]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet6/ip6_input.c
12692628ed8942700b6ca0f08618b19c4096df66
[apple/xnu.git] / bsd / netinet6 / ip6_input.c
1 /*
2 * Copyright (c) 2003-2015 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * Copyright (c) 1982, 1986, 1988, 1993
60 * The Regents of the University of California. All rights reserved.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
91 */
92
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/malloc.h>
96 #include <sys/mbuf.h>
97 #include <sys/domain.h>
98 #include <sys/protosw.h>
99 #include <sys/socket.h>
100 #include <sys/socketvar.h>
101 #include <sys/errno.h>
102 #include <sys/time.h>
103 #include <sys/kernel.h>
104 #include <sys/syslog.h>
105 #include <sys/sysctl.h>
106 #include <sys/proc.h>
107 #include <sys/kauth.h>
108 #include <sys/mcache.h>
109
110 #include <mach/mach_time.h>
111 #include <mach/sdt.h>
112 #include <pexpert/pexpert.h>
113 #include <dev/random/randomdev.h>
114
115 #include <net/if.h>
116 #include <net/if_var.h>
117 #include <net/if_types.h>
118 #include <net/if_dl.h>
119 #include <net/route.h>
120 #include <net/kpi_protocol.h>
121 #include <net/ntstat.h>
122 #include <net/init.h>
123 #include <net/net_osdep.h>
124 #include <net/net_perf.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #if INET
129 #include <netinet/ip.h>
130 #include <netinet/ip_icmp.h>
131 #endif /* INET */
132 #include <netinet/kpi_ipfilter_var.h>
133 #include <netinet/ip6.h>
134 #include <netinet6/in6_var.h>
135 #include <netinet6/ip6_var.h>
136 #include <netinet/in_pcb.h>
137 #include <netinet/icmp6.h>
138 #include <netinet6/in6_ifattach.h>
139 #include <netinet6/nd6.h>
140 #include <netinet6/scope6_var.h>
141 #include <netinet6/ip6protosw.h>
142
143 #if IPSEC
144 #include <netinet6/ipsec.h>
145 #include <netinet6/ipsec6.h>
146 extern int ipsec_bypass;
147 #endif /* IPSEC */
148
149 #if IPFW2
150 #include <netinet6/ip6_fw.h>
151 #endif /* IPFW2 */
152
153 #if DUMMYNET
154 #include <netinet/ip_fw.h>
155 #include <netinet/ip_dummynet.h>
156 #endif /* DUMMYNET */
157
158 /* we need it for NLOOP. */
159 #include "loop.h"
160
161 #if PF
162 #include <net/pfvar.h>
163 #endif /* PF */
164
165 struct ip6protosw *ip6_protox[IPPROTO_MAX];
166
167 static lck_grp_attr_t *in6_ifaddr_rwlock_grp_attr;
168 static lck_grp_t *in6_ifaddr_rwlock_grp;
169 static lck_attr_t *in6_ifaddr_rwlock_attr;
170 decl_lck_rw_data(, in6_ifaddr_rwlock);
171
172 /* Protected by in6_ifaddr_rwlock */
173 struct in6_ifaddr *in6_ifaddrs = NULL;
174
175 #define IN6_IFSTAT_REQUIRE_ALIGNED_64(f) \
176 _CASSERT(!(offsetof(struct in6_ifstat, f) % sizeof (uint64_t)))
177
178 #define ICMP6_IFSTAT_REQUIRE_ALIGNED_64(f) \
179 _CASSERT(!(offsetof(struct icmp6_ifstat, f) % sizeof (uint64_t)))
180
181 #if IPFW2
182 /* firewall hooks */
183 ip6_fw_chk_t *ip6_fw_chk_ptr;
184 ip6_fw_ctl_t *ip6_fw_ctl_ptr;
185 int ip6_fw_enable = 1;
186 #endif /* IPFW2 */
187
188 struct ip6stat ip6stat;
189
190 decl_lck_mtx_data(, proxy6_lock);
191 decl_lck_mtx_data(static, dad6_mutex_data);
192 decl_lck_mtx_data(static, nd6_mutex_data);
193 decl_lck_mtx_data(static, prefix6_mutex_data);
194 lck_mtx_t *dad6_mutex = &dad6_mutex_data;
195 lck_mtx_t *nd6_mutex = &nd6_mutex_data;
196 lck_mtx_t *prefix6_mutex = &prefix6_mutex_data;
197 #ifdef ENABLE_ADDRSEL
198 decl_lck_mtx_data(static, addrsel_mutex_data);
199 lck_mtx_t *addrsel_mutex = &addrsel_mutex_data;
200 #endif
201 static lck_attr_t *ip6_mutex_attr;
202 static lck_grp_t *ip6_mutex_grp;
203 static lck_grp_attr_t *ip6_mutex_grp_attr;
204
205 extern int loopattach_done;
206 extern void addrsel_policy_init(void);
207
208 static int sysctl_reset_ip6_input_stats SYSCTL_HANDLER_ARGS;
209 static int sysctl_ip6_input_measure_bins SYSCTL_HANDLER_ARGS;
210 static int sysctl_ip6_input_getperf SYSCTL_HANDLER_ARGS;
211 static void ip6_init_delayed(void);
212 static int ip6_hopopts_input(u_int32_t *, u_int32_t *, struct mbuf **, int *);
213
214 #if NSTF
215 extern void stfattach(void);
216 #endif /* NSTF */
217
218 SYSCTL_DECL(_net_inet6_ip6);
219
220 int ip6_doscopedroute = 1;
221 SYSCTL_INT(_net_inet6_ip6, OID_AUTO, scopedroute,
222 CTLFLAG_RD | CTLFLAG_LOCKED, &ip6_doscopedroute, 0,
223 "Enable IPv6 scoped routing");
224
225 static uint32_t ip6_adj_clear_hwcksum = 0;
226 SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, adj_clear_hwcksum,
227 CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_adj_clear_hwcksum, 0,
228 "Invalidate hwcksum info when adjusting length");
229
230 static int ip6_input_measure = 0;
231 SYSCTL_PROC(_net_inet6_ip6, OID_AUTO, input_perf,
232 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
233 &ip6_input_measure, 0, sysctl_reset_ip6_input_stats, "I", "Do time measurement");
234
235 static uint64_t ip6_input_measure_bins = 0;
236 SYSCTL_PROC(_net_inet6_ip6, OID_AUTO, input_perf_bins,
237 CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_input_measure_bins, 0,
238 sysctl_ip6_input_measure_bins, "I",
239 "bins for chaining performance data histogram");
240
241 static net_perf_t net_perf;
242 SYSCTL_PROC(_net_inet6_ip6, OID_AUTO, input_perf_data,
243 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
244 0, 0, sysctl_ip6_input_getperf, "S,net_perf",
245 "IP6 input performance data (struct net_perf, net/net_perf.h)");
246
247 /*
248 * On platforms which require strict alignment (currently for anything but
249 * i386 or x86_64), check if the IP header pointer is 32-bit aligned; if not,
250 * copy the contents of the mbuf chain into a new chain, and free the original
251 * one. Create some head room in the first mbuf of the new chain, in case
252 * it's needed later on.
253 *
254 * RFC 2460 says that IPv6 headers are 64-bit aligned, but network interfaces
255 * mostly align to 32-bit boundaries. Care should be taken never to use 64-bit
256 * load/store operations on the fields in IPv6 headers.
257 */
258 #if defined(__i386__) || defined(__x86_64__)
259 #define IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { } while (0)
260 #else /* !__i386__ && !__x86_64__ */
261 #define IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { \
262 if (!IP6_HDR_ALIGNED_P(mtod(_m, caddr_t))) { \
263 struct mbuf *_n; \
264 struct ifnet *__ifp = (_ifp); \
265 atomic_add_64(&(__ifp)->if_alignerrs, 1); \
266 if (((_m)->m_flags & M_PKTHDR) && \
267 (_m)->m_pkthdr.pkt_hdr != NULL) \
268 (_m)->m_pkthdr.pkt_hdr = NULL; \
269 _n = m_defrag_offset(_m, max_linkhdr, M_NOWAIT); \
270 if (_n == NULL) { \
271 ip6stat.ip6s_toosmall++; \
272 m_freem(_m); \
273 (_m) = NULL; \
274 _action; \
275 } else { \
276 VERIFY(_n != (_m)); \
277 (_m) = _n; \
278 } \
279 } \
280 } while (0)
281 #endif /* !__i386__ && !__x86_64__ */
282
283 static void
284 ip6_proto_input(protocol_family_t protocol, mbuf_t packet)
285 {
286 #pragma unused(protocol)
287 #if INET
288 struct timeval start_tv;
289 if (ip6_input_measure)
290 net_perf_start_time(&net_perf, &start_tv);
291 #endif /* INET */
292 ip6_input(packet);
293 #if INET
294 if (ip6_input_measure) {
295 net_perf_measure_time(&net_perf, &start_tv, 1);
296 net_perf_histogram(&net_perf, 1);
297 }
298 #endif /* INET */
299 }
300
301 /*
302 * IP6 initialization: fill in IP6 protocol switch table.
303 * All protocols not implemented in kernel go to raw IP6 protocol handler.
304 */
305 void
306 ip6_init(struct ip6protosw *pp, struct domain *dp)
307 {
308 static int ip6_initialized = 0;
309 struct protosw *pr;
310 struct timeval tv;
311 int i;
312 domain_unguard_t unguard;
313
314 domain_proto_mtx_lock_assert_held();
315 VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED);
316
317 _CASSERT((sizeof (struct ip6_hdr) +
318 sizeof (struct icmp6_hdr)) <= _MHLEN);
319
320 if (ip6_initialized)
321 return;
322 ip6_initialized = 1;
323
324 PE_parse_boot_argn("net.inet6.ip6.scopedroute", &ip6_doscopedroute,
325 sizeof (ip6_doscopedroute));
326
327 pr = pffindproto_locked(PF_INET6, IPPROTO_RAW, SOCK_RAW);
328 if (pr == NULL) {
329 panic("%s: Unable to find [PF_INET6,IPPROTO_RAW,SOCK_RAW]\n",
330 __func__);
331 /* NOTREACHED */
332 }
333
334 /* Initialize the entire ip6_protox[] array to IPPROTO_RAW. */
335 for (i = 0; i < IPPROTO_MAX; i++)
336 ip6_protox[i] = (struct ip6protosw *)pr;
337 /*
338 * Cycle through IP protocols and put them into the appropriate place
339 * in ip6_protox[], skipping protocols IPPROTO_{IP,RAW}.
340 */
341 VERIFY(dp == inet6domain && dp->dom_family == PF_INET6);
342 TAILQ_FOREACH(pr, &dp->dom_protosw, pr_entry) {
343 VERIFY(pr->pr_domain == dp);
344 if (pr->pr_protocol != 0 && pr->pr_protocol != IPPROTO_RAW) {
345 /* Be careful to only index valid IP protocols. */
346 if (pr->pr_protocol < IPPROTO_MAX)
347 ip6_protox[pr->pr_protocol] =
348 (struct ip6protosw *)pr;
349 }
350 }
351
352 ip6_mutex_grp_attr = lck_grp_attr_alloc_init();
353
354 ip6_mutex_grp = lck_grp_alloc_init("ip6", ip6_mutex_grp_attr);
355 ip6_mutex_attr = lck_attr_alloc_init();
356
357 lck_mtx_init(dad6_mutex, ip6_mutex_grp, ip6_mutex_attr);
358 lck_mtx_init(nd6_mutex, ip6_mutex_grp, ip6_mutex_attr);
359 lck_mtx_init(prefix6_mutex, ip6_mutex_grp, ip6_mutex_attr);
360 scope6_init(ip6_mutex_grp, ip6_mutex_attr);
361
362 #ifdef ENABLE_ADDRSEL
363 lck_mtx_init(addrsel_mutex, ip6_mutex_grp, ip6_mutex_attr);
364 #endif
365
366 lck_mtx_init(&proxy6_lock, ip6_mutex_grp, ip6_mutex_attr);
367
368 in6_ifaddr_rwlock_grp_attr = lck_grp_attr_alloc_init();
369 in6_ifaddr_rwlock_grp = lck_grp_alloc_init("in6_ifaddr_rwlock",
370 in6_ifaddr_rwlock_grp_attr);
371 in6_ifaddr_rwlock_attr = lck_attr_alloc_init();
372 lck_rw_init(&in6_ifaddr_rwlock, in6_ifaddr_rwlock_grp,
373 in6_ifaddr_rwlock_attr);
374
375 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_receive);
376 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_hdrerr);
377 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_toobig);
378 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_noroute);
379 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_addrerr);
380 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_protounknown);
381 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_truncated);
382 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_discard);
383 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_deliver);
384 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_forward);
385 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_request);
386 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_discard);
387 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragok);
388 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragfail);
389 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragcreat);
390 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_reqd);
391 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_ok);
392 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_fail);
393 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mcast);
394 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mcast);
395
396 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_msg);
397 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_error);
398 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_dstunreach);
399 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_adminprohib);
400 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_timeexceed);
401 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_paramprob);
402 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_pkttoobig);
403 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echo);
404 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echoreply);
405 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routersolicit);
406 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routeradvert);
407 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighborsolicit);
408 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighboradvert);
409 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_redirect);
410 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldquery);
411 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldreport);
412 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mlddone);
413
414 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_msg);
415 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_error);
416 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_dstunreach);
417 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_adminprohib);
418 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_timeexceed);
419 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_paramprob);
420 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_pkttoobig);
421 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echo);
422 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echoreply);
423 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routersolicit);
424 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routeradvert);
425 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighborsolicit);
426 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighboradvert);
427 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_redirect);
428 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldquery);
429 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldreport);
430 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mlddone);
431
432 getmicrotime(&tv);
433 ip6_desync_factor =
434 (RandomULong() ^ tv.tv_usec) % MAX_TEMP_DESYNC_FACTOR;
435
436 in6_ifaddr_init();
437 ip6_moptions_init();
438 nd6_init();
439 frag6_init();
440 icmp6_init(NULL, dp);
441 addrsel_policy_init();
442
443 /*
444 * P2P interfaces often route the local address to the loopback
445 * interface. At this point, lo0 hasn't been initialized yet, which
446 * means that we need to delay the IPv6 configuration of lo0.
447 */
448 net_init_add(ip6_init_delayed);
449
450 unguard = domain_unguard_deploy();
451 i = proto_register_input(PF_INET6, ip6_proto_input, NULL, 0);
452 if (i != 0) {
453 panic("%s: failed to register PF_INET6 protocol: %d\n",
454 __func__, i);
455 /* NOTREACHED */
456 }
457 domain_unguard_release(unguard);
458 }
459
460 static void
461 ip6_init_delayed(void)
462 {
463 (void) in6_ifattach_prelim(lo_ifp);
464
465 /* timer for regeneranation of temporary addresses randomize ID */
466 timeout(in6_tmpaddrtimer, NULL,
467 (ip6_temp_preferred_lifetime - ip6_desync_factor -
468 ip6_temp_regen_advance) * hz);
469
470 #if NSTF
471 stfattach();
472 #endif /* NSTF */
473 }
474
475 void
476 ip6_input(struct mbuf *m)
477 {
478 struct ip6_hdr *ip6;
479 int off = sizeof (struct ip6_hdr), nest;
480 u_int32_t plen;
481 u_int32_t rtalert = ~0;
482 int nxt = 0, ours = 0;
483 struct ifnet *inifp, *deliverifp = NULL;
484 ipfilter_t inject_ipfref = NULL;
485 int seen = 1;
486 struct in6_ifaddr *ia6 = NULL;
487 struct sockaddr_in6 *dst6;
488 #if DUMMYNET
489 struct m_tag *tag;
490 #endif /* DUMMYNET */
491 struct {
492 struct route_in6 rin6;
493 #if DUMMYNET
494 struct ip_fw_args args;
495 #endif /* DUMMYNET */
496 } ip6ibz;
497 #define rin6 ip6ibz.rin6
498 #define args ip6ibz.args
499
500 /* zero out {rin6, args} */
501 bzero(&ip6ibz, sizeof (ip6ibz));
502
503 /*
504 * Check if the packet we received is valid after interface filter
505 * processing
506 */
507 MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif);
508 inifp = m->m_pkthdr.rcvif;
509 VERIFY(inifp != NULL);
510
511 /* Perform IP header alignment fixup, if needed */
512 IP6_HDR_ALIGNMENT_FIXUP(m, inifp, return);
513
514 m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED;
515 #if IPSEC
516 /*
517 * should the inner packet be considered authentic?
518 * see comment in ah4_input().
519 */
520 m->m_flags &= ~M_AUTHIPHDR;
521 m->m_flags &= ~M_AUTHIPDGM;
522 #endif /* IPSEC */
523
524 /*
525 * make sure we don't have onion peering information into m_aux.
526 */
527 ip6_delaux(m);
528
529 #if DUMMYNET
530 if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
531 KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) {
532 struct dn_pkt_tag *dn_tag;
533
534 dn_tag = (struct dn_pkt_tag *)(tag+1);
535
536 args.fwa_pf_rule = dn_tag->dn_pf_rule;
537
538 m_tag_delete(m, tag);
539 }
540
541 if (args.fwa_pf_rule) {
542 ip6 = mtod(m, struct ip6_hdr *); /* In case PF got disabled */
543
544 goto check_with_pf;
545 }
546 #endif /* DUMMYNET */
547
548 /*
549 * No need to proccess packet twice if we've already seen it.
550 */
551 inject_ipfref = ipf_get_inject_filter(m);
552 if (inject_ipfref != NULL) {
553 ip6 = mtod(m, struct ip6_hdr *);
554 nxt = ip6->ip6_nxt;
555 seen = 0;
556 goto injectit;
557 } else {
558 seen = 1;
559 }
560
561 /*
562 * mbuf statistics
563 */
564 if (m->m_flags & M_EXT) {
565 if (m->m_next != NULL)
566 ip6stat.ip6s_mext2m++;
567 else
568 ip6stat.ip6s_mext1++;
569 } else {
570 #define M2MMAX (sizeof (ip6stat.ip6s_m2m) / sizeof (ip6stat.ip6s_m2m[0]))
571 if (m->m_next != NULL) {
572 if (m->m_pkthdr.pkt_flags & PKTF_LOOP) {
573 /* XXX */
574 ip6stat.ip6s_m2m[ifnet_index(lo_ifp)]++;
575 } else if (inifp->if_index < M2MMAX) {
576 ip6stat.ip6s_m2m[inifp->if_index]++;
577 } else {
578 ip6stat.ip6s_m2m[0]++;
579 }
580 } else {
581 ip6stat.ip6s_m1++;
582 }
583 #undef M2MMAX
584 }
585
586 /*
587 * Drop the packet if IPv6 operation is disabled on the interface.
588 */
589 if (inifp->if_eflags & IFEF_IPV6_DISABLED)
590 goto bad;
591
592 in6_ifstat_inc_na(inifp, ifs6_in_receive);
593 ip6stat.ip6s_total++;
594
595 /*
596 * L2 bridge code and some other code can return mbuf chain
597 * that does not conform to KAME requirement. too bad.
598 * XXX: fails to join if interface MTU > MCLBYTES. jumbogram?
599 */
600 if (m->m_next != NULL && m->m_pkthdr.len < MCLBYTES) {
601 struct mbuf *n;
602
603 MGETHDR(n, M_DONTWAIT, MT_HEADER); /* MAC-OK */
604 if (n)
605 M_COPY_PKTHDR(n, m);
606 if (n && m->m_pkthdr.len > MHLEN) {
607 MCLGET(n, M_DONTWAIT);
608 if ((n->m_flags & M_EXT) == 0) {
609 m_freem(n);
610 n = NULL;
611 }
612 }
613 if (n == NULL)
614 goto bad;
615
616 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
617 n->m_len = m->m_pkthdr.len;
618 m_freem(m);
619 m = n;
620 }
621 IP6_EXTHDR_CHECK(m, 0, sizeof (struct ip6_hdr), { goto done; });
622
623 if (m->m_len < sizeof (struct ip6_hdr)) {
624 if ((m = m_pullup(m, sizeof (struct ip6_hdr))) == 0) {
625 ip6stat.ip6s_toosmall++;
626 in6_ifstat_inc(inifp, ifs6_in_hdrerr);
627 goto done;
628 }
629 }
630
631 ip6 = mtod(m, struct ip6_hdr *);
632
633 if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
634 ip6stat.ip6s_badvers++;
635 in6_ifstat_inc(inifp, ifs6_in_hdrerr);
636 goto bad;
637 }
638
639 ip6stat.ip6s_nxthist[ip6->ip6_nxt]++;
640
641 /*
642 * Check against address spoofing/corruption.
643 */
644 if (!(m->m_pkthdr.pkt_flags & PKTF_LOOP) &&
645 IN6_IS_ADDR_LOOPBACK(&ip6->ip6_src)) {
646 ip6stat.ip6s_badscope++;
647 in6_ifstat_inc(inifp, ifs6_in_addrerr);
648 goto bad;
649 }
650 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src) ||
651 IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst)) {
652 /*
653 * XXX: "badscope" is not very suitable for a multicast source.
654 */
655 ip6stat.ip6s_badscope++;
656 in6_ifstat_inc(inifp, ifs6_in_addrerr);
657 goto bad;
658 }
659 if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst) &&
660 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
661 /*
662 * In this case, the packet should come from the loopback
663 * interface. However, we cannot just check the if_flags,
664 * because ip6_mloopback() passes the "actual" interface
665 * as the outgoing/incoming interface.
666 */
667 ip6stat.ip6s_badscope++;
668 in6_ifstat_inc(inifp, ifs6_in_addrerr);
669 goto bad;
670 }
671
672 /*
673 * The following check is not documented in specs. A malicious
674 * party may be able to use IPv4 mapped addr to confuse tcp/udp stack
675 * and bypass security checks (act as if it was from 127.0.0.1 by using
676 * IPv6 src ::ffff:127.0.0.1). Be cautious.
677 *
678 * This check chokes if we are in an SIIT cloud. As none of BSDs
679 * support IPv4-less kernel compilation, we cannot support SIIT
680 * environment at all. So, it makes more sense for us to reject any
681 * malicious packets for non-SIIT environment, than try to do a
682 * partial support for SIIT environment.
683 */
684 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
685 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
686 ip6stat.ip6s_badscope++;
687 in6_ifstat_inc(inifp, ifs6_in_addrerr);
688 goto bad;
689 }
690 #if 0
691 /*
692 * Reject packets with IPv4 compatible addresses (auto tunnel).
693 *
694 * The code forbids auto tunnel relay case in RFC1933 (the check is
695 * stronger than RFC1933). We may want to re-enable it if mech-xx
696 * is revised to forbid relaying case.
697 */
698 if (IN6_IS_ADDR_V4COMPAT(&ip6->ip6_src) ||
699 IN6_IS_ADDR_V4COMPAT(&ip6->ip6_dst)) {
700 ip6stat.ip6s_badscope++;
701 in6_ifstat_inc(inifp, ifs6_in_addrerr);
702 goto bad;
703 }
704 #endif
705 #if IPFW2
706 /*
707 * Check with the firewall...
708 */
709 if (ip6_fw_enable && ip6_fw_chk_ptr) {
710 u_short port = 0;
711 /* If ipfw says divert, we have to just drop packet */
712 /* use port as a dummy argument */
713 if ((*ip6_fw_chk_ptr)(&ip6, NULL, &port, &m)) {
714 m_freem(m);
715 m = NULL;
716 }
717 if (!m)
718 goto done;
719 }
720 #endif /* IPFW2 */
721
722 /*
723 * Naively assume we can attribute inbound data to the route we would
724 * use to send to this destination. Asymetric routing breaks this
725 * assumption, but it still allows us to account for traffic from
726 * a remote node in the routing table.
727 * this has a very significant performance impact so we bypass
728 * if nstat_collect is disabled. We may also bypass if the
729 * protocol is tcp in the future because tcp will have a route that
730 * we can use to attribute the data to. That does mean we would not
731 * account for forwarded tcp traffic.
732 */
733 if (nstat_collect) {
734 struct rtentry *rte =
735 ifnet_cached_rtlookup_inet6(inifp, &ip6->ip6_src);
736 if (rte != NULL) {
737 nstat_route_rx(rte, 1, m->m_pkthdr.len, 0);
738 rtfree(rte);
739 }
740 }
741
742 /* for consistency */
743 m->m_pkthdr.pkt_proto = ip6->ip6_nxt;
744
745 #if DUMMYNET
746 check_with_pf:
747 #endif /* DUMMYNET */
748 #if PF
749 /* Invoke inbound packet filter */
750 if (PF_IS_ENABLED) {
751 int error;
752 #if DUMMYNET
753 error = pf_af_hook(inifp, NULL, &m, AF_INET6, TRUE, &args);
754 #else /* !DUMMYNET */
755 error = pf_af_hook(inifp, NULL, &m, AF_INET6, TRUE, NULL);
756 #endif /* !DUMMYNET */
757 if (error != 0 || m == NULL) {
758 if (m != NULL) {
759 panic("%s: unexpected packet %p\n",
760 __func__, m);
761 /* NOTREACHED */
762 }
763 /* Already freed by callee */
764 goto done;
765 }
766 ip6 = mtod(m, struct ip6_hdr *);
767 }
768 #endif /* PF */
769
770 /* drop packets if interface ID portion is already filled */
771 if (!(inifp->if_flags & IFF_LOOPBACK) &&
772 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
773 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src) &&
774 ip6->ip6_src.s6_addr16[1]) {
775 ip6stat.ip6s_badscope++;
776 goto bad;
777 }
778 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst) &&
779 ip6->ip6_dst.s6_addr16[1]) {
780 ip6stat.ip6s_badscope++;
781 goto bad;
782 }
783 }
784
785 if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) {
786 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
787 ip6->ip6_src.s6_addr16[1] =
788 htons(m->m_pkthdr.src_ifindex);
789 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
790 ip6->ip6_dst.s6_addr16[1] =
791 htons(m->m_pkthdr.dst_ifindex);
792 } else {
793 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
794 ip6->ip6_src.s6_addr16[1] = htons(inifp->if_index);
795 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
796 ip6->ip6_dst.s6_addr16[1] = htons(inifp->if_index);
797 }
798
799 /*
800 * Multicast check
801 */
802 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
803 struct in6_multi *in6m = NULL;
804
805 in6_ifstat_inc_na(inifp, ifs6_in_mcast);
806 /*
807 * See if we belong to the destination multicast group on the
808 * arrival interface.
809 */
810 in6_multihead_lock_shared();
811 IN6_LOOKUP_MULTI(&ip6->ip6_dst, inifp, in6m);
812 in6_multihead_lock_done();
813 if (in6m != NULL) {
814 IN6M_REMREF(in6m);
815 ours = 1;
816 } else if (!nd6_prproxy) {
817 ip6stat.ip6s_notmember++;
818 ip6stat.ip6s_cantforward++;
819 in6_ifstat_inc(inifp, ifs6_in_discard);
820 goto bad;
821 }
822 deliverifp = inifp;
823 VERIFY(ia6 == NULL);
824 goto hbhcheck;
825 }
826
827 /*
828 * Unicast check
829 *
830 * Fast path: see if the target is ourselves.
831 */
832 lck_rw_lock_shared(&in6_ifaddr_rwlock);
833 for (ia6 = in6_ifaddrs; ia6 != NULL; ia6 = ia6->ia_next) {
834 /*
835 * No reference is held on the address, as we just need
836 * to test for a few things while holding the RW lock.
837 */
838 if (IN6_ARE_ADDR_EQUAL(&ia6->ia_addr.sin6_addr, &ip6->ip6_dst))
839 break;
840 }
841
842 if (ia6 != NULL) {
843 /*
844 * For performance, test without acquiring the address lock;
845 * a lot of things in the address are set once and never
846 * changed (e.g. ia_ifp.)
847 */
848 if (!(ia6->ia6_flags & IN6_IFF_NOTREADY)) {
849 /* this address is ready */
850 ours = 1;
851 deliverifp = ia6->ia_ifp;
852 /*
853 * record dst address information into mbuf.
854 */
855 (void) ip6_setdstifaddr_info(m, 0, ia6);
856 lck_rw_done(&in6_ifaddr_rwlock);
857 goto hbhcheck;
858 }
859 lck_rw_done(&in6_ifaddr_rwlock);
860 ia6 = NULL;
861 /* address is not ready, so discard the packet. */
862 nd6log((LOG_INFO, "%s: packet to an unready address %s->%s\n",
863 __func__, ip6_sprintf(&ip6->ip6_src),
864 ip6_sprintf(&ip6->ip6_dst)));
865 goto bad;
866 }
867 lck_rw_done(&in6_ifaddr_rwlock);
868
869 /*
870 * Slow path: route lookup.
871 */
872 dst6 = SIN6(&rin6.ro_dst);
873 dst6->sin6_len = sizeof (struct sockaddr_in6);
874 dst6->sin6_family = AF_INET6;
875 dst6->sin6_addr = ip6->ip6_dst;
876
877 rtalloc_scoped_ign((struct route *)&rin6,
878 RTF_PRCLONING, IFSCOPE_NONE);
879 if (rin6.ro_rt != NULL)
880 RT_LOCK_SPIN(rin6.ro_rt);
881
882 #define rt6_key(r) (SIN6((r)->rt_nodes->rn_key))
883
884 /*
885 * Accept the packet if the forwarding interface to the destination
886 * according to the routing table is the loopback interface,
887 * unless the associated route has a gateway.
888 * Note that this approach causes to accept a packet if there is a
889 * route to the loopback interface for the destination of the packet.
890 * But we think it's even useful in some situations, e.g. when using
891 * a special daemon which wants to intercept the packet.
892 *
893 * XXX: some OSes automatically make a cloned route for the destination
894 * of an outgoing packet. If the outgoing interface of the packet
895 * is a loopback one, the kernel would consider the packet to be
896 * accepted, even if we have no such address assinged on the interface.
897 * We check the cloned flag of the route entry to reject such cases,
898 * assuming that route entries for our own addresses are not made by
899 * cloning (it should be true because in6_addloop explicitly installs
900 * the host route). However, we might have to do an explicit check
901 * while it would be less efficient. Or, should we rather install a
902 * reject route for such a case?
903 */
904 if (rin6.ro_rt != NULL &&
905 (rin6.ro_rt->rt_flags & (RTF_HOST|RTF_GATEWAY)) == RTF_HOST &&
906 #if RTF_WASCLONED
907 !(rin6.ro_rt->rt_flags & RTF_WASCLONED) &&
908 #endif
909 rin6.ro_rt->rt_ifp->if_type == IFT_LOOP) {
910 ia6 = (struct in6_ifaddr *)rin6.ro_rt->rt_ifa;
911 /*
912 * Packets to a tentative, duplicated, or somehow invalid
913 * address must not be accepted.
914 *
915 * For performance, test without acquiring the address lock;
916 * a lot of things in the address are set once and never
917 * changed (e.g. ia_ifp.)
918 */
919 if (!(ia6->ia6_flags & IN6_IFF_NOTREADY)) {
920 /* this address is ready */
921 ours = 1;
922 deliverifp = ia6->ia_ifp; /* correct? */
923 /*
924 * record dst address information into mbuf.
925 */
926 (void) ip6_setdstifaddr_info(m, 0, ia6);
927 RT_UNLOCK(rin6.ro_rt);
928 goto hbhcheck;
929 }
930 RT_UNLOCK(rin6.ro_rt);
931 ia6 = NULL;
932 /* address is not ready, so discard the packet. */
933 nd6log((LOG_INFO, "%s: packet to an unready address %s->%s\n",
934 __func__, ip6_sprintf(&ip6->ip6_src),
935 ip6_sprintf(&ip6->ip6_dst)));
936 goto bad;
937 }
938
939 if (rin6.ro_rt != NULL)
940 RT_UNLOCK(rin6.ro_rt);
941
942 /*
943 * Now there is no reason to process the packet if it's not our own
944 * and we're not a router.
945 */
946 if (!ip6_forwarding) {
947 ip6stat.ip6s_cantforward++;
948 in6_ifstat_inc(inifp, ifs6_in_discard);
949 goto bad;
950 }
951
952 hbhcheck:
953 /*
954 * record dst address information into mbuf, if we don't have one yet.
955 * note that we are unable to record it, if the address is not listed
956 * as our interface address (e.g. multicast addresses, etc.)
957 */
958 if (deliverifp != NULL && ia6 == NULL) {
959 ia6 = in6_ifawithifp(deliverifp, &ip6->ip6_dst);
960 if (ia6 != NULL) {
961 (void) ip6_setdstifaddr_info(m, 0, ia6);
962 IFA_REMREF(&ia6->ia_ifa);
963 }
964 }
965
966 /*
967 * Process Hop-by-Hop options header if it's contained.
968 * m may be modified in ip6_hopopts_input().
969 * If a JumboPayload option is included, plen will also be modified.
970 */
971 plen = (u_int32_t)ntohs(ip6->ip6_plen);
972 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
973 struct ip6_hbh *hbh;
974
975 if (ip6_hopopts_input(&plen, &rtalert, &m, &off)) {
976 #if 0 /* touches NULL pointer */
977 in6_ifstat_inc(inifp, ifs6_in_discard);
978 #endif
979 goto done; /* m have already been freed */
980 }
981
982 /* adjust pointer */
983 ip6 = mtod(m, struct ip6_hdr *);
984
985 /*
986 * if the payload length field is 0 and the next header field
987 * indicates Hop-by-Hop Options header, then a Jumbo Payload
988 * option MUST be included.
989 */
990 if (ip6->ip6_plen == 0 && plen == 0) {
991 /*
992 * Note that if a valid jumbo payload option is
993 * contained, ip6_hopopts_input() must set a valid
994 * (non-zero) payload length to the variable plen.
995 */
996 ip6stat.ip6s_badoptions++;
997 in6_ifstat_inc(inifp, ifs6_in_discard);
998 in6_ifstat_inc(inifp, ifs6_in_hdrerr);
999 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
1000 (caddr_t)&ip6->ip6_plen - (caddr_t)ip6);
1001 goto done;
1002 }
1003 /* ip6_hopopts_input() ensures that mbuf is contiguous */
1004 hbh = (struct ip6_hbh *)(ip6 + 1);
1005 nxt = hbh->ip6h_nxt;
1006
1007 /*
1008 * If we are acting as a router and the packet contains a
1009 * router alert option, see if we know the option value.
1010 * Currently, we only support the option value for MLD, in which
1011 * case we should pass the packet to the multicast routing
1012 * daemon.
1013 */
1014 if (rtalert != ~0 && ip6_forwarding) {
1015 switch (rtalert) {
1016 case IP6OPT_RTALERT_MLD:
1017 ours = 1;
1018 break;
1019 default:
1020 /*
1021 * RFC2711 requires unrecognized values must be
1022 * silently ignored.
1023 */
1024 break;
1025 }
1026 }
1027 } else
1028 nxt = ip6->ip6_nxt;
1029
1030 /*
1031 * Check that the amount of data in the buffers
1032 * is as at least much as the IPv6 header would have us expect.
1033 * Trim mbufs if longer than we expect.
1034 * Drop packet if shorter than we expect.
1035 */
1036 if (m->m_pkthdr.len - sizeof (struct ip6_hdr) < plen) {
1037 ip6stat.ip6s_tooshort++;
1038 in6_ifstat_inc(inifp, ifs6_in_truncated);
1039 goto bad;
1040 }
1041 if (m->m_pkthdr.len > sizeof (struct ip6_hdr) + plen) {
1042 /*
1043 * Invalidate hardware checksum info if ip6_adj_clear_hwcksum
1044 * is set; useful to handle buggy drivers. Note that this
1045 * should not be enabled by default, as we may get here due
1046 * to link-layer padding.
1047 */
1048 if (ip6_adj_clear_hwcksum &&
1049 (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
1050 !(inifp->if_flags & IFF_LOOPBACK) &&
1051 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
1052 m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
1053 m->m_pkthdr.csum_data = 0;
1054 ip6stat.ip6s_adj_hwcsum_clr++;
1055 }
1056
1057 ip6stat.ip6s_adj++;
1058 if (m->m_len == m->m_pkthdr.len) {
1059 m->m_len = sizeof (struct ip6_hdr) + plen;
1060 m->m_pkthdr.len = sizeof (struct ip6_hdr) + plen;
1061 } else {
1062 m_adj(m, sizeof (struct ip6_hdr) + plen -
1063 m->m_pkthdr.len);
1064 }
1065 }
1066
1067 /*
1068 * Forward if desirable.
1069 */
1070 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1071 if (!ours && nd6_prproxy) {
1072 /*
1073 * If this isn't for us, this might be a Neighbor
1074 * Solicitation (dst is solicited-node multicast)
1075 * against an address in one of the proxied prefixes;
1076 * if so, claim the packet and let icmp6_input()
1077 * handle the rest.
1078 */
1079 ours = nd6_prproxy_isours(m, ip6, NULL, IFSCOPE_NONE);
1080 VERIFY(!ours ||
1081 (m->m_pkthdr.pkt_flags & PKTF_PROXY_DST));
1082 }
1083 if (!ours)
1084 goto bad;
1085 } else if (!ours) {
1086 /*
1087 * The unicast forwarding function might return the packet
1088 * if we are proxying prefix(es), and if the packet is an
1089 * ICMPv6 packet that has failed the zone checks, but is
1090 * targetted towards a proxied address (this is optimized by
1091 * way of RTF_PROXY test.) If so, claim the packet as ours
1092 * and let icmp6_input() handle the rest. The packet's hop
1093 * limit value is kept intact (it's not decremented). This
1094 * is for supporting Neighbor Unreachability Detection between
1095 * proxied nodes on different links (src is link-local, dst
1096 * is target address.)
1097 */
1098 if ((m = ip6_forward(m, &rin6, 0)) == NULL)
1099 goto done;
1100 VERIFY(rin6.ro_rt != NULL);
1101 VERIFY(m->m_pkthdr.pkt_flags & PKTF_PROXY_DST);
1102 deliverifp = rin6.ro_rt->rt_ifp;
1103 ours = 1;
1104 }
1105
1106 ip6 = mtod(m, struct ip6_hdr *);
1107
1108 /*
1109 * Malicious party may be able to use IPv4 mapped addr to confuse
1110 * tcp/udp stack and bypass security checks (act as if it was from
1111 * 127.0.0.1 by using IPv6 src ::ffff:127.0.0.1). Be cautious.
1112 *
1113 * For SIIT end node behavior, you may want to disable the check.
1114 * However, you will become vulnerable to attacks using IPv4 mapped
1115 * source.
1116 */
1117 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1118 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1119 ip6stat.ip6s_badscope++;
1120 in6_ifstat_inc(inifp, ifs6_in_addrerr);
1121 goto bad;
1122 }
1123
1124 /*
1125 * Tell launch routine the next header
1126 */
1127 ip6stat.ip6s_delivered++;
1128 in6_ifstat_inc_na(deliverifp, ifs6_in_deliver);
1129
1130 injectit:
1131 nest = 0;
1132
1133 /*
1134 * Perform IP header alignment fixup again, if needed. Note that
1135 * we do it once for the outermost protocol, and we assume each
1136 * protocol handler wouldn't mess with the alignment afterwards.
1137 */
1138 IP6_HDR_ALIGNMENT_FIXUP(m, inifp, return);
1139
1140 while (nxt != IPPROTO_DONE) {
1141 struct ipfilter *filter;
1142 int (*pr_input)(struct mbuf **, int *, int);
1143
1144 if (ip6_hdrnestlimit && (++nest > ip6_hdrnestlimit)) {
1145 ip6stat.ip6s_toomanyhdr++;
1146 goto bad;
1147 }
1148
1149 /*
1150 * protection against faulty packet - there should be
1151 * more sanity checks in header chain processing.
1152 */
1153 if (m->m_pkthdr.len < off) {
1154 ip6stat.ip6s_tooshort++;
1155 in6_ifstat_inc(inifp, ifs6_in_truncated);
1156 goto bad;
1157 }
1158
1159
1160 #if IPSEC
1161 /*
1162 * enforce IPsec policy checking if we are seeing last header.
1163 * note that we do not visit this with protocols with pcb layer
1164 * code - like udp/tcp/raw ip.
1165 */
1166 if ((ipsec_bypass == 0) &&
1167 (ip6_protox[nxt]->pr_flags & PR_LASTHDR) != 0) {
1168 if (ipsec6_in_reject(m, NULL)) {
1169 IPSEC_STAT_INCREMENT(ipsec6stat.in_polvio);
1170 goto bad;
1171 }
1172 }
1173 #endif /* IPSEC */
1174
1175 /*
1176 * Call IP filter
1177 */
1178 if (!TAILQ_EMPTY(&ipv6_filters)) {
1179 ipf_ref();
1180 TAILQ_FOREACH(filter, &ipv6_filters, ipf_link) {
1181 if (seen == 0) {
1182 if ((struct ipfilter *)inject_ipfref ==
1183 filter)
1184 seen = 1;
1185 } else if (filter->ipf_filter.ipf_input) {
1186 errno_t result;
1187
1188 result = filter->ipf_filter.ipf_input(
1189 filter->ipf_filter.cookie,
1190 (mbuf_t *)&m, off, nxt);
1191 if (result == EJUSTRETURN) {
1192 ipf_unref();
1193 goto done;
1194 }
1195 if (result != 0) {
1196 ipf_unref();
1197 goto bad;
1198 }
1199 }
1200 }
1201 ipf_unref();
1202 }
1203
1204 DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
1205 struct ip6_hdr *, ip6, struct ifnet *, inifp,
1206 struct ip *, NULL, struct ip6_hdr *, ip6);
1207
1208 if ((pr_input = ip6_protox[nxt]->pr_input) == NULL) {
1209 m_freem(m);
1210 m = NULL;
1211 nxt = IPPROTO_DONE;
1212 } else if (!(ip6_protox[nxt]->pr_flags & PR_PROTOLOCK)) {
1213 lck_mtx_lock(inet6_domain_mutex);
1214 nxt = pr_input(&m, &off, nxt);
1215 lck_mtx_unlock(inet6_domain_mutex);
1216 } else {
1217 nxt = pr_input(&m, &off, nxt);
1218 }
1219 }
1220 done:
1221 ROUTE_RELEASE(&rin6);
1222 return;
1223 bad:
1224 m_freem(m);
1225 goto done;
1226 }
1227
1228 void
1229 ip6_setsrcifaddr_info(struct mbuf *m, uint32_t src_idx, struct in6_ifaddr *ia6)
1230 {
1231 VERIFY(m->m_flags & M_PKTHDR);
1232
1233 /*
1234 * If the source ifaddr is specified, pick up the information
1235 * from there; otherwise just grab the passed-in ifindex as the
1236 * caller may not have the ifaddr available.
1237 */
1238 if (ia6 != NULL) {
1239 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1240 m->m_pkthdr.src_ifindex = ia6->ia_ifp->if_index;
1241
1242 /* See IN6_IFF comments in in6_var.h */
1243 m->m_pkthdr.src_iff = (ia6->ia6_flags & 0xffff);
1244 } else {
1245 m->m_pkthdr.src_iff = 0;
1246 m->m_pkthdr.src_ifindex = src_idx;
1247 if (src_idx != 0)
1248 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1249 }
1250 }
1251
1252 void
1253 ip6_setdstifaddr_info(struct mbuf *m, uint32_t dst_idx, struct in6_ifaddr *ia6)
1254 {
1255 VERIFY(m->m_flags & M_PKTHDR);
1256
1257 /*
1258 * If the destination ifaddr is specified, pick up the information
1259 * from there; otherwise just grab the passed-in ifindex as the
1260 * caller may not have the ifaddr available.
1261 */
1262 if (ia6 != NULL) {
1263 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1264 m->m_pkthdr.dst_ifindex = ia6->ia_ifp->if_index;
1265
1266 /* See IN6_IFF comments in in6_var.h */
1267 m->m_pkthdr.dst_iff = (ia6->ia6_flags & 0xffff);
1268 } else {
1269 m->m_pkthdr.dst_iff = 0;
1270 m->m_pkthdr.dst_ifindex = dst_idx;
1271 if (dst_idx != 0)
1272 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1273 }
1274 }
1275
1276 int
1277 ip6_getsrcifaddr_info(struct mbuf *m, uint32_t *src_idx, uint32_t *ia6f)
1278 {
1279 VERIFY(m->m_flags & M_PKTHDR);
1280
1281 if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
1282 return (-1);
1283
1284 if (src_idx != NULL)
1285 *src_idx = m->m_pkthdr.src_ifindex;
1286
1287 if (ia6f != NULL)
1288 *ia6f = m->m_pkthdr.src_iff;
1289
1290 return (0);
1291 }
1292
1293 int
1294 ip6_getdstifaddr_info(struct mbuf *m, uint32_t *dst_idx, uint32_t *ia6f)
1295 {
1296 VERIFY(m->m_flags & M_PKTHDR);
1297
1298 if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
1299 return (-1);
1300
1301 if (dst_idx != NULL)
1302 *dst_idx = m->m_pkthdr.dst_ifindex;
1303
1304 if (ia6f != NULL)
1305 *ia6f = m->m_pkthdr.dst_iff;
1306
1307 return (0);
1308 }
1309
1310 /*
1311 * Hop-by-Hop options header processing. If a valid jumbo payload option is
1312 * included, the real payload length will be stored in plenp.
1313 */
1314 static int
1315 ip6_hopopts_input(uint32_t *plenp, uint32_t *rtalertp, struct mbuf **mp,
1316 int *offp)
1317 {
1318 struct mbuf *m = *mp;
1319 int off = *offp, hbhlen;
1320 struct ip6_hbh *hbh;
1321 u_int8_t *opt;
1322
1323 /* validation of the length of the header */
1324 IP6_EXTHDR_CHECK(m, off, sizeof (*hbh), return (-1));
1325 hbh = (struct ip6_hbh *)(mtod(m, caddr_t) + off);
1326 hbhlen = (hbh->ip6h_len + 1) << 3;
1327
1328 IP6_EXTHDR_CHECK(m, off, hbhlen, return (-1));
1329 hbh = (struct ip6_hbh *)(mtod(m, caddr_t) + off);
1330 off += hbhlen;
1331 hbhlen -= sizeof (struct ip6_hbh);
1332 opt = (u_int8_t *)hbh + sizeof (struct ip6_hbh);
1333
1334 if (ip6_process_hopopts(m, (u_int8_t *)hbh + sizeof (struct ip6_hbh),
1335 hbhlen, rtalertp, plenp) < 0)
1336 return (-1);
1337
1338 *offp = off;
1339 *mp = m;
1340 return (0);
1341 }
1342
1343 /*
1344 * Search header for all Hop-by-hop options and process each option.
1345 * This function is separate from ip6_hopopts_input() in order to
1346 * handle a case where the sending node itself process its hop-by-hop
1347 * options header. In such a case, the function is called from ip6_output().
1348 *
1349 * The function assumes that hbh header is located right after the IPv6 header
1350 * (RFC2460 p7), opthead is pointer into data content in m, and opthead to
1351 * opthead + hbhlen is located in continuous memory region.
1352 */
1353 int
1354 ip6_process_hopopts(m, opthead, hbhlen, rtalertp, plenp)
1355 struct mbuf *m;
1356 u_int8_t *opthead;
1357 int hbhlen;
1358 u_int32_t *rtalertp;
1359 u_int32_t *plenp;
1360 {
1361 struct ip6_hdr *ip6;
1362 int optlen = 0;
1363 u_int8_t *opt = opthead;
1364 u_int16_t rtalert_val;
1365 u_int32_t jumboplen;
1366 const int erroff = sizeof (struct ip6_hdr) + sizeof (struct ip6_hbh);
1367
1368 for (; hbhlen > 0; hbhlen -= optlen, opt += optlen) {
1369 switch (*opt) {
1370 case IP6OPT_PAD1:
1371 optlen = 1;
1372 break;
1373 case IP6OPT_PADN:
1374 if (hbhlen < IP6OPT_MINLEN) {
1375 ip6stat.ip6s_toosmall++;
1376 goto bad;
1377 }
1378 optlen = *(opt + 1) + 2;
1379 break;
1380 case IP6OPT_ROUTER_ALERT:
1381 /* XXX may need check for alignment */
1382 if (hbhlen < IP6OPT_RTALERT_LEN) {
1383 ip6stat.ip6s_toosmall++;
1384 goto bad;
1385 }
1386 if (*(opt + 1) != IP6OPT_RTALERT_LEN - 2) {
1387 /* XXX stat */
1388 icmp6_error(m, ICMP6_PARAM_PROB,
1389 ICMP6_PARAMPROB_HEADER,
1390 erroff + opt + 1 - opthead);
1391 return (-1);
1392 }
1393 optlen = IP6OPT_RTALERT_LEN;
1394 bcopy((caddr_t)(opt + 2), (caddr_t)&rtalert_val, 2);
1395 *rtalertp = ntohs(rtalert_val);
1396 break;
1397 case IP6OPT_JUMBO:
1398 /* XXX may need check for alignment */
1399 if (hbhlen < IP6OPT_JUMBO_LEN) {
1400 ip6stat.ip6s_toosmall++;
1401 goto bad;
1402 }
1403 if (*(opt + 1) != IP6OPT_JUMBO_LEN - 2) {
1404 /* XXX stat */
1405 icmp6_error(m, ICMP6_PARAM_PROB,
1406 ICMP6_PARAMPROB_HEADER,
1407 erroff + opt + 1 - opthead);
1408 return (-1);
1409 }
1410 optlen = IP6OPT_JUMBO_LEN;
1411
1412 /*
1413 * IPv6 packets that have non 0 payload length
1414 * must not contain a jumbo payload option.
1415 */
1416 ip6 = mtod(m, struct ip6_hdr *);
1417 if (ip6->ip6_plen) {
1418 ip6stat.ip6s_badoptions++;
1419 icmp6_error(m, ICMP6_PARAM_PROB,
1420 ICMP6_PARAMPROB_HEADER,
1421 erroff + opt - opthead);
1422 return (-1);
1423 }
1424
1425 /*
1426 * We may see jumbolen in unaligned location, so
1427 * we'd need to perform bcopy().
1428 */
1429 bcopy(opt + 2, &jumboplen, sizeof (jumboplen));
1430 jumboplen = (u_int32_t)htonl(jumboplen);
1431
1432 #if 1
1433 /*
1434 * if there are multiple jumbo payload options,
1435 * *plenp will be non-zero and the packet will be
1436 * rejected.
1437 * the behavior may need some debate in ipngwg -
1438 * multiple options does not make sense, however,
1439 * there's no explicit mention in specification.
1440 */
1441 if (*plenp != 0) {
1442 ip6stat.ip6s_badoptions++;
1443 icmp6_error(m, ICMP6_PARAM_PROB,
1444 ICMP6_PARAMPROB_HEADER,
1445 erroff + opt + 2 - opthead);
1446 return (-1);
1447 }
1448 #endif
1449
1450 /*
1451 * jumbo payload length must be larger than 65535.
1452 */
1453 if (jumboplen <= IPV6_MAXPACKET) {
1454 ip6stat.ip6s_badoptions++;
1455 icmp6_error(m, ICMP6_PARAM_PROB,
1456 ICMP6_PARAMPROB_HEADER,
1457 erroff + opt + 2 - opthead);
1458 return (-1);
1459 }
1460 *plenp = jumboplen;
1461
1462 break;
1463 default: /* unknown option */
1464 if (hbhlen < IP6OPT_MINLEN) {
1465 ip6stat.ip6s_toosmall++;
1466 goto bad;
1467 }
1468 optlen = ip6_unknown_opt(opt, m,
1469 erroff + opt - opthead);
1470 if (optlen == -1) {
1471 return (-1);
1472 }
1473 optlen += 2;
1474 break;
1475 }
1476 }
1477
1478 return (0);
1479
1480 bad:
1481 m_freem(m);
1482 return (-1);
1483 }
1484
1485 /*
1486 * Unknown option processing.
1487 * The third argument `off' is the offset from the IPv6 header to the option,
1488 * which is necessary if the IPv6 header the and option header and IPv6 header
1489 * is not continuous in order to return an ICMPv6 error.
1490 */
1491 int
1492 ip6_unknown_opt(uint8_t *optp, struct mbuf *m, int off)
1493 {
1494 struct ip6_hdr *ip6;
1495
1496 switch (IP6OPT_TYPE(*optp)) {
1497 case IP6OPT_TYPE_SKIP: /* ignore the option */
1498 return ((int)*(optp + 1));
1499
1500 case IP6OPT_TYPE_DISCARD: /* silently discard */
1501 m_freem(m);
1502 return (-1);
1503
1504 case IP6OPT_TYPE_FORCEICMP: /* send ICMP even if multicasted */
1505 ip6stat.ip6s_badoptions++;
1506 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_OPTION, off);
1507 return (-1);
1508
1509 case IP6OPT_TYPE_ICMP: /* send ICMP if not multicasted */
1510 ip6stat.ip6s_badoptions++;
1511 ip6 = mtod(m, struct ip6_hdr *);
1512 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1513 (m->m_flags & (M_BCAST|M_MCAST))) {
1514 m_freem(m);
1515 } else {
1516 icmp6_error(m, ICMP6_PARAM_PROB,
1517 ICMP6_PARAMPROB_OPTION, off);
1518 }
1519 return (-1);
1520 }
1521
1522 m_freem(m); /* XXX: NOTREACHED */
1523 return (-1);
1524 }
1525
1526 /*
1527 * Create the "control" list for this pcb.
1528 * These functions will not modify mbuf chain at all.
1529 *
1530 * With KAME mbuf chain restriction:
1531 * The routine will be called from upper layer handlers like tcp6_input().
1532 * Thus the routine assumes that the caller (tcp6_input) have already
1533 * called IP6_EXTHDR_CHECK() and all the extension headers are located in the
1534 * very first mbuf on the mbuf chain.
1535 *
1536 * ip6_savecontrol_v4 will handle those options that are possible to be
1537 * set on a v4-mapped socket.
1538 * ip6_savecontrol will directly call ip6_savecontrol_v4 to handle those
1539 * options and handle the v6-only ones itself.
1540 */
1541 struct mbuf **
1542 ip6_savecontrol_v4(struct inpcb *inp, struct mbuf *m, struct mbuf **mp,
1543 int *v4only)
1544 {
1545 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1546
1547 if ((inp->inp_socket->so_options & SO_TIMESTAMP) != 0) {
1548 struct timeval tv;
1549
1550 getmicrotime(&tv);
1551 mp = sbcreatecontrol_mbuf((caddr_t)&tv, sizeof (tv),
1552 SCM_TIMESTAMP, SOL_SOCKET, mp);
1553 if (*mp == NULL)
1554 return (NULL);
1555 }
1556 if ((inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) {
1557 uint64_t time;
1558
1559 time = mach_absolute_time();
1560 mp = sbcreatecontrol_mbuf((caddr_t)&time, sizeof (time),
1561 SCM_TIMESTAMP_MONOTONIC, SOL_SOCKET, mp);
1562 if (*mp == NULL)
1563 return (NULL);
1564 }
1565 if ((inp->inp_socket->so_flags & SOF_RECV_TRAFFIC_CLASS) != 0) {
1566 int tc = m_get_traffic_class(m);
1567
1568 mp = sbcreatecontrol_mbuf((caddr_t)&tc, sizeof (tc),
1569 SO_TRAFFIC_CLASS, SOL_SOCKET, mp);
1570 if (*mp == NULL)
1571 return (NULL);
1572 }
1573
1574 if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
1575 if (v4only != NULL)
1576 *v4only = 1;
1577 return (mp);
1578 }
1579
1580 #define IS2292(inp, x, y) (((inp)->inp_flags & IN6P_RFC2292) ? (x) : (y))
1581 /* RFC 2292 sec. 5 */
1582 if ((inp->inp_flags & IN6P_PKTINFO) != 0) {
1583 struct in6_pktinfo pi6;
1584
1585 bcopy(&ip6->ip6_dst, &pi6.ipi6_addr, sizeof (struct in6_addr));
1586 in6_clearscope(&pi6.ipi6_addr); /* XXX */
1587 pi6.ipi6_ifindex =
1588 (m && m->m_pkthdr.rcvif) ? m->m_pkthdr.rcvif->if_index : 0;
1589
1590 mp = sbcreatecontrol_mbuf((caddr_t)&pi6,
1591 sizeof (struct in6_pktinfo),
1592 IS2292(inp, IPV6_2292PKTINFO, IPV6_PKTINFO),
1593 IPPROTO_IPV6, mp);
1594 if (*mp == NULL)
1595 return (NULL);
1596 }
1597
1598 if ((inp->inp_flags & IN6P_HOPLIMIT) != 0) {
1599 int hlim = ip6->ip6_hlim & 0xff;
1600
1601 mp = sbcreatecontrol_mbuf((caddr_t)&hlim, sizeof (int),
1602 IS2292(inp, IPV6_2292HOPLIMIT, IPV6_HOPLIMIT),
1603 IPPROTO_IPV6, mp);
1604 if (*mp == NULL)
1605 return (NULL);
1606 }
1607
1608 if (v4only != NULL)
1609 *v4only = 0;
1610 return (mp);
1611 }
1612
1613 int
1614 ip6_savecontrol(struct inpcb *in6p, struct mbuf *m, struct mbuf **mp)
1615 {
1616 struct mbuf **np;
1617 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1618 int v4only = 0;
1619
1620 *mp = NULL;
1621 np = ip6_savecontrol_v4(in6p, m, mp, &v4only);
1622 if (np == NULL)
1623 goto no_mbufs;
1624
1625 mp = np;
1626 if (v4only)
1627 return (0);
1628
1629 if ((in6p->inp_flags & IN6P_TCLASS) != 0) {
1630 u_int32_t flowinfo;
1631 int tclass;
1632
1633 flowinfo = (u_int32_t)ntohl(ip6->ip6_flow & IPV6_FLOWINFO_MASK);
1634 flowinfo >>= 20;
1635
1636 tclass = flowinfo & 0xff;
1637 mp = sbcreatecontrol_mbuf((caddr_t)&tclass, sizeof (tclass),
1638 IPV6_TCLASS, IPPROTO_IPV6, mp);
1639 if (*mp == NULL)
1640 goto no_mbufs;
1641 }
1642
1643 /*
1644 * IPV6_HOPOPTS socket option. Recall that we required super-user
1645 * privilege for the option (see ip6_ctloutput), but it might be too
1646 * strict, since there might be some hop-by-hop options which can be
1647 * returned to normal user.
1648 * See also RFC 2292 section 6 (or RFC 3542 section 8).
1649 */
1650 if ((in6p->inp_flags & IN6P_HOPOPTS) != 0) {
1651 /*
1652 * Check if a hop-by-hop options header is contatined in the
1653 * received packet, and if so, store the options as ancillary
1654 * data. Note that a hop-by-hop options header must be
1655 * just after the IPv6 header, which is assured through the
1656 * IPv6 input processing.
1657 */
1658 ip6 = mtod(m, struct ip6_hdr *);
1659 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
1660 struct ip6_hbh *hbh;
1661 int hbhlen = 0;
1662 hbh = (struct ip6_hbh *)(ip6 + 1);
1663 hbhlen = (hbh->ip6h_len + 1) << 3;
1664
1665 /*
1666 * XXX: We copy the whole header even if a
1667 * jumbo payload option is included, the option which
1668 * is to be removed before returning according to
1669 * RFC2292.
1670 * Note: this constraint is removed in RFC3542
1671 */
1672 mp = sbcreatecontrol_mbuf((caddr_t)hbh, hbhlen,
1673 IS2292(in6p, IPV6_2292HOPOPTS, IPV6_HOPOPTS),
1674 IPPROTO_IPV6, mp);
1675
1676 if (*mp == NULL) {
1677 goto no_mbufs;
1678 }
1679 }
1680 }
1681
1682 if ((in6p->inp_flags & (IN6P_RTHDR | IN6P_DSTOPTS)) != 0) {
1683 int nxt = ip6->ip6_nxt, off = sizeof (struct ip6_hdr);
1684
1685 /*
1686 * Search for destination options headers or routing
1687 * header(s) through the header chain, and stores each
1688 * header as ancillary data.
1689 * Note that the order of the headers remains in
1690 * the chain of ancillary data.
1691 */
1692 while (1) { /* is explicit loop prevention necessary? */
1693 struct ip6_ext *ip6e = NULL;
1694 int elen;
1695
1696 /*
1697 * if it is not an extension header, don't try to
1698 * pull it from the chain.
1699 */
1700 switch (nxt) {
1701 case IPPROTO_DSTOPTS:
1702 case IPPROTO_ROUTING:
1703 case IPPROTO_HOPOPTS:
1704 case IPPROTO_AH: /* is it possible? */
1705 break;
1706 default:
1707 goto loopend;
1708 }
1709
1710 if (off + sizeof (*ip6e) > m->m_len)
1711 goto loopend;
1712 ip6e = (struct ip6_ext *)(mtod(m, caddr_t) + off);
1713 if (nxt == IPPROTO_AH)
1714 elen = (ip6e->ip6e_len + 2) << 2;
1715 else
1716 elen = (ip6e->ip6e_len + 1) << 3;
1717 if (off + elen > m->m_len)
1718 goto loopend;
1719
1720 switch (nxt) {
1721 case IPPROTO_DSTOPTS:
1722 if (!(in6p->inp_flags & IN6P_DSTOPTS))
1723 break;
1724
1725 mp = sbcreatecontrol_mbuf((caddr_t)ip6e, elen,
1726 IS2292(in6p, IPV6_2292DSTOPTS,
1727 IPV6_DSTOPTS), IPPROTO_IPV6, mp);
1728 if (*mp == NULL) {
1729 goto no_mbufs;
1730 }
1731 break;
1732 case IPPROTO_ROUTING:
1733 if (!(in6p->inp_flags & IN6P_RTHDR))
1734 break;
1735
1736 mp = sbcreatecontrol_mbuf((caddr_t)ip6e, elen,
1737 IS2292(in6p, IPV6_2292RTHDR, IPV6_RTHDR),
1738 IPPROTO_IPV6, mp);
1739 if (*mp == NULL) {
1740 goto no_mbufs;
1741 }
1742 break;
1743 case IPPROTO_HOPOPTS:
1744 case IPPROTO_AH: /* is it possible? */
1745 break;
1746
1747 default:
1748 /*
1749 * other cases have been filtered in the above.
1750 * none will visit this case. here we supply
1751 * the code just in case (nxt overwritten or
1752 * other cases).
1753 */
1754 goto loopend;
1755
1756 }
1757
1758 /* proceed with the next header. */
1759 off += elen;
1760 nxt = ip6e->ip6e_nxt;
1761 ip6e = NULL;
1762 }
1763 loopend:
1764 ;
1765 }
1766 return (0);
1767 no_mbufs:
1768 ip6stat.ip6s_pktdropcntrl++;
1769 /* XXX increment a stat to show the failure */
1770 return (ENOBUFS);
1771 }
1772 #undef IS2292
1773
1774 void
1775 ip6_notify_pmtu(struct inpcb *in6p, struct sockaddr_in6 *dst, u_int32_t *mtu)
1776 {
1777 struct socket *so;
1778 struct mbuf *m_mtu;
1779 struct ip6_mtuinfo mtuctl;
1780
1781 so = in6p->inp_socket;
1782
1783 if (mtu == NULL)
1784 return;
1785
1786 #ifdef DIAGNOSTIC
1787 if (so == NULL) { /* I believe this is impossible */
1788 panic("ip6_notify_pmtu: socket is NULL");
1789 /* NOTREACHED */
1790 }
1791 #endif
1792
1793 bzero(&mtuctl, sizeof (mtuctl)); /* zero-clear for safety */
1794 mtuctl.ip6m_mtu = *mtu;
1795 mtuctl.ip6m_addr = *dst;
1796 if (sa6_recoverscope(&mtuctl.ip6m_addr, TRUE))
1797 return;
1798
1799 if ((m_mtu = sbcreatecontrol((caddr_t)&mtuctl, sizeof (mtuctl),
1800 IPV6_PATHMTU, IPPROTO_IPV6)) == NULL)
1801 return;
1802
1803 if (sbappendaddr(&so->so_rcv, SA(dst), NULL, m_mtu, NULL) == 0) {
1804 m_freem(m_mtu);
1805 /* XXX: should count statistics */
1806 } else {
1807 sorwakeup(so);
1808 }
1809 }
1810
1811 /*
1812 * Get pointer to the previous header followed by the header
1813 * currently processed.
1814 * XXX: This function supposes that
1815 * M includes all headers,
1816 * the next header field and the header length field of each header
1817 * are valid, and
1818 * the sum of each header length equals to OFF.
1819 * Because of these assumptions, this function must be called very
1820 * carefully. Moreover, it will not be used in the near future when
1821 * we develop `neater' mechanism to process extension headers.
1822 */
1823 char *
1824 ip6_get_prevhdr(m, off)
1825 struct mbuf *m;
1826 int off;
1827 {
1828 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1829
1830 if (off == sizeof (struct ip6_hdr)) {
1831 return ((char *)&ip6->ip6_nxt);
1832 } else {
1833 int len, nxt;
1834 struct ip6_ext *ip6e = NULL;
1835
1836 nxt = ip6->ip6_nxt;
1837 len = sizeof (struct ip6_hdr);
1838 while (len < off) {
1839 ip6e = (struct ip6_ext *)(mtod(m, caddr_t) + len);
1840
1841 switch (nxt) {
1842 case IPPROTO_FRAGMENT:
1843 len += sizeof (struct ip6_frag);
1844 break;
1845 case IPPROTO_AH:
1846 len += (ip6e->ip6e_len + 2) << 2;
1847 break;
1848 default:
1849 len += (ip6e->ip6e_len + 1) << 3;
1850 break;
1851 }
1852 nxt = ip6e->ip6e_nxt;
1853 }
1854 if (ip6e)
1855 return ((char *)&ip6e->ip6e_nxt);
1856 else
1857 return (NULL);
1858 }
1859 }
1860
1861 /*
1862 * get next header offset. m will be retained.
1863 */
1864 int
1865 ip6_nexthdr(struct mbuf *m, int off, int proto, int *nxtp)
1866 {
1867 struct ip6_hdr ip6;
1868 struct ip6_ext ip6e;
1869 struct ip6_frag fh;
1870
1871 /* just in case */
1872 VERIFY(m != NULL);
1873 if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len < off)
1874 return (-1);
1875
1876 switch (proto) {
1877 case IPPROTO_IPV6:
1878 if (m->m_pkthdr.len < off + sizeof (ip6))
1879 return (-1);
1880 m_copydata(m, off, sizeof (ip6), (caddr_t)&ip6);
1881 if (nxtp)
1882 *nxtp = ip6.ip6_nxt;
1883 off += sizeof (ip6);
1884 return (off);
1885
1886 case IPPROTO_FRAGMENT:
1887 /*
1888 * terminate parsing if it is not the first fragment,
1889 * it does not make sense to parse through it.
1890 */
1891 if (m->m_pkthdr.len < off + sizeof (fh))
1892 return (-1);
1893 m_copydata(m, off, sizeof (fh), (caddr_t)&fh);
1894 /* IP6F_OFF_MASK = 0xfff8(BigEndian), 0xf8ff(LittleEndian) */
1895 if (fh.ip6f_offlg & IP6F_OFF_MASK)
1896 return (-1);
1897 if (nxtp)
1898 *nxtp = fh.ip6f_nxt;
1899 off += sizeof (struct ip6_frag);
1900 return (off);
1901
1902 case IPPROTO_AH:
1903 if (m->m_pkthdr.len < off + sizeof (ip6e))
1904 return (-1);
1905 m_copydata(m, off, sizeof (ip6e), (caddr_t)&ip6e);
1906 if (nxtp)
1907 *nxtp = ip6e.ip6e_nxt;
1908 off += (ip6e.ip6e_len + 2) << 2;
1909 return (off);
1910
1911 case IPPROTO_HOPOPTS:
1912 case IPPROTO_ROUTING:
1913 case IPPROTO_DSTOPTS:
1914 if (m->m_pkthdr.len < off + sizeof (ip6e))
1915 return (-1);
1916 m_copydata(m, off, sizeof (ip6e), (caddr_t)&ip6e);
1917 if (nxtp)
1918 *nxtp = ip6e.ip6e_nxt;
1919 off += (ip6e.ip6e_len + 1) << 3;
1920 return (off);
1921
1922 case IPPROTO_NONE:
1923 case IPPROTO_ESP:
1924 case IPPROTO_IPCOMP:
1925 /* give up */
1926 return (-1);
1927
1928 default:
1929 return (-1);
1930 }
1931
1932 return (-1);
1933 }
1934
1935 /*
1936 * get offset for the last header in the chain. m will be kept untainted.
1937 */
1938 int
1939 ip6_lasthdr(struct mbuf *m, int off, int proto, int *nxtp)
1940 {
1941 int newoff;
1942 int nxt;
1943
1944 if (!nxtp) {
1945 nxt = -1;
1946 nxtp = &nxt;
1947 }
1948 while (1) {
1949 newoff = ip6_nexthdr(m, off, proto, nxtp);
1950 if (newoff < 0)
1951 return (off);
1952 else if (newoff < off)
1953 return (-1); /* invalid */
1954 else if (newoff == off)
1955 return (newoff);
1956
1957 off = newoff;
1958 proto = *nxtp;
1959 }
1960 }
1961
1962 struct ip6aux *
1963 ip6_addaux(struct mbuf *m)
1964 {
1965 struct m_tag *tag;
1966
1967 /* Check if one is already allocated */
1968 tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
1969 KERNEL_TAG_TYPE_INET6, NULL);
1970 if (tag == NULL) {
1971 /* Allocate a tag */
1972 tag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_INET6,
1973 sizeof (struct ip6aux), M_DONTWAIT, m);
1974
1975 /* Attach it to the mbuf */
1976 if (tag) {
1977 m_tag_prepend(m, tag);
1978 }
1979 }
1980
1981 return (tag ? (struct ip6aux *)(tag + 1) : NULL);
1982 }
1983
1984 struct ip6aux *
1985 ip6_findaux(struct mbuf *m)
1986 {
1987 struct m_tag *tag;
1988
1989 tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
1990 KERNEL_TAG_TYPE_INET6, NULL);
1991
1992 return (tag ? (struct ip6aux *)(tag + 1) : NULL);
1993 }
1994
1995 void
1996 ip6_delaux(struct mbuf *m)
1997 {
1998 struct m_tag *tag;
1999
2000 tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
2001 KERNEL_TAG_TYPE_INET6, NULL);
2002 if (tag) {
2003 m_tag_delete(m, tag);
2004 }
2005 }
2006
2007 /*
2008 * Drain callback
2009 */
2010 void
2011 ip6_drain(void)
2012 {
2013 frag6_drain(); /* fragments */
2014 in6_rtqdrain(); /* protocol cloned routes */
2015 nd6_drain(NULL); /* cloned routes: ND6 */
2016 }
2017
2018 /*
2019 * System control for IP6
2020 */
2021
2022 u_char inet6ctlerrmap[PRC_NCMDS] = {
2023 0, 0, 0, 0,
2024 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
2025 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
2026 EMSGSIZE, EHOSTUNREACH, 0, 0,
2027 0, 0, 0, 0,
2028 ENOPROTOOPT
2029 };
2030
2031 static int
2032 sysctl_reset_ip6_input_stats SYSCTL_HANDLER_ARGS
2033 {
2034 #pragma unused(arg1, arg2)
2035 int error, i;
2036
2037 i = ip6_input_measure;
2038 error = sysctl_handle_int(oidp, &i, 0, req);
2039 if (error || req->newptr == USER_ADDR_NULL)
2040 goto done;
2041 /* impose bounds */
2042 if (i < 0 || i > 1) {
2043 error = EINVAL;
2044 goto done;
2045 }
2046 if (ip6_input_measure != i && i == 1) {
2047 net_perf_initialize(&net_perf, ip6_input_measure_bins);
2048 }
2049 ip6_input_measure = i;
2050 done:
2051 return (error);
2052 }
2053
2054 static int
2055 sysctl_ip6_input_measure_bins SYSCTL_HANDLER_ARGS
2056 {
2057 #pragma unused(arg1, arg2)
2058 int error;
2059 uint64_t i;
2060
2061 i = ip6_input_measure_bins;
2062 error = sysctl_handle_quad(oidp, &i, 0, req);
2063 if (error || req->newptr == USER_ADDR_NULL)
2064 goto done;
2065 /* validate data */
2066 if (!net_perf_validate_bins(i)) {
2067 error = EINVAL;
2068 goto done;
2069 }
2070 ip6_input_measure_bins = i;
2071 done:
2072 return (error);
2073 }
2074
2075 static int
2076 sysctl_ip6_input_getperf SYSCTL_HANDLER_ARGS
2077 {
2078 #pragma unused(oidp, arg1, arg2)
2079 if (req->oldptr == USER_ADDR_NULL)
2080 req->oldlen = (size_t)sizeof (struct ipstat);
2081
2082 return (SYSCTL_OUT(req, &net_perf, MIN(sizeof (net_perf), req->oldlen)));
2083 }