2 * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1989, 1993, 1995
31 * The Regents of the University of California. All rights reserved.
33 * This code is derived from software contributed to Berkeley by
34 * Poul-Henning Kamp of the FreeBSD Project.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * 4. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95
68 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
69 * support for mandatory and extensible security protections. This notice
70 * is included in support of clause 2.2 (b) of the Apple Public License,
73 #include <sys/param.h>
74 #include <sys/systm.h>
76 #include <sys/mount_internal.h>
77 #include <sys/vnode_internal.h>
78 #include <miscfs/specfs/specdev.h>
79 #include <sys/namei.h>
80 #include <sys/errno.h>
81 #include <sys/malloc.h>
82 #include <sys/kauth.h>
84 #include <sys/paths.h>
87 #include <security/mac_framework.h>
91 * Name caching works as follows:
93 * Names found by directory scans are retained in a cache
94 * for future reference. It is managed LRU, so frequently
95 * used names will hang around. Cache is indexed by hash value
96 * obtained from (vp, name) where vp refers to the directory
99 * If it is a "negative" entry, (i.e. for a name that is known NOT to
100 * exist) the vnode pointer will be NULL.
102 * Upon reaching the last segment of a path, if the reference
103 * is for DELETE, or NOCACHE is set (rewrite), and the
104 * name is located in the cache, it will be dropped.
108 * Structures associated with name cacheing.
111 LIST_HEAD(nchashhead
, namecache
) *nchashtbl
; /* Hash Table */
113 u_long nchash
; /* size of hash table - 1 */
114 long numcache
; /* number of cache entries allocated */
119 TAILQ_HEAD(, namecache
) nchead
; /* chain of all name cache entries */
120 TAILQ_HEAD(, namecache
) neghead
; /* chain of only negative cache entries */
125 struct nchstats nchstats
; /* cache effectiveness statistics */
127 #define NCHSTAT(v) { \
130 #define NAME_CACHE_LOCK() name_cache_lock()
131 #define NAME_CACHE_UNLOCK() name_cache_unlock()
132 #define NAME_CACHE_LOCK_SHARED() name_cache_lock()
137 #define NAME_CACHE_LOCK() name_cache_lock()
138 #define NAME_CACHE_UNLOCK() name_cache_unlock()
139 #define NAME_CACHE_LOCK_SHARED() name_cache_lock_shared()
144 /* vars for name cache list lock */
145 lck_grp_t
* namecache_lck_grp
;
146 lck_grp_attr_t
* namecache_lck_grp_attr
;
147 lck_attr_t
* namecache_lck_attr
;
149 lck_grp_t
* strcache_lck_grp
;
150 lck_grp_attr_t
* strcache_lck_grp_attr
;
151 lck_attr_t
* strcache_lck_attr
;
153 lck_rw_t
* namecache_rw_lock
;
154 lck_rw_t
* strtable_rw_lock
;
156 #define NUM_STRCACHE_LOCKS 1024
158 lck_mtx_t strcache_mtx_locks
[NUM_STRCACHE_LOCKS
];
161 static vnode_t
cache_lookup_locked(vnode_t dvp
, struct componentname
*cnp
);
162 static const char *add_name_internal(const char *, uint32_t, u_int
, boolean_t
, u_int
);
163 static void init_string_table(void);
164 static void cache_delete(struct namecache
*, int);
165 static void cache_enter_locked(vnode_t dvp
, vnode_t vp
, struct componentname
*cnp
, const char *strname
);
167 #ifdef DUMP_STRING_TABLE
169 * Internal dump function used for debugging
171 void dump_string_table(void);
172 #endif /* DUMP_STRING_TABLE */
174 static void init_crc32(void);
175 static unsigned int crc32tab
[256];
178 #define NCHHASH(dvp, hash_val) \
179 (&nchashtbl[(dvp->v_id ^ (hash_val)) & nchashmask])
184 * This function builds the path to a filename in "buff". The
185 * length of the buffer *INCLUDING* the trailing zero byte is
186 * returned in outlen. NOTE: the length includes the trailing
187 * zero byte and thus the length is one greater than what strlen
188 * would return. This is important and lots of code elsewhere
189 * in the kernel assumes this behavior.
191 * This function can call vnop in file system if the parent vnode
192 * does not exist or when called for hardlinks via volfs path.
193 * If BUILDPATH_NO_FS_ENTER is set in flags, it only uses values present
194 * in the name cache and does not enter the file system.
196 * If BUILDPATH_CHECK_MOVED is set in flags, we return EAGAIN when
197 * we encounter ENOENT during path reconstruction. ENOENT means that
198 * one of the parents moved while we were building the path. The
199 * caller can special handle this case by calling build_path again.
201 * If BUILDPATH_VOLUME_RELATIVE is set in flags, we return path
202 * that is relative to the nearest mount point, i.e. do not
203 * cross over mount points during building the path.
205 * passed in vp must have a valid io_count reference
208 build_path(vnode_t first_vp
, char *buff
, int buflen
, int *outlen
, int flags
, vfs_context_t ctx
)
211 vnode_t vp_with_iocount
;
212 vnode_t proc_root_dir_vp
;
219 if (first_vp
== NULLVP
)
226 * Grab the process fd so we can evaluate fd_rdir.
228 if (vfs_context_proc(ctx
)->p_fd
)
229 proc_root_dir_vp
= vfs_context_proc(ctx
)->p_fd
->fd_rdir
;
231 proc_root_dir_vp
= NULL
;
233 vp_with_iocount
= NULLVP
;
237 end
= &buff
[buflen
-1];
241 * holding the NAME_CACHE_LOCK in shared mode is
242 * sufficient to stabilize both the vp->v_parent chain
243 * and the 'vp->v_mount->mnt_vnodecovered' chain
245 * if we need to drop this lock, we must first grab the v_id
246 * from the vnode we're currently working with... if that
247 * vnode doesn't already have an io_count reference (the vp
248 * passed in comes with one), we must grab a reference
249 * after we drop the NAME_CACHE_LOCK via vnode_getwithvid...
250 * deadlocks may result if you call vnode_get while holding
251 * the NAME_CACHE_LOCK... we lazily release the reference
252 * we pick up the next time we encounter a need to drop
253 * the NAME_CACHE_LOCK or before we return from this routine
255 NAME_CACHE_LOCK_SHARED();
258 * Check if this is the root of a file system.
260 while (vp
&& vp
->v_flag
& VROOT
) {
261 if (vp
->v_mount
== NULL
) {
265 if ((vp
->v_mount
->mnt_flag
& MNT_ROOTFS
) || (vp
== proc_root_dir_vp
)) {
267 * It's the root of the root file system, so it's
275 * This the root of the volume and the caller does not
276 * want to cross mount points. Therefore just return
277 * '/' as the relative path.
279 if (flags
& BUILDPATH_VOLUME_RELATIVE
) {
283 vp
= vp
->v_mount
->mnt_vnodecovered
;
288 while ((vp
!= NULLVP
) && (vp
->v_parent
!= vp
)) {
292 * For hardlinks the v_name may be stale, so if its OK
293 * to enter a file system, ask the file system for the
294 * name and parent (below).
296 fixhardlink
= (vp
->v_flag
& VISHARDLINK
) &&
297 (vp
->v_mount
->mnt_kern_flag
& MNTK_PATH_FROM_ID
) &&
298 !(flags
& BUILDPATH_NO_FS_ENTER
);
303 if (str
== NULL
|| *str
== '\0') {
304 if (vp
->v_parent
!= NULL
)
312 * Check that there's enough space (including space for the '/')
314 if ((end
- buff
) < (len
+ 1)) {
319 * Copy the name backwards.
323 for (; len
> 0; len
--)
326 * Add a path separator.
332 * Walk up the parent chain.
334 if (((vp
->v_parent
!= NULLVP
) && !fixhardlink
) ||
335 (flags
& BUILDPATH_NO_FS_ENTER
)) {
338 * In this if () block we are not allowed to enter the filesystem
339 * to conclusively get the most accurate parent identifier.
340 * As a result, if 'vp' does not identify '/' and it
341 * does not have a valid v_parent, then error out
342 * and disallow further path construction
344 if ((vp
->v_parent
== NULLVP
) && (rootvnode
!= vp
)) {
346 * Only '/' is allowed to have a NULL parent
347 * pointer. Upper level callers should ideally
348 * re-drive name lookup on receiving a ENOENT.
352 /* The code below will exit early if 'tvp = vp' == NULL */
357 * if the vnode we have in hand isn't a directory and it
358 * has a v_parent, then we started with the resource fork
359 * so skip up to avoid getting a duplicate copy of the
360 * file name in the path.
362 if (vp
&& !vnode_isdir(vp
) && vp
->v_parent
) {
367 * No parent, go get it if supported.
369 struct vnode_attr va
;
373 * Make sure file system supports obtaining a path from id.
375 if (!(vp
->v_mount
->mnt_kern_flag
& MNTK_PATH_FROM_ID
)) {
383 if (vp
!= first_vp
&& vp
!= vp_with_iocount
) {
384 if (vp_with_iocount
) {
385 vnode_put(vp_with_iocount
);
386 vp_with_iocount
= NULLVP
;
388 if (vnode_getwithvid(vp
, vid
))
390 vp_with_iocount
= vp
;
393 VATTR_WANTED(&va
, va_parentid
);
396 VATTR_WANTED(&va
, va_name
);
397 MALLOC_ZONE(va
.va_name
, caddr_t
, MAXPATHLEN
, M_NAMEI
, M_WAITOK
);
402 * Ask the file system for its parent id and for its name (optional).
404 ret
= vnode_getattr(vp
, &va
, ctx
);
407 if ((ret
== 0) && (VATTR_IS_SUPPORTED(&va
, va_name
))) {
409 vnode_update_identity(vp
, NULL
, str
, strlen(str
), 0, VNODE_UPDATE_NAME
);
410 } else if (vp
->v_name
) {
420 * Check that there's enough space.
422 if ((end
- buff
) < (len
+ 1)) {
425 /* Copy the name backwards. */
428 for (; len
> 0; len
--) {
432 * Add a path separator.
437 FREE_ZONE(va
.va_name
, MAXPATHLEN
, M_NAMEI
);
439 if (ret
|| !VATTR_IS_SUPPORTED(&va
, va_parentid
)) {
444 * Ask the file system for the parent vnode.
446 if ((ret
= VFS_VGET(vp
->v_mount
, (ino64_t
)va
.va_parentid
, &dvp
, ctx
)))
449 if (!fixhardlink
&& (vp
->v_parent
!= dvp
))
450 vnode_update_identity(vp
, dvp
, NULL
, 0, 0, VNODE_UPDATE_PARENT
);
453 vnode_put(vp_with_iocount
);
455 vp_with_iocount
= vp
;
457 NAME_CACHE_LOCK_SHARED();
460 * if the vnode we have in hand isn't a directory and it
461 * has a v_parent, then we started with the resource fork
462 * so skip up to avoid getting a duplicate copy of the
463 * file name in the path.
465 if (vp
&& !vnode_isdir(vp
) && vp
->v_parent
)
470 * When a mount point is crossed switch the vp.
471 * Continue until we find the root or we find
472 * a vnode that's not the root of a mounted
478 if (tvp
== proc_root_dir_vp
)
479 goto out_unlock
; /* encountered the root */
481 if (!(tvp
->v_flag
& VROOT
) || !tvp
->v_mount
)
482 break; /* not the root of a mounted FS */
484 if (flags
& BUILDPATH_VOLUME_RELATIVE
) {
485 /* Do not cross over mount points */
488 tvp
= tvp
->v_mount
->mnt_vnodecovered
;
495 if (vp
&& (flags
& BUILDPATH_CHECKACCESS
)) {
500 if (vp
!= first_vp
&& vp
!= vp_with_iocount
) {
501 if (vp_with_iocount
) {
502 vnode_put(vp_with_iocount
);
503 vp_with_iocount
= NULLVP
;
505 if (vnode_getwithvid(vp
, vid
))
507 vp_with_iocount
= vp
;
509 if ((ret
= vnode_authorize(vp
, NULL
, KAUTH_VNODE_SEARCH
, ctx
)))
510 goto out
; /* no peeking */
512 NAME_CACHE_LOCK_SHARED();
519 vnode_put(vp_with_iocount
);
521 * Slide the name down to the beginning of the buffer.
523 memmove(buff
, end
, &buff
[buflen
] - end
);
526 * length includes the trailing zero byte
528 *outlen
= &buff
[buflen
] - end
;
530 /* One of the parents was moved during path reconstruction.
531 * The caller is interested in knowing whether any of the
532 * parents moved via BUILDPATH_CHECK_MOVED, so return EAGAIN.
534 if ((ret
== ENOENT
) && (flags
& BUILDPATH_CHECK_MOVED
)) {
543 * return NULLVP if vp's parent doesn't
544 * exist, or we can't get a valid iocount
545 * else return the parent of vp
548 vnode_getparent(vnode_t vp
)
550 vnode_t pvp
= NULLVP
;
553 NAME_CACHE_LOCK_SHARED();
555 * v_parent is stable behind the name_cache lock
556 * however, the only thing we can really guarantee
557 * is that we've grabbed a valid iocount on the
558 * parent of 'vp' at the time we took the name_cache lock...
559 * once we drop the lock, vp could get re-parented
561 if ( (pvp
= vp
->v_parent
) != NULLVP
) {
566 if (vnode_getwithvid(pvp
, pvid
) != 0)
574 vnode_getname(vnode_t vp
)
576 const char *name
= NULL
;
578 NAME_CACHE_LOCK_SHARED();
581 name
= vfs_addname(vp
->v_name
, strlen(vp
->v_name
), 0, 0);
588 vnode_putname(const char *name
)
590 vfs_removename(name
);
593 static const char unknown_vnodename
[] = "(unknown vnode name)";
596 vnode_getname_printable(vnode_t vp
)
598 const char *name
= vnode_getname(vp
);
602 switch (vp
->v_type
) {
607 * Create an artificial dev name from
608 * major and minor device number
611 (void) snprintf(dev_name
, sizeof(dev_name
),
612 "%c(%u, %u)", VCHR
== vp
->v_type
? 'c':'b',
613 major(vp
->v_rdev
), minor(vp
->v_rdev
));
615 * Add the newly created dev name to the name
616 * cache to allow easier cleanup. Also,
617 * vfs_addname allocates memory for the new name
620 NAME_CACHE_LOCK_SHARED();
621 name
= vfs_addname(dev_name
, strlen(dev_name
), 0, 0);
626 return unknown_vnodename
;
631 vnode_putname_printable(const char *name
)
633 if (name
== unknown_vnodename
)
640 * if VNODE_UPDATE_PARENT, and we can take
641 * a reference on dvp, then update vp with
642 * it's new parent... if vp already has a parent,
643 * then drop the reference vp held on it
645 * if VNODE_UPDATE_NAME,
646 * then drop string ref on v_name if it exists, and if name is non-NULL
647 * then pick up a string reference on name and record it in v_name...
648 * optionally pass in the length and hashval of name if known
650 * if VNODE_UPDATE_CACHE, flush the name cache entries associated with vp
653 vnode_update_identity(vnode_t vp
, vnode_t dvp
, const char *name
, int name_len
, uint32_t name_hashval
, int flags
)
655 struct namecache
*ncp
;
656 vnode_t old_parentvp
= NULLVP
;
658 int isstream
= (vp
->v_flag
& VISNAMEDSTREAM
);
659 int kusecountbumped
= 0;
661 kauth_cred_t tcred
= NULL
;
662 const char *vname
= NULL
;
663 const char *tname
= NULL
;
665 if (flags
& VNODE_UPDATE_PARENT
) {
666 if (dvp
&& vnode_ref(dvp
) != 0) {
670 /* Don't count a stream's parent ref during unmounts */
671 if (isstream
&& dvp
&& (dvp
!= vp
) && (dvp
!= vp
->v_parent
) && (dvp
->v_type
== VREG
)) {
672 vnode_lock_spin(dvp
);
681 if ( (flags
& VNODE_UPDATE_NAME
) ) {
682 if (name
!= vp
->v_name
) {
685 name_len
= strlen(name
);
686 tname
= vfs_addname(name
, name_len
, name_hashval
, 0);
689 flags
&= ~VNODE_UPDATE_NAME
;
691 if ( (flags
& (VNODE_UPDATE_PURGE
| VNODE_UPDATE_PARENT
| VNODE_UPDATE_CACHE
| VNODE_UPDATE_NAME
)) ) {
695 if ( (flags
& VNODE_UPDATE_PURGE
) ) {
698 vp
->v_parent
->v_nc_generation
++;
700 while ( (ncp
= LIST_FIRST(&vp
->v_nclinks
)) )
701 cache_delete(ncp
, 1);
703 while ( (ncp
= LIST_FIRST(&vp
->v_ncchildren
)) )
704 cache_delete(ncp
, 1);
707 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
711 vp
->v_authorized_actions
= 0;
713 if ( (flags
& VNODE_UPDATE_NAME
) ) {
717 if (flags
& VNODE_UPDATE_PARENT
) {
718 if (dvp
!= vp
&& dvp
!= vp
->v_parent
) {
719 old_parentvp
= vp
->v_parent
;
724 flags
|= VNODE_UPDATE_CACHE
;
727 if (flags
& VNODE_UPDATE_CACHE
) {
728 while ( (ncp
= LIST_FIRST(&vp
->v_nclinks
)) )
729 cache_delete(ncp
, 1);
734 vfs_removename(vname
);
736 if (IS_VALID_CRED(tcred
))
737 kauth_cred_unref(&tcred
);
741 /* Back-out the ref we took if we lost a race for vp->v_parent. */
742 if (kusecountbumped
) {
743 vnode_lock_spin(dvp
);
744 if (dvp
->v_kusecount
> 0)
756 vnode_lock_spin(old_parentvp
);
757 if ((old_parentvp
->v_type
!= VDIR
) && (old_parentvp
->v_kusecount
> 0))
758 --old_parentvp
->v_kusecount
;
759 vnode_unlock(old_parentvp
);
762 ut
= get_bsdthread_info(current_thread());
765 * indicated to vnode_rele that it shouldn't do a
766 * vnode_reclaim at this time... instead it will
767 * chain the vnode to the uu_vreclaims list...
768 * we'll be responsible for calling vnode_reclaim
769 * on each of the vnodes in this list...
771 ut
->uu_defer_reclaims
= 1;
772 ut
->uu_vreclaims
= NULLVP
;
774 while ( (vp
= old_parentvp
) != NULLVP
) {
777 vnode_rele_internal(vp
, 0, 0, 1);
780 * check to see if the vnode is now in the state
781 * that would have triggered a vnode_reclaim in vnode_rele
782 * if it is, we save it's parent pointer and then NULL
783 * out the v_parent field... we'll drop the reference
784 * that was held on the next iteration of this loop...
785 * this short circuits a potential deep recursion if we
786 * have a long chain of parents in this state...
787 * we'll sit in this loop until we run into
788 * a parent in this chain that is not in this state
790 * make our check and the vnode_rele atomic
791 * with respect to the current vnode we're working on
792 * by holding the vnode lock
793 * if vnode_rele deferred the vnode_reclaim and has put
794 * this vnode on the list to be reaped by us, than
795 * it has left this vnode with an iocount == 1
797 if ( (vp
->v_iocount
== 1) && (vp
->v_usecount
== 0) &&
798 ((vp
->v_lflag
& (VL_MARKTERM
| VL_TERMINATE
| VL_DEAD
)) == VL_MARKTERM
)) {
800 * vnode_rele wanted to do a vnode_reclaim on this vnode
801 * it should be sitting on the head of the uu_vreclaims chain
802 * pull the parent pointer now so that when we do the
803 * vnode_reclaim for each of the vnodes in the uu_vreclaims
804 * list, we won't recurse back through here
806 * need to do a convert here in case vnode_rele_internal
807 * returns with the lock held in the spin mode... it
808 * can drop and retake the lock under certain circumstances
810 vnode_lock_convert(vp
);
813 old_parentvp
= vp
->v_parent
;
814 vp
->v_parent
= NULLVP
;
818 * we're done... we ran into a vnode that isn't
821 old_parentvp
= NULLVP
;
825 ut
->uu_defer_reclaims
= 0;
827 while ( (vp
= ut
->uu_vreclaims
) != NULLVP
) {
828 ut
->uu_vreclaims
= vp
->v_defer_reclaimlist
;
831 * vnode_put will drive the vnode_reclaim if
832 * we are still the only reference on this vnode
841 * Mark a vnode as having multiple hard links. HFS makes use of this
842 * because it keeps track of each link separately, and wants to know
843 * which link was actually used.
845 * This will cause the name cache to force a VNOP_LOOKUP on the vnode
846 * so that HFS can post-process the lookup. Also, volfs will call
847 * VNOP_GETATTR2 to determine the parent, instead of using v_parent.
849 void vnode_setmultipath(vnode_t vp
)
854 * In theory, we're changing the vnode's identity as far as the
855 * name cache is concerned, so we ought to grab the name cache lock
856 * here. However, there is already a race, and grabbing the name
857 * cache lock only makes the race window slightly smaller.
859 * The race happens because the vnode already exists in the name
860 * cache, and could be found by one thread before another thread
861 * can set the hard link flag.
864 vp
->v_flag
|= VISHARDLINK
;
872 * backwards compatibility
874 void vnode_uncache_credentials(vnode_t vp
)
876 vnode_uncache_authorized_action(vp
, KAUTH_INVALIDATE_CACHED_RIGHTS
);
881 * use the exclusive form of NAME_CACHE_LOCK to protect the update of the
882 * following fields in the vnode: v_cred_timestamp, v_cred, v_authorized_actions
883 * we use this lock so that we can look at the v_cred and v_authorized_actions
884 * atomically while behind the NAME_CACHE_LOCK in shared mode in 'cache_lookup_path',
885 * which is the super-hot path... if we are updating the authorized actions for this
886 * vnode, we are already in the super-slow and far less frequented path so its not
887 * that bad that we take the lock exclusive for this case... of course we strive
888 * to hold it for the minimum amount of time possible
891 void vnode_uncache_authorized_action(vnode_t vp
, kauth_action_t action
)
893 kauth_cred_t tcred
= NOCRED
;
897 vp
->v_authorized_actions
&= ~action
;
899 if (action
== KAUTH_INVALIDATE_CACHED_RIGHTS
&&
900 IS_VALID_CRED(vp
->v_cred
)) {
902 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
910 kauth_cred_unref(&tcred
);
914 extern int bootarg_vnode_cache_defeat
; /* default = 0, from bsd_init.c */
917 vnode_cache_is_authorized(vnode_t vp
, vfs_context_t ctx
, kauth_action_t action
)
920 boolean_t retval
= FALSE
;
922 /* Boot argument to defeat rights caching */
923 if (bootarg_vnode_cache_defeat
)
926 if ( (vp
->v_mount
->mnt_kern_flag
& (MNTK_AUTH_OPAQUE
| MNTK_AUTH_CACHE_TTL
)) ) {
928 * a TTL is enabled on the rights cache... handle it here
929 * a TTL of 0 indicates that no rights should be cached
931 if (vp
->v_mount
->mnt_authcache_ttl
) {
932 if ( !(vp
->v_mount
->mnt_kern_flag
& MNTK_AUTH_CACHE_TTL
) ) {
934 * For filesystems marked only MNTK_AUTH_OPAQUE (generally network ones),
935 * we will only allow a SEARCH right on a directory to be cached...
936 * that cached right always has a default TTL associated with it
938 if (action
!= KAUTH_VNODE_SEARCH
|| vp
->v_type
!= VDIR
)
941 if (vp
!= NULLVP
&& vnode_cache_is_stale(vp
) == TRUE
) {
942 vnode_uncache_authorized_action(vp
, vp
->v_authorized_actions
);
949 ucred
= vfs_context_ucred(ctx
);
951 NAME_CACHE_LOCK_SHARED();
953 if (vp
->v_cred
== ucred
&& (vp
->v_authorized_actions
& action
) == action
)
962 void vnode_cache_authorized_action(vnode_t vp
, vfs_context_t ctx
, kauth_action_t action
)
964 kauth_cred_t tcred
= NOCRED
;
967 boolean_t ttl_active
= FALSE
;
969 ucred
= vfs_context_ucred(ctx
);
971 if (!IS_VALID_CRED(ucred
) || action
== 0)
974 if ( (vp
->v_mount
->mnt_kern_flag
& (MNTK_AUTH_OPAQUE
| MNTK_AUTH_CACHE_TTL
)) ) {
976 * a TTL is enabled on the rights cache... handle it here
977 * a TTL of 0 indicates that no rights should be cached
979 if (vp
->v_mount
->mnt_authcache_ttl
== 0)
982 if ( !(vp
->v_mount
->mnt_kern_flag
& MNTK_AUTH_CACHE_TTL
) ) {
984 * only cache SEARCH action for filesystems marked
985 * MNTK_AUTH_OPAQUE on VDIRs...
986 * the lookup_path code will time these out
988 if ( (action
& ~KAUTH_VNODE_SEARCH
) || vp
->v_type
!= VDIR
)
997 if (vp
->v_cred
!= ucred
) {
998 kauth_cred_ref(ucred
);
1000 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
1004 vp
->v_authorized_actions
= 0;
1006 if (ttl_active
== TRUE
&& vp
->v_authorized_actions
== 0) {
1008 * only reset the timestamnp on the
1009 * first authorization cached after the previous
1010 * timer has expired or we're switching creds...
1011 * 'vnode_cache_is_authorized' will clear the
1012 * authorized actions if the TTL is active and
1015 vp
->v_cred_timestamp
= tv
.tv_sec
;
1017 vp
->v_authorized_actions
|= action
;
1019 NAME_CACHE_UNLOCK();
1021 if (IS_VALID_CRED(tcred
))
1022 kauth_cred_unref(&tcred
);
1026 boolean_t
vnode_cache_is_stale(vnode_t vp
)
1033 if ((tv
.tv_sec
- vp
->v_cred_timestamp
) > vp
->v_mount
->mnt_authcache_ttl
)
1044 * Returns: 0 Success
1045 * ERECYCLE vnode was recycled from underneath us. Force lookup to be re-driven from namei.
1046 * This errno value should not be seen by anyone outside of the kernel.
1049 cache_lookup_path(struct nameidata
*ndp
, struct componentname
*cnp
, vnode_t dp
,
1050 vfs_context_t ctx
, int *dp_authorized
, vnode_t last_dp
)
1052 char *cp
; /* pointer into pathname argument */
1054 int vvid
= 0; /* protected by vp != NULLVP */
1055 vnode_t vp
= NULLVP
;
1056 vnode_t tdp
= NULLVP
;
1058 boolean_t ttl_enabled
= FALSE
;
1066 #endif /* CONFIG_TRIGGERS */
1068 ucred
= vfs_context_ucred(ctx
);
1069 ndp
->ni_flag
&= ~(NAMEI_TRAILINGSLASH
);
1071 NAME_CACHE_LOCK_SHARED();
1073 if ( dp
->v_mount
&& (dp
->v_mount
->mnt_kern_flag
& (MNTK_AUTH_OPAQUE
| MNTK_AUTH_CACHE_TTL
)) ) {
1079 * Search a directory.
1081 * The cn_hash value is for use by cache_lookup
1082 * The last component of the filename is left accessible via
1083 * cnp->cn_nameptr for callers that need the name.
1086 cp
= cnp
->cn_nameptr
;
1088 while (*cp
&& (*cp
!= '/')) {
1089 hash
= crc32tab
[((hash
>> 24) ^ (unsigned char)*cp
++)] ^ hash
<< 8;
1092 * the crc generator can legitimately generate
1093 * a 0... however, 0 for us means that we
1094 * haven't computed a hash, so use 1 instead
1098 cnp
->cn_hash
= hash
;
1099 cnp
->cn_namelen
= cp
- cnp
->cn_nameptr
;
1101 ndp
->ni_pathlen
-= cnp
->cn_namelen
;
1105 * Replace multiple slashes by a single slash and trailing slashes
1106 * by a null. This must be done before VNOP_LOOKUP() because some
1107 * fs's don't know about trailing slashes. Remember if there were
1108 * trailing slashes to handle symlinks, existing non-directories
1109 * and non-existing files that won't be directories specially later.
1111 while (*cp
== '/' && (cp
[1] == '/' || cp
[1] == '\0')) {
1116 ndp
->ni_flag
|= NAMEI_TRAILINGSLASH
;
1117 *ndp
->ni_next
= '\0';
1122 cnp
->cn_flags
&= ~(MAKEENTRY
| ISLASTCN
| ISDOTDOT
);
1125 cnp
->cn_flags
|= ISLASTCN
;
1127 if (cnp
->cn_namelen
== 2 && cnp
->cn_nameptr
[1] == '.' && cnp
->cn_nameptr
[0] == '.')
1128 cnp
->cn_flags
|= ISDOTDOT
;
1133 * Process a request for a file's resource fork.
1135 * Consume the _PATH_RSRCFORKSPEC suffix and tag the path.
1137 if ((ndp
->ni_pathlen
== sizeof(_PATH_RSRCFORKSPEC
)) &&
1138 (cp
[1] == '.' && cp
[2] == '.') &&
1139 bcmp(cp
, _PATH_RSRCFORKSPEC
, sizeof(_PATH_RSRCFORKSPEC
)) == 0) {
1140 /* Skip volfs file systems that don't support native streams. */
1141 if ((dp
->v_mount
!= NULL
) &&
1142 (dp
->v_mount
->mnt_flag
& MNT_DOVOLFS
) &&
1143 (dp
->v_mount
->mnt_kern_flag
& MNTK_NAMED_STREAMS
) == 0) {
1146 cnp
->cn_flags
|= CN_WANTSRSRCFORK
;
1147 cnp
->cn_flags
|= ISLASTCN
;
1148 ndp
->ni_next
[0] = '\0';
1149 ndp
->ni_pathlen
= 1;
1157 * Name cache provides authorization caching (see below)
1158 * that will short circuit MAC checks in lookup().
1159 * We must perform MAC check here. On denial
1160 * dp_authorized will remain 0 and second check will
1161 * be perfomed in lookup().
1163 if (!(cnp
->cn_flags
& DONOTAUTH
)) {
1164 error
= mac_vnode_check_lookup(ctx
, dp
, cnp
);
1166 NAME_CACHE_UNLOCK();
1171 if (ttl_enabled
&& ((tv
.tv_sec
- dp
->v_cred_timestamp
) > dp
->v_mount
->mnt_authcache_ttl
))
1175 * NAME_CACHE_LOCK holds these fields stable
1177 if ((dp
->v_cred
!= ucred
|| !(dp
->v_authorized_actions
& KAUTH_VNODE_SEARCH
)) &&
1178 !(dp
->v_authorized_actions
& KAUTH_VNODE_SEARCHBYANYONE
))
1182 * indicate that we're allowed to traverse this directory...
1183 * even if we fail the cache lookup or decide to bail for
1184 * some other reason, this information is valid and is used
1185 * to avoid doing a vnode_authorize before the call to VNOP_LOOKUP
1189 if ( (cnp
->cn_flags
& (ISLASTCN
| ISDOTDOT
)) ) {
1190 if (cnp
->cn_nameiop
!= LOOKUP
)
1192 if (cnp
->cn_flags
& LOCKPARENT
)
1194 if (cnp
->cn_flags
& NOCACHE
)
1196 if (cnp
->cn_flags
& ISDOTDOT
) {
1198 * Force directory hardlinks to go to
1199 * file system for ".." requests.
1201 if (dp
&& (dp
->v_flag
& VISHARDLINK
)) {
1205 * Quit here only if we can't use
1206 * the parent directory pointer or
1207 * don't have one. Otherwise, we'll
1210 if ((dp
->v_flag
& VROOT
) ||
1211 dp
== ndp
->ni_rootdir
||
1212 dp
->v_parent
== NULLVP
)
1217 if ((cnp
->cn_flags
& CN_SKIPNAMECACHE
)) {
1219 * Force lookup to go to the filesystem with
1220 * all cnp fields set up.
1226 * "." and ".." aren't supposed to be cached, so check
1227 * for them before checking the cache.
1229 if (cnp
->cn_namelen
== 1 && cnp
->cn_nameptr
[0] == '.')
1231 else if ( (cnp
->cn_flags
& ISDOTDOT
) )
1234 if ( (vp
= cache_lookup_locked(dp
, cnp
)) == NULLVP
)
1237 if ( (vp
->v_flag
& VISHARDLINK
) ) {
1239 * The file system wants a VNOP_LOOKUP on this vnode
1245 if ( (cnp
->cn_flags
& ISLASTCN
) )
1248 if (vp
->v_type
!= VDIR
) {
1249 if (vp
->v_type
!= VLNK
)
1254 if ( (mp
= vp
->v_mountedhere
) && ((cnp
->cn_flags
& NOCROSSMOUNT
) == 0)) {
1256 if (mp
->mnt_realrootvp
== NULLVP
|| mp
->mnt_generation
!= mount_generation
||
1257 mp
->mnt_realrootvp_vid
!= mp
->mnt_realrootvp
->v_id
)
1259 vp
= mp
->mnt_realrootvp
;
1264 * After traversing all mountpoints stacked here, if we have a
1265 * trigger in hand, resolve it. Note that we don't need to
1266 * leave the fast path if the mount has already happened.
1268 if ((vp
->v_resolve
!= NULL
) &&
1269 (vp
->v_resolve
->vr_resolve_func
!= NULL
)) {
1272 #endif /* CONFIG_TRIGGERS */
1278 cnp
->cn_nameptr
= ndp
->ni_next
+ 1;
1280 while (*cnp
->cn_nameptr
== '/') {
1289 NAME_CACHE_UNLOCK();
1291 if ((vp
!= NULLVP
) && (vp
->v_type
!= VLNK
) &&
1292 ((cnp
->cn_flags
& (ISLASTCN
| LOCKPARENT
| WANTPARENT
| SAVESTART
)) == ISLASTCN
)) {
1294 * if we've got a child and it's the last component, and
1295 * the lookup doesn't need to return the parent then we
1296 * can skip grabbing an iocount on the parent, since all
1297 * we're going to do with it is a vnode_put just before
1298 * we return from 'lookup'. If it's a symbolic link,
1299 * we need the parent in case the link happens to be
1300 * a relative pathname.
1307 * return the last directory we looked at
1308 * with an io reference held. If it was the one passed
1309 * in as a result of the last iteration of VNOP_LOOKUP,
1310 * it should already hold an io ref. No need to increase ref.
1314 if (dp
== ndp
->ni_usedvp
) {
1316 * if this vnode matches the one passed in via USEDVP
1317 * than this context already holds an io_count... just
1318 * use vnode_get to get an extra ref for lookup to play
1319 * with... can't use the getwithvid variant here because
1320 * it will block behind a vnode_drain which would result
1321 * in a deadlock (since we already own an io_count that the
1322 * vnode_drain is waiting on)... vnode_get grabs the io_count
1323 * immediately w/o waiting... it always succeeds
1326 } else if ((error
= vnode_getwithvid_drainok(dp
, vid
))) {
1328 * failure indicates the vnode
1329 * changed identity or is being
1330 * TERMINATED... in either case
1333 * don't necessarily return ENOENT, though, because
1334 * we really want to go back to disk and make sure it's
1335 * there or not if someone else is changing this
1336 * vnode. That being said, the one case where we do want
1337 * to return ENOENT is when the vnode's mount point is
1338 * in the process of unmounting and we might cause a deadlock
1339 * in our attempt to take an iocount. An ENODEV error return
1340 * is from vnode_get* is an indication this but we change that
1341 * ENOENT for upper layers.
1343 if (error
== ENODEV
) {
1353 if ( (vnode_getwithvid_drainok(vp
, vvid
)) ) {
1357 * can't get reference on the vp we'd like
1358 * to return... if we didn't grab a reference
1359 * on the directory (due to fast path bypass),
1360 * then we need to do it now... we can't return
1361 * with both ni_dvp and ni_vp NULL, and no
1375 trigger_vp
= vp
? vp
: dp
;
1376 if ((error
== 0) && (trigger_vp
!= NULLVP
) && vnode_isdir(trigger_vp
)) {
1377 error
= vnode_trigger_resolve(trigger_vp
, ndp
, ctx
);
1386 #endif /* CONFIG_TRIGGERS */
1390 * If we came into cache_lookup_path after an iteration of the lookup loop that
1391 * resulted in a call to VNOP_LOOKUP, then VNOP_LOOKUP returned a vnode with a io ref
1392 * on it. It is now the job of cache_lookup_path to drop the ref on this vnode
1393 * when it is no longer needed. If we get to this point, and last_dp is not NULL
1394 * and it is ALSO not the dvp we want to return to caller of this function, it MUST be
1395 * the case that we got to a subsequent path component and this previous vnode is
1396 * no longer needed. We can then drop the io ref on it.
1398 if ((last_dp
!= NULLVP
) && (last_dp
!= ndp
->ni_dvp
)){
1402 //initialized to 0, should be the same if no error cases occurred.
1408 cache_lookup_locked(vnode_t dvp
, struct componentname
*cnp
)
1410 struct namecache
*ncp
;
1411 struct nchashhead
*ncpp
;
1412 long namelen
= cnp
->cn_namelen
;
1413 unsigned int hashval
= cnp
->cn_hash
;
1419 ncpp
= NCHHASH(dvp
, cnp
->cn_hash
);
1420 LIST_FOREACH(ncp
, ncpp
, nc_hash
) {
1421 if ((ncp
->nc_dvp
== dvp
) && (ncp
->nc_hashval
== hashval
)) {
1422 if (memcmp(ncp
->nc_name
, cnp
->cn_nameptr
, namelen
) == 0 && ncp
->nc_name
[namelen
] == 0)
1428 * We failed to find an entry
1433 NCHSTAT(ncs_goodhits
);
1435 return (ncp
->nc_vp
);
1439 unsigned int hash_string(const char *cp
, int len
);
1441 // Have to take a len argument because we may only need to
1442 // hash part of a componentname.
1445 hash_string(const char *cp
, int len
)
1451 hash
= crc32tab
[((hash
>> 24) ^ (unsigned char)*cp
++)] ^ hash
<< 8;
1454 while (*cp
!= '\0') {
1455 hash
= crc32tab
[((hash
>> 24) ^ (unsigned char)*cp
++)] ^ hash
<< 8;
1459 * the crc generator can legitimately generate
1460 * a 0... however, 0 for us means that we
1461 * haven't computed a hash, so use 1 instead
1470 * Lookup an entry in the cache
1472 * We don't do this if the segment name is long, simply so the cache
1473 * can avoid holding long names (which would either waste space, or
1474 * add greatly to the complexity).
1476 * Lookup is called with dvp pointing to the directory to search,
1477 * cnp pointing to the name of the entry being sought. If the lookup
1478 * succeeds, the vnode is returned in *vpp, and a status of -1 is
1479 * returned. If the lookup determines that the name does not exist
1480 * (negative cacheing), a status of ENOENT is returned. If the lookup
1481 * fails, a status of zero is returned.
1485 cache_lookup(struct vnode
*dvp
, struct vnode
**vpp
, struct componentname
*cnp
)
1487 struct namecache
*ncp
;
1488 struct nchashhead
*ncpp
;
1489 long namelen
= cnp
->cn_namelen
;
1490 unsigned int hashval
;
1491 boolean_t have_exclusive
= FALSE
;
1495 if (cnp
->cn_hash
== 0)
1496 cnp
->cn_hash
= hash_string(cnp
->cn_nameptr
, cnp
->cn_namelen
);
1497 hashval
= cnp
->cn_hash
;
1503 NAME_CACHE_LOCK_SHARED();
1506 ncpp
= NCHHASH(dvp
, cnp
->cn_hash
);
1507 LIST_FOREACH(ncp
, ncpp
, nc_hash
) {
1508 if ((ncp
->nc_dvp
== dvp
) && (ncp
->nc_hashval
== hashval
)) {
1509 if (memcmp(ncp
->nc_name
, cnp
->cn_nameptr
, namelen
) == 0 && ncp
->nc_name
[namelen
] == 0)
1513 /* We failed to find an entry */
1516 NAME_CACHE_UNLOCK();
1520 /* We don't want to have an entry, so dump it */
1521 if ((cnp
->cn_flags
& MAKEENTRY
) == 0) {
1522 if (have_exclusive
== TRUE
) {
1523 NCHSTAT(ncs_badhits
);
1524 cache_delete(ncp
, 1);
1525 NAME_CACHE_UNLOCK();
1528 NAME_CACHE_UNLOCK();
1530 have_exclusive
= TRUE
;
1535 /* We found a "positive" match, return the vnode */
1537 NCHSTAT(ncs_goodhits
);
1540 NAME_CACHE_UNLOCK();
1542 if (vnode_getwithvid(vp
, vid
)) {
1545 NCHSTAT(ncs_badvid
);
1546 NAME_CACHE_UNLOCK();
1554 /* We found a negative match, and want to create it, so purge */
1555 if (cnp
->cn_nameiop
== CREATE
|| cnp
->cn_nameiop
== RENAME
) {
1556 if (have_exclusive
== TRUE
) {
1557 NCHSTAT(ncs_badhits
);
1558 cache_delete(ncp
, 1);
1559 NAME_CACHE_UNLOCK();
1562 NAME_CACHE_UNLOCK();
1564 have_exclusive
= TRUE
;
1569 * We found a "negative" match, ENOENT notifies client of this match.
1571 NCHSTAT(ncs_neghits
);
1573 NAME_CACHE_UNLOCK();
1578 cache_enter_create(vnode_t dvp
, vnode_t vp
, struct componentname
*cnp
)
1580 const char *strname
;
1582 if (cnp
->cn_hash
== 0)
1583 cnp
->cn_hash
= hash_string(cnp
->cn_nameptr
, cnp
->cn_namelen
);
1586 * grab 2 references on the string entered
1587 * one for the cache_enter_locked to consume
1588 * and the second to be consumed by v_name (vnode_create call point)
1590 strname
= add_name_internal(cnp
->cn_nameptr
, cnp
->cn_namelen
, cnp
->cn_hash
, TRUE
, 0);
1594 cache_enter_locked(dvp
, vp
, cnp
, strname
);
1596 NAME_CACHE_UNLOCK();
1603 * Add an entry to the cache...
1604 * but first check to see if the directory
1605 * that this entry is to be associated with has
1606 * had any cache_purges applied since we took
1607 * our identity snapshot... this check needs to
1608 * be done behind the name cache lock
1611 cache_enter_with_gen(struct vnode
*dvp
, struct vnode
*vp
, struct componentname
*cnp
, int gen
)
1614 if (cnp
->cn_hash
== 0)
1615 cnp
->cn_hash
= hash_string(cnp
->cn_nameptr
, cnp
->cn_namelen
);
1619 if (dvp
->v_nc_generation
== gen
)
1620 (void)cache_enter_locked(dvp
, vp
, cnp
, NULL
);
1622 NAME_CACHE_UNLOCK();
1627 * Add an entry to the cache.
1630 cache_enter(struct vnode
*dvp
, struct vnode
*vp
, struct componentname
*cnp
)
1632 const char *strname
;
1634 if (cnp
->cn_hash
== 0)
1635 cnp
->cn_hash
= hash_string(cnp
->cn_nameptr
, cnp
->cn_namelen
);
1638 * grab 1 reference on the string entered
1639 * for the cache_enter_locked to consume
1641 strname
= add_name_internal(cnp
->cn_nameptr
, cnp
->cn_namelen
, cnp
->cn_hash
, FALSE
, 0);
1645 cache_enter_locked(dvp
, vp
, cnp
, strname
);
1647 NAME_CACHE_UNLOCK();
1652 cache_enter_locked(struct vnode
*dvp
, struct vnode
*vp
, struct componentname
*cnp
, const char *strname
)
1654 struct namecache
*ncp
, *negp
;
1655 struct nchashhead
*ncpp
;
1661 * if the entry is for -ve caching vp is null
1663 if ((vp
!= NULLVP
) && (LIST_FIRST(&vp
->v_nclinks
))) {
1665 * someone beat us to the punch..
1666 * this vnode is already in the cache
1668 if (strname
!= NULL
)
1669 vfs_removename(strname
);
1673 * We allocate a new entry if we are less than the maximum
1674 * allowed and the one at the front of the list is in use.
1675 * Otherwise we use the one at the front of the list.
1677 if (numcache
< desiredNodes
&&
1678 ((ncp
= nchead
.tqh_first
) == NULL
||
1679 ncp
->nc_hash
.le_prev
!= 0)) {
1681 * Allocate one more entry
1683 ncp
= (struct namecache
*)_MALLOC_ZONE(sizeof(*ncp
), M_CACHE
, M_WAITOK
);
1687 * reuse an old entry
1689 ncp
= TAILQ_FIRST(&nchead
);
1690 TAILQ_REMOVE(&nchead
, ncp
, nc_entry
);
1692 if (ncp
->nc_hash
.le_prev
!= 0) {
1694 * still in use... we need to
1695 * delete it before re-using it
1697 NCHSTAT(ncs_stolen
);
1698 cache_delete(ncp
, 0);
1701 NCHSTAT(ncs_enters
);
1704 * Fill in cache info, if vp is NULL this is a "negative" cache entry.
1708 ncp
->nc_hashval
= cnp
->cn_hash
;
1710 if (strname
== NULL
)
1711 ncp
->nc_name
= add_name_internal(cnp
->cn_nameptr
, cnp
->cn_namelen
, cnp
->cn_hash
, FALSE
, 0);
1713 ncp
->nc_name
= strname
;
1715 * make us the newest entry in the cache
1716 * i.e. we'll be the last to be stolen
1718 TAILQ_INSERT_TAIL(&nchead
, ncp
, nc_entry
);
1720 ncpp
= NCHHASH(dvp
, cnp
->cn_hash
);
1723 struct namecache
*p
;
1725 for (p
= ncpp
->lh_first
; p
!= 0; p
= p
->nc_hash
.le_next
)
1727 panic("cache_enter: duplicate");
1731 * make us available to be found via lookup
1733 LIST_INSERT_HEAD(ncpp
, ncp
, nc_hash
);
1737 * add to the list of name cache entries
1740 LIST_INSERT_HEAD(&vp
->v_nclinks
, ncp
, nc_un
.nc_link
);
1743 * this is a negative cache entry (vp == NULL)
1744 * stick it on the negative cache list.
1746 TAILQ_INSERT_TAIL(&neghead
, ncp
, nc_un
.nc_negentry
);
1750 if (ncs_negtotal
> desiredNegNodes
) {
1752 * if we've reached our desired limit
1753 * of negative cache entries, delete
1756 negp
= TAILQ_FIRST(&neghead
);
1757 cache_delete(negp
, 1);
1761 * add us to the list of name cache entries that
1762 * are children of dvp
1764 LIST_INSERT_HEAD(&dvp
->v_ncchildren
, ncp
, nc_child
);
1769 * Initialize CRC-32 remainder table.
1771 static void init_crc32(void)
1774 * the CRC-32 generator polynomial is:
1775 * x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^10
1776 * + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
1778 unsigned int crc32_polynomial
= 0x04c11db7;
1782 * pre-calculate the CRC-32 remainder for each possible octet encoding
1784 for (i
= 0; i
< 256; i
++) {
1785 unsigned int crc_rem
= i
<< 24;
1787 for (j
= 0; j
< 8; j
++) {
1788 if (crc_rem
& 0x80000000)
1789 crc_rem
= (crc_rem
<< 1) ^ crc32_polynomial
;
1791 crc_rem
= (crc_rem
<< 1);
1793 crc32tab
[i
] = crc_rem
;
1799 * Name cache initialization, from vfs_init() when we are booting
1806 desiredNegNodes
= (desiredvnodes
/ 10);
1807 desiredNodes
= desiredvnodes
+ desiredNegNodes
;
1809 TAILQ_INIT(&nchead
);
1810 TAILQ_INIT(&neghead
);
1814 nchashtbl
= hashinit(MAX(CONFIG_NC_HASH
, (2 *desiredNodes
)), M_CACHE
, &nchash
);
1815 nchashmask
= nchash
;
1818 init_string_table();
1820 /* Allocate name cache lock group attribute and group */
1821 namecache_lck_grp_attr
= lck_grp_attr_alloc_init();
1823 namecache_lck_grp
= lck_grp_alloc_init("Name Cache", namecache_lck_grp_attr
);
1825 /* Allocate name cache lock attribute */
1826 namecache_lck_attr
= lck_attr_alloc_init();
1828 /* Allocate name cache lock */
1829 namecache_rw_lock
= lck_rw_alloc_init(namecache_lck_grp
, namecache_lck_attr
);
1832 /* Allocate string cache lock group attribute and group */
1833 strcache_lck_grp_attr
= lck_grp_attr_alloc_init();
1835 strcache_lck_grp
= lck_grp_alloc_init("String Cache", strcache_lck_grp_attr
);
1837 /* Allocate string cache lock attribute */
1838 strcache_lck_attr
= lck_attr_alloc_init();
1840 /* Allocate string cache lock */
1841 strtable_rw_lock
= lck_rw_alloc_init(strcache_lck_grp
, strcache_lck_attr
);
1843 for (i
= 0; i
< NUM_STRCACHE_LOCKS
; i
++)
1844 lck_mtx_init(&strcache_mtx_locks
[i
], strcache_lck_grp
, strcache_lck_attr
);
1848 name_cache_lock_shared(void)
1850 lck_rw_lock_shared(namecache_rw_lock
);
1854 name_cache_lock(void)
1856 lck_rw_lock_exclusive(namecache_rw_lock
);
1860 name_cache_unlock(void)
1862 lck_rw_done(namecache_rw_lock
);
1867 resize_namecache(u_int newsize
)
1869 struct nchashhead
*new_table
;
1870 struct nchashhead
*old_table
;
1871 struct nchashhead
*old_head
, *head
;
1872 struct namecache
*entry
, *next
;
1873 uint32_t i
, hashval
;
1874 int dNodes
, dNegNodes
;
1875 u_long new_size
, old_size
;
1877 dNegNodes
= (newsize
/ 10);
1878 dNodes
= newsize
+ dNegNodes
;
1880 // we don't support shrinking yet
1881 if (dNodes
<= desiredNodes
) {
1884 new_table
= hashinit(2 * dNodes
, M_CACHE
, &nchashmask
);
1885 new_size
= nchashmask
+ 1;
1887 if (new_table
== NULL
) {
1893 old_table
= nchashtbl
;
1894 nchashtbl
= new_table
;
1898 // walk the old table and insert all the entries into
1901 for(i
=0; i
< old_size
; i
++) {
1902 old_head
= &old_table
[i
];
1903 for (entry
=old_head
->lh_first
; entry
!= NULL
; entry
=next
) {
1905 // XXXdbg - Beware: this assumes that hash_string() does
1906 // the same thing as what happens in
1907 // lookup() over in vfs_lookup.c
1908 hashval
= hash_string(entry
->nc_name
, 0);
1909 entry
->nc_hashval
= hashval
;
1910 head
= NCHHASH(entry
->nc_dvp
, hashval
);
1912 next
= entry
->nc_hash
.le_next
;
1913 LIST_INSERT_HEAD(head
, entry
, nc_hash
);
1916 desiredNodes
= dNodes
;
1917 desiredNegNodes
= dNegNodes
;
1919 NAME_CACHE_UNLOCK();
1920 FREE(old_table
, M_CACHE
);
1926 cache_delete(struct namecache
*ncp
, int age_entry
)
1928 NCHSTAT(ncs_deletes
);
1931 LIST_REMOVE(ncp
, nc_un
.nc_link
);
1933 TAILQ_REMOVE(&neghead
, ncp
, nc_un
.nc_negentry
);
1936 LIST_REMOVE(ncp
, nc_child
);
1938 LIST_REMOVE(ncp
, nc_hash
);
1940 * this field is used to indicate
1941 * that the entry is in use and
1942 * must be deleted before it can
1945 ncp
->nc_hash
.le_prev
= NULL
;
1949 * make it the next one available
1950 * for cache_enter's use
1952 TAILQ_REMOVE(&nchead
, ncp
, nc_entry
);
1953 TAILQ_INSERT_HEAD(&nchead
, ncp
, nc_entry
);
1955 vfs_removename(ncp
->nc_name
);
1956 ncp
->nc_name
= NULL
;
1961 * purge the entry associated with the
1962 * specified vnode from the name cache
1965 cache_purge(vnode_t vp
)
1967 struct namecache
*ncp
;
1968 kauth_cred_t tcred
= NULL
;
1970 if ((LIST_FIRST(&vp
->v_nclinks
) == NULL
) &&
1971 (LIST_FIRST(&vp
->v_ncchildren
) == NULL
) &&
1972 (vp
->v_cred
== NOCRED
) &&
1973 (vp
->v_parent
== NULLVP
))
1979 vp
->v_parent
->v_nc_generation
++;
1981 while ( (ncp
= LIST_FIRST(&vp
->v_nclinks
)) )
1982 cache_delete(ncp
, 1);
1984 while ( (ncp
= LIST_FIRST(&vp
->v_ncchildren
)) )
1985 cache_delete(ncp
, 1);
1988 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
1991 vp
->v_cred
= NOCRED
;
1992 vp
->v_authorized_actions
= 0;
1994 NAME_CACHE_UNLOCK();
1996 if (IS_VALID_CRED(tcred
))
1997 kauth_cred_unref(&tcred
);
2001 * Purge all negative cache entries that are children of the
2002 * given vnode. A case-insensitive file system (or any file
2003 * system that has multiple equivalent names for the same
2004 * directory entry) can use this when creating or renaming
2005 * to remove negative entries that may no longer apply.
2008 cache_purge_negatives(vnode_t vp
)
2010 struct namecache
*ncp
, *next_ncp
;
2014 LIST_FOREACH_SAFE(ncp
, &vp
->v_ncchildren
, nc_child
, next_ncp
)
2015 if (ncp
->nc_vp
== NULL
)
2016 cache_delete(ncp
, 1);
2018 NAME_CACHE_UNLOCK();
2022 * Flush all entries referencing a particular filesystem.
2024 * Since we need to check it anyway, we will flush all the invalid
2025 * entries at the same time.
2028 cache_purgevfs(struct mount
*mp
)
2030 struct nchashhead
*ncpp
;
2031 struct namecache
*ncp
;
2034 /* Scan hash tables for applicable entries */
2035 for (ncpp
= &nchashtbl
[nchash
- 1]; ncpp
>= nchashtbl
; ncpp
--) {
2037 for (ncp
= ncpp
->lh_first
; ncp
!= 0; ncp
= ncp
->nc_hash
.le_next
) {
2038 if (ncp
->nc_dvp
->v_mount
== mp
) {
2039 cache_delete(ncp
, 0);
2044 NAME_CACHE_UNLOCK();
2050 // String ref routines
2052 static LIST_HEAD(stringhead
, string_t
) *string_ref_table
;
2053 static u_long string_table_mask
;
2054 static uint32_t filled_buckets
=0;
2057 typedef struct string_t
{
2058 LIST_ENTRY(string_t
) hash_chain
;
2065 resize_string_ref_table(void)
2067 struct stringhead
*new_table
;
2068 struct stringhead
*old_table
;
2069 struct stringhead
*old_head
, *head
;
2070 string_t
*entry
, *next
;
2071 uint32_t i
, hashval
;
2072 u_long new_mask
, old_mask
;
2075 * need to hold the table lock exclusively
2076 * in order to grow the table... need to recheck
2077 * the need to resize again after we've taken
2078 * the lock exclusively in case some other thread
2079 * beat us to the punch
2081 lck_rw_lock_exclusive(strtable_rw_lock
);
2083 if (4 * filled_buckets
< ((string_table_mask
+ 1) * 3)) {
2084 lck_rw_done(strtable_rw_lock
);
2087 new_table
= hashinit((string_table_mask
+ 1) * 2, M_CACHE
, &new_mask
);
2089 if (new_table
== NULL
) {
2090 printf("failed to resize the hash table.\n");
2091 lck_rw_done(strtable_rw_lock
);
2096 old_table
= string_ref_table
;
2097 string_ref_table
= new_table
;
2098 old_mask
= string_table_mask
;
2099 string_table_mask
= new_mask
;
2102 // walk the old table and insert all the entries into
2105 for (i
= 0; i
<= old_mask
; i
++) {
2106 old_head
= &old_table
[i
];
2107 for (entry
= old_head
->lh_first
; entry
!= NULL
; entry
= next
) {
2108 hashval
= hash_string((const char *)entry
->str
, 0);
2109 head
= &string_ref_table
[hashval
& string_table_mask
];
2110 if (head
->lh_first
== NULL
) {
2113 next
= entry
->hash_chain
.le_next
;
2114 LIST_INSERT_HEAD(head
, entry
, hash_chain
);
2117 lck_rw_done(strtable_rw_lock
);
2119 FREE(old_table
, M_CACHE
);
2124 init_string_table(void)
2126 string_ref_table
= hashinit(CONFIG_VFS_NAMES
, M_CACHE
, &string_table_mask
);
2131 vfs_addname(const char *name
, uint32_t len
, u_int hashval
, u_int flags
)
2133 return (add_name_internal(name
, len
, hashval
, FALSE
, flags
));
2138 add_name_internal(const char *name
, uint32_t len
, u_int hashval
, boolean_t need_extra_ref
, __unused u_int flags
)
2140 struct stringhead
*head
;
2142 uint32_t chain_len
= 0;
2143 uint32_t hash_index
;
2144 uint32_t lock_index
;
2148 * if the length already accounts for the null-byte, then
2149 * subtract one so later on we don't index past the end
2152 if (len
> 0 && name
[len
-1] == '\0') {
2156 hashval
= hash_string(name
, len
);
2160 * take this lock 'shared' to keep the hash stable
2161 * if someone else decides to grow the pool they
2162 * will take this lock exclusively
2164 lck_rw_lock_shared(strtable_rw_lock
);
2167 * If the table gets more than 3/4 full, resize it
2169 if (4 * filled_buckets
>= ((string_table_mask
+ 1) * 3)) {
2170 lck_rw_done(strtable_rw_lock
);
2172 resize_string_ref_table();
2174 lck_rw_lock_shared(strtable_rw_lock
);
2176 hash_index
= hashval
& string_table_mask
;
2177 lock_index
= hash_index
% NUM_STRCACHE_LOCKS
;
2179 head
= &string_ref_table
[hash_index
];
2181 lck_mtx_lock_spin(&strcache_mtx_locks
[lock_index
]);
2183 for (entry
= head
->lh_first
; entry
!= NULL
; chain_len
++, entry
= entry
->hash_chain
.le_next
) {
2184 if (memcmp(entry
->str
, name
, len
) == 0 && entry
->str
[len
] == 0) {
2189 if (entry
== NULL
) {
2190 lck_mtx_convert_spin(&strcache_mtx_locks
[lock_index
]);
2192 * it wasn't already there so add it.
2194 MALLOC(entry
, string_t
*, sizeof(string_t
) + len
+ 1, M_TEMP
, M_WAITOK
);
2196 if (head
->lh_first
== NULL
) {
2197 OSAddAtomic(1, &filled_buckets
);
2199 ptr
= (char *)((char *)entry
+ sizeof(string_t
));
2200 strncpy(ptr
, name
, len
);
2203 entry
->refcount
= 1;
2204 LIST_INSERT_HEAD(head
, entry
, hash_chain
);
2206 if (need_extra_ref
== TRUE
)
2209 lck_mtx_unlock(&strcache_mtx_locks
[lock_index
]);
2210 lck_rw_done(strtable_rw_lock
);
2212 return (const char *)entry
->str
;
2217 vfs_removename(const char *nameref
)
2219 struct stringhead
*head
;
2222 uint32_t hash_index
;
2223 uint32_t lock_index
;
2224 int retval
= ENOENT
;
2226 hashval
= hash_string(nameref
, 0);
2229 * take this lock 'shared' to keep the hash stable
2230 * if someone else decides to grow the pool they
2231 * will take this lock exclusively
2233 lck_rw_lock_shared(strtable_rw_lock
);
2235 * must compute the head behind the table lock
2236 * since the size and location of the table
2237 * can change on the fly
2239 hash_index
= hashval
& string_table_mask
;
2240 lock_index
= hash_index
% NUM_STRCACHE_LOCKS
;
2242 head
= &string_ref_table
[hash_index
];
2244 lck_mtx_lock_spin(&strcache_mtx_locks
[lock_index
]);
2246 for (entry
= head
->lh_first
; entry
!= NULL
; entry
= entry
->hash_chain
.le_next
) {
2247 if (entry
->str
== nameref
) {
2250 if (entry
->refcount
== 0) {
2251 LIST_REMOVE(entry
, hash_chain
);
2253 if (head
->lh_first
== NULL
) {
2254 OSAddAtomic(-1, &filled_buckets
);
2263 lck_mtx_unlock(&strcache_mtx_locks
[lock_index
]);
2264 lck_rw_done(strtable_rw_lock
);
2267 FREE(entry
, M_TEMP
);
2273 #ifdef DUMP_STRING_TABLE
2275 dump_string_table(void)
2277 struct stringhead
*head
;
2281 lck_rw_lock_shared(strtable_rw_lock
);
2283 for (i
= 0; i
<= string_table_mask
; i
++) {
2284 head
= &string_ref_table
[i
];
2285 for (entry
=head
->lh_first
; entry
!= NULL
; entry
=entry
->hash_chain
.le_next
) {
2286 printf("%6d - %s\n", entry
->refcount
, entry
->str
);
2289 lck_rw_done(strtable_rw_lock
);
2291 #endif /* DUMP_STRING_TABLE */