2 * Copyright (c) 2003-2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Here's what to do if you want to add a new routine to the comm page:
32 * 1. Add a definition for it's address in osfmk/i386/cpu_capabilities.h,
33 * being careful to reserve room for future expansion.
35 * 2. Write one or more versions of the routine, each with it's own
36 * commpage_descriptor. The tricky part is getting the "special",
37 * "musthave", and "canthave" fields right, so that exactly one
38 * version of the routine is selected for every machine.
39 * The source files should be in osfmk/i386/commpage/.
41 * 3. Add a ptr to your new commpage_descriptor(s) in the "routines"
42 * array in osfmk/i386/commpage/commpage_asm.s. There are two
43 * arrays, one for the 32-bit and one for the 64-bit commpage.
45 * 4. Write the code in Libc to use the new routine.
48 #include <mach/mach_types.h>
49 #include <mach/machine.h>
50 #include <mach/vm_map.h>
51 #include <mach/mach_vm.h>
52 #include <mach/machine.h>
53 #include <i386/cpuid.h>
55 #include <i386/rtclock.h>
56 #include <i386/cpu_data.h>
57 #include <i386/machine_routines.h>
58 #include <i386/misc_protos.h>
59 #include <i386/cpuid.h>
60 #include <machine/cpu_capabilities.h>
61 #include <machine/commpage.h>
62 #include <machine/pmap.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_map.h>
66 #include <ipc/ipc_port.h>
68 #include <kern/page_decrypt.h>
70 /* the lists of commpage routines are in commpage_asm.s */
71 extern commpage_descriptor
* commpage_32_routines
[];
72 extern commpage_descriptor
* commpage_64_routines
[];
74 /* translated commpage descriptors from commpage_sigs.c */
75 extern commpage_descriptor sigdata_descriptor
;
76 extern commpage_descriptor
*ba_descriptors
[];
78 extern vm_map_t commpage32_map
; // the shared submap, set up in vm init
79 extern vm_map_t commpage64_map
; // the shared submap, set up in vm init
81 char *commPagePtr32
= NULL
; // virtual addr in kernel map of 32-bit commpage
82 char *commPagePtr64
= NULL
; // ...and of 64-bit commpage
83 int _cpu_capabilities
= 0; // define the capability vector
85 int noVMX
= 0; /* if true, do not set kHasAltivec in ppc _cpu_capabilities */
87 typedef uint32_t commpage_address_t
;
89 static commpage_address_t next
; // next available address in comm page
90 static commpage_address_t cur_routine
; // comm page address of "current" routine
91 static boolean_t matched
; // true if we've found a match for "current" routine
93 static char *commPagePtr
; // virtual addr in kernel map of commpage we are working on
94 static commpage_address_t commPageBaseOffset
; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map
96 static commpage_time_data
*time_data32
= NULL
;
97 static commpage_time_data
*time_data64
= NULL
;
99 /* Allocate the commpage and add to the shared submap created by vm:
100 * 1. allocate a page in the kernel map (RW)
102 * 3. make a memory entry out of it
103 * 4. map that entry into the shared comm region map (R-only)
108 vm_map_t submap
, // commpage32_map or commpage_map64
109 size_t area_used
) // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
111 vm_offset_t kernel_addr
= 0; // address of commpage in kernel map
112 vm_offset_t zero
= 0;
113 vm_size_t size
= area_used
; // size actually populated
114 vm_map_entry_t entry
;
118 panic("commpage submap is null");
120 if (vm_map(kernel_map
,&kernel_addr
,area_used
,0,VM_FLAGS_ANYWHERE
,NULL
,0,FALSE
,VM_PROT_ALL
,VM_PROT_ALL
,VM_INHERIT_NONE
))
121 panic("cannot allocate commpage");
123 if (vm_map_wire(kernel_map
,kernel_addr
,kernel_addr
+area_used
,VM_PROT_DEFAULT
,FALSE
))
124 panic("cannot wire commpage");
127 * Now that the object is created and wired into the kernel map, mark it so that no delay
128 * copy-on-write will ever be performed on it as a result of mapping it into user-space.
129 * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and
130 * that would be a real disaster.
132 * JMM - What we really need is a way to create it like this in the first place.
134 if (!vm_map_lookup_entry( kernel_map
, vm_map_trunc_page(kernel_addr
), &entry
) || entry
->is_sub_map
)
135 panic("cannot find commpage entry");
136 entry
->object
.vm_object
->copy_strategy
= MEMORY_OBJECT_COPY_NONE
;
138 if (mach_make_memory_entry( kernel_map
, // target map
140 kernel_addr
, // offset (address in kernel map)
141 VM_PROT_ALL
, // map it RWX
142 &handle
, // this is the object handle we get
143 NULL
)) // parent_entry (what is this?)
144 panic("cannot make entry for commpage");
146 if (vm_map_64( submap
, // target map (shared submap)
147 &zero
, // address (map into 1st page in submap)
150 VM_FLAGS_FIXED
, // flags (it must be 1st page in submap)
151 handle
, // port is the memory entry we just made
152 0, // offset (map 1st page in memory entry)
154 VM_PROT_READ
|VM_PROT_EXECUTE
, // cur_protection (R-only in user map)
155 VM_PROT_READ
|VM_PROT_EXECUTE
, // max_protection
156 VM_INHERIT_SHARE
)) // inheritance
157 panic("cannot map commpage");
159 ipc_port_release(handle
);
161 return (void*)(intptr_t)kernel_addr
; // return address in kernel map
164 /* Get address (in kernel map) of a commpage field. */
168 commpage_address_t addr_at_runtime
)
170 return (void*) ((uintptr_t)commPagePtr
+ (addr_at_runtime
- commPageBaseOffset
));
173 /* Determine number of CPUs on this system. We cannot rely on
174 * machine_info.max_cpus this early in the boot.
177 commpage_cpus( void )
181 cpus
= ml_get_max_cpus(); // NB: this call can block
184 panic("commpage cpus==0");
191 /* Initialize kernel version of _cpu_capabilities vector (used by KEXTs.) */
194 commpage_init_cpu_capabilities( void )
198 ml_cpu_info_t cpu_info
;
201 ml_cpu_get_info(&cpu_info
);
203 switch (cpu_info
.vector_unit
) {
211 bits
|= kHasSupplementalSSE3
;
227 switch (cpu_info
.cache_line_size
) {
240 cpus
= commpage_cpus(); // how many CPUs do we have
245 bits
|= (cpus
<< kNumCPUsShift
);
247 bits
|= kFastThreadLocalStorage
; // we use %gs for TLS
249 if (cpu_mode_is64bit()) // k64Bit means processor is 64-bit capable
252 if (tscFreq
<= SLOW_TSC_THRESHOLD
) /* is TSC too slow for _commpage_nanotime? */
255 _cpu_capabilities
= bits
; // set kernel version for use by drivers etc
259 _get_cpu_capabilities(void)
261 return _cpu_capabilities
;
264 /* Copy data into commpage. */
268 commpage_address_t address
,
272 void *dest
= commpage_addr_of(address
);
275 panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest
, address
, next
);
277 bcopy(source
,dest
,length
);
279 next
= address
+ length
;
284 commpage_address_t address
,
290 void *dest
= commpage_addr_of(address
);
291 dest
= (void *)((uintptr_t) dest
+ _COMM_PAGE_SIGS_OFFSET
);
294 OSWriteSwapInt16(dest
, 0, *(uint16_t *)source
);
297 OSWriteSwapInt32(dest
, 0, *(uint32_t *)source
);
300 OSWriteSwapInt64(dest
, 0, *(uint64_t *)source
);
308 commpage_address_t address
,
313 commpage_stuff_swap(address
, source
, length
, legacy
);
314 commpage_stuff(address
, source
, length
);
317 /* Copy a routine into comm page if it matches running machine.
320 commpage_stuff_routine(
321 commpage_descriptor
*rd
)
325 if (rd
->commpage_address
!= cur_routine
) {
326 if ((cur_routine
!=0) && (matched
==0))
327 panic("commpage no match for last, next address %08x", rd
->commpage_address
);
328 cur_routine
= rd
->commpage_address
;
332 must
= _cpu_capabilities
& rd
->musthave
;
333 cant
= _cpu_capabilities
& rd
->canthave
;
335 if ((must
== rd
->musthave
) && (cant
== 0)) {
337 panic("commpage multiple matches for address %08x", rd
->commpage_address
);
340 commpage_stuff(rd
->commpage_address
,rd
->code_address
,rd
->code_length
);
344 /* Fill in the 32- or 64-bit commpage. Called once for each.
345 * The 32-bit ("legacy") commpage has a bunch of stuff added to it
346 * for translated processes, some of which is byte-swapped.
350 commpage_populate_one(
351 vm_map_t submap
, // commpage32_map or compage64_map
352 char ** kernAddressPtr
, // &commPagePtr32 or &commPagePtr64
353 size_t area_used
, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
354 commpage_address_t base_offset
, // will become commPageBaseOffset
355 commpage_descriptor
** commpage_routines
, // list of routine ptrs for this commpage
356 boolean_t legacy
, // true if 32-bit commpage
357 commpage_time_data
** time_data
, // &time_data32 or &time_data64
358 const char* signature
) // "commpage 32-bit" or "commpage 64-bit"
362 static double two52
= 1048576.0 * 1048576.0 * 4096.0; // 2**52
363 static double ten6
= 1000000.0; // 10**6
364 commpage_descriptor
**rd
;
365 short version
= _COMM_PAGE_THIS_VERSION
;
370 commPagePtr
= (char *)commpage_allocate( submap
, (vm_size_t
) area_used
);
371 *kernAddressPtr
= commPagePtr
; // save address either in commPagePtr32 or 64
372 commPageBaseOffset
= base_offset
;
374 *time_data
= commpage_addr_of( _COMM_PAGE_TIME_DATA_START
);
376 /* Stuff in the constants. We move things into the comm page in strictly
377 * ascending order, so we can check for overlap and panic if so.
379 commpage_stuff(_COMM_PAGE_SIGNATURE
,signature
,(int)strlen(signature
));
380 commpage_stuff2(_COMM_PAGE_VERSION
,&version
,sizeof(short),legacy
);
381 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES
,&_cpu_capabilities
,sizeof(int));
383 /* excuse our magic constants, we cannot include ppc/cpu_capabilities.h */
384 /* always set kCache32 and kDcbaAvailable */
386 if ( _cpu_capabilities
& kUP
)
387 swapcaps
|= (kUP
+ (1 << kNumCPUsShift
));
389 swapcaps
|= 2 << kNumCPUsShift
; /* limit #cpus to 2 */
390 if ( ! noVMX
) /* if rosetta will be emulating altivec... */
391 swapcaps
|= 0x101; /* ...then set kHasAltivec and kDataStreamsAvailable too */
392 commpage_stuff_swap(_COMM_PAGE_CPU_CAPABILITIES
, &swapcaps
, sizeof(int), legacy
);
394 commpage_stuff_swap(_COMM_PAGE_CACHE_LINESIZE
,&c2
,2,legacy
);
396 if (_cpu_capabilities
& kCache32
)
398 else if (_cpu_capabilities
& kCache64
)
400 else if (_cpu_capabilities
& kCache128
)
402 commpage_stuff(_COMM_PAGE_CACHE_LINESIZE
,&c2
,2);
405 commpage_stuff(_COMM_PAGE_SPIN_COUNT
,&c4
,4);
408 commpage_stuff2(_COMM_PAGE_2_TO_52
,&two52
,8,legacy
);
409 commpage_stuff2(_COMM_PAGE_10_TO_6
,&ten6
,8,legacy
);
412 for( rd
= commpage_routines
; *rd
!= NULL
; rd
++ )
413 commpage_stuff_routine(*rd
);
416 panic("commpage no match on last routine");
418 if (next
> _COMM_PAGE_END
)
419 panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p", next
, commPagePtr
);
423 for( rd
= ba_descriptors
; *rd
!= NULL
; rd
++ )
424 commpage_stuff_routine(*rd
);
427 commpage_stuff_routine(&sigdata_descriptor
);
432 /* Fill in commpages: called once, during kernel initialization, from the
433 * startup thread before user-mode code is running.
435 * See the top of this file for a list of what you have to do to add
436 * a new routine to the commpage.
440 commpage_populate( void )
442 commpage_init_cpu_capabilities();
444 commpage_populate_one( commpage32_map
,
446 _COMM_PAGE32_AREA_USED
,
447 _COMM_PAGE32_BASE_ADDRESS
,
448 commpage_32_routines
,
449 TRUE
, /* legacy (32-bit) commpage */
453 pmap_commpage32_init((vm_offset_t
) commPagePtr32
, _COMM_PAGE32_BASE_ADDRESS
,
454 _COMM_PAGE32_AREA_USED
/INTEL_PGBYTES
);
456 time_data64
= time_data32
; /* if no 64-bit commpage, point to 32-bit */
458 if (_cpu_capabilities
& k64Bit
) {
459 commpage_populate_one( commpage64_map
,
461 _COMM_PAGE64_AREA_USED
,
462 _COMM_PAGE32_START_ADDRESS
, /* commpage address are relative to 32-bit commpage placement */
463 commpage_64_routines
,
464 FALSE
, /* not a legacy commpage */
468 pmap_commpage64_init((vm_offset_t
) commPagePtr64
, _COMM_PAGE64_BASE_ADDRESS
,
469 _COMM_PAGE64_AREA_USED
/INTEL_PGBYTES
);
473 rtc_nanotime_init_commpage();
477 /* Update commpage nanotime information. Note that we interleave
478 * setting the 32- and 64-bit commpages, in order to keep nanotime more
479 * nearly in sync between the two environments.
481 * This routine must be serialized by some external means, ie a lock.
485 commpage_set_nanotime(
491 commpage_time_data
*p32
= time_data32
;
492 commpage_time_data
*p64
= time_data64
;
493 static uint32_t generation
= 0;
496 if (p32
== NULL
) /* have commpages been allocated yet? */
499 if ( generation
!= p32
->nt_generation
)
500 panic("nanotime trouble 1"); /* possibly not serialized */
501 if ( ns_base
< p32
->nt_ns_base
)
502 panic("nanotime trouble 2");
503 if ((shift
!= 32) && ((_cpu_capabilities
& kSlow
)==0) )
504 panic("nanotime trouble 3");
506 next_gen
= ++generation
;
508 next_gen
= ++generation
;
510 p32
->nt_generation
= 0; /* mark invalid, so commpage won't try to use it */
511 p64
->nt_generation
= 0;
513 p32
->nt_tsc_base
= tsc_base
;
514 p64
->nt_tsc_base
= tsc_base
;
516 p32
->nt_ns_base
= ns_base
;
517 p64
->nt_ns_base
= ns_base
;
519 p32
->nt_scale
= scale
;
520 p64
->nt_scale
= scale
;
522 p32
->nt_shift
= shift
;
523 p64
->nt_shift
= shift
;
525 p32
->nt_generation
= next_gen
; /* mark data as valid */
526 p64
->nt_generation
= next_gen
;
530 /* Disable commpage gettimeofday(), forcing commpage to call through to the kernel. */
533 commpage_disable_timestamp( void )
535 time_data32
->gtod_generation
= 0;
536 time_data64
->gtod_generation
= 0;
540 /* Update commpage gettimeofday() information. As with nanotime(), we interleave
541 * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync
542 * between the two environments.
544 * This routine must be serializeed by some external means, ie a lock.
548 commpage_set_timestamp(
552 commpage_time_data
*p32
= time_data32
;
553 commpage_time_data
*p64
= time_data64
;
554 static uint32_t generation
= 0;
557 next_gen
= ++generation
;
559 next_gen
= ++generation
;
561 p32
->gtod_generation
= 0; /* mark invalid, so commpage won't try to use it */
562 p64
->gtod_generation
= 0;
564 p32
->gtod_ns_base
= abstime
;
565 p64
->gtod_ns_base
= abstime
;
567 p32
->gtod_sec_base
= secs
;
568 p64
->gtod_sec_base
= secs
;
570 p32
->gtod_generation
= next_gen
; /* mark data as valid */
571 p64
->gtod_generation
= next_gen
;
575 /* Update _COMM_PAGE_MEMORY_PRESSURE. Called periodically from vm's compute_memory_pressure() */
578 commpage_set_memory_pressure(
579 unsigned int pressure
)
586 cp
+= (_COMM_PAGE_MEMORY_PRESSURE
- _COMM_PAGE32_BASE_ADDRESS
);
588 *ip
= (uint32_t) pressure
;
593 cp
+= (_COMM_PAGE_MEMORY_PRESSURE
- _COMM_PAGE32_START_ADDRESS
);
595 *ip
= (uint32_t) pressure
;
601 /* Update _COMM_PAGE_SPIN_COUNT. We might want to reduce when running on a battery, etc. */
604 commpage_set_spin_count(
610 if (count
== 0) /* we test for 0 after decrement, not before */
615 cp
+= (_COMM_PAGE_SPIN_COUNT
- _COMM_PAGE32_BASE_ADDRESS
);
617 *ip
= (uint32_t) count
;
622 cp
+= (_COMM_PAGE_SPIN_COUNT
- _COMM_PAGE32_START_ADDRESS
);
624 *ip
= (uint32_t) count
;
630 /* Check to see if a given address is in the Preemption Free Zone (PFZ) */
633 commpage_is_in_pfz32(uint32_t addr32
)
635 if ( (addr32
>= _COMM_PAGE_PFZ_START
) && (addr32
< _COMM_PAGE_PFZ_END
)) {
643 commpage_is_in_pfz64(addr64_t addr64
)
645 if ( (addr64
>= _COMM_PAGE_32_TO_64(_COMM_PAGE_PFZ_START
))
646 && (addr64
< _COMM_PAGE_32_TO_64(_COMM_PAGE_PFZ_END
))) {