2 * Copyright (c) 2003-2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * Copyright (c) 1982, 1986, 1988, 1993
60 * The Regents of the University of California. All rights reserved.
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
90 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/malloc.h>
97 #include <sys/domain.h>
98 #include <sys/protosw.h>
99 #include <sys/socket.h>
100 #include <sys/socketvar.h>
101 #include <sys/errno.h>
102 #include <sys/time.h>
103 #include <sys/kernel.h>
104 #include <sys/syslog.h>
105 #include <sys/sysctl.h>
106 #include <sys/proc.h>
107 #include <sys/kauth.h>
108 #include <sys/mcache.h>
110 #include <mach/mach_time.h>
111 #include <mach/sdt.h>
112 #include <pexpert/pexpert.h>
113 #include <dev/random/randomdev.h>
116 #include <net/if_var.h>
117 #include <net/if_types.h>
118 #include <net/if_dl.h>
119 #include <net/route.h>
120 #include <net/kpi_protocol.h>
121 #include <net/ntstat.h>
122 #include <net/init.h>
123 #include <net/net_osdep.h>
124 #include <net/net_perf.h>
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/ip_icmp.h>
132 #include <netinet/kpi_ipfilter_var.h>
133 #include <netinet/ip6.h>
134 #include <netinet6/in6_var.h>
135 #include <netinet6/ip6_var.h>
136 #include <netinet/in_pcb.h>
137 #include <netinet/icmp6.h>
138 #include <netinet6/in6_ifattach.h>
139 #include <netinet6/nd6.h>
140 #include <netinet6/scope6_var.h>
141 #include <netinet6/ip6protosw.h>
144 #include <netinet6/ipsec.h>
145 #include <netinet6/ipsec6.h>
146 extern int ipsec_bypass
;
150 #include <netinet6/ip6_fw.h>
154 #include <netinet/ip_fw.h>
155 #include <netinet/ip_dummynet.h>
156 #endif /* DUMMYNET */
158 /* we need it for NLOOP. */
162 #include <net/pfvar.h>
165 struct ip6protosw
*ip6_protox
[IPPROTO_MAX
];
167 static lck_grp_attr_t
*in6_ifaddr_rwlock_grp_attr
;
168 static lck_grp_t
*in6_ifaddr_rwlock_grp
;
169 static lck_attr_t
*in6_ifaddr_rwlock_attr
;
170 decl_lck_rw_data(, in6_ifaddr_rwlock
);
172 /* Protected by in6_ifaddr_rwlock */
173 struct in6_ifaddr
*in6_ifaddrs
= NULL
;
175 #define IN6_IFSTAT_REQUIRE_ALIGNED_64(f) \
176 _CASSERT(!(offsetof(struct in6_ifstat, f) % sizeof (uint64_t)))
178 #define ICMP6_IFSTAT_REQUIRE_ALIGNED_64(f) \
179 _CASSERT(!(offsetof(struct icmp6_ifstat, f) % sizeof (uint64_t)))
183 ip6_fw_chk_t
*ip6_fw_chk_ptr
;
184 ip6_fw_ctl_t
*ip6_fw_ctl_ptr
;
185 int ip6_fw_enable
= 1;
188 struct ip6stat ip6stat
;
190 decl_lck_mtx_data(, proxy6_lock
);
191 decl_lck_mtx_data(static, dad6_mutex_data
);
192 decl_lck_mtx_data(static, nd6_mutex_data
);
193 decl_lck_mtx_data(static, prefix6_mutex_data
);
194 lck_mtx_t
*dad6_mutex
= &dad6_mutex_data
;
195 lck_mtx_t
*nd6_mutex
= &nd6_mutex_data
;
196 lck_mtx_t
*prefix6_mutex
= &prefix6_mutex_data
;
197 #ifdef ENABLE_ADDRSEL
198 decl_lck_mtx_data(static, addrsel_mutex_data
);
199 lck_mtx_t
*addrsel_mutex
= &addrsel_mutex_data
;
201 static lck_attr_t
*ip6_mutex_attr
;
202 static lck_grp_t
*ip6_mutex_grp
;
203 static lck_grp_attr_t
*ip6_mutex_grp_attr
;
205 extern int loopattach_done
;
206 extern void addrsel_policy_init(void);
208 static int sysctl_reset_ip6_input_stats SYSCTL_HANDLER_ARGS
;
209 static int sysctl_ip6_input_measure_bins SYSCTL_HANDLER_ARGS
;
210 static int sysctl_ip6_input_getperf SYSCTL_HANDLER_ARGS
;
211 static void ip6_init_delayed(void);
212 static int ip6_hopopts_input(u_int32_t
*, u_int32_t
*, struct mbuf
**, int *);
215 extern void stfattach(void);
218 SYSCTL_DECL(_net_inet6_ip6
);
220 int ip6_doscopedroute
= 1;
221 SYSCTL_INT(_net_inet6_ip6
, OID_AUTO
, scopedroute
,
222 CTLFLAG_RD
| CTLFLAG_LOCKED
, &ip6_doscopedroute
, 0,
223 "Enable IPv6 scoped routing");
225 static uint32_t ip6_adj_clear_hwcksum
= 0;
226 SYSCTL_UINT(_net_inet6_ip6
, OID_AUTO
, adj_clear_hwcksum
,
227 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_adj_clear_hwcksum
, 0,
228 "Invalidate hwcksum info when adjusting length");
230 static int ip6_input_measure
= 0;
231 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, input_perf
,
232 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
233 &ip6_input_measure
, 0, sysctl_reset_ip6_input_stats
, "I", "Do time measurement");
235 static uint64_t ip6_input_measure_bins
= 0;
236 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, input_perf_bins
,
237 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_input_measure_bins
, 0,
238 sysctl_ip6_input_measure_bins
, "I",
239 "bins for chaining performance data histogram");
241 static net_perf_t net_perf
;
242 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, input_perf_data
,
243 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
244 0, 0, sysctl_ip6_input_getperf
, "S,net_perf",
245 "IP6 input performance data (struct net_perf, net/net_perf.h)");
248 * On platforms which require strict alignment (currently for anything but
249 * i386 or x86_64), check if the IP header pointer is 32-bit aligned; if not,
250 * copy the contents of the mbuf chain into a new chain, and free the original
251 * one. Create some head room in the first mbuf of the new chain, in case
252 * it's needed later on.
254 * RFC 2460 says that IPv6 headers are 64-bit aligned, but network interfaces
255 * mostly align to 32-bit boundaries. Care should be taken never to use 64-bit
256 * load/store operations on the fields in IPv6 headers.
258 #if defined(__i386__) || defined(__x86_64__)
259 #define IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { } while (0)
260 #else /* !__i386__ && !__x86_64__ */
261 #define IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { \
262 if (!IP6_HDR_ALIGNED_P(mtod(_m, caddr_t))) { \
264 struct ifnet *__ifp = (_ifp); \
265 atomic_add_64(&(__ifp)->if_alignerrs, 1); \
266 if (((_m)->m_flags & M_PKTHDR) && \
267 (_m)->m_pkthdr.pkt_hdr != NULL) \
268 (_m)->m_pkthdr.pkt_hdr = NULL; \
269 _n = m_defrag_offset(_m, max_linkhdr, M_NOWAIT); \
271 ip6stat.ip6s_toosmall++; \
276 VERIFY(_n != (_m)); \
281 #endif /* !__i386__ && !__x86_64__ */
284 ip6_proto_input(protocol_family_t protocol
, mbuf_t packet
)
286 #pragma unused(protocol)
288 struct timeval start_tv
;
289 if (ip6_input_measure
)
290 net_perf_start_time(&net_perf
, &start_tv
);
294 if (ip6_input_measure
) {
295 net_perf_measure_time(&net_perf
, &start_tv
, 1);
296 net_perf_histogram(&net_perf
, 1);
302 * IP6 initialization: fill in IP6 protocol switch table.
303 * All protocols not implemented in kernel go to raw IP6 protocol handler.
306 ip6_init(struct ip6protosw
*pp
, struct domain
*dp
)
308 static int ip6_initialized
= 0;
312 domain_unguard_t unguard
;
314 domain_proto_mtx_lock_assert_held();
315 VERIFY((pp
->pr_flags
& (PR_INITIALIZED
|PR_ATTACHED
)) == PR_ATTACHED
);
317 _CASSERT((sizeof (struct ip6_hdr
) +
318 sizeof (struct icmp6_hdr
)) <= _MHLEN
);
324 PE_parse_boot_argn("net.inet6.ip6.scopedroute", &ip6_doscopedroute
,
325 sizeof (ip6_doscopedroute
));
327 pr
= pffindproto_locked(PF_INET6
, IPPROTO_RAW
, SOCK_RAW
);
329 panic("%s: Unable to find [PF_INET6,IPPROTO_RAW,SOCK_RAW]\n",
334 /* Initialize the entire ip6_protox[] array to IPPROTO_RAW. */
335 for (i
= 0; i
< IPPROTO_MAX
; i
++)
336 ip6_protox
[i
] = (struct ip6protosw
*)pr
;
338 * Cycle through IP protocols and put them into the appropriate place
339 * in ip6_protox[], skipping protocols IPPROTO_{IP,RAW}.
341 VERIFY(dp
== inet6domain
&& dp
->dom_family
== PF_INET6
);
342 TAILQ_FOREACH(pr
, &dp
->dom_protosw
, pr_entry
) {
343 VERIFY(pr
->pr_domain
== dp
);
344 if (pr
->pr_protocol
!= 0 && pr
->pr_protocol
!= IPPROTO_RAW
) {
345 /* Be careful to only index valid IP protocols. */
346 if (pr
->pr_protocol
< IPPROTO_MAX
)
347 ip6_protox
[pr
->pr_protocol
] =
348 (struct ip6protosw
*)pr
;
352 ip6_mutex_grp_attr
= lck_grp_attr_alloc_init();
354 ip6_mutex_grp
= lck_grp_alloc_init("ip6", ip6_mutex_grp_attr
);
355 ip6_mutex_attr
= lck_attr_alloc_init();
357 lck_mtx_init(dad6_mutex
, ip6_mutex_grp
, ip6_mutex_attr
);
358 lck_mtx_init(nd6_mutex
, ip6_mutex_grp
, ip6_mutex_attr
);
359 lck_mtx_init(prefix6_mutex
, ip6_mutex_grp
, ip6_mutex_attr
);
360 scope6_init(ip6_mutex_grp
, ip6_mutex_attr
);
362 #ifdef ENABLE_ADDRSEL
363 lck_mtx_init(addrsel_mutex
, ip6_mutex_grp
, ip6_mutex_attr
);
366 lck_mtx_init(&proxy6_lock
, ip6_mutex_grp
, ip6_mutex_attr
);
368 in6_ifaddr_rwlock_grp_attr
= lck_grp_attr_alloc_init();
369 in6_ifaddr_rwlock_grp
= lck_grp_alloc_init("in6_ifaddr_rwlock",
370 in6_ifaddr_rwlock_grp_attr
);
371 in6_ifaddr_rwlock_attr
= lck_attr_alloc_init();
372 lck_rw_init(&in6_ifaddr_rwlock
, in6_ifaddr_rwlock_grp
,
373 in6_ifaddr_rwlock_attr
);
375 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_receive
);
376 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_hdrerr
);
377 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_toobig
);
378 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_noroute
);
379 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_addrerr
);
380 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_protounknown
);
381 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_truncated
);
382 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_discard
);
383 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_deliver
);
384 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_forward
);
385 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_request
);
386 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_discard
);
387 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragok
);
388 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragfail
);
389 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragcreat
);
390 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_reqd
);
391 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_ok
);
392 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_fail
);
393 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mcast
);
394 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mcast
);
396 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_msg
);
397 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_error
);
398 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_dstunreach
);
399 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_adminprohib
);
400 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_timeexceed
);
401 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_paramprob
);
402 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_pkttoobig
);
403 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echo
);
404 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echoreply
);
405 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routersolicit
);
406 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routeradvert
);
407 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighborsolicit
);
408 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighboradvert
);
409 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_redirect
);
410 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldquery
);
411 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldreport
);
412 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mlddone
);
414 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_msg
);
415 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_error
);
416 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_dstunreach
);
417 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_adminprohib
);
418 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_timeexceed
);
419 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_paramprob
);
420 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_pkttoobig
);
421 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echo
);
422 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echoreply
);
423 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routersolicit
);
424 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routeradvert
);
425 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighborsolicit
);
426 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighboradvert
);
427 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_redirect
);
428 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldquery
);
429 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldreport
);
430 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mlddone
);
434 (RandomULong() ^ tv
.tv_usec
) % MAX_TEMP_DESYNC_FACTOR
;
440 icmp6_init(NULL
, dp
);
441 addrsel_policy_init();
444 * P2P interfaces often route the local address to the loopback
445 * interface. At this point, lo0 hasn't been initialized yet, which
446 * means that we need to delay the IPv6 configuration of lo0.
448 net_init_add(ip6_init_delayed
);
450 unguard
= domain_unguard_deploy();
451 i
= proto_register_input(PF_INET6
, ip6_proto_input
, NULL
, 0);
453 panic("%s: failed to register PF_INET6 protocol: %d\n",
457 domain_unguard_release(unguard
);
461 ip6_init_delayed(void)
463 (void) in6_ifattach_prelim(lo_ifp
);
465 /* timer for regeneranation of temporary addresses randomize ID */
466 timeout(in6_tmpaddrtimer
, NULL
,
467 (ip6_temp_preferred_lifetime
- ip6_desync_factor
-
468 ip6_temp_regen_advance
) * hz
);
476 ip6_input(struct mbuf
*m
)
479 int off
= sizeof (struct ip6_hdr
), nest
;
481 u_int32_t rtalert
= ~0;
482 int nxt
= 0, ours
= 0;
483 struct ifnet
*inifp
, *deliverifp
= NULL
;
484 ipfilter_t inject_ipfref
= NULL
;
486 struct in6_ifaddr
*ia6
= NULL
;
487 struct sockaddr_in6
*dst6
;
490 #endif /* DUMMYNET */
492 struct route_in6 rin6
;
494 struct ip_fw_args args
;
495 #endif /* DUMMYNET */
497 #define rin6 ip6ibz.rin6
498 #define args ip6ibz.args
500 /* zero out {rin6, args} */
501 bzero(&ip6ibz
, sizeof (ip6ibz
));
504 * Check if the packet we received is valid after interface filter
507 MBUF_INPUT_CHECK(m
, m
->m_pkthdr
.rcvif
);
508 inifp
= m
->m_pkthdr
.rcvif
;
509 VERIFY(inifp
!= NULL
);
511 /* Perform IP header alignment fixup, if needed */
512 IP6_HDR_ALIGNMENT_FIXUP(m
, inifp
, return);
514 m
->m_pkthdr
.pkt_flags
&= ~PKTF_FORWARDED
;
517 * should the inner packet be considered authentic?
518 * see comment in ah4_input().
520 m
->m_flags
&= ~M_AUTHIPHDR
;
521 m
->m_flags
&= ~M_AUTHIPDGM
;
525 * make sure we don't have onion peering information into m_aux.
530 if ((tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
,
531 KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
532 struct dn_pkt_tag
*dn_tag
;
534 dn_tag
= (struct dn_pkt_tag
*)(tag
+1);
536 args
.fwa_pf_rule
= dn_tag
->dn_pf_rule
;
538 m_tag_delete(m
, tag
);
541 if (args
.fwa_pf_rule
) {
542 ip6
= mtod(m
, struct ip6_hdr
*); /* In case PF got disabled */
546 #endif /* DUMMYNET */
549 * No need to proccess packet twice if we've already seen it.
551 inject_ipfref
= ipf_get_inject_filter(m
);
552 if (inject_ipfref
!= NULL
) {
553 ip6
= mtod(m
, struct ip6_hdr
*);
564 if (m
->m_flags
& M_EXT
) {
565 if (m
->m_next
!= NULL
)
566 ip6stat
.ip6s_mext2m
++;
568 ip6stat
.ip6s_mext1
++;
570 #define M2MMAX (sizeof (ip6stat.ip6s_m2m) / sizeof (ip6stat.ip6s_m2m[0]))
571 if (m
->m_next
!= NULL
) {
572 if (m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
) {
574 ip6stat
.ip6s_m2m
[ifnet_index(lo_ifp
)]++;
575 } else if (inifp
->if_index
< M2MMAX
) {
576 ip6stat
.ip6s_m2m
[inifp
->if_index
]++;
578 ip6stat
.ip6s_m2m
[0]++;
587 * Drop the packet if IPv6 operation is disabled on the interface.
589 if (inifp
->if_eflags
& IFEF_IPV6_DISABLED
)
592 in6_ifstat_inc_na(inifp
, ifs6_in_receive
);
593 ip6stat
.ip6s_total
++;
596 * L2 bridge code and some other code can return mbuf chain
597 * that does not conform to KAME requirement. too bad.
598 * XXX: fails to join if interface MTU > MCLBYTES. jumbogram?
600 if (m
->m_next
!= NULL
&& m
->m_pkthdr
.len
< MCLBYTES
) {
603 MGETHDR(n
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
606 if (n
&& m
->m_pkthdr
.len
> MHLEN
) {
607 MCLGET(n
, M_DONTWAIT
);
608 if ((n
->m_flags
& M_EXT
) == 0) {
616 m_copydata(m
, 0, m
->m_pkthdr
.len
, mtod(n
, caddr_t
));
617 n
->m_len
= m
->m_pkthdr
.len
;
621 IP6_EXTHDR_CHECK(m
, 0, sizeof (struct ip6_hdr
), { goto done
; });
623 if (m
->m_len
< sizeof (struct ip6_hdr
)) {
624 if ((m
= m_pullup(m
, sizeof (struct ip6_hdr
))) == 0) {
625 ip6stat
.ip6s_toosmall
++;
626 in6_ifstat_inc(inifp
, ifs6_in_hdrerr
);
631 ip6
= mtod(m
, struct ip6_hdr
*);
633 if ((ip6
->ip6_vfc
& IPV6_VERSION_MASK
) != IPV6_VERSION
) {
634 ip6stat
.ip6s_badvers
++;
635 in6_ifstat_inc(inifp
, ifs6_in_hdrerr
);
639 ip6stat
.ip6s_nxthist
[ip6
->ip6_nxt
]++;
642 * Check against address spoofing/corruption.
644 if (!(m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
) &&
645 IN6_IS_ADDR_LOOPBACK(&ip6
->ip6_src
)) {
646 ip6stat
.ip6s_badscope
++;
647 in6_ifstat_inc(inifp
, ifs6_in_addrerr
);
650 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
) ||
651 IN6_IS_ADDR_UNSPECIFIED(&ip6
->ip6_dst
)) {
653 * XXX: "badscope" is not very suitable for a multicast source.
655 ip6stat
.ip6s_badscope
++;
656 in6_ifstat_inc(inifp
, ifs6_in_addrerr
);
659 if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6
->ip6_dst
) &&
660 !(m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) {
662 * In this case, the packet should come from the loopback
663 * interface. However, we cannot just check the if_flags,
664 * because ip6_mloopback() passes the "actual" interface
665 * as the outgoing/incoming interface.
667 ip6stat
.ip6s_badscope
++;
668 in6_ifstat_inc(inifp
, ifs6_in_addrerr
);
673 * The following check is not documented in specs. A malicious
674 * party may be able to use IPv4 mapped addr to confuse tcp/udp stack
675 * and bypass security checks (act as if it was from 127.0.0.1 by using
676 * IPv6 src ::ffff:127.0.0.1). Be cautious.
678 * This check chokes if we are in an SIIT cloud. As none of BSDs
679 * support IPv4-less kernel compilation, we cannot support SIIT
680 * environment at all. So, it makes more sense for us to reject any
681 * malicious packets for non-SIIT environment, than try to do a
682 * partial support for SIIT environment.
684 if (IN6_IS_ADDR_V4MAPPED(&ip6
->ip6_src
) ||
685 IN6_IS_ADDR_V4MAPPED(&ip6
->ip6_dst
)) {
686 ip6stat
.ip6s_badscope
++;
687 in6_ifstat_inc(inifp
, ifs6_in_addrerr
);
692 * Reject packets with IPv4 compatible addresses (auto tunnel).
694 * The code forbids auto tunnel relay case in RFC1933 (the check is
695 * stronger than RFC1933). We may want to re-enable it if mech-xx
696 * is revised to forbid relaying case.
698 if (IN6_IS_ADDR_V4COMPAT(&ip6
->ip6_src
) ||
699 IN6_IS_ADDR_V4COMPAT(&ip6
->ip6_dst
)) {
700 ip6stat
.ip6s_badscope
++;
701 in6_ifstat_inc(inifp
, ifs6_in_addrerr
);
707 * Check with the firewall...
709 if (ip6_fw_enable
&& ip6_fw_chk_ptr
) {
711 /* If ipfw says divert, we have to just drop packet */
712 /* use port as a dummy argument */
713 if ((*ip6_fw_chk_ptr
)(&ip6
, NULL
, &port
, &m
)) {
723 * Naively assume we can attribute inbound data to the route we would
724 * use to send to this destination. Asymetric routing breaks this
725 * assumption, but it still allows us to account for traffic from
726 * a remote node in the routing table.
727 * this has a very significant performance impact so we bypass
728 * if nstat_collect is disabled. We may also bypass if the
729 * protocol is tcp in the future because tcp will have a route that
730 * we can use to attribute the data to. That does mean we would not
731 * account for forwarded tcp traffic.
734 struct rtentry
*rte
=
735 ifnet_cached_rtlookup_inet6(inifp
, &ip6
->ip6_src
);
737 nstat_route_rx(rte
, 1, m
->m_pkthdr
.len
, 0);
742 /* for consistency */
743 m
->m_pkthdr
.pkt_proto
= ip6
->ip6_nxt
;
747 #endif /* DUMMYNET */
749 /* Invoke inbound packet filter */
753 error
= pf_af_hook(inifp
, NULL
, &m
, AF_INET6
, TRUE
, &args
);
754 #else /* !DUMMYNET */
755 error
= pf_af_hook(inifp
, NULL
, &m
, AF_INET6
, TRUE
, NULL
);
756 #endif /* !DUMMYNET */
757 if (error
!= 0 || m
== NULL
) {
759 panic("%s: unexpected packet %p\n",
763 /* Already freed by callee */
766 ip6
= mtod(m
, struct ip6_hdr
*);
770 /* drop packets if interface ID portion is already filled */
771 if (!(inifp
->if_flags
& IFF_LOOPBACK
) &&
772 !(m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) {
773 if (IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_src
) &&
774 ip6
->ip6_src
.s6_addr16
[1]) {
775 ip6stat
.ip6s_badscope
++;
778 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
) &&
779 ip6
->ip6_dst
.s6_addr16
[1]) {
780 ip6stat
.ip6s_badscope
++;
785 if (m
->m_pkthdr
.pkt_flags
& PKTF_IFAINFO
) {
786 if (IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_src
))
787 ip6
->ip6_src
.s6_addr16
[1] =
788 htons(m
->m_pkthdr
.src_ifindex
);
789 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
))
790 ip6
->ip6_dst
.s6_addr16
[1] =
791 htons(m
->m_pkthdr
.dst_ifindex
);
793 if (IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_src
))
794 ip6
->ip6_src
.s6_addr16
[1] = htons(inifp
->if_index
);
795 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
))
796 ip6
->ip6_dst
.s6_addr16
[1] = htons(inifp
->if_index
);
802 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
803 struct in6_multi
*in6m
= NULL
;
805 in6_ifstat_inc_na(inifp
, ifs6_in_mcast
);
807 * See if we belong to the destination multicast group on the
810 in6_multihead_lock_shared();
811 IN6_LOOKUP_MULTI(&ip6
->ip6_dst
, inifp
, in6m
);
812 in6_multihead_lock_done();
816 } else if (!nd6_prproxy
) {
817 ip6stat
.ip6s_notmember
++;
818 ip6stat
.ip6s_cantforward
++;
819 in6_ifstat_inc(inifp
, ifs6_in_discard
);
830 * Fast path: see if the target is ourselves.
832 lck_rw_lock_shared(&in6_ifaddr_rwlock
);
833 for (ia6
= in6_ifaddrs
; ia6
!= NULL
; ia6
= ia6
->ia_next
) {
835 * No reference is held on the address, as we just need
836 * to test for a few things while holding the RW lock.
838 if (IN6_ARE_ADDR_EQUAL(&ia6
->ia_addr
.sin6_addr
, &ip6
->ip6_dst
))
844 * For performance, test without acquiring the address lock;
845 * a lot of things in the address are set once and never
846 * changed (e.g. ia_ifp.)
848 if (!(ia6
->ia6_flags
& IN6_IFF_NOTREADY
)) {
849 /* this address is ready */
851 deliverifp
= ia6
->ia_ifp
;
853 * record dst address information into mbuf.
855 (void) ip6_setdstifaddr_info(m
, 0, ia6
);
856 lck_rw_done(&in6_ifaddr_rwlock
);
859 lck_rw_done(&in6_ifaddr_rwlock
);
861 /* address is not ready, so discard the packet. */
862 nd6log((LOG_INFO
, "%s: packet to an unready address %s->%s\n",
863 __func__
, ip6_sprintf(&ip6
->ip6_src
),
864 ip6_sprintf(&ip6
->ip6_dst
)));
867 lck_rw_done(&in6_ifaddr_rwlock
);
870 * Slow path: route lookup.
872 dst6
= SIN6(&rin6
.ro_dst
);
873 dst6
->sin6_len
= sizeof (struct sockaddr_in6
);
874 dst6
->sin6_family
= AF_INET6
;
875 dst6
->sin6_addr
= ip6
->ip6_dst
;
877 rtalloc_scoped_ign((struct route
*)&rin6
,
878 RTF_PRCLONING
, IFSCOPE_NONE
);
879 if (rin6
.ro_rt
!= NULL
)
880 RT_LOCK_SPIN(rin6
.ro_rt
);
882 #define rt6_key(r) (SIN6((r)->rt_nodes->rn_key))
885 * Accept the packet if the forwarding interface to the destination
886 * according to the routing table is the loopback interface,
887 * unless the associated route has a gateway.
888 * Note that this approach causes to accept a packet if there is a
889 * route to the loopback interface for the destination of the packet.
890 * But we think it's even useful in some situations, e.g. when using
891 * a special daemon which wants to intercept the packet.
893 * XXX: some OSes automatically make a cloned route for the destination
894 * of an outgoing packet. If the outgoing interface of the packet
895 * is a loopback one, the kernel would consider the packet to be
896 * accepted, even if we have no such address assinged on the interface.
897 * We check the cloned flag of the route entry to reject such cases,
898 * assuming that route entries for our own addresses are not made by
899 * cloning (it should be true because in6_addloop explicitly installs
900 * the host route). However, we might have to do an explicit check
901 * while it would be less efficient. Or, should we rather install a
902 * reject route for such a case?
904 if (rin6
.ro_rt
!= NULL
&&
905 (rin6
.ro_rt
->rt_flags
& (RTF_HOST
|RTF_GATEWAY
)) == RTF_HOST
&&
907 !(rin6
.ro_rt
->rt_flags
& RTF_WASCLONED
) &&
909 rin6
.ro_rt
->rt_ifp
->if_type
== IFT_LOOP
) {
910 ia6
= (struct in6_ifaddr
*)rin6
.ro_rt
->rt_ifa
;
912 * Packets to a tentative, duplicated, or somehow invalid
913 * address must not be accepted.
915 * For performance, test without acquiring the address lock;
916 * a lot of things in the address are set once and never
917 * changed (e.g. ia_ifp.)
919 if (!(ia6
->ia6_flags
& IN6_IFF_NOTREADY
)) {
920 /* this address is ready */
922 deliverifp
= ia6
->ia_ifp
; /* correct? */
924 * record dst address information into mbuf.
926 (void) ip6_setdstifaddr_info(m
, 0, ia6
);
927 RT_UNLOCK(rin6
.ro_rt
);
930 RT_UNLOCK(rin6
.ro_rt
);
932 /* address is not ready, so discard the packet. */
933 nd6log((LOG_INFO
, "%s: packet to an unready address %s->%s\n",
934 __func__
, ip6_sprintf(&ip6
->ip6_src
),
935 ip6_sprintf(&ip6
->ip6_dst
)));
939 if (rin6
.ro_rt
!= NULL
)
940 RT_UNLOCK(rin6
.ro_rt
);
943 * Now there is no reason to process the packet if it's not our own
944 * and we're not a router.
946 if (!ip6_forwarding
) {
947 ip6stat
.ip6s_cantforward
++;
948 in6_ifstat_inc(inifp
, ifs6_in_discard
);
954 * record dst address information into mbuf, if we don't have one yet.
955 * note that we are unable to record it, if the address is not listed
956 * as our interface address (e.g. multicast addresses, etc.)
958 if (deliverifp
!= NULL
&& ia6
== NULL
) {
959 ia6
= in6_ifawithifp(deliverifp
, &ip6
->ip6_dst
);
961 (void) ip6_setdstifaddr_info(m
, 0, ia6
);
962 IFA_REMREF(&ia6
->ia_ifa
);
967 * Process Hop-by-Hop options header if it's contained.
968 * m may be modified in ip6_hopopts_input().
969 * If a JumboPayload option is included, plen will also be modified.
971 plen
= (u_int32_t
)ntohs(ip6
->ip6_plen
);
972 if (ip6
->ip6_nxt
== IPPROTO_HOPOPTS
) {
975 if (ip6_hopopts_input(&plen
, &rtalert
, &m
, &off
)) {
976 #if 0 /* touches NULL pointer */
977 in6_ifstat_inc(inifp
, ifs6_in_discard
);
979 goto done
; /* m have already been freed */
983 ip6
= mtod(m
, struct ip6_hdr
*);
986 * if the payload length field is 0 and the next header field
987 * indicates Hop-by-Hop Options header, then a Jumbo Payload
988 * option MUST be included.
990 if (ip6
->ip6_plen
== 0 && plen
== 0) {
992 * Note that if a valid jumbo payload option is
993 * contained, ip6_hopopts_input() must set a valid
994 * (non-zero) payload length to the variable plen.
996 ip6stat
.ip6s_badoptions
++;
997 in6_ifstat_inc(inifp
, ifs6_in_discard
);
998 in6_ifstat_inc(inifp
, ifs6_in_hdrerr
);
999 icmp6_error(m
, ICMP6_PARAM_PROB
, ICMP6_PARAMPROB_HEADER
,
1000 (caddr_t
)&ip6
->ip6_plen
- (caddr_t
)ip6
);
1003 /* ip6_hopopts_input() ensures that mbuf is contiguous */
1004 hbh
= (struct ip6_hbh
*)(ip6
+ 1);
1005 nxt
= hbh
->ip6h_nxt
;
1008 * If we are acting as a router and the packet contains a
1009 * router alert option, see if we know the option value.
1010 * Currently, we only support the option value for MLD, in which
1011 * case we should pass the packet to the multicast routing
1014 if (rtalert
!= ~0 && ip6_forwarding
) {
1016 case IP6OPT_RTALERT_MLD
:
1021 * RFC2711 requires unrecognized values must be
1031 * Check that the amount of data in the buffers
1032 * is as at least much as the IPv6 header would have us expect.
1033 * Trim mbufs if longer than we expect.
1034 * Drop packet if shorter than we expect.
1036 if (m
->m_pkthdr
.len
- sizeof (struct ip6_hdr
) < plen
) {
1037 ip6stat
.ip6s_tooshort
++;
1038 in6_ifstat_inc(inifp
, ifs6_in_truncated
);
1041 if (m
->m_pkthdr
.len
> sizeof (struct ip6_hdr
) + plen
) {
1043 * Invalidate hardware checksum info if ip6_adj_clear_hwcksum
1044 * is set; useful to handle buggy drivers. Note that this
1045 * should not be enabled by default, as we may get here due
1046 * to link-layer padding.
1048 if (ip6_adj_clear_hwcksum
&&
1049 (m
->m_pkthdr
.csum_flags
& CSUM_DATA_VALID
) &&
1050 !(inifp
->if_flags
& IFF_LOOPBACK
) &&
1051 !(m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) {
1052 m
->m_pkthdr
.csum_flags
&= ~CSUM_DATA_VALID
;
1053 m
->m_pkthdr
.csum_data
= 0;
1054 ip6stat
.ip6s_adj_hwcsum_clr
++;
1058 if (m
->m_len
== m
->m_pkthdr
.len
) {
1059 m
->m_len
= sizeof (struct ip6_hdr
) + plen
;
1060 m
->m_pkthdr
.len
= sizeof (struct ip6_hdr
) + plen
;
1062 m_adj(m
, sizeof (struct ip6_hdr
) + plen
-
1068 * Forward if desirable.
1070 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
1071 if (!ours
&& nd6_prproxy
) {
1073 * If this isn't for us, this might be a Neighbor
1074 * Solicitation (dst is solicited-node multicast)
1075 * against an address in one of the proxied prefixes;
1076 * if so, claim the packet and let icmp6_input()
1079 ours
= nd6_prproxy_isours(m
, ip6
, NULL
, IFSCOPE_NONE
);
1081 (m
->m_pkthdr
.pkt_flags
& PKTF_PROXY_DST
));
1087 * The unicast forwarding function might return the packet
1088 * if we are proxying prefix(es), and if the packet is an
1089 * ICMPv6 packet that has failed the zone checks, but is
1090 * targetted towards a proxied address (this is optimized by
1091 * way of RTF_PROXY test.) If so, claim the packet as ours
1092 * and let icmp6_input() handle the rest. The packet's hop
1093 * limit value is kept intact (it's not decremented). This
1094 * is for supporting Neighbor Unreachability Detection between
1095 * proxied nodes on different links (src is link-local, dst
1096 * is target address.)
1098 if ((m
= ip6_forward(m
, &rin6
, 0)) == NULL
)
1100 VERIFY(rin6
.ro_rt
!= NULL
);
1101 VERIFY(m
->m_pkthdr
.pkt_flags
& PKTF_PROXY_DST
);
1102 deliverifp
= rin6
.ro_rt
->rt_ifp
;
1106 ip6
= mtod(m
, struct ip6_hdr
*);
1109 * Malicious party may be able to use IPv4 mapped addr to confuse
1110 * tcp/udp stack and bypass security checks (act as if it was from
1111 * 127.0.0.1 by using IPv6 src ::ffff:127.0.0.1). Be cautious.
1113 * For SIIT end node behavior, you may want to disable the check.
1114 * However, you will become vulnerable to attacks using IPv4 mapped
1117 if (IN6_IS_ADDR_V4MAPPED(&ip6
->ip6_src
) ||
1118 IN6_IS_ADDR_V4MAPPED(&ip6
->ip6_dst
)) {
1119 ip6stat
.ip6s_badscope
++;
1120 in6_ifstat_inc(inifp
, ifs6_in_addrerr
);
1125 * Tell launch routine the next header
1127 ip6stat
.ip6s_delivered
++;
1128 in6_ifstat_inc_na(deliverifp
, ifs6_in_deliver
);
1134 * Perform IP header alignment fixup again, if needed. Note that
1135 * we do it once for the outermost protocol, and we assume each
1136 * protocol handler wouldn't mess with the alignment afterwards.
1138 IP6_HDR_ALIGNMENT_FIXUP(m
, inifp
, return);
1140 while (nxt
!= IPPROTO_DONE
) {
1141 struct ipfilter
*filter
;
1142 int (*pr_input
)(struct mbuf
**, int *, int);
1144 if (ip6_hdrnestlimit
&& (++nest
> ip6_hdrnestlimit
)) {
1145 ip6stat
.ip6s_toomanyhdr
++;
1150 * protection against faulty packet - there should be
1151 * more sanity checks in header chain processing.
1153 if (m
->m_pkthdr
.len
< off
) {
1154 ip6stat
.ip6s_tooshort
++;
1155 in6_ifstat_inc(inifp
, ifs6_in_truncated
);
1162 * enforce IPsec policy checking if we are seeing last header.
1163 * note that we do not visit this with protocols with pcb layer
1164 * code - like udp/tcp/raw ip.
1166 if ((ipsec_bypass
== 0) &&
1167 (ip6_protox
[nxt
]->pr_flags
& PR_LASTHDR
) != 0) {
1168 if (ipsec6_in_reject(m
, NULL
)) {
1169 IPSEC_STAT_INCREMENT(ipsec6stat
.in_polvio
);
1178 if (!TAILQ_EMPTY(&ipv6_filters
)) {
1180 TAILQ_FOREACH(filter
, &ipv6_filters
, ipf_link
) {
1182 if ((struct ipfilter
*)inject_ipfref
==
1185 } else if (filter
->ipf_filter
.ipf_input
) {
1188 result
= filter
->ipf_filter
.ipf_input(
1189 filter
->ipf_filter
.cookie
,
1190 (mbuf_t
*)&m
, off
, nxt
);
1191 if (result
== EJUSTRETURN
) {
1204 DTRACE_IP6(receive
, struct mbuf
*, m
, struct inpcb
*, NULL
,
1205 struct ip6_hdr
*, ip6
, struct ifnet
*, inifp
,
1206 struct ip
*, NULL
, struct ip6_hdr
*, ip6
);
1208 if ((pr_input
= ip6_protox
[nxt
]->pr_input
) == NULL
) {
1212 } else if (!(ip6_protox
[nxt
]->pr_flags
& PR_PROTOLOCK
)) {
1213 lck_mtx_lock(inet6_domain_mutex
);
1214 nxt
= pr_input(&m
, &off
, nxt
);
1215 lck_mtx_unlock(inet6_domain_mutex
);
1217 nxt
= pr_input(&m
, &off
, nxt
);
1221 ROUTE_RELEASE(&rin6
);
1229 ip6_setsrcifaddr_info(struct mbuf
*m
, uint32_t src_idx
, struct in6_ifaddr
*ia6
)
1231 VERIFY(m
->m_flags
& M_PKTHDR
);
1234 * If the source ifaddr is specified, pick up the information
1235 * from there; otherwise just grab the passed-in ifindex as the
1236 * caller may not have the ifaddr available.
1239 m
->m_pkthdr
.pkt_flags
|= PKTF_IFAINFO
;
1240 m
->m_pkthdr
.src_ifindex
= ia6
->ia_ifp
->if_index
;
1242 /* See IN6_IFF comments in in6_var.h */
1243 m
->m_pkthdr
.src_iff
= (ia6
->ia6_flags
& 0xffff);
1245 m
->m_pkthdr
.src_iff
= 0;
1246 m
->m_pkthdr
.src_ifindex
= src_idx
;
1248 m
->m_pkthdr
.pkt_flags
|= PKTF_IFAINFO
;
1253 ip6_setdstifaddr_info(struct mbuf
*m
, uint32_t dst_idx
, struct in6_ifaddr
*ia6
)
1255 VERIFY(m
->m_flags
& M_PKTHDR
);
1258 * If the destination ifaddr is specified, pick up the information
1259 * from there; otherwise just grab the passed-in ifindex as the
1260 * caller may not have the ifaddr available.
1263 m
->m_pkthdr
.pkt_flags
|= PKTF_IFAINFO
;
1264 m
->m_pkthdr
.dst_ifindex
= ia6
->ia_ifp
->if_index
;
1266 /* See IN6_IFF comments in in6_var.h */
1267 m
->m_pkthdr
.dst_iff
= (ia6
->ia6_flags
& 0xffff);
1269 m
->m_pkthdr
.dst_iff
= 0;
1270 m
->m_pkthdr
.dst_ifindex
= dst_idx
;
1272 m
->m_pkthdr
.pkt_flags
|= PKTF_IFAINFO
;
1277 ip6_getsrcifaddr_info(struct mbuf
*m
, uint32_t *src_idx
, uint32_t *ia6f
)
1279 VERIFY(m
->m_flags
& M_PKTHDR
);
1281 if (!(m
->m_pkthdr
.pkt_flags
& PKTF_IFAINFO
))
1284 if (src_idx
!= NULL
)
1285 *src_idx
= m
->m_pkthdr
.src_ifindex
;
1288 *ia6f
= m
->m_pkthdr
.src_iff
;
1294 ip6_getdstifaddr_info(struct mbuf
*m
, uint32_t *dst_idx
, uint32_t *ia6f
)
1296 VERIFY(m
->m_flags
& M_PKTHDR
);
1298 if (!(m
->m_pkthdr
.pkt_flags
& PKTF_IFAINFO
))
1301 if (dst_idx
!= NULL
)
1302 *dst_idx
= m
->m_pkthdr
.dst_ifindex
;
1305 *ia6f
= m
->m_pkthdr
.dst_iff
;
1311 * Hop-by-Hop options header processing. If a valid jumbo payload option is
1312 * included, the real payload length will be stored in plenp.
1315 ip6_hopopts_input(uint32_t *plenp
, uint32_t *rtalertp
, struct mbuf
**mp
,
1318 struct mbuf
*m
= *mp
;
1319 int off
= *offp
, hbhlen
;
1320 struct ip6_hbh
*hbh
;
1323 /* validation of the length of the header */
1324 IP6_EXTHDR_CHECK(m
, off
, sizeof (*hbh
), return (-1));
1325 hbh
= (struct ip6_hbh
*)(mtod(m
, caddr_t
) + off
);
1326 hbhlen
= (hbh
->ip6h_len
+ 1) << 3;
1328 IP6_EXTHDR_CHECK(m
, off
, hbhlen
, return (-1));
1329 hbh
= (struct ip6_hbh
*)(mtod(m
, caddr_t
) + off
);
1331 hbhlen
-= sizeof (struct ip6_hbh
);
1332 opt
= (u_int8_t
*)hbh
+ sizeof (struct ip6_hbh
);
1334 if (ip6_process_hopopts(m
, (u_int8_t
*)hbh
+ sizeof (struct ip6_hbh
),
1335 hbhlen
, rtalertp
, plenp
) < 0)
1344 * Search header for all Hop-by-hop options and process each option.
1345 * This function is separate from ip6_hopopts_input() in order to
1346 * handle a case where the sending node itself process its hop-by-hop
1347 * options header. In such a case, the function is called from ip6_output().
1349 * The function assumes that hbh header is located right after the IPv6 header
1350 * (RFC2460 p7), opthead is pointer into data content in m, and opthead to
1351 * opthead + hbhlen is located in continuous memory region.
1354 ip6_process_hopopts(m
, opthead
, hbhlen
, rtalertp
, plenp
)
1358 u_int32_t
*rtalertp
;
1361 struct ip6_hdr
*ip6
;
1363 u_int8_t
*opt
= opthead
;
1364 u_int16_t rtalert_val
;
1365 u_int32_t jumboplen
;
1366 const int erroff
= sizeof (struct ip6_hdr
) + sizeof (struct ip6_hbh
);
1368 for (; hbhlen
> 0; hbhlen
-= optlen
, opt
+= optlen
) {
1374 if (hbhlen
< IP6OPT_MINLEN
) {
1375 ip6stat
.ip6s_toosmall
++;
1378 optlen
= *(opt
+ 1) + 2;
1380 case IP6OPT_ROUTER_ALERT
:
1381 /* XXX may need check for alignment */
1382 if (hbhlen
< IP6OPT_RTALERT_LEN
) {
1383 ip6stat
.ip6s_toosmall
++;
1386 if (*(opt
+ 1) != IP6OPT_RTALERT_LEN
- 2) {
1388 icmp6_error(m
, ICMP6_PARAM_PROB
,
1389 ICMP6_PARAMPROB_HEADER
,
1390 erroff
+ opt
+ 1 - opthead
);
1393 optlen
= IP6OPT_RTALERT_LEN
;
1394 bcopy((caddr_t
)(opt
+ 2), (caddr_t
)&rtalert_val
, 2);
1395 *rtalertp
= ntohs(rtalert_val
);
1398 /* XXX may need check for alignment */
1399 if (hbhlen
< IP6OPT_JUMBO_LEN
) {
1400 ip6stat
.ip6s_toosmall
++;
1403 if (*(opt
+ 1) != IP6OPT_JUMBO_LEN
- 2) {
1405 icmp6_error(m
, ICMP6_PARAM_PROB
,
1406 ICMP6_PARAMPROB_HEADER
,
1407 erroff
+ opt
+ 1 - opthead
);
1410 optlen
= IP6OPT_JUMBO_LEN
;
1413 * IPv6 packets that have non 0 payload length
1414 * must not contain a jumbo payload option.
1416 ip6
= mtod(m
, struct ip6_hdr
*);
1417 if (ip6
->ip6_plen
) {
1418 ip6stat
.ip6s_badoptions
++;
1419 icmp6_error(m
, ICMP6_PARAM_PROB
,
1420 ICMP6_PARAMPROB_HEADER
,
1421 erroff
+ opt
- opthead
);
1426 * We may see jumbolen in unaligned location, so
1427 * we'd need to perform bcopy().
1429 bcopy(opt
+ 2, &jumboplen
, sizeof (jumboplen
));
1430 jumboplen
= (u_int32_t
)htonl(jumboplen
);
1434 * if there are multiple jumbo payload options,
1435 * *plenp will be non-zero and the packet will be
1437 * the behavior may need some debate in ipngwg -
1438 * multiple options does not make sense, however,
1439 * there's no explicit mention in specification.
1442 ip6stat
.ip6s_badoptions
++;
1443 icmp6_error(m
, ICMP6_PARAM_PROB
,
1444 ICMP6_PARAMPROB_HEADER
,
1445 erroff
+ opt
+ 2 - opthead
);
1451 * jumbo payload length must be larger than 65535.
1453 if (jumboplen
<= IPV6_MAXPACKET
) {
1454 ip6stat
.ip6s_badoptions
++;
1455 icmp6_error(m
, ICMP6_PARAM_PROB
,
1456 ICMP6_PARAMPROB_HEADER
,
1457 erroff
+ opt
+ 2 - opthead
);
1463 default: /* unknown option */
1464 if (hbhlen
< IP6OPT_MINLEN
) {
1465 ip6stat
.ip6s_toosmall
++;
1468 optlen
= ip6_unknown_opt(opt
, m
,
1469 erroff
+ opt
- opthead
);
1486 * Unknown option processing.
1487 * The third argument `off' is the offset from the IPv6 header to the option,
1488 * which is necessary if the IPv6 header the and option header and IPv6 header
1489 * is not continuous in order to return an ICMPv6 error.
1492 ip6_unknown_opt(uint8_t *optp
, struct mbuf
*m
, int off
)
1494 struct ip6_hdr
*ip6
;
1496 switch (IP6OPT_TYPE(*optp
)) {
1497 case IP6OPT_TYPE_SKIP
: /* ignore the option */
1498 return ((int)*(optp
+ 1));
1500 case IP6OPT_TYPE_DISCARD
: /* silently discard */
1504 case IP6OPT_TYPE_FORCEICMP
: /* send ICMP even if multicasted */
1505 ip6stat
.ip6s_badoptions
++;
1506 icmp6_error(m
, ICMP6_PARAM_PROB
, ICMP6_PARAMPROB_OPTION
, off
);
1509 case IP6OPT_TYPE_ICMP
: /* send ICMP if not multicasted */
1510 ip6stat
.ip6s_badoptions
++;
1511 ip6
= mtod(m
, struct ip6_hdr
*);
1512 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) ||
1513 (m
->m_flags
& (M_BCAST
|M_MCAST
))) {
1516 icmp6_error(m
, ICMP6_PARAM_PROB
,
1517 ICMP6_PARAMPROB_OPTION
, off
);
1522 m_freem(m
); /* XXX: NOTREACHED */
1527 * Create the "control" list for this pcb.
1528 * These functions will not modify mbuf chain at all.
1530 * With KAME mbuf chain restriction:
1531 * The routine will be called from upper layer handlers like tcp6_input().
1532 * Thus the routine assumes that the caller (tcp6_input) have already
1533 * called IP6_EXTHDR_CHECK() and all the extension headers are located in the
1534 * very first mbuf on the mbuf chain.
1536 * ip6_savecontrol_v4 will handle those options that are possible to be
1537 * set on a v4-mapped socket.
1538 * ip6_savecontrol will directly call ip6_savecontrol_v4 to handle those
1539 * options and handle the v6-only ones itself.
1542 ip6_savecontrol_v4(struct inpcb
*inp
, struct mbuf
*m
, struct mbuf
**mp
,
1545 struct ip6_hdr
*ip6
= mtod(m
, struct ip6_hdr
*);
1547 if ((inp
->inp_socket
->so_options
& SO_TIMESTAMP
) != 0) {
1551 mp
= sbcreatecontrol_mbuf((caddr_t
)&tv
, sizeof (tv
),
1552 SCM_TIMESTAMP
, SOL_SOCKET
, mp
);
1556 if ((inp
->inp_socket
->so_options
& SO_TIMESTAMP_MONOTONIC
) != 0) {
1559 time
= mach_absolute_time();
1560 mp
= sbcreatecontrol_mbuf((caddr_t
)&time
, sizeof (time
),
1561 SCM_TIMESTAMP_MONOTONIC
, SOL_SOCKET
, mp
);
1565 if ((inp
->inp_socket
->so_flags
& SOF_RECV_TRAFFIC_CLASS
) != 0) {
1566 int tc
= m_get_traffic_class(m
);
1568 mp
= sbcreatecontrol_mbuf((caddr_t
)&tc
, sizeof (tc
),
1569 SO_TRAFFIC_CLASS
, SOL_SOCKET
, mp
);
1574 if ((ip6
->ip6_vfc
& IPV6_VERSION_MASK
) != IPV6_VERSION
) {
1580 #define IS2292(inp, x, y) (((inp)->inp_flags & IN6P_RFC2292) ? (x) : (y))
1581 /* RFC 2292 sec. 5 */
1582 if ((inp
->inp_flags
& IN6P_PKTINFO
) != 0) {
1583 struct in6_pktinfo pi6
;
1585 bcopy(&ip6
->ip6_dst
, &pi6
.ipi6_addr
, sizeof (struct in6_addr
));
1586 in6_clearscope(&pi6
.ipi6_addr
); /* XXX */
1588 (m
&& m
->m_pkthdr
.rcvif
) ? m
->m_pkthdr
.rcvif
->if_index
: 0;
1590 mp
= sbcreatecontrol_mbuf((caddr_t
)&pi6
,
1591 sizeof (struct in6_pktinfo
),
1592 IS2292(inp
, IPV6_2292PKTINFO
, IPV6_PKTINFO
),
1598 if ((inp
->inp_flags
& IN6P_HOPLIMIT
) != 0) {
1599 int hlim
= ip6
->ip6_hlim
& 0xff;
1601 mp
= sbcreatecontrol_mbuf((caddr_t
)&hlim
, sizeof (int),
1602 IS2292(inp
, IPV6_2292HOPLIMIT
, IPV6_HOPLIMIT
),
1614 ip6_savecontrol(struct inpcb
*in6p
, struct mbuf
*m
, struct mbuf
**mp
)
1617 struct ip6_hdr
*ip6
= mtod(m
, struct ip6_hdr
*);
1621 np
= ip6_savecontrol_v4(in6p
, m
, mp
, &v4only
);
1629 if ((in6p
->inp_flags
& IN6P_TCLASS
) != 0) {
1633 flowinfo
= (u_int32_t
)ntohl(ip6
->ip6_flow
& IPV6_FLOWINFO_MASK
);
1636 tclass
= flowinfo
& 0xff;
1637 mp
= sbcreatecontrol_mbuf((caddr_t
)&tclass
, sizeof (tclass
),
1638 IPV6_TCLASS
, IPPROTO_IPV6
, mp
);
1644 * IPV6_HOPOPTS socket option. Recall that we required super-user
1645 * privilege for the option (see ip6_ctloutput), but it might be too
1646 * strict, since there might be some hop-by-hop options which can be
1647 * returned to normal user.
1648 * See also RFC 2292 section 6 (or RFC 3542 section 8).
1650 if ((in6p
->inp_flags
& IN6P_HOPOPTS
) != 0) {
1652 * Check if a hop-by-hop options header is contatined in the
1653 * received packet, and if so, store the options as ancillary
1654 * data. Note that a hop-by-hop options header must be
1655 * just after the IPv6 header, which is assured through the
1656 * IPv6 input processing.
1658 ip6
= mtod(m
, struct ip6_hdr
*);
1659 if (ip6
->ip6_nxt
== IPPROTO_HOPOPTS
) {
1660 struct ip6_hbh
*hbh
;
1662 hbh
= (struct ip6_hbh
*)(ip6
+ 1);
1663 hbhlen
= (hbh
->ip6h_len
+ 1) << 3;
1666 * XXX: We copy the whole header even if a
1667 * jumbo payload option is included, the option which
1668 * is to be removed before returning according to
1670 * Note: this constraint is removed in RFC3542
1672 mp
= sbcreatecontrol_mbuf((caddr_t
)hbh
, hbhlen
,
1673 IS2292(in6p
, IPV6_2292HOPOPTS
, IPV6_HOPOPTS
),
1682 if ((in6p
->inp_flags
& (IN6P_RTHDR
| IN6P_DSTOPTS
)) != 0) {
1683 int nxt
= ip6
->ip6_nxt
, off
= sizeof (struct ip6_hdr
);
1686 * Search for destination options headers or routing
1687 * header(s) through the header chain, and stores each
1688 * header as ancillary data.
1689 * Note that the order of the headers remains in
1690 * the chain of ancillary data.
1692 while (1) { /* is explicit loop prevention necessary? */
1693 struct ip6_ext
*ip6e
= NULL
;
1697 * if it is not an extension header, don't try to
1698 * pull it from the chain.
1701 case IPPROTO_DSTOPTS
:
1702 case IPPROTO_ROUTING
:
1703 case IPPROTO_HOPOPTS
:
1704 case IPPROTO_AH
: /* is it possible? */
1710 if (off
+ sizeof (*ip6e
) > m
->m_len
)
1712 ip6e
= (struct ip6_ext
*)(mtod(m
, caddr_t
) + off
);
1713 if (nxt
== IPPROTO_AH
)
1714 elen
= (ip6e
->ip6e_len
+ 2) << 2;
1716 elen
= (ip6e
->ip6e_len
+ 1) << 3;
1717 if (off
+ elen
> m
->m_len
)
1721 case IPPROTO_DSTOPTS
:
1722 if (!(in6p
->inp_flags
& IN6P_DSTOPTS
))
1725 mp
= sbcreatecontrol_mbuf((caddr_t
)ip6e
, elen
,
1726 IS2292(in6p
, IPV6_2292DSTOPTS
,
1727 IPV6_DSTOPTS
), IPPROTO_IPV6
, mp
);
1732 case IPPROTO_ROUTING
:
1733 if (!(in6p
->inp_flags
& IN6P_RTHDR
))
1736 mp
= sbcreatecontrol_mbuf((caddr_t
)ip6e
, elen
,
1737 IS2292(in6p
, IPV6_2292RTHDR
, IPV6_RTHDR
),
1743 case IPPROTO_HOPOPTS
:
1744 case IPPROTO_AH
: /* is it possible? */
1749 * other cases have been filtered in the above.
1750 * none will visit this case. here we supply
1751 * the code just in case (nxt overwritten or
1758 /* proceed with the next header. */
1760 nxt
= ip6e
->ip6e_nxt
;
1768 ip6stat
.ip6s_pktdropcntrl
++;
1769 /* XXX increment a stat to show the failure */
1775 ip6_notify_pmtu(struct inpcb
*in6p
, struct sockaddr_in6
*dst
, u_int32_t
*mtu
)
1779 struct ip6_mtuinfo mtuctl
;
1781 so
= in6p
->inp_socket
;
1787 if (so
== NULL
) { /* I believe this is impossible */
1788 panic("ip6_notify_pmtu: socket is NULL");
1793 bzero(&mtuctl
, sizeof (mtuctl
)); /* zero-clear for safety */
1794 mtuctl
.ip6m_mtu
= *mtu
;
1795 mtuctl
.ip6m_addr
= *dst
;
1796 if (sa6_recoverscope(&mtuctl
.ip6m_addr
, TRUE
))
1799 if ((m_mtu
= sbcreatecontrol((caddr_t
)&mtuctl
, sizeof (mtuctl
),
1800 IPV6_PATHMTU
, IPPROTO_IPV6
)) == NULL
)
1803 if (sbappendaddr(&so
->so_rcv
, SA(dst
), NULL
, m_mtu
, NULL
) == 0) {
1805 /* XXX: should count statistics */
1812 * Get pointer to the previous header followed by the header
1813 * currently processed.
1814 * XXX: This function supposes that
1815 * M includes all headers,
1816 * the next header field and the header length field of each header
1818 * the sum of each header length equals to OFF.
1819 * Because of these assumptions, this function must be called very
1820 * carefully. Moreover, it will not be used in the near future when
1821 * we develop `neater' mechanism to process extension headers.
1824 ip6_get_prevhdr(m
, off
)
1828 struct ip6_hdr
*ip6
= mtod(m
, struct ip6_hdr
*);
1830 if (off
== sizeof (struct ip6_hdr
)) {
1831 return ((char *)&ip6
->ip6_nxt
);
1834 struct ip6_ext
*ip6e
= NULL
;
1837 len
= sizeof (struct ip6_hdr
);
1839 ip6e
= (struct ip6_ext
*)(mtod(m
, caddr_t
) + len
);
1842 case IPPROTO_FRAGMENT
:
1843 len
+= sizeof (struct ip6_frag
);
1846 len
+= (ip6e
->ip6e_len
+ 2) << 2;
1849 len
+= (ip6e
->ip6e_len
+ 1) << 3;
1852 nxt
= ip6e
->ip6e_nxt
;
1855 return ((char *)&ip6e
->ip6e_nxt
);
1862 * get next header offset. m will be retained.
1865 ip6_nexthdr(struct mbuf
*m
, int off
, int proto
, int *nxtp
)
1868 struct ip6_ext ip6e
;
1873 if ((m
->m_flags
& M_PKTHDR
) == 0 || m
->m_pkthdr
.len
< off
)
1878 if (m
->m_pkthdr
.len
< off
+ sizeof (ip6
))
1880 m_copydata(m
, off
, sizeof (ip6
), (caddr_t
)&ip6
);
1882 *nxtp
= ip6
.ip6_nxt
;
1883 off
+= sizeof (ip6
);
1886 case IPPROTO_FRAGMENT
:
1888 * terminate parsing if it is not the first fragment,
1889 * it does not make sense to parse through it.
1891 if (m
->m_pkthdr
.len
< off
+ sizeof (fh
))
1893 m_copydata(m
, off
, sizeof (fh
), (caddr_t
)&fh
);
1894 /* IP6F_OFF_MASK = 0xfff8(BigEndian), 0xf8ff(LittleEndian) */
1895 if (fh
.ip6f_offlg
& IP6F_OFF_MASK
)
1898 *nxtp
= fh
.ip6f_nxt
;
1899 off
+= sizeof (struct ip6_frag
);
1903 if (m
->m_pkthdr
.len
< off
+ sizeof (ip6e
))
1905 m_copydata(m
, off
, sizeof (ip6e
), (caddr_t
)&ip6e
);
1907 *nxtp
= ip6e
.ip6e_nxt
;
1908 off
+= (ip6e
.ip6e_len
+ 2) << 2;
1911 case IPPROTO_HOPOPTS
:
1912 case IPPROTO_ROUTING
:
1913 case IPPROTO_DSTOPTS
:
1914 if (m
->m_pkthdr
.len
< off
+ sizeof (ip6e
))
1916 m_copydata(m
, off
, sizeof (ip6e
), (caddr_t
)&ip6e
);
1918 *nxtp
= ip6e
.ip6e_nxt
;
1919 off
+= (ip6e
.ip6e_len
+ 1) << 3;
1924 case IPPROTO_IPCOMP
:
1936 * get offset for the last header in the chain. m will be kept untainted.
1939 ip6_lasthdr(struct mbuf
*m
, int off
, int proto
, int *nxtp
)
1949 newoff
= ip6_nexthdr(m
, off
, proto
, nxtp
);
1952 else if (newoff
< off
)
1953 return (-1); /* invalid */
1954 else if (newoff
== off
)
1963 ip6_addaux(struct mbuf
*m
)
1967 /* Check if one is already allocated */
1968 tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
,
1969 KERNEL_TAG_TYPE_INET6
, NULL
);
1971 /* Allocate a tag */
1972 tag
= m_tag_create(KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_INET6
,
1973 sizeof (struct ip6aux
), M_DONTWAIT
, m
);
1975 /* Attach it to the mbuf */
1977 m_tag_prepend(m
, tag
);
1981 return (tag
? (struct ip6aux
*)(tag
+ 1) : NULL
);
1985 ip6_findaux(struct mbuf
*m
)
1989 tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
,
1990 KERNEL_TAG_TYPE_INET6
, NULL
);
1992 return (tag
? (struct ip6aux
*)(tag
+ 1) : NULL
);
1996 ip6_delaux(struct mbuf
*m
)
2000 tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
,
2001 KERNEL_TAG_TYPE_INET6
, NULL
);
2003 m_tag_delete(m
, tag
);
2013 frag6_drain(); /* fragments */
2014 in6_rtqdrain(); /* protocol cloned routes */
2015 nd6_drain(NULL
); /* cloned routes: ND6 */
2019 * System control for IP6
2022 u_char inet6ctlerrmap
[PRC_NCMDS
] = {
2024 0, EMSGSIZE
, EHOSTDOWN
, EHOSTUNREACH
,
2025 EHOSTUNREACH
, EHOSTUNREACH
, ECONNREFUSED
, ECONNREFUSED
,
2026 EMSGSIZE
, EHOSTUNREACH
, 0, 0,
2032 sysctl_reset_ip6_input_stats SYSCTL_HANDLER_ARGS
2034 #pragma unused(arg1, arg2)
2037 i
= ip6_input_measure
;
2038 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
2039 if (error
|| req
->newptr
== USER_ADDR_NULL
)
2042 if (i
< 0 || i
> 1) {
2046 if (ip6_input_measure
!= i
&& i
== 1) {
2047 net_perf_initialize(&net_perf
, ip6_input_measure_bins
);
2049 ip6_input_measure
= i
;
2055 sysctl_ip6_input_measure_bins SYSCTL_HANDLER_ARGS
2057 #pragma unused(arg1, arg2)
2061 i
= ip6_input_measure_bins
;
2062 error
= sysctl_handle_quad(oidp
, &i
, 0, req
);
2063 if (error
|| req
->newptr
== USER_ADDR_NULL
)
2066 if (!net_perf_validate_bins(i
)) {
2070 ip6_input_measure_bins
= i
;
2076 sysctl_ip6_input_getperf SYSCTL_HANDLER_ARGS
2078 #pragma unused(oidp, arg1, arg2)
2079 if (req
->oldptr
== USER_ADDR_NULL
)
2080 req
->oldlen
= (size_t)sizeof (struct ipstat
);
2082 return (SYSCTL_OUT(req
, &net_perf
, MIN(sizeof (net_perf
), req
->oldlen
)));