_next
;
5199 ASSERT(n
!= NULL
&& m
!= NULL
);
5201 type
= (top
== NULL
) ? MT_HEADER
: m
->m_type
;
5202 MBUF_INIT(n
, (top
== NULL
), type
);
5214 if ((mode
== M_COPYM_MOVE_HDR
) ||
5215 (mode
== M_COPYM_MUST_MOVE_HDR
)) {
5216 M_COPY_PKTHDR(n
, m
);
5217 } else if ((mode
== M_COPYM_COPY_HDR
) ||
5218 (mode
== M_COPYM_MUST_COPY_HDR
)) {
5219 if (m_dup_pkthdr(n
, m
, wait
) == 0) {
5223 n
->m_pkthdr
.len
= len
;
5226 n
->m_len
= MIN(len
, (m
->m_len
- off
));
5228 if (m
->m_flags
& M_EXT
) {
5229 n
->m_ext
= m
->m_ext
;
5231 n
->m_data
= m
->m_data
+ off
;
5232 n
->m_flags
|= M_EXT
;
5234 if (MTOD(n
, char *) + n
->m_len
> ((char *)n
) + MSIZE
) {
5235 panic("%s n %p copy overflow",
5239 bcopy(MTOD(m
, caddr_t
) + off
, MTOD(n
, caddr_t
),
5240 (unsigned)n
->m_len
);
5245 if (m_lastm
!= NULL
&& m_off
!= NULL
) {
5246 if ((off
+ n
->m_len
) == m
->m_len
) {
5247 *m_lastm
= m
->m_next
;
5251 *m_off
= off
+ n
->m_len
;
5261 mtype_stat_inc(MT_HEADER
);
5262 mtype_stat_add(type
, needed
);
5263 mtype_stat_sub(MT_FREE
, needed
+ 1);
5265 ASSERT(list
== NULL
);
5270 mcache_free_ext(m_cache(MC_MBUF
), list
);
5280 * Copy data from an mbuf chain starting "off" bytes from the beginning,
5281 * continuing for "len" bytes, into the indicated buffer.
5284 m_copydata(struct mbuf
*m
, int off
, int len
, void *vp
)
5286 int off0
= off
, len0
= len
;
5287 struct mbuf
*m0
= m
;
5291 if (__improbable(off
< 0 || len
< 0)) {
5292 panic("%s: invalid offset %d or len %d", __func__
, off
, len
);
5297 if (__improbable(m
== NULL
)) {
5298 panic("%s: invalid mbuf chain %p [off %d, len %d]",
5299 __func__
, m0
, off0
, len0
);
5302 if (off
< m
->m_len
) {
5309 if (__improbable(m
== NULL
)) {
5310 panic("%s: invalid mbuf chain %p [off %d, len %d]",
5311 __func__
, m0
, off0
, len0
);
5314 count
= MIN(m
->m_len
- off
, len
);
5315 bcopy(MTOD(m
, caddr_t
) + off
, cp
, count
);
5324 * Concatenate mbuf chain n to m. Both chains must be of the same type
5325 * (e.g. MT_DATA). Any m_pkthdr is not updated.
5328 m_cat(struct mbuf
*m
, struct mbuf
*n
)
5334 if ((m
->m_flags
& M_EXT
) ||
5335 m
->m_data
+ m
->m_len
+ n
->m_len
>= &m
->m_dat
[MLEN
]) {
5336 /* just join the two chains */
5340 /* splat the data from one into the other */
5341 bcopy(MTOD(n
, caddr_t
), MTOD(m
, caddr_t
) + m
->m_len
,
5343 m
->m_len
+= n
->m_len
;
5349 m_adj(struct mbuf
*mp
, int req_len
)
5355 if ((m
= mp
) == NULL
) {
5362 while (m
!= NULL
&& len
> 0) {
5363 if (m
->m_len
<= len
) {
5374 if (m
->m_flags
& M_PKTHDR
) {
5375 m
->m_pkthdr
.len
-= (req_len
- len
);
5379 * Trim from tail. Scan the mbuf chain,
5380 * calculating its length and finding the last mbuf.
5381 * If the adjustment only affects this mbuf, then just
5382 * adjust and return. Otherwise, rescan and truncate
5383 * after the remaining size.
5389 if (m
->m_next
== (struct mbuf
*)0) {
5394 if (m
->m_len
>= len
) {
5397 if (m
->m_flags
& M_PKTHDR
) {
5398 m
->m_pkthdr
.len
-= len
;
5407 * Correct length for chain is "count".
5408 * Find the mbuf with last data, adjust its length,
5409 * and toss data from remaining mbufs on chain.
5412 if (m
->m_flags
& M_PKTHDR
) {
5413 m
->m_pkthdr
.len
= count
;
5415 for (; m
; m
= m
->m_next
) {
5416 if (m
->m_len
>= count
) {
5422 while ((m
= m
->m_next
)) {
5429 * Rearange an mbuf chain so that len bytes are contiguous
5430 * and in the data area of an mbuf (so that mtod and dtom
5431 * will work for a structure of size len). Returns the resulting
5432 * mbuf chain on success, frees it and returns null on failure.
5433 * If there is room, it will add up to max_protohdr-len extra bytes to the
5434 * contiguous region in an attempt to avoid being called next time.
5439 m_pullup(struct mbuf
*n
, int len
)
5445 /* check invalid arguments */
5447 panic("%s: n == NULL", __func__
);
5450 os_log_info(OS_LOG_DEFAULT
, "%s: failed negative len %d",
5455 os_log_info(OS_LOG_DEFAULT
, "%s: failed len %d too big",
5459 if ((n
->m_flags
& M_EXT
) == 0 &&
5460 n
->m_data
>= &n
->m_dat
[MLEN
]) {
5461 os_log_info(OS_LOG_DEFAULT
, "%s: m_data out of bounds",
5467 * If first mbuf has no cluster, and has room for len bytes
5468 * without shifting current data, pullup into it,
5469 * otherwise allocate a new mbuf to prepend to the chain.
5471 if ((n
->m_flags
& M_EXT
) == 0 &&
5472 len
< &n
->m_dat
[MLEN
] - n
->m_data
&& n
->m_next
!= NULL
) {
5473 if (n
->m_len
>= len
) {
5483 _MGET(m
, M_DONTWAIT
, n
->m_type
);
5488 if (n
->m_flags
& M_PKTHDR
) {
5489 M_COPY_PKTHDR(m
, n
);
5490 n
->m_flags
&= ~M_PKTHDR
;
5493 space
= &m
->m_dat
[MLEN
] - (m
->m_data
+ m
->m_len
);
5495 count
= MIN(MIN(MAX(len
, max_protohdr
), space
), n
->m_len
);
5496 bcopy(MTOD(n
, caddr_t
), MTOD(m
, caddr_t
) + m
->m_len
,
5502 if (n
->m_len
!= 0) {
5507 } while (len
> 0 && n
!= NULL
);
5521 * Like m_pullup(), except a new mbuf is always allocated, and we allow
5522 * the amount of empty space before the data in the new mbuf to be specified
5523 * (in the event that the caller expects to prepend later).
5525 __private_extern__
int MSFail
= 0;
5527 __private_extern__
struct mbuf
*
5528 m_copyup(struct mbuf
*n
, int len
, int dstoff
)
5533 VERIFY(len
>= 0 && dstoff
>= 0);
5535 if (len
> (MHLEN
- dstoff
)) {
5538 MGET(m
, M_DONTWAIT
, n
->m_type
);
5543 if (n
->m_flags
& M_PKTHDR
) {
5544 m_copy_pkthdr(m
, n
);
5545 n
->m_flags
&= ~M_PKTHDR
;
5547 m
->m_data
+= dstoff
;
5548 space
= &m
->m_dat
[MLEN
] - (m
->m_data
+ m
->m_len
);
5550 count
= min(min(max(len
, max_protohdr
), space
), n
->m_len
);
5551 memcpy(mtod(m
, caddr_t
) + m
->m_len
, mtod(n
, caddr_t
),
5562 } while (len
> 0 && n
);
5576 * Partition an mbuf chain in two pieces, returning the tail --
5577 * all but the first len0 bytes. In case of failure, it returns NULL and
5578 * attempts to restore the chain to its original state.
5581 m_split(struct mbuf
*m0
, int len0
, int wait
)
5583 return m_split0(m0
, len0
, wait
, 1);
5586 static struct mbuf
*
5587 m_split0(struct mbuf
*m0
, int len0
, int wait
, int copyhdr
)
5590 unsigned len
= len0
, remain
;
5593 * First iterate to the mbuf which contains the first byte of
5594 * data at offset len0
5596 for (m
= m0
; m
&& len
> m
->m_len
; m
= m
->m_next
) {
5603 * len effectively is now the offset in the current
5604 * mbuf where we have to perform split.
5606 * remain becomes the tail length.
5607 * Note that len can also be == m->m_len
5609 remain
= m
->m_len
- len
;
5612 * If current mbuf len contains the entire remaining offset len,
5613 * just make the second mbuf chain pointing to next mbuf onwards
5614 * and return after making necessary adjustments
5616 if (copyhdr
&& (m0
->m_flags
& M_PKTHDR
) && remain
== 0) {
5617 _MGETHDR(n
, wait
, m0
->m_type
);
5621 n
->m_next
= m
->m_next
;
5623 n
->m_pkthdr
.rcvif
= m0
->m_pkthdr
.rcvif
;
5624 n
->m_pkthdr
.len
= m0
->m_pkthdr
.len
- len0
;
5625 m0
->m_pkthdr
.len
= len0
;
5628 if (copyhdr
&& (m0
->m_flags
& M_PKTHDR
)) {
5629 _MGETHDR(n
, wait
, m0
->m_type
);
5633 n
->m_pkthdr
.rcvif
= m0
->m_pkthdr
.rcvif
;
5634 n
->m_pkthdr
.len
= m0
->m_pkthdr
.len
- len0
;
5635 m0
->m_pkthdr
.len
= len0
;
5638 * If current points to external storage
5639 * then it can be shared by making last mbuf
5640 * of head chain and first mbuf of current chain
5641 * pointing to different data offsets
5643 if (m
->m_flags
& M_EXT
) {
5646 if (remain
> MHLEN
) {
5647 /* m can't be the lead packet */
5649 n
->m_next
= m_split(m
, len
, wait
);
5650 if (n
->m_next
== NULL
) {
5657 MH_ALIGN(n
, remain
);
5659 } else if (remain
== 0) {
5664 _MGET(n
, wait
, m
->m_type
);
5669 if ((m
->m_flags
& M_EXT
) == 0) {
5670 VERIFY(remain
<= MLEN
);
5675 if (m
->m_flags
& M_EXT
) {
5676 n
->m_flags
|= M_EXT
;
5677 n
->m_ext
= m
->m_ext
;
5679 n
->m_data
= m
->m_data
+ len
;
5681 bcopy(MTOD(m
, caddr_t
) + len
, MTOD(n
, caddr_t
), remain
);
5685 n
->m_next
= m
->m_next
;
5691 * Routine to copy from device local memory into mbufs.
5694 m_devget(char *buf
, int totlen
, int off0
, struct ifnet
*ifp
,
5695 void (*copy
)(const void *, void *, size_t))
5698 struct mbuf
*top
= NULL
, **mp
= &top
;
5699 int off
= off0
, len
;
5707 * If 'off' is non-zero, packet is trailer-encapsulated,
5708 * so we have to skip the type and length fields.
5710 cp
+= off
+ 2 * sizeof(u_int16_t
);
5711 totlen
-= 2 * sizeof(u_int16_t
);
5713 _MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
5717 m
->m_pkthdr
.rcvif
= ifp
;
5718 m
->m_pkthdr
.len
= totlen
;
5721 while (totlen
> 0) {
5723 _MGET(m
, M_DONTWAIT
, MT_DATA
);
5730 len
= MIN(totlen
, epkt
- cp
);
5731 if (len
>= MINCLSIZE
) {
5732 MCLGET(m
, M_DONTWAIT
);
5733 if (m
->m_flags
& M_EXT
) {
5734 m
->m_len
= len
= MIN(len
, m_maxsize(MC_CL
));
5736 /* give up when it's out of cluster mbufs */
5745 * Place initial small packet/header at end of mbuf.
5747 if (len
< m
->m_len
) {
5749 len
+ max_linkhdr
<= m
->m_len
) {
5750 m
->m_data
+= max_linkhdr
;
5758 copy(cp
, MTOD(m
, caddr_t
), (unsigned)len
);
5760 bcopy(cp
, MTOD(m
, caddr_t
), (unsigned)len
);
5773 #ifndef MBUF_GROWTH_NORMAL_THRESH
5774 #define MBUF_GROWTH_NORMAL_THRESH 25
5778 * Cluster freelist allocation check.
5781 m_howmany(int num
, size_t bufsize
)
5784 u_int32_t m_mbclusters
, m_clusters
, m_bigclusters
, m_16kclusters
;
5785 u_int32_t m_mbfree
, m_clfree
, m_bigclfree
, m_16kclfree
;
5786 u_int32_t sumclusters
, freeclusters
;
5787 u_int32_t percent_pool
, percent_kmem
;
5788 u_int32_t mb_growth
, mb_growth_thresh
;
5790 VERIFY(bufsize
== m_maxsize(MC_BIGCL
) ||
5791 bufsize
== m_maxsize(MC_16KCL
));
5793 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
5795 /* Numbers in 2K cluster units */
5796 m_mbclusters
= m_total(MC_MBUF
) >> NMBPCLSHIFT
;
5797 m_clusters
= m_total(MC_CL
);
5798 m_bigclusters
= m_total(MC_BIGCL
) << NCLPBGSHIFT
;
5799 m_16kclusters
= m_total(MC_16KCL
);
5800 sumclusters
= m_mbclusters
+ m_clusters
+ m_bigclusters
;
5802 m_mbfree
= m_infree(MC_MBUF
) >> NMBPCLSHIFT
;
5803 m_clfree
= m_infree(MC_CL
);
5804 m_bigclfree
= m_infree(MC_BIGCL
) << NCLPBGSHIFT
;
5805 m_16kclfree
= m_infree(MC_16KCL
);
5806 freeclusters
= m_mbfree
+ m_clfree
+ m_bigclfree
;
5808 /* Bail if we've maxed out the mbuf memory map */
5809 if ((bufsize
== m_maxsize(MC_BIGCL
) && sumclusters
>= nclusters
) ||
5810 (njcl
> 0 && bufsize
== m_maxsize(MC_16KCL
) &&
5811 (m_16kclusters
<< NCLPJCLSHIFT
) >= njcl
)) {
5812 mbwdog_logger("maxed out nclusters (%u >= %u) or njcl (%u >= %u)",
5813 sumclusters
, nclusters
,
5814 (m_16kclusters
<< NCLPJCLSHIFT
), njcl
);
5818 if (bufsize
== m_maxsize(MC_BIGCL
)) {
5820 if (m_bigclusters
< m_minlimit(MC_BIGCL
)) {
5821 return m_minlimit(MC_BIGCL
) - m_bigclusters
;
5825 ((sumclusters
- freeclusters
) * 100) / sumclusters
;
5826 percent_kmem
= (sumclusters
* 100) / nclusters
;
5829 * If a light/normal user, grow conservatively (75%)
5830 * If a heavy user, grow aggressively (50%)
5832 if (percent_kmem
< MBUF_GROWTH_NORMAL_THRESH
) {
5833 mb_growth
= MB_GROWTH_NORMAL
;
5835 mb_growth
= MB_GROWTH_AGGRESSIVE
;
5838 if (percent_kmem
< 5) {
5839 /* For initial allocations */
5842 /* Return if >= MBIGCL_LOWAT clusters available */
5843 if (m_infree(MC_BIGCL
) >= MBIGCL_LOWAT
&&
5844 m_total(MC_BIGCL
) >=
5845 MBIGCL_LOWAT
+ m_minlimit(MC_BIGCL
)) {
5849 /* Ensure at least num clusters are accessible */
5850 if (num
>= m_infree(MC_BIGCL
)) {
5851 i
= num
- m_infree(MC_BIGCL
);
5853 if (num
> m_total(MC_BIGCL
) - m_minlimit(MC_BIGCL
)) {
5854 j
= num
- (m_total(MC_BIGCL
) -
5855 m_minlimit(MC_BIGCL
));
5861 * Grow pool if percent_pool > 75 (normal growth)
5862 * or percent_pool > 50 (aggressive growth).
5864 mb_growth_thresh
= 100 - (100 / (1 << mb_growth
));
5865 if (percent_pool
> mb_growth_thresh
) {
5866 j
= ((sumclusters
+ num
) >> mb_growth
) -
5872 /* Check to ensure we didn't go over limits */
5873 if (i
+ m_bigclusters
>= m_maxlimit(MC_BIGCL
)) {
5874 i
= m_maxlimit(MC_BIGCL
) - m_bigclusters
;
5876 if ((i
<< 1) + sumclusters
>= nclusters
) {
5877 i
= (nclusters
- sumclusters
) >> 1;
5879 VERIFY((m_total(MC_BIGCL
) + i
) <= m_maxlimit(MC_BIGCL
));
5880 VERIFY(sumclusters
+ (i
<< 1) <= nclusters
);
5881 } else { /* 16K CL */
5883 /* Ensure at least num clusters are available */
5884 if (num
>= m_16kclfree
) {
5885 i
= num
- m_16kclfree
;
5888 /* Always grow 16KCL pool aggressively */
5889 if (((m_16kclusters
+ num
) >> 1) > m_16kclfree
) {
5890 j
= ((m_16kclusters
+ num
) >> 1) - m_16kclfree
;
5894 /* Check to ensure we don't go over limit */
5895 if ((i
+ m_total(MC_16KCL
)) >= m_maxlimit(MC_16KCL
)) {
5896 i
= m_maxlimit(MC_16KCL
) - m_total(MC_16KCL
);
5902 * Return the number of bytes in the mbuf chain, m.
5905 m_length(struct mbuf
*m
)
5908 unsigned int pktlen
;
5910 if (m
->m_flags
& M_PKTHDR
) {
5911 return m
->m_pkthdr
.len
;
5915 for (m0
= m
; m0
!= NULL
; m0
= m0
->m_next
) {
5916 pktlen
+= m0
->m_len
;
5922 * Copy data from a buffer back into the indicated mbuf chain,
5923 * starting "off" bytes from the beginning, extending the mbuf
5924 * chain if necessary.
5927 m_copyback(struct mbuf
*m0
, int off
, int len
, const void *cp
)
5930 struct mbuf
*origm
= m0
;
5941 m_copyback0(&m0
, off
, len
, cp
,
5942 M_COPYBACK0_COPYBACK
| M_COPYBACK0_EXTEND
, M_DONTWAIT
);
5945 if (error
!= 0 || (m0
!= NULL
&& origm
!= m0
)) {
5946 panic("m_copyback");
5952 m_copyback_cow(struct mbuf
*m0
, int off
, int len
, const void *cp
, int how
)
5956 /* don't support chain expansion */
5957 VERIFY(off
+ len
<= m_length(m0
));
5959 error
= m_copyback0(&m0
, off
, len
, cp
,
5960 M_COPYBACK0_COPYBACK
| M_COPYBACK0_COW
, how
);
5963 * no way to recover from partial success.
5964 * just free the chain.
5973 * m_makewritable: ensure the specified range writable.
5976 m_makewritable(struct mbuf
**mp
, int off
, int len
, int how
)
5981 int origlen
, reslen
;
5983 origlen
= m_length(*mp
);
5986 #if 0 /* M_COPYALL is large enough */
5987 if (len
== M_COPYALL
) {
5988 len
= m_length(*mp
) - off
; /* XXX */
5992 error
= m_copyback0(mp
, off
, len
, NULL
,
5993 M_COPYBACK0_PRESERVE
| M_COPYBACK0_COW
, how
);
5997 for (n
= *mp
; n
; n
= n
->m_next
) {
6000 if (origlen
!= reslen
) {
6001 panic("m_makewritable: length changed");
6003 if (((*mp
)->m_flags
& M_PKTHDR
) && reslen
!= (*mp
)->m_pkthdr
.len
) {
6004 panic("m_makewritable: inconsist");
6012 m_copyback0(struct mbuf
**mp0
, int off
, int len
, const void *vp
, int flags
,
6019 const char *cp
= vp
;
6021 VERIFY(mp0
!= NULL
);
6022 VERIFY(*mp0
!= NULL
);
6023 VERIFY((flags
& M_COPYBACK0_PRESERVE
) == 0 || cp
== NULL
);
6024 VERIFY((flags
& M_COPYBACK0_COPYBACK
) == 0 || cp
!= NULL
);
6027 * we don't bother to update "totlen" in the case of M_COPYBACK0_COW,
6028 * assuming that M_COPYBACK0_EXTEND and M_COPYBACK0_COW are exclusive.
6031 VERIFY((~flags
& (M_COPYBACK0_EXTEND
| M_COPYBACK0_COW
)) != 0);
6035 while (off
> (mlen
= m
->m_len
)) {
6038 if (m
->m_next
== NULL
) {
6041 if (!(flags
& M_COPYBACK0_EXTEND
)) {
6046 * try to make some space at the end of "m".
6050 if (off
+ len
>= MINCLSIZE
&&
6051 !(m
->m_flags
& M_EXT
) && m
->m_len
== 0) {
6054 tspace
= M_TRAILINGSPACE(m
);
6056 tspace
= MIN(tspace
, off
+ len
);
6058 bzero(mtod(m
, char *) + m
->m_len
,
6067 * need to allocate an mbuf.
6070 if (off
+ len
>= MINCLSIZE
) {
6071 n
= m_getcl(how
, m
->m_type
, 0);
6073 n
= _M_GET(how
, m
->m_type
);
6079 n
->m_len
= MIN(M_TRAILINGSPACE(n
), off
+ len
);
6080 bzero(mtod(n
, char *), MIN(n
->m_len
, off
));
6087 mlen
= m
->m_len
- off
;
6088 if (mlen
!= 0 && m_mclhasreference(m
)) {
6093 * this mbuf is read-only.
6094 * allocate a new writable mbuf and try again.
6098 if (!(flags
& M_COPYBACK0_COW
)) {
6099 panic("m_copyback0: read-only");
6101 #endif /* DIAGNOSTIC */
6104 * if we're going to write into the middle of
6105 * a mbuf, split it first.
6107 if (off
> 0 && len
< mlen
) {
6108 n
= m_split0(m
, off
, how
, 0);
6120 * XXX TODO coalesce into the trailingspace of
6121 * the previous mbuf when possible.
6125 * allocate a new mbuf. copy packet header if needed.
6127 n
= _M_GET(how
, m
->m_type
);
6131 if (off
== 0 && (m
->m_flags
& M_PKTHDR
)) {
6132 M_COPY_PKTHDR(n
, m
);
6135 if (len
>= MINCLSIZE
) {
6136 MCLGET(n
, M_DONTWAIT
);
6139 (n
->m_flags
& M_EXT
) ? MCLBYTES
: MLEN
;
6141 if (n
->m_len
> len
) {
6146 * free the region which has been overwritten.
6147 * copying data from old mbufs if requested.
6149 if (flags
& M_COPYBACK0_PRESERVE
) {
6150 datap
= mtod(n
, char *);
6155 VERIFY(off
== 0 || eatlen
>= mlen
);
6157 VERIFY(len
>= mlen
);
6161 m_copydata(m
, off
, mlen
, datap
);
6168 while (m
!= NULL
&& m_mclhasreference(m
) &&
6169 n
->m_type
== m
->m_type
&& eatlen
> 0) {
6170 mlen
= MIN(eatlen
, m
->m_len
);
6172 m_copydata(m
, 0, mlen
, datap
);
6178 if (m
->m_len
== 0) {
6179 *mp
= m
= m_free(m
);
6189 mlen
= MIN(mlen
, len
);
6190 if (flags
& M_COPYBACK0_COPYBACK
) {
6191 bcopy(cp
, mtod(m
, caddr_t
) + off
, (unsigned)mlen
);
6201 if (m
->m_next
== NULL
) {
6208 if (((m
= *mp0
)->m_flags
& M_PKTHDR
) && (m
->m_pkthdr
.len
< totlen
)) {
6209 VERIFY(flags
& M_COPYBACK0_EXTEND
);
6210 m
->m_pkthdr
.len
= totlen
;
6220 mcl_to_paddr(char *addr
)
6222 vm_offset_t base_phys
;
6224 if (!MBUF_IN_MAP(addr
)) {
6227 base_phys
= mcl_paddr
[atop_64(addr
- (char *)mbutl
)];
6229 if (base_phys
== 0) {
6232 return (uint64_t)(ptoa_64(base_phys
) | ((uint64_t)addr
& PAGE_MASK
));
6236 * Dup the mbuf chain passed in. The whole thing. No cute additional cruft.
6237 * And really copy the thing. That way, we don't "precompute" checksums
6238 * for unsuspecting consumers. Assumption: m->m_nextpkt == 0. Trick: for
6239 * small packets, don't dup into a cluster. That way received packets
6240 * don't take up too much room in the sockbuf (cf. sbspace()).
6245 m_dup(struct mbuf
*m
, int how
)
6247 struct mbuf
*n
, **np
;
6253 if (m
->m_flags
& M_PKTHDR
) {
6258 * Quick check: if we have one mbuf and its data fits in an
6259 * mbuf with packet header, just copy and go.
6261 if (m
->m_next
== NULL
) {
6262 /* Then just move the data into an mbuf and be done... */
6264 if (m
->m_pkthdr
.len
<= MHLEN
&& m
->m_len
<= MHLEN
) {
6265 if ((n
= _M_GETHDR(how
, m
->m_type
)) == NULL
) {
6268 n
->m_len
= m
->m_len
;
6269 m_dup_pkthdr(n
, m
, how
);
6270 bcopy(m
->m_data
, n
->m_data
, m
->m_len
);
6273 } else if (m
->m_len
<= MLEN
) {
6274 if ((n
= _M_GET(how
, m
->m_type
)) == NULL
) {
6277 bcopy(m
->m_data
, n
->m_data
, m
->m_len
);
6278 n
->m_len
= m
->m_len
;
6284 printf("<%x: %x, %x, %x\n", m
, m
->m_flags
, m
->m_len
,
6288 n
= _M_GETHDR(how
, m
->m_type
);
6290 n
= _M_GET(how
, m
->m_type
);
6295 if (m
->m_flags
& M_EXT
) {
6296 if (m
->m_len
<= m_maxsize(MC_CL
)) {
6298 } else if (m
->m_len
<= m_maxsize(MC_BIGCL
)) {
6299 n
= m_mbigget(n
, how
);
6300 } else if (m
->m_len
<= m_maxsize(MC_16KCL
) && njcl
> 0) {
6301 n
= m_m16kget(n
, how
);
6303 if (!(n
->m_flags
& M_EXT
)) {
6308 VERIFY((copyhdr
== 1 && m
->m_len
<= MHLEN
) ||
6309 (copyhdr
== 0 && m
->m_len
<= MLEN
));
6313 /* Don't use M_COPY_PKTHDR: preserve m_data */
6314 m_dup_pkthdr(n
, m
, how
);
6316 if (!(n
->m_flags
& M_EXT
)) {
6317 n
->m_data
= n
->m_pktdat
;
6320 n
->m_len
= m
->m_len
;
6322 * Get the dup on the same bdry as the original
6323 * Assume that the two mbufs have the same offset to data area
6324 * (up to word boundaries)
6326 bcopy(MTOD(m
, caddr_t
), MTOD(n
, caddr_t
), (unsigned)n
->m_len
);
6330 printf(">%x: %x, %x, %x\n", n
, n
->m_flags
, n
->m_len
,
6346 #define MBUF_MULTIPAGES(m) \
6347 (((m)->m_flags & M_EXT) && \
6348 ((IS_P2ALIGNED((m)->m_data, PAGE_SIZE) \
6349 && (m)->m_len > PAGE_SIZE) || \
6350 (!IS_P2ALIGNED((m)->m_data, PAGE_SIZE) && \
6351 P2ROUNDUP((m)->m_data, PAGE_SIZE) < ((uintptr_t)(m)->m_data + (m)->m_len))))
6353 static struct mbuf
*
6354 m_expand(struct mbuf
*m
, struct mbuf
**last
)
6356 struct mbuf
*top
= NULL
;
6357 struct mbuf
**nm
= &top
;
6358 uintptr_t data0
, data
;
6359 unsigned int len0
, len
;
6361 VERIFY(MBUF_MULTIPAGES(m
));
6362 VERIFY(m
->m_next
== NULL
);
6363 data0
= (uintptr_t)m
->m_data
;
6371 if (IS_P2ALIGNED(data
, PAGE_SIZE
) && len0
> PAGE_SIZE
) {
6373 } else if (!IS_P2ALIGNED(data
, PAGE_SIZE
) &&
6374 P2ROUNDUP(data
, PAGE_SIZE
) < (data
+ len0
)) {
6375 len
= P2ROUNDUP(data
, PAGE_SIZE
) - data
;
6381 VERIFY(m
->m_flags
& M_EXT
);
6382 m
->m_data
= (void *)data
;
6395 n
= _M_RETRY(M_DONTWAIT
, MT_DATA
);
6402 n
->m_ext
= m
->m_ext
;
6404 n
->m_flags
|= M_EXT
;
6411 m_normalize(struct mbuf
*m
)
6413 struct mbuf
*top
= NULL
;
6414 struct mbuf
**nm
= &top
;
6415 boolean_t expanded
= FALSE
;
6423 /* Does the data cross one or more page boundaries? */
6424 if (MBUF_MULTIPAGES(m
)) {
6426 if ((m
= m_expand(m
, &last
)) == NULL
) {
6442 atomic_add_32(&mb_normalized
, 1);
6448 * Append the specified data to the indicated mbuf chain,
6449 * Extend the mbuf chain if the new data does not fit in
6452 * Return 1 if able to complete the job; otherwise 0.
6455 m_append(struct mbuf
*m0
, int len
, caddr_t cp
)
6458 int remainder
, space
;
6460 for (m
= m0
; m
->m_next
!= NULL
; m
= m
->m_next
) {
6464 space
= M_TRAILINGSPACE(m
);
6467 * Copy into available space.
6469 if (space
> remainder
) {
6472 bcopy(cp
, mtod(m
, caddr_t
) + m
->m_len
, space
);
6477 while (remainder
> 0) {
6479 * Allocate a new mbuf; could check space
6480 * and allocate a cluster instead.
6482 n
= m_get(M_WAITOK
, m
->m_type
);
6486 n
->m_len
= min(MLEN
, remainder
);
6487 bcopy(cp
, mtod(n
, caddr_t
), n
->m_len
);
6489 remainder
-= n
->m_len
;
6493 if (m0
->m_flags
& M_PKTHDR
) {
6494 m0
->m_pkthdr
.len
+= len
- remainder
;
6496 return remainder
== 0;
6500 m_last(struct mbuf
*m
)
6502 while (m
->m_next
!= NULL
) {
6509 m_fixhdr(struct mbuf
*m0
)
6513 VERIFY(m0
->m_flags
& M_PKTHDR
);
6515 len
= m_length2(m0
, NULL
);
6516 m0
->m_pkthdr
.len
= len
;
6521 m_length2(struct mbuf
*m0
, struct mbuf
**last
)
6527 for (m
= m0
; m
!= NULL
; m
= m
->m_next
) {
6529 if (m
->m_next
== NULL
) {
6540 * Defragment a mbuf chain, returning the shortest possible chain of mbufs
6541 * and clusters. If allocation fails and this cannot be completed, NULL will
6542 * be returned, but the passed in chain will be unchanged. Upon success,
6543 * the original chain will be freed, and the new chain will be returned.
6545 * If a non-packet header is passed in, the original mbuf (chain?) will
6546 * be returned unharmed.
6548 * If offset is specfied, the first mbuf in the chain will have a leading
6549 * space of the amount stated by the "off" parameter.
6551 * This routine requires that the m_pkthdr.header field of the original
6552 * mbuf chain is cleared by the caller.
6555 m_defrag_offset(struct mbuf
*m0
, u_int32_t off
, int how
)
6557 struct mbuf
*m_new
= NULL
, *m_final
= NULL
;
6558 int progress
= 0, length
, pktlen
;
6560 if (!(m0
->m_flags
& M_PKTHDR
)) {
6564 VERIFY(off
< MHLEN
);
6565 m_fixhdr(m0
); /* Needed sanity check */
6567 pktlen
= m0
->m_pkthdr
.len
+ off
;
6568 if (pktlen
> MHLEN
) {
6569 m_final
= m_getcl(how
, MT_DATA
, M_PKTHDR
);
6571 m_final
= m_gethdr(how
, MT_DATA
);
6574 if (m_final
== NULL
) {
6580 m_final
->m_data
+= off
;
6584 * Caller must have handled the contents pointed to by this
6585 * pointer before coming here, as otherwise it will point to
6586 * the original mbuf which will get freed upon success.
6588 VERIFY(m0
->m_pkthdr
.pkt_hdr
== NULL
);
6590 if (m_dup_pkthdr(m_final
, m0
, how
) == 0) {
6596 while (progress
< pktlen
) {
6597 length
= pktlen
- progress
;
6598 if (length
> MCLBYTES
) {
6601 length
-= ((m_new
== m_final
) ? off
: 0);
6606 if (m_new
== NULL
) {
6607 if (length
> MLEN
) {
6608 m_new
= m_getcl(how
, MT_DATA
, 0);
6610 m_new
= m_get(how
, MT_DATA
);
6612 if (m_new
== NULL
) {
6617 m_copydata(m0
, progress
, length
, mtod(m_new
, caddr_t
));
6619 m_new
->m_len
= length
;
6620 if (m_new
!= m_final
) {
6621 m_cat(m_final
, m_new
);
6636 m_defrag(struct mbuf
*m0
, int how
)
6638 return m_defrag_offset(m0
, 0, how
);
6642 m_mchtype(struct mbuf
*m
, int t
)
6645 mtype_stat_dec(m
->m_type
);
6650 m_mtod(struct mbuf
*m
)
6652 return MTOD(m
, void *);
6658 return (struct mbuf
*)((uintptr_t)(x
) & ~(MSIZE
- 1));
6662 m_mcheck(struct mbuf
*m
)
6668 * Return a pointer to mbuf/offset of location in mbuf chain.
6671 m_getptr(struct mbuf
*m
, int loc
, int *off
)
6674 /* Normal end of search. */
6675 if (m
->m_len
> loc
) {
6680 if (m
->m_next
== NULL
) {
6682 /* Point at the end of valid data. */
6695 * Inform the corresponding mcache(s) that there's a waiter below.
6698 mbuf_waiter_inc(mbuf_class_t
class, boolean_t comp
)
6700 mcache_waiter_inc(m_cache(class));
6702 if (class == MC_CL
) {
6703 mcache_waiter_inc(m_cache(MC_MBUF_CL
));
6704 } else if (class == MC_BIGCL
) {
6705 mcache_waiter_inc(m_cache(MC_MBUF_BIGCL
));
6706 } else if (class == MC_16KCL
) {
6707 mcache_waiter_inc(m_cache(MC_MBUF_16KCL
));
6709 mcache_waiter_inc(m_cache(MC_MBUF_CL
));
6710 mcache_waiter_inc(m_cache(MC_MBUF_BIGCL
));
6716 * Inform the corresponding mcache(s) that there's no more waiter below.
6719 mbuf_waiter_dec(mbuf_class_t
class, boolean_t comp
)
6721 mcache_waiter_dec(m_cache(class));
6723 if (class == MC_CL
) {
6724 mcache_waiter_dec(m_cache(MC_MBUF_CL
));
6725 } else if (class == MC_BIGCL
) {
6726 mcache_waiter_dec(m_cache(MC_MBUF_BIGCL
));
6727 } else if (class == MC_16KCL
) {
6728 mcache_waiter_dec(m_cache(MC_MBUF_16KCL
));
6730 mcache_waiter_dec(m_cache(MC_MBUF_CL
));
6731 mcache_waiter_dec(m_cache(MC_MBUF_BIGCL
));
6737 * Called during slab (blocking and non-blocking) allocation. If there
6738 * is at least one waiter, and the time since the first waiter is blocked
6739 * is greater than the watchdog timeout, panic the system.
6747 if (mb_waiters
== 0 || !mb_watchdog
) {
6752 since
= now
.tv_sec
- mb_wdtstart
.tv_sec
;
6753 if (since
>= MB_WDT_MAXTIME
) {
6754 panic_plain("%s: %d waiters stuck for %u secs\n%s", __func__
,
6755 mb_waiters
, since
, mbuf_dump());
6761 * Called during blocking allocation. Returns TRUE if one or more objects
6762 * are available at the per-CPU caches layer and that allocation should be
6763 * retried at that level.
6766 mbuf_sleep(mbuf_class_t
class, unsigned int num
, int wait
)
6768 boolean_t mcache_retry
= FALSE
;
6770 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
6772 /* Check if there's anything at the cache layer */
6773 if (mbuf_cached_above(class, wait
)) {
6774 mcache_retry
= TRUE
;
6778 /* Nothing? Then try hard to get it from somewhere */
6779 m_reclaim(class, num
, (wait
& MCR_COMP
));
6781 /* We tried hard and got something? */
6782 if (m_infree(class) > 0) {
6785 } else if (mbuf_cached_above(class, wait
)) {
6787 mcache_retry
= TRUE
;
6789 } else if (wait
& MCR_TRYHARD
) {
6790 mcache_retry
= TRUE
;
6795 * There's really nothing for us right now; inform the
6796 * cache(s) that there is a waiter below and go to sleep.
6798 mbuf_waiter_inc(class, (wait
& MCR_COMP
));
6800 VERIFY(!(wait
& MCR_NOSLEEP
));
6803 * If this is the first waiter, arm the watchdog timer. Otherwise
6804 * check if we need to panic the system due to watchdog timeout.
6806 if (mb_waiters
== 0) {
6807 microuptime(&mb_wdtstart
);
6813 m_region_expand(class) += m_total(class) + num
;
6814 /* wake up the worker thread */
6815 if (mbuf_worker_ready
&&
6816 mbuf_worker_needs_wakeup
) {
6817 wakeup((caddr_t
)&mbuf_worker_needs_wakeup
);
6818 mbuf_worker_needs_wakeup
= FALSE
;
6820 mbwdog_logger("waiting (%d mbufs in class %s)", num
, m_cname(class));
6821 (void) msleep(mb_waitchan
, mbuf_mlock
, (PZERO
- 1), m_cname(class), NULL
);
6822 mbwdog_logger("woke up (%d mbufs in class %s) ", num
, m_cname(class));
6824 /* We are now up; stop getting notified until next round */
6825 mbuf_waiter_dec(class, (wait
& MCR_COMP
));
6827 /* We waited and got something */
6828 if (m_infree(class) > 0) {
6831 } else if (mbuf_cached_above(class, wait
)) {
6833 mcache_retry
= TRUE
;
6836 return mcache_retry
;
6839 __attribute__((noreturn
))
6841 mbuf_worker_thread(void)
6846 lck_mtx_lock(mbuf_mlock
);
6847 mbwdog_logger("worker thread running");
6848 mbuf_worker_run_cnt
++;
6851 * Allocations are based on page size, so if we have depleted
6852 * the reserved spaces, try to free mbufs from the major classes.
6854 #if PAGE_SIZE == 4096
6855 uint32_t m_mbclusters
= m_total(MC_MBUF
) >> NMBPCLSHIFT
;
6856 uint32_t m_clusters
= m_total(MC_CL
);
6857 uint32_t m_bigclusters
= m_total(MC_BIGCL
) << NCLPBGSHIFT
;
6858 uint32_t sumclusters
= m_mbclusters
+ m_clusters
+ m_bigclusters
;
6859 if (sumclusters
>= nclusters
) {
6860 mbwdog_logger("reclaiming bigcl");
6861 mbuf_drain_locked(TRUE
);
6862 m_reclaim(MC_BIGCL
, 4, FALSE
);
6865 uint32_t m_16kclusters
= m_total(MC_16KCL
);
6866 if (njcl
> 0 && (m_16kclusters
<< NCLPJCLSHIFT
) >= njcl
) {
6867 mbwdog_logger("reclaiming 16kcl");
6868 mbuf_drain_locked(TRUE
);
6869 m_reclaim(MC_16KCL
, 4, FALSE
);
6872 if (m_region_expand(MC_CL
) > 0) {
6875 /* Adjust to current number of cluster in use */
6876 n
= m_region_expand(MC_CL
) -
6877 (m_total(MC_CL
) - m_infree(MC_CL
));
6878 if ((n
+ m_total(MC_CL
)) > m_maxlimit(MC_CL
)) {
6879 n
= m_maxlimit(MC_CL
) - m_total(MC_CL
);
6882 mb_expand_cl_total
+= n
;
6884 m_region_expand(MC_CL
) = 0;
6887 mbwdog_logger("expanding MC_CL by %d", n
);
6888 freelist_populate(MC_CL
, n
, M_WAIT
);
6891 if (m_region_expand(MC_BIGCL
) > 0) {
6893 mb_expand_bigcl_cnt
++;
6894 /* Adjust to current number of 4 KB cluster in use */
6895 n
= m_region_expand(MC_BIGCL
) -
6896 (m_total(MC_BIGCL
) - m_infree(MC_BIGCL
));
6897 if ((n
+ m_total(MC_BIGCL
)) > m_maxlimit(MC_BIGCL
)) {
6898 n
= m_maxlimit(MC_BIGCL
) - m_total(MC_BIGCL
);
6901 mb_expand_bigcl_total
+= n
;
6903 m_region_expand(MC_BIGCL
) = 0;
6906 mbwdog_logger("expanding MC_BIGCL by %d", n
);
6907 freelist_populate(MC_BIGCL
, n
, M_WAIT
);
6910 if (m_region_expand(MC_16KCL
) > 0) {
6912 mb_expand_16kcl_cnt
++;
6913 /* Adjust to current number of 16 KB cluster in use */
6914 n
= m_region_expand(MC_16KCL
) -
6915 (m_total(MC_16KCL
) - m_infree(MC_16KCL
));
6916 if ((n
+ m_total(MC_16KCL
)) > m_maxlimit(MC_16KCL
)) {
6917 n
= m_maxlimit(MC_16KCL
) - m_total(MC_16KCL
);
6920 mb_expand_16kcl_total
+= n
;
6922 m_region_expand(MC_16KCL
) = 0;
6925 mbwdog_logger("expanding MC_16KCL by %d", n
);
6926 (void) freelist_populate(MC_16KCL
, n
, M_WAIT
);
6931 * Because we can run out of memory before filling the mbuf
6932 * map, we should not allocate more clusters than they are
6933 * mbufs -- otherwise we could have a large number of useless
6934 * clusters allocated.
6936 mbwdog_logger("totals: MC_MBUF %d MC_BIGCL %d MC_CL %d MC_16KCL %d",
6937 m_total(MC_MBUF
), m_total(MC_BIGCL
), m_total(MC_CL
),
6939 uint32_t total_mbufs
= m_total(MC_MBUF
);
6940 uint32_t total_clusters
= m_total(MC_BIGCL
) + m_total(MC_CL
) +
6942 if (total_mbufs
< total_clusters
) {
6943 mbwdog_logger("expanding MC_MBUF by %d",
6944 total_clusters
- total_mbufs
);
6946 while (total_mbufs
< total_clusters
) {
6948 if (freelist_populate(MC_MBUF
, 1, M_WAIT
) == 0) {
6951 total_mbufs
= m_total(MC_MBUF
);
6952 total_clusters
= m_total(MC_BIGCL
) + m_total(MC_CL
) +
6956 mbuf_worker_needs_wakeup
= TRUE
;
6958 * If there's a deadlock and we're not sending / receiving
6959 * packets, net_uptime() won't be updated. Update it here
6960 * so we are sure it's correct.
6962 net_update_uptime();
6963 mbuf_worker_last_runtime
= net_uptime();
6964 assert_wait((caddr_t
)&mbuf_worker_needs_wakeup
,
6966 mbwdog_logger("worker thread sleeping");
6967 lck_mtx_unlock(mbuf_mlock
);
6968 (void) thread_block((thread_continue_t
)mbuf_worker_thread
);
6972 __attribute__((noreturn
))
6974 mbuf_worker_thread_init(void)
6976 mbuf_worker_ready
++;
6977 mbuf_worker_thread();
6986 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
6988 VERIFY(MBUF_IN_MAP(buf
));
6989 ix
= ((unsigned char *)buf
- mbutl
) >> MBSHIFT
;
6990 VERIFY(ix
< maxslabgrp
);
6992 if ((slg
= slabstbl
[ix
]) == NULL
) {
6994 * In the current implementation, we never shrink the slabs
6995 * table; if we attempt to reallocate a cluster group when
6996 * it's already allocated, panic since this is a sign of a
6997 * memory corruption (slabstbl[ix] got nullified).
7000 VERIFY(ix
< slabgrp
);
7002 * Slabs expansion can only be done single threaded; when
7003 * we get here, it must be as a result of m_clalloc() which
7004 * is serialized and therefore mb_clalloc_busy must be set.
7006 VERIFY(mb_clalloc_busy
);
7007 lck_mtx_unlock(mbuf_mlock
);
7009 /* This is a new buffer; create the slabs group for it */
7010 MALLOC(slg
, mcl_slabg_t
*, sizeof(*slg
), M_TEMP
,
7012 MALLOC(slg
->slg_slab
, mcl_slab_t
*, sizeof(mcl_slab_t
) * NSLABSPMB
,
7013 M_TEMP
, M_WAITOK
| M_ZERO
);
7014 VERIFY(slg
!= NULL
&& slg
->slg_slab
!= NULL
);
7016 lck_mtx_lock(mbuf_mlock
);
7018 * No other thread could have gone into m_clalloc() after
7019 * we dropped the lock above, so verify that it's true.
7021 VERIFY(mb_clalloc_busy
);
7025 /* Chain each slab in the group to its forward neighbor */
7026 for (k
= 1; k
< NSLABSPMB
; k
++) {
7027 slg
->slg_slab
[k
- 1].sl_next
= &slg
->slg_slab
[k
];
7029 VERIFY(slg
->slg_slab
[NSLABSPMB
- 1].sl_next
== NULL
);
7031 /* And chain the last slab in the previous group to this */
7033 VERIFY(slabstbl
[ix
- 1]->
7034 slg_slab
[NSLABSPMB
- 1].sl_next
== NULL
);
7035 slabstbl
[ix
- 1]->slg_slab
[NSLABSPMB
- 1].sl_next
=
7040 ix
= MTOPG(buf
) % NSLABSPMB
;
7041 VERIFY(ix
< NSLABSPMB
);
7043 return &slg
->slg_slab
[ix
];
7047 slab_init(mcl_slab_t
*sp
, mbuf_class_t
class, u_int32_t flags
,
7048 void *base
, void *head
, unsigned int len
, int refcnt
, int chunks
)
7050 sp
->sl_class
= class;
7051 sp
->sl_flags
= flags
;
7055 sp
->sl_refcnt
= refcnt
;
7056 sp
->sl_chunks
= chunks
;
7061 slab_insert(mcl_slab_t
*sp
, mbuf_class_t
class)
7063 VERIFY(slab_is_detached(sp
));
7064 m_slab_cnt(class)++;
7065 TAILQ_INSERT_TAIL(&m_slablist(class), sp
, sl_link
);
7066 sp
->sl_flags
&= ~SLF_DETACHED
;
7069 * If a buffer spans multiple contiguous pages then mark them as
7072 if (class == MC_16KCL
) {
7074 for (k
= 1; k
< NSLABSP16KB
; k
++) {
7076 /* Next slab must already be present */
7077 VERIFY(sp
!= NULL
&& slab_is_detached(sp
));
7078 sp
->sl_flags
&= ~SLF_DETACHED
;
7084 slab_remove(mcl_slab_t
*sp
, mbuf_class_t
class)
7087 VERIFY(!slab_is_detached(sp
));
7088 VERIFY(m_slab_cnt(class) > 0);
7089 m_slab_cnt(class)--;
7090 TAILQ_REMOVE(&m_slablist(class), sp
, sl_link
);
7092 if (class == MC_16KCL
) {
7093 for (k
= 1; k
< NSLABSP16KB
; k
++) {
7095 /* Next slab must already be present */
7097 VERIFY(!slab_is_detached(sp
));
7104 slab_inrange(mcl_slab_t
*sp
, void *buf
)
7106 return (uintptr_t)buf
>= (uintptr_t)sp
->sl_base
&&
7107 (uintptr_t)buf
< ((uintptr_t)sp
->sl_base
+ sp
->sl_len
);
7113 slab_nextptr_panic(mcl_slab_t
*sp
, void *addr
)
7116 unsigned int chunk_len
= sp
->sl_len
/ sp
->sl_chunks
;
7117 uintptr_t buf
= (uintptr_t)sp
->sl_base
;
7119 for (i
= 0; i
< sp
->sl_chunks
; i
++, buf
+= chunk_len
) {
7120 void *next
= ((mcache_obj_t
*)buf
)->obj_next
;
7125 if (next
!= NULL
&& !MBUF_IN_MAP(next
)) {
7126 mcache_t
*cp
= m_cache(sp
->sl_class
);
7127 panic("%s: %s buffer %p in slab %p modified "
7128 "after free at offset 0: %p out of range "
7129 "[%p-%p)\n", __func__
, cp
->mc_name
,
7130 (void *)buf
, sp
, next
, mbutl
, embutl
);
7134 mcache_audit_t
*mca
= mcl_audit_buf2mca(sp
->sl_class
,
7135 (mcache_obj_t
*)buf
);
7136 mcl_audit_verify_nextptr(next
, mca
);
7142 slab_detach(mcl_slab_t
*sp
)
7144 sp
->sl_link
.tqe_next
= (mcl_slab_t
*)-1;
7145 sp
->sl_link
.tqe_prev
= (mcl_slab_t
**)-1;
7146 sp
->sl_flags
|= SLF_DETACHED
;
7150 slab_is_detached(mcl_slab_t
*sp
)
7152 return (intptr_t)sp
->sl_link
.tqe_next
== -1 &&
7153 (intptr_t)sp
->sl_link
.tqe_prev
== -1 &&
7154 (sp
->sl_flags
& SLF_DETACHED
);
7158 mcl_audit_init(void *buf
, mcache_audit_t
**mca_list
,
7159 mcache_obj_t
**con_list
, size_t con_size
, unsigned int num
)
7161 mcache_audit_t
*mca
, *mca_tail
;
7162 mcache_obj_t
*con
= NULL
;
7163 boolean_t save_contents
= (con_list
!= NULL
);
7166 ASSERT(num
<= NMBPG
);
7167 ASSERT(con_list
== NULL
|| con_size
!= 0);
7170 VERIFY(ix
< maxclaudit
);
7172 /* Make sure we haven't been here before */
7173 for (i
= 0; i
< num
; i
++) {
7174 VERIFY(mclaudit
[ix
].cl_audit
[i
] == NULL
);
7177 mca
= mca_tail
= *mca_list
;
7178 if (save_contents
) {
7182 for (i
= 0; i
< num
; i
++) {
7183 mcache_audit_t
*next
;
7185 next
= mca
->mca_next
;
7186 bzero(mca
, sizeof(*mca
));
7187 mca
->mca_next
= next
;
7188 mclaudit
[ix
].cl_audit
[i
] = mca
;
7190 /* Attach the contents buffer if requested */
7191 if (save_contents
) {
7192 mcl_saved_contents_t
*msc
=
7193 (mcl_saved_contents_t
*)(void *)con
;
7195 VERIFY(msc
!= NULL
);
7196 VERIFY(IS_P2ALIGNED(msc
, sizeof(u_int64_t
)));
7197 VERIFY(con_size
== sizeof(*msc
));
7198 mca
->mca_contents_size
= con_size
;
7199 mca
->mca_contents
= msc
;
7200 con
= con
->obj_next
;
7201 bzero(mca
->mca_contents
, mca
->mca_contents_size
);
7205 mca
= mca
->mca_next
;
7208 if (save_contents
) {
7212 *mca_list
= mca_tail
->mca_next
;
7213 mca_tail
->mca_next
= NULL
;
7217 mcl_audit_free(void *buf
, unsigned int num
)
7220 mcache_audit_t
*mca
, *mca_list
;
7223 VERIFY(ix
< maxclaudit
);
7225 if (mclaudit
[ix
].cl_audit
[0] != NULL
) {
7226 mca_list
= mclaudit
[ix
].cl_audit
[0];
7227 for (i
= 0; i
< num
; i
++) {
7228 mca
= mclaudit
[ix
].cl_audit
[i
];
7229 mclaudit
[ix
].cl_audit
[i
] = NULL
;
7230 if (mca
->mca_contents
) {
7231 mcache_free(mcl_audit_con_cache
,
7235 mcache_free_ext(mcache_audit_cache
,
7236 (mcache_obj_t
*)mca_list
);
7241 * Given an address of a buffer (mbuf/2KB/4KB/16KB), return
7242 * the corresponding audit structure for that buffer.
7244 static mcache_audit_t
*
7245 mcl_audit_buf2mca(mbuf_class_t
class, mcache_obj_t
*mobj
)
7247 mcache_audit_t
*mca
= NULL
;
7248 int ix
= MTOPG(mobj
), m_idx
= 0;
7249 unsigned char *page_addr
;
7251 VERIFY(ix
< maxclaudit
);
7252 VERIFY(IS_P2ALIGNED(mobj
, MIN(m_maxsize(class), PAGE_SIZE
)));
7254 page_addr
= PGTOM(ix
);
7259 * For the mbuf case, find the index of the page
7260 * used by the mbuf and use that index to locate the
7261 * base address of the page. Then find out the
7262 * mbuf index relative to the page base and use
7263 * it to locate the audit structure.
7265 m_idx
= MBPAGEIDX(page_addr
, mobj
);
7266 VERIFY(m_idx
< (int)NMBPG
);
7267 mca
= mclaudit
[ix
].cl_audit
[m_idx
];
7272 * Same thing as above, but for 2KB clusters in a page.
7274 m_idx
= CLPAGEIDX(page_addr
, mobj
);
7275 VERIFY(m_idx
< (int)NCLPG
);
7276 mca
= mclaudit
[ix
].cl_audit
[m_idx
];
7280 m_idx
= BCLPAGEIDX(page_addr
, mobj
);
7281 VERIFY(m_idx
< (int)NBCLPG
);
7282 mca
= mclaudit
[ix
].cl_audit
[m_idx
];
7286 * Same as above, but only return the first element.
7288 mca
= mclaudit
[ix
].cl_audit
[0];
7300 mcl_audit_mbuf(mcache_audit_t
*mca
, void *addr
, boolean_t composite
,
7303 struct mbuf
*m
= addr
;
7304 mcache_obj_t
*next
= ((mcache_obj_t
*)m
)->obj_next
;
7306 VERIFY(mca
->mca_contents
!= NULL
&&
7307 mca
->mca_contents_size
== AUDIT_CONTENTS_SIZE
);
7310 mcl_audit_verify_nextptr(next
, mca
);
7314 /* Save constructed mbuf fields */
7315 mcl_audit_save_mbuf(m
, mca
);
7317 mcache_set_pattern(MCACHE_FREE_PATTERN
, m
,
7318 m_maxsize(MC_MBUF
));
7320 ((mcache_obj_t
*)m
)->obj_next
= next
;
7324 /* Check if the buffer has been corrupted while in freelist */
7326 mcache_audit_free_verify_set(mca
, addr
, 0, m_maxsize(MC_MBUF
));
7328 /* Restore constructed mbuf fields */
7329 mcl_audit_restore_mbuf(m
, mca
, composite
);
7333 mcl_audit_restore_mbuf(struct mbuf
*m
, mcache_audit_t
*mca
, boolean_t composite
)
7335 struct mbuf
*ms
= MCA_SAVED_MBUF_PTR(mca
);
7338 struct mbuf
*next
= m
->m_next
;
7339 VERIFY(ms
->m_flags
== M_EXT
&& m_get_rfa(ms
) != NULL
&&
7340 MBUF_IS_COMPOSITE(ms
));
7341 VERIFY(mca
->mca_contents_size
== AUDIT_CONTENTS_SIZE
);
7343 * We could have hand-picked the mbuf fields and restore
7344 * them individually, but that will be a maintenance
7345 * headache. Instead, restore everything that was saved;
7346 * the mbuf layer will recheck and reinitialize anyway.
7348 bcopy(ms
, m
, MCA_SAVED_MBUF_SIZE
);
7352 * For a regular mbuf (no cluster attached) there's nothing
7353 * to restore other than the type field, which is expected
7356 m
->m_type
= ms
->m_type
;
7362 mcl_audit_save_mbuf(struct mbuf
*m
, mcache_audit_t
*mca
)
7364 VERIFY(mca
->mca_contents_size
== AUDIT_CONTENTS_SIZE
);
7366 bcopy(m
, MCA_SAVED_MBUF_PTR(mca
), MCA_SAVED_MBUF_SIZE
);
7370 mcl_audit_cluster(mcache_audit_t
*mca
, void *addr
, size_t size
, boolean_t alloc
,
7371 boolean_t save_next
)
7373 mcache_obj_t
*next
= ((mcache_obj_t
*)addr
)->obj_next
;
7377 mcache_set_pattern(MCACHE_FREE_PATTERN
, addr
, size
);
7380 mcl_audit_verify_nextptr(next
, mca
);
7381 ((mcache_obj_t
*)addr
)->obj_next
= next
;
7383 } else if (mclverify
) {
7384 /* Check if the buffer has been corrupted while in freelist */
7385 mcl_audit_verify_nextptr(next
, mca
);
7386 mcache_audit_free_verify_set(mca
, addr
, 0, size
);
7391 mcl_audit_scratch(mcache_audit_t
*mca
)
7393 void *stack
[MCACHE_STACK_DEPTH
+ 1];
7394 mcl_scratch_audit_t
*msa
;
7397 VERIFY(mca
->mca_contents
!= NULL
);
7398 msa
= MCA_SAVED_SCRATCH_PTR(mca
);
7400 msa
->msa_pthread
= msa
->msa_thread
;
7401 msa
->msa_thread
= current_thread();
7402 bcopy(msa
->msa_stack
, msa
->msa_pstack
, sizeof(msa
->msa_pstack
));
7403 msa
->msa_pdepth
= msa
->msa_depth
;
7404 bzero(stack
, sizeof(stack
));
7405 msa
->msa_depth
= OSBacktrace(stack
, MCACHE_STACK_DEPTH
+ 1) - 1;
7406 bcopy(&stack
[1], msa
->msa_stack
, sizeof(msa
->msa_stack
));
7408 msa
->msa_ptstamp
= msa
->msa_tstamp
;
7410 /* tstamp is in ms relative to base_ts */
7411 msa
->msa_tstamp
= ((now
.tv_usec
- mb_start
.tv_usec
) / 1000);
7412 if ((now
.tv_sec
- mb_start
.tv_sec
) > 0) {
7413 msa
->msa_tstamp
+= ((now
.tv_sec
- mb_start
.tv_sec
) * 1000);
7419 mcl_audit_mcheck_panic(struct mbuf
*m
)
7421 mcache_audit_t
*mca
;
7424 mca
= mcl_audit_buf2mca(MC_MBUF
, (mcache_obj_t
*)m
);
7426 panic("mcl_audit: freed mbuf %p with type 0x%x (instead of 0x%x)\n%s\n",
7427 m
, (u_int16_t
)m
->m_type
, MT_FREE
, mcache_dump_mca(mca
));
7432 mcl_audit_verify_nextptr(void *next
, mcache_audit_t
*mca
)
7434 if (next
!= NULL
&& !MBUF_IN_MAP(next
) &&
7435 (next
!= (void *)MCACHE_FREE_PATTERN
|| !mclverify
)) {
7436 panic("mcl_audit: buffer %p modified after free at offset 0: "
7437 "%p out of range [%p-%p)\n%s\n",
7438 mca
->mca_addr
, next
, mbutl
, embutl
, mcache_dump_mca(mca
));
7443 /* This function turns on mbuf leak detection */
7445 mleak_activate(void)
7447 mleak_table
.mleak_sample_factor
= MLEAK_SAMPLE_FACTOR
;
7448 PE_parse_boot_argn("mleak_sample_factor",
7449 &mleak_table
.mleak_sample_factor
,
7450 sizeof(mleak_table
.mleak_sample_factor
));
7452 if (mleak_table
.mleak_sample_factor
== 0) {
7456 if (mclfindleak
== 0) {
7460 vm_size_t alloc_size
=
7461 mleak_alloc_buckets
* sizeof(struct mallocation
);
7462 vm_size_t trace_size
= mleak_trace_buckets
* sizeof(struct mtrace
);
7464 MALLOC(mleak_allocations
, struct mallocation
*, alloc_size
,
7465 M_TEMP
, M_WAITOK
| M_ZERO
);
7466 VERIFY(mleak_allocations
!= NULL
);
7468 MALLOC(mleak_traces
, struct mtrace
*, trace_size
,
7469 M_TEMP
, M_WAITOK
| M_ZERO
);
7470 VERIFY(mleak_traces
!= NULL
);
7472 MALLOC(mleak_stat
, mleak_stat_t
*, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES
),
7473 M_TEMP
, M_WAITOK
| M_ZERO
);
7474 VERIFY(mleak_stat
!= NULL
);
7475 mleak_stat
->ml_cnt
= MLEAK_NUM_TRACES
;
7477 mleak_stat
->ml_isaddr64
= 1;
7478 #endif /* __LP64__ */
7482 mleak_logger(u_int32_t num
, mcache_obj_t
*addr
, boolean_t alloc
)
7486 if (mclfindleak
== 0) {
7491 return mleak_free(addr
);
7494 temp
= atomic_add_32_ov(&mleak_table
.mleak_capture
, 1);
7496 if ((temp
% mleak_table
.mleak_sample_factor
) == 0 && addr
!= NULL
) {
7497 uintptr_t bt
[MLEAK_STACK_DEPTH
];
7498 int logged
= backtrace(bt
, MLEAK_STACK_DEPTH
, NULL
);
7499 mleak_log(bt
, addr
, logged
, num
);
7504 * This function records the allocation in the mleak_allocations table
7505 * and the backtrace in the mleak_traces table; if allocation slot is in use,
7506 * replace old allocation with new one if the trace slot is in use, return
7507 * (or increment refcount if same trace).
7510 mleak_log(uintptr_t *bt
, mcache_obj_t
*addr
, uint32_t depth
, int num
)
7512 struct mallocation
*allocation
;
7513 struct mtrace
*trace
;
7514 uint32_t trace_index
;
7516 /* Quit if someone else modifying the tables */
7517 if (!lck_mtx_try_lock_spin(mleak_lock
)) {
7518 mleak_table
.total_conflicts
++;
7522 allocation
= &mleak_allocations
[hashaddr((uintptr_t)addr
,
7523 mleak_alloc_buckets
)];
7524 trace_index
= hashbacktrace(bt
, depth
, mleak_trace_buckets
);
7525 trace
= &mleak_traces
[trace_index
];
7527 VERIFY(allocation
<= &mleak_allocations
[mleak_alloc_buckets
- 1]);
7528 VERIFY(trace
<= &mleak_traces
[mleak_trace_buckets
- 1]);
7530 allocation
->hitcount
++;
7534 * If the allocation bucket we want is occupied
7535 * and the occupier has the same trace, just bail.
7537 if (allocation
->element
!= NULL
&&
7538 trace_index
== allocation
->trace_index
) {
7539 mleak_table
.alloc_collisions
++;
7540 lck_mtx_unlock(mleak_lock
);
7545 * Store the backtrace in the traces array;
7546 * Size of zero = trace bucket is free.
7548 if (trace
->allocs
> 0 &&
7549 bcmp(trace
->addr
, bt
, (depth
* sizeof(uintptr_t))) != 0) {
7550 /* Different, unique trace, but the same hash! Bail out. */
7551 trace
->collisions
++;
7552 mleak_table
.trace_collisions
++;
7553 lck_mtx_unlock(mleak_lock
);
7555 } else if (trace
->allocs
> 0) {
7556 /* Same trace, already added, so increment refcount */
7559 /* Found an unused trace bucket, so record the trace here */
7560 if (trace
->depth
!= 0) {
7561 /* this slot previously used but not currently in use */
7562 mleak_table
.trace_overwrites
++;
7564 mleak_table
.trace_recorded
++;
7566 memcpy(trace
->addr
, bt
, (depth
* sizeof(uintptr_t)));
7567 trace
->depth
= depth
;
7568 trace
->collisions
= 0;
7571 /* Step 2: Store the allocation record in the allocations array */
7572 if (allocation
->element
!= NULL
) {
7574 * Replace an existing allocation. No need to preserve
7575 * because only a subset of the allocations are being
7578 mleak_table
.alloc_collisions
++;
7579 } else if (allocation
->trace_index
!= 0) {
7580 mleak_table
.alloc_overwrites
++;
7582 allocation
->element
= addr
;
7583 allocation
->trace_index
= trace_index
;
7584 allocation
->count
= num
;
7585 mleak_table
.alloc_recorded
++;
7586 mleak_table
.outstanding_allocs
++;
7588 lck_mtx_unlock(mleak_lock
);
7593 mleak_free(mcache_obj_t
*addr
)
7595 while (addr
!= NULL
) {
7596 struct mallocation
*allocation
= &mleak_allocations
7597 [hashaddr((uintptr_t)addr
, mleak_alloc_buckets
)];
7599 if (allocation
->element
== addr
&&
7600 allocation
->trace_index
< mleak_trace_buckets
) {
7601 lck_mtx_lock_spin(mleak_lock
);
7602 if (allocation
->element
== addr
&&
7603 allocation
->trace_index
< mleak_trace_buckets
) {
7604 struct mtrace
*trace
;
7605 trace
= &mleak_traces
[allocation
->trace_index
];
7606 /* allocs = 0 means trace bucket is unused */
7607 if (trace
->allocs
> 0) {
7610 if (trace
->allocs
== 0) {
7613 /* NULL element means alloc bucket is unused */
7614 allocation
->element
= NULL
;
7615 mleak_table
.outstanding_allocs
--;
7617 lck_mtx_unlock(mleak_lock
);
7619 addr
= addr
->obj_next
;
7627 struct mtrace
*swap
;
7629 for (i
= 0; i
< MLEAK_NUM_TRACES
; i
++) {
7630 mleak_top_trace
[i
] = NULL
;
7633 for (i
= 0, j
= 0; j
< MLEAK_NUM_TRACES
&& i
< mleak_trace_buckets
; i
++) {
7634 if (mleak_traces
[i
].allocs
<= 0) {
7638 mleak_top_trace
[j
] = &mleak_traces
[i
];
7639 for (k
= j
; k
> 0; k
--) {
7640 if (mleak_top_trace
[k
]->allocs
<=
7641 mleak_top_trace
[k
- 1]->allocs
) {
7645 swap
= mleak_top_trace
[k
- 1];
7646 mleak_top_trace
[k
- 1] = mleak_top_trace
[k
];
7647 mleak_top_trace
[k
] = swap
;
7653 for (; i
< mleak_trace_buckets
; i
++) {
7654 if (mleak_traces
[i
].allocs
<= mleak_top_trace
[j
]->allocs
) {
7658 mleak_top_trace
[j
] = &mleak_traces
[i
];
7660 for (k
= j
; k
> 0; k
--) {
7661 if (mleak_top_trace
[k
]->allocs
<=
7662 mleak_top_trace
[k
- 1]->allocs
) {
7666 swap
= mleak_top_trace
[k
- 1];
7667 mleak_top_trace
[k
- 1] = mleak_top_trace
[k
];
7668 mleak_top_trace
[k
] = swap
;
7674 mleak_update_stats()
7676 mleak_trace_stat_t
*mltr
;
7679 VERIFY(mleak_stat
!= NULL
);
7681 VERIFY(mleak_stat
->ml_isaddr64
);
7683 VERIFY(!mleak_stat
->ml_isaddr64
);
7684 #endif /* !__LP64__ */
7685 VERIFY(mleak_stat
->ml_cnt
== MLEAK_NUM_TRACES
);
7687 mleak_sort_traces();
7689 mltr
= &mleak_stat
->ml_trace
[0];
7690 bzero(mltr
, sizeof(*mltr
) * MLEAK_NUM_TRACES
);
7691 for (i
= 0; i
< MLEAK_NUM_TRACES
; i
++) {
7694 if (mleak_top_trace
[i
] == NULL
||
7695 mleak_top_trace
[i
]->allocs
== 0) {
7699 mltr
->mltr_collisions
= mleak_top_trace
[i
]->collisions
;
7700 mltr
->mltr_hitcount
= mleak_top_trace
[i
]->hitcount
;
7701 mltr
->mltr_allocs
= mleak_top_trace
[i
]->allocs
;
7702 mltr
->mltr_depth
= mleak_top_trace
[i
]->depth
;
7704 VERIFY(mltr
->mltr_depth
<= MLEAK_STACK_DEPTH
);
7705 for (j
= 0; j
< mltr
->mltr_depth
; j
++) {
7706 mltr
->mltr_addr
[j
] = mleak_top_trace
[i
]->addr
[j
];
7713 static struct mbtypes
{
7715 const char *mt_name
;
7717 { MT_DATA
, "data" },
7718 { MT_OOBDATA
, "oob data" },
7719 { MT_CONTROL
, "ancillary data" },
7720 { MT_HEADER
, "packet headers" },
7721 { MT_SOCKET
, "socket structures" },
7722 { MT_PCB
, "protocol control blocks" },
7723 { MT_RTABLE
, "routing table entries" },
7724 { MT_HTABLE
, "IMP host table entries" },
7725 { MT_ATABLE
, "address resolution tables" },
7726 { MT_FTABLE
, "fragment reassembly queue headers" },
7727 { MT_SONAME
, "socket names and addresses" },
7728 { MT_SOOPTS
, "socket options" },
7729 { MT_RIGHTS
, "access rights" },
7730 { MT_IFADDR
, "interface addresses" },
7731 { MT_TAG
, "packet tags" },
7735 #define MBUF_DUMP_BUF_CHK() { \
7745 unsigned long totmem
= 0, totfree
= 0, totmbufs
, totused
, totpct
,
7747 u_int32_t m_mbufs
= 0, m_clfree
= 0, m_bigclfree
= 0;
7748 u_int32_t m_mbufclfree
= 0, m_mbufbigclfree
= 0;
7749 u_int32_t m_16kclusters
= 0, m_16kclfree
= 0, m_mbuf16kclfree
= 0;
7750 int nmbtypes
= sizeof(mbstat
.m_mtypes
) / sizeof(short);
7753 mb_class_stat_t
*sp
;
7754 mleak_trace_stat_t
*mltr
;
7755 char *c
= mbuf_dump_buf
;
7756 int i
, j
, k
, clen
= MBUF_DUMP_BUF_SIZE
;
7757 bool printed_banner
= false;
7759 mbuf_dump_buf
[0] = '\0';
7761 /* synchronize all statistics in the mbuf table */
7763 mbuf_mtypes_sync(TRUE
);
7765 sp
= &mb_stat
->mbs_class
[0];
7766 for (i
= 0; i
< mb_stat
->mbs_cnt
; i
++, sp
++) {
7769 if (m_class(i
) == MC_MBUF
) {
7770 m_mbufs
= sp
->mbcl_active
;
7771 } else if (m_class(i
) == MC_CL
) {
7772 m_clfree
= sp
->mbcl_total
- sp
->mbcl_active
;
7773 } else if (m_class(i
) == MC_BIGCL
) {
7774 m_bigclfree
= sp
->mbcl_total
- sp
->mbcl_active
;
7775 } else if (njcl
> 0 && m_class(i
) == MC_16KCL
) {
7776 m_16kclfree
= sp
->mbcl_total
- sp
->mbcl_active
;
7777 m_16kclusters
= sp
->mbcl_total
;
7778 } else if (m_class(i
) == MC_MBUF_CL
) {
7779 m_mbufclfree
= sp
->mbcl_total
- sp
->mbcl_active
;
7780 } else if (m_class(i
) == MC_MBUF_BIGCL
) {
7781 m_mbufbigclfree
= sp
->mbcl_total
- sp
->mbcl_active
;
7782 } else if (njcl
> 0 && m_class(i
) == MC_MBUF_16KCL
) {
7783 m_mbuf16kclfree
= sp
->mbcl_total
- sp
->mbcl_active
;
7786 mem
= sp
->mbcl_ctotal
* sp
->mbcl_size
;
7788 totfree
+= (sp
->mbcl_mc_cached
+ sp
->mbcl_infree
) *
7790 totreturned
+= sp
->mbcl_release_cnt
;
7793 /* adjust free counts to include composite caches */
7794 m_clfree
+= m_mbufclfree
;
7795 m_bigclfree
+= m_mbufbigclfree
;
7796 m_16kclfree
+= m_mbuf16kclfree
;
7799 for (mp
= mbtypes
; mp
->mt_name
!= NULL
; mp
++) {
7800 totmbufs
+= mbstat
.m_mtypes
[mp
->mt_type
];
7802 if (totmbufs
> m_mbufs
) {
7805 k
= scnprintf(c
, clen
, "%lu/%u mbufs in use:\n", totmbufs
, m_mbufs
);
7806 MBUF_DUMP_BUF_CHK();
7808 bzero(&seen
, sizeof(seen
));
7809 for (mp
= mbtypes
; mp
->mt_name
!= NULL
; mp
++) {
7810 if (mbstat
.m_mtypes
[mp
->mt_type
] != 0) {
7811 seen
[mp
->mt_type
] = 1;
7812 k
= scnprintf(c
, clen
, "\t%u mbufs allocated to %s\n",
7813 mbstat
.m_mtypes
[mp
->mt_type
], mp
->mt_name
);
7814 MBUF_DUMP_BUF_CHK();
7818 for (i
= 0; i
< nmbtypes
; i
++) {
7819 if (!seen
[i
] && mbstat
.m_mtypes
[i
] != 0) {
7820 k
= scnprintf(c
, clen
, "\t%u mbufs allocated to "
7821 "<mbuf type %d>\n", mbstat
.m_mtypes
[i
], i
);
7822 MBUF_DUMP_BUF_CHK();
7825 if ((m_mbufs
- totmbufs
) > 0) {
7826 k
= scnprintf(c
, clen
, "\t%lu mbufs allocated to caches\n",
7827 m_mbufs
- totmbufs
);
7828 MBUF_DUMP_BUF_CHK();
7830 k
= scnprintf(c
, clen
, "%u/%u mbuf 2KB clusters in use\n"
7831 "%u/%u mbuf 4KB clusters in use\n",
7832 (unsigned int)(mbstat
.m_clusters
- m_clfree
),
7833 (unsigned int)mbstat
.m_clusters
,
7834 (unsigned int)(mbstat
.m_bigclusters
- m_bigclfree
),
7835 (unsigned int)mbstat
.m_bigclusters
);
7836 MBUF_DUMP_BUF_CHK();
7839 k
= scnprintf(c
, clen
, "%u/%u mbuf %uKB clusters in use\n",
7840 m_16kclusters
- m_16kclfree
, m_16kclusters
,
7842 MBUF_DUMP_BUF_CHK();
7844 totused
= totmem
- totfree
;
7847 } else if (totused
< (ULONG_MAX
/ 100)) {
7848 totpct
= (totused
* 100) / totmem
;
7850 u_long totmem1
= totmem
/ 100;
7851 u_long totused1
= totused
/ 100;
7852 totpct
= (totused1
* 100) / totmem1
;
7854 k
= scnprintf(c
, clen
, "%lu KB allocated to network (approx. %lu%% "
7855 "in use)\n", totmem
/ 1024, totpct
);
7856 MBUF_DUMP_BUF_CHK();
7857 k
= scnprintf(c
, clen
, "%lu KB returned to the system\n",
7858 totreturned
/ 1024);
7859 MBUF_DUMP_BUF_CHK();
7861 net_update_uptime();
7862 k
= scnprintf(c
, clen
,
7863 "VM allocation failures: contiguous %u, normal %u, one page %u\n",
7864 mb_kmem_contig_failed
, mb_kmem_failed
, mb_kmem_one_failed
);
7865 MBUF_DUMP_BUF_CHK();
7866 if (mb_kmem_contig_failed_ts
|| mb_kmem_failed_ts
||
7867 mb_kmem_one_failed_ts
) {
7868 k
= scnprintf(c
, clen
,
7869 "VM allocation failure timestamps: contiguous %llu "
7870 "(size %llu), normal %llu (size %llu), one page %llu "
7872 mb_kmem_contig_failed_ts
, mb_kmem_contig_failed_size
,
7873 mb_kmem_failed_ts
, mb_kmem_failed_size
,
7874 mb_kmem_one_failed_ts
, net_uptime());
7875 MBUF_DUMP_BUF_CHK();
7876 k
= scnprintf(c
, clen
,
7877 "VM return codes: ");
7878 MBUF_DUMP_BUF_CHK();
7880 i
< sizeof(mb_kmem_stats
) / sizeof(mb_kmem_stats
[0]);
7882 k
= scnprintf(c
, clen
, "%s: %u ", mb_kmem_stats_labels
[i
],
7884 MBUF_DUMP_BUF_CHK();
7886 k
= scnprintf(c
, clen
, "\n");
7887 MBUF_DUMP_BUF_CHK();
7889 k
= scnprintf(c
, clen
,
7890 "worker thread runs: %u, expansions: %llu, cl %llu/%llu, "
7891 "bigcl %llu/%llu, 16k %llu/%llu\n", mbuf_worker_run_cnt
,
7892 mb_expand_cnt
, mb_expand_cl_cnt
, mb_expand_cl_total
,
7893 mb_expand_bigcl_cnt
, mb_expand_bigcl_total
, mb_expand_16kcl_cnt
,
7894 mb_expand_16kcl_total
);
7895 MBUF_DUMP_BUF_CHK();
7896 if (mbuf_worker_last_runtime
!= 0) {
7897 k
= scnprintf(c
, clen
, "worker thread last run time: "
7898 "%llu (%llu seconds ago)\n",
7899 mbuf_worker_last_runtime
,
7900 net_uptime() - mbuf_worker_last_runtime
);
7901 MBUF_DUMP_BUF_CHK();
7903 if (mbuf_drain_last_runtime
!= 0) {
7904 k
= scnprintf(c
, clen
, "drain routine last run time: "
7905 "%llu (%llu seconds ago)\n",
7906 mbuf_drain_last_runtime
,
7907 net_uptime() - mbuf_drain_last_runtime
);
7908 MBUF_DUMP_BUF_CHK();
7911 #if DEBUG || DEVELOPMENT
7912 k
= scnprintf(c
, clen
, "\nworker thread log:\n%s\n", mbwdog_logging
);
7913 MBUF_DUMP_BUF_CHK();
7916 for (j
= 0; j
< MTRACELARGE_NUM_TRACES
; j
++) {
7917 struct mtracelarge
*trace
= &mtracelarge_table
[j
];
7918 if (trace
->size
== 0 || trace
->depth
== 0) {
7921 if (printed_banner
== false) {
7922 k
= scnprintf(c
, clen
,
7923 "\nlargest allocation failure backtraces:\n");
7924 MBUF_DUMP_BUF_CHK();
7925 printed_banner
= true;
7927 k
= scnprintf(c
, clen
, "size %llu: < ", trace
->size
);
7928 MBUF_DUMP_BUF_CHK();
7929 for (i
= 0; i
< trace
->depth
; i
++) {
7930 if (mleak_stat
->ml_isaddr64
) {
7931 k
= scnprintf(c
, clen
, "0x%0llx ",
7932 (uint64_t)VM_KERNEL_UNSLIDE(
7935 k
= scnprintf(c
, clen
,
7937 (uint32_t)VM_KERNEL_UNSLIDE(
7940 MBUF_DUMP_BUF_CHK();
7942 k
= scnprintf(c
, clen
, ">\n");
7943 MBUF_DUMP_BUF_CHK();
7946 /* mbuf leak detection statistics */
7947 mleak_update_stats();
7949 k
= scnprintf(c
, clen
, "\nmbuf leak detection table:\n");
7950 MBUF_DUMP_BUF_CHK();
7951 k
= scnprintf(c
, clen
, "\ttotal captured: %u (one per %u)\n",
7952 mleak_table
.mleak_capture
/ mleak_table
.mleak_sample_factor
,
7953 mleak_table
.mleak_sample_factor
);
7954 MBUF_DUMP_BUF_CHK();
7955 k
= scnprintf(c
, clen
, "\ttotal allocs outstanding: %llu\n",
7956 mleak_table
.outstanding_allocs
);
7957 MBUF_DUMP_BUF_CHK();
7958 k
= scnprintf(c
, clen
, "\tnew hash recorded: %llu allocs, %llu traces\n",
7959 mleak_table
.alloc_recorded
, mleak_table
.trace_recorded
);
7960 MBUF_DUMP_BUF_CHK();
7961 k
= scnprintf(c
, clen
, "\thash collisions: %llu allocs, %llu traces\n",
7962 mleak_table
.alloc_collisions
, mleak_table
.trace_collisions
);
7963 MBUF_DUMP_BUF_CHK();
7964 k
= scnprintf(c
, clen
, "\toverwrites: %llu allocs, %llu traces\n",
7965 mleak_table
.alloc_overwrites
, mleak_table
.trace_overwrites
);
7966 MBUF_DUMP_BUF_CHK();
7967 k
= scnprintf(c
, clen
, "\tlock conflicts: %llu\n\n",
7968 mleak_table
.total_conflicts
);
7969 MBUF_DUMP_BUF_CHK();
7971 k
= scnprintf(c
, clen
, "top %d outstanding traces:\n",
7972 mleak_stat
->ml_cnt
);
7973 MBUF_DUMP_BUF_CHK();
7974 for (i
= 0; i
< mleak_stat
->ml_cnt
; i
++) {
7975 mltr
= &mleak_stat
->ml_trace
[i
];
7976 k
= scnprintf(c
, clen
, "[%d] %llu outstanding alloc(s), "
7977 "%llu hit(s), %llu collision(s)\n", (i
+ 1),
7978 mltr
->mltr_allocs
, mltr
->mltr_hitcount
,
7979 mltr
->mltr_collisions
);
7980 MBUF_DUMP_BUF_CHK();
7983 if (mleak_stat
->ml_isaddr64
) {
7984 k
= scnprintf(c
, clen
, MB_LEAK_HDR_64
);
7986 k
= scnprintf(c
, clen
, MB_LEAK_HDR_32
);
7988 MBUF_DUMP_BUF_CHK();
7990 for (i
= 0; i
< MLEAK_STACK_DEPTH
; i
++) {
7991 k
= scnprintf(c
, clen
, "%2d: ", (i
+ 1));
7992 MBUF_DUMP_BUF_CHK();
7993 for (j
= 0; j
< mleak_stat
->ml_cnt
; j
++) {
7994 mltr
= &mleak_stat
->ml_trace
[j
];
7995 if (i
< mltr
->mltr_depth
) {
7996 if (mleak_stat
->ml_isaddr64
) {
7997 k
= scnprintf(c
, clen
, "0x%0llx ",
7998 (uint64_t)VM_KERNEL_UNSLIDE(
7999 mltr
->mltr_addr
[i
]));
8001 k
= scnprintf(c
, clen
,
8003 (uint32_t)VM_KERNEL_UNSLIDE(
8004 mltr
->mltr_addr
[i
]));
8007 if (mleak_stat
->ml_isaddr64
) {
8008 k
= scnprintf(c
, clen
,
8009 MB_LEAK_SPACING_64
);
8011 k
= scnprintf(c
, clen
,
8012 MB_LEAK_SPACING_32
);
8015 MBUF_DUMP_BUF_CHK();
8017 k
= scnprintf(c
, clen
, "\n");
8018 MBUF_DUMP_BUF_CHK();
8021 return mbuf_dump_buf
;
8024 #undef MBUF_DUMP_BUF_CHK
8027 * Convert between a regular and a packet header mbuf. Caller is responsible
8028 * for setting or clearing M_PKTHDR; this routine does the rest of the work.
8031 m_reinit(struct mbuf
*m
, int hdr
)
8036 VERIFY(!(m
->m_flags
& M_PKTHDR
));
8037 if (!(m
->m_flags
& M_EXT
) &&
8038 (m
->m_data
!= m
->m_dat
|| m
->m_len
> 0)) {
8040 * If there's no external cluster attached and the
8041 * mbuf appears to contain user data, we cannot
8042 * safely convert this to a packet header mbuf,
8043 * as the packet header structure might overlap
8046 printf("%s: cannot set M_PKTHDR on altered mbuf %llx, "
8047 "m_data %llx (expected %llx), "
8048 "m_len %d (expected 0)\n",
8050 (uint64_t)VM_KERNEL_ADDRPERM(m
),
8051 (uint64_t)VM_KERNEL_ADDRPERM(m
->m_data
),
8052 (uint64_t)VM_KERNEL_ADDRPERM(m
->m_dat
), m
->m_len
);
8055 VERIFY((m
->m_flags
& M_EXT
) || m
->m_data
== m
->m_dat
);
8056 m
->m_flags
|= M_PKTHDR
;
8057 MBUF_INIT_PKTHDR(m
);
8060 /* Check for scratch area overflow */
8061 m_redzone_verify(m
);
8062 /* Free the aux data and tags if there is any */
8063 m_tag_delete_chain(m
, NULL
);
8064 m
->m_flags
&= ~M_PKTHDR
;
8071 m_ext_set_prop(struct mbuf
*m
, uint32_t o
, uint32_t n
)
8073 ASSERT(m
->m_flags
& M_EXT
);
8074 return atomic_test_set_32(&MEXT_PRIV(m
), o
, n
);
8078 m_ext_get_prop(struct mbuf
*m
)
8080 ASSERT(m
->m_flags
& M_EXT
);
8081 return MEXT_PRIV(m
);
8085 m_ext_paired_is_active(struct mbuf
*m
)
8087 return MBUF_IS_PAIRED(m
) ? (MEXT_PREF(m
) > MEXT_MINREF(m
)) : 1;
8091 m_ext_paired_activate(struct mbuf
*m
)
8093 struct ext_ref
*rfa
;
8096 m_ext_free_func_t extfree
;
8099 VERIFY(MBUF_IS_PAIRED(m
));
8100 VERIFY(MEXT_REF(m
) == MEXT_MINREF(m
));
8101 VERIFY(MEXT_PREF(m
) == MEXT_MINREF(m
));
8103 hdr
= (m
->m_flags
& M_PKTHDR
);
8105 extbuf
= m
->m_ext
.ext_buf
;
8106 extfree
= m_get_ext_free(m
);
8107 extsize
= m
->m_ext
.ext_size
;
8110 VERIFY(extbuf
!= NULL
&& rfa
!= NULL
);
8113 * Safe to reinitialize packet header tags, since it's
8114 * already taken care of at m_free() time. Similar to
8115 * what's done in m_clattach() for the cluster. Bump
8116 * up MEXT_PREF to indicate activation.
8118 MBUF_INIT(m
, hdr
, type
);
8119 MEXT_INIT(m
, extbuf
, extsize
, extfree
, (caddr_t
)m
, rfa
,
8120 1, 1, 2, EXTF_PAIRED
, MEXT_PRIV(m
), m
);
8124 m_scratch_init(struct mbuf
*m
)
8126 struct pkthdr
*pkt
= &m
->m_pkthdr
;
8128 VERIFY(m
->m_flags
& M_PKTHDR
);
8130 /* See comments in <rdar://problem/14040693> */
8131 if (pkt
->pkt_flags
& PKTF_PRIV_GUARDED
) {
8132 panic_plain("Invalid attempt to modify guarded module-private "
8133 "area: mbuf %p, pkt_flags 0x%x\n", m
, pkt
->pkt_flags
);
8137 bzero(&pkt
->pkt_mpriv
, sizeof(pkt
->pkt_mpriv
));
8141 * This routine is reserved for mbuf_get_driver_scratch(); clients inside
8142 * xnu that intend on utilizing the module-private area should directly
8143 * refer to the pkt_mpriv structure in the pkthdr. They are also expected
8144 * to set and clear PKTF_PRIV_GUARDED, while owning the packet and prior
8145 * to handing it off to another module, respectively.
8148 m_scratch_get(struct mbuf
*m
, u_int8_t
**p
)
8150 struct pkthdr
*pkt
= &m
->m_pkthdr
;
8152 VERIFY(m
->m_flags
& M_PKTHDR
);
8154 /* See comments in <rdar://problem/14040693> */
8155 if (pkt
->pkt_flags
& PKTF_PRIV_GUARDED
) {
8156 panic_plain("Invalid attempt to access guarded module-private "
8157 "area: mbuf %p, pkt_flags 0x%x\n", m
, pkt
->pkt_flags
);
8162 mcache_audit_t
*mca
;
8164 lck_mtx_lock(mbuf_mlock
);
8165 mca
= mcl_audit_buf2mca(MC_MBUF
, (mcache_obj_t
*)m
);
8166 if (mca
->mca_uflags
& MB_SCVALID
) {
8167 mcl_audit_scratch(mca
);
8169 lck_mtx_unlock(mbuf_mlock
);
8172 *p
= (u_int8_t
*)&pkt
->pkt_mpriv
;
8173 return sizeof(pkt
->pkt_mpriv
);
8177 m_redzone_init(struct mbuf
*m
)
8179 VERIFY(m
->m_flags
& M_PKTHDR
);
8181 * Each mbuf has a unique red zone pattern, which is a XOR
8182 * of the red zone cookie and the address of the mbuf.
8184 m
->m_pkthdr
.redzone
= ((u_int32_t
)(uintptr_t)m
) ^ mb_redzone_cookie
;
8188 m_redzone_verify(struct mbuf
*m
)
8190 u_int32_t mb_redzone
;
8192 VERIFY(m
->m_flags
& M_PKTHDR
);
8194 mb_redzone
= ((u_int32_t
)(uintptr_t)m
) ^ mb_redzone_cookie
;
8195 if (m
->m_pkthdr
.redzone
!= mb_redzone
) {
8196 panic("mbuf %p redzone violation with value 0x%x "
8197 "(instead of 0x%x, using cookie 0x%x)\n",
8198 m
, m
->m_pkthdr
.redzone
, mb_redzone
, mb_redzone_cookie
);
8203 __private_extern__
inline void
8204 m_set_ext(struct mbuf
*m
, struct ext_ref
*rfa
, m_ext_free_func_t ext_free
,
8207 VERIFY(m
->m_flags
& M_EXT
);
8209 m
->m_ext
.ext_refflags
=
8210 (struct ext_ref
*)(((uintptr_t)rfa
) ^ mb_obscure_extref
);
8211 if (ext_free
!= NULL
) {
8212 rfa
->ext_token
= ((uintptr_t)&rfa
->ext_token
) ^
8214 uintptr_t ext_free_val
= ptrauth_nop_cast(uintptr_t, ext_free
) ^ rfa
->ext_token
;
8215 m
->m_ext
.ext_free
= ptrauth_nop_cast(m_ext_free_func_t
, ext_free_val
);
8216 if (ext_arg
!= NULL
) {
8218 (caddr_t
)(((uintptr_t)ext_arg
) ^ rfa
->ext_token
);
8220 m
->m_ext
.ext_arg
= NULL
;
8224 m
->m_ext
.ext_free
= NULL
;
8225 m
->m_ext
.ext_arg
= NULL
;
8229 * If we are going to loose the cookie in ext_token by
8230 * resetting the rfa, we should use the global cookie
8231 * to obscure the ext_free and ext_arg pointers.
8233 if (ext_free
!= NULL
) {
8234 uintptr_t ext_free_val
= ptrauth_nop_cast(uintptr_t, ext_free
) ^ mb_obscure_extfree
;
8235 m
->m_ext
.ext_free
= ptrauth_nop_cast(m_ext_free_func_t
, ext_free_val
);
8236 if (ext_arg
!= NULL
) {
8238 (caddr_t
)((uintptr_t)ext_arg
^
8239 mb_obscure_extfree
);
8241 m
->m_ext
.ext_arg
= NULL
;
8244 m
->m_ext
.ext_free
= NULL
;
8245 m
->m_ext
.ext_arg
= NULL
;
8247 m
->m_ext
.ext_refflags
= NULL
;
8251 __private_extern__
inline struct ext_ref
*
8252 m_get_rfa(struct mbuf
*m
)
8254 if (m
->m_ext
.ext_refflags
== NULL
) {
8257 return (struct ext_ref
*)(((uintptr_t)m
->m_ext
.ext_refflags
) ^ mb_obscure_extref
);
8261 __private_extern__
inline m_ext_free_func_t
8262 m_get_ext_free(struct mbuf
*m
)
8264 struct ext_ref
*rfa
;
8265 if (m
->m_ext
.ext_free
== NULL
) {
8271 uintptr_t ext_free_val
= ptrauth_nop_cast(uintptr_t, m
->m_ext
.ext_free
) ^ mb_obscure_extfree
;
8272 return ptrauth_nop_cast(m_ext_free_func_t
, ext_free_val
);
8274 uintptr_t ext_free_val
= ptrauth_nop_cast(uintptr_t, m
->m_ext
.ext_free
) ^ rfa
->ext_token
;
8275 return ptrauth_nop_cast(m_ext_free_func_t
, ext_free_val
);
8279 __private_extern__
inline caddr_t
8280 m_get_ext_arg(struct mbuf
*m
)
8282 struct ext_ref
*rfa
;
8283 if (m
->m_ext
.ext_arg
== NULL
) {
8289 return (caddr_t
)((uintptr_t)m
->m_ext
.ext_arg
^ mb_obscure_extfree
);
8291 return (caddr_t
)(((uintptr_t)m
->m_ext
.ext_arg
) ^
8297 * Send a report of mbuf usage if the usage is at least 6% of max limit
8298 * or if there has been at least 3% increase since the last report.
8300 * The values 6% and 3% are chosen so that we can do simple arithmetic
8301 * with shift operations.
8304 mbuf_report_usage(mbuf_class_t cl
)
8306 /* if a report is already in progress, nothing to do */
8307 if (mb_peak_newreport
) {
8311 if (m_total(cl
) > m_peak(cl
) &&
8312 m_total(cl
) >= (m_maxlimit(cl
) >> 4) &&
8313 (m_total(cl
) - m_peak(cl
)) >= (m_peak(cl
) >> 5)) {
8319 __private_extern__
void
8320 mbuf_report_peak_usage(void)
8324 struct nstat_sysinfo_data ns_data
;
8325 uint32_t memreleased
= 0;
8326 static uint32_t prevmemreleased
;
8328 uptime
= net_uptime();
8329 lck_mtx_lock(mbuf_mlock
);
8331 /* Generate an initial report after 1 week of uptime */
8332 if (!mb_peak_firstreport
&&
8333 uptime
> MBUF_PEAK_FIRST_REPORT_THRESHOLD
) {
8334 mb_peak_newreport
= TRUE
;
8335 mb_peak_firstreport
= TRUE
;
8338 if (!mb_peak_newreport
) {
8339 lck_mtx_unlock(mbuf_mlock
);
8344 * Since a report is being generated before 1 week,
8345 * we do not need to force another one later
8347 if (uptime
< MBUF_PEAK_FIRST_REPORT_THRESHOLD
) {
8348 mb_peak_firstreport
= TRUE
;
8351 for (i
= 0; i
< NELEM(mbuf_table
); i
++) {
8352 m_peak(m_class(i
)) = m_total(m_class(i
));
8353 memreleased
+= m_release_cnt(i
);
8355 memreleased
= memreleased
- prevmemreleased
;
8356 prevmemreleased
= memreleased
;
8357 mb_peak_newreport
= FALSE
;
8358 lck_mtx_unlock(mbuf_mlock
);
8360 bzero(&ns_data
, sizeof(ns_data
));
8361 ns_data
.flags
= NSTAT_SYSINFO_MBUF_STATS
;
8362 ns_data
.u
.mb_stats
.total_256b
= m_peak(MC_MBUF
);
8363 ns_data
.u
.mb_stats
.total_2kb
= m_peak(MC_CL
);
8364 ns_data
.u
.mb_stats
.total_4kb
= m_peak(MC_BIGCL
);
8365 ns_data
.u
.mb_stats
.total_16kb
= m_peak(MC_16KCL
);
8366 ns_data
.u
.mb_stats
.sbmb_total
= total_sbmb_cnt_peak
;
8367 ns_data
.u
.mb_stats
.sb_atmbuflimit
= sbmb_limreached
;
8368 ns_data
.u
.mb_stats
.draincnt
= mbstat
.m_drain
;
8369 ns_data
.u
.mb_stats
.memreleased
= memreleased
;
8370 ns_data
.u
.mb_stats
.sbmb_floor
= total_sbmb_cnt_floor
;
8372 nstat_sysinfo_send_data(&ns_data
);
8375 * Reset the floor whenever we report a new
8376 * peak to track the trend (increase peek usage
8377 * is not a leak if mbufs get released
8378 * between reports and the floor stays low)
8380 total_sbmb_cnt_floor
= total_sbmb_cnt_peak
;
8384 * Simple routine to avoid taking the lock when we can't run the
8388 mbuf_drain_checks(boolean_t ignore_waiters
)
8390 if (mb_drain_maxint
== 0) {
8393 if (!ignore_waiters
&& mb_waiters
!= 0) {
8401 * Called by the VM when there's memory pressure or when we exhausted
8402 * the 4k/16k reserved space.
8405 mbuf_drain_locked(boolean_t ignore_waiters
)
8408 mcl_slab_t
*sp
, *sp_tmp
, *nsp
;
8409 unsigned int num
, k
, interval
, released
= 0;
8410 unsigned long total_mem
= 0, use_mem
= 0;
8411 boolean_t ret
, purge_caches
= FALSE
;
8415 static unsigned char scratch
[32];
8416 static ppnum_t scratch_pa
= 0;
8418 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
8419 if (!mbuf_drain_checks(ignore_waiters
)) {
8422 if (scratch_pa
== 0) {
8423 bzero(scratch
, sizeof(scratch
));
8424 scratch_pa
= pmap_find_phys(kernel_pmap
, (addr64_t
)scratch
);
8426 } else if (mclverify
) {
8428 * Panic if a driver wrote to our scratch memory.
8430 for (k
= 0; k
< sizeof(scratch
); k
++) {
8432 panic("suspect DMA to freed address");
8437 * Don't free memory too often as that could cause excessive
8438 * waiting times for mbufs. Purge caches if we were asked to drain
8439 * in the last 5 minutes.
8441 if (mbuf_drain_last_runtime
!= 0) {
8442 interval
= net_uptime() - mbuf_drain_last_runtime
;
8443 if (interval
<= mb_drain_maxint
) {
8446 if (interval
<= mb_drain_maxint
* 5) {
8447 purge_caches
= TRUE
;
8450 mbuf_drain_last_runtime
= net_uptime();
8452 * Don't free any memory if we're using 60% or more.
8454 for (mc
= 0; mc
< NELEM(mbuf_table
); mc
++) {
8455 total_mem
+= m_total(mc
) * m_maxsize(mc
);
8456 use_mem
+= m_active(mc
) * m_maxsize(mc
);
8458 per
= (use_mem
* 100) / total_mem
;
8463 * Purge all the caches. This effectively disables
8464 * caching for a few seconds, but the mbuf worker thread will
8465 * re-enable them again.
8467 if (purge_caches
== TRUE
) {
8468 for (mc
= 0; mc
< NELEM(mbuf_table
); mc
++) {
8469 if (m_total(mc
) < m_avgtotal(mc
)) {
8472 lck_mtx_unlock(mbuf_mlock
);
8473 ret
= mcache_purge_cache(m_cache(mc
), FALSE
);
8474 lck_mtx_lock(mbuf_mlock
);
8481 * Move the objects from the composite class freelist to
8482 * the rudimentary slabs list, but keep at least 10% of the average
8483 * total in the freelist.
8485 for (mc
= 0; mc
< NELEM(mbuf_table
); mc
++) {
8486 while (m_cobjlist(mc
) &&
8487 m_total(mc
) < m_avgtotal(mc
) &&
8488 m_infree(mc
) > 0.1 * m_avgtotal(mc
) + m_minlimit(mc
)) {
8489 obj
= m_cobjlist(mc
);
8490 m_cobjlist(mc
) = obj
->obj_next
;
8491 obj
->obj_next
= NULL
;
8492 num
= cslab_free(mc
, obj
, 1);
8496 /* cslab_free() handles m_total */
8500 * Free the buffers present in the slab list up to 10% of the total
8501 * average per class.
8503 * We walk the list backwards in an attempt to reduce fragmentation.
8505 for (mc
= NELEM(mbuf_table
) - 1; (int)mc
>= 0; mc
--) {
8506 TAILQ_FOREACH_SAFE(sp
, &m_slablist(mc
), sl_link
, sp_tmp
) {
8508 * Process only unused slabs occupying memory.
8510 if (sp
->sl_refcnt
!= 0 || sp
->sl_len
== 0 ||
8511 sp
->sl_base
== NULL
) {
8514 if (m_total(mc
) < m_avgtotal(mc
) ||
8515 m_infree(mc
) < 0.1 * m_avgtotal(mc
) + m_minlimit(mc
)) {
8518 slab_remove(sp
, mc
);
8521 m_infree(mc
) -= NMBPG
;
8522 m_total(mc
) -= NMBPG
;
8523 if (mclaudit
!= NULL
) {
8524 mcl_audit_free(sp
->sl_base
, NMBPG
);
8528 m_infree(mc
) -= NCLPG
;
8529 m_total(mc
) -= NCLPG
;
8530 if (mclaudit
!= NULL
) {
8531 mcl_audit_free(sp
->sl_base
, NMBPG
);
8536 m_infree(mc
) -= NBCLPG
;
8537 m_total(mc
) -= NBCLPG
;
8538 if (mclaudit
!= NULL
) {
8539 mcl_audit_free(sp
->sl_base
, NMBPG
);
8546 for (nsp
= sp
, k
= 1; k
< NSLABSP16KB
; k
++) {
8548 VERIFY(nsp
->sl_refcnt
== 0 &&
8549 nsp
->sl_base
!= NULL
&&
8551 slab_init(nsp
, 0, 0, NULL
, NULL
, 0, 0,
8555 if (mclaudit
!= NULL
) {
8556 if (sp
->sl_len
== PAGE_SIZE
) {
8557 mcl_audit_free(sp
->sl_base
,
8560 mcl_audit_free(sp
->sl_base
, 1);
8566 * The composite classes have their own
8567 * freelist (m_cobjlist), so we only
8568 * process rudimentary classes here.
8572 m_release_cnt(mc
) += m_size(mc
);
8573 released
+= m_size(mc
);
8574 VERIFY(sp
->sl_base
!= NULL
&&
8575 sp
->sl_len
>= PAGE_SIZE
);
8576 offset
= MTOPG(sp
->sl_base
);
8578 * Make sure the IOMapper points to a valid, but
8579 * bogus, address. This should prevent further DMA
8580 * accesses to freed memory.
8582 IOMapperInsertPage(mcl_paddr_base
, offset
, scratch_pa
);
8583 mcl_paddr
[offset
] = 0;
8584 kmem_free(mb_map
, (vm_offset_t
)sp
->sl_base
,
8586 slab_init(sp
, 0, 0, NULL
, NULL
, 0, 0, 0);
8591 mbstat
.m_bigclusters
= m_total(MC_BIGCL
);
8592 mbstat
.m_clusters
= m_total(MC_CL
);
8593 mbstat
.m_mbufs
= m_total(MC_MBUF
);
8595 mbuf_mtypes_sync(TRUE
);
8598 __private_extern__
void
8599 mbuf_drain(boolean_t ignore_waiters
)
8601 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_NOTOWNED
);
8602 if (!mbuf_drain_checks(ignore_waiters
)) {
8605 lck_mtx_lock(mbuf_mlock
);
8606 mbuf_drain_locked(ignore_waiters
);
8607 lck_mtx_unlock(mbuf_mlock
);
8612 m_drain_force_sysctl SYSCTL_HANDLER_ARGS
8614 #pragma unused(arg1, arg2)
8617 err
= sysctl_handle_int(oidp
, &val
, 0, req
);
8618 if (err
!= 0 || req
->newptr
== USER_ADDR_NULL
) {
8628 #if DEBUG || DEVELOPMENT
8630 _mbwdog_logger(const char *func
, const int line
, const char *fmt
, ...)
8634 char str
[384], p
[256];
8637 LCK_MTX_ASSERT(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
8638 if (mbwdog_logging
== NULL
) {
8639 mbwdog_logging
= _MALLOC(mbwdog_logging_size
,
8640 M_TEMP
, M_ZERO
| M_NOWAIT
);
8641 if (mbwdog_logging
== NULL
) {
8646 vsnprintf(p
, sizeof(p
), fmt
, ap
);
8649 len
= scnprintf(str
, sizeof(str
),
8650 "\n%ld.%d (%d/%llx) %s:%d %s",
8651 now
.tv_sec
, now
.tv_usec
,
8652 current_proc()->p_pid
,
8653 (uint64_t)VM_KERNEL_ADDRPERM(current_thread()),
8658 if (mbwdog_logging_used
+ len
> mbwdog_logging_size
) {
8659 mbwdog_logging_used
= mbwdog_logging_used
/ 2;
8660 memmove(mbwdog_logging
, mbwdog_logging
+ mbwdog_logging_used
,
8661 mbwdog_logging_size
- mbwdog_logging_used
);
8662 mbwdog_logging
[mbwdog_logging_used
] = 0;
8664 strlcat(mbwdog_logging
, str
, mbwdog_logging_size
);
8665 mbwdog_logging_used
+= len
;
8669 sysctl_mbwdog_log SYSCTL_HANDLER_ARGS
8671 #pragma unused(oidp, arg1, arg2)
8672 return SYSCTL_OUT(req
, mbwdog_logging
, mbwdog_logging_used
);
8674 SYSCTL_DECL(_kern_ipc
);
8675 SYSCTL_PROC(_kern_ipc
, OID_AUTO
, mbwdog_log
,
8676 CTLTYPE_STRING
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
8677 0, 0, sysctl_mbwdog_log
, "A", "");
8679 static int mbtest_val
;
8680 static int mbtest_running
;
8683 mbtest_thread(__unused
void *arg
)
8687 int iterations
= 250;
8688 int allocations
= nmbclusters
;
8689 iterations
= iterations
/ scale_down
;
8690 allocations
= allocations
/ scale_down
;
8691 printf("%s thread starting\n", __func__
);
8692 for (i
= 0; i
< iterations
; i
++) {
8693 unsigned int needed
= allocations
;
8694 struct mbuf
*m1
, *m2
, *m3
;
8697 needed
= allocations
;
8698 m3
= m_getpackets_internal(&needed
, 0, M_DONTWAIT
, 0, M16KCLBYTES
);
8702 needed
= allocations
;
8703 m2
= m_getpackets_internal(&needed
, 0, M_DONTWAIT
, 0, MBIGCLBYTES
);
8706 m1
= m_getpackets_internal(&needed
, 0, M_DONTWAIT
, 0, MCLBYTES
);
8710 printf("%s thread ending\n", __func__
);
8712 OSDecrementAtomic(&mbtest_running
);
8713 wakeup_one((caddr_t
)&mbtest_running
);
8719 /* We launch three threads - wait for all of them */
8720 OSIncrementAtomic(&mbtest_running
);
8721 OSIncrementAtomic(&mbtest_running
);
8722 OSIncrementAtomic(&mbtest_running
);
8724 thread_call_func_delayed((thread_call_func_t
)mbtest_thread
, NULL
, 10);
8725 thread_call_func_delayed((thread_call_func_t
)mbtest_thread
, NULL
, 10);
8726 thread_call_func_delayed((thread_call_func_t
)mbtest_thread
, NULL
, 10);
8728 while (mbtest_running
) {
8729 msleep((caddr_t
)&mbtest_running
, NULL
, PUSER
, "mbtest_running", NULL
);
8734 mbtest SYSCTL_HANDLER_ARGS
8736 #pragma unused(arg1, arg2)
8737 int error
= 0, val
, oldval
= mbtest_val
;
8740 error
= sysctl_handle_int(oidp
, &val
, 0, req
);
8741 if (error
|| !req
->newptr
) {
8745 if (val
!= oldval
) {
8753 #endif // DEBUG || DEVELOPMENT
8756 mtracelarge_register(size_t size
)
8759 struct mtracelarge
*trace
;
8760 uintptr_t bt
[MLEAK_STACK_DEPTH
];
8763 depth
= backtrace(bt
, MLEAK_STACK_DEPTH
, NULL
);
8764 /* Check if this entry is already on the list. */
8765 for (i
= 0; i
< MTRACELARGE_NUM_TRACES
; i
++) {
8766 trace
= &mtracelarge_table
[i
];
8767 if (trace
->size
== size
&& trace
->depth
== depth
&&
8768 memcmp(bt
, trace
->addr
, depth
* sizeof(uintptr_t)) == 0) {
8772 for (i
= 0; i
< MTRACELARGE_NUM_TRACES
; i
++) {
8773 trace
= &mtracelarge_table
[i
];
8774 if (size
> trace
->size
) {
8775 trace
->depth
= depth
;
8776 memcpy(trace
->addr
, bt
, depth
* sizeof(uintptr_t));
8783 SYSCTL_DECL(_kern_ipc
);
8784 #if DEBUG || DEVELOPMENT
8785 SYSCTL_PROC(_kern_ipc
, OID_AUTO
, mbtest
,
8786 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &mbtest_val
, 0, &mbtest
, "I",
8787 "Toggle to test mbufs");
8789 SYSCTL_PROC(_kern_ipc
, KIPC_MBSTAT
, mbstat
,
8790 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
8791 0, 0, mbstat_sysctl
, "S,mbstat", "");
8792 SYSCTL_PROC(_kern_ipc
, OID_AUTO
, mb_stat
,
8793 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
8794 0, 0, mb_stat_sysctl
, "S,mb_stat", "");
8795 SYSCTL_PROC(_kern_ipc
, OID_AUTO
, mleak_top_trace
,
8796 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
8797 0, 0, mleak_top_trace_sysctl
, "S,mb_top_trace", "");
8798 SYSCTL_PROC(_kern_ipc
, OID_AUTO
, mleak_table
,
8799 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
8800 0, 0, mleak_table_sysctl
, "S,mleak_table", "");
8801 SYSCTL_INT(_kern_ipc
, OID_AUTO
, mleak_sample_factor
,
8802 CTLFLAG_RW
| CTLFLAG_LOCKED
, &mleak_table
.mleak_sample_factor
, 0, "");
8803 SYSCTL_INT(_kern_ipc
, OID_AUTO
, mb_normalized
,
8804 CTLFLAG_RD
| CTLFLAG_LOCKED
, &mb_normalized
, 0, "");
8805 SYSCTL_INT(_kern_ipc
, OID_AUTO
, mb_watchdog
,
8806 CTLFLAG_RW
| CTLFLAG_LOCKED
, &mb_watchdog
, 0, "");
8807 SYSCTL_PROC(_kern_ipc
, OID_AUTO
, mb_drain_force
,
8808 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, NULL
, 0,
8809 m_drain_force_sysctl
, "I",
8810 "Forces the mbuf garbage collection to run");
8811 SYSCTL_INT(_kern_ipc
, OID_AUTO
, mb_drain_maxint
,
8812 CTLFLAG_RW
| CTLFLAG_LOCKED
, &mb_drain_maxint
, 0,
8813 "Minimum time interval between garbage collection");