2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (C) 1988, 1989, NeXT, Inc.
31 * File: kern/mach_loader.c
32 * Author: Avadis Tevanian, Jr.
34 * Mach object file loader (kernel version, for now).
36 * 21-Jul-88 Avadis Tevanian, Jr. (avie) at NeXT
40 #include <sys/param.h>
41 #include <sys/vnode_internal.h>
43 #include <sys/namei.h>
44 #include <sys/proc_internal.h>
45 #include <sys/kauth.h>
47 #include <sys/malloc.h>
48 #include <sys/mount_internal.h>
49 #include <sys/fcntl.h>
50 #include <sys/ubc_internal.h>
51 #include <sys/imgact.h>
52 #include <sys/codesign.h>
54 #include <mach/mach_types.h>
55 #include <mach/vm_map.h> /* vm_allocate() */
56 #include <mach/mach_vm.h> /* mach_vm_allocate() */
57 #include <mach/vm_statistics.h>
58 #include <mach/task.h>
59 #include <mach/thread_act.h>
61 #include <machine/vmparam.h>
62 #include <machine/exec.h>
63 #include <machine/pal_routines.h>
65 #include <kern/kern_types.h>
66 #include <kern/cpu_number.h>
67 #include <kern/mach_loader.h>
68 #include <kern/mach_fat.h>
69 #include <kern/kalloc.h>
70 #include <kern/task.h>
71 #include <kern/thread.h>
72 #include <kern/page_decrypt.h>
74 #include <mach-o/fat.h>
75 #include <mach-o/loader.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_kern.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_protos.h>
83 #include <IOKit/IOReturn.h> /* for kIOReturnNotPrivileged */
86 * XXX vm/pmap.h should not treat these prototypes as MACH_KERNEL_PRIVATE
87 * when KERNEL is defined.
89 extern pmap_t
pmap_create(ledger_t ledger
, vm_map_size_t size
,
92 /* XXX should have prototypes in a shared header file */
93 extern int get_map_nentries(vm_map_t
);
95 extern kern_return_t
memory_object_signed(memory_object_control_t control
,
98 /* An empty load_result_t */
99 static load_result_t load_result_null
= {
100 .mach_header
= MACH_VM_MIN_ADDRESS
,
101 .entry_point
= MACH_VM_MIN_ADDRESS
,
102 .user_stack
= MACH_VM_MIN_ADDRESS
,
103 .user_stack_size
= 0,
104 .all_image_info_addr
= MACH_VM_MIN_ADDRESS
,
105 .all_image_info_size
= 0,
109 .needs_dynlinker
= 0,
110 .prog_allocated_stack
= 0,
111 .prog_stack_size
= 0,
115 .min_vm_addr
= MACH_VM_MAX_ADDRESS
,
116 .max_vm_addr
= MACH_VM_MIN_ADDRESS
,
121 * Prototypes of static functions.
128 struct mach_header
*header
,
134 load_result_t
*result
139 struct load_command
*lcp
,
147 load_result_t
*result
152 struct uuid_command
*uulp
,
154 load_result_t
*result
159 struct linkedit_data_command
*lcp
,
164 load_result_t
*result
);
166 #if CONFIG_CODE_DECRYPTION
169 struct encryption_info_command
*lcp
,
175 cpu_subtype_t cpusubtype
);
181 struct entry_point_command
*epc
,
184 load_result_t
*result
189 struct thread_command
*tcp
,
192 load_result_t
*result
207 mach_vm_offset_t
*user_stack
,
216 mach_vm_offset_t
*entry_point
221 struct dylinker_command
*lcp
,
227 load_result_t
*result
236 struct mach_header
*mach_header
,
239 struct macho_data
*macho_data
,
244 widen_segment_command(const struct segment_command
*scp32
,
245 struct segment_command_64
*scp
)
247 scp
->cmd
= scp32
->cmd
;
248 scp
->cmdsize
= scp32
->cmdsize
;
249 bcopy(scp32
->segname
, scp
->segname
, sizeof(scp
->segname
));
250 scp
->vmaddr
= scp32
->vmaddr
;
251 scp
->vmsize
= scp32
->vmsize
;
252 scp
->fileoff
= scp32
->fileoff
;
253 scp
->filesize
= scp32
->filesize
;
254 scp
->maxprot
= scp32
->maxprot
;
255 scp
->initprot
= scp32
->initprot
;
256 scp
->nsects
= scp32
->nsects
;
257 scp
->flags
= scp32
->flags
;
261 note_all_image_info_section(const struct segment_command_64
*scp
,
262 boolean_t is64
, size_t section_size
, const void *sections
,
263 int64_t slide
, load_result_t
*result
)
267 struct section_64 s64
;
271 if (strncmp(scp
->segname
, "__DATA", sizeof(scp
->segname
)) != 0)
273 for (i
= 0; i
< scp
->nsects
; ++i
) {
274 sectionp
= (const void *)
275 ((const char *)sections
+ section_size
* i
);
276 if (0 == strncmp(sectionp
->s64
.sectname
, "__all_image_info",
277 sizeof(sectionp
->s64
.sectname
))) {
278 result
->all_image_info_addr
=
279 is64
? sectionp
->s64
.addr
: sectionp
->s32
.addr
;
280 result
->all_image_info_addr
+= slide
;
281 result
->all_image_info_size
=
282 is64
? sectionp
->s64
.size
: sectionp
->s32
.size
;
290 struct image_params
*imgp
,
291 struct mach_header
*header
,
294 load_result_t
*result
297 struct vnode
*vp
= imgp
->ip_vp
;
298 off_t file_offset
= imgp
->ip_arch_offset
;
299 off_t macho_size
= imgp
->ip_arch_size
;
300 off_t file_size
= imgp
->ip_vattr
->va_data_size
;
302 pmap_t pmap
= 0; /* protected by create_map */
305 task_t old_task
= TASK_NULL
; /* protected by create_map */
306 load_result_t myresult
;
308 boolean_t create_map
= FALSE
;
309 boolean_t enforce_hard_pagezero
= TRUE
;
310 int spawn
= (imgp
->ip_flags
& IMGPF_SPAWN
);
311 task_t task
= current_task();
312 proc_t p
= current_proc();
313 mach_vm_offset_t aslr_offset
= 0;
314 mach_vm_offset_t dyld_aslr_offset
= 0;
317 if (macho_size
> file_size
) {
318 return(LOAD_BADMACHO
);
321 if (new_map
== VM_MAP_NULL
) {
323 old_task
= current_task();
327 * If we are spawning, we have created backing objects for the process
328 * already, which include non-lazily creating the task map. So we
329 * are going to switch out the task map with one appropriate for the
330 * bitness of the image being loaded.
334 old_task
= get_threadtask(thread
);
339 if (imgp
->ip_new_thread
) {
340 ledger_task
= get_threadtask(imgp
->ip_new_thread
);
344 pmap
= pmap_create(get_task_ledger(ledger_task
),
346 (imgp
->ip_flags
& IMGPF_IS_64BIT
));
347 pal_switch_pmap(thread
, pmap
, imgp
->ip_flags
& IMGPF_IS_64BIT
);
348 map
= vm_map_create(pmap
,
350 vm_compute_max_offset((imgp
->ip_flags
& IMGPF_IS_64BIT
)),
356 #ifndef CONFIG_ENFORCE_SIGNED_CODE
357 /* This turns off faulting for executable pages, which allows
358 * to circumvent Code Signing Enforcement. The per process
359 * flag (CS_ENFORCEMENT) is not set yet, but we can use the
362 if ( !cs_enforcement(NULL
) && (header
->flags
& MH_ALLOW_STACK_EXECUTION
) )
363 vm_map_disable_NX(map
);
366 /* Forcibly disallow execution from data pages on even if the arch
367 * normally permits it. */
368 if ((header
->flags
& MH_NO_HEAP_EXECUTION
) && !(imgp
->ip_flags
& IMGPF_ALLOW_DATA_EXEC
))
369 vm_map_disallow_data_exec(map
);
372 * Compute a random offset for ASLR, and an independent random offset for dyld.
374 if (!(imgp
->ip_flags
& IMGPF_DISABLE_ASLR
)) {
375 uint64_t max_slide_pages
;
377 max_slide_pages
= vm_map_get_max_aslr_slide_pages(map
);
379 aslr_offset
= random();
380 aslr_offset
%= max_slide_pages
;
381 aslr_offset
<<= vm_map_page_shift(map
);
383 dyld_aslr_offset
= random();
384 dyld_aslr_offset
%= max_slide_pages
;
385 dyld_aslr_offset
<<= vm_map_page_shift(map
);
391 *result
= load_result_null
;
393 lret
= parse_machfile(vp
, map
, thread
, header
, file_offset
, macho_size
,
394 0, (int64_t)aslr_offset
, (int64_t)dyld_aslr_offset
, result
);
396 if (lret
!= LOAD_SUCCESS
) {
398 vm_map_deallocate(map
); /* will lose pmap reference too */
405 * On x86, for compatibility, don't enforce the hard page-zero restriction for 32-bit binaries.
407 if ((imgp
->ip_flags
& IMGPF_IS_64BIT
) == 0) {
408 enforce_hard_pagezero
= FALSE
;
412 * Check to see if the page zero is enforced by the map->min_offset.
414 if (enforce_hard_pagezero
&& (vm_map_has_hard_pagezero(map
, 0x1000) == FALSE
)) {
416 vm_map_deallocate(map
); /* will lose pmap reference too */
418 printf("Cannot enforce a hard page-zero for %s\n", imgp
->ip_strings
);
419 return (LOAD_BADMACHO
);
425 * Swap the new map for the old, which consumes our new map
426 * reference but each leaves us responsible for the old_map reference.
427 * That lets us get off the pmap associated with it, and
428 * then we can release it.
433 * If this is an exec, then we are going to destroy the old
434 * task, and it's correct to halt it; if it's spawn, the
435 * task is not yet running, and it makes no sense.
439 * Mark the task as halting and start the other
440 * threads towards terminating themselves. Then
441 * make sure any threads waiting for a process
442 * transition get informed that we are committed to
443 * this transition, and then finally complete the
444 * task halting (wait for threads and then cleanup
447 * NOTE: task_start_halt() makes sure that no new
448 * threads are created in the task during the transition.
449 * We need to mark the workqueue as exiting before we
450 * wait for threads to terminate (at the end of which
451 * we no longer have a prohibition on thread creation).
453 * Finally, clean up any lingering workqueue data structures
454 * that may have been left behind by the workqueue threads
455 * as they exited (and then clean up the work queue itself).
457 kret
= task_start_halt(task
);
458 if (kret
!= KERN_SUCCESS
) {
459 vm_map_deallocate(map
); /* will lose pmap reference too */
460 return (LOAD_FAILURE
);
462 proc_transcommit(p
, 0);
463 workqueue_mark_exiting(p
);
464 task_complete_halt(task
);
467 old_map
= swap_task_map(old_task
, thread
, map
, !spawn
);
468 vm_map_deallocate(old_map
);
470 return(LOAD_SUCCESS
);
474 * The file size of a mach-o file is limited to 32 bits; this is because
475 * this is the limit on the kalloc() of enough bytes for a mach_header and
476 * the contents of its sizeofcmds, which is currently constrained to 32
477 * bits in the file format itself. We read into the kernel buffer the
478 * commands section, and then parse it in order to parse the mach-o file
479 * format load_command segment(s). We are only interested in a subset of
480 * the total set of possible commands. If "map"==VM_MAP_NULL or
481 * "thread"==THREAD_NULL, do not make permament VM modifications,
482 * just preflight the parse.
490 struct mach_header
*header
,
495 int64_t dyld_aslr_offset
,
496 load_result_t
*result
500 struct load_command
*lcp
;
501 struct dylinker_command
*dlp
= 0;
502 integer_t dlarchbits
= 0;
504 load_return_t ret
= LOAD_SUCCESS
;
507 vm_size_t size
,kl_size
;
509 size_t oldoffset
; /* for overflow check */
511 proc_t p
= current_proc(); /* XXXX */
514 size_t mach_header_sz
= sizeof(struct mach_header
);
516 boolean_t got_code_signatures
= FALSE
;
519 if (header
->magic
== MH_MAGIC_64
||
520 header
->magic
== MH_CIGAM_64
) {
521 mach_header_sz
= sizeof(struct mach_header_64
);
525 * Break infinite recursion
528 return(LOAD_FAILURE
);
534 * Check to see if right machine type.
536 if (((cpu_type_t
)(header
->cputype
& ~CPU_ARCH_MASK
) != (cpu_type() & ~CPU_ARCH_MASK
)) ||
537 !grade_binary(header
->cputype
,
538 header
->cpusubtype
& ~CPU_SUBTYPE_MASK
))
539 return(LOAD_BADARCH
);
541 abi64
= ((header
->cputype
& CPU_ARCH_ABI64
) == CPU_ARCH_ABI64
);
543 switch (header
->filetype
) {
549 return (LOAD_FAILURE
);
556 return (LOAD_FAILURE
);
562 return (LOAD_FAILURE
);
567 return (LOAD_FAILURE
);
571 * Get the pager for the file.
573 control
= ubc_getobject(vp
, UBC_FLAGS_NONE
);
576 * Map portion that must be accessible directly into
579 if ((off_t
)(mach_header_sz
+ header
->sizeofcmds
) > macho_size
)
580 return(LOAD_BADMACHO
);
583 * Round size of Mach-O commands up to page boundry.
585 size
= round_page(mach_header_sz
+ header
->sizeofcmds
);
587 return(LOAD_BADMACHO
);
590 * Map the load commands into kernel memory.
594 kl_addr
= kalloc(size
);
595 addr
= (caddr_t
)kl_addr
;
597 return(LOAD_NOSPACE
);
599 error
= vn_rdwr(UIO_READ
, vp
, addr
, size
, file_offset
,
600 UIO_SYSSPACE
, 0, kauth_cred_get(), &resid
, p
);
603 kfree(kl_addr
, kl_size
);
604 return(LOAD_IOERROR
);
608 * For PIE and dyld, slide everything by the ASLR offset.
610 if ((header
->flags
& MH_PIE
) || (header
->filetype
== MH_DYLINKER
)) {
615 * Scan through the commands, processing each one as necessary.
616 * We parse in three passes through the headers:
617 * 1: thread state, uuid, code signature
619 * 3: dyld, encryption, check entry point
622 for (pass
= 1; pass
<= 3; pass
++) {
625 * Check that the entry point is contained in an executable segments
627 if ((pass
== 3) && (result
->validentry
== 0)) {
628 thread_state_initialize(thread
);
634 * Loop through each of the load_commands indicated by the
635 * Mach-O header; if an absurd value is provided, we just
636 * run off the end of the reserved section by incrementing
637 * the offset too far, so we are implicitly fail-safe.
639 offset
= mach_header_sz
;
640 ncmds
= header
->ncmds
;
644 * Get a pointer to the command.
646 lcp
= (struct load_command
*)(addr
+ offset
);
648 offset
+= lcp
->cmdsize
;
651 * Perform prevalidation of the struct load_command
652 * before we attempt to use its contents. Invalid
653 * values are ones which result in an overflow, or
654 * which can not possibly be valid commands, or which
655 * straddle or exist past the reserved section at the
656 * start of the image.
658 if (oldoffset
> offset
||
659 lcp
->cmdsize
< sizeof(struct load_command
) ||
660 offset
> header
->sizeofcmds
+ mach_header_sz
) {
666 * Act on struct load_command's for which kernel
667 * intervention is required.
676 * Having an LC_SEGMENT command for the
677 * wrong ABI is invalid <rdar://problem/11021230>
683 ret
= load_segment(lcp
,
699 * Having an LC_SEGMENT_64 command for the
700 * wrong ABI is invalid <rdar://problem/11021230>
706 ret
= load_segment(lcp
,
719 ret
= load_unixthread(
720 (struct thread_command
*) lcp
,
731 (struct entry_point_command
*) lcp
,
736 case LC_LOAD_DYLINKER
:
739 if ((depth
== 1) && (dlp
== 0)) {
740 dlp
= (struct dylinker_command
*)lcp
;
741 dlarchbits
= (header
->cputype
& CPU_ARCH_MASK
);
747 if (pass
== 1 && depth
== 1) {
748 ret
= load_uuid((struct uuid_command
*) lcp
,
749 (char *)addr
+ mach_header_sz
+ header
->sizeofcmds
,
753 case LC_CODE_SIGNATURE
:
758 load signatures & store in uip
759 set VM object "signed_pages"
761 ret
= load_code_signature(
762 (struct linkedit_data_command
*) lcp
,
768 if (ret
!= LOAD_SUCCESS
) {
769 printf("proc %d: load code signature error %d "
771 p
->p_pid
, ret
, vp
->v_name
);
772 ret
= LOAD_SUCCESS
; /* ignore error */
774 got_code_signatures
= TRUE
;
777 if (got_code_signatures
) {
778 boolean_t valid
= FALSE
, tainted
= TRUE
;
779 struct cs_blob
*blobs
;
784 printf("validating initial pages of %s\n", vp
->v_name
);
785 blobs
= ubc_get_cs_blobs(vp
);
787 while (off
< size
&& ret
== LOAD_SUCCESS
) {
788 valid
= cs_validate_page(blobs
,
793 if (!valid
|| tainted
) {
795 printf("CODE SIGNING: %s[%d]: invalid initial page at offset %lld validated:%d tainted:%d csflags:0x%x\n",
796 vp
->v_name
, p
->p_pid
, (long long)(file_offset
+ off
), valid
, tainted
, result
->csflags
);
797 if (cs_enforcement(NULL
) ||
798 (result
->csflags
& (CS_HARD
|CS_KILL
|CS_ENFORCEMENT
))) {
801 result
->csflags
&= ~CS_VALID
;
808 #if CONFIG_CODE_DECRYPTION
809 case LC_ENCRYPTION_INFO
:
810 case LC_ENCRYPTION_INFO_64
:
813 ret
= set_code_unprotect(
814 (struct encryption_info_command
*) lcp
,
815 addr
, map
, slide
, vp
,
816 header
->cputype
, header
->cpusubtype
);
817 if (ret
!= LOAD_SUCCESS
) {
818 printf("proc %d: set_code_unprotect() error %d "
820 p
->p_pid
, ret
, vp
->v_name
);
822 * Don't let the app run if it's
823 * encrypted but we failed to set up the
824 * decrypter. If the keys are missing it will
825 * return LOAD_DECRYPTFAIL.
827 if (ret
== LOAD_DECRYPTFAIL
) {
828 /* failed to load due to missing FP keys */
830 p
->p_lflag
|= P_LTERM_DECRYPTFAIL
;
838 /* Other commands are ignored by the kernel */
842 if (ret
!= LOAD_SUCCESS
)
845 if (ret
!= LOAD_SUCCESS
)
849 if (ret
== LOAD_SUCCESS
) {
850 if (! got_code_signatures
) {
851 struct cs_blob
*blob
;
852 /* no embedded signatures: look for detached ones */
853 blob
= ubc_cs_blob_get(vp
, -1, file_offset
);
855 unsigned int cs_flag_data
= blob
->csb_flags
;
856 if(0 != ubc_cs_generation_check(vp
)) {
857 if (0 != ubc_cs_blob_revalidate(vp
, blob
)) {
858 /* clear out the flag data if revalidation fails */
860 result
->csflags
&= ~CS_VALID
;
863 /* get flags to be applied to the process */
864 result
->csflags
|= cs_flag_data
;
868 /* Make sure if we need dyld, we got it */
869 if (result
->needs_dynlinker
&& !dlp
) {
873 if ((ret
== LOAD_SUCCESS
) && (dlp
!= 0)) {
875 * load the dylinker, and slide it by the independent DYLD ASLR
876 * offset regardless of the PIE-ness of the main binary.
878 ret
= load_dylinker(dlp
, dlarchbits
, map
, thread
, depth
,
879 dyld_aslr_offset
, result
);
882 if((ret
== LOAD_SUCCESS
) && (depth
== 1)) {
883 if (result
->thread_count
== 0) {
890 kfree(kl_addr
, kl_size
);
895 #if CONFIG_CODE_DECRYPTION
897 #define APPLE_UNPROTECTED_HEADER_SIZE (3 * PAGE_SIZE_64)
900 unprotect_dsmos_segment(
906 vm_map_offset_t map_addr
,
907 vm_map_size_t map_size
)
912 * The first APPLE_UNPROTECTED_HEADER_SIZE bytes (from offset 0 of
913 * this part of a Universal binary) are not protected...
914 * The rest needs to be "transformed".
916 if (file_off
<= APPLE_UNPROTECTED_HEADER_SIZE
&&
917 file_off
+ file_size
<= APPLE_UNPROTECTED_HEADER_SIZE
) {
918 /* it's all unprotected, nothing to do... */
921 if (file_off
<= APPLE_UNPROTECTED_HEADER_SIZE
) {
923 * We start mapping in the unprotected area.
924 * Skip the unprotected part...
926 vm_map_offset_t delta
;
928 delta
= APPLE_UNPROTECTED_HEADER_SIZE
;
933 /* ... transform the rest of the mapping. */
934 struct pager_crypt_info crypt_info
;
935 crypt_info
.page_decrypt
= dsmos_page_transform
;
936 crypt_info
.crypt_ops
= NULL
;
937 crypt_info
.crypt_end
= NULL
;
938 #pragma unused(vp, macho_offset)
939 crypt_info
.crypt_ops
= (void *)0x2e69cf40;
940 kr
= vm_map_apple_protected(map
,
946 if (kr
!= KERN_SUCCESS
) {
951 #else /* CONFIG_CODE_DECRYPTION */
953 unprotect_dsmos_segment(
954 __unused
uint64_t file_off
,
955 __unused
uint64_t file_size
,
956 __unused
struct vnode
*vp
,
957 __unused off_t macho_offset
,
958 __unused vm_map_t map
,
959 __unused vm_map_offset_t map_addr
,
960 __unused vm_map_size_t map_size
)
964 #endif /* CONFIG_CODE_DECRYPTION */
969 struct load_command
*lcp
,
977 load_result_t
*result
980 struct segment_command_64 segment_command
, *scp
;
982 vm_map_offset_t map_addr
, map_offset
;
983 vm_map_size_t map_size
, seg_size
, delta_size
;
986 size_t segment_command_size
, total_section_size
,
989 if (LC_SEGMENT_64
== lcp
->cmd
) {
990 segment_command_size
= sizeof(struct segment_command_64
);
991 single_section_size
= sizeof(struct section_64
);
993 segment_command_size
= sizeof(struct segment_command
);
994 single_section_size
= sizeof(struct section
);
996 if (lcp
->cmdsize
< segment_command_size
)
997 return (LOAD_BADMACHO
);
998 total_section_size
= lcp
->cmdsize
- segment_command_size
;
1000 if (LC_SEGMENT_64
== lcp
->cmd
)
1001 scp
= (struct segment_command_64
*)lcp
;
1003 scp
= &segment_command
;
1004 widen_segment_command((struct segment_command
*)lcp
, scp
);
1008 * Make sure what we get from the file is really ours (as specified
1011 if (scp
->fileoff
+ scp
->filesize
< scp
->fileoff
||
1012 scp
->fileoff
+ scp
->filesize
> (uint64_t)macho_size
)
1013 return (LOAD_BADMACHO
);
1015 * Ensure that the number of sections specified would fit
1016 * within the load command size.
1018 if (total_section_size
/ single_section_size
< scp
->nsects
)
1019 return (LOAD_BADMACHO
);
1021 * Make sure the segment is page-aligned in the file.
1023 if ((scp
->fileoff
& PAGE_MASK_64
) != 0)
1024 return (LOAD_BADMACHO
);
1027 * If we have a code signature attached for this slice
1028 * require that the segments are within the signed part
1031 if (result
->cs_end_offset
&&
1032 result
->cs_end_offset
< (off_t
)scp
->fileoff
&&
1033 result
->cs_end_offset
- scp
->fileoff
< scp
->filesize
)
1036 printf("section outside code signature\n");
1037 return LOAD_BADMACHO
;
1041 * Round sizes to page size.
1043 seg_size
= round_page_64(scp
->vmsize
);
1044 map_size
= round_page_64(scp
->filesize
);
1045 map_addr
= trunc_page_64(scp
->vmaddr
); /* JVXXX note that in XNU TOT this is round instead of trunc for 64 bits */
1047 seg_size
= vm_map_round_page(seg_size
, vm_map_page_mask(map
));
1048 map_size
= vm_map_round_page(map_size
, vm_map_page_mask(map
));
1051 return (KERN_SUCCESS
);
1052 if (map_addr
== 0 &&
1055 (scp
->initprot
& VM_PROT_ALL
) == VM_PROT_NONE
&&
1056 (scp
->maxprot
& VM_PROT_ALL
) == VM_PROT_NONE
) {
1058 * For PIE, extend page zero rather than moving it. Extending
1059 * page zero keeps early allocations from falling predictably
1060 * between the end of page zero and the beginning of the first
1067 * This is a "page zero" segment: it starts at address 0,
1068 * is not mapped from the binary file and is not accessible.
1069 * User-space should never be able to access that memory, so
1070 * make it completely off limits by raising the VM map's
1073 ret
= vm_map_raise_min_offset(map
, seg_size
);
1074 if (ret
!= KERN_SUCCESS
) {
1075 return (LOAD_FAILURE
);
1077 return (LOAD_SUCCESS
);
1080 /* If a non-zero slide was specified by the caller, apply now */
1083 if (map_addr
< result
->min_vm_addr
)
1084 result
->min_vm_addr
= map_addr
;
1085 if (map_addr
+seg_size
> result
->max_vm_addr
)
1086 result
->max_vm_addr
= map_addr
+seg_size
;
1088 if (map
== VM_MAP_NULL
)
1089 return (LOAD_SUCCESS
);
1091 map_offset
= pager_offset
+ scp
->fileoff
; /* limited to 32 bits */
1094 initprot
= (scp
->initprot
) & VM_PROT_ALL
;
1095 maxprot
= (scp
->maxprot
) & VM_PROT_ALL
;
1097 * Map a copy of the file into the address space.
1099 ret
= vm_map_enter_mem_object_control(map
,
1100 &map_addr
, map_size
, (mach_vm_offset_t
)0,
1101 VM_FLAGS_FIXED
, control
, map_offset
, TRUE
,
1103 VM_INHERIT_DEFAULT
);
1104 if (ret
!= KERN_SUCCESS
) {
1105 return (LOAD_NOSPACE
);
1109 * If the file didn't end on a page boundary,
1110 * we need to zero the leftover.
1112 delta_size
= map_size
- scp
->filesize
;
1114 if (delta_size
> 0) {
1115 mach_vm_offset_t tmp
;
1117 ret
= mach_vm_allocate(kernel_map
, &tmp
, delta_size
, VM_FLAGS_ANYWHERE
);
1118 if (ret
!= KERN_SUCCESS
)
1119 return(LOAD_RESOURCE
);
1121 if (copyout(tmp
, map_addr
+ scp
->filesize
,
1123 (void) mach_vm_deallocate(
1124 kernel_map
, tmp
, delta_size
);
1125 return (LOAD_FAILURE
);
1128 (void) mach_vm_deallocate(kernel_map
, tmp
, delta_size
);
1134 * If the virtual size of the segment is greater
1135 * than the size from the file, we need to allocate
1136 * zero fill memory for the rest.
1138 delta_size
= seg_size
- map_size
;
1139 if (delta_size
> 0) {
1140 mach_vm_offset_t tmp
= map_addr
+ map_size
;
1142 ret
= mach_vm_map(map
, &tmp
, delta_size
, 0, VM_FLAGS_FIXED
,
1144 scp
->initprot
, scp
->maxprot
,
1145 VM_INHERIT_DEFAULT
);
1146 if (ret
!= KERN_SUCCESS
)
1147 return(LOAD_NOSPACE
);
1150 if ( (scp
->fileoff
== 0) && (scp
->filesize
!= 0) )
1151 result
->mach_header
= map_addr
;
1153 if (scp
->flags
& SG_PROTECTED_VERSION_1
) {
1154 ret
= unprotect_dsmos_segment(scp
->fileoff
,
1164 if (LOAD_SUCCESS
== ret
&& filetype
== MH_DYLINKER
&&
1165 result
->all_image_info_addr
== MACH_VM_MIN_ADDRESS
)
1166 note_all_image_info_section(scp
,
1167 LC_SEGMENT_64
== lcp
->cmd
, single_section_size
,
1168 (const char *)lcp
+ segment_command_size
, slide
, result
);
1170 if ((result
->entry_point
>= map_addr
) && (result
->entry_point
< (map_addr
+ map_size
)))
1171 result
->validentry
= 1;
1179 struct uuid_command
*uulp
,
1181 load_result_t
*result
1185 * We need to check the following for this command:
1186 * - The command size should be atleast the size of struct uuid_command
1187 * - The UUID part of the command should be completely within the mach-o header
1190 if ((uulp
->cmdsize
< sizeof(struct uuid_command
)) ||
1191 (((char *)uulp
+ sizeof(struct uuid_command
)) > command_end
)) {
1192 return (LOAD_BADMACHO
);
1195 memcpy(&result
->uuid
[0], &uulp
->uuid
[0], sizeof(result
->uuid
));
1196 return (LOAD_SUCCESS
);
1202 struct entry_point_command
*epc
,
1205 load_result_t
*result
1208 mach_vm_offset_t addr
;
1211 if (epc
->cmdsize
< sizeof(*epc
))
1212 return (LOAD_BADMACHO
);
1213 if (result
->thread_count
!= 0) {
1214 printf("load_main: already have a thread!");
1215 return (LOAD_FAILURE
);
1218 if (thread
== THREAD_NULL
)
1219 return (LOAD_SUCCESS
);
1221 /* LC_MAIN specifies stack size but not location */
1222 if (epc
->stacksize
) {
1223 result
->prog_stack_size
= 1;
1224 result
->user_stack_size
= epc
->stacksize
;
1226 result
->prog_stack_size
= 0;
1227 result
->user_stack_size
= MAXSSIZ
;
1229 result
->prog_allocated_stack
= 0;
1231 /* use default location for stack */
1232 ret
= thread_userstackdefault(thread
, &addr
);
1233 if (ret
!= KERN_SUCCESS
)
1234 return(LOAD_FAILURE
);
1236 /* The stack slides down from the default location */
1237 result
->user_stack
= addr
;
1238 result
->user_stack
-= slide
;
1240 /* kernel does *not* use entryoff from LC_MAIN. Dyld uses it. */
1241 result
->needs_dynlinker
= TRUE
;
1242 result
->validentry
= TRUE
;
1244 ret
= thread_state_initialize( thread
);
1245 if (ret
!= KERN_SUCCESS
) {
1246 return(LOAD_FAILURE
);
1249 result
->unixproc
= TRUE
;
1250 result
->thread_count
++;
1252 return(LOAD_SUCCESS
);
1259 struct thread_command
*tcp
,
1262 load_result_t
*result
1267 mach_vm_offset_t addr
;
1269 if (tcp
->cmdsize
< sizeof(*tcp
))
1270 return (LOAD_BADMACHO
);
1271 if (result
->thread_count
!= 0) {
1272 printf("load_unixthread: already have a thread!");
1273 return (LOAD_FAILURE
);
1276 if (thread
== THREAD_NULL
)
1277 return (LOAD_SUCCESS
);
1279 ret
= load_threadstack(thread
,
1280 (uint32_t *)(((vm_offset_t
)tcp
) +
1281 sizeof(struct thread_command
)),
1282 tcp
->cmdsize
- sizeof(struct thread_command
),
1285 if (ret
!= LOAD_SUCCESS
)
1288 /* LC_UNIXTHREAD optionally specifies stack size and location */
1291 result
->prog_stack_size
= 0; /* unknown */
1292 result
->prog_allocated_stack
= 1;
1294 result
->prog_allocated_stack
= 0;
1295 result
->prog_stack_size
= 0;
1296 result
->user_stack_size
= MAXSSIZ
;
1299 /* The stack slides down from the default location */
1300 result
->user_stack
= addr
;
1301 result
->user_stack
-= slide
;
1303 ret
= load_threadentry(thread
,
1304 (uint32_t *)(((vm_offset_t
)tcp
) +
1305 sizeof(struct thread_command
)),
1306 tcp
->cmdsize
- sizeof(struct thread_command
),
1308 if (ret
!= LOAD_SUCCESS
)
1311 result
->entry_point
= addr
;
1312 result
->entry_point
+= slide
;
1314 ret
= load_threadstate(thread
,
1315 (uint32_t *)(((vm_offset_t
)tcp
) +
1316 sizeof(struct thread_command
)),
1317 tcp
->cmdsize
- sizeof(struct thread_command
));
1318 if (ret
!= LOAD_SUCCESS
)
1321 result
->unixproc
= TRUE
;
1322 result
->thread_count
++;
1324 return(LOAD_SUCCESS
);
1338 uint32_t thread_size
;
1340 uint32_t local_ts_size
;
1345 ret
= thread_state_initialize( thread
);
1346 if (ret
!= KERN_SUCCESS
) {
1351 if (total_size
> 0) {
1352 local_ts_size
= total_size
;
1353 local_ts
= kalloc(local_ts_size
);
1354 if (local_ts
== NULL
) {
1358 memcpy(local_ts
, ts
, local_ts_size
);
1363 * Set the new thread state; iterate through the state flavors in
1366 while (total_size
> 0) {
1369 if (UINT32_MAX
-2 < size
||
1370 UINT32_MAX
/sizeof(uint32_t) < size
+2) {
1371 ret
= LOAD_BADMACHO
;
1374 thread_size
= (size
+2)*sizeof(uint32_t);
1375 if (thread_size
> total_size
) {
1376 ret
= LOAD_BADMACHO
;
1379 total_size
-= thread_size
;
1381 * Third argument is a kernel space pointer; it gets cast
1382 * to the appropriate type in machine_thread_set_state()
1383 * based on the value of flavor.
1385 ret
= thread_setstatus(thread
, flavor
, (thread_state_t
)ts
, size
);
1386 if (ret
!= KERN_SUCCESS
) {
1390 ts
+= size
; /* ts is a (uint32_t *) */
1395 if (local_ts
!= NULL
) {
1396 kfree(local_ts
, local_ts_size
);
1407 uint32_t total_size
,
1408 mach_vm_offset_t
*user_stack
,
1415 uint32_t stack_size
;
1417 while (total_size
> 0) {
1420 if (UINT32_MAX
-2 < size
||
1421 UINT32_MAX
/sizeof(uint32_t) < size
+2)
1422 return (LOAD_BADMACHO
);
1423 stack_size
= (size
+2)*sizeof(uint32_t);
1424 if (stack_size
> total_size
)
1425 return(LOAD_BADMACHO
);
1426 total_size
-= stack_size
;
1429 * Third argument is a kernel space pointer; it gets cast
1430 * to the appropriate type in thread_userstack() based on
1431 * the value of flavor.
1433 ret
= thread_userstack(thread
, flavor
, (thread_state_t
)ts
, size
, user_stack
, customstack
);
1434 if (ret
!= KERN_SUCCESS
) {
1435 return(LOAD_FAILURE
);
1437 ts
+= size
; /* ts is a (uint32_t *) */
1439 return(LOAD_SUCCESS
);
1447 uint32_t total_size
,
1448 mach_vm_offset_t
*entry_point
1454 uint32_t entry_size
;
1457 * Set the thread state.
1459 *entry_point
= MACH_VM_MIN_ADDRESS
;
1460 while (total_size
> 0) {
1463 if (UINT32_MAX
-2 < size
||
1464 UINT32_MAX
/sizeof(uint32_t) < size
+2)
1465 return (LOAD_BADMACHO
);
1466 entry_size
= (size
+2)*sizeof(uint32_t);
1467 if (entry_size
> total_size
)
1468 return(LOAD_BADMACHO
);
1469 total_size
-= entry_size
;
1471 * Third argument is a kernel space pointer; it gets cast
1472 * to the appropriate type in thread_entrypoint() based on
1473 * the value of flavor.
1475 ret
= thread_entrypoint(thread
, flavor
, (thread_state_t
)ts
, size
, entry_point
);
1476 if (ret
!= KERN_SUCCESS
) {
1477 return(LOAD_FAILURE
);
1479 ts
+= size
; /* ts is a (uint32_t *) */
1481 return(LOAD_SUCCESS
);
1485 struct nameidata __nid
;
1486 union macho_vnode_header
{
1487 struct mach_header mach_header
;
1488 struct fat_header fat_header
;
1493 static load_return_t
1495 struct dylinker_command
*lcp
,
1501 load_result_t
*result
1506 struct vnode
*vp
= NULLVP
; /* set by get_macho_vnode() */
1507 struct mach_header
*header
;
1508 off_t file_offset
= 0; /* set by get_macho_vnode() */
1509 off_t macho_size
= 0; /* set by get_macho_vnode() */
1510 load_result_t
*myresult
;
1512 struct macho_data
*macho_data
;
1514 struct mach_header __header
;
1515 load_result_t __myresult
;
1516 struct macho_data __macho_data
;
1519 if (lcp
->cmdsize
< sizeof(*lcp
))
1520 return (LOAD_BADMACHO
);
1522 name
= (char *)lcp
+ lcp
->name
.offset
;
1524 * Check for a proper null terminated string.
1528 if (p
>= (char *)lcp
+ lcp
->cmdsize
)
1529 return(LOAD_BADMACHO
);
1532 /* Allocate wad-of-data from heap to reduce excessively deep stacks */
1534 MALLOC(dyld_data
, void *, sizeof (*dyld_data
), M_TEMP
, M_WAITOK
);
1535 header
= &dyld_data
->__header
;
1536 myresult
= &dyld_data
->__myresult
;
1537 macho_data
= &dyld_data
->__macho_data
;
1539 ret
= get_macho_vnode(name
, archbits
, header
,
1540 &file_offset
, &macho_size
, macho_data
, &vp
);
1544 *myresult
= load_result_null
;
1547 * First try to map dyld in directly. This should work most of
1548 * the time since there shouldn't normally be something already
1549 * mapped to its address.
1552 ret
= parse_machfile(vp
, map
, thread
, header
, file_offset
,
1553 macho_size
, depth
, slide
, 0, myresult
);
1556 * If it turned out something was in the way, then we'll take
1557 * take this longer path to preflight dyld's vm ranges, then
1558 * map it at a free location in the address space.
1561 if (ret
== LOAD_NOSPACE
) {
1562 mach_vm_offset_t dyl_start
, map_addr
;
1563 mach_vm_size_t dyl_length
;
1564 int64_t slide_amount
;
1566 *myresult
= load_result_null
;
1569 * Preflight parsing the Mach-O file with a NULL
1570 * map, which will return the ranges needed for a
1571 * subsequent map attempt (with a slide) in "myresult"
1573 ret
= parse_machfile(vp
, VM_MAP_NULL
, THREAD_NULL
, header
,
1574 file_offset
, macho_size
, depth
,
1575 0 /* slide */, 0, myresult
);
1577 if (ret
!= LOAD_SUCCESS
) {
1581 dyl_start
= myresult
->min_vm_addr
;
1582 dyl_length
= myresult
->max_vm_addr
- myresult
->min_vm_addr
;
1584 dyl_length
+= slide
;
1586 /* To find an appropriate load address, do a quick allocation */
1587 map_addr
= dyl_start
;
1588 ret
= mach_vm_allocate(map
, &map_addr
, dyl_length
, VM_FLAGS_ANYWHERE
);
1589 if (ret
!= KERN_SUCCESS
) {
1594 ret
= mach_vm_deallocate(map
, map_addr
, dyl_length
);
1595 if (ret
!= KERN_SUCCESS
) {
1600 if (map_addr
< dyl_start
)
1601 slide_amount
= -(int64_t)(dyl_start
- map_addr
);
1603 slide_amount
= (int64_t)(map_addr
- dyl_start
);
1605 slide_amount
+= slide
;
1607 *myresult
= load_result_null
;
1609 ret
= parse_machfile(vp
, map
, thread
, header
,
1610 file_offset
, macho_size
, depth
,
1611 slide_amount
, 0, myresult
);
1618 if (ret
== LOAD_SUCCESS
) {
1619 result
->dynlinker
= TRUE
;
1620 result
->entry_point
= myresult
->entry_point
;
1621 result
->validentry
= myresult
->validentry
;
1622 result
->all_image_info_addr
= myresult
->all_image_info_addr
;
1623 result
->all_image_info_size
= myresult
->all_image_info_size
;
1624 if (myresult
->platform_binary
) {
1625 result
->csflags
|= CS_DYLD_PLATFORM
;
1631 FREE(dyld_data
, M_TEMP
);
1636 static load_return_t
1637 load_code_signature(
1638 struct linkedit_data_command
*lcp
,
1643 load_result_t
*result
)
1649 struct cs_blob
*blob
;
1651 vm_size_t blob_size
;
1656 if (lcp
->cmdsize
!= sizeof (struct linkedit_data_command
) ||
1657 lcp
->dataoff
+ lcp
->datasize
> macho_size
) {
1658 ret
= LOAD_BADMACHO
;
1662 blob
= ubc_cs_blob_get(vp
, cputype
, macho_offset
);
1664 /* we already have a blob for this vnode and cputype */
1665 if (blob
->csb_cpu_type
== cputype
&&
1666 blob
->csb_base_offset
== macho_offset
&&
1667 blob
->csb_mem_size
== lcp
->datasize
) {
1668 /* it matches the blob we want here, lets verify the version */
1669 if(0 != ubc_cs_generation_check(vp
)) {
1670 if (0 != ubc_cs_blob_revalidate(vp
, blob
)) {
1671 ret
= LOAD_FAILURE
; /* set error same as from ubc_cs_blob_add */
1677 /* the blob has changed for this vnode: fail ! */
1678 ret
= LOAD_BADMACHO
;
1683 blob_size
= lcp
->datasize
;
1684 kr
= ubc_cs_blob_allocate(&addr
, &blob_size
);
1685 if (kr
!= KERN_SUCCESS
) {
1691 error
= vn_rdwr(UIO_READ
,
1695 macho_offset
+ lcp
->dataoff
,
1701 if (error
|| resid
!= 0) {
1706 if (ubc_cs_blob_add(vp
,
1714 /* ubc_cs_blob_add() has consumed "addr" */
1718 #if CHECK_CS_VALIDATION_BITMAP
1719 ubc_cs_validation_bitmap_allocate( vp
);
1722 blob
= ubc_cs_blob_get(vp
, cputype
, macho_offset
);
1726 if (ret
== LOAD_SUCCESS
) {
1727 result
->csflags
|= blob
->csb_flags
;
1728 result
->platform_binary
= blob
->csb_platform_binary
;
1729 result
->cs_end_offset
= blob
->csb_end_offset
;
1732 ubc_cs_blob_deallocate(addr
, blob_size
);
1740 #if CONFIG_CODE_DECRYPTION
1742 static load_return_t
1744 struct encryption_info_command
*eip
,
1750 cpu_subtype_t cpusubtype
)
1753 pager_crypt_info_t crypt_info
;
1754 const char * cryptname
= 0;
1758 struct segment_command_64
*seg64
;
1759 struct segment_command
*seg32
;
1760 vm_map_offset_t map_offset
, map_size
;
1763 if (eip
->cmdsize
< sizeof(*eip
)) return LOAD_BADMACHO
;
1765 switch(eip
->cryptid
) {
1767 /* not encrypted, just an empty load command */
1768 return LOAD_SUCCESS
;
1770 cryptname
="com.apple.unfree";
1773 /* some random cryptid that you could manually put into
1774 * your binary if you want NULL */
1775 cryptname
="com.apple.null";
1778 return LOAD_BADMACHO
;
1781 if (map
== VM_MAP_NULL
) return (LOAD_SUCCESS
);
1782 if (NULL
== text_crypter_create
) return LOAD_FAILURE
;
1784 MALLOC_ZONE(vpath
, char *, MAXPATHLEN
, M_NAMEI
, M_WAITOK
);
1785 if(vpath
== NULL
) return LOAD_FAILURE
;
1788 result
= vn_getpath(vp
, vpath
, &len
);
1790 FREE_ZONE(vpath
, MAXPATHLEN
, M_NAMEI
);
1791 return LOAD_FAILURE
;
1794 /* set up decrypter first */
1795 crypt_file_data_t crypt_data
= {
1798 .cpusubtype
= cpusubtype
};
1799 kr
=text_crypter_create(&crypt_info
, cryptname
, (void*)&crypt_data
);
1800 FREE_ZONE(vpath
, MAXPATHLEN
, M_NAMEI
);
1803 printf("set_code_unprotect: unable to create decrypter %s, kr=%d\n",
1805 if (kr
== kIOReturnNotPrivileged
) {
1806 /* text encryption returned decryption failure */
1807 return(LOAD_DECRYPTFAIL
);
1809 return LOAD_RESOURCE
;
1812 /* this is terrible, but we have to rescan the load commands to find the
1813 * virtual address of this encrypted stuff. This code is gonna look like
1814 * the dyld source one day... */
1815 struct mach_header
*header
= (struct mach_header
*)addr
;
1816 size_t mach_header_sz
= sizeof(struct mach_header
);
1817 if (header
->magic
== MH_MAGIC_64
||
1818 header
->magic
== MH_CIGAM_64
) {
1819 mach_header_sz
= sizeof(struct mach_header_64
);
1821 offset
= mach_header_sz
;
1822 uint32_t ncmds
= header
->ncmds
;
1825 * Get a pointer to the command.
1827 struct load_command
*lcp
= (struct load_command
*)(addr
+ offset
);
1828 offset
+= lcp
->cmdsize
;
1832 seg64
= (struct segment_command_64
*)lcp
;
1833 if ((seg64
->fileoff
<= eip
->cryptoff
) &&
1834 (seg64
->fileoff
+seg64
->filesize
>=
1835 eip
->cryptoff
+eip
->cryptsize
)) {
1836 map_offset
= seg64
->vmaddr
+ eip
->cryptoff
- seg64
->fileoff
+ slide
;
1837 map_size
= eip
->cryptsize
;
1841 seg32
= (struct segment_command
*)lcp
;
1842 if ((seg32
->fileoff
<= eip
->cryptoff
) &&
1843 (seg32
->fileoff
+seg32
->filesize
>=
1844 eip
->cryptoff
+eip
->cryptsize
)) {
1845 map_offset
= seg32
->vmaddr
+ eip
->cryptoff
- seg32
->fileoff
+ slide
;
1846 map_size
= eip
->cryptsize
;
1852 /* if we get here, did not find anything */
1853 return LOAD_BADMACHO
;
1856 /* now remap using the decrypter */
1857 kr
= vm_map_apple_protected(map
, map_offset
, map_offset
+map_size
, &crypt_info
);
1859 printf("set_code_unprotect(): mapping failed with %x\n", kr
);
1860 crypt_info
.crypt_end(crypt_info
.crypt_ops
);
1861 return LOAD_PROTECT
;
1864 return LOAD_SUCCESS
;
1870 * This routine exists to support the load_dylinker().
1872 * This routine has its own, separate, understanding of the FAT file format,
1873 * which is terrifically unfortunate.
1880 struct mach_header
*mach_header
,
1883 struct macho_data
*data
,
1888 vfs_context_t ctx
= vfs_context_current();
1889 proc_t p
= vfs_context_proc(ctx
);
1890 kauth_cred_t kerncred
;
1891 struct nameidata
*ndp
= &data
->__nid
;
1893 struct fat_arch fat_arch
;
1896 union macho_vnode_header
*header
= &data
->__header
;
1897 off_t fsize
= (off_t
)0;
1900 * Capture the kernel credential for use in the actual read of the
1901 * file, since the user doing the execution may have execute rights
1902 * but not read rights, but to exec something, we have to either map
1903 * or read it into the new process address space, which requires
1904 * read rights. This is to deal with lack of common credential
1905 * serialization code which would treat NOCRED as "serialize 'root'".
1907 kerncred
= vfs_context_ucred(vfs_context_kernel());
1909 /* init the namei data to point the file user's program name */
1910 NDINIT(ndp
, LOOKUP
, OP_OPEN
, FOLLOW
| LOCKLEAF
, UIO_SYSSPACE
, CAST_USER_ADDR_T(path
), ctx
);
1912 if ((error
= namei(ndp
)) != 0) {
1913 if (error
== ENOENT
) {
1914 error
= LOAD_ENOENT
;
1916 error
= LOAD_FAILURE
;
1923 /* check for regular file */
1924 if (vp
->v_type
!= VREG
) {
1925 error
= LOAD_PROTECT
;
1930 if ((error
= vnode_size(vp
, &fsize
, ctx
)) != 0) {
1931 error
= LOAD_FAILURE
;
1935 /* Check mount point */
1936 if (vp
->v_mount
->mnt_flag
& MNT_NOEXEC
) {
1937 error
= LOAD_PROTECT
;
1942 if ((error
= vnode_authorize(vp
, NULL
, KAUTH_VNODE_EXECUTE
| KAUTH_VNODE_READ_DATA
, ctx
)) != 0) {
1943 error
= LOAD_PROTECT
;
1947 /* try to open it */
1948 if ((error
= VNOP_OPEN(vp
, FREAD
, ctx
)) != 0) {
1949 error
= LOAD_PROTECT
;
1953 if ((error
= vn_rdwr(UIO_READ
, vp
, (caddr_t
)header
, sizeof (*header
), 0,
1954 UIO_SYSSPACE
, IO_NODELOCKED
, kerncred
, &resid
, p
)) != 0) {
1955 error
= LOAD_IOERROR
;
1959 if (header
->mach_header
.magic
== MH_MAGIC
||
1960 header
->mach_header
.magic
== MH_MAGIC_64
) {
1962 } else if (header
->fat_header
.magic
== FAT_MAGIC
||
1963 header
->fat_header
.magic
== FAT_CIGAM
) {
1966 error
= LOAD_BADMACHO
;
1971 /* Look up our architecture in the fat file. */
1972 error
= fatfile_getarch_with_bits(vp
, archbits
,
1973 (vm_offset_t
)(&header
->fat_header
), &fat_arch
);
1974 if (error
!= LOAD_SUCCESS
)
1977 /* Read the Mach-O header out of it */
1978 error
= vn_rdwr(UIO_READ
, vp
, (caddr_t
)&header
->mach_header
,
1979 sizeof (header
->mach_header
), fat_arch
.offset
,
1980 UIO_SYSSPACE
, IO_NODELOCKED
, kerncred
, &resid
, p
);
1982 error
= LOAD_IOERROR
;
1986 /* Is this really a Mach-O? */
1987 if (header
->mach_header
.magic
!= MH_MAGIC
&&
1988 header
->mach_header
.magic
!= MH_MAGIC_64
) {
1989 error
= LOAD_BADMACHO
;
1993 *file_offset
= fat_arch
.offset
;
1994 *macho_size
= fat_arch
.size
;
1997 * Force get_macho_vnode() to fail if the architecture bits
1998 * do not match the expected architecture bits. This in
1999 * turn causes load_dylinker() to fail for the same reason,
2000 * so it ensures the dynamic linker and the binary are in
2001 * lock-step. This is potentially bad, if we ever add to
2002 * the CPU_ARCH_* bits any bits that are desirable but not
2003 * required, since the dynamic linker might work, but we will
2004 * refuse to load it because of this check.
2006 if ((cpu_type_t
)(header
->mach_header
.cputype
& CPU_ARCH_MASK
) != archbits
) {
2007 error
= LOAD_BADARCH
;
2012 *macho_size
= fsize
;
2015 *mach_header
= header
->mach_header
;
2018 ubc_setsize(vp
, fsize
);
2022 (void) VNOP_CLOSE(vp
, FREAD
, ctx
);