]> git.saurik.com Git - apple/xnu.git/blob - bsd/miscfs/specfs/spec_vnops.c
0fd816243abcdd5441f328bf4be4228c0ead5014
[apple/xnu.git] / bsd / miscfs / specfs / spec_vnops.c
1 /*
2 * Copyright (c) 2000-2012 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1989, 1993, 1995
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)spec_vnops.c 8.14 (Berkeley) 5/21/95
62 */
63
64 #include <sys/param.h>
65 #include <sys/proc_internal.h>
66 #include <sys/kauth.h>
67 #include <sys/systm.h>
68 #include <sys/kernel.h>
69 #include <sys/conf.h>
70 #include <sys/buf_internal.h>
71 #include <sys/mount_internal.h>
72 #include <sys/vnode_internal.h>
73 #include <sys/file_internal.h>
74 #include <sys/namei.h>
75 #include <sys/stat.h>
76 #include <sys/errno.h>
77 #include <sys/ioctl.h>
78 #include <sys/file.h>
79 #include <sys/user.h>
80 #include <sys/malloc.h>
81 #include <sys/disk.h>
82 #include <sys/uio_internal.h>
83 #include <sys/resource.h>
84 #include <miscfs/specfs/specdev.h>
85 #include <vfs/vfs_support.h>
86 #include <kern/assert.h>
87 #include <kern/task.h>
88 #include <pexpert/pexpert.h>
89
90 #include <sys/kdebug.h>
91
92 /* XXX following three prototypes should be in a header file somewhere */
93 extern dev_t chrtoblk(dev_t dev);
94 extern boolean_t iskmemdev(dev_t dev);
95 extern int bpfkqfilter(dev_t dev, struct knote *kn);
96 extern int ptsd_kqfilter(dev_t dev, struct knote *kn);
97
98 extern int ignore_is_ssd;
99
100 struct vnode *speclisth[SPECHSZ];
101
102 /* symbolic sleep message strings for devices */
103 char devopn[] = "devopn";
104 char devio[] = "devio";
105 char devwait[] = "devwait";
106 char devin[] = "devin";
107 char devout[] = "devout";
108 char devioc[] = "devioc";
109 char devcls[] = "devcls";
110
111 #define VOPFUNC int (*)(void *)
112
113 int (**spec_vnodeop_p)(void *);
114 struct vnodeopv_entry_desc spec_vnodeop_entries[] = {
115 { &vnop_default_desc, (VOPFUNC)vn_default_error },
116 { &vnop_lookup_desc, (VOPFUNC)spec_lookup }, /* lookup */
117 { &vnop_create_desc, (VOPFUNC)err_create }, /* create */
118 { &vnop_mknod_desc, (VOPFUNC)err_mknod }, /* mknod */
119 { &vnop_open_desc, (VOPFUNC)spec_open }, /* open */
120 { &vnop_close_desc, (VOPFUNC)spec_close }, /* close */
121 { &vnop_access_desc, (VOPFUNC)spec_access }, /* access */
122 { &vnop_getattr_desc, (VOPFUNC)spec_getattr }, /* getattr */
123 { &vnop_setattr_desc, (VOPFUNC)spec_setattr }, /* setattr */
124 { &vnop_read_desc, (VOPFUNC)spec_read }, /* read */
125 { &vnop_write_desc, (VOPFUNC)spec_write }, /* write */
126 { &vnop_ioctl_desc, (VOPFUNC)spec_ioctl }, /* ioctl */
127 { &vnop_select_desc, (VOPFUNC)spec_select }, /* select */
128 { &vnop_revoke_desc, (VOPFUNC)nop_revoke }, /* revoke */
129 { &vnop_mmap_desc, (VOPFUNC)err_mmap }, /* mmap */
130 { &vnop_fsync_desc, (VOPFUNC)spec_fsync }, /* fsync */
131 { &vnop_remove_desc, (VOPFUNC)err_remove }, /* remove */
132 { &vnop_link_desc, (VOPFUNC)err_link }, /* link */
133 { &vnop_rename_desc, (VOPFUNC)err_rename }, /* rename */
134 { &vnop_mkdir_desc, (VOPFUNC)err_mkdir }, /* mkdir */
135 { &vnop_rmdir_desc, (VOPFUNC)err_rmdir }, /* rmdir */
136 { &vnop_symlink_desc, (VOPFUNC)err_symlink }, /* symlink */
137 { &vnop_readdir_desc, (VOPFUNC)err_readdir }, /* readdir */
138 { &vnop_readlink_desc, (VOPFUNC)err_readlink }, /* readlink */
139 { &vnop_inactive_desc, (VOPFUNC)nop_inactive }, /* inactive */
140 { &vnop_reclaim_desc, (VOPFUNC)nop_reclaim }, /* reclaim */
141 { &vnop_strategy_desc, (VOPFUNC)spec_strategy }, /* strategy */
142 { &vnop_pathconf_desc, (VOPFUNC)spec_pathconf }, /* pathconf */
143 { &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */
144 { &vnop_bwrite_desc, (VOPFUNC)spec_bwrite }, /* bwrite */
145 { &vnop_pagein_desc, (VOPFUNC)err_pagein }, /* Pagein */
146 { &vnop_pageout_desc, (VOPFUNC)err_pageout }, /* Pageout */
147 { &vnop_copyfile_desc, (VOPFUNC)err_copyfile }, /* Copyfile */
148 { &vnop_blktooff_desc, (VOPFUNC)spec_blktooff }, /* blktooff */
149 { &vnop_offtoblk_desc, (VOPFUNC)spec_offtoblk }, /* offtoblk */
150 { &vnop_blockmap_desc, (VOPFUNC)spec_blockmap }, /* blockmap */
151 { (struct vnodeop_desc*)NULL, (int(*)())NULL }
152 };
153 struct vnodeopv_desc spec_vnodeop_opv_desc =
154 { &spec_vnodeop_p, spec_vnodeop_entries };
155
156
157 static void set_blocksize(vnode_t, dev_t);
158
159 #define LOWPRI_TIER1_WINDOW_MSECS 25
160 #define LOWPRI_TIER2_WINDOW_MSECS 100
161 #define LOWPRI_TIER3_WINDOW_MSECS 500
162
163 #define LOWPRI_TIER1_IO_PERIOD_MSECS 15
164 #define LOWPRI_TIER2_IO_PERIOD_MSECS 50
165 #define LOWPRI_TIER3_IO_PERIOD_MSECS 200
166
167 #define LOWPRI_TIER1_IO_PERIOD_SSD_MSECS 5
168 #define LOWPRI_TIER2_IO_PERIOD_SSD_MSECS 15
169 #define LOWPRI_TIER3_IO_PERIOD_SSD_MSECS 25
170
171
172 int throttle_windows_msecs[THROTTLE_LEVEL_END + 1] = {
173 0,
174 LOWPRI_TIER1_WINDOW_MSECS,
175 LOWPRI_TIER2_WINDOW_MSECS,
176 LOWPRI_TIER3_WINDOW_MSECS,
177 };
178
179 int throttle_io_period_msecs[THROTTLE_LEVEL_END + 1] = {
180 0,
181 LOWPRI_TIER1_IO_PERIOD_MSECS,
182 LOWPRI_TIER2_IO_PERIOD_MSECS,
183 LOWPRI_TIER3_IO_PERIOD_MSECS,
184 };
185
186 int throttle_io_period_ssd_msecs[THROTTLE_LEVEL_END + 1] = {
187 0,
188 LOWPRI_TIER1_IO_PERIOD_SSD_MSECS,
189 LOWPRI_TIER2_IO_PERIOD_SSD_MSECS,
190 LOWPRI_TIER3_IO_PERIOD_SSD_MSECS,
191 };
192
193
194 int throttled_count[THROTTLE_LEVEL_END + 1];
195
196 struct _throttle_io_info_t {
197 lck_mtx_t throttle_lock;
198
199 struct timeval throttle_last_write_timestamp;
200 struct timeval throttle_min_timer_deadline;
201 struct timeval throttle_window_start_timestamp[THROTTLE_LEVEL_END + 1];
202 struct timeval throttle_last_IO_timestamp[THROTTLE_LEVEL_END + 1];
203 pid_t throttle_last_IO_pid[THROTTLE_LEVEL_END + 1];
204 struct timeval throttle_start_IO_period_timestamp[THROTTLE_LEVEL_END + 1];
205
206 TAILQ_HEAD( , uthread) throttle_uthlist[THROTTLE_LEVEL_END + 1]; /* Lists of throttled uthreads */
207 int throttle_next_wake_level;
208
209 thread_call_t throttle_timer_call;
210 int32_t throttle_timer_ref;
211 int32_t throttle_timer_active;
212
213 int32_t throttle_io_count;
214 int32_t throttle_io_count_begin;
215 int *throttle_io_periods;
216 uint32_t throttle_io_period_num;
217
218 int32_t throttle_refcnt;
219 int32_t throttle_alloc;
220 int32_t throttle_disabled;
221 };
222
223 struct _throttle_io_info_t _throttle_io_info[LOWPRI_MAX_NUM_DEV];
224
225
226 int lowpri_throttle_enabled = 1;
227
228
229
230 static void throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd);
231 static int throttle_get_thread_throttle_level(uthread_t ut);
232
233 /*
234 * Trivial lookup routine that always fails.
235 */
236 int
237 spec_lookup(struct vnop_lookup_args *ap)
238 {
239
240 *ap->a_vpp = NULL;
241 return (ENOTDIR);
242 }
243
244 static void
245 set_blocksize(struct vnode *vp, dev_t dev)
246 {
247 int (*size)(dev_t);
248 int rsize;
249
250 if ((major(dev) < nblkdev) && (size = bdevsw[major(dev)].d_psize)) {
251 rsize = (*size)(dev);
252 if (rsize <= 0) /* did size fail? */
253 vp->v_specsize = DEV_BSIZE;
254 else
255 vp->v_specsize = rsize;
256 }
257 else
258 vp->v_specsize = DEV_BSIZE;
259 }
260
261 void
262 set_fsblocksize(struct vnode *vp)
263 {
264
265 if (vp->v_type == VBLK) {
266 dev_t dev = (dev_t)vp->v_rdev;
267 int maj = major(dev);
268
269 if ((u_int)maj >= (u_int)nblkdev)
270 return;
271
272 vnode_lock(vp);
273 set_blocksize(vp, dev);
274 vnode_unlock(vp);
275 }
276
277 }
278
279
280 /*
281 * Open a special file.
282 */
283 int
284 spec_open(struct vnop_open_args *ap)
285 {
286 struct proc *p = vfs_context_proc(ap->a_context);
287 kauth_cred_t cred = vfs_context_ucred(ap->a_context);
288 struct vnode *vp = ap->a_vp;
289 dev_t bdev, dev = (dev_t)vp->v_rdev;
290 int maj = major(dev);
291 int error;
292
293 /*
294 * Don't allow open if fs is mounted -nodev.
295 */
296 if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_NODEV))
297 return (ENXIO);
298
299 switch (vp->v_type) {
300
301 case VCHR:
302 if ((u_int)maj >= (u_int)nchrdev)
303 return (ENXIO);
304 if (cred != FSCRED && (ap->a_mode & FWRITE)) {
305 /*
306 * When running in very secure mode, do not allow
307 * opens for writing of any disk character devices.
308 */
309 if (securelevel >= 2 && isdisk(dev, VCHR))
310 return (EPERM);
311
312 /* Never allow writing to /dev/mem or /dev/kmem */
313 if (iskmemdev(dev))
314 return (EPERM);
315 /*
316 * When running in secure mode, do not allow opens for
317 * writing of character devices whose corresponding block
318 * devices are currently mounted.
319 */
320 if (securelevel >= 1) {
321 if ((bdev = chrtoblk(dev)) != NODEV && check_mountedon(bdev, VBLK, &error))
322 return (error);
323 }
324 }
325
326 devsw_lock(dev, S_IFCHR);
327 error = (*cdevsw[maj].d_open)(dev, ap->a_mode, S_IFCHR, p);
328
329 if (error == 0) {
330 vp->v_specinfo->si_opencount++;
331 }
332
333 devsw_unlock(dev, S_IFCHR);
334
335 if (error == 0 && cdevsw[maj].d_type == D_DISK && !vp->v_un.vu_specinfo->si_initted) {
336 int isssd = 0;
337 uint64_t throttle_mask = 0;
338 uint32_t devbsdunit = 0;
339
340 if (VNOP_IOCTL(vp, DKIOCGETTHROTTLEMASK, (caddr_t)&throttle_mask, 0, NULL) == 0) {
341
342 if (throttle_mask != 0 &&
343 VNOP_IOCTL(vp, DKIOCISSOLIDSTATE, (caddr_t)&isssd, 0, ap->a_context) == 0) {
344 /*
345 * as a reasonable approximation, only use the lowest bit of the mask
346 * to generate a disk unit number
347 */
348 devbsdunit = num_trailing_0(throttle_mask);
349
350 vnode_lock(vp);
351
352 vp->v_un.vu_specinfo->si_isssd = isssd;
353 vp->v_un.vu_specinfo->si_devbsdunit = devbsdunit;
354 vp->v_un.vu_specinfo->si_throttle_mask = throttle_mask;
355 vp->v_un.vu_specinfo->si_throttleable = 1;
356 vp->v_un.vu_specinfo->si_initted = 1;
357
358 vnode_unlock(vp);
359 }
360 }
361 if (vp->v_un.vu_specinfo->si_initted == 0) {
362 vnode_lock(vp);
363 vp->v_un.vu_specinfo->si_initted = 1;
364 vnode_unlock(vp);
365 }
366 }
367 return (error);
368
369 case VBLK:
370 if ((u_int)maj >= (u_int)nblkdev)
371 return (ENXIO);
372 /*
373 * When running in very secure mode, do not allow
374 * opens for writing of any disk block devices.
375 */
376 if (securelevel >= 2 && cred != FSCRED &&
377 (ap->a_mode & FWRITE) && bdevsw[maj].d_type == D_DISK)
378 return (EPERM);
379 /*
380 * Do not allow opens of block devices that are
381 * currently mounted.
382 */
383 if ( (error = vfs_mountedon(vp)) )
384 return (error);
385
386 devsw_lock(dev, S_IFBLK);
387 error = (*bdevsw[maj].d_open)(dev, ap->a_mode, S_IFBLK, p);
388 if (!error) {
389 vp->v_specinfo->si_opencount++;
390 }
391 devsw_unlock(dev, S_IFBLK);
392
393 if (!error) {
394 u_int64_t blkcnt;
395 u_int32_t blksize;
396 int setsize = 0;
397 u_int32_t size512 = 512;
398
399
400 if (!VNOP_IOCTL(vp, DKIOCGETBLOCKSIZE, (caddr_t)&blksize, 0, ap->a_context)) {
401 /* Switch to 512 byte sectors (temporarily) */
402
403 if (!VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&size512, FWRITE, ap->a_context)) {
404 /* Get the number of 512 byte physical blocks. */
405 if (!VNOP_IOCTL(vp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, ap->a_context)) {
406 setsize = 1;
407 }
408 }
409 /* If it doesn't set back, we can't recover */
410 if (VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&blksize, FWRITE, ap->a_context))
411 error = ENXIO;
412 }
413
414
415 vnode_lock(vp);
416 set_blocksize(vp, dev);
417
418 /*
419 * Cache the size in bytes of the block device for later
420 * use by spec_write().
421 */
422 if (setsize)
423 vp->v_specdevsize = blkcnt * (u_int64_t)size512;
424 else
425 vp->v_specdevsize = (u_int64_t)0; /* Default: Can't get */
426
427 vnode_unlock(vp);
428
429 }
430 return(error);
431 default:
432 panic("spec_open type");
433 }
434 return (0);
435 }
436
437 /*
438 * Vnode op for read
439 */
440 int
441 spec_read(struct vnop_read_args *ap)
442 {
443 struct vnode *vp = ap->a_vp;
444 struct uio *uio = ap->a_uio;
445 struct buf *bp;
446 daddr64_t bn, nextbn;
447 long bsize, bscale;
448 int devBlockSize=0;
449 int n, on;
450 int error = 0;
451 dev_t dev;
452
453 #if DIAGNOSTIC
454 if (uio->uio_rw != UIO_READ)
455 panic("spec_read mode");
456 if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg))
457 panic("spec_read proc");
458 #endif
459 if (uio_resid(uio) == 0)
460 return (0);
461
462 switch (vp->v_type) {
463
464 case VCHR:
465 if (cdevsw[major(vp->v_rdev)].d_type == D_DISK && vp->v_un.vu_specinfo->si_throttleable) {
466 struct _throttle_io_info_t *throttle_info;
467
468 throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit];
469 throttle_info_update_internal(throttle_info, NULL, 0, vp->v_un.vu_specinfo->si_isssd);
470 }
471 error = (*cdevsw[major(vp->v_rdev)].d_read)
472 (vp->v_rdev, uio, ap->a_ioflag);
473
474 return (error);
475
476 case VBLK:
477 if (uio->uio_offset < 0)
478 return (EINVAL);
479
480 dev = vp->v_rdev;
481
482 devBlockSize = vp->v_specsize;
483
484 if (devBlockSize > PAGE_SIZE)
485 return (EINVAL);
486
487 bscale = PAGE_SIZE / devBlockSize;
488 bsize = bscale * devBlockSize;
489
490 do {
491 on = uio->uio_offset % bsize;
492
493 bn = (daddr64_t)((uio->uio_offset / devBlockSize) &~ (bscale - 1));
494
495 if (vp->v_speclastr + bscale == bn) {
496 nextbn = bn + bscale;
497 error = buf_breadn(vp, bn, (int)bsize, &nextbn,
498 (int *)&bsize, 1, NOCRED, &bp);
499 } else
500 error = buf_bread(vp, bn, (int)bsize, NOCRED, &bp);
501
502 vnode_lock(vp);
503 vp->v_speclastr = bn;
504 vnode_unlock(vp);
505
506 n = bsize - buf_resid(bp);
507 if ((on > n) || error) {
508 if (!error)
509 error = EINVAL;
510 buf_brelse(bp);
511 return (error);
512 }
513 n = min((unsigned)(n - on), uio_resid(uio));
514
515 error = uiomove((char *)buf_dataptr(bp) + on, n, uio);
516 if (n + on == bsize)
517 buf_markaged(bp);
518 buf_brelse(bp);
519 } while (error == 0 && uio_resid(uio) > 0 && n != 0);
520 return (error);
521
522 default:
523 panic("spec_read type");
524 }
525 /* NOTREACHED */
526
527 return (0);
528 }
529
530 /*
531 * Vnode op for write
532 */
533 int
534 spec_write(struct vnop_write_args *ap)
535 {
536 struct vnode *vp = ap->a_vp;
537 struct uio *uio = ap->a_uio;
538 struct buf *bp;
539 daddr64_t bn;
540 int bsize, blkmask, bscale;
541 int io_sync;
542 int devBlockSize=0;
543 int n, on;
544 int error = 0;
545 dev_t dev;
546
547 #if DIAGNOSTIC
548 if (uio->uio_rw != UIO_WRITE)
549 panic("spec_write mode");
550 if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg))
551 panic("spec_write proc");
552 #endif
553
554 switch (vp->v_type) {
555
556 case VCHR:
557 if (cdevsw[major(vp->v_rdev)].d_type == D_DISK && vp->v_un.vu_specinfo->si_throttleable) {
558 struct _throttle_io_info_t *throttle_info;
559
560 throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit];
561
562 throttle_info_update_internal(throttle_info, NULL, 0, vp->v_un.vu_specinfo->si_isssd);
563
564 microuptime(&throttle_info->throttle_last_write_timestamp);
565 }
566 error = (*cdevsw[major(vp->v_rdev)].d_write)
567 (vp->v_rdev, uio, ap->a_ioflag);
568
569 return (error);
570
571 case VBLK:
572 if (uio_resid(uio) == 0)
573 return (0);
574 if (uio->uio_offset < 0)
575 return (EINVAL);
576
577 io_sync = (ap->a_ioflag & IO_SYNC);
578
579 dev = (vp->v_rdev);
580
581 devBlockSize = vp->v_specsize;
582 if (devBlockSize > PAGE_SIZE)
583 return(EINVAL);
584
585 bscale = PAGE_SIZE / devBlockSize;
586 blkmask = bscale - 1;
587 bsize = bscale * devBlockSize;
588
589
590 do {
591 bn = (daddr64_t)((uio->uio_offset / devBlockSize) &~ blkmask);
592 on = uio->uio_offset % bsize;
593
594 n = min((unsigned)(bsize - on), uio_resid(uio));
595
596 /*
597 * Use buf_getblk() as an optimization IFF:
598 *
599 * 1) We are reading exactly a block on a block
600 * aligned boundary
601 * 2) We know the size of the device from spec_open
602 * 3) The read doesn't span the end of the device
603 *
604 * Otherwise, we fall back on buf_bread().
605 */
606 if (n == bsize &&
607 vp->v_specdevsize != (u_int64_t)0 &&
608 (uio->uio_offset + (u_int64_t)n) > vp->v_specdevsize) {
609 /* reduce the size of the read to what is there */
610 n = (uio->uio_offset + (u_int64_t)n) - vp->v_specdevsize;
611 }
612
613 if (n == bsize)
614 bp = buf_getblk(vp, bn, bsize, 0, 0, BLK_WRITE);
615 else
616 error = (int)buf_bread(vp, bn, bsize, NOCRED, &bp);
617
618 /* Translate downstream error for upstream, if needed */
619 if (!error)
620 error = (int)buf_error(bp);
621 if (error) {
622 buf_brelse(bp);
623 return (error);
624 }
625 n = min(n, bsize - buf_resid(bp));
626
627 error = uiomove((char *)buf_dataptr(bp) + on, n, uio);
628 if (error) {
629 buf_brelse(bp);
630 return (error);
631 }
632 buf_markaged(bp);
633
634 if (io_sync)
635 error = buf_bwrite(bp);
636 else {
637 if ((n + on) == bsize)
638 error = buf_bawrite(bp);
639 else
640 error = buf_bdwrite(bp);
641 }
642 } while (error == 0 && uio_resid(uio) > 0 && n != 0);
643 return (error);
644
645 default:
646 panic("spec_write type");
647 }
648 /* NOTREACHED */
649
650 return (0);
651 }
652
653 /*
654 * Device ioctl operation.
655 */
656 int
657 spec_ioctl(struct vnop_ioctl_args *ap)
658 {
659 proc_t p = vfs_context_proc(ap->a_context);
660 dev_t dev = ap->a_vp->v_rdev;
661 int retval = 0;
662
663 KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 0) | DBG_FUNC_START,
664 (unsigned int)dev, (unsigned int)ap->a_command, (unsigned int)ap->a_fflag, (unsigned int)ap->a_vp->v_type, 0);
665
666 switch (ap->a_vp->v_type) {
667
668 case VCHR:
669 retval = (*cdevsw[major(dev)].d_ioctl)(dev, ap->a_command, ap->a_data,
670 ap->a_fflag, p);
671 break;
672
673 case VBLK:
674 if (kdebug_enable) {
675 if (ap->a_command == DKIOCUNMAP) {
676 dk_unmap_t *unmap;
677 dk_extent_t *extent;
678 uint32_t i;
679
680 unmap = (dk_unmap_t *)ap->a_data;
681 extent = unmap->extents;
682
683 for (i = 0; i < unmap->extentsCount; i++, extent++) {
684 KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 1) | DBG_FUNC_NONE, dev, extent->offset/ap->a_vp->v_specsize, extent->length, 0, 0);
685 }
686 }
687 }
688 retval = (*bdevsw[major(dev)].d_ioctl)(dev, ap->a_command, ap->a_data, ap->a_fflag, p);
689 break;
690
691 default:
692 panic("spec_ioctl");
693 /* NOTREACHED */
694 }
695 KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 0) | DBG_FUNC_END,
696 (unsigned int)dev, (unsigned int)ap->a_command, (unsigned int)ap->a_fflag, retval, 0);
697
698 return (retval);
699 }
700
701 int
702 spec_select(struct vnop_select_args *ap)
703 {
704 proc_t p = vfs_context_proc(ap->a_context);
705 dev_t dev;
706
707 switch (ap->a_vp->v_type) {
708
709 default:
710 return (1); /* XXX */
711
712 case VCHR:
713 dev = ap->a_vp->v_rdev;
714 return (*cdevsw[major(dev)].d_select)(dev, ap->a_which, ap->a_wql, p);
715 }
716 }
717
718 static int filt_specattach(struct knote *kn);
719
720 int
721 spec_kqfilter(vnode_t vp, struct knote *kn)
722 {
723 dev_t dev;
724 int err = EINVAL;
725
726 /*
727 * For a few special kinds of devices, we can attach knotes.
728 * Each filter function must check whether the dev type matches it.
729 */
730 dev = vnode_specrdev(vp);
731
732 if (vnode_istty(vp)) {
733 /* We can hook into TTYs... */
734 err = filt_specattach(kn);
735 } else {
736 #if NETWORKING
737 /* Try a bpf device, as defined in bsd/net/bpf.c */
738 err = bpfkqfilter(dev, kn);
739 #endif
740 }
741
742 return err;
743 }
744
745 /*
746 * Synch buffers associated with a block device
747 */
748 int
749 spec_fsync_internal(vnode_t vp, int waitfor, __unused vfs_context_t context)
750 {
751 if (vp->v_type == VCHR)
752 return (0);
753 /*
754 * Flush all dirty buffers associated with a block device.
755 */
756 buf_flushdirtyblks(vp, (waitfor == MNT_WAIT || waitfor == MNT_DWAIT), 0, "spec_fsync");
757
758 return (0);
759 }
760
761 int
762 spec_fsync(struct vnop_fsync_args *ap)
763 {
764 return spec_fsync_internal(ap->a_vp, ap->a_waitfor, ap->a_context);
765 }
766
767
768 /*
769 * Just call the device strategy routine
770 */
771 void throttle_init(void);
772
773
774 #if 0
775 #define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...) \
776 do { \
777 if ((debug_info)->alloc) \
778 printf("%s: "format, __FUNCTION__, ## args); \
779 } while(0)
780
781 #else
782 #define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...)
783 #endif
784
785
786 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER1], 0, "");
787 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER2], 0, "");
788 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER3], 0, "");
789
790 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER1], 0, "");
791 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER2], 0, "");
792 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER3], 0, "");
793
794 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER1], 0, "");
795 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER2], 0, "");
796 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER3], 0, "");
797
798 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, &lowpri_throttle_enabled, 0, "");
799
800
801 static lck_grp_t *throttle_mtx_grp;
802 static lck_attr_t *throttle_mtx_attr;
803 static lck_grp_attr_t *throttle_mtx_grp_attr;
804
805
806 /*
807 * throttled I/O helper function
808 * convert the index of the lowest set bit to a device index
809 */
810 int
811 num_trailing_0(uint64_t n)
812 {
813 /*
814 * since in most cases the number of trailing 0s is very small,
815 * we simply counting sequentially from the lowest bit
816 */
817 if (n == 0)
818 return sizeof(n) * 8;
819 int count = 0;
820 while (!ISSET(n, 1)) {
821 n >>= 1;
822 ++count;
823 }
824 return count;
825 }
826
827
828 /*
829 * Release the reference and if the item was allocated and this is the last
830 * reference then free it.
831 *
832 * This routine always returns the old value.
833 */
834 static int
835 throttle_info_rel(struct _throttle_io_info_t *info)
836 {
837 SInt32 oldValue = OSDecrementAtomic(&info->throttle_refcnt);
838
839 DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n",
840 info, (int)(oldValue -1), info );
841
842 /* The reference count just went negative, very bad */
843 if (oldValue == 0)
844 panic("throttle info ref cnt went negative!");
845
846 /*
847 * Once reference count is zero, no one else should be able to take a
848 * reference
849 */
850 if ((info->throttle_refcnt == 0) && (info->throttle_alloc)) {
851 DEBUG_ALLOC_THROTTLE_INFO("Freeing info = %p\n", info);
852
853 lck_mtx_destroy(&info->throttle_lock, throttle_mtx_grp);
854 FREE(info, M_TEMP);
855 }
856 return oldValue;
857 }
858
859
860 /*
861 * Just take a reference on the throttle info structure.
862 *
863 * This routine always returns the old value.
864 */
865 static SInt32
866 throttle_info_ref(struct _throttle_io_info_t *info)
867 {
868 SInt32 oldValue = OSIncrementAtomic(&info->throttle_refcnt);
869
870 DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n",
871 info, (int)(oldValue -1), info );
872 /* Allocated items should never have a reference of zero */
873 if (info->throttle_alloc && (oldValue == 0))
874 panic("Taking a reference without calling create throttle info!\n");
875
876 return oldValue;
877 }
878
879 /*
880 * on entry the throttle_lock is held...
881 * this function is responsible for taking
882 * and dropping the reference on the info
883 * structure which will keep it from going
884 * away while the timer is running if it
885 * happens to have been dynamically allocated by
886 * a network fileystem kext which is now trying
887 * to free it
888 */
889 static uint32_t
890 throttle_timer_start(struct _throttle_io_info_t *info, boolean_t update_io_count, int wakelevel)
891 {
892 struct timeval elapsed;
893 struct timeval now;
894 struct timeval period;
895 uint64_t elapsed_msecs;
896 int throttle_level;
897 int level;
898 int msecs;
899 boolean_t throttled = FALSE;
900 boolean_t need_timer = FALSE;
901
902 microuptime(&now);
903
904 if (update_io_count == TRUE) {
905 info->throttle_io_count_begin = info->throttle_io_count;
906 info->throttle_io_period_num++;
907
908 while (wakelevel >= THROTTLE_LEVEL_THROTTLED)
909 info->throttle_start_IO_period_timestamp[wakelevel--] = now;
910
911 info->throttle_min_timer_deadline = now;
912
913 msecs = info->throttle_io_periods[THROTTLE_LEVEL_THROTTLED];
914 period.tv_sec = msecs / 1000;
915 period.tv_usec = (msecs % 1000) * 1000;
916
917 timevaladd(&info->throttle_min_timer_deadline, &period);
918 }
919 for (throttle_level = THROTTLE_LEVEL_START; throttle_level < THROTTLE_LEVEL_END; throttle_level++) {
920
921 elapsed = now;
922 timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]);
923 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
924
925 for (level = throttle_level + 1; level <= THROTTLE_LEVEL_END; level++) {
926
927 if (!TAILQ_EMPTY(&info->throttle_uthlist[level])) {
928
929 if (elapsed_msecs < (uint64_t)throttle_windows_msecs[level]) {
930 /*
931 * we had an I/O occur at a higher priority tier within
932 * this tier's throttle window
933 */
934 throttled = TRUE;
935 }
936 /*
937 * we assume that the windows are the same or longer
938 * as we drop through the throttling tiers... thus
939 * we can stop looking once we run into a tier with
940 * threads to schedule regardless of whether it's
941 * still in its throttling window or not
942 */
943 break;
944 }
945 }
946 if (throttled == TRUE)
947 break;
948 }
949 if (throttled == TRUE) {
950 uint64_t deadline = 0;
951 struct timeval target;
952 struct timeval min_target;
953
954 /*
955 * we've got at least one tier still in a throttled window
956 * so we need a timer running... compute the next deadline
957 * and schedule it
958 */
959 for (level = throttle_level+1; level <= THROTTLE_LEVEL_END; level++) {
960
961 if (TAILQ_EMPTY(&info->throttle_uthlist[level]))
962 continue;
963
964 target = info->throttle_start_IO_period_timestamp[level];
965
966 msecs = info->throttle_io_periods[level];
967 period.tv_sec = msecs / 1000;
968 period.tv_usec = (msecs % 1000) * 1000;
969
970 timevaladd(&target, &period);
971
972 if (need_timer == FALSE || timevalcmp(&target, &min_target, <)) {
973 min_target = target;
974 need_timer = TRUE;
975 }
976 }
977 if (timevalcmp(&info->throttle_min_timer_deadline, &now, >)) {
978 if (timevalcmp(&info->throttle_min_timer_deadline, &min_target, >))
979 min_target = info->throttle_min_timer_deadline;
980 }
981
982 if (info->throttle_timer_active) {
983 if (thread_call_cancel(info->throttle_timer_call) == FALSE) {
984 /*
985 * couldn't kill the timer because it's already
986 * been dispatched, so don't try to start a new
987 * one... once we drop the lock, the timer will
988 * proceed and eventually re-run this function
989 */
990 need_timer = FALSE;
991 } else
992 info->throttle_timer_active = 0;
993 }
994 if (need_timer == TRUE) {
995 /*
996 * This is defined as an int (32-bit) rather than a 64-bit
997 * value because it would need a really big period in the
998 * order of ~500 days to overflow this. So, we let this be
999 * 32-bit which allows us to use the clock_interval_to_deadline()
1000 * routine.
1001 */
1002 int target_msecs;
1003
1004 if (info->throttle_timer_ref == 0) {
1005 /*
1006 * take a reference for the timer
1007 */
1008 throttle_info_ref(info);
1009
1010 info->throttle_timer_ref = 1;
1011 }
1012 elapsed = min_target;
1013 timevalsub(&elapsed, &now);
1014 target_msecs = elapsed.tv_sec * 1000 + elapsed.tv_usec / 1000;
1015
1016 if (target_msecs <= 0) {
1017 /*
1018 * we may have computed a deadline slightly in the past
1019 * due to various factors... if so, just set the timer
1020 * to go off in the near future (we don't need to be precise)
1021 */
1022 target_msecs = 1;
1023 }
1024 clock_interval_to_deadline(target_msecs, 1000000, &deadline);
1025
1026 thread_call_enter_delayed(info->throttle_timer_call, deadline);
1027 info->throttle_timer_active = 1;
1028 }
1029 }
1030 return (throttle_level);
1031 }
1032
1033
1034 static void
1035 throttle_timer(struct _throttle_io_info_t *info)
1036 {
1037 uthread_t ut, utlist;
1038 struct timeval elapsed;
1039 struct timeval now;
1040 uint64_t elapsed_msecs;
1041 int throttle_level;
1042 int level;
1043 int wake_level;
1044 caddr_t wake_address = NULL;
1045 boolean_t update_io_count = FALSE;
1046 boolean_t need_wakeup = FALSE;
1047 boolean_t need_release = FALSE;
1048
1049 ut = NULL;
1050 lck_mtx_lock(&info->throttle_lock);
1051
1052 info->throttle_timer_active = 0;
1053 microuptime(&now);
1054
1055 elapsed = now;
1056 timevalsub(&elapsed, &info->throttle_start_IO_period_timestamp[THROTTLE_LEVEL_THROTTLED]);
1057 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
1058
1059 if (elapsed_msecs >= (uint64_t)info->throttle_io_periods[THROTTLE_LEVEL_THROTTLED]) {
1060
1061 wake_level = info->throttle_next_wake_level;
1062
1063 for (level = THROTTLE_LEVEL_START; level < THROTTLE_LEVEL_END; level++) {
1064
1065 elapsed = now;
1066 timevalsub(&elapsed, &info->throttle_start_IO_period_timestamp[wake_level]);
1067 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
1068
1069 if (elapsed_msecs >= (uint64_t)info->throttle_io_periods[wake_level] && !TAILQ_EMPTY(&info->throttle_uthlist[wake_level])) {
1070 /*
1071 * we're closing out the current IO period...
1072 * if we have a waiting thread, wake it up
1073 * after we have reset the I/O window info
1074 */
1075 need_wakeup = TRUE;
1076 update_io_count = TRUE;
1077
1078 info->throttle_next_wake_level = wake_level - 1;
1079
1080 if (info->throttle_next_wake_level == THROTTLE_LEVEL_START)
1081 info->throttle_next_wake_level = THROTTLE_LEVEL_END;
1082
1083 break;
1084 }
1085 wake_level--;
1086
1087 if (wake_level == THROTTLE_LEVEL_START)
1088 wake_level = THROTTLE_LEVEL_END;
1089 }
1090 }
1091 if (need_wakeup == TRUE) {
1092 if (!TAILQ_EMPTY(&info->throttle_uthlist[wake_level])) {
1093
1094 ut = (uthread_t)TAILQ_FIRST(&info->throttle_uthlist[wake_level]);
1095 TAILQ_REMOVE(&info->throttle_uthlist[wake_level], ut, uu_throttlelist);
1096 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
1097
1098 wake_address = (caddr_t)&ut->uu_on_throttlelist;
1099 }
1100 } else
1101 wake_level = THROTTLE_LEVEL_START;
1102
1103 throttle_level = throttle_timer_start(info, update_io_count, wake_level);
1104
1105 if (wake_address != NULL)
1106 wakeup(wake_address);
1107
1108 for (level = THROTTLE_LEVEL_THROTTLED; level <= throttle_level; level++) {
1109
1110 TAILQ_FOREACH_SAFE(ut, &info->throttle_uthlist[level], uu_throttlelist, utlist) {
1111
1112 TAILQ_REMOVE(&info->throttle_uthlist[level], ut, uu_throttlelist);
1113 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
1114
1115 wakeup(&ut->uu_on_throttlelist);
1116 }
1117 }
1118 if (info->throttle_timer_active == 0 && info->throttle_timer_ref) {
1119 info->throttle_timer_ref = 0;
1120 need_release = TRUE;
1121 }
1122 lck_mtx_unlock(&info->throttle_lock);
1123
1124 if (need_release == TRUE)
1125 throttle_info_rel(info);
1126 }
1127
1128
1129 static int
1130 throttle_add_to_list(struct _throttle_io_info_t *info, uthread_t ut, int mylevel, boolean_t insert_tail)
1131 {
1132 boolean_t start_timer = FALSE;
1133 int level = THROTTLE_LEVEL_START;
1134
1135 if (TAILQ_EMPTY(&info->throttle_uthlist[mylevel])) {
1136 info->throttle_start_IO_period_timestamp[mylevel] = info->throttle_last_IO_timestamp[mylevel];
1137 start_timer = TRUE;
1138 }
1139
1140 if (insert_tail == TRUE)
1141 TAILQ_INSERT_TAIL(&info->throttle_uthlist[mylevel], ut, uu_throttlelist);
1142 else
1143 TAILQ_INSERT_HEAD(&info->throttle_uthlist[mylevel], ut, uu_throttlelist);
1144
1145 ut->uu_on_throttlelist = mylevel;
1146
1147 if (start_timer == TRUE) {
1148 /* we may need to start or rearm the timer */
1149 level = throttle_timer_start(info, FALSE, THROTTLE_LEVEL_START);
1150
1151 if (level == THROTTLE_LEVEL_END) {
1152 if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) {
1153 TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist);
1154
1155 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
1156 }
1157 }
1158 }
1159 return (level);
1160 }
1161
1162 static void
1163 throttle_init_throttle_window(void)
1164 {
1165 int throttle_window_size;
1166
1167 /*
1168 * The hierarchy of throttle window values is as follows:
1169 * - Global defaults
1170 * - Device tree properties
1171 * - Boot-args
1172 * All values are specified in msecs.
1173 */
1174
1175 /* Override global values with device-tree properties */
1176 if (PE_get_default("kern.io_throttle_window_tier1", &throttle_window_size, sizeof(throttle_window_size)))
1177 throttle_windows_msecs[THROTTLE_LEVEL_TIER1] = throttle_window_size;
1178
1179 if (PE_get_default("kern.io_throttle_window_tier2", &throttle_window_size, sizeof(throttle_window_size)))
1180 throttle_windows_msecs[THROTTLE_LEVEL_TIER2] = throttle_window_size;
1181
1182 if (PE_get_default("kern.io_throttle_window_tier3", &throttle_window_size, sizeof(throttle_window_size)))
1183 throttle_windows_msecs[THROTTLE_LEVEL_TIER3] = throttle_window_size;
1184
1185 /* Override with boot-args */
1186 if (PE_parse_boot_argn("io_throttle_window_tier1", &throttle_window_size, sizeof(throttle_window_size)))
1187 throttle_windows_msecs[THROTTLE_LEVEL_TIER1] = throttle_window_size;
1188
1189 if (PE_parse_boot_argn("io_throttle_window_tier2", &throttle_window_size, sizeof(throttle_window_size)))
1190 throttle_windows_msecs[THROTTLE_LEVEL_TIER2] = throttle_window_size;
1191
1192 if (PE_parse_boot_argn("io_throttle_window_tier3", &throttle_window_size, sizeof(throttle_window_size)))
1193 throttle_windows_msecs[THROTTLE_LEVEL_TIER3] = throttle_window_size;
1194 }
1195
1196 static void
1197 throttle_init_throttle_period(struct _throttle_io_info_t *info, boolean_t isssd)
1198 {
1199 int throttle_period_size;
1200
1201 /*
1202 * The hierarchy of throttle period values is as follows:
1203 * - Global defaults
1204 * - Device tree properties
1205 * - Boot-args
1206 * All values are specified in msecs.
1207 */
1208
1209 /* Assign global defaults */
1210 if (isssd == TRUE)
1211 info->throttle_io_periods = &throttle_io_period_ssd_msecs[0];
1212 else
1213 info->throttle_io_periods = &throttle_io_period_msecs[0];
1214
1215 /* Override global values with device-tree properties */
1216 if (PE_get_default("kern.io_throttle_period_tier1", &throttle_period_size, sizeof(throttle_period_size)))
1217 info->throttle_io_periods[THROTTLE_LEVEL_TIER1] = throttle_period_size;
1218
1219 if (PE_get_default("kern.io_throttle_period_tier2", &throttle_period_size, sizeof(throttle_period_size)))
1220 info->throttle_io_periods[THROTTLE_LEVEL_TIER2] = throttle_period_size;
1221
1222 if (PE_get_default("kern.io_throttle_period_tier3", &throttle_period_size, sizeof(throttle_period_size)))
1223 info->throttle_io_periods[THROTTLE_LEVEL_TIER3] = throttle_period_size;
1224
1225 /* Override with boot-args */
1226 if (PE_parse_boot_argn("io_throttle_period_tier1", &throttle_period_size, sizeof(throttle_period_size)))
1227 info->throttle_io_periods[THROTTLE_LEVEL_TIER1] = throttle_period_size;
1228
1229 if (PE_parse_boot_argn("io_throttle_period_tier2", &throttle_period_size, sizeof(throttle_period_size)))
1230 info->throttle_io_periods[THROTTLE_LEVEL_TIER2] = throttle_period_size;
1231
1232 if (PE_parse_boot_argn("io_throttle_period_tier3", &throttle_period_size, sizeof(throttle_period_size)))
1233 info->throttle_io_periods[THROTTLE_LEVEL_TIER3] = throttle_period_size;
1234
1235 }
1236
1237 #if CONFIG_IOSCHED
1238 extern void vm_io_reprioritize_init(void);
1239 int iosched_enabled = 1;
1240 #endif
1241
1242 void
1243 throttle_init(void)
1244 {
1245 struct _throttle_io_info_t *info;
1246 int i;
1247 int level;
1248 #if CONFIG_IOSCHED
1249 int iosched;
1250 #endif
1251 /*
1252 * allocate lock group attribute and group
1253 */
1254 throttle_mtx_grp_attr = lck_grp_attr_alloc_init();
1255 throttle_mtx_grp = lck_grp_alloc_init("throttle I/O", throttle_mtx_grp_attr);
1256
1257 /* Update throttle parameters based on device tree configuration */
1258 throttle_init_throttle_window();
1259
1260 /*
1261 * allocate the lock attribute
1262 */
1263 throttle_mtx_attr = lck_attr_alloc_init();
1264
1265 for (i = 0; i < LOWPRI_MAX_NUM_DEV; i++) {
1266 info = &_throttle_io_info[i];
1267
1268 lck_mtx_init(&info->throttle_lock, throttle_mtx_grp, throttle_mtx_attr);
1269 info->throttle_timer_call = thread_call_allocate((thread_call_func_t)throttle_timer, (thread_call_param_t)info);
1270
1271 for (level = 0; level <= THROTTLE_LEVEL_END; level++) {
1272 TAILQ_INIT(&info->throttle_uthlist[level]);
1273 info->throttle_last_IO_pid[level] = 0;
1274 }
1275 info->throttle_next_wake_level = THROTTLE_LEVEL_END;
1276 info->throttle_disabled = 0;
1277 }
1278 #if CONFIG_IOSCHED
1279 if (PE_parse_boot_argn("iosched", &iosched, sizeof(iosched))) {
1280 iosched_enabled = iosched;
1281 }
1282 if (iosched_enabled) {
1283 /* Initialize I/O Reprioritization mechanism */
1284 vm_io_reprioritize_init();
1285 }
1286 #endif
1287 }
1288
1289 void
1290 sys_override_io_throttle(int flag)
1291 {
1292 if (flag == THROTTLE_IO_ENABLE)
1293 lowpri_throttle_enabled = 1;
1294
1295 if (flag == THROTTLE_IO_DISABLE)
1296 lowpri_throttle_enabled = 0;
1297 }
1298
1299 int rethrottle_removed_from_list = 0;
1300 int rethrottle_moved_to_new_list = 0;
1301
1302 /*
1303 * move a throttled thread to the appropriate state based
1304 * on it's new throttle level... throttle_add_to_list will
1305 * reset the timer deadline if necessary... it may also
1306 * leave the thread off of the queue if we're already outside
1307 * the throttle window for the new level
1308 * takes a valid uthread (which may or may not be on the
1309 * throttle queue) as input
1310 *
1311 * NOTE: This is called with the task lock held.
1312 */
1313
1314 void
1315 rethrottle_thread(uthread_t ut)
1316 {
1317 struct _throttle_io_info_t *info;
1318 int my_new_level;
1319
1320 if ((info = ut->uu_throttle_info) == NULL)
1321 return;
1322
1323 lck_mtx_lock(&info->throttle_lock);
1324
1325 if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) {
1326
1327 my_new_level = throttle_get_thread_throttle_level(ut);
1328
1329 if (my_new_level != ut->uu_on_throttlelist) {
1330
1331 TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist);
1332 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
1333
1334 if (my_new_level >= THROTTLE_LEVEL_THROTTLED) {
1335 throttle_add_to_list(info, ut, my_new_level, TRUE);
1336 rethrottle_moved_to_new_list++;
1337 }
1338
1339 /* Thread no longer in window, need to wake it up */
1340 if (ut->uu_on_throttlelist == THROTTLE_LEVEL_NONE) {
1341 wakeup(&ut->uu_on_throttlelist);
1342 rethrottle_removed_from_list++;
1343 }
1344 }
1345 }
1346
1347 lck_mtx_unlock(&info->throttle_lock);
1348 }
1349
1350
1351 /*
1352 * KPI routine
1353 *
1354 * Create and take a reference on a throttle info structure and return a
1355 * pointer for the file system to use when calling throttle_info_update.
1356 * Calling file system must have a matching release for every create.
1357 */
1358 void *
1359 throttle_info_create(void)
1360 {
1361 struct _throttle_io_info_t *info;
1362 int level;
1363
1364 MALLOC(info, struct _throttle_io_info_t *, sizeof(*info), M_TEMP, M_ZERO | M_WAITOK);
1365 /* Should never happen but just in case */
1366 if (info == NULL)
1367 return NULL;
1368 /* Mark that this one was allocated and needs to be freed */
1369 DEBUG_ALLOC_THROTTLE_INFO("Creating info = %p\n", info, info );
1370 info->throttle_alloc = TRUE;
1371
1372 lck_mtx_init(&info->throttle_lock, throttle_mtx_grp, throttle_mtx_attr);
1373 info->throttle_timer_call = thread_call_allocate((thread_call_func_t)throttle_timer, (thread_call_param_t)info);
1374
1375 for (level = 0; level <= THROTTLE_LEVEL_END; level++) {
1376 TAILQ_INIT(&info->throttle_uthlist[level]);
1377 }
1378 info->throttle_next_wake_level = THROTTLE_LEVEL_END;
1379
1380 /* Take a reference */
1381 OSIncrementAtomic(&info->throttle_refcnt);
1382 return info;
1383 }
1384
1385 /*
1386 * KPI routine
1387 *
1388 * Release the throttle info pointer if all the reference are gone. Should be
1389 * called to release reference taken by throttle_info_create
1390 */
1391 void
1392 throttle_info_release(void *throttle_info)
1393 {
1394 DEBUG_ALLOC_THROTTLE_INFO("Releaseing info = %p\n",
1395 (struct _throttle_io_info_t *)throttle_info,
1396 (struct _throttle_io_info_t *)throttle_info);
1397 if (throttle_info) /* Just to be careful */
1398 throttle_info_rel(throttle_info);
1399 }
1400
1401 /*
1402 * KPI routine
1403 *
1404 * File Systems that create an info structure, need to call this routine in
1405 * their mount routine (used by cluster code). File Systems that call this in
1406 * their mount routines must call throttle_info_mount_rel in their unmount
1407 * routines.
1408 */
1409 void
1410 throttle_info_mount_ref(mount_t mp, void *throttle_info)
1411 {
1412 if ((throttle_info == NULL) || (mp == NULL))
1413 return;
1414 throttle_info_ref(throttle_info);
1415
1416 /*
1417 * We already have a reference release it before adding the new one
1418 */
1419 if (mp->mnt_throttle_info)
1420 throttle_info_rel(mp->mnt_throttle_info);
1421 mp->mnt_throttle_info = throttle_info;
1422 }
1423
1424 /*
1425 * Private KPI routine
1426 *
1427 * return a handle for accessing throttle_info given a throttle_mask. The
1428 * handle must be released by throttle_info_rel_by_mask
1429 */
1430 int
1431 throttle_info_ref_by_mask(uint64_t throttle_mask, throttle_info_handle_t *throttle_info_handle)
1432 {
1433 int dev_index;
1434 struct _throttle_io_info_t *info;
1435
1436 if (throttle_info_handle == NULL)
1437 return EINVAL;
1438
1439 dev_index = num_trailing_0(throttle_mask);
1440 info = &_throttle_io_info[dev_index];
1441 throttle_info_ref(info);
1442 *(struct _throttle_io_info_t**)throttle_info_handle = info;
1443
1444 return 0;
1445 }
1446
1447 /*
1448 * Private KPI routine
1449 *
1450 * release the handle obtained by throttle_info_ref_by_mask
1451 */
1452 void
1453 throttle_info_rel_by_mask(throttle_info_handle_t throttle_info_handle)
1454 {
1455 /*
1456 * for now the handle is just a pointer to _throttle_io_info_t
1457 */
1458 throttle_info_rel((struct _throttle_io_info_t*)throttle_info_handle);
1459 }
1460
1461 /*
1462 * KPI routine
1463 *
1464 * File Systems that throttle_info_mount_ref, must call this routine in their
1465 * umount routine.
1466 */
1467 void
1468 throttle_info_mount_rel(mount_t mp)
1469 {
1470 if (mp->mnt_throttle_info)
1471 throttle_info_rel(mp->mnt_throttle_info);
1472 mp->mnt_throttle_info = NULL;
1473 }
1474
1475 void
1476 throttle_info_get_last_io_time(mount_t mp, struct timeval *tv)
1477 {
1478 struct _throttle_io_info_t *info;
1479
1480 if (mp == NULL)
1481 info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
1482 else if (mp->mnt_throttle_info == NULL)
1483 info = &_throttle_io_info[mp->mnt_devbsdunit];
1484 else
1485 info = mp->mnt_throttle_info;
1486
1487 *tv = info->throttle_last_write_timestamp;
1488 }
1489
1490 void
1491 update_last_io_time(mount_t mp)
1492 {
1493 struct _throttle_io_info_t *info;
1494
1495 if (mp == NULL)
1496 info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
1497 else if (mp->mnt_throttle_info == NULL)
1498 info = &_throttle_io_info[mp->mnt_devbsdunit];
1499 else
1500 info = mp->mnt_throttle_info;
1501
1502 microuptime(&info->throttle_last_write_timestamp);
1503 if (mp != NULL)
1504 mp->mnt_last_write_completed_timestamp = info->throttle_last_write_timestamp;
1505 }
1506
1507
1508 int
1509 throttle_get_io_policy(uthread_t *ut)
1510 {
1511 if (ut != NULL)
1512 *ut = get_bsdthread_info(current_thread());
1513
1514 return (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO));
1515 }
1516
1517 int
1518 throttle_get_passive_io_policy(uthread_t *ut)
1519 {
1520 if (ut != NULL)
1521 *ut = get_bsdthread_info(current_thread());
1522
1523 return (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_PASSIVE_IO));
1524 }
1525
1526
1527 static int
1528 throttle_get_thread_throttle_level(uthread_t ut)
1529 {
1530 int thread_throttle_level;
1531
1532 if (ut == NULL)
1533 ut = get_bsdthread_info(current_thread());
1534
1535 thread_throttle_level = proc_get_effective_thread_policy(ut->uu_thread, TASK_POLICY_IO);
1536
1537 /* Bootcache misses should always be throttled */
1538 if (ut->uu_throttle_bc == TRUE)
1539 thread_throttle_level = THROTTLE_LEVEL_TIER3;
1540
1541 return (thread_throttle_level);
1542 }
1543
1544
1545 static int
1546 throttle_io_will_be_throttled_internal(void * throttle_info, int * mylevel, int * throttling_level)
1547 {
1548 struct _throttle_io_info_t *info = throttle_info;
1549 struct timeval elapsed;
1550 uint64_t elapsed_msecs;
1551 int thread_throttle_level;
1552 int throttle_level;
1553
1554 if ((thread_throttle_level = throttle_get_thread_throttle_level(NULL)) < THROTTLE_LEVEL_THROTTLED)
1555 return (THROTTLE_DISENGAGED);
1556
1557 for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) {
1558
1559 microuptime(&elapsed);
1560 timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]);
1561 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
1562
1563 if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level])
1564 break;
1565 }
1566 if (throttle_level >= thread_throttle_level) {
1567 /*
1568 * we're beyond all of the throttle windows
1569 * that affect the throttle level of this thread,
1570 * so go ahead and treat as normal I/O
1571 */
1572 return (THROTTLE_DISENGAGED);
1573 }
1574 if (mylevel)
1575 *mylevel = thread_throttle_level;
1576 if (throttling_level)
1577 *throttling_level = throttle_level;
1578
1579 if (info->throttle_io_count != info->throttle_io_count_begin) {
1580 /*
1581 * we've already issued at least one throttleable I/O
1582 * in the current I/O window, so avoid issuing another one
1583 */
1584 return (THROTTLE_NOW);
1585 }
1586 /*
1587 * we're in the throttle window, so
1588 * cut the I/O size back
1589 */
1590 return (THROTTLE_ENGAGED);
1591 }
1592
1593 /*
1594 * If we have a mount point and it has a throttle info pointer then
1595 * use it to do the check, otherwise use the device unit number to find
1596 * the correct throttle info array element.
1597 */
1598 int
1599 throttle_io_will_be_throttled(__unused int lowpri_window_msecs, mount_t mp)
1600 {
1601 struct _throttle_io_info_t *info;
1602
1603 /*
1604 * Should we just return zero if no mount point
1605 */
1606 if (mp == NULL)
1607 info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
1608 else if (mp->mnt_throttle_info == NULL)
1609 info = &_throttle_io_info[mp->mnt_devbsdunit];
1610 else
1611 info = mp->mnt_throttle_info;
1612
1613 if (info->throttle_disabled)
1614 return (THROTTLE_DISENGAGED);
1615 else
1616 return throttle_io_will_be_throttled_internal(info, NULL, NULL);
1617 }
1618
1619 /*
1620 * Routine to increment I/O throttling counters maintained in the proc
1621 */
1622
1623 static void
1624 throttle_update_proc_stats(pid_t throttling_pid, int count)
1625 {
1626 proc_t throttling_proc;
1627 proc_t throttled_proc = current_proc();
1628
1629 /* The throttled_proc is always the current proc; so we are not concerned with refs */
1630 OSAddAtomic64(count, &(throttled_proc->was_throttled));
1631
1632 /* The throttling pid might have exited by now */
1633 throttling_proc = proc_find(throttling_pid);
1634 if (throttling_proc != PROC_NULL) {
1635 OSAddAtomic64(count, &(throttling_proc->did_throttle));
1636 proc_rele(throttling_proc);
1637 }
1638 }
1639
1640 /*
1641 * Block until woken up by the throttle timer or by a rethrottle call.
1642 * As long as we hold the throttle_lock while querying the throttle tier, we're
1643 * safe against seeing an old throttle tier after a rethrottle.
1644 */
1645 uint32_t
1646 throttle_lowpri_io(int sleep_amount)
1647 {
1648 uthread_t ut;
1649 struct _throttle_io_info_t *info;
1650 int throttle_type = 0;
1651 int mylevel = 0;
1652 int throttling_level = THROTTLE_LEVEL_NONE;
1653 int sleep_cnt = 0;
1654 uint32_t throttle_io_period_num = 0;
1655 boolean_t insert_tail = TRUE;
1656
1657 ut = get_bsdthread_info(current_thread());
1658
1659 if (ut->uu_lowpri_window == 0)
1660 return (0);
1661
1662 info = ut->uu_throttle_info;
1663
1664 if (info == NULL) {
1665 ut->uu_throttle_bc = FALSE;
1666 ut->uu_lowpri_window = 0;
1667 return (0);
1668 }
1669
1670 lck_mtx_lock(&info->throttle_lock);
1671
1672 if (sleep_amount == 0)
1673 goto done;
1674
1675 if (sleep_amount == 1 && ut->uu_throttle_bc == FALSE)
1676 sleep_amount = 0;
1677
1678 throttle_io_period_num = info->throttle_io_period_num;
1679
1680 while ( (throttle_type = throttle_io_will_be_throttled_internal(info, &mylevel, &throttling_level)) ) {
1681
1682 if (throttle_type == THROTTLE_ENGAGED) {
1683 if (sleep_amount == 0)
1684 break;
1685 if (info->throttle_io_period_num < throttle_io_period_num)
1686 break;
1687 if ((info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount)
1688 break;
1689 }
1690 if (ut->uu_on_throttlelist < THROTTLE_LEVEL_THROTTLED) {
1691 if (throttle_add_to_list(info, ut, mylevel, insert_tail) == THROTTLE_LEVEL_END)
1692 goto done;
1693 }
1694 assert(throttling_level >= THROTTLE_LEVEL_START && throttling_level <= THROTTLE_LEVEL_END);
1695 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, PROCESS_THROTTLED)) | DBG_FUNC_NONE,
1696 info->throttle_last_IO_pid[throttling_level], throttling_level, proc_selfpid(), mylevel, 0);
1697
1698
1699 if (sleep_cnt == 0) {
1700 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START,
1701 throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0);
1702 throttled_count[mylevel]++;
1703 }
1704 msleep((caddr_t)&ut->uu_on_throttlelist, &info->throttle_lock, PRIBIO + 1, "throttle_lowpri_io", NULL);
1705
1706 sleep_cnt++;
1707
1708 if (sleep_amount == 0)
1709 insert_tail = FALSE;
1710 else if (info->throttle_io_period_num < throttle_io_period_num ||
1711 (info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount) {
1712 insert_tail = FALSE;
1713 sleep_amount = 0;
1714 }
1715 }
1716 done:
1717 if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) {
1718 TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist);
1719 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
1720 }
1721
1722 lck_mtx_unlock(&info->throttle_lock);
1723
1724 if (sleep_cnt) {
1725 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END,
1726 throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0);
1727 /*
1728 * We update the stats for the last pid which opened a throttle window for the throttled thread.
1729 * This might not be completely accurate since the multiple throttles seen by the lower tier pid
1730 * might have been caused by various higher prio pids. However, updating these stats accurately
1731 * means doing a proc_find while holding the throttle lock which leads to deadlock.
1732 */
1733 throttle_update_proc_stats(info->throttle_last_IO_pid[throttling_level], sleep_cnt);
1734 }
1735
1736 throttle_info_rel(info);
1737
1738 ut->uu_throttle_info = NULL;
1739 ut->uu_throttle_bc = FALSE;
1740 ut->uu_lowpri_window = 0;
1741
1742 return (sleep_cnt);
1743 }
1744
1745 /*
1746 * KPI routine
1747 *
1748 * set a kernel thread's IO policy. policy can be:
1749 * IOPOL_NORMAL, IOPOL_THROTTLE, IOPOL_PASSIVE, IOPOL_UTILITY, IOPOL_STANDARD
1750 *
1751 * explanations about these policies are in the man page of setiopolicy_np
1752 */
1753 void throttle_set_thread_io_policy(int policy)
1754 {
1755 proc_set_task_policy(current_task(), current_thread(),
1756 TASK_POLICY_INTERNAL, TASK_POLICY_IOPOL,
1757 policy);
1758 }
1759
1760
1761 void throttle_info_reset_window(uthread_t ut)
1762 {
1763 struct _throttle_io_info_t *info;
1764
1765 if ( (info = ut->uu_throttle_info) ) {
1766 throttle_info_rel(info);
1767
1768 ut->uu_throttle_info = NULL;
1769 ut->uu_lowpri_window = 0;
1770 ut->uu_throttle_bc = FALSE;
1771 }
1772 }
1773
1774 static
1775 void throttle_info_set_initial_window(uthread_t ut, struct _throttle_io_info_t *info, boolean_t BC_throttle, boolean_t isssd)
1776 {
1777 if (lowpri_throttle_enabled == 0 || info->throttle_disabled)
1778 return;
1779
1780 if (info->throttle_io_periods == 0) {
1781 throttle_init_throttle_period(info, isssd);
1782 }
1783 if (ut->uu_throttle_info == NULL) {
1784
1785 ut->uu_throttle_info = info;
1786 throttle_info_ref(info);
1787 DEBUG_ALLOC_THROTTLE_INFO("updating info = %p\n", info, info );
1788
1789 ut->uu_lowpri_window = 1;
1790 ut->uu_throttle_bc = BC_throttle;
1791 }
1792 }
1793
1794
1795 static
1796 void throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd)
1797 {
1798 int thread_throttle_level;
1799
1800 if (lowpri_throttle_enabled == 0 || info->throttle_disabled)
1801 return;
1802
1803 if (ut == NULL)
1804 ut = get_bsdthread_info(current_thread());
1805
1806 thread_throttle_level = throttle_get_thread_throttle_level(ut);
1807
1808 if (thread_throttle_level != THROTTLE_LEVEL_NONE) {
1809 if(!ISSET(flags, B_PASSIVE)) {
1810 microuptime(&info->throttle_window_start_timestamp[thread_throttle_level]);
1811 info->throttle_last_IO_pid[thread_throttle_level] = proc_selfpid();
1812 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, OPEN_THROTTLE_WINDOW)) | DBG_FUNC_NONE,
1813 current_proc()->p_pid, thread_throttle_level, 0, 0, 0);
1814 }
1815 microuptime(&info->throttle_last_IO_timestamp[thread_throttle_level]);
1816 }
1817
1818
1819 if (thread_throttle_level >= THROTTLE_LEVEL_THROTTLED) {
1820 /*
1821 * I'd really like to do the IOSleep here, but
1822 * we may be holding all kinds of filesystem related locks
1823 * and the pages for this I/O marked 'busy'...
1824 * we don't want to cause a normal task to block on
1825 * one of these locks while we're throttling a task marked
1826 * for low priority I/O... we'll mark the uthread and
1827 * do the delay just before we return from the system
1828 * call that triggered this I/O or from vnode_pagein
1829 */
1830 OSAddAtomic(1, &info->throttle_io_count);
1831
1832 throttle_info_set_initial_window(ut, info, FALSE, isssd);
1833 }
1834 }
1835
1836 void *throttle_info_update_by_mount(mount_t mp)
1837 {
1838 struct _throttle_io_info_t *info;
1839 uthread_t ut;
1840 boolean_t isssd = FALSE;
1841
1842 ut = get_bsdthread_info(current_thread());
1843
1844 if (mp != NULL) {
1845 if ((mp->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
1846 isssd = TRUE;
1847 info = &_throttle_io_info[mp->mnt_devbsdunit];
1848 } else
1849 info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
1850
1851 if (!ut->uu_lowpri_window)
1852 throttle_info_set_initial_window(ut, info, FALSE, isssd);
1853
1854 return info;
1855 }
1856
1857
1858 /*
1859 * KPI routine
1860 *
1861 * this is usually called before every I/O, used for throttled I/O
1862 * book keeping. This routine has low overhead and does not sleep
1863 */
1864 void throttle_info_update(void *throttle_info, int flags)
1865 {
1866 if (throttle_info)
1867 throttle_info_update_internal(throttle_info, NULL, flags, FALSE);
1868 }
1869
1870 /*
1871 * KPI routine
1872 *
1873 * this is usually called before every I/O, used for throttled I/O
1874 * book keeping. This routine has low overhead and does not sleep
1875 */
1876 void throttle_info_update_by_mask(void *throttle_info_handle, int flags)
1877 {
1878 void *throttle_info = throttle_info_handle;
1879
1880 /*
1881 * for now we only use the lowest bit of the throttle mask, so the
1882 * handle is the same as the throttle_info. Later if we store a
1883 * set of throttle infos in the handle, we will want to loop through
1884 * them and call throttle_info_update in a loop
1885 */
1886 throttle_info_update(throttle_info, flags);
1887 }
1888 /*
1889 * KPI routine
1890 *
1891 * This routine marks the throttle info as disabled. Used for mount points which
1892 * support I/O scheduling.
1893 */
1894
1895 void throttle_info_disable_throttle(int devno)
1896 {
1897 struct _throttle_io_info_t *info;
1898
1899 if (devno < 0 || devno >= LOWPRI_MAX_NUM_DEV)
1900 panic("Illegal devno (%d) passed into throttle_info_disable_throttle()", devno);
1901
1902 info = &_throttle_io_info[devno];
1903 info->throttle_disabled = 1;
1904 return;
1905 }
1906
1907
1908 /*
1909 * KPI routine (private)
1910 * Called to determine if this IO is being throttled to this level so that it can be treated specially
1911 */
1912 int throttle_info_io_will_be_throttled(void * throttle_info, int policy)
1913 {
1914 struct _throttle_io_info_t *info = throttle_info;
1915 struct timeval elapsed;
1916 uint64_t elapsed_msecs;
1917 int throttle_level;
1918 int thread_throttle_level;
1919
1920 switch (policy) {
1921
1922 case IOPOL_THROTTLE:
1923 thread_throttle_level = THROTTLE_LEVEL_TIER3;
1924 break;
1925 case IOPOL_UTILITY:
1926 thread_throttle_level = THROTTLE_LEVEL_TIER2;
1927 break;
1928 case IOPOL_STANDARD:
1929 thread_throttle_level = THROTTLE_LEVEL_TIER1;
1930 break;
1931 default:
1932 thread_throttle_level = THROTTLE_LEVEL_TIER0;
1933 break;
1934 }
1935 for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) {
1936
1937 microuptime(&elapsed);
1938 timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]);
1939 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
1940
1941 if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level])
1942 break;
1943 }
1944 if (throttle_level >= thread_throttle_level) {
1945 /*
1946 * we're beyond all of the throttle windows
1947 * so go ahead and treat as normal I/O
1948 */
1949 return (THROTTLE_DISENGAGED);
1950 }
1951 /*
1952 * we're in the throttle window
1953 */
1954 return (THROTTLE_ENGAGED);
1955 }
1956
1957 int
1958 spec_strategy(struct vnop_strategy_args *ap)
1959 {
1960 buf_t bp;
1961 int bflags;
1962 int io_tier;
1963 int passive;
1964 dev_t bdev;
1965 uthread_t ut;
1966 mount_t mp;
1967 struct bufattr *bap;
1968 int strategy_ret;
1969 struct _throttle_io_info_t *throttle_info;
1970 boolean_t isssd = FALSE;
1971 int code = 0;
1972
1973 proc_t curproc = current_proc();
1974
1975 bp = ap->a_bp;
1976 bdev = buf_device(bp);
1977 mp = buf_vnode(bp)->v_mount;
1978 bap = &bp->b_attr;
1979
1980 io_tier = throttle_get_io_policy(&ut);
1981 passive = throttle_get_passive_io_policy(&ut);
1982
1983 if (bp->b_flags & B_META)
1984 bap->ba_flags |= BA_META;
1985
1986 #if CONFIG_IOSCHED
1987 /*
1988 * For I/O Scheduling, we currently do not have a way to track and expedite metadata I/Os.
1989 * To ensure we dont get into priority inversions due to metadata I/Os, we use the following rules:
1990 * For metadata reads, ceil all I/Os to IOSCHED_METADATA_TIER & mark them passive if the I/O tier was upgraded
1991 * For metadata writes, unconditionally mark them as IOSCHED_METADATA_TIER and passive
1992 */
1993 if (bap->ba_flags & BA_META) {
1994 if (mp && (mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED)) {
1995 if (bp->b_flags & B_READ) {
1996 if (io_tier > IOSCHED_METADATA_TIER) {
1997 io_tier = IOSCHED_METADATA_TIER;
1998 passive = 1;
1999 }
2000 } else {
2001 io_tier = IOSCHED_METADATA_TIER;
2002 passive = 1;
2003 }
2004 }
2005 }
2006 #endif /* CONFIG_IOSCHED */
2007
2008 SET_BUFATTR_IO_TIER(bap, io_tier);
2009
2010 if (passive) {
2011 bp->b_flags |= B_PASSIVE;
2012 bap->ba_flags |= BA_PASSIVE;
2013 }
2014
2015 if ((curproc != NULL) && ((curproc->p_flag & P_DELAYIDLESLEEP) == P_DELAYIDLESLEEP))
2016 bap->ba_flags |= BA_DELAYIDLESLEEP;
2017
2018 bflags = bp->b_flags;
2019
2020 if (((bflags & B_READ) == 0) && ((bflags & B_ASYNC) == 0))
2021 bufattr_markquickcomplete(bap);
2022
2023 if (bflags & B_READ)
2024 code |= DKIO_READ;
2025 if (bflags & B_ASYNC)
2026 code |= DKIO_ASYNC;
2027 if (bflags & B_META)
2028 code |= DKIO_META;
2029 else if (bflags & B_PAGEIO)
2030 code |= DKIO_PAGING;
2031
2032 if (io_tier != 0)
2033 code |= DKIO_THROTTLE;
2034
2035 code |= ((io_tier << DKIO_TIER_SHIFT) & DKIO_TIER_MASK);
2036
2037 if (bflags & B_PASSIVE)
2038 code |= DKIO_PASSIVE;
2039
2040 if (bap->ba_flags & BA_NOCACHE)
2041 code |= DKIO_NOCACHE;
2042
2043 if (kdebug_enable) {
2044 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON, FSDBG_CODE(DBG_DKRW, code) | DBG_FUNC_NONE,
2045 buf_kernel_addrperm_addr(bp), bdev, (int)buf_blkno(bp), buf_count(bp), 0);
2046 }
2047
2048 thread_update_io_stats(current_thread(), buf_count(bp), code);
2049
2050 if (mp != NULL) {
2051 if ((mp->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
2052 isssd = TRUE;
2053 throttle_info = &_throttle_io_info[mp->mnt_devbsdunit];
2054 } else
2055 throttle_info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
2056
2057 throttle_info_update_internal(throttle_info, ut, bflags, isssd);
2058
2059 if ((bflags & B_READ) == 0) {
2060 microuptime(&throttle_info->throttle_last_write_timestamp);
2061
2062 if (mp) {
2063 mp->mnt_last_write_issued_timestamp = throttle_info->throttle_last_write_timestamp;
2064 INCR_PENDING_IO(buf_count(bp), mp->mnt_pending_write_size);
2065 }
2066 } else if (mp) {
2067 INCR_PENDING_IO(buf_count(bp), mp->mnt_pending_read_size);
2068 }
2069 /*
2070 * The BootCache may give us special information about
2071 * the IO, so it returns special values that we check
2072 * for here.
2073 *
2074 * IO_SATISFIED_BY_CACHE
2075 * The read has been satisfied by the boot cache. Don't
2076 * throttle the thread unnecessarily.
2077 *
2078 * IO_SHOULD_BE_THROTTLED
2079 * The boot cache is playing back a playlist and this IO
2080 * cut through. Throttle it so we're not cutting through
2081 * the boot cache too often.
2082 *
2083 * Note that typical strategy routines are defined with
2084 * a void return so we'll get garbage here. In the
2085 * unlikely case the garbage matches our special return
2086 * value, it's not a big deal since we're only adjusting
2087 * the throttling delay.
2088 */
2089 #define IO_SATISFIED_BY_CACHE ((int)0xcafefeed)
2090 #define IO_SHOULD_BE_THROTTLED ((int)0xcafebeef)
2091 typedef int strategy_fcn_ret_t(struct buf *bp);
2092
2093 strategy_ret = (*(strategy_fcn_ret_t*)bdevsw[major(bdev)].d_strategy)(bp);
2094
2095 if (IO_SATISFIED_BY_CACHE == strategy_ret) {
2096 /*
2097 * If this was a throttled IO satisfied by the boot cache,
2098 * don't delay the thread.
2099 */
2100 throttle_info_reset_window(ut);
2101
2102 } else if (IO_SHOULD_BE_THROTTLED == strategy_ret) {
2103 /*
2104 * If the boot cache indicates this IO should be throttled,
2105 * delay the thread.
2106 */
2107 throttle_info_set_initial_window(ut, throttle_info, TRUE, isssd);
2108 }
2109 return (0);
2110 }
2111
2112
2113 /*
2114 * This is a noop, simply returning what one has been given.
2115 */
2116 int
2117 spec_blockmap(__unused struct vnop_blockmap_args *ap)
2118 {
2119 return (ENOTSUP);
2120 }
2121
2122
2123 /*
2124 * Device close routine
2125 */
2126 int
2127 spec_close(struct vnop_close_args *ap)
2128 {
2129 struct vnode *vp = ap->a_vp;
2130 dev_t dev = vp->v_rdev;
2131 int error = 0;
2132 int flags = ap->a_fflag;
2133 struct proc *p = vfs_context_proc(ap->a_context);
2134 struct session *sessp;
2135
2136 switch (vp->v_type) {
2137
2138 case VCHR:
2139 /*
2140 * Hack: a tty device that is a controlling terminal
2141 * has a reference from the session structure.
2142 * We cannot easily tell that a character device is
2143 * a controlling terminal, unless it is the closing
2144 * process' controlling terminal. In that case,
2145 * if the reference count is 1 (this is the very
2146 * last close)
2147 */
2148 sessp = proc_session(p);
2149 devsw_lock(dev, S_IFCHR);
2150 if (sessp != SESSION_NULL) {
2151 if (vp == sessp->s_ttyvp && vcount(vp) == 1) {
2152 struct tty *tp = TTY_NULL;
2153
2154 devsw_unlock(dev, S_IFCHR);
2155 session_lock(sessp);
2156 if (vp == sessp->s_ttyvp) {
2157 tp = SESSION_TP(sessp);
2158 sessp->s_ttyvp = NULL;
2159 sessp->s_ttyvid = 0;
2160 sessp->s_ttyp = TTY_NULL;
2161 sessp->s_ttypgrpid = NO_PID;
2162 }
2163 session_unlock(sessp);
2164
2165 if (tp != TTY_NULL) {
2166 /*
2167 * We may have won a race with a proc_exit
2168 * of the session leader, the winner
2169 * clears the flag (even if not set)
2170 */
2171 tty_lock(tp);
2172 ttyclrpgrphup(tp);
2173 tty_unlock(tp);
2174
2175 ttyfree(tp);
2176 }
2177 devsw_lock(dev, S_IFCHR);
2178 }
2179 session_rele(sessp);
2180 }
2181
2182 if (--vp->v_specinfo->si_opencount < 0)
2183 panic("negative open count (c, %u, %u)", major(dev), minor(dev));
2184
2185 /*
2186 * close on last reference or on vnode revoke call
2187 */
2188 if (vcount(vp) == 0 || (flags & IO_REVOKE) != 0)
2189 error = cdevsw[major(dev)].d_close(dev, flags, S_IFCHR, p);
2190
2191 devsw_unlock(dev, S_IFCHR);
2192 break;
2193
2194 case VBLK:
2195 /*
2196 * If there is more than one outstanding open, don't
2197 * send the close to the device.
2198 */
2199 devsw_lock(dev, S_IFBLK);
2200 if (vcount(vp) > 1) {
2201 vp->v_specinfo->si_opencount--;
2202 devsw_unlock(dev, S_IFBLK);
2203 return (0);
2204 }
2205 devsw_unlock(dev, S_IFBLK);
2206
2207 /*
2208 * On last close of a block device (that isn't mounted)
2209 * we must invalidate any in core blocks, so that
2210 * we can, for instance, change floppy disks.
2211 */
2212 if ((error = spec_fsync_internal(vp, MNT_WAIT, ap->a_context)))
2213 return (error);
2214
2215 error = buf_invalidateblks(vp, BUF_WRITE_DATA, 0, 0);
2216 if (error)
2217 return (error);
2218
2219 devsw_lock(dev, S_IFBLK);
2220
2221 if (--vp->v_specinfo->si_opencount < 0)
2222 panic("negative open count (b, %u, %u)", major(dev), minor(dev));
2223
2224 if (vcount(vp) == 0)
2225 error = bdevsw[major(dev)].d_close(dev, flags, S_IFBLK, p);
2226
2227 devsw_unlock(dev, S_IFBLK);
2228 break;
2229
2230 default:
2231 panic("spec_close: not special");
2232 return(EBADF);
2233 }
2234
2235 return error;
2236 }
2237
2238 /*
2239 * Return POSIX pathconf information applicable to special devices.
2240 */
2241 int
2242 spec_pathconf(struct vnop_pathconf_args *ap)
2243 {
2244
2245 switch (ap->a_name) {
2246 case _PC_LINK_MAX:
2247 *ap->a_retval = LINK_MAX;
2248 return (0);
2249 case _PC_MAX_CANON:
2250 *ap->a_retval = MAX_CANON;
2251 return (0);
2252 case _PC_MAX_INPUT:
2253 *ap->a_retval = MAX_INPUT;
2254 return (0);
2255 case _PC_PIPE_BUF:
2256 *ap->a_retval = PIPE_BUF;
2257 return (0);
2258 case _PC_CHOWN_RESTRICTED:
2259 *ap->a_retval = 200112; /* _POSIX_CHOWN_RESTRICTED */
2260 return (0);
2261 case _PC_VDISABLE:
2262 *ap->a_retval = _POSIX_VDISABLE;
2263 return (0);
2264 default:
2265 return (EINVAL);
2266 }
2267 /* NOTREACHED */
2268 }
2269
2270 /*
2271 * Special device failed operation
2272 */
2273 int
2274 spec_ebadf(__unused void *dummy)
2275 {
2276
2277 return (EBADF);
2278 }
2279
2280 /* Blktooff derives file offset from logical block number */
2281 int
2282 spec_blktooff(struct vnop_blktooff_args *ap)
2283 {
2284 struct vnode *vp = ap->a_vp;
2285
2286 switch (vp->v_type) {
2287 case VCHR:
2288 *ap->a_offset = (off_t)-1; /* failure */
2289 return (ENOTSUP);
2290
2291 case VBLK:
2292 printf("spec_blktooff: not implemented for VBLK\n");
2293 *ap->a_offset = (off_t)-1; /* failure */
2294 return (ENOTSUP);
2295
2296 default:
2297 panic("spec_blktooff type");
2298 }
2299 /* NOTREACHED */
2300
2301 return (0);
2302 }
2303
2304 /* Offtoblk derives logical block number from file offset */
2305 int
2306 spec_offtoblk(struct vnop_offtoblk_args *ap)
2307 {
2308 struct vnode *vp = ap->a_vp;
2309
2310 switch (vp->v_type) {
2311 case VCHR:
2312 *ap->a_lblkno = (daddr64_t)-1; /* failure */
2313 return (ENOTSUP);
2314
2315 case VBLK:
2316 printf("spec_offtoblk: not implemented for VBLK\n");
2317 *ap->a_lblkno = (daddr64_t)-1; /* failure */
2318 return (ENOTSUP);
2319
2320 default:
2321 panic("spec_offtoblk type");
2322 }
2323 /* NOTREACHED */
2324
2325 return (0);
2326 }
2327
2328 static void filt_specdetach(struct knote *kn);
2329 static int filt_spec(struct knote *kn, long hint);
2330 static unsigned filt_specpeek(struct knote *kn);
2331
2332 struct filterops spec_filtops = {
2333 .f_isfd = 1,
2334 .f_attach = filt_specattach,
2335 .f_detach = filt_specdetach,
2336 .f_event = filt_spec,
2337 .f_peek = filt_specpeek
2338 };
2339
2340 static int
2341 filter_to_seltype(int16_t filter)
2342 {
2343 switch (filter) {
2344 case EVFILT_READ:
2345 return FREAD;
2346 case EVFILT_WRITE:
2347 return FWRITE;
2348 break;
2349 default:
2350 panic("filt_to_seltype(): invalid filter %d\n", filter);
2351 return 0;
2352 }
2353 }
2354
2355 static int
2356 filt_specattach(struct knote *kn)
2357 {
2358 vnode_t vp;
2359 dev_t dev;
2360
2361 vp = (vnode_t)kn->kn_fp->f_fglob->fg_data; /* Already have iocount, and vnode is alive */
2362
2363 assert(vnode_ischr(vp));
2364
2365 dev = vnode_specrdev(vp);
2366
2367 if (major(dev) > nchrdev) {
2368 return ENXIO;
2369 }
2370
2371 if ((cdevsw_flags[major(dev)] & CDEVSW_SELECT_KQUEUE) == 0) {
2372 return EINVAL;
2373 }
2374
2375 /* Resulting wql is safe to unlink even if it has never been linked */
2376 kn->kn_hook = wait_queue_link_allocate();
2377 if (kn->kn_hook == NULL) {
2378 return EAGAIN;
2379 }
2380
2381 kn->kn_fop = &spec_filtops;
2382 kn->kn_hookid = vnode_vid(vp);
2383
2384 knote_markstayqueued(kn);
2385
2386 return 0;
2387 }
2388
2389 static void
2390 filt_specdetach(struct knote *kn)
2391 {
2392 kern_return_t ret;
2393
2394 /*
2395 * Given wait queue link and wait queue set, unlink. This is subtle.
2396 * If the device has been revoked from under us, selclearthread() will
2397 * have removed our link from the kqueue's wait queue set, which
2398 * wait_queue_set_unlink_one() will detect and handle.
2399 */
2400 ret = wait_queue_set_unlink_one(kn->kn_kq->kq_wqs, kn->kn_hook);
2401 if (ret != KERN_SUCCESS) {
2402 panic("filt_specdetach(): failed to unlink wait queue link.");
2403 }
2404
2405 (void)wait_queue_link_free(kn->kn_hook);
2406 kn->kn_hook = NULL;
2407 kn->kn_status &= ~KN_STAYQUEUED;
2408 }
2409
2410 static int
2411 filt_spec(struct knote *kn, long hint)
2412 {
2413 vnode_t vp;
2414 uthread_t uth;
2415 wait_queue_set_t old_wqs;
2416 vfs_context_t ctx;
2417 int selres;
2418 int error;
2419 int use_offset;
2420 dev_t dev;
2421 uint64_t flags;
2422
2423 assert(kn->kn_hook != NULL);
2424
2425 if (hint != 0) {
2426 panic("filt_spec(): nonzero hint?");
2427 }
2428
2429 uth = get_bsdthread_info(current_thread());
2430 ctx = vfs_context_current();
2431 vp = (vnode_t)kn->kn_fp->f_fglob->fg_data;
2432
2433 error = vnode_getwithvid(vp, kn->kn_hookid);
2434 if (error != 0) {
2435 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
2436 return 1;
2437 }
2438
2439 dev = vnode_specrdev(vp);
2440 flags = cdevsw_flags[major(dev)];
2441 use_offset = ((flags & CDEVSW_USE_OFFSET) != 0);
2442 assert((flags & CDEVSW_SELECT_KQUEUE) != 0);
2443
2444 /* Trick selrecord() into hooking kqueue's wait queue set into device wait queue */
2445 old_wqs = uth->uu_wqset;
2446 uth->uu_wqset = kn->kn_kq->kq_wqs;
2447 selres = VNOP_SELECT(vp, filter_to_seltype(kn->kn_filter), 0, kn->kn_hook, ctx);
2448 uth->uu_wqset = old_wqs;
2449
2450 if (use_offset) {
2451 if (kn->kn_fp->f_fglob->fg_offset >= (uint32_t)selres) {
2452 kn->kn_data = 0;
2453 } else {
2454 kn->kn_data = ((uint32_t)selres) - kn->kn_fp->f_fglob->fg_offset;
2455 }
2456 } else {
2457 kn->kn_data = selres;
2458 }
2459
2460 vnode_put(vp);
2461
2462 return (kn->kn_data != 0);
2463 }
2464
2465 static unsigned
2466 filt_specpeek(struct knote *kn)
2467 {
2468 vnode_t vp;
2469 uthread_t uth;
2470 wait_queue_set_t old_wqs;
2471 vfs_context_t ctx;
2472 int error, selres;
2473
2474 uth = get_bsdthread_info(current_thread());
2475 ctx = vfs_context_current();
2476 vp = (vnode_t)kn->kn_fp->f_fglob->fg_data;
2477
2478 error = vnode_getwithvid(vp, kn->kn_hookid);
2479 if (error != 0) {
2480 return 1; /* Just like VNOP_SELECT() on recycled vnode */
2481 }
2482
2483 /*
2484 * Why pass the link here? Because we may not have registered in the past...
2485 */
2486 old_wqs = uth->uu_wqset;
2487 uth->uu_wqset = kn->kn_kq->kq_wqs;
2488 selres = VNOP_SELECT(vp, filter_to_seltype(kn->kn_filter), 0, kn->kn_hook, ctx);
2489 uth->uu_wqset = old_wqs;
2490
2491 vnode_put(vp);
2492 return selres;
2493 }
2494