]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/trap.c
0cedaa19dd6d9268b06abb3a646c1142662d0caa
[apple/xnu.git] / osfmk / i386 / trap.c
1 /*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58
59 /*
60 * Hardware trap/fault handler.
61 */
62
63 #include <mach_kdp.h>
64 #include <mach_ldebug.h>
65
66 #include <types.h>
67 #include <i386/eflags.h>
68 #include <i386/trap.h>
69 #include <i386/pmap.h>
70 #include <i386/fpu.h>
71 #include <i386/misc_protos.h> /* panic_io_port_read() */
72 #include <i386/lapic.h>
73
74 #include <mach/exception.h>
75 #include <mach/kern_return.h>
76 #include <mach/vm_param.h>
77 #include <mach/i386/thread_status.h>
78
79 #include <vm/vm_kern.h>
80 #include <vm/vm_fault.h>
81
82 #include <kern/kern_types.h>
83 #include <kern/processor.h>
84 #include <kern/thread.h>
85 #include <kern/task.h>
86 #include <kern/sched.h>
87 #include <kern/sched_prim.h>
88 #include <kern/exception.h>
89 #include <kern/spl.h>
90 #include <kern/misc_protos.h>
91 #include <kern/debug.h>
92 #if CONFIG_TELEMETRY
93 #include <kern/telemetry.h>
94 #endif
95 #include <sys/kdebug.h>
96 #include <prng/random.h>
97
98 #include <string.h>
99
100 #include <i386/postcode.h>
101 #include <i386/mp_desc.h>
102 #include <i386/proc_reg.h>
103 #if CONFIG_MCA
104 #include <i386/machine_check.h>
105 #endif
106 #include <mach/i386/syscall_sw.h>
107
108 #include <libkern/OSDebug.h>
109 #include <i386/cpu_threads.h>
110 #include <machine/pal_routines.h>
111
112 extern void throttle_lowpri_io(int);
113 extern void kprint_state(x86_saved_state64_t *saved_state);
114
115 /*
116 * Forward declarations
117 */
118 static void user_page_fault_continue(kern_return_t kret);
119 static void panic_trap(x86_saved_state64_t *saved_state);
120 static void set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip);
121
122 volatile perfCallback perfTrapHook = NULL; /* Pointer to CHUD trap hook routine */
123
124 #if CONFIG_DTRACE
125 /* See <rdar://problem/4613924> */
126 perfCallback tempDTraceTrapHook = NULL; /* Pointer to DTrace fbt trap hook routine */
127
128 extern boolean_t dtrace_tally_fault(user_addr_t);
129 #endif
130
131 extern boolean_t pmap_smep_enabled;
132 extern boolean_t pmap_smap_enabled;
133
134 void
135 thread_syscall_return(
136 kern_return_t ret)
137 {
138 thread_t thr_act = current_thread();
139 boolean_t is_mach;
140 int code;
141
142 pal_register_cache_state(thr_act, DIRTY);
143
144 if (thread_is_64bit(thr_act)) {
145 x86_saved_state64_t *regs;
146
147 regs = USER_REGS64(thr_act);
148
149 code = (int) (regs->rax & SYSCALL_NUMBER_MASK);
150 is_mach = (regs->rax & SYSCALL_CLASS_MASK)
151 == (SYSCALL_CLASS_MACH << SYSCALL_CLASS_SHIFT);
152 if (kdebug_enable && is_mach) {
153 /* Mach trap */
154 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
155 MACHDBG_CODE(DBG_MACH_EXCP_SC,code)|DBG_FUNC_END,
156 ret, 0, 0, 0, 0);
157 }
158 regs->rax = ret;
159 #if DEBUG
160 if (is_mach)
161 DEBUG_KPRINT_SYSCALL_MACH(
162 "thread_syscall_return: 64-bit mach ret=%u\n",
163 ret);
164 else
165 DEBUG_KPRINT_SYSCALL_UNIX(
166 "thread_syscall_return: 64-bit unix ret=%u\n",
167 ret);
168 #endif
169 } else {
170 x86_saved_state32_t *regs;
171
172 regs = USER_REGS32(thr_act);
173
174 code = ((int) regs->eax);
175 is_mach = (code < 0);
176 if (kdebug_enable && is_mach) {
177 /* Mach trap */
178 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
179 MACHDBG_CODE(DBG_MACH_EXCP_SC,-code)|DBG_FUNC_END,
180 ret, 0, 0, 0, 0);
181 }
182 regs->eax = ret;
183 #if DEBUG
184 if (is_mach)
185 DEBUG_KPRINT_SYSCALL_MACH(
186 "thread_syscall_return: 32-bit mach ret=%u\n",
187 ret);
188 else
189 DEBUG_KPRINT_SYSCALL_UNIX(
190 "thread_syscall_return: 32-bit unix ret=%u\n",
191 ret);
192 #endif
193 }
194 throttle_lowpri_io(1);
195
196 thread_exception_return();
197 /*NOTREACHED*/
198 }
199
200
201 static inline void
202 user_page_fault_continue(
203 kern_return_t kr)
204 {
205 thread_t thread = current_thread();
206 user_addr_t vaddr;
207
208 if (thread_is_64bit(thread)) {
209 x86_saved_state64_t *uregs;
210
211 uregs = USER_REGS64(thread);
212
213 vaddr = (user_addr_t)uregs->cr2;
214 } else {
215 x86_saved_state32_t *uregs;
216
217 uregs = USER_REGS32(thread);
218
219 vaddr = uregs->cr2;
220 }
221
222
223 /* PAL debug hook */
224 pal_dbg_page_fault( thread, vaddr, kr );
225
226 i386_exception(EXC_BAD_ACCESS, kr, vaddr);
227 /*NOTREACHED*/
228 }
229
230 /*
231 * Fault recovery in copyin/copyout routines.
232 */
233 struct recovery {
234 uintptr_t fault_addr;
235 uintptr_t recover_addr;
236 };
237
238 extern struct recovery recover_table[];
239 extern struct recovery recover_table_end[];
240
241 const char * trap_type[] = {TRAP_NAMES};
242 unsigned TRAP_TYPES = sizeof(trap_type)/sizeof(trap_type[0]);
243
244 extern void PE_incoming_interrupt(int interrupt);
245
246 #if defined(__x86_64__) && DEBUG
247 void
248 kprint_state(x86_saved_state64_t *saved_state)
249 {
250 kprintf("current_cpu_datap() 0x%lx\n", (uintptr_t)current_cpu_datap());
251 kprintf("Current GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_GS_BASE));
252 kprintf("Kernel GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_KERNEL_GS_BASE));
253 kprintf("state at 0x%lx:\n", (uintptr_t) saved_state);
254
255 kprintf(" rdi 0x%llx\n", saved_state->rdi);
256 kprintf(" rsi 0x%llx\n", saved_state->rsi);
257 kprintf(" rdx 0x%llx\n", saved_state->rdx);
258 kprintf(" r10 0x%llx\n", saved_state->r10);
259 kprintf(" r8 0x%llx\n", saved_state->r8);
260 kprintf(" r9 0x%llx\n", saved_state->r9);
261
262 kprintf(" cr2 0x%llx\n", saved_state->cr2);
263 kprintf("real cr2 0x%lx\n", get_cr2());
264 kprintf(" r15 0x%llx\n", saved_state->r15);
265 kprintf(" r14 0x%llx\n", saved_state->r14);
266 kprintf(" r13 0x%llx\n", saved_state->r13);
267 kprintf(" r12 0x%llx\n", saved_state->r12);
268 kprintf(" r11 0x%llx\n", saved_state->r11);
269 kprintf(" rbp 0x%llx\n", saved_state->rbp);
270 kprintf(" rbx 0x%llx\n", saved_state->rbx);
271 kprintf(" rcx 0x%llx\n", saved_state->rcx);
272 kprintf(" rax 0x%llx\n", saved_state->rax);
273
274 kprintf(" gs 0x%x\n", saved_state->gs);
275 kprintf(" fs 0x%x\n", saved_state->fs);
276
277 kprintf(" isf.trapno 0x%x\n", saved_state->isf.trapno);
278 kprintf(" isf._pad 0x%x\n", saved_state->isf._pad);
279 kprintf(" isf.trapfn 0x%llx\n", saved_state->isf.trapfn);
280 kprintf(" isf.err 0x%llx\n", saved_state->isf.err);
281 kprintf(" isf.rip 0x%llx\n", saved_state->isf.rip);
282 kprintf(" isf.cs 0x%llx\n", saved_state->isf.cs);
283 kprintf(" isf.rflags 0x%llx\n", saved_state->isf.rflags);
284 kprintf(" isf.rsp 0x%llx\n", saved_state->isf.rsp);
285 kprintf(" isf.ss 0x%llx\n", saved_state->isf.ss);
286 }
287 #endif
288
289
290 /*
291 * Non-zero indicates latency assert is enabled and capped at valued
292 * absolute time units.
293 */
294
295 uint64_t interrupt_latency_cap = 0;
296 boolean_t ilat_assert = FALSE;
297
298 void
299 interrupt_latency_tracker_setup(void) {
300 uint32_t ilat_cap_us;
301 if (PE_parse_boot_argn("interrupt_latency_cap_us", &ilat_cap_us, sizeof(ilat_cap_us))) {
302 interrupt_latency_cap = ilat_cap_us * NSEC_PER_USEC;
303 nanoseconds_to_absolutetime(interrupt_latency_cap, &interrupt_latency_cap);
304 } else {
305 interrupt_latency_cap = LockTimeOut;
306 }
307 PE_parse_boot_argn("-interrupt_latency_assert_enable", &ilat_assert, sizeof(ilat_assert));
308 }
309
310 void interrupt_reset_latency_stats(void) {
311 uint32_t i;
312 for (i = 0; i < real_ncpus; i++) {
313 cpu_data_ptr[i]->cpu_max_observed_int_latency =
314 cpu_data_ptr[i]->cpu_max_observed_int_latency_vector = 0;
315 }
316 }
317
318 void interrupt_populate_latency_stats(char *buf, unsigned bufsize) {
319 uint32_t i, tcpu = ~0;
320 uint64_t cur_max = 0;
321
322 for (i = 0; i < real_ncpus; i++) {
323 if (cur_max < cpu_data_ptr[i]->cpu_max_observed_int_latency) {
324 cur_max = cpu_data_ptr[i]->cpu_max_observed_int_latency;
325 tcpu = i;
326 }
327 }
328
329 if (tcpu < real_ncpus)
330 snprintf(buf, bufsize, "0x%x 0x%x 0x%llx", tcpu, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency_vector, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency);
331 }
332
333 uint32_t interrupt_timer_coalescing_enabled = 1;
334 uint64_t interrupt_coalesced_timers;
335
336 /*
337 * Handle interrupts:
338 * - local APIC interrupts (IPIs, timers, etc) are handled by the kernel,
339 * - device interrupts go to the platform expert.
340 */
341 void
342 interrupt(x86_saved_state_t *state)
343 {
344 uint64_t rip;
345 uint64_t rsp;
346 int interrupt_num;
347 boolean_t user_mode = FALSE;
348 int ipl;
349 int cnum = cpu_number();
350 cpu_data_t *cdp = cpu_data_ptr[cnum];
351 int itype = 0;
352
353 if (is_saved_state64(state) == TRUE) {
354 x86_saved_state64_t *state64;
355
356 state64 = saved_state64(state);
357 rip = state64->isf.rip;
358 rsp = state64->isf.rsp;
359 interrupt_num = state64->isf.trapno;
360 #ifdef __x86_64__
361 if(state64->isf.cs & 0x03)
362 #endif
363 user_mode = TRUE;
364 } else {
365 x86_saved_state32_t *state32;
366
367 state32 = saved_state32(state);
368 if (state32->cs & 0x03)
369 user_mode = TRUE;
370 rip = state32->eip;
371 rsp = state32->uesp;
372 interrupt_num = state32->trapno;
373 }
374
375 if (cpu_data_ptr[cnum]->lcpu.package->num_idle == topoParms.nLThreadsPerPackage)
376 cpu_data_ptr[cnum]->cpu_hwIntpexits[interrupt_num]++;
377
378 if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_INTERPROCESSOR_INTERRUPT))
379 itype = 1;
380 else if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_TIMER_INTERRUPT))
381 itype = 2;
382 else
383 itype = 3;
384
385 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
386 MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_START,
387 interrupt_num,
388 (user_mode ? rip : VM_KERNEL_UNSLIDE(rip)),
389 user_mode, itype, 0);
390
391 SCHED_STATS_INTERRUPT(current_processor());
392
393 #if CONFIG_TELEMETRY
394 if (telemetry_needs_record
395 && (current_task() != kernel_task)
396 #if CONFIG_SCHED_IDLE_IN_PLACE
397 && ((current_thread()->state & TH_IDLE) == 0) /* idle-in-place should be treated like the idle thread */
398 #endif
399 ) {
400 telemetry_mark_curthread(user_mode);
401 }
402 #endif
403
404 ipl = get_preemption_level();
405
406 /*
407 * Handle local APIC interrupts
408 * else call platform expert for devices.
409 */
410 if (!lapic_interrupt(interrupt_num, state)) {
411 PE_incoming_interrupt(interrupt_num);
412 }
413
414 if (__improbable(get_preemption_level() != ipl)) {
415 panic("Preemption level altered by interrupt vector 0x%x: initial 0x%x, final: 0x%x\n", interrupt_num, ipl, get_preemption_level());
416 }
417
418
419 if (__improbable(cdp->cpu_nested_istack)) {
420 cdp->cpu_nested_istack_events++;
421 }
422 else {
423 uint64_t ctime = mach_absolute_time();
424 uint64_t int_latency = ctime - cdp->cpu_int_event_time;
425 uint64_t esdeadline, ehdeadline;
426 /* Attempt to process deferred timers in the context of
427 * this interrupt, unless interrupt time has already exceeded
428 * TCOAL_ILAT_THRESHOLD.
429 */
430 #define TCOAL_ILAT_THRESHOLD (30000ULL)
431
432 if ((int_latency < TCOAL_ILAT_THRESHOLD) &&
433 interrupt_timer_coalescing_enabled) {
434 esdeadline = cdp->rtclock_timer.queue.earliest_soft_deadline;
435 ehdeadline = cdp->rtclock_timer.deadline;
436 if ((ctime >= esdeadline) && (ctime < ehdeadline)) {
437 interrupt_coalesced_timers++;
438 TCOAL_DEBUG(0x88880000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, interrupt_coalesced_timers, 0);
439 rtclock_intr(state);
440 TCOAL_DEBUG(0x88880000 | DBG_FUNC_END, ctime, esdeadline, interrupt_coalesced_timers, 0, 0);
441 } else {
442 TCOAL_DEBUG(0x77770000, ctime, cdp->rtclock_timer.queue.earliest_soft_deadline, cdp->rtclock_timer.deadline, interrupt_coalesced_timers, 0);
443 }
444 }
445
446 if (__improbable(ilat_assert && (int_latency > interrupt_latency_cap) && !machine_timeout_suspended())) {
447 panic("Interrupt vector 0x%x exceeded interrupt latency threshold, 0x%llx absolute time delta, prior signals: 0x%x, current signals: 0x%x", interrupt_num, int_latency, cdp->cpu_prior_signals, cdp->cpu_signals);
448 }
449
450 if (__improbable(int_latency > cdp->cpu_max_observed_int_latency)) {
451 cdp->cpu_max_observed_int_latency = int_latency;
452 cdp->cpu_max_observed_int_latency_vector = interrupt_num;
453 }
454 }
455
456 /*
457 * Having serviced the interrupt first, look at the interrupted stack depth.
458 */
459 if (!user_mode) {
460 uint64_t depth = cdp->cpu_kernel_stack
461 + sizeof(struct x86_kernel_state)
462 + sizeof(struct i386_exception_link *)
463 - rsp;
464 if (__improbable(depth > kernel_stack_depth_max)) {
465 kernel_stack_depth_max = (vm_offset_t)depth;
466 KERNEL_DEBUG_CONSTANT(
467 MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DEPTH),
468 (long) depth, (long) VM_KERNEL_UNSLIDE(rip), 0, 0, 0);
469 }
470 }
471
472 if (cnum == master_cpu)
473 ml_entropy_collect();
474
475 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
476 MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_END,
477 interrupt_num, 0, 0, 0, 0);
478
479 }
480
481 static inline void
482 reset_dr7(void)
483 {
484 long dr7 = 0x400; /* magic dr7 reset value; 32 bit on i386, 64 bit on x86_64 */
485 __asm__ volatile("mov %0,%%dr7" : : "r" (dr7));
486 }
487 #if MACH_KDP
488 unsigned kdp_has_active_watchpoints = 0;
489 #define NO_WATCHPOINTS (!kdp_has_active_watchpoints)
490 #else
491 #define NO_WATCHPOINTS 1
492 #endif
493 /*
494 * Trap from kernel mode. Only page-fault errors are recoverable,
495 * and then only in special circumstances. All other errors are
496 * fatal. Return value indicates if trap was handled.
497 */
498
499 void
500 kernel_trap(
501 x86_saved_state_t *state,
502 uintptr_t *lo_spp)
503 {
504 x86_saved_state64_t *saved_state;
505 int code;
506 user_addr_t vaddr;
507 int type;
508 vm_map_t map = 0; /* protected by T_PAGE_FAULT */
509 kern_return_t result = KERN_FAILURE;
510 thread_t thread;
511 ast_t *myast;
512 boolean_t intr;
513 vm_prot_t prot;
514 struct recovery *rp;
515 vm_offset_t kern_ip;
516 #if NCOPY_WINDOWS > 0
517 int fault_in_copy_window = -1;
518 #endif
519 int is_user = 0;
520
521 thread = current_thread();
522
523 if (__improbable(is_saved_state32(state)))
524 panic("kernel_trap(%p) with 32-bit state", state);
525 saved_state = saved_state64(state);
526
527 /* Record cpu where state was captured */
528 saved_state->isf.cpu = cpu_number();
529
530 vaddr = (user_addr_t)saved_state->cr2;
531 type = saved_state->isf.trapno;
532 code = (int)(saved_state->isf.err & 0xffff);
533 intr = (saved_state->isf.rflags & EFL_IF) != 0; /* state of ints at trap */
534 kern_ip = (vm_offset_t)saved_state->isf.rip;
535
536 myast = ast_pending();
537
538 perfASTCallback astfn = perfASTHook;
539 if (__improbable(astfn != NULL)) {
540 if (*myast & AST_CHUD_ALL)
541 astfn(AST_CHUD_ALL, myast);
542 } else
543 *myast &= ~AST_CHUD_ALL;
544
545
546 #if CONFIG_DTRACE
547 /*
548 * Is there a DTrace hook?
549 */
550 if (__improbable(tempDTraceTrapHook != NULL)) {
551 if (tempDTraceTrapHook(type, state, lo_spp, 0) == KERN_SUCCESS) {
552 /*
553 * If it succeeds, we are done...
554 */
555 return;
556 }
557 }
558 #endif /* CONFIG_DTRACE */
559
560 /*
561 * we come here with interrupts off as we don't want to recurse
562 * on preemption below. but we do want to re-enable interrupts
563 * as soon we possibly can to hold latency down
564 */
565 if (__improbable(T_PREEMPT == type)) {
566 ast_taken(AST_PREEMPTION, FALSE);
567
568 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
569 (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
570 0, 0, 0, VM_KERNEL_UNSLIDE(kern_ip), 0);
571 return;
572 }
573
574 if (T_PAGE_FAULT == type) {
575 /*
576 * assume we're faulting in the kernel map
577 */
578 map = kernel_map;
579
580 if (__probable(thread != THREAD_NULL && thread->map != kernel_map)) {
581 #if NCOPY_WINDOWS > 0
582 vm_offset_t copy_window_base;
583 vm_offset_t kvaddr;
584 int window_index;
585
586 kvaddr = (vm_offset_t)vaddr;
587 /*
588 * must determine if fault occurred in
589 * the copy window while pre-emption is
590 * disabled for this processor so that
591 * we only need to look at the window
592 * associated with this processor
593 */
594 copy_window_base = current_cpu_datap()->cpu_copywindow_base;
595
596 if (kvaddr >= copy_window_base && kvaddr < (copy_window_base + (NBPDE * NCOPY_WINDOWS)) ) {
597
598 window_index = (int)((kvaddr - copy_window_base) / NBPDE);
599
600 if (thread->machine.copy_window[window_index].user_base != (user_addr_t)-1) {
601
602 kvaddr -= (copy_window_base + (NBPDE * window_index));
603 vaddr = thread->machine.copy_window[window_index].user_base + kvaddr;
604
605 map = thread->map;
606 fault_in_copy_window = window_index;
607 }
608 is_user = -1;
609 }
610 #else
611 if (__probable(vaddr < VM_MAX_USER_PAGE_ADDRESS)) {
612 /* fault occurred in userspace */
613 map = thread->map;
614 is_user = -1;
615
616 /* Intercept a potential Supervisor Mode Execute
617 * Protection fault. These criteria identify
618 * both NX faults and SMEP faults, but both
619 * are fatal. We avoid checking PTEs (racy).
620 * (The VM could just redrive a SMEP fault, hence
621 * the intercept).
622 */
623 if (__improbable((code == (T_PF_PROT | T_PF_EXECUTE)) && (pmap_smep_enabled) && (saved_state->isf.rip == vaddr))) {
624 goto debugger_entry;
625 }
626
627 /*
628 * If we're not sharing cr3 with the user
629 * and we faulted in copyio,
630 * then switch cr3 here and dismiss the fault.
631 */
632 if (no_shared_cr3 &&
633 (thread->machine.specFlags&CopyIOActive) &&
634 map->pmap->pm_cr3 != get_cr3_base()) {
635 pmap_assert(current_cpu_datap()->cpu_pmap_pcid_enabled == FALSE);
636 set_cr3_raw(map->pmap->pm_cr3);
637 return;
638 }
639
640 }
641 #endif
642 }
643 }
644 user_addr_t kd_vaddr = is_user ? vaddr : VM_KERNEL_UNSLIDE(vaddr);
645 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
646 (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
647 (unsigned)(kd_vaddr >> 32), (unsigned)kd_vaddr, is_user,
648 VM_KERNEL_UNSLIDE(kern_ip), 0);
649
650
651 (void) ml_set_interrupts_enabled(intr);
652
653 switch (type) {
654
655 case T_NO_FPU:
656 fpnoextflt();
657 return;
658
659 case T_FPU_FAULT:
660 fpextovrflt();
661 return;
662
663 case T_FLOATING_POINT_ERROR:
664 fpexterrflt();
665 return;
666
667 case T_SSE_FLOAT_ERROR:
668 fpSSEexterrflt();
669 return;
670 case T_DEBUG:
671 if ((saved_state->isf.rflags & EFL_TF) == 0 && NO_WATCHPOINTS)
672 {
673 /* We've somehow encountered a debug
674 * register match that does not belong
675 * to the kernel debugger.
676 * This isn't supposed to happen.
677 */
678 reset_dr7();
679 return;
680 }
681 goto debugger_entry;
682 #ifdef __x86_64__
683 case T_INT3:
684 goto debugger_entry;
685 #endif
686 case T_PAGE_FAULT:
687
688 #if CONFIG_DTRACE
689 if (thread != THREAD_NULL && thread->options & TH_OPT_DTRACE) { /* Executing under dtrace_probe? */
690 if (dtrace_tally_fault(vaddr)) { /* Should a fault under dtrace be ignored? */
691 /*
692 * DTrace has "anticipated" the possibility of this fault, and has
693 * established the suitable recovery state. Drop down now into the
694 * recovery handling code in "case T_GENERAL_PROTECTION:".
695 */
696 goto FALL_THROUGH;
697 }
698 }
699 #endif /* CONFIG_DTRACE */
700
701 prot = VM_PROT_READ;
702
703 if (code & T_PF_WRITE)
704 prot |= VM_PROT_WRITE;
705 if (code & T_PF_EXECUTE)
706 prot |= VM_PROT_EXECUTE;
707
708 result = vm_fault(map,
709 vm_map_trunc_page(vaddr,
710 PAGE_MASK),
711 prot,
712 FALSE,
713 THREAD_UNINT, NULL, 0);
714
715 if (result == KERN_SUCCESS) {
716 #if NCOPY_WINDOWS > 0
717 if (fault_in_copy_window != -1) {
718 ml_set_interrupts_enabled(FALSE);
719 copy_window_fault(thread, map,
720 fault_in_copy_window);
721 (void) ml_set_interrupts_enabled(intr);
722 }
723 #endif /* NCOPY_WINDOWS > 0 */
724 return;
725 }
726 /*
727 * fall through
728 */
729 #if CONFIG_DTRACE
730 FALL_THROUGH:
731 #endif /* CONFIG_DTRACE */
732
733 case T_GENERAL_PROTECTION:
734 /*
735 * If there is a failure recovery address
736 * for this fault, go there.
737 */
738 for (rp = recover_table; rp < recover_table_end; rp++) {
739 if (kern_ip == rp->fault_addr) {
740 set_recovery_ip(saved_state, rp->recover_addr);
741 return;
742 }
743 }
744
745 /*
746 * Check thread recovery address also.
747 */
748 if (thread != THREAD_NULL && thread->recover) {
749 set_recovery_ip(saved_state, thread->recover);
750 thread->recover = 0;
751 return;
752 }
753 /*
754 * Unanticipated page-fault errors in kernel
755 * should not happen.
756 *
757 * fall through...
758 */
759 default:
760 /*
761 * Exception 15 is reserved but some chips may generate it
762 * spuriously. Seen at startup on AMD Athlon-64.
763 */
764 if (type == 15) {
765 kprintf("kernel_trap() ignoring spurious trap 15\n");
766 return;
767 }
768 debugger_entry:
769 /* Ensure that the i386_kernel_state at the base of the
770 * current thread's stack (if any) is synchronized with the
771 * context at the moment of the trap, to facilitate
772 * access through the debugger.
773 */
774 sync_iss_to_iks(state);
775 #if MACH_KDP
776 if (current_debugger != KDB_CUR_DB) {
777 if (kdp_i386_trap(type, saved_state, result, (vm_offset_t)vaddr))
778 return;
779 }
780 #endif
781 }
782 pal_cli();
783 panic_trap(saved_state);
784 /*
785 * NO RETURN
786 */
787 }
788
789
790 static void
791 set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip)
792 {
793 saved_state->isf.rip = ip;
794 }
795
796
797
798
799 static void
800 panic_trap(x86_saved_state64_t *regs)
801 {
802 const char *trapname = "Unknown";
803 pal_cr_t cr0, cr2, cr3, cr4;
804 boolean_t potential_smep_fault = FALSE, potential_kernel_NX_fault = FALSE;
805
806 pal_get_control_registers( &cr0, &cr2, &cr3, &cr4 );
807 assert(ml_get_interrupts_enabled() == FALSE);
808 current_cpu_datap()->cpu_fatal_trap_state = regs;
809 /*
810 * Issue an I/O port read if one has been requested - this is an
811 * event logic analyzers can use as a trigger point.
812 */
813 panic_io_port_read();
814
815 kprintf("panic trap number 0x%x, rip 0x%016llx\n",
816 regs->isf.trapno, regs->isf.rip);
817 kprintf("cr0 0x%016llx cr2 0x%016llx cr3 0x%016llx cr4 0x%016llx\n",
818 cr0, cr2, cr3, cr4);
819
820 if (regs->isf.trapno < TRAP_TYPES)
821 trapname = trap_type[regs->isf.trapno];
822
823 if ((regs->isf.trapno == T_PAGE_FAULT) && (regs->isf.err == (T_PF_PROT | T_PF_EXECUTE)) && (regs->isf.rip == regs->cr2)) {
824 if (pmap_smep_enabled && (regs->isf.rip < VM_MAX_USER_PAGE_ADDRESS)) {
825 potential_smep_fault = TRUE;
826 } else if (regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
827 potential_kernel_NX_fault = TRUE;
828 }
829 }
830
831 #undef panic
832 panic("Kernel trap at 0x%016llx, type %d=%s, registers:\n"
833 "CR0: 0x%016llx, CR2: 0x%016llx, CR3: 0x%016llx, CR4: 0x%016llx\n"
834 "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n"
835 "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n"
836 "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n"
837 "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n"
838 "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n"
839 "Fault CR2: 0x%016llx, Error code: 0x%016llx, Fault CPU: 0x%x%s%s%s%s\n",
840 regs->isf.rip, regs->isf.trapno, trapname,
841 cr0, cr2, cr3, cr4,
842 regs->rax, regs->rbx, regs->rcx, regs->rdx,
843 regs->isf.rsp, regs->rbp, regs->rsi, regs->rdi,
844 regs->r8, regs->r9, regs->r10, regs->r11,
845 regs->r12, regs->r13, regs->r14, regs->r15,
846 regs->isf.rflags, regs->isf.rip, regs->isf.cs & 0xFFFF,
847 regs->isf.ss & 0xFFFF,regs->cr2, regs->isf.err, regs->isf.cpu,
848 virtualized ? " VMM" : "",
849 potential_kernel_NX_fault ? " Kernel NX fault" : "",
850 potential_smep_fault ? " SMEP/User NX fault" : "",
851 "");
852 /*
853 * This next statement is not executed,
854 * but it's needed to stop the compiler using tail call optimization
855 * for the panic call - which confuses the subsequent backtrace.
856 */
857 cr0 = 0;
858 }
859
860 #if CONFIG_DTRACE
861 extern kern_return_t dtrace_user_probe(x86_saved_state_t *);
862 #endif
863
864 /*
865 * Trap from user mode.
866 */
867 void
868 user_trap(
869 x86_saved_state_t *saved_state)
870 {
871 int exc;
872 int err;
873 mach_exception_code_t code;
874 mach_exception_subcode_t subcode;
875 int type;
876 user_addr_t vaddr;
877 vm_prot_t prot;
878 thread_t thread = current_thread();
879 ast_t *myast;
880 kern_return_t kret;
881 user_addr_t rip;
882 unsigned long dr6 = 0; /* 32 bit for i386, 64 bit for x86_64 */
883
884 assert((is_saved_state32(saved_state) && !thread_is_64bit(thread)) ||
885 (is_saved_state64(saved_state) && thread_is_64bit(thread)));
886
887 if (is_saved_state64(saved_state)) {
888 x86_saved_state64_t *regs;
889
890 regs = saved_state64(saved_state);
891
892 /* Record cpu where state was captured */
893 regs->isf.cpu = cpu_number();
894
895 type = regs->isf.trapno;
896 err = (int)regs->isf.err & 0xffff;
897 vaddr = (user_addr_t)regs->cr2;
898 rip = (user_addr_t)regs->isf.rip;
899 } else {
900 x86_saved_state32_t *regs;
901
902 regs = saved_state32(saved_state);
903
904 /* Record cpu where state was captured */
905 regs->cpu = cpu_number();
906
907 type = regs->trapno;
908 err = regs->err & 0xffff;
909 vaddr = (user_addr_t)regs->cr2;
910 rip = (user_addr_t)regs->eip;
911 }
912
913 if ((type == T_DEBUG) && thread->machine.ids) {
914 unsigned long clear = 0;
915 /* Stash and clear this processor's DR6 value, in the event
916 * this was a debug register match
917 */
918 __asm__ volatile ("mov %%db6, %0" : "=r" (dr6));
919 __asm__ volatile ("mov %0, %%db6" : : "r" (clear));
920 }
921
922 pal_sti();
923
924 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
925 (MACHDBG_CODE(DBG_MACH_EXCP_UTRAP_x86, type)) | DBG_FUNC_NONE,
926 (unsigned)(vaddr>>32), (unsigned)vaddr,
927 (unsigned)(rip>>32), (unsigned)rip, 0);
928
929 code = 0;
930 subcode = 0;
931 exc = 0;
932
933 #if DEBUG_TRACE
934 kprintf("user_trap(0x%08x) type=%d vaddr=0x%016llx\n",
935 saved_state, type, vaddr);
936 #endif
937
938 perfASTCallback astfn = perfASTHook;
939 if (__improbable(astfn != NULL)) {
940 myast = ast_pending();
941 if (*myast & AST_CHUD_ALL) {
942 astfn(AST_CHUD_ALL, myast);
943 }
944 }
945
946 /* Is there a hook? */
947 perfCallback fn = perfTrapHook;
948 if (__improbable(fn != NULL)) {
949 if (fn(type, saved_state, 0, 0) == KERN_SUCCESS)
950 return; /* If it succeeds, we are done... */
951 }
952
953 #if CONFIG_DTRACE
954 /*
955 * DTrace does not consume all user traps, only INT_3's for now.
956 * Avoid needlessly calling tempDTraceTrapHook here, and let the
957 * INT_3 case handle them.
958 */
959 #endif
960
961 DEBUG_KPRINT_SYSCALL_MASK(1,
962 "user_trap: type=0x%x(%s) err=0x%x cr2=%p rip=%p\n",
963 type, trap_type[type], err, (void *)(long) vaddr, (void *)(long) rip);
964
965 switch (type) {
966
967 case T_DIVIDE_ERROR:
968 exc = EXC_ARITHMETIC;
969 code = EXC_I386_DIV;
970 break;
971
972 case T_DEBUG:
973 {
974 pcb_t pcb;
975 /*
976 * Update the PCB with this processor's DR6 value
977 * in the event this was a debug register match.
978 */
979 pcb = THREAD_TO_PCB(thread);
980 if (pcb->ids) {
981 /*
982 * We can get and set the status register
983 * in 32-bit mode even on a 64-bit thread
984 * because the high order bits are not
985 * used on x86_64
986 */
987 if (thread_is_64bit(thread)) {
988 x86_debug_state64_t *ids = pcb->ids;
989 ids->dr6 = dr6;
990 } else { /* 32 bit thread */
991 x86_debug_state32_t *ids = pcb->ids;
992 ids->dr6 = (uint32_t) dr6;
993 }
994 }
995 exc = EXC_BREAKPOINT;
996 code = EXC_I386_SGL;
997 break;
998 }
999 case T_INT3:
1000 #if CONFIG_DTRACE
1001 if (dtrace_user_probe(saved_state) == KERN_SUCCESS)
1002 return; /* If it succeeds, we are done... */
1003 #endif
1004 exc = EXC_BREAKPOINT;
1005 code = EXC_I386_BPT;
1006 break;
1007
1008 case T_OVERFLOW:
1009 exc = EXC_ARITHMETIC;
1010 code = EXC_I386_INTO;
1011 break;
1012
1013 case T_OUT_OF_BOUNDS:
1014 exc = EXC_SOFTWARE;
1015 code = EXC_I386_BOUND;
1016 break;
1017
1018 case T_INVALID_OPCODE:
1019 exc = EXC_BAD_INSTRUCTION;
1020 code = EXC_I386_INVOP;
1021 break;
1022
1023 case T_NO_FPU:
1024 fpnoextflt();
1025 return;
1026
1027 case T_FPU_FAULT:
1028 fpextovrflt(); /* Propagates exception directly, doesn't return */
1029 return;
1030
1031 case T_INVALID_TSS: /* invalid TSS == iret with NT flag set */
1032 exc = EXC_BAD_INSTRUCTION;
1033 code = EXC_I386_INVTSSFLT;
1034 subcode = err;
1035 break;
1036
1037 case T_SEGMENT_NOT_PRESENT:
1038 exc = EXC_BAD_INSTRUCTION;
1039 code = EXC_I386_SEGNPFLT;
1040 subcode = err;
1041 break;
1042
1043 case T_STACK_FAULT:
1044 exc = EXC_BAD_INSTRUCTION;
1045 code = EXC_I386_STKFLT;
1046 subcode = err;
1047 break;
1048
1049 case T_GENERAL_PROTECTION:
1050 /*
1051 * There's a wide range of circumstances which generate this
1052 * class of exception. From user-space, many involve bad
1053 * addresses (such as a non-canonical 64-bit address).
1054 * So we map this to EXC_BAD_ACCESS (and thereby SIGSEGV).
1055 * The trouble is cr2 doesn't contain the faulting address;
1056 * we'd need to decode the faulting instruction to really
1057 * determine this. We'll leave that to debuggers.
1058 * However, attempted execution of privileged instructions
1059 * (e.g. cli) also generate GP faults and so we map these to
1060 * to EXC_BAD_ACCESS (and thence SIGSEGV) also - rather than
1061 * EXC_BAD_INSTRUCTION which is more accurate. We just can't
1062 * win!
1063 */
1064 exc = EXC_BAD_ACCESS;
1065 code = EXC_I386_GPFLT;
1066 subcode = err;
1067 break;
1068
1069 case T_PAGE_FAULT:
1070 {
1071 prot = VM_PROT_READ;
1072
1073 if (err & T_PF_WRITE)
1074 prot |= VM_PROT_WRITE;
1075 if (__improbable(err & T_PF_EXECUTE))
1076 prot |= VM_PROT_EXECUTE;
1077 kret = vm_fault(thread->map,
1078 vm_map_trunc_page(vaddr,
1079 PAGE_MASK),
1080 prot, FALSE,
1081 THREAD_ABORTSAFE, NULL, 0);
1082
1083 if (__probable((kret == KERN_SUCCESS) || (kret == KERN_ABORTED))) {
1084 thread_exception_return();
1085 /*NOTREACHED*/
1086 }
1087
1088 user_page_fault_continue(kret);
1089 } /* NOTREACHED */
1090 break;
1091
1092 case T_SSE_FLOAT_ERROR:
1093 fpSSEexterrflt(); /* Propagates exception directly, doesn't return */
1094 return;
1095
1096
1097 case T_FLOATING_POINT_ERROR:
1098 fpexterrflt(); /* Propagates exception directly, doesn't return */
1099 return;
1100
1101 case T_DTRACE_RET:
1102 #if CONFIG_DTRACE
1103 if (dtrace_user_probe(saved_state) == KERN_SUCCESS)
1104 return; /* If it succeeds, we are done... */
1105 #endif
1106 /*
1107 * If we get an INT 0x7f when we do not expect to,
1108 * treat it as an illegal instruction
1109 */
1110 exc = EXC_BAD_INSTRUCTION;
1111 code = EXC_I386_INVOP;
1112 break;
1113
1114 default:
1115 panic("Unexpected user trap, type %d", type);
1116 return;
1117 }
1118 /* Note: Codepaths that directly return from user_trap() have pending
1119 * ASTs processed in locore
1120 */
1121 i386_exception(exc, code, subcode);
1122 /* NOTREACHED */
1123 }
1124
1125
1126 /*
1127 * Handle AST traps for i386.
1128 */
1129
1130 extern void log_thread_action (thread_t, char *);
1131
1132 void
1133 i386_astintr(int preemption)
1134 {
1135 ast_t mask = AST_ALL;
1136 spl_t s;
1137
1138 if (preemption)
1139 mask = AST_PREEMPTION;
1140
1141 s = splsched();
1142
1143 ast_taken(mask, s);
1144
1145 splx(s);
1146 }
1147
1148 /*
1149 * Handle exceptions for i386.
1150 *
1151 * If we are an AT bus machine, we must turn off the AST for a
1152 * delayed floating-point exception.
1153 *
1154 * If we are providing floating-point emulation, we may have
1155 * to retrieve the real register values from the floating point
1156 * emulator.
1157 */
1158 void
1159 i386_exception(
1160 int exc,
1161 mach_exception_code_t code,
1162 mach_exception_subcode_t subcode)
1163 {
1164 mach_exception_data_type_t codes[EXCEPTION_CODE_MAX];
1165
1166 DEBUG_KPRINT_SYSCALL_MACH("i386_exception: exc=%d code=0x%llx subcode=0x%llx\n",
1167 exc, code, subcode);
1168 codes[0] = code; /* new exception interface */
1169 codes[1] = subcode;
1170 exception_triage(exc, codes, 2);
1171 /*NOTREACHED*/
1172 }
1173
1174
1175 /* Synchronize a thread's x86_kernel_state (if any) with the given
1176 * x86_saved_state_t obtained from the trap/IPI handler; called in
1177 * kernel_trap() prior to entering the debugger, and when receiving
1178 * an "MP_KDP" IPI. Called with null saved_state if an incoming IPI
1179 * was detected from the kernel while spinning with interrupts masked.
1180 */
1181
1182 void
1183 sync_iss_to_iks(x86_saved_state_t *saved_state)
1184 {
1185 struct x86_kernel_state *iks;
1186 vm_offset_t kstack;
1187 boolean_t record_active_regs = FALSE;
1188
1189 /* The PAL may have a special way to sync registers */
1190 if (saved_state && saved_state->flavor == THREAD_STATE_NONE)
1191 pal_get_kern_regs( saved_state );
1192
1193 if ((kstack = current_thread()->kernel_stack) != 0) {
1194 x86_saved_state64_t *regs = saved_state64(saved_state);
1195
1196 iks = STACK_IKS(kstack);
1197
1198 /* Did we take the trap/interrupt in kernel mode? */
1199 if (saved_state == NULL || /* NULL => polling in kernel */
1200 regs == USER_REGS64(current_thread()))
1201 record_active_regs = TRUE;
1202 else {
1203 iks->k_rbx = regs->rbx;
1204 iks->k_rsp = regs->isf.rsp;
1205 iks->k_rbp = regs->rbp;
1206 iks->k_r12 = regs->r12;
1207 iks->k_r13 = regs->r13;
1208 iks->k_r14 = regs->r14;
1209 iks->k_r15 = regs->r15;
1210 iks->k_rip = regs->isf.rip;
1211 }
1212 }
1213
1214 if (record_active_regs == TRUE) {
1215 /* Show the trap handler path */
1216 __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx));
1217 __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp));
1218 __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp));
1219 __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12));
1220 __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13));
1221 __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14));
1222 __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15));
1223 /* "Current" instruction pointer */
1224 __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
1225 : "=m" (iks->k_rip)
1226 :
1227 : "rax");
1228 }
1229 }
1230
1231 /*
1232 * This is used by the NMI interrupt handler (from mp.c) to
1233 * uncondtionally sync the trap handler context to the IKS
1234 * irrespective of whether the NMI was fielded in kernel
1235 * or user space.
1236 */
1237 void
1238 sync_iss_to_iks_unconditionally(__unused x86_saved_state_t *saved_state) {
1239 struct x86_kernel_state *iks;
1240 vm_offset_t kstack;
1241
1242 if ((kstack = current_thread()->kernel_stack) != 0) {
1243 iks = STACK_IKS(kstack);
1244 /* Display the trap handler path */
1245 __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx));
1246 __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp));
1247 __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp));
1248 __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12));
1249 __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13));
1250 __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14));
1251 __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15));
1252 /* "Current" instruction pointer */
1253 __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" : "=m" (iks->k_rip)::"rax");
1254 }
1255 }