]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_input.c
13e920615096e057619cd38175880d0ccb3e0356
[apple/xnu.git] / bsd / netinet / ip_input.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /*
23 * Copyright (c) 1982, 1986, 1988, 1993
24 * The Regents of the University of California. All rights reserved.
25 *
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions
28 * are met:
29 * 1. Redistributions of source code must retain the above copyright
30 * notice, this list of conditions and the following disclaimer.
31 * 2. Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in the
33 * documentation and/or other materials provided with the distribution.
34 * 3. All advertising materials mentioning features or use of this software
35 * must display the following acknowledgement:
36 * This product includes software developed by the University of
37 * California, Berkeley and its contributors.
38 * 4. Neither the name of the University nor the names of its contributors
39 * may be used to endorse or promote products derived from this software
40 * without specific prior written permission.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 *
54 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
55 * $ANA: ip_input.c,v 1.5 1996/09/18 14:34:59 wollman Exp $
56 */
57
58 #define _IP_VHL
59
60 #include <stddef.h>
61
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/mbuf.h>
65 #include <sys/malloc.h>
66 #include <sys/domain.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/time.h>
70 #include <sys/kernel.h>
71 #include <sys/syslog.h>
72 #include <sys/sysctl.h>
73
74 #include <kern/queue.h>
75
76 #include <net/if.h>
77 #include <net/if_var.h>
78 #include <net/if_dl.h>
79 #include <net/route.h>
80 #include <net/netisr.h>
81
82 #include <netinet/in.h>
83 #include <netinet/in_systm.h>
84 #include <netinet/in_var.h>
85 #include <netinet/ip.h>
86 #ifdef INET6
87 #include <netinet/ip6.h>
88 #include <netinet6/ip6_var.h>
89 #endif
90 #include <netinet/in_pcb.h>
91 #include <netinet/ip_var.h>
92 #include <netinet/ip_icmp.h>
93 #include <sys/socketvar.h>
94
95 #include <sys/kdebug.h>
96
97
98 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 0)
99 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 2)
100 #define DBG_FNC_IP_INPUT NETDBG_CODE(DBG_NETIP, (2 << 8))
101
102
103 #if IPFIREWALL
104 #include <netinet/ip_fw.h>
105 #endif
106
107 #if IPSEC
108 #include <netinet6/ipsec.h>
109 #include <netkey/key.h>
110 #include <netkey/key_debug.h>
111 #endif
112
113 #include "faith.h"
114 #if defined(NFAITH) && NFAITH > 0
115 #include <net/if_types.h>
116 #endif
117
118 #if DUMMYNET
119 #include <netinet/ip_dummynet.h>
120 #endif
121
122 int rsvp_on = 0;
123 static int ip_rsvp_on;
124 struct socket *ip_rsvpd;
125
126 int ipforwarding = 0;
127 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
128 &ipforwarding, 0, "");
129
130 static int ipsendredirects = 1; /* XXX */
131 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
132 &ipsendredirects, 0, "");
133
134 int ip_defttl = IPDEFTTL;
135 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
136 &ip_defttl, 0, "");
137
138 static int ip_dosourceroute = 0;
139 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
140 &ip_dosourceroute, 0, "");
141
142 static int ip_acceptsourceroute = 0;
143 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
144 CTLFLAG_RW, &ip_acceptsourceroute, 0, "");
145
146 static int ip_keepfaith = 0;
147 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
148 &ip_keepfaith, 0, "");
149
150 #if DIAGNOSTIC
151 static int ipprintfs = 0;
152 #endif
153
154 extern struct domain inetdomain;
155 extern struct protosw inetsw[];
156 struct protosw *ip_protox[IPPROTO_MAX];
157 static int ipqmaxlen = IFQ_MAXLEN;
158 struct in_ifaddrhead in_ifaddrhead; /* first inet address */
159 struct ifqueue ipintrq;
160 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RD,
161 &ipintrq.ifq_maxlen, 0, "");
162 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
163 &ipintrq.ifq_drops, 0, "");
164
165 struct ipstat ipstat;
166 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD,
167 &ipstat, ipstat, "");
168
169 /* Packet reassembly stuff */
170 #define IPREASS_NHASH_LOG2 6
171 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
172 #define IPREASS_HMASK (IPREASS_NHASH - 1)
173 #define IPREASS_HASH(x,y) \
174 ((((x) & 0xF | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
175
176 static struct ipq ipq[IPREASS_NHASH];
177 static int nipq = 0; /* total # of reass queues */
178 static int maxnipq;
179
180 #if IPCTL_DEFMTU
181 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
182 &ip_mtu, 0, "");
183 #endif
184
185 #if !defined(COMPAT_IPFW) || COMPAT_IPFW == 1
186 #undef COMPAT_IPFW
187 #define COMPAT_IPFW 1
188 #else
189 #undef COMPAT_IPFW
190 #endif
191
192 #if COMPAT_IPFW
193
194 #include <netinet/ip_fw.h>
195
196 /* Firewall hooks */
197 ip_fw_chk_t *ip_fw_chk_ptr;
198 ip_fw_ctl_t *ip_fw_ctl_ptr;
199
200 #if DUMMYNET
201 ip_dn_ctl_t *ip_dn_ctl_ptr;
202 #endif
203
204 /* IP Network Address Translation (NAT) hooks */
205 ip_nat_t *ip_nat_ptr;
206 ip_nat_ctl_t *ip_nat_ctl_ptr;
207 #endif
208
209 /*
210 * We need to save the IP options in case a protocol wants to respond
211 * to an incoming packet over the same route if the packet got here
212 * using IP source routing. This allows connection establishment and
213 * maintenance when the remote end is on a network that is not known
214 * to us.
215 */
216 static int ip_nhops = 0;
217 static struct ip_srcrt {
218 struct in_addr dst; /* final destination */
219 char nop; /* one NOP to align */
220 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
221 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
222 } ip_srcrt;
223
224 #if IPDIVERT
225 /*
226 * Shared variable between ip_input() and ip_reass() to communicate
227 * about which packets, once assembled from fragments, get diverted,
228 * and to which port.
229 */
230 static u_short frag_divert_port;
231 #endif
232
233 struct sockaddr_in *ip_fw_fwd_addr;
234
235 static void save_rte __P((u_char *, struct in_addr));
236 static int ip_dooptions __P((struct mbuf *));
237 #ifndef NATPT
238 static
239 #endif
240 void ip_forward __P((struct mbuf *, int));
241 static void ip_freef __P((struct ipq *));
242 static struct ip *
243 ip_reass __P((struct mbuf *, struct ipq *, struct ipq *));
244 static struct in_ifaddr *
245 ip_rtaddr __P((struct in_addr));
246 void ipintr __P((void));
247
248 #if PM
249 extern int doNatFil;
250 extern int doRoute;
251
252 extern int pm_in __P((struct ifnet *, struct ip *, struct mbuf *));
253 extern struct route *pm_route __P((struct mbuf *));
254 #endif
255
256 #if defined(NATPT)
257 extern int ip6_protocol_tr;
258
259 int natpt_in4 __P((struct mbuf *, struct mbuf **));
260
261 #endif /* NATPT */
262
263 /*
264 * IP initialization: fill in IP protocol switch table.
265 * All protocols not implemented in kernel go to raw IP protocol handler.
266 */
267 void
268 ip_init()
269 {
270 register struct protosw *pr;
271 register int i;
272 static ip_initialized = 0;
273
274 if (!ip_initialized)
275 {
276 TAILQ_INIT(&in_ifaddrhead);
277 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
278 if (pr == 0)
279 panic("ip_init");
280 for (i = 0; i < IPPROTO_MAX; i++)
281 ip_protox[i] = pr;
282 for (pr = inetdomain.dom_protosw; pr; pr = pr->pr_next)
283 { if(!((unsigned int)pr->pr_domain)) continue; /* If uninitialized, skip */
284 if (pr->pr_domain->dom_family == PF_INET &&
285 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
286 ip_protox[pr->pr_protocol] = pr;
287 }
288 for (i = 0; i < IPREASS_NHASH; i++)
289 ipq[i].next = ipq[i].prev = &ipq[i];
290
291 maxnipq = nmbclusters/4;
292
293 ip_id = time_second & 0xffff;
294 ipintrq.ifq_maxlen = ipqmaxlen;
295 #if DUMMYNET
296 ip_dn_init();
297 #endif
298 #if IPNAT
299 ip_nat_init();
300 #endif
301 ip_initialized = 1;
302 }
303 }
304
305 /* Initialize the PF_INET domain, and add in the pre-defined protos */
306 void
307 in_dinit()
308 { register int i;
309 register struct protosw *pr;
310 register struct domain *dp;
311 static inetdomain_initted = 0;
312 extern int in_proto_count;
313
314 if (!inetdomain_initted)
315 { kprintf("Initing %d protosw entries\n", in_proto_count);
316 dp = &inetdomain;
317
318 for (i=0, pr = &inetsw[0]; i<in_proto_count; i++, pr++)
319 net_add_proto(pr, dp);
320 inetdomain_initted = 1;
321 }
322 }
323
324 static struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
325 static struct route ipforward_rt;
326
327 /*
328 * Ip input routine. Checksum and byte swap header. If fragmented
329 * try to reassemble. Process options. Pass to next level.
330 */
331 void
332 ip_input(struct mbuf *m)
333 {
334 struct ip *ip;
335 struct ipq *fp;
336 struct in_ifaddr *ia;
337 int i, hlen, mff;
338 u_short sum;
339 #if !IPDIVERT /* dummy variable for the firewall code to play with */
340 u_short ip_divert_cookie = 0 ;
341 #endif
342 #if COMPAT_IPFW
343 struct ip_fw_chain *rule = NULL ;
344 #endif
345
346 #if IPFIREWALL && DUMMYNET
347 /*
348 * dummynet packet are prepended a vestigial mbuf with
349 * m_type = MT_DUMMYNET and m_data pointing to the matching
350 * rule.
351 */
352 if (m->m_type == MT_DUMMYNET) {
353 struct mbuf *m0 = m ;
354 rule = (struct ip_fw_chain *)(m->m_data) ;
355 m = m->m_next ;
356 FREE(m0, M_IPFW);
357 ip = mtod(m, struct ip *);
358 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
359 goto iphack ;
360 } else
361 rule = NULL ;
362 #endif
363
364 #if DIAGNOSTIC
365 if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
366 panic("ip_input no HDR");
367 #endif
368 /*
369 * If no IP addresses have been set yet but the interfaces
370 * are receiving, can't do anything with incoming packets yet.
371 * XXX This is broken! We should be able to receive broadcasts
372 * and multicasts even without any local addresses configured.
373 */
374 if (TAILQ_EMPTY(&in_ifaddrhead))
375 goto bad;
376 ipstat.ips_total++;
377
378 if (m->m_pkthdr.len < sizeof(struct ip))
379 goto tooshort;
380
381 if (m->m_len < sizeof (struct ip) &&
382 (m = m_pullup(m, sizeof (struct ip))) == 0) {
383 ipstat.ips_toosmall++;
384 return;
385 }
386 ip = mtod(m, struct ip *);
387
388 KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr,
389 ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
390
391 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
392 ipstat.ips_badvers++;
393 goto bad;
394 }
395
396 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
397 if (hlen < sizeof(struct ip)) { /* minimum header length */
398 ipstat.ips_badhlen++;
399 goto bad;
400 }
401 if (hlen > m->m_len) {
402 if ((m = m_pullup(m, hlen)) == 0) {
403 ipstat.ips_badhlen++;
404 return;
405 }
406 ip = mtod(m, struct ip *);
407 }
408
409 if (m->m_pkthdr.rcvif->if_hwassist == 0)
410 m->m_pkthdr.csum_flags = 0;
411
412 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
413 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
414 } else
415 sum = in_cksum(m, hlen);
416
417 if (sum) {
418 ipstat.ips_badsum++;
419 goto bad;
420 }
421
422 /*
423 * Convert fields to host representation.
424 */
425 NTOHS(ip->ip_len);
426 if (ip->ip_len < hlen) {
427 ipstat.ips_badlen++;
428 goto bad;
429 }
430 NTOHS(ip->ip_id);
431 NTOHS(ip->ip_off);
432
433 /*
434 * Check that the amount of data in the buffers
435 * is as at least much as the IP header would have us expect.
436 * Trim mbufs if longer than we expect.
437 * Drop packet if shorter than we expect.
438 */
439 if (m->m_pkthdr.len < ip->ip_len) {
440 tooshort:
441 ipstat.ips_tooshort++;
442 goto bad;
443 }
444 if (m->m_pkthdr.len > ip->ip_len) {
445 /* Invalidate hwcksuming */
446 m->m_pkthdr.csum_flags = 0;
447 m->m_pkthdr.csum_data = 0;
448
449 if (m->m_len == m->m_pkthdr.len) {
450 m->m_len = ip->ip_len;
451 m->m_pkthdr.len = ip->ip_len;
452 } else
453 m_adj(m, ip->ip_len - m->m_pkthdr.len);
454 }
455 /*
456 * IpHack's section.
457 * Right now when no processing on packet has done
458 * and it is still fresh out of network we do our black
459 * deals with it.
460 * - Firewall: deny/allow/divert
461 * - Xlate: translate packet's addr/port (NAT).
462 * - Pipe: pass pkt through dummynet.
463 * - Wrap: fake packet's addr/port <unimpl.>
464 * - Encapsulate: put it in another IP and send out. <unimp.>
465 */
466
467 #if defined(IPFIREWALL) && defined(DUMMYNET)
468 iphack:
469 #endif
470 #if COMPAT_IPFW
471 if (ip_fw_chk_ptr) {
472 #if IPFIREWALL_FORWARD
473 /*
474 * If we've been forwarded from the output side, then
475 * skip the firewall a second time
476 */
477 if (ip_fw_fwd_addr)
478 goto ours;
479 #endif /* IPFIREWALL_FORWARD */
480 i = (*ip_fw_chk_ptr)(&ip, hlen, NULL, &ip_divert_cookie,
481 &m, &rule, &ip_fw_fwd_addr);
482 /*
483 * see the comment in ip_output for the return values
484 * produced by the firewall.
485 */
486 if (!m) /* packet discarded by firewall */
487 return ;
488 if (i == 0 && ip_fw_fwd_addr == NULL) /* common case */
489 goto pass ;
490 #if DUMMYNET
491 if (i & 0x10000) {
492 /* send packet to the appropriate pipe */
493 dummynet_io(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule);
494 return ;
495 }
496 #endif
497 #if IPDIVERT
498 if (i > 0 && i < 0x10000) {
499 /* Divert packet */
500 frag_divert_port = i & 0xffff ;
501 goto ours;
502 }
503 #endif
504 #if IPFIREWALL_FORWARD
505 if (i == 0 && ip_fw_fwd_addr != NULL)
506 goto pass ;
507 #endif
508 /*
509 * if we get here, the packet must be dropped
510 */
511 m_freem(m);
512 return;
513 }
514 pass:
515
516 if (ip_nat_ptr && !(*ip_nat_ptr)(&ip, &m, m->m_pkthdr.rcvif, IP_NAT_IN)) {
517 #if IPFIREWALL_FORWARD
518 ip_fw_fwd_addr = NULL;
519 #endif
520 return;
521 }
522 #endif /* !COMPAT_IPFW */
523
524 #if defined(PM)
525 /*
526 * Process ip-filter/NAT.
527 * Return TRUE if this packed is discarded.
528 * Return FALSE if this packed is accepted.
529 */
530
531 if (doNatFil && pm_in(m->m_pkthdr.rcvif, ip, m))
532 return;
533 #endif
534
535 #if defined(NATPT)
536 /*
537 *
538 */
539 if (ip6_protocol_tr)
540 {
541 struct mbuf *m1 = NULL;
542
543 switch (natpt_in4(m, &m1))
544 {
545 case IPPROTO_IP: goto dooptions;
546 case IPPROTO_IPV4: ip_forward(m1, 0); break;
547 case IPPROTO_IPV6: ip6_forward(m1, 1); break;
548 case IPPROTO_MAX: /* discard this packet */
549 default:
550 }
551
552 if (m != m1)
553 m_freem(m);
554
555 return;
556 }
557 dooptions:
558 #endif
559
560 /*
561 * Process options and, if not destined for us,
562 * ship it on. ip_dooptions returns 1 when an
563 * error was detected (causing an icmp message
564 * to be sent and the original packet to be freed).
565 */
566 ip_nhops = 0; /* for source routed packets */
567 if (hlen > sizeof (struct ip) && ip_dooptions(m)) {
568 #if IPFIREWALL_FORWARD
569 ip_fw_fwd_addr = NULL;
570 #endif
571 return;
572 }
573
574 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
575 * matter if it is destined to another node, or whether it is
576 * a multicast one, RSVP wants it! and prevents it from being forwarded
577 * anywhere else. Also checks if the rsvp daemon is running before
578 * grabbing the packet.
579 */
580 if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
581 goto ours;
582
583 /*
584 * Check our list of addresses, to see if the packet is for us.
585 */
586 for (ia = TAILQ_FIRST(&in_ifaddrhead); ia;
587 ia = TAILQ_NEXT(ia, ia_link)) {
588 #define satosin(sa) ((struct sockaddr_in *)(sa))
589
590 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
591 goto ours;
592
593 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
594 goto ours;
595
596 #if IPFIREWALL_FORWARD
597 /*
598 * If the addr to forward to is one of ours, we pretend to
599 * be the destination for this packet.
600 */
601 if (ip_fw_fwd_addr == NULL) {
602 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
603 goto ours;
604 } else if (IA_SIN(ia)->sin_addr.s_addr ==
605 ip_fw_fwd_addr->sin_addr.s_addr)
606 goto ours;
607 #else
608 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
609 goto ours;
610 #endif
611 if (ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) {
612 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
613 ip->ip_dst.s_addr)
614 goto ours;
615 if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
616 goto ours;
617 }
618 }
619 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
620 struct in_multi *inm;
621 if (ip_mrouter) {
622 /*
623 * If we are acting as a multicast router, all
624 * incoming multicast packets are passed to the
625 * kernel-level multicast forwarding function.
626 * The packet is returned (relatively) intact; if
627 * ip_mforward() returns a non-zero value, the packet
628 * must be discarded, else it may be accepted below.
629 *
630 * (The IP ident field is put in the same byte order
631 * as expected when ip_mforward() is called from
632 * ip_output().)
633 */
634 ip->ip_id = htons(ip->ip_id);
635 if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
636 ipstat.ips_cantforward++;
637 m_freem(m);
638 return;
639 }
640 ip->ip_id = ntohs(ip->ip_id);
641
642 /*
643 * The process-level routing demon needs to receive
644 * all multicast IGMP packets, whether or not this
645 * host belongs to their destination groups.
646 */
647 if (ip->ip_p == IPPROTO_IGMP)
648 goto ours;
649 ipstat.ips_forward++;
650 }
651 /*
652 * See if we belong to the destination multicast group on the
653 * arrival interface.
654 */
655 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
656 if (inm == NULL) {
657 ipstat.ips_notmember++;
658 m_freem(m);
659 return;
660 }
661 goto ours;
662 }
663 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
664 goto ours;
665 if (ip->ip_dst.s_addr == INADDR_ANY)
666 goto ours;
667
668 if (m->m_pkthdr.rcvif
669 && (m->m_pkthdr.rcvif->if_eflags & IFEF_AUTOCONFIGURING)
670 && ip->ip_p == IPPROTO_UDP) {
671 goto ours;
672 }
673
674 #if defined(NFAITH) && NFAITH > 0
675 /*
676 * FAITH(Firewall Aided Internet Translator)
677 */
678 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
679 if (ip_keepfaith) {
680 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
681 goto ours;
682 }
683 m_freem(m);
684 return;
685 }
686 #endif
687 /*
688 * Not for us; forward if possible and desirable.
689 */
690 if (ipforwarding == 0) {
691 ipstat.ips_cantforward++;
692 m_freem(m);
693 } else
694 ip_forward(m, 0);
695 #if IPFIREWALL_FORWARD
696 ip_fw_fwd_addr = NULL;
697 #endif
698 return;
699
700 ours:
701
702 /*
703 * If offset or IP_MF are set, must reassemble.
704 * Otherwise, nothing need be done.
705 * (We could look in the reassembly queue to see
706 * if the packet was previously fragmented,
707 * but it's not worth the time; just let them time out.)
708 */
709 if (ip->ip_off & (IP_MF | IP_OFFMASK | IP_RF)) {
710 if (m->m_flags & M_EXT) { /* XXX */
711 if ((m = m_pullup(m, hlen)) == 0) {
712 ipstat.ips_toosmall++;
713 #if IPDIVERT
714 frag_divert_port = 0;
715 ip_divert_cookie = 0;
716 #endif
717 #if IPFIREWALL_FORWARD
718 ip_fw_fwd_addr = NULL;
719 #endif
720 return;
721 }
722 ip = mtod(m, struct ip *);
723 }
724 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
725 /*
726 * Look for queue of fragments
727 * of this datagram.
728 */
729 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
730 if (ip->ip_id == fp->ipq_id &&
731 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
732 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
733 ip->ip_p == fp->ipq_p)
734 goto found;
735
736 fp = 0;
737
738 /* check if there's a place for the new queue */
739 if (nipq > maxnipq) {
740 /*
741 * drop something from the tail of the current queue
742 * before proceeding further
743 */
744 if (ipq[sum].prev == &ipq[sum]) { /* gak */
745 for (i = 0; i < IPREASS_NHASH; i++) {
746 if (ipq[i].prev != &ipq[i]) {
747 ip_freef(ipq[i].prev);
748 break;
749 }
750 }
751 } else
752 ip_freef(ipq[sum].prev);
753 }
754 found:
755 /*
756 * Adjust ip_len to not reflect header,
757 * set ip_mff if more fragments are expected,
758 * convert offset of this to bytes.
759 */
760 ip->ip_len -= hlen;
761 mff = (ip->ip_off & IP_MF) != 0;
762 if (mff) {
763 /*
764 * Make sure that fragments have a data length
765 * that's a non-zero multiple of 8 bytes.
766 */
767 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
768 ipstat.ips_toosmall++; /* XXX */
769 goto bad;
770 }
771 m->m_flags |= M_FRAG;
772 }
773 ip->ip_off <<= 3;
774
775 /*
776 * If datagram marked as having more fragments
777 * or if this is not the first fragment,
778 * attempt reassembly; if it succeeds, proceed.
779 */
780 if (mff || ip->ip_off) {
781 ipstat.ips_fragments++;
782 m->m_pkthdr.header = ip;
783 ip = ip_reass(m, fp, &ipq[sum]);
784 if (ip == 0) {
785 #if IPFIREWALL_FORWARD
786 ip_fw_fwd_addr = NULL;
787 #endif
788 return;
789 }
790 /* Get the length of the reassembled packets header */
791 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
792 ipstat.ips_reassembled++;
793 m = dtom(ip);
794 #if IPDIVERT
795 if (frag_divert_port) {
796 struct mbuf m;
797 m.m_next = 0;
798 m.m_len = hlen;
799 m.m_data = (char *) ip;
800 ip->ip_len += hlen;
801 HTONS(ip->ip_len);
802 HTONS(ip->ip_off);
803 HTONS(ip->ip_id);
804 ip->ip_sum = 0;
805 ip->ip_sum = in_cksum(&m, hlen);
806 NTOHS(ip->ip_id);
807 NTOHS(ip->ip_off);
808 NTOHS(ip->ip_len);
809 ip->ip_len -= hlen;
810 }
811 #endif
812 } else
813 if (fp)
814 ip_freef(fp);
815 } else
816 ip->ip_len -= hlen;
817
818 #if IPDIVERT
819 /*
820 * Divert reassembled packets to the divert protocol if required
821 * If divert port is null then cookie should be too,
822 * so we shouldn't need to clear them here. Assume ip_divert does so.
823 */
824 if (frag_divert_port) {
825 ipstat.ips_delivered++;
826 ip_divert_port = frag_divert_port;
827 frag_divert_port = 0;
828 (*ip_protox[IPPROTO_DIVERT]->pr_input)(m, hlen);
829 return;
830 }
831
832 /* Don't let packets divert themselves */
833 if (ip->ip_p == IPPROTO_DIVERT) {
834 ipstat.ips_noproto++;
835 goto bad;
836 }
837
838 #endif
839
840 /*
841 * Switch out to protocol's input routine.
842 */
843 ipstat.ips_delivered++;
844
845 KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr,
846 ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
847
848 (*ip_protox[ip->ip_p]->pr_input)(m, hlen);
849 #if IPFIREWALL_FORWARD
850 ip_fw_fwd_addr = NULL; /* tcp needed it */
851 #endif
852 return;
853 bad:
854 #if IPFIREWALL_FORWARD
855 ip_fw_fwd_addr = NULL;
856 #endif
857 KERNEL_DEBUG(DBG_LAYER_END, 0,0,0,0,0);
858 m_freem(m);
859 }
860
861 /*
862 * IP software interrupt routine - to go away sometime soon
863 */
864 void
865 ipintr(void)
866 {
867 int s;
868 struct mbuf *m;
869
870 KERNEL_DEBUG(DBG_FNC_IP_INPUT | DBG_FUNC_START, 0,0,0,0,0);
871
872 while(1) {
873 s = splimp();
874 IF_DEQUEUE(&ipintrq, m);
875 splx(s);
876 if (m == 0) {
877 KERNEL_DEBUG(DBG_FNC_IP_INPUT | DBG_FUNC_END, 0,0,0,0,0);
878 return;
879 }
880
881 ip_input(m);
882 }
883 }
884
885 NETISR_SET(NETISR_IP, ipintr);
886
887 /*
888 * Take incoming datagram fragment and try to
889 * reassemble it into whole datagram. If a chain for
890 * reassembly of this datagram already exists, then it
891 * is given as fp; otherwise have to make a chain.
892 */
893 static struct ip *
894 ip_reass(m, fp, where)
895 register struct mbuf *m;
896 register struct ipq *fp;
897 struct ipq *where;
898 {
899 struct ip *ip = mtod(m, struct ip *);
900 register struct mbuf *p = 0, *q, *nq;
901 struct mbuf *t;
902 int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
903 int i, next;
904
905 /*
906 * Presence of header sizes in mbufs
907 * would confuse code below.
908 */
909 m->m_data += hlen;
910 m->m_len -= hlen;
911
912 if (m->m_pkthdr.csum_flags & CSUM_TCP_SUM16)
913 m->m_pkthdr.csum_flags = 0;
914 /*
915 * If first fragment to arrive, create a reassembly queue.
916 */
917 if (fp == 0) {
918 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
919 goto dropfrag;
920 fp = mtod(t, struct ipq *);
921 insque((void *) fp, (void *) where);
922 nipq++;
923 fp->ipq_ttl = IPFRAGTTL;
924 fp->ipq_p = ip->ip_p;
925 fp->ipq_id = ip->ip_id;
926 fp->ipq_src = ip->ip_src;
927 fp->ipq_dst = ip->ip_dst;
928 fp->ipq_frags = m;
929 m->m_nextpkt = NULL;
930 #if IPDIVERT
931 fp->ipq_divert = 0;
932 fp->ipq_div_cookie = 0;
933 #endif
934 goto inserted;
935 }
936
937 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
938
939 /*
940 * Find a segment which begins after this one does.
941 */
942 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
943 if (GETIP(q)->ip_off > ip->ip_off)
944 break;
945
946 /*
947 * If there is a preceding segment, it may provide some of
948 * our data already. If so, drop the data from the incoming
949 * segment. If it provides all of our data, drop us, otherwise
950 * stick new segment in the proper place.
951 */
952 if (p) {
953 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
954 if (i > 0) {
955 if (i >= ip->ip_len)
956 goto dropfrag;
957 m_adj(dtom(ip), i);
958 m->m_pkthdr.csum_flags = 0;
959 ip->ip_off += i;
960 ip->ip_len -= i;
961 }
962 m->m_nextpkt = p->m_nextpkt;
963 p->m_nextpkt = m;
964 } else {
965 m->m_nextpkt = fp->ipq_frags;
966 fp->ipq_frags = m;
967 }
968
969 /*
970 * While we overlap succeeding segments trim them or,
971 * if they are completely covered, dequeue them.
972 */
973 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
974 q = nq) {
975 i = (ip->ip_off + ip->ip_len) -
976 GETIP(q)->ip_off;
977 if (i < GETIP(q)->ip_len) {
978 GETIP(q)->ip_len -= i;
979 GETIP(q)->ip_off += i;
980 m_adj(q, i);
981 q->m_pkthdr.csum_flags = 0;
982 break;
983 }
984 nq = q->m_nextpkt;
985 m->m_nextpkt = nq;
986 m_freem(q);
987 }
988
989 inserted:
990
991 #if IPDIVERT
992 /*
993 * Any fragment diverting causes the whole packet to divert
994 */
995 if (frag_divert_port) {
996 fp->ipq_divert = frag_divert_port;
997 fp->ipq_div_cookie = ip_divert_cookie;
998 }
999 frag_divert_port = 0;
1000 ip_divert_cookie = 0;
1001 #endif
1002
1003 /*
1004 * Check for complete reassembly.
1005 */
1006 next = 0;
1007 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1008 if (GETIP(q)->ip_off != next)
1009 return (0);
1010 next += GETIP(q)->ip_len;
1011 }
1012 /* Make sure the last packet didn't have the IP_MF flag */
1013 if (p->m_flags & M_FRAG)
1014 return (0);
1015
1016 /*
1017 * Reassembly is complete. Make sure the packet is a sane size.
1018 */
1019 q = fp->ipq_frags;
1020 ip = GETIP(q);
1021 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1022 ipstat.ips_toolong++;
1023 ip_freef(fp);
1024 return (0);
1025 }
1026
1027 /*
1028 * Concatenate fragments.
1029 */
1030 m = q;
1031 t = m->m_next;
1032 m->m_next = 0;
1033 m_cat(m, t);
1034 nq = q->m_nextpkt;
1035 q->m_nextpkt = 0;
1036 for (q = nq; q != NULL; q = nq) {
1037 nq = q->m_nextpkt;
1038 q->m_nextpkt = NULL;
1039 if (q->m_pkthdr.csum_flags & CSUM_TCP_SUM16)
1040 m->m_pkthdr.csum_flags = 0;
1041 else {
1042 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data ;
1043 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1044 }
1045 m_cat(m, q);
1046 }
1047
1048 #if IPDIVERT
1049 /*
1050 * extract divert port for packet, if any
1051 */
1052 frag_divert_port = fp->ipq_divert;
1053 ip_divert_cookie = fp->ipq_div_cookie;
1054 #endif
1055
1056 /*
1057 * Create header for new ip packet by
1058 * modifying header of first packet;
1059 * dequeue and discard fragment reassembly header.
1060 * Make header visible.
1061 */
1062 ip->ip_len = next;
1063 ip->ip_src = fp->ipq_src;
1064 ip->ip_dst = fp->ipq_dst;
1065 remque((void *) fp);
1066 nipq--;
1067 (void) m_free(dtom(fp));
1068 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1069 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1070 /* some debugging cruft by sklower, below, will go away soon */
1071 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1072 register int plen = 0;
1073 for (t = m; m; m = m->m_next)
1074 plen += m->m_len;
1075 t->m_pkthdr.len = plen;
1076 }
1077 return (ip);
1078
1079 dropfrag:
1080 #if IPDIVERT
1081 frag_divert_port = 0;
1082 ip_divert_cookie = 0;
1083 #endif
1084 ipstat.ips_fragdropped++;
1085 m_freem(m);
1086 return (0);
1087
1088 #undef GETIP
1089 }
1090
1091 /*
1092 * Free a fragment reassembly header and all
1093 * associated datagrams.
1094 */
1095 static void
1096 ip_freef(fp)
1097 struct ipq *fp;
1098 {
1099 register struct mbuf *q;
1100
1101 while (fp->ipq_frags) {
1102 q = fp->ipq_frags;
1103 fp->ipq_frags = q->m_nextpkt;
1104 m_freem(q);
1105 }
1106 remque((void *) fp);
1107 (void) m_free(dtom(fp));
1108 nipq--;
1109 }
1110
1111 /*
1112 * IP timer processing;
1113 * if a timer expires on a reassembly
1114 * queue, discard it.
1115 */
1116 void
1117 ip_slowtimo()
1118 {
1119 register struct ipq *fp;
1120 int s = splnet();
1121 int i;
1122
1123 for (i = 0; i < IPREASS_NHASH; i++) {
1124 fp = ipq[i].next;
1125 if (fp == 0)
1126 continue;
1127 while (fp != &ipq[i]) {
1128 --fp->ipq_ttl;
1129 fp = fp->next;
1130 if (fp->prev->ipq_ttl == 0) {
1131 ipstat.ips_fragtimeout++;
1132 ip_freef(fp->prev);
1133 }
1134 }
1135 }
1136 ipflow_slowtimo();
1137 splx(s);
1138 }
1139
1140 /*
1141 * Drain off all datagram fragments.
1142 */
1143 void
1144 ip_drain()
1145 {
1146 int i;
1147
1148 for (i = 0; i < IPREASS_NHASH; i++) {
1149 while (ipq[i].next != &ipq[i]) {
1150 ipstat.ips_fragdropped++;
1151 ip_freef(ipq[i].next);
1152 }
1153 }
1154 in_rtqdrain();
1155 }
1156
1157 /*
1158 * Do option processing on a datagram,
1159 * possibly discarding it if bad options are encountered,
1160 * or forwarding it if source-routed.
1161 * Returns 1 if packet has been forwarded/freed,
1162 * 0 if the packet should be processed further.
1163 */
1164 static int
1165 ip_dooptions(m)
1166 struct mbuf *m;
1167 {
1168 register struct ip *ip = mtod(m, struct ip *);
1169 register u_char *cp;
1170 register struct ip_timestamp *ipt;
1171 register struct in_ifaddr *ia;
1172 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1173 struct in_addr *sin, dst;
1174 n_time ntime;
1175
1176 dst = ip->ip_dst;
1177 cp = (u_char *)(ip + 1);
1178 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1179 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1180 opt = cp[IPOPT_OPTVAL];
1181 if (opt == IPOPT_EOL)
1182 break;
1183 if (opt == IPOPT_NOP)
1184 optlen = 1;
1185 else {
1186 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1187 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1188 goto bad;
1189 }
1190 optlen = cp[IPOPT_OLEN];
1191 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1192 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1193 goto bad;
1194 }
1195 }
1196 switch (opt) {
1197
1198 default:
1199 break;
1200
1201 /*
1202 * Source routing with record.
1203 * Find interface with current destination address.
1204 * If none on this machine then drop if strictly routed,
1205 * or do nothing if loosely routed.
1206 * Record interface address and bring up next address
1207 * component. If strictly routed make sure next
1208 * address is on directly accessible net.
1209 */
1210 case IPOPT_LSRR:
1211 case IPOPT_SSRR:
1212 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1213 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1214 goto bad;
1215 }
1216 ipaddr.sin_addr = ip->ip_dst;
1217 ia = (struct in_ifaddr *)
1218 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1219 if (ia == 0) {
1220 if (opt == IPOPT_SSRR) {
1221 type = ICMP_UNREACH;
1222 code = ICMP_UNREACH_SRCFAIL;
1223 goto bad;
1224 }
1225 if (!ip_dosourceroute)
1226 goto nosourcerouting;
1227 /*
1228 * Loose routing, and not at next destination
1229 * yet; nothing to do except forward.
1230 */
1231 break;
1232 }
1233 off--; /* 0 origin */
1234 if (off > optlen - sizeof(struct in_addr)) {
1235 /*
1236 * End of source route. Should be for us.
1237 */
1238 if (!ip_acceptsourceroute)
1239 goto nosourcerouting;
1240 save_rte(cp, ip->ip_src);
1241 break;
1242 }
1243
1244 if (!ip_dosourceroute) {
1245 if (ipforwarding) {
1246 char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1247 /*
1248 * Acting as a router, so generate ICMP
1249 */
1250 nosourcerouting:
1251 strcpy(buf, inet_ntoa(ip->ip_dst));
1252 log(LOG_WARNING,
1253 "attempted source route from %s to %s\n",
1254 inet_ntoa(ip->ip_src), buf);
1255 type = ICMP_UNREACH;
1256 code = ICMP_UNREACH_SRCFAIL;
1257 goto bad;
1258 } else {
1259 /*
1260 * Not acting as a router, so silently drop.
1261 */
1262 ipstat.ips_cantforward++;
1263 m_freem(m);
1264 return (1);
1265 }
1266 }
1267
1268 /*
1269 * locate outgoing interface
1270 */
1271 (void)memcpy(&ipaddr.sin_addr, cp + off,
1272 sizeof(ipaddr.sin_addr));
1273
1274 if (opt == IPOPT_SSRR) {
1275 #define INA struct in_ifaddr *
1276 #define SA struct sockaddr *
1277 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1278 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1279 } else
1280 ia = ip_rtaddr(ipaddr.sin_addr);
1281 if (ia == 0) {
1282 type = ICMP_UNREACH;
1283 code = ICMP_UNREACH_SRCFAIL;
1284 goto bad;
1285 }
1286 ip->ip_dst = ipaddr.sin_addr;
1287 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1288 sizeof(struct in_addr));
1289 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1290 /*
1291 * Let ip_intr's mcast routing check handle mcast pkts
1292 */
1293 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1294 break;
1295
1296 case IPOPT_RR:
1297 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1298 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1299 goto bad;
1300 }
1301 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1302 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1303 goto bad;
1304 }
1305 /*
1306 * If no space remains, ignore.
1307 */
1308 off--; /* 0 origin */
1309 if (off > optlen - sizeof(struct in_addr))
1310 break;
1311 (void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1312 sizeof(ipaddr.sin_addr));
1313 /*
1314 * locate outgoing interface; if we're the destination,
1315 * use the incoming interface (should be same).
1316 */
1317 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1318 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1319 type = ICMP_UNREACH;
1320 code = ICMP_UNREACH_HOST;
1321 goto bad;
1322 }
1323 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1324 sizeof(struct in_addr));
1325 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1326 break;
1327
1328 case IPOPT_TS:
1329 code = cp - (u_char *)ip;
1330 ipt = (struct ip_timestamp *)cp;
1331 if (ipt->ipt_len < 5)
1332 goto bad;
1333 if (ipt->ipt_ptr > ipt->ipt_len - sizeof(int32_t)) {
1334 if (++ipt->ipt_oflw == 0)
1335 goto bad;
1336 break;
1337 }
1338 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
1339 switch (ipt->ipt_flg) {
1340
1341 case IPOPT_TS_TSONLY:
1342 break;
1343
1344 case IPOPT_TS_TSANDADDR:
1345 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1346 sizeof(struct in_addr) > ipt->ipt_len)
1347 goto bad;
1348 ipaddr.sin_addr = dst;
1349 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1350 m->m_pkthdr.rcvif);
1351 if (ia == 0)
1352 continue;
1353 (void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1354 sizeof(struct in_addr));
1355 ipt->ipt_ptr += sizeof(struct in_addr);
1356 break;
1357
1358 case IPOPT_TS_PRESPEC:
1359 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1360 sizeof(struct in_addr) > ipt->ipt_len)
1361 goto bad;
1362 (void)memcpy(&ipaddr.sin_addr, sin,
1363 sizeof(struct in_addr));
1364 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1365 continue;
1366 ipt->ipt_ptr += sizeof(struct in_addr);
1367 break;
1368
1369 default:
1370 goto bad;
1371 }
1372 ntime = iptime();
1373 (void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
1374 sizeof(n_time));
1375 ipt->ipt_ptr += sizeof(n_time);
1376 }
1377 }
1378 if (forward && ipforwarding) {
1379 ip_forward(m, 1);
1380 return (1);
1381 }
1382 return (0);
1383 bad:
1384 ip->ip_len -= IP_VHL_HL(ip->ip_vhl) << 2; /* XXX icmp_error adds in hdr length */
1385 icmp_error(m, type, code, 0, 0);
1386 ipstat.ips_badoptions++;
1387 return (1);
1388 }
1389
1390 /*
1391 * Given address of next destination (final or next hop),
1392 * return internet address info of interface to be used to get there.
1393 */
1394 static struct in_ifaddr *
1395 ip_rtaddr(dst)
1396 struct in_addr dst;
1397 {
1398 register struct sockaddr_in *sin;
1399
1400 sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1401
1402 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
1403 if (ipforward_rt.ro_rt) {
1404 RTFREE(ipforward_rt.ro_rt);
1405 ipforward_rt.ro_rt = 0;
1406 }
1407 sin->sin_family = AF_INET;
1408 sin->sin_len = sizeof(*sin);
1409 sin->sin_addr = dst;
1410
1411 rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1412 }
1413 if (ipforward_rt.ro_rt == 0)
1414 return ((struct in_ifaddr *)0);
1415 return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
1416 }
1417
1418 /*
1419 * Save incoming source route for use in replies,
1420 * to be picked up later by ip_srcroute if the receiver is interested.
1421 */
1422 void
1423 save_rte(option, dst)
1424 u_char *option;
1425 struct in_addr dst;
1426 {
1427 unsigned olen;
1428
1429 olen = option[IPOPT_OLEN];
1430 #if DIAGNOSTIC
1431 if (ipprintfs)
1432 printf("save_rte: olen %d\n", olen);
1433 #endif
1434 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1435 return;
1436 bcopy(option, ip_srcrt.srcopt, olen);
1437 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1438 ip_srcrt.dst = dst;
1439 }
1440
1441 /*
1442 * Retrieve incoming source route for use in replies,
1443 * in the same form used by setsockopt.
1444 * The first hop is placed before the options, will be removed later.
1445 */
1446 struct mbuf *
1447 ip_srcroute()
1448 {
1449 register struct in_addr *p, *q;
1450 register struct mbuf *m;
1451
1452 if (ip_nhops == 0)
1453 return ((struct mbuf *)0);
1454 m = m_get(M_DONTWAIT, MT_HEADER);
1455 if (m == 0)
1456 return ((struct mbuf *)0);
1457
1458 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1459
1460 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1461 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1462 OPTSIZ;
1463 #if DIAGNOSTIC
1464 if (ipprintfs)
1465 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1466 #endif
1467
1468 /*
1469 * First save first hop for return route
1470 */
1471 p = &ip_srcrt.route[ip_nhops - 1];
1472 *(mtod(m, struct in_addr *)) = *p--;
1473 #if DIAGNOSTIC
1474 if (ipprintfs)
1475 printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1476 #endif
1477
1478 /*
1479 * Copy option fields and padding (nop) to mbuf.
1480 */
1481 ip_srcrt.nop = IPOPT_NOP;
1482 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1483 (void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1484 &ip_srcrt.nop, OPTSIZ);
1485 q = (struct in_addr *)(mtod(m, caddr_t) +
1486 sizeof(struct in_addr) + OPTSIZ);
1487 #undef OPTSIZ
1488 /*
1489 * Record return path as an IP source route,
1490 * reversing the path (pointers are now aligned).
1491 */
1492 while (p >= ip_srcrt.route) {
1493 #if DIAGNOSTIC
1494 if (ipprintfs)
1495 printf(" %lx", (u_long)ntohl(q->s_addr));
1496 #endif
1497 *q++ = *p--;
1498 }
1499 /*
1500 * Last hop goes to final destination.
1501 */
1502 *q = ip_srcrt.dst;
1503 #if DIAGNOSTIC
1504 if (ipprintfs)
1505 printf(" %lx\n", (u_long)ntohl(q->s_addr));
1506 #endif
1507 return (m);
1508 }
1509
1510 /*
1511 * Strip out IP options, at higher
1512 * level protocol in the kernel.
1513 * Second argument is buffer to which options
1514 * will be moved, and return value is their length.
1515 * XXX should be deleted; last arg currently ignored.
1516 */
1517 void
1518 ip_stripoptions(m, mopt)
1519 register struct mbuf *m;
1520 struct mbuf *mopt;
1521 {
1522 register int i;
1523 struct ip *ip = mtod(m, struct ip *);
1524 register caddr_t opts;
1525 int olen;
1526
1527 olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1528 opts = (caddr_t)(ip + 1);
1529 i = m->m_len - (sizeof (struct ip) + olen);
1530 bcopy(opts + olen, opts, (unsigned)i);
1531 m->m_len -= olen;
1532 if (m->m_flags & M_PKTHDR)
1533 m->m_pkthdr.len -= olen;
1534 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1535 }
1536
1537 u_char inetctlerrmap[PRC_NCMDS] = {
1538 0, 0, 0, 0,
1539 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1540 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1541 EMSGSIZE, EHOSTUNREACH, 0, 0,
1542 0, 0, 0, 0,
1543 ENOPROTOOPT
1544 };
1545
1546 /*
1547 * Forward a packet. If some error occurs return the sender
1548 * an icmp packet. Note we can't always generate a meaningful
1549 * icmp message because icmp doesn't have a large enough repertoire
1550 * of codes and types.
1551 *
1552 * If not forwarding, just drop the packet. This could be confusing
1553 * if ipforwarding was zero but some routing protocol was advancing
1554 * us as a gateway to somewhere. However, we must let the routing
1555 * protocol deal with that.
1556 *
1557 * The srcrt parameter indicates whether the packet is being forwarded
1558 * via a source route.
1559 */
1560 #ifndef NATPT
1561 static
1562 #endif
1563 void
1564 ip_forward(m, srcrt)
1565 struct mbuf *m;
1566 int srcrt;
1567 {
1568 register struct ip *ip = mtod(m, struct ip *);
1569 register struct sockaddr_in *sin;
1570 register struct rtentry *rt;
1571 int error, type = 0, code = 0;
1572 struct mbuf *mcopy;
1573 n_long dest;
1574 struct ifnet *destifp;
1575 #if IPSEC
1576 struct ifnet dummyifp;
1577 #endif
1578
1579 dest = 0;
1580 #if DIAGNOSTIC
1581 if (ipprintfs)
1582 printf("forward: src %lx dst %lx ttl %x\n",
1583 (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1584 ip->ip_ttl);
1585 #endif
1586
1587
1588 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1589 ipstat.ips_cantforward++;
1590 m_freem(m);
1591 return;
1592 }
1593 HTONS(ip->ip_id);
1594 if (ip->ip_ttl <= IPTTLDEC) {
1595 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1596 return;
1597 }
1598 ip->ip_ttl -= IPTTLDEC;
1599
1600 #if defined(PM)
1601 if (doRoute)
1602 {
1603 struct route *ipfw_rt;
1604
1605 if ((ipfw_rt = pm_route(m)) != NULL)
1606 {
1607 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1608 #if IPSEC
1609 ipsec_setsocket(m, NULL);
1610 #endif /*IPSEC*/
1611 error = ip_output(m, (struct mbuf *)0, ipfw_rt,
1612 IP_FORWARDING | IP_PROTOCOLROUTE , 0);
1613 goto clearAway;
1614 }
1615
1616 }
1617 #endif
1618
1619 sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1620 if ((rt = ipforward_rt.ro_rt) == 0 ||
1621 ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1622 if (ipforward_rt.ro_rt) {
1623 RTFREE(ipforward_rt.ro_rt);
1624 ipforward_rt.ro_rt = 0;
1625 }
1626 sin->sin_family = AF_INET;
1627 sin->sin_len = sizeof(*sin);
1628 sin->sin_addr = ip->ip_dst;
1629
1630 rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1631 if (ipforward_rt.ro_rt == 0) {
1632 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1633 return;
1634 }
1635 rt = ipforward_rt.ro_rt;
1636 }
1637
1638 /*
1639 * Save at most 64 bytes of the packet in case
1640 * we need to generate an ICMP message to the src.
1641 */
1642 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1643
1644 /*
1645 * If forwarding packet using same interface that it came in on,
1646 * perhaps should send a redirect to sender to shortcut a hop.
1647 * Only send redirect if source is sending directly to us,
1648 * and if packet was not source routed (or has any options).
1649 * Also, don't send redirect if forwarding using a default route
1650 * or a route modified by a redirect.
1651 */
1652 #define satosin(sa) ((struct sockaddr_in *)(sa))
1653 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1654 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1655 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1656 ipsendredirects && !srcrt) {
1657 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
1658 u_long src = ntohl(ip->ip_src.s_addr);
1659
1660 if (RTA(rt) &&
1661 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1662 if (rt->rt_flags & RTF_GATEWAY)
1663 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1664 else
1665 dest = ip->ip_dst.s_addr;
1666 /* Router requirements says to only send host redirects */
1667 type = ICMP_REDIRECT;
1668 code = ICMP_REDIRECT_HOST;
1669 #if DIAGNOSTIC
1670 if (ipprintfs)
1671 printf("redirect (%d) to %lx\n", code, (u_long)dest);
1672 #endif
1673 }
1674 }
1675
1676 #if IPSEC
1677 ipsec_setsocket(m, NULL);
1678 #endif /*IPSEC*/
1679 error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1680 IP_FORWARDING, 0);
1681 #if defined(PM)
1682 clearAway:;
1683 #endif
1684 if (error)
1685 ipstat.ips_cantforward++;
1686 else {
1687 ipstat.ips_forward++;
1688 if (type)
1689 ipstat.ips_redirectsent++;
1690 else {
1691 if (mcopy) {
1692 ipflow_create(&ipforward_rt, mcopy);
1693 m_freem(mcopy);
1694 }
1695 return;
1696 }
1697 }
1698 if (mcopy == NULL)
1699 return;
1700 destifp = NULL;
1701
1702 switch (error) {
1703
1704 case 0: /* forwarded, but need redirect */
1705 /* type, code set above */
1706 break;
1707
1708 case ENETUNREACH: /* shouldn't happen, checked above */
1709 case EHOSTUNREACH:
1710 case ENETDOWN:
1711 case EHOSTDOWN:
1712 default:
1713 type = ICMP_UNREACH;
1714 code = ICMP_UNREACH_HOST;
1715 break;
1716
1717 case EMSGSIZE:
1718 type = ICMP_UNREACH;
1719 code = ICMP_UNREACH_NEEDFRAG;
1720 #ifndef IPSEC
1721 if (ipforward_rt.ro_rt)
1722 destifp = ipforward_rt.ro_rt->rt_ifp;
1723 #else
1724 /*
1725 * If the packet is routed over IPsec tunnel, tell the
1726 * originator the tunnel MTU.
1727 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1728 * XXX quickhack!!!
1729 */
1730 if (ipforward_rt.ro_rt) {
1731 struct secpolicy *sp = NULL;
1732 int ipsecerror;
1733 int ipsechdr;
1734 struct route *ro;
1735
1736 sp = ipsec4_getpolicybyaddr(mcopy,
1737 IPSEC_DIR_OUTBOUND,
1738 IP_FORWARDING,
1739 &ipsecerror);
1740
1741 if (sp == NULL)
1742 destifp = ipforward_rt.ro_rt->rt_ifp;
1743 else {
1744 /* count IPsec header size */
1745 ipsechdr = ipsec4_hdrsiz(mcopy,
1746 IPSEC_DIR_OUTBOUND,
1747 NULL);
1748
1749 /*
1750 * find the correct route for outer IPv4
1751 * header, compute tunnel MTU.
1752 *
1753 * XXX BUG ALERT
1754 * The "dummyifp" code relies upon the fact
1755 * that icmp_error() touches only ifp->if_mtu.
1756 */
1757 /*XXX*/
1758 destifp = NULL;
1759 if (sp->req != NULL
1760 && sp->req->sav != NULL
1761 && sp->req->sav->sah != NULL) {
1762 ro = &sp->req->sav->sah->sa_route;
1763 if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1764 dummyifp.if_mtu =
1765 ro->ro_rt->rt_ifp->if_mtu;
1766 dummyifp.if_mtu -= ipsechdr;
1767 destifp = &dummyifp;
1768 }
1769 }
1770
1771 key_freesp(sp);
1772 }
1773 }
1774 #endif /*IPSEC*/
1775 ipstat.ips_cantfrag++;
1776 break;
1777
1778 case ENOBUFS:
1779 type = ICMP_SOURCEQUENCH;
1780 code = 0;
1781 break;
1782 }
1783 icmp_error(mcopy, type, code, dest, destifp);
1784 }
1785
1786 void
1787 ip_savecontrol(inp, mp, ip, m)
1788 register struct inpcb *inp;
1789 register struct mbuf **mp;
1790 register struct ip *ip;
1791 register struct mbuf *m;
1792 {
1793 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1794 struct timeval tv;
1795
1796 microtime(&tv);
1797 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1798 SCM_TIMESTAMP, SOL_SOCKET);
1799 if (*mp)
1800 mp = &(*mp)->m_next;
1801 }
1802 if (inp->inp_flags & INP_RECVDSTADDR) {
1803 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1804 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1805 if (*mp)
1806 mp = &(*mp)->m_next;
1807 }
1808 #ifdef notyet
1809 /* XXX
1810 * Moving these out of udp_input() made them even more broken
1811 * than they already were.
1812 */
1813 /* options were tossed already */
1814 if (inp->inp_flags & INP_RECVOPTS) {
1815 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1816 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1817 if (*mp)
1818 mp = &(*mp)->m_next;
1819 }
1820 /* ip_srcroute doesn't do what we want here, need to fix */
1821 if (inp->inp_flags & INP_RECVRETOPTS) {
1822 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1823 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1824 if (*mp)
1825 mp = &(*mp)->m_next;
1826 }
1827 #endif
1828 if (inp->inp_flags & INP_RECVIF) {
1829 struct ifnet *ifp;
1830 struct sdlbuf {
1831 struct sockaddr_dl sdl;
1832 u_char pad[32];
1833 } sdlbuf;
1834 struct sockaddr_dl *sdp;
1835 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1836
1837 if (((ifp = m->m_pkthdr.rcvif))
1838 && ( ifp->if_index && (ifp->if_index <= if_index))) {
1839 sdp = (struct sockaddr_dl *)(ifnet_addrs
1840 [ifp->if_index - 1]->ifa_addr);
1841 /*
1842 * Change our mind and don't try copy.
1843 */
1844 if ((sdp->sdl_family != AF_LINK)
1845 || (sdp->sdl_len > sizeof(sdlbuf))) {
1846 goto makedummy;
1847 }
1848 bcopy(sdp, sdl2, sdp->sdl_len);
1849 } else {
1850 makedummy:
1851 sdl2->sdl_len
1852 = offsetof(struct sockaddr_dl, sdl_data[0]);
1853 sdl2->sdl_family = AF_LINK;
1854 sdl2->sdl_index = 0;
1855 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1856 }
1857 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1858 IP_RECVIF, IPPROTO_IP);
1859 if (*mp)
1860 mp = &(*mp)->m_next;
1861 }
1862 }
1863
1864 int
1865 ip_rsvp_init(struct socket *so)
1866 {
1867 if (so->so_type != SOCK_RAW ||
1868 so->so_proto->pr_protocol != IPPROTO_RSVP)
1869 return EOPNOTSUPP;
1870
1871 if (ip_rsvpd != NULL)
1872 return EADDRINUSE;
1873
1874 ip_rsvpd = so;
1875 /*
1876 * This may seem silly, but we need to be sure we don't over-increment
1877 * the RSVP counter, in case something slips up.
1878 */
1879 if (!ip_rsvp_on) {
1880 ip_rsvp_on = 1;
1881 rsvp_on++;
1882 }
1883
1884 return 0;
1885 }
1886
1887 int
1888 ip_rsvp_done(void)
1889 {
1890 ip_rsvpd = NULL;
1891 /*
1892 * This may seem silly, but we need to be sure we don't over-decrement
1893 * the RSVP counter, in case something slips up.
1894 */
1895 if (ip_rsvp_on) {
1896 ip_rsvp_on = 0;
1897 rsvp_on--;
1898 }
1899 return 0;
1900 }