]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_subr.c
0ce5d476fb94221a4187ad495852da41c53e1672
[apple/xnu.git] / bsd / netinet / tcp_subr.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
7 *
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 */
25 /*
26 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
27 * The Regents of the University of California. All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 * 1. Redistributions of source code must retain the above copyright
33 * notice, this list of conditions and the following disclaimer.
34 * 2. Redistributions in binary form must reproduce the above copyright
35 * notice, this list of conditions and the following disclaimer in the
36 * documentation and/or other materials provided with the distribution.
37 * 3. All advertising materials mentioning features or use of this software
38 * must display the following acknowledgement:
39 * This product includes software developed by the University of
40 * California, Berkeley and its contributors.
41 * 4. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
58 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.22 2001/08/22 00:59:12 silby Exp $
59 */
60
61
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/callout.h>
65 #include <sys/kernel.h>
66 #include <sys/sysctl.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #if INET6
70 #include <sys/domain.h>
71 #endif
72 #include <sys/proc.h>
73 #include <sys/socket.h>
74 #include <sys/socketvar.h>
75 #include <sys/protosw.h>
76 #include <sys/random.h>
77 #include <sys/syslog.h>
78
79
80
81 #include <net/route.h>
82 #include <net/if.h>
83
84 #define _IP_VHL
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #if INET6
89 #include <netinet/ip6.h>
90 #endif
91 #include <netinet/in_pcb.h>
92 #if INET6
93 #include <netinet6/in6_pcb.h>
94 #endif
95 #include <netinet/in_var.h>
96 #include <netinet/ip_var.h>
97 #if INET6
98 #include <netinet6/ip6_var.h>
99 #endif
100 #include <netinet/tcp.h>
101 #include <netinet/tcp_fsm.h>
102 #include <netinet/tcp_seq.h>
103 #include <netinet/tcp_timer.h>
104 #include <netinet/tcp_var.h>
105 #if INET6
106 #include <netinet6/tcp6_var.h>
107 #endif
108 #include <netinet/tcpip.h>
109 #if TCPDEBUG
110 #include <netinet/tcp_debug.h>
111 #endif
112 #include <netinet6/ip6protosw.h>
113
114 #if IPSEC
115 #include <netinet6/ipsec.h>
116 #if INET6
117 #include <netinet6/ipsec6.h>
118 #endif
119 #endif /*IPSEC*/
120
121 #include <sys/md5.h>
122 #include <sys/kdebug.h>
123
124 #define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
125
126
127 /* temporary: for testing */
128 #if IPSEC
129 extern int ipsec_bypass;
130 #endif
131
132 int tcp_mssdflt = TCP_MSS;
133 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
134 &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
135
136 #if INET6
137 int tcp_v6mssdflt = TCP6_MSS;
138 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
139 CTLFLAG_RW, &tcp_v6mssdflt , 0,
140 "Default TCP Maximum Segment Size for IPv6");
141 #endif
142
143 static int tcp_do_rfc1323 = 1;
144 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
145 &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
146
147 static int tcp_do_rfc1644 = 0;
148 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
149 &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
150
151 static int tcp_tcbhashsize = 0;
152 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
153 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
154
155 static int do_tcpdrain = 1;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
157 "Enable tcp_drain routine for extra help when low on mbufs");
158
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
160 &tcbinfo.ipi_count, 0, "Number of active PCBs");
161
162 static int icmp_may_rst = 1;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
164 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
165
166 static int tcp_strict_rfc1948 = 0;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948, CTLFLAG_RW,
168 &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly");
169
170 static int tcp_isn_reseed_interval = 0;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
172 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
173
174 static void tcp_cleartaocache __P((void));
175 static void tcp_notify __P((struct inpcb *, int));
176
177 /*
178 * Target size of TCP PCB hash tables. Must be a power of two.
179 *
180 * Note that this can be overridden by the kernel environment
181 * variable net.inet.tcp.tcbhashsize
182 */
183 #ifndef TCBHASHSIZE
184 #define TCBHASHSIZE 4096
185 #endif
186
187 /*
188 * This is the actual shape of what we allocate using the zone
189 * allocator. Doing it this way allows us to protect both structures
190 * using the same generation count, and also eliminates the overhead
191 * of allocating tcpcbs separately. By hiding the structure here,
192 * we avoid changing most of the rest of the code (although it needs
193 * to be changed, eventually, for greater efficiency).
194 */
195 #define ALIGNMENT 32
196 #define ALIGNM1 (ALIGNMENT - 1)
197 struct inp_tp {
198 union {
199 struct inpcb inp;
200 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
201 } inp_tp_u;
202 struct tcpcb tcb;
203 #ifndef __APPLE__
204 struct callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
205 struct callout inp_tp_delack;
206 #endif
207 };
208 #undef ALIGNMENT
209 #undef ALIGNM1
210
211 static struct tcpcb dummy_tcb;
212
213
214 extern struct inpcbhead time_wait_slots[];
215 extern int cur_tw_slot;
216 extern u_long *delack_bitmask;
217 extern u_long route_generation;
218
219
220 int get_inpcb_str_size()
221 {
222 return sizeof(struct inpcb);
223 }
224
225
226 int get_tcp_str_size()
227 {
228 return sizeof(struct tcpcb);
229 }
230
231 int tcp_freeq __P((struct tcpcb *tp));
232
233
234 /*
235 * Tcp initialization
236 */
237 void
238 tcp_init()
239 {
240 int hashsize = TCBHASHSIZE;
241 vm_size_t str_size;
242 int i;
243
244 tcp_ccgen = 1;
245 tcp_cleartaocache();
246
247 tcp_delacktime = TCPTV_DELACK;
248 tcp_keepinit = TCPTV_KEEP_INIT;
249 tcp_keepidle = TCPTV_KEEP_IDLE;
250 tcp_keepintvl = TCPTV_KEEPINTVL;
251 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
252 tcp_msl = TCPTV_MSL;
253 read_random(&tcp_now, sizeof(tcp_now));
254 tcp_now = tcp_now & 0x7fffffffffffffff; /* Starts tcp internal 500ms clock at a random value */
255
256
257 LIST_INIT(&tcb);
258 tcbinfo.listhead = &tcb;
259 #ifndef __APPLE__
260 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
261 #endif
262 if (!powerof2(hashsize)) {
263 printf("WARNING: TCB hash size not a power of 2\n");
264 hashsize = 512; /* safe default */
265 }
266 tcp_tcbhashsize = hashsize;
267 tcbinfo.hashsize = hashsize;
268 tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
269 tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
270 &tcbinfo.porthashmask);
271 #ifdef __APPLE__
272 str_size = (vm_size_t) sizeof(struct inp_tp);
273 tcbinfo.ipi_zone = (void *) zinit(str_size, 120000*str_size, 8192, "tcpcb");
274 #else
275 tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
276 ZONE_INTERRUPT, 0);
277 #endif
278 #if INET6
279 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
280 #else /* INET6 */
281 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
282 #endif /* INET6 */
283 if (max_protohdr < TCP_MINPROTOHDR)
284 max_protohdr = TCP_MINPROTOHDR;
285 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
286 panic("tcp_init");
287 #undef TCP_MINPROTOHDR
288 tcbinfo.last_pcb = 0;
289 dummy_tcb.t_state = TCP_NSTATES;
290 dummy_tcb.t_flags = 0;
291 tcbinfo.dummy_cb = (caddr_t) &dummy_tcb;
292 in_pcb_nat_init(&tcbinfo, AF_INET, IPPROTO_TCP, SOCK_STREAM);
293
294 delack_bitmask = _MALLOC((4 * hashsize)/32, M_PCB, M_WAITOK);
295 if (delack_bitmask == 0)
296 panic("Delack Memory");
297
298 for (i=0; i < (tcbinfo.hashsize / 32); i++)
299 delack_bitmask[i] = 0;
300
301 for (i=0; i < N_TIME_WAIT_SLOTS; i++) {
302 LIST_INIT(&time_wait_slots[i]);
303 }
304 }
305
306 /*
307 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
308 * tcp_template used to store this data in mbufs, but we now recopy it out
309 * of the tcpcb each time to conserve mbufs.
310 */
311 void
312 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
313 struct tcpcb *tp;
314 void *ip_ptr;
315 void *tcp_ptr;
316 {
317 struct inpcb *inp = tp->t_inpcb;
318 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
319
320 #if INET6
321 if ((inp->inp_vflag & INP_IPV6) != 0) {
322 struct ip6_hdr *ip6;
323
324 ip6 = (struct ip6_hdr *)ip_ptr;
325 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
326 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
327 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
328 (IPV6_VERSION & IPV6_VERSION_MASK);
329 ip6->ip6_nxt = IPPROTO_TCP;
330 ip6->ip6_plen = sizeof(struct tcphdr);
331 ip6->ip6_src = inp->in6p_laddr;
332 ip6->ip6_dst = inp->in6p_faddr;
333 tcp_hdr->th_sum = 0;
334 } else
335 #endif
336 {
337 struct ip *ip = (struct ip *) ip_ptr;
338
339 ip->ip_vhl = IP_VHL_BORING;
340 ip->ip_tos = 0;
341 ip->ip_len = 0;
342 ip->ip_id = 0;
343 ip->ip_off = 0;
344 ip->ip_ttl = 0;
345 ip->ip_sum = 0;
346 ip->ip_p = IPPROTO_TCP;
347 ip->ip_src = inp->inp_laddr;
348 ip->ip_dst = inp->inp_faddr;
349 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
350 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
351 }
352
353 tcp_hdr->th_sport = inp->inp_lport;
354 tcp_hdr->th_dport = inp->inp_fport;
355 tcp_hdr->th_seq = 0;
356 tcp_hdr->th_ack = 0;
357 tcp_hdr->th_x2 = 0;
358 tcp_hdr->th_off = 5;
359 tcp_hdr->th_flags = 0;
360 tcp_hdr->th_win = 0;
361 tcp_hdr->th_urp = 0;
362 }
363
364 /*
365 * Create template to be used to send tcp packets on a connection.
366 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
367 * use for this function is in keepalives, which use tcp_respond.
368 */
369 struct tcptemp *
370 tcp_maketemplate(tp)
371 struct tcpcb *tp;
372 {
373 struct mbuf *m;
374 struct tcptemp *n;
375
376 m = m_get(M_DONTWAIT, MT_HEADER);
377 if (m == NULL)
378 return (0);
379 m->m_len = sizeof(struct tcptemp);
380 n = mtod(m, struct tcptemp *);
381
382 tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
383 return (n);
384 }
385
386 /*
387 * Send a single message to the TCP at address specified by
388 * the given TCP/IP header. If m == 0, then we make a copy
389 * of the tcpiphdr at ti and send directly to the addressed host.
390 * This is used to force keep alive messages out using the TCP
391 * template for a connection. If flags are given then we send
392 * a message back to the TCP which originated the * segment ti,
393 * and discard the mbuf containing it and any other attached mbufs.
394 *
395 * In any case the ack and sequence number of the transmitted
396 * segment are as specified by the parameters.
397 *
398 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
399 */
400 void
401 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
402 struct tcpcb *tp;
403 void *ipgen;
404 register struct tcphdr *th;
405 register struct mbuf *m;
406 tcp_seq ack, seq;
407 int flags;
408 {
409 register int tlen;
410 int win = 0;
411 struct route *ro = 0;
412 struct route sro;
413 struct ip *ip;
414 struct tcphdr *nth;
415 #if INET6
416 struct route_in6 *ro6 = 0;
417 struct route_in6 sro6;
418 struct ip6_hdr *ip6;
419 int isipv6;
420 #endif /* INET6 */
421 int ipflags = 0;
422
423 #if INET6
424 isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
425 ip6 = ipgen;
426 #endif /* INET6 */
427 ip = ipgen;
428
429 if (tp) {
430 if (!(flags & TH_RST)) {
431 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
432 if (win > (long)TCP_MAXWIN << tp->rcv_scale)
433 win = (long)TCP_MAXWIN << tp->rcv_scale;
434 }
435 #if INET6
436 if (isipv6)
437 ro6 = &tp->t_inpcb->in6p_route;
438 else
439 #endif /* INET6 */
440 ro = &tp->t_inpcb->inp_route;
441 } else {
442 #if INET6
443 if (isipv6) {
444 ro6 = &sro6;
445 bzero(ro6, sizeof *ro6);
446 } else
447 #endif /* INET6 */
448 {
449 ro = &sro;
450 bzero(ro, sizeof *ro);
451 }
452 }
453 if (m == 0) {
454 m = m_gethdr(M_DONTWAIT, MT_HEADER);
455 if (m == NULL)
456 return;
457 tlen = 0;
458 m->m_data += max_linkhdr;
459 #if INET6
460 if (isipv6) {
461 bcopy((caddr_t)ip6, mtod(m, caddr_t),
462 sizeof(struct ip6_hdr));
463 ip6 = mtod(m, struct ip6_hdr *);
464 nth = (struct tcphdr *)(ip6 + 1);
465 } else
466 #endif /* INET6 */
467 {
468 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
469 ip = mtod(m, struct ip *);
470 nth = (struct tcphdr *)(ip + 1);
471 }
472 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
473 flags = TH_ACK;
474 } else {
475 m_freem(m->m_next);
476 m->m_next = 0;
477 m->m_data = (caddr_t)ipgen;
478 /* m_len is set later */
479 tlen = 0;
480 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
481 #if INET6
482 if (isipv6) {
483 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
484 nth = (struct tcphdr *)(ip6 + 1);
485 } else
486 #endif /* INET6 */
487 {
488 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
489 nth = (struct tcphdr *)(ip + 1);
490 }
491 if (th != nth) {
492 /*
493 * this is usually a case when an extension header
494 * exists between the IPv6 header and the
495 * TCP header.
496 */
497 nth->th_sport = th->th_sport;
498 nth->th_dport = th->th_dport;
499 }
500 xchg(nth->th_dport, nth->th_sport, n_short);
501 #undef xchg
502 }
503 #if INET6
504 if (isipv6) {
505 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
506 tlen));
507 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
508 } else
509 #endif
510 {
511 tlen += sizeof (struct tcpiphdr);
512 ip->ip_len = tlen;
513 ip->ip_ttl = ip_defttl;
514 }
515 m->m_len = tlen;
516 m->m_pkthdr.len = tlen;
517 m->m_pkthdr.rcvif = (struct ifnet *) 0;
518 nth->th_seq = htonl(seq);
519 nth->th_ack = htonl(ack);
520 nth->th_x2 = 0;
521 nth->th_off = sizeof (struct tcphdr) >> 2;
522 nth->th_flags = flags;
523 if (tp)
524 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
525 else
526 nth->th_win = htons((u_short)win);
527 nth->th_urp = 0;
528 #if INET6
529 if (isipv6) {
530 nth->th_sum = 0;
531 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
532 sizeof(struct ip6_hdr),
533 tlen - sizeof(struct ip6_hdr));
534 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
535 ro6 && ro6->ro_rt ?
536 ro6->ro_rt->rt_ifp :
537 NULL);
538 } else
539 #endif /* INET6 */
540 {
541 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
542 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
543 m->m_pkthdr.csum_flags = CSUM_TCP;
544 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
545 }
546 #if TCPDEBUG
547 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
548 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
549 #endif
550 #if IPSEC
551 if (ipsec_bypass == 0 && ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
552 m_freem(m);
553 return;
554 }
555 #endif
556 #if INET6
557 if (isipv6) {
558 (void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
559 if (ro6 == &sro6 && ro6->ro_rt) {
560 rtfree(ro6->ro_rt);
561 ro6->ro_rt = NULL;
562 }
563 } else
564 #endif /* INET6 */
565 {
566 (void) ip_output(m, NULL, ro, ipflags, NULL);
567 if (ro == &sro && ro->ro_rt) {
568 rtfree(ro->ro_rt);
569 ro->ro_rt = NULL;
570 }
571 }
572 }
573
574 /*
575 * Create a new TCP control block, making an
576 * empty reassembly queue and hooking it to the argument
577 * protocol control block. The `inp' parameter must have
578 * come from the zone allocator set up in tcp_init().
579 */
580 struct tcpcb *
581 tcp_newtcpcb(inp)
582 struct inpcb *inp;
583 {
584 struct inp_tp *it;
585 register struct tcpcb *tp;
586 register struct socket *so = inp->inp_socket;
587 #if INET6
588 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
589 #endif /* INET6 */
590
591 if (so->cached_in_sock_layer == 0) {
592 it = (struct inp_tp *)inp;
593 tp = &it->tcb;
594 }
595 else
596 tp = (struct tcpcb *) inp->inp_saved_ppcb;
597
598 bzero((char *) tp, sizeof(struct tcpcb));
599 LIST_INIT(&tp->t_segq);
600 tp->t_maxseg = tp->t_maxopd =
601 #if INET6
602 isipv6 ? tcp_v6mssdflt :
603 #endif /* INET6 */
604 tcp_mssdflt;
605
606 #ifndef __APPLE__
607 /* Set up our timeouts. */
608 callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
609 callout_init(tp->tt_persist = &it->inp_tp_persist);
610 callout_init(tp->tt_keep = &it->inp_tp_keep);
611 callout_init(tp->tt_2msl = &it->inp_tp_2msl);
612 callout_init(tp->tt_delack = &it->inp_tp_delack);
613 #endif
614
615 if (tcp_do_rfc1323)
616 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
617 if (tcp_do_rfc1644)
618 tp->t_flags |= TF_REQ_CC;
619 tp->t_inpcb = inp; /* XXX */
620 /*
621 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
622 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
623 * reasonable initial retransmit time.
624 */
625 tp->t_srtt = TCPTV_SRTTBASE;
626 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
627 tp->t_rttmin = TCPTV_MIN;
628 tp->t_rxtcur = TCPTV_RTOBASE;
629 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
630 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
631 /*
632 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
633 * because the socket may be bound to an IPv6 wildcard address,
634 * which may match an IPv4-mapped IPv6 address.
635 */
636 inp->inp_ip_ttl = ip_defttl;
637 inp->inp_ppcb = (caddr_t)tp;
638 return (tp); /* XXX */
639 }
640
641 /*
642 * Drop a TCP connection, reporting
643 * the specified error. If connection is synchronized,
644 * then send a RST to peer.
645 */
646 struct tcpcb *
647 tcp_drop(tp, errno)
648 register struct tcpcb *tp;
649 int errno;
650 {
651 struct socket *so = tp->t_inpcb->inp_socket;
652
653 #ifdef __APPLE__
654 switch (tp->t_state)
655 {
656 case TCPS_ESTABLISHED:
657 case TCPS_FIN_WAIT_1:
658 case TCPS_CLOSING:
659 case TCPS_CLOSE_WAIT:
660 case TCPS_LAST_ACK:
661 break;
662 }
663 #endif
664
665 if (TCPS_HAVERCVDSYN(tp->t_state)) {
666 tp->t_state = TCPS_CLOSED;
667 (void) tcp_output(tp);
668 tcpstat.tcps_drops++;
669 } else
670 tcpstat.tcps_conndrops++;
671 if (errno == ETIMEDOUT && tp->t_softerror)
672 errno = tp->t_softerror;
673 so->so_error = errno;
674 return (tcp_close(tp));
675 }
676
677 /*
678 * Close a TCP control block:
679 * discard all space held by the tcp
680 * discard internet protocol block
681 * wake up any sleepers
682 */
683 struct tcpcb *
684 tcp_close(tp)
685 register struct tcpcb *tp;
686 {
687 register struct tseg_qent *q;
688 struct inpcb *inp = tp->t_inpcb;
689 struct socket *so = inp->inp_socket;
690 #if INET6
691 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
692 #endif /* INET6 */
693 register struct rtentry *rt;
694 int dosavessthresh;
695
696 #ifndef __APPLE__
697 /*
698 * Make sure that all of our timers are stopped before we
699 * delete the PCB.
700 */
701 callout_stop(tp->tt_rexmt);
702 callout_stop(tp->tt_persist);
703 callout_stop(tp->tt_keep);
704 callout_stop(tp->tt_2msl);
705 callout_stop(tp->tt_delack);
706 #else
707 /* Clear the timers before we delete the PCB. */
708 {
709 int i;
710 for (i = 0; i < TCPT_NTIMERS; i++) {
711 tp->t_timer[i] = 0;
712 }
713 }
714 #endif
715
716 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_START, tp,0,0,0,0);
717 switch (tp->t_state)
718 {
719 case TCPS_ESTABLISHED:
720 case TCPS_FIN_WAIT_1:
721 case TCPS_CLOSING:
722 case TCPS_CLOSE_WAIT:
723 case TCPS_LAST_ACK:
724 break;
725 }
726
727
728 /*
729 * If we got enough samples through the srtt filter,
730 * save the rtt and rttvar in the routing entry.
731 * 'Enough' is arbitrarily defined as the 16 samples.
732 * 16 samples is enough for the srtt filter to converge
733 * to within 5% of the correct value; fewer samples and
734 * we could save a very bogus rtt.
735 *
736 * Don't update the default route's characteristics and don't
737 * update anything that the user "locked".
738 */
739 if (tp->t_rttupdated >= 16) {
740 register u_long i = 0;
741 #if INET6
742 if (isipv6) {
743 struct sockaddr_in6 *sin6;
744
745 if ((rt = inp->in6p_route.ro_rt) == NULL)
746 goto no_valid_rt;
747 sin6 = (struct sockaddr_in6 *)rt_key(rt);
748 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
749 goto no_valid_rt;
750 }
751 else
752 #endif /* INET6 */
753 rt = inp->inp_route.ro_rt;
754 if (rt == NULL ||
755 ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
756 == INADDR_ANY || rt->generation_id != route_generation) {
757 if (tp->t_state >= TCPS_CLOSE_WAIT)
758 tp->t_state = TCPS_CLOSING;
759
760 goto no_valid_rt;
761 }
762
763 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
764 i = tp->t_srtt *
765 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
766 if (rt->rt_rmx.rmx_rtt && i)
767 /*
768 * filter this update to half the old & half
769 * the new values, converting scale.
770 * See route.h and tcp_var.h for a
771 * description of the scaling constants.
772 */
773 rt->rt_rmx.rmx_rtt =
774 (rt->rt_rmx.rmx_rtt + i) / 2;
775 else
776 rt->rt_rmx.rmx_rtt = i;
777 tcpstat.tcps_cachedrtt++;
778 }
779 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
780 i = tp->t_rttvar *
781 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
782 if (rt->rt_rmx.rmx_rttvar && i)
783 rt->rt_rmx.rmx_rttvar =
784 (rt->rt_rmx.rmx_rttvar + i) / 2;
785 else
786 rt->rt_rmx.rmx_rttvar = i;
787 tcpstat.tcps_cachedrttvar++;
788 }
789 /*
790 * The old comment here said:
791 * update the pipelimit (ssthresh) if it has been updated
792 * already or if a pipesize was specified & the threshhold
793 * got below half the pipesize. I.e., wait for bad news
794 * before we start updating, then update on both good
795 * and bad news.
796 *
797 * But we want to save the ssthresh even if no pipesize is
798 * specified explicitly in the route, because such
799 * connections still have an implicit pipesize specified
800 * by the global tcp_sendspace. In the absence of a reliable
801 * way to calculate the pipesize, it will have to do.
802 */
803 i = tp->snd_ssthresh;
804 if (rt->rt_rmx.rmx_sendpipe != 0)
805 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
806 else
807 dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
808 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
809 i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
810 || dosavessthresh) {
811 /*
812 * convert the limit from user data bytes to
813 * packets then to packet data bytes.
814 */
815 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
816 if (i < 2)
817 i = 2;
818 i *= (u_long)(tp->t_maxseg +
819 #if INET6
820 (isipv6 ? sizeof (struct ip6_hdr) +
821 sizeof (struct tcphdr) :
822 #endif
823 sizeof (struct tcpiphdr)
824 #if INET6
825 )
826 #endif
827 );
828 if (rt->rt_rmx.rmx_ssthresh)
829 rt->rt_rmx.rmx_ssthresh =
830 (rt->rt_rmx.rmx_ssthresh + i) / 2;
831 else
832 rt->rt_rmx.rmx_ssthresh = i;
833 tcpstat.tcps_cachedssthresh++;
834 }
835 }
836 rt = inp->inp_route.ro_rt;
837 if (rt) {
838 /*
839 * mark route for deletion if no information is
840 * cached.
841 */
842 if ((tp->t_flags & TF_LQ_OVERFLOW) &&
843 ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0)){
844 if (rt->rt_rmx.rmx_rtt == 0)
845 rt->rt_flags |= RTF_DELCLONE;
846 }
847 }
848 no_valid_rt:
849 /* free the reassembly queue, if any */
850 (void) tcp_freeq(tp);
851
852 #ifdef __APPLE__
853 if (so->cached_in_sock_layer)
854 inp->inp_saved_ppcb = (caddr_t) tp;
855 #endif
856
857 inp->inp_ppcb = NULL;
858 soisdisconnected(so);
859 #if INET6
860 if (INP_CHECK_SOCKAF(so, AF_INET6))
861 in6_pcbdetach(inp);
862 else
863 #endif /* INET6 */
864 in_pcbdetach(inp);
865 tcpstat.tcps_closed++;
866 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_END, tcpstat.tcps_closed,0,0,0,0);
867 return ((struct tcpcb *)0);
868 }
869
870 int
871 tcp_freeq(tp)
872 struct tcpcb *tp;
873 {
874
875 register struct tseg_qent *q;
876 int rv = 0;
877
878 while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
879 LIST_REMOVE(q, tqe_q);
880 m_freem(q->tqe_m);
881 FREE(q, M_TSEGQ);
882 rv = 1;
883 }
884 return (rv);
885 }
886
887 void
888 tcp_drain()
889 {
890 if (do_tcpdrain)
891 {
892 struct inpcb *inpb;
893 struct tcpcb *tcpb;
894 struct tseg_qent *te;
895
896 /*
897 * Walk the tcpbs, if existing, and flush the reassembly queue,
898 * if there is one...
899 * XXX: The "Net/3" implementation doesn't imply that the TCP
900 * reassembly queue should be flushed, but in a situation
901 * where we're really low on mbufs, this is potentially
902 * usefull.
903 */
904 for (inpb = LIST_FIRST(tcbinfo.listhead); inpb;
905 inpb = LIST_NEXT(inpb, inp_list)) {
906 if ((tcpb = intotcpcb(inpb))) {
907 while ((te = LIST_FIRST(&tcpb->t_segq))
908 != NULL) {
909 LIST_REMOVE(te, tqe_q);
910 m_freem(te->tqe_m);
911 FREE(te, M_TSEGQ);
912 }
913 }
914 }
915
916 }
917 }
918
919 /*
920 * Notify a tcp user of an asynchronous error;
921 * store error as soft error, but wake up user
922 * (for now, won't do anything until can select for soft error).
923 *
924 * Do not wake up user since there currently is no mechanism for
925 * reporting soft errors (yet - a kqueue filter may be added).
926 */
927 static void
928 tcp_notify(inp, error)
929 struct inpcb *inp;
930 int error;
931 {
932 struct tcpcb *tp;
933
934 if (inp == NULL)
935 return; /* pcb is gone already */
936
937 tp = (struct tcpcb *)inp->inp_ppcb;
938
939 /*
940 * Ignore some errors if we are hooked up.
941 * If connection hasn't completed, has retransmitted several times,
942 * and receives a second error, give up now. This is better
943 * than waiting a long time to establish a connection that
944 * can never complete.
945 */
946 if (tp->t_state == TCPS_ESTABLISHED &&
947 (error == EHOSTUNREACH || error == ENETUNREACH ||
948 error == EHOSTDOWN)) {
949 return;
950 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
951 tp->t_softerror)
952 tcp_drop(tp, error);
953 else
954 tp->t_softerror = error;
955 #if 0
956 wakeup((caddr_t) &so->so_timeo);
957 sorwakeup(so);
958 sowwakeup(so);
959 #endif
960 }
961
962 static int
963 tcp_pcblist SYSCTL_HANDLER_ARGS
964 {
965 int error, i, n, s;
966 struct inpcb *inp, **inp_list;
967 inp_gen_t gencnt;
968 struct xinpgen xig;
969
970 /*
971 * The process of preparing the TCB list is too time-consuming and
972 * resource-intensive to repeat twice on every request.
973 */
974 if (req->oldptr == 0) {
975 n = tcbinfo.ipi_count;
976 req->oldidx = 2 * (sizeof xig)
977 + (n + n/8) * sizeof(struct xtcpcb);
978 return 0;
979 }
980
981 if (req->newptr != 0)
982 return EPERM;
983
984 /*
985 * OK, now we're committed to doing something.
986 */
987 s = splnet();
988 gencnt = tcbinfo.ipi_gencnt;
989 n = tcbinfo.ipi_count;
990 splx(s);
991
992 xig.xig_len = sizeof xig;
993 xig.xig_count = n;
994 xig.xig_gen = gencnt;
995 xig.xig_sogen = so_gencnt;
996 error = SYSCTL_OUT(req, &xig, sizeof xig);
997 if (error)
998 return error;
999 /*
1000 * We are done if there is no pcb
1001 */
1002 if (n == 0)
1003 return 0;
1004
1005 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1006 if (inp_list == 0)
1007 return ENOMEM;
1008
1009 s = splnet();
1010 for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
1011 inp = LIST_NEXT(inp, inp_list)) {
1012 #ifdef __APPLE__
1013 if (inp->inp_gencnt <= gencnt)
1014 #else
1015 if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp))
1016 #endif
1017 inp_list[i++] = inp;
1018 }
1019 splx(s);
1020 n = i;
1021
1022 error = 0;
1023 for (i = 0; i < n; i++) {
1024 inp = inp_list[i];
1025 if (inp->inp_gencnt <= gencnt) {
1026 struct xtcpcb xt;
1027 caddr_t inp_ppcb;
1028 xt.xt_len = sizeof xt;
1029 /* XXX should avoid extra copy */
1030 bcopy(inp, &xt.xt_inp, sizeof *inp);
1031 inp_ppcb = inp->inp_ppcb;
1032 if (inp_ppcb != NULL)
1033 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1034 else
1035 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1036 if (inp->inp_socket)
1037 sotoxsocket(inp->inp_socket, &xt.xt_socket);
1038 error = SYSCTL_OUT(req, &xt, sizeof xt);
1039 }
1040 }
1041 if (!error) {
1042 /*
1043 * Give the user an updated idea of our state.
1044 * If the generation differs from what we told
1045 * her before, she knows that something happened
1046 * while we were processing this request, and it
1047 * might be necessary to retry.
1048 */
1049 s = splnet();
1050 xig.xig_gen = tcbinfo.ipi_gencnt;
1051 xig.xig_sogen = so_gencnt;
1052 xig.xig_count = tcbinfo.ipi_count;
1053 splx(s);
1054 error = SYSCTL_OUT(req, &xig, sizeof xig);
1055 }
1056 FREE(inp_list, M_TEMP);
1057 return error;
1058 }
1059
1060 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1061 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1062
1063 #ifndef __APPLE__
1064 static int
1065 tcp_getcred(SYSCTL_HANDLER_ARGS)
1066 {
1067 struct sockaddr_in addrs[2];
1068 struct inpcb *inp;
1069 int error, s;
1070
1071 error = suser(req->p);
1072 if (error)
1073 return (error);
1074 error = SYSCTL_IN(req, addrs, sizeof(addrs));
1075 if (error)
1076 return (error);
1077 s = splnet();
1078 inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1079 addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1080 if (inp == NULL || inp->inp_socket == NULL) {
1081 error = ENOENT;
1082 goto out;
1083 }
1084 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1085 out:
1086 splx(s);
1087 return (error);
1088 }
1089
1090 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
1091 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1092
1093 #if INET6
1094 static int
1095 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1096 {
1097 struct sockaddr_in6 addrs[2];
1098 struct inpcb *inp;
1099 int error, s, mapped = 0;
1100
1101 error = suser(req->p);
1102 if (error)
1103 return (error);
1104 error = SYSCTL_IN(req, addrs, sizeof(addrs));
1105 if (error)
1106 return (error);
1107 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1108 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1109 mapped = 1;
1110 else
1111 return (EINVAL);
1112 }
1113 s = splnet();
1114 if (mapped == 1)
1115 inp = in_pcblookup_hash(&tcbinfo,
1116 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1117 addrs[1].sin6_port,
1118 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1119 addrs[0].sin6_port,
1120 0, NULL);
1121 else
1122 inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1123 addrs[1].sin6_port,
1124 &addrs[0].sin6_addr, addrs[0].sin6_port,
1125 0, NULL);
1126 if (inp == NULL || inp->inp_socket == NULL) {
1127 error = ENOENT;
1128 goto out;
1129 }
1130 error = SYSCTL_OUT(req, inp->inp_socket->so_cred,
1131 sizeof(struct ucred));
1132 out:
1133 splx(s);
1134 return (error);
1135 }
1136
1137 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
1138 0, 0,
1139 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1140 #endif
1141 #endif /* __APPLE__*/
1142
1143 void
1144 tcp_ctlinput(cmd, sa, vip)
1145 int cmd;
1146 struct sockaddr *sa;
1147 void *vip;
1148 {
1149 struct ip *ip = vip;
1150 struct tcphdr *th;
1151 struct in_addr faddr;
1152 struct inpcb *inp;
1153 struct tcpcb *tp;
1154 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1155 tcp_seq icmp_seq;
1156 int s;
1157
1158 faddr = ((struct sockaddr_in *)sa)->sin_addr;
1159 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1160 return;
1161
1162 if (cmd == PRC_QUENCH)
1163 notify = tcp_quench;
1164 else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1165 cmd == PRC_UNREACH_PORT) && ip)
1166 notify = tcp_drop_syn_sent;
1167 else if (cmd == PRC_MSGSIZE)
1168 notify = tcp_mtudisc;
1169 else if (PRC_IS_REDIRECT(cmd)) {
1170 ip = 0;
1171 notify = in_rtchange;
1172 } else if (cmd == PRC_HOSTDEAD)
1173 ip = 0;
1174 else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1175 return;
1176 if (ip) {
1177 s = splnet();
1178 th = (struct tcphdr *)((caddr_t)ip
1179 + (IP_VHL_HL(ip->ip_vhl) << 2));
1180 inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1181 ip->ip_src, th->th_sport, 0, NULL);
1182 if (inp != NULL && inp->inp_socket != NULL) {
1183 icmp_seq = htonl(th->th_seq);
1184 tp = intotcpcb(inp);
1185 if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1186 SEQ_LT(icmp_seq, tp->snd_max))
1187 (*notify)(inp, inetctlerrmap[cmd]);
1188 }
1189 splx(s);
1190 } else
1191 in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
1192 }
1193
1194 #if INET6
1195 void
1196 tcp6_ctlinput(cmd, sa, d)
1197 int cmd;
1198 struct sockaddr *sa;
1199 void *d;
1200 {
1201 struct tcphdr th;
1202 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1203 struct ip6_hdr *ip6;
1204 struct mbuf *m;
1205 struct ip6ctlparam *ip6cp = NULL;
1206 const struct sockaddr_in6 *sa6_src = NULL;
1207 int off;
1208 struct tcp_portonly {
1209 u_int16_t th_sport;
1210 u_int16_t th_dport;
1211 } *thp;
1212
1213 if (sa->sa_family != AF_INET6 ||
1214 sa->sa_len != sizeof(struct sockaddr_in6))
1215 return;
1216
1217 if (cmd == PRC_QUENCH)
1218 notify = tcp_quench;
1219 else if (cmd == PRC_MSGSIZE)
1220 notify = tcp_mtudisc;
1221 else if (!PRC_IS_REDIRECT(cmd) &&
1222 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1223 return;
1224
1225 /* if the parameter is from icmp6, decode it. */
1226 if (d != NULL) {
1227 ip6cp = (struct ip6ctlparam *)d;
1228 m = ip6cp->ip6c_m;
1229 ip6 = ip6cp->ip6c_ip6;
1230 off = ip6cp->ip6c_off;
1231 sa6_src = ip6cp->ip6c_src;
1232 } else {
1233 m = NULL;
1234 ip6 = NULL;
1235 off = 0; /* fool gcc */
1236 sa6_src = &sa6_any;
1237 }
1238
1239 if (ip6) {
1240 /*
1241 * XXX: We assume that when IPV6 is non NULL,
1242 * M and OFF are valid.
1243 */
1244
1245 /* check if we can safely examine src and dst ports */
1246 if (m->m_pkthdr.len < off + sizeof(*thp))
1247 return;
1248
1249 bzero(&th, sizeof(th));
1250 m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1251
1252 in6_pcbnotify(&tcb, sa, th.th_dport,
1253 (struct sockaddr *)ip6cp->ip6c_src,
1254 th.th_sport, cmd, notify);
1255 } else
1256 in6_pcbnotify(&tcb, sa, 0, (struct sockaddr *)sa6_src,
1257 0, cmd, notify);
1258 }
1259 #endif /* INET6 */
1260
1261
1262 /*
1263 * Following is where TCP initial sequence number generation occurs.
1264 *
1265 * There are two places where we must use initial sequence numbers:
1266 * 1. In SYN-ACK packets.
1267 * 2. In SYN packets.
1268 *
1269 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1270 * and should be as unpredictable as possible to avoid the possibility
1271 * of spoofing and/or connection hijacking. To satisfy this
1272 * requirement, SYN-ACK ISNs are generated via the arc4random()
1273 * function. If exact RFC 1948 compliance is requested via sysctl,
1274 * these ISNs will be generated just like those in SYN packets.
1275 *
1276 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1277 * depends on this property. In addition, these ISNs should be
1278 * unguessable so as to prevent connection hijacking. To satisfy
1279 * the requirements of this situation, the algorithm outlined in
1280 * RFC 1948 is used to generate sequence numbers.
1281 *
1282 * For more information on the theory of operation, please see
1283 * RFC 1948.
1284 *
1285 * Implementation details:
1286 *
1287 * Time is based off the system timer, and is corrected so that it
1288 * increases by one megabyte per second. This allows for proper
1289 * recycling on high speed LANs while still leaving over an hour
1290 * before rollover.
1291 *
1292 * Two sysctls control the generation of ISNs:
1293 *
1294 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1295 * between seeding of isn_secret. This is normally set to zero,
1296 * as reseeding should not be necessary.
1297 *
1298 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1299 * strictly. When strict compliance is requested, reseeding is
1300 * disabled and SYN-ACKs will be generated in the same manner as
1301 * SYNs. Strict mode is disabled by default.
1302 *
1303 */
1304
1305 #define ISN_BYTES_PER_SECOND 1048576
1306
1307 u_char isn_secret[32];
1308 int isn_last_reseed;
1309 MD5_CTX isn_ctx;
1310
1311 tcp_seq
1312 tcp_new_isn(tp)
1313 struct tcpcb *tp;
1314 {
1315 u_int32_t md5_buffer[4];
1316 tcp_seq new_isn;
1317 struct timeval time;
1318
1319 /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1320 if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
1321 && tcp_strict_rfc1948 == 0)
1322 #ifdef __APPLE__
1323 return random();
1324 #else
1325 return arc4random();
1326 #endif
1327
1328 /* Seed if this is the first use, reseed if requested. */
1329 if ((isn_last_reseed == 0) ||
1330 ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
1331 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1332 < (u_int)time.tv_sec))) {
1333 #ifdef __APPLE__
1334 read_random(&isn_secret, sizeof(isn_secret));
1335 #else
1336 read_random_unlimited(&isn_secret, sizeof(isn_secret));
1337 #endif
1338 isn_last_reseed = time.tv_sec;
1339 }
1340
1341 /* Compute the md5 hash and return the ISN. */
1342 MD5Init(&isn_ctx);
1343 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1344 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1345 #if INET6
1346 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1347 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1348 sizeof(struct in6_addr));
1349 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1350 sizeof(struct in6_addr));
1351 } else
1352 #endif
1353 {
1354 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1355 sizeof(struct in_addr));
1356 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1357 sizeof(struct in_addr));
1358 }
1359 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1360 MD5Final((u_char *) &md5_buffer, &isn_ctx);
1361 new_isn = (tcp_seq) md5_buffer[0];
1362 new_isn += time.tv_sec * (ISN_BYTES_PER_SECOND / hz);
1363 return new_isn;
1364 }
1365
1366 /*
1367 * When a source quench is received, close congestion window
1368 * to one segment. We will gradually open it again as we proceed.
1369 */
1370 void
1371 tcp_quench(inp, errno)
1372 struct inpcb *inp;
1373 int errno;
1374 {
1375 struct tcpcb *tp = intotcpcb(inp);
1376
1377 if (tp)
1378 tp->snd_cwnd = tp->t_maxseg;
1379 }
1380
1381 /*
1382 * When a specific ICMP unreachable message is received and the
1383 * connection state is SYN-SENT, drop the connection. This behavior
1384 * is controlled by the icmp_may_rst sysctl.
1385 */
1386 void
1387 tcp_drop_syn_sent(inp, errno)
1388 struct inpcb *inp;
1389 int errno;
1390 {
1391 struct tcpcb *tp = intotcpcb(inp);
1392
1393 if (tp && tp->t_state == TCPS_SYN_SENT)
1394 tcp_drop(tp, errno);
1395 }
1396
1397 /*
1398 * When `need fragmentation' ICMP is received, update our idea of the MSS
1399 * based on the new value in the route. Also nudge TCP to send something,
1400 * since we know the packet we just sent was dropped.
1401 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1402 */
1403 void
1404 tcp_mtudisc(inp, errno)
1405 struct inpcb *inp;
1406 int errno;
1407 {
1408 struct tcpcb *tp = intotcpcb(inp);
1409 struct rtentry *rt;
1410 struct rmxp_tao *taop;
1411 struct socket *so = inp->inp_socket;
1412 int offered;
1413 int mss;
1414 #if INET6
1415 int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1416 #endif /* INET6 */
1417
1418 if (tp) {
1419 #if INET6
1420 if (isipv6)
1421 rt = tcp_rtlookup6(inp);
1422 else
1423 #endif /* INET6 */
1424 rt = tcp_rtlookup(inp);
1425 if (!rt || !rt->rt_rmx.rmx_mtu) {
1426 tp->t_maxopd = tp->t_maxseg =
1427 #if INET6
1428 isipv6 ? tcp_v6mssdflt :
1429 #endif /* INET6 */
1430 tcp_mssdflt;
1431 return;
1432 }
1433 taop = rmx_taop(rt->rt_rmx);
1434 offered = taop->tao_mssopt;
1435 mss = rt->rt_rmx.rmx_mtu -
1436 #if INET6
1437 (isipv6 ?
1438 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1439 #endif /* INET6 */
1440 sizeof(struct tcpiphdr)
1441 #if INET6
1442 )
1443 #endif /* INET6 */
1444 ;
1445
1446 if (offered)
1447 mss = min(mss, offered);
1448 /*
1449 * XXX - The above conditional probably violates the TCP
1450 * spec. The problem is that, since we don't know the
1451 * other end's MSS, we are supposed to use a conservative
1452 * default. But, if we do that, then MTU discovery will
1453 * never actually take place, because the conservative
1454 * default is much less than the MTUs typically seen
1455 * on the Internet today. For the moment, we'll sweep
1456 * this under the carpet.
1457 *
1458 * The conservative default might not actually be a problem
1459 * if the only case this occurs is when sending an initial
1460 * SYN with options and data to a host we've never talked
1461 * to before. Then, they will reply with an MSS value which
1462 * will get recorded and the new parameters should get
1463 * recomputed. For Further Study.
1464 */
1465 if (tp->t_maxopd <= mss)
1466 return;
1467 tp->t_maxopd = mss;
1468
1469 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1470 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1471 mss -= TCPOLEN_TSTAMP_APPA;
1472 if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1473 (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1474 mss -= TCPOLEN_CC_APPA;
1475
1476 if (so->so_snd.sb_hiwat < mss)
1477 mss = so->so_snd.sb_hiwat;
1478
1479 tp->t_maxseg = mss;
1480
1481 tcpstat.tcps_mturesent++;
1482 tp->t_rtttime = 0;
1483 tp->snd_nxt = tp->snd_una;
1484 tcp_output(tp);
1485 }
1486 }
1487
1488 /*
1489 * Look-up the routing entry to the peer of this inpcb. If no route
1490 * is found and it cannot be allocated the return NULL. This routine
1491 * is called by TCP routines that access the rmx structure and by tcp_mss
1492 * to get the interface MTU.
1493 */
1494 struct rtentry *
1495 tcp_rtlookup(inp)
1496 struct inpcb *inp;
1497 {
1498 struct route *ro;
1499 struct rtentry *rt;
1500
1501 ro = &inp->inp_route;
1502 if (ro == NULL)
1503 return (NULL);
1504 rt = ro->ro_rt;
1505 if (rt == NULL || !(rt->rt_flags & RTF_UP) || rt->generation_id != route_generation) {
1506 /* No route yet, so try to acquire one */
1507 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1508 ro->ro_dst.sa_family = AF_INET;
1509 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1510 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1511 inp->inp_faddr;
1512 rtalloc(ro);
1513 rt = ro->ro_rt;
1514 }
1515 }
1516 return rt;
1517 }
1518
1519 #if INET6
1520 struct rtentry *
1521 tcp_rtlookup6(inp)
1522 struct inpcb *inp;
1523 {
1524 struct route_in6 *ro6;
1525 struct rtentry *rt;
1526
1527 ro6 = &inp->in6p_route;
1528 rt = ro6->ro_rt;
1529 if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1530 /* No route yet, so try to acquire one */
1531 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
1532 struct sockaddr_in6 *dst6;
1533
1534 dst6 = (struct sockaddr_in6 *)&ro6->ro_dst;
1535 dst6->sin6_family = AF_INET6;
1536 dst6->sin6_len = sizeof(*dst6);
1537 dst6->sin6_addr = inp->in6p_faddr;
1538 rtalloc((struct route *)ro6);
1539 rt = ro6->ro_rt;
1540 }
1541 }
1542 return rt;
1543 }
1544 #endif /* INET6 */
1545
1546 #if IPSEC
1547 /* compute ESP/AH header size for TCP, including outer IP header. */
1548 size_t
1549 ipsec_hdrsiz_tcp(tp)
1550 struct tcpcb *tp;
1551 {
1552 struct inpcb *inp;
1553 struct mbuf *m;
1554 size_t hdrsiz;
1555 struct ip *ip;
1556 #if INET6
1557 struct ip6_hdr *ip6 = NULL;
1558 #endif /* INET6 */
1559 struct tcphdr *th;
1560
1561 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1562 return 0;
1563 MGETHDR(m, M_DONTWAIT, MT_DATA);
1564 if (!m)
1565 return 0;
1566
1567 #if INET6
1568 if ((inp->inp_vflag & INP_IPV6) != 0) {
1569 ip6 = mtod(m, struct ip6_hdr *);
1570 th = (struct tcphdr *)(ip6 + 1);
1571 m->m_pkthdr.len = m->m_len =
1572 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1573 tcp_fillheaders(tp, ip6, th);
1574 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1575 } else
1576 #endif /* INET6 */
1577 {
1578 ip = mtod(m, struct ip *);
1579 th = (struct tcphdr *)(ip + 1);
1580 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1581 tcp_fillheaders(tp, ip, th);
1582 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1583 }
1584
1585 m_free(m);
1586 return hdrsiz;
1587 }
1588 #endif /*IPSEC*/
1589
1590 /*
1591 * Return a pointer to the cached information about the remote host.
1592 * The cached information is stored in the protocol specific part of
1593 * the route metrics.
1594 */
1595 struct rmxp_tao *
1596 tcp_gettaocache(inp)
1597 struct inpcb *inp;
1598 {
1599 struct rtentry *rt;
1600
1601 #if INET6
1602 if ((inp->inp_vflag & INP_IPV6) != 0)
1603 rt = tcp_rtlookup6(inp);
1604 else
1605 #endif /* INET6 */
1606 rt = tcp_rtlookup(inp);
1607
1608 /* Make sure this is a host route and is up. */
1609 if (rt == NULL ||
1610 (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1611 return NULL;
1612
1613 return rmx_taop(rt->rt_rmx);
1614 }
1615
1616 /*
1617 * Clear all the TAO cache entries, called from tcp_init.
1618 *
1619 * XXX
1620 * This routine is just an empty one, because we assume that the routing
1621 * routing tables are initialized at the same time when TCP, so there is
1622 * nothing in the cache left over.
1623 */
1624 static void
1625 tcp_cleartaocache()
1626 {
1627 }