]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_ntptime.c
0ae62258f0b304f77de3cd36c3a07953c6c4c588
[apple/xnu.git] / bsd / kern / kern_ntptime.c
1 /*-
2 ***********************************************************************
3 * *
4 * Copyright (c) David L. Mills 1993-2001 *
5 * *
6 * Permission to use, copy, modify, and distribute this software and *
7 * its documentation for any purpose and without fee is hereby *
8 * granted, provided that the above copyright notice appears in all *
9 * copies and that both the copyright notice and this permission *
10 * notice appear in supporting documentation, and that the name *
11 * University of Delaware not be used in advertising or publicity *
12 * pertaining to distribution of the software without specific, *
13 * written prior permission. The University of Delaware makes no *
14 * representations about the suitability this software for any *
15 * purpose. It is provided "as is" without express or implied *
16 * warranty. *
17 * *
18 **********************************************************************/
19
20
21 /*
22 * Adapted from the original sources for FreeBSD and timecounters by:
23 * Poul-Henning Kamp <phk@FreeBSD.org>.
24 *
25 * The 32bit version of the "LP" macros seems a bit past its "sell by"
26 * date so I have retained only the 64bit version and included it directly
27 * in this file.
28 *
29 * Only minor changes done to interface with the timecounters over in
30 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
31 * confusing and/or plain wrong in that context.
32 */
33
34 /*
35 * Copyright (c) 2017 Apple Computer, Inc. All rights reserved.
36 *
37 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
38 *
39 * This file contains Original Code and/or Modifications of Original Code
40 * as defined in and that are subject to the Apple Public Source License
41 * Version 2.0 (the 'License'). You may not use this file except in
42 * compliance with the License. The rights granted to you under the License
43 * may not be used to create, or enable the creation or redistribution of,
44 * unlawful or unlicensed copies of an Apple operating system, or to
45 * circumvent, violate, or enable the circumvention or violation of, any
46 * terms of an Apple operating system software license agreement.
47 *
48 * Please obtain a copy of the License at
49 * http://www.opensource.apple.com/apsl/ and read it before using this file.
50 *
51 * The Original Code and all software distributed under the License are
52 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
53 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
54 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
55 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
56 * Please see the License for the specific language governing rights and
57 * limitations under the License.
58 *
59 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
60 */
61
62 #include <sys/cdefs.h>
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/eventhandler.h>
66 #include <sys/kernel.h>
67 #include <sys/priv.h>
68 #include <sys/proc.h>
69 #include <sys/lock.h>
70 #include <sys/time.h>
71 #include <sys/timex.h>
72 #include <kern/clock.h>
73 #include <sys/sysctl.h>
74 #include <sys/sysproto.h>
75 #include <sys/kauth.h>
76 #include <kern/thread_call.h>
77 #include <kern/timer_call.h>
78 #include <machine/machine_routines.h>
79 #if CONFIG_MACF
80 #include <security/mac_framework.h>
81 #endif
82 #include <IOKit/IOBSD.h>
83 #include <os/log.h>
84
85 typedef int64_t l_fp;
86 #define L_ADD(v, u) ((v) += (u))
87 #define L_SUB(v, u) ((v) -= (u))
88 #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
89 #define L_NEG(v) ((v) = -(v))
90 #define L_RSHIFT(v, n) \
91 do { \
92 if ((v) < 0) \
93 (v) = -(-(v) >> (n)); \
94 else \
95 (v) = (v) >> (n); \
96 } while (0)
97 #define L_MPY(v, a) ((v) *= (a))
98 #define L_CLR(v) ((v) = 0)
99 #define L_ISNEG(v) ((v) < 0)
100 #define L_LINT(v, a) \
101 do { \
102 if ((a) > 0) \
103 ((v) = (int64_t)(a) << 32); \
104 else \
105 ((v) = -((int64_t)(-(a)) << 32)); \
106 } while (0)
107 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
108
109 /*
110 * Generic NTP kernel interface
111 *
112 * These routines constitute the Network Time Protocol (NTP) interfaces
113 * for user and daemon application programs. The ntp_gettime() routine
114 * provides the time, maximum error (synch distance) and estimated error
115 * (dispersion) to client user application programs. The ntp_adjtime()
116 * routine is used by the NTP daemon to adjust the calendar clock to an
117 * externally derived time. The time offset and related variables set by
118 * this routine are used by other routines in this module to adjust the
119 * phase and frequency of the clock discipline loop which controls the
120 * system clock.
121 *
122 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
123 * defined), the time at each tick interrupt is derived directly from
124 * the kernel time variable. When the kernel time is reckoned in
125 * microseconds, (NTP_NANO undefined), the time is derived from the
126 * kernel time variable together with a variable representing the
127 * leftover nanoseconds at the last tick interrupt. In either case, the
128 * current nanosecond time is reckoned from these values plus an
129 * interpolated value derived by the clock routines in another
130 * architecture-specific module. The interpolation can use either a
131 * dedicated counter or a processor cycle counter (PCC) implemented in
132 * some architectures.
133 *
134 */
135 /*
136 * Phase/frequency-lock loop (PLL/FLL) definitions
137 *
138 * The nanosecond clock discipline uses two variable types, time
139 * variables and frequency variables. Both types are represented as 64-
140 * bit fixed-point quantities with the decimal point between two 32-bit
141 * halves. On a 32-bit machine, each half is represented as a single
142 * word and mathematical operations are done using multiple-precision
143 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
144 * used.
145 *
146 * A time variable is a signed 64-bit fixed-point number in ns and
147 * fraction. It represents the remaining time offset to be amortized
148 * over succeeding tick interrupts. The maximum time offset is about
149 * 0.5 s and the resolution is about 2.3e-10 ns.
150 *
151 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
152 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
153 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
154 * |s s s| ns |
155 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
156 * | fraction |
157 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
158 *
159 * A frequency variable is a signed 64-bit fixed-point number in ns/s
160 * and fraction. It represents the ns and fraction to be added to the
161 * kernel time variable at each second. The maximum frequency offset is
162 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
163 *
164 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
165 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
166 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
167 * |s s s s s s s s s s s s s| ns/s |
168 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
169 * | fraction |
170 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
171 */
172
173 #define SHIFT_PLL 4
174 #define SHIFT_FLL 2
175
176 static int time_state = TIME_OK;
177 int time_status = STA_UNSYNC;
178 static long time_tai;
179 static long time_constant;
180 static long time_precision = 1;
181 static long time_maxerror = MAXPHASE / 1000;
182 static unsigned long last_time_maxerror_update;
183 long time_esterror = MAXPHASE / 1000;
184 static long time_reftime;
185 static l_fp time_offset;
186 static l_fp time_freq;
187 static int64_t time_adjtime;
188 static int updated;
189
190 static lck_spin_t * ntp_lock;
191 static lck_grp_t * ntp_lock_grp;
192 static lck_attr_t * ntp_lock_attr;
193 static lck_grp_attr_t *ntp_lock_grp_attr;
194
195 #define NTP_LOCK(enable) \
196 enable = ml_set_interrupts_enabled(FALSE); \
197 lck_spin_lock(ntp_lock);
198
199 #define NTP_UNLOCK(enable) \
200 lck_spin_unlock(ntp_lock);\
201 ml_set_interrupts_enabled(enable);
202
203 #define NTP_ASSERT_LOCKED() LCK_SPIN_ASSERT(ntp_lock, LCK_ASSERT_OWNED)
204
205 static timer_call_data_t ntp_loop_update;
206 static uint64_t ntp_loop_deadline;
207 static uint32_t ntp_loop_active;
208 static uint32_t ntp_loop_period;
209 #define NTP_LOOP_PERIOD_INTERVAL (NSEC_PER_SEC) /*1 second interval*/
210
211 void ntp_init(void);
212 static void hardupdate(long offset);
213 static void ntp_gettime1(struct ntptimeval *ntvp);
214 static bool ntp_is_time_error(int tsl);
215
216 static void ntp_loop_update_call(void);
217 static void refresh_ntp_loop(void);
218 static void start_ntp_loop(void);
219
220 #if DEVELOPMENT || DEBUG
221 uint32_t g_should_log_clock_adjustments = 0;
222 SYSCTL_INT(_kern, OID_AUTO, log_clock_adjustments, CTLFLAG_RW | CTLFLAG_LOCKED, &g_should_log_clock_adjustments, 0, "enable kernel clock adjustment logging");
223 #endif
224
225 static bool
226 ntp_is_time_error(int tsl)
227 {
228 if (tsl & (STA_UNSYNC | STA_CLOCKERR)) {
229 return true;
230 }
231
232 return false;
233 }
234
235 static void
236 ntp_gettime1(struct ntptimeval *ntvp)
237 {
238 struct timespec atv;
239
240 NTP_ASSERT_LOCKED();
241
242 nanotime(&atv);
243 ntvp->time.tv_sec = atv.tv_sec;
244 ntvp->time.tv_nsec = atv.tv_nsec;
245 if ((unsigned long)atv.tv_sec > last_time_maxerror_update) {
246 time_maxerror += (MAXFREQ / 1000) * (atv.tv_sec - last_time_maxerror_update);
247 last_time_maxerror_update = atv.tv_sec;
248 }
249 ntvp->maxerror = time_maxerror;
250 ntvp->esterror = time_esterror;
251 ntvp->tai = time_tai;
252 ntvp->time_state = time_state;
253
254 if (ntp_is_time_error(time_status)) {
255 ntvp->time_state = TIME_ERROR;
256 }
257 }
258
259 int
260 ntp_gettime(struct proc *p, struct ntp_gettime_args *uap, __unused int32_t *retval)
261 {
262 struct ntptimeval ntv;
263 int error;
264 boolean_t enable;
265
266 NTP_LOCK(enable);
267 ntp_gettime1(&ntv);
268 NTP_UNLOCK(enable);
269
270 if (IS_64BIT_PROCESS(p)) {
271 struct user64_ntptimeval user_ntv = {};
272 user_ntv.time.tv_sec = ntv.time.tv_sec;
273 user_ntv.time.tv_nsec = ntv.time.tv_nsec;
274 user_ntv.maxerror = ntv.maxerror;
275 user_ntv.esterror = ntv.esterror;
276 user_ntv.tai = ntv.tai;
277 user_ntv.time_state = ntv.time_state;
278 error = copyout(&user_ntv, uap->ntvp, sizeof(user_ntv));
279 } else {
280 struct user32_ntptimeval user_ntv = {};
281 user_ntv.time.tv_sec = (user32_long_t)ntv.time.tv_sec;
282 user_ntv.time.tv_nsec = (user32_long_t)ntv.time.tv_nsec;
283 user_ntv.maxerror = (user32_long_t)ntv.maxerror;
284 user_ntv.esterror = (user32_long_t)ntv.esterror;
285 user_ntv.tai = (user32_long_t)ntv.tai;
286 user_ntv.time_state = ntv.time_state;
287 error = copyout(&user_ntv, uap->ntvp, sizeof(user_ntv));
288 }
289
290 if (error) {
291 return error;
292 }
293
294 return ntv.time_state;
295 }
296
297 int
298 ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap, int32_t *retval)
299 {
300 struct timex ntv = {};
301 long freq;
302 unsigned int modes;
303 int error, ret = 0;
304 clock_sec_t sec;
305 clock_usec_t microsecs;
306 boolean_t enable;
307
308 if (IS_64BIT_PROCESS(p)) {
309 struct user64_timex user_ntv;
310 error = copyin(uap->tp, &user_ntv, sizeof(user_ntv));
311 ntv.modes = user_ntv.modes;
312 ntv.offset = (long)user_ntv.offset;
313 ntv.freq = (long)user_ntv.freq;
314 ntv.maxerror = (long)user_ntv.maxerror;
315 ntv.esterror = (long)user_ntv.esterror;
316 ntv.status = user_ntv.status;
317 ntv.constant = (long)user_ntv.constant;
318 ntv.precision = (long)user_ntv.precision;
319 ntv.tolerance = (long)user_ntv.tolerance;
320 } else {
321 struct user32_timex user_ntv;
322 error = copyin(uap->tp, &user_ntv, sizeof(user_ntv));
323 ntv.modes = user_ntv.modes;
324 ntv.offset = user_ntv.offset;
325 ntv.freq = user_ntv.freq;
326 ntv.maxerror = user_ntv.maxerror;
327 ntv.esterror = user_ntv.esterror;
328 ntv.status = user_ntv.status;
329 ntv.constant = user_ntv.constant;
330 ntv.precision = user_ntv.precision;
331 ntv.tolerance = user_ntv.tolerance;
332 }
333 if (error) {
334 return error;
335 }
336
337 #if DEVELOPMENT || DEBUG
338 if (g_should_log_clock_adjustments) {
339 os_log(OS_LOG_DEFAULT, "%s: BEFORE modes %u offset %ld freq %ld status %d constant %ld time_adjtime %lld\n",
340 __func__, ntv.modes, ntv.offset, ntv.freq, ntv.status, ntv.constant, time_adjtime);
341 }
342 #endif
343 /*
344 * Update selected clock variables - only the superuser can
345 * change anything. Note that there is no error checking here on
346 * the assumption the superuser should know what it is doing.
347 * Note that either the time constant or TAI offset are loaded
348 * from the ntv.constant member, depending on the mode bits. If
349 * the STA_PLL bit in the status word is cleared, the state and
350 * status words are reset to the initial values at boot.
351 */
352 modes = ntv.modes;
353 if (modes) {
354 /* Check that this task is entitled to set the time or it is root */
355 if (!IOTaskHasEntitlement(current_task(), SETTIME_ENTITLEMENT)) {
356 #if CONFIG_MACF
357 error = mac_system_check_settime(kauth_cred_get());
358 if (error) {
359 return error;
360 }
361 #endif
362 if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0))) {
363 return error;
364 }
365 }
366 }
367
368 NTP_LOCK(enable);
369
370 if (modes & MOD_MAXERROR) {
371 clock_gettimeofday(&sec, &microsecs);
372 time_maxerror = ntv.maxerror;
373 last_time_maxerror_update = sec;
374 }
375 if (modes & MOD_ESTERROR) {
376 time_esterror = ntv.esterror;
377 }
378 if (modes & MOD_STATUS) {
379 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
380 time_state = TIME_OK;
381 time_status = STA_UNSYNC;
382 }
383 time_status &= STA_RONLY;
384 time_status |= ntv.status & ~STA_RONLY;
385 /*
386 * Nor PPS or leaps seconds are supported.
387 * Filter out unsupported bits.
388 */
389 time_status &= STA_SUPPORTED;
390 }
391 if (modes & MOD_TIMECONST) {
392 if (ntv.constant < 0) {
393 time_constant = 0;
394 } else if (ntv.constant > MAXTC) {
395 time_constant = MAXTC;
396 } else {
397 time_constant = ntv.constant;
398 }
399 }
400 if (modes & MOD_TAI) {
401 if (ntv.constant > 0) {
402 time_tai = ntv.constant;
403 }
404 }
405 if (modes & MOD_NANO) {
406 time_status |= STA_NANO;
407 }
408 if (modes & MOD_MICRO) {
409 time_status &= ~STA_NANO;
410 }
411 if (modes & MOD_CLKB) {
412 time_status |= STA_CLK;
413 }
414 if (modes & MOD_CLKA) {
415 time_status &= ~STA_CLK;
416 }
417 if (modes & MOD_FREQUENCY) {
418 freq = (ntv.freq * 1000LL) >> 16;
419 if (freq > MAXFREQ) {
420 L_LINT(time_freq, MAXFREQ);
421 } else if (freq < -MAXFREQ) {
422 L_LINT(time_freq, -MAXFREQ);
423 } else {
424 /*
425 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
426 * time_freq is [ns/s * 2^32]
427 */
428 time_freq = ntv.freq * 1000LL * 65536LL;
429 }
430 }
431 if (modes & MOD_OFFSET) {
432 if (time_status & STA_NANO) {
433 hardupdate(ntv.offset);
434 } else {
435 hardupdate(ntv.offset * 1000);
436 }
437 }
438
439 ret = ntp_is_time_error(time_status) ? TIME_ERROR : time_state;
440
441 #if DEVELOPMENT || DEBUG
442 if (g_should_log_clock_adjustments) {
443 os_log(OS_LOG_DEFAULT, "%s: AFTER modes %u offset %lld freq %lld status %d constant %ld time_adjtime %lld\n",
444 __func__, modes, time_offset, time_freq, time_status, time_constant, time_adjtime);
445 }
446 #endif
447
448 /*
449 * Retrieve all clock variables. Note that the TAI offset is
450 * returned only by ntp_gettime();
451 */
452 if (IS_64BIT_PROCESS(p)) {
453 struct user64_timex user_ntv = {};
454
455 user_ntv.modes = modes;
456 if (time_status & STA_NANO) {
457 user_ntv.offset = L_GINT(time_offset);
458 } else {
459 user_ntv.offset = L_GINT(time_offset) / 1000;
460 }
461 if (time_freq > 0) {
462 user_ntv.freq = L_GINT(((int64_t)(time_freq / 1000LL)) << 16);
463 } else {
464 user_ntv.freq = -L_GINT(((int64_t)(-(time_freq) / 1000LL)) << 16);
465 }
466 user_ntv.maxerror = time_maxerror;
467 user_ntv.esterror = time_esterror;
468 user_ntv.status = time_status;
469 user_ntv.constant = time_constant;
470 if (time_status & STA_NANO) {
471 user_ntv.precision = time_precision;
472 } else {
473 user_ntv.precision = time_precision / 1000;
474 }
475 user_ntv.tolerance = MAXFREQ * SCALE_PPM;
476
477 /* unlock before copyout */
478 NTP_UNLOCK(enable);
479
480 error = copyout(&user_ntv, uap->tp, sizeof(user_ntv));
481 } else {
482 struct user32_timex user_ntv = {};
483
484 user_ntv.modes = modes;
485 if (time_status & STA_NANO) {
486 user_ntv.offset = L_GINT(time_offset);
487 } else {
488 user_ntv.offset = L_GINT(time_offset) / 1000;
489 }
490 if (time_freq > 0) {
491 user_ntv.freq = L_GINT((time_freq / 1000LL) << 16);
492 } else {
493 user_ntv.freq = -L_GINT((-(time_freq) / 1000LL) << 16);
494 }
495 user_ntv.maxerror = (user32_long_t)time_maxerror;
496 user_ntv.esterror = (user32_long_t)time_esterror;
497 user_ntv.status = time_status;
498 user_ntv.constant = (user32_long_t)time_constant;
499 if (time_status & STA_NANO) {
500 user_ntv.precision = (user32_long_t)time_precision;
501 } else {
502 user_ntv.precision = (user32_long_t)(time_precision / 1000);
503 }
504 user_ntv.tolerance = MAXFREQ * SCALE_PPM;
505
506 /* unlock before copyout */
507 NTP_UNLOCK(enable);
508
509 error = copyout(&user_ntv, uap->tp, sizeof(user_ntv));
510 }
511
512 if (modes) {
513 start_ntp_loop();
514 }
515
516 if (error == 0) {
517 *retval = ret;
518 }
519
520 return error;
521 }
522
523 int64_t
524 ntp_get_freq(void)
525 {
526 return time_freq;
527 }
528
529 /*
530 * Compute the adjustment to add to the next second.
531 */
532 void
533 ntp_update_second(int64_t *adjustment, clock_sec_t secs)
534 {
535 int tickrate;
536 l_fp time_adj;
537 l_fp ftemp, old_time_adjtime, old_offset;
538
539 NTP_ASSERT_LOCKED();
540
541 if (secs > last_time_maxerror_update) {
542 time_maxerror += (MAXFREQ / 1000) * (secs - last_time_maxerror_update);
543 last_time_maxerror_update = secs;
544 }
545
546 old_offset = time_offset;
547 old_time_adjtime = time_adjtime;
548
549 ftemp = time_offset;
550 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
551 time_adj = ftemp;
552 L_SUB(time_offset, ftemp);
553 L_ADD(time_adj, time_freq);
554
555 /*
556 * Apply any correction from adjtime. If more than one second
557 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
558 * until the last second is slewed the final < 500 usecs.
559 */
560 if (time_adjtime != 0) {
561 if (time_adjtime > 1000000) {
562 tickrate = 5000;
563 } else if (time_adjtime < -1000000) {
564 tickrate = -5000;
565 } else if (time_adjtime > 500) {
566 tickrate = 500;
567 } else if (time_adjtime < -500) {
568 tickrate = -500;
569 } else {
570 tickrate = (int)time_adjtime;
571 }
572 time_adjtime -= tickrate;
573 L_LINT(ftemp, tickrate * 1000);
574 L_ADD(time_adj, ftemp);
575 }
576
577 if (old_time_adjtime || ((time_offset || old_offset) && (time_offset != old_offset))) {
578 updated = 1;
579 } else {
580 updated = 0;
581 }
582
583 #if DEVELOPMENT || DEBUG
584 if (g_should_log_clock_adjustments) {
585 int64_t nano = (time_adj > 0)? time_adj >> 32 : -((-time_adj) >> 32);
586 int64_t frac = (time_adj > 0)? ((uint32_t) time_adj) : -((uint32_t) (-time_adj));
587
588 os_log(OS_LOG_DEFAULT, "%s:AFTER offset %lld (%lld) freq %lld status %d "
589 "constant %ld time_adjtime %lld nano %lld frac %lld adj %lld\n",
590 __func__, time_offset, (time_offset > 0)? time_offset >> 32 : -((-time_offset) >> 32),
591 time_freq, time_status, time_constant, time_adjtime, nano, frac, time_adj);
592 }
593 #endif
594
595 *adjustment = time_adj;
596 }
597
598 /*
599 * hardupdate() - local clock update
600 *
601 * This routine is called by ntp_adjtime() when an offset is provided
602 * to update the local clock phase and frequency.
603 * The implementation is of an adaptive-parameter, hybrid
604 * phase/frequency-lock loop (PLL/FLL). The routine computes new
605 * time and frequency offset estimates for each call.
606 * Presumably, calls to ntp_adjtime() occur only when the caller
607 * believes the local clock is valid within some bound (+-128 ms with
608 * NTP).
609 *
610 * For uncompensated quartz crystal oscillators and nominal update
611 * intervals less than 256 s, operation should be in phase-lock mode,
612 * where the loop is disciplined to phase. For update intervals greater
613 * than 1024 s, operation should be in frequency-lock mode, where the
614 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
615 * is selected by the STA_MODE status bit.
616 */
617 static void
618 hardupdate(offset)
619 long offset;
620 {
621 long mtemp = 0;
622 long time_monitor;
623 clock_sec_t time_uptime;
624 l_fp ftemp;
625
626 NTP_ASSERT_LOCKED();
627
628 if (!(time_status & STA_PLL)) {
629 return;
630 }
631
632 if (offset > MAXPHASE) {
633 time_monitor = MAXPHASE;
634 } else if (offset < -MAXPHASE) {
635 time_monitor = -MAXPHASE;
636 } else {
637 time_monitor = offset;
638 }
639 L_LINT(time_offset, time_monitor);
640
641 clock_get_calendar_uptime(&time_uptime);
642
643 if (time_status & STA_FREQHOLD || time_reftime == 0) {
644 time_reftime = time_uptime;
645 }
646
647 mtemp = time_uptime - time_reftime;
648 L_LINT(ftemp, time_monitor);
649 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
650 L_MPY(ftemp, mtemp);
651 L_ADD(time_freq, ftemp);
652 time_status &= ~STA_MODE;
653 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
654 MAXSEC)) {
655 L_LINT(ftemp, (time_monitor << 4) / mtemp);
656 L_RSHIFT(ftemp, SHIFT_FLL + 4);
657 L_ADD(time_freq, ftemp);
658 time_status |= STA_MODE;
659 }
660 time_reftime = time_uptime;
661
662 if (L_GINT(time_freq) > MAXFREQ) {
663 L_LINT(time_freq, MAXFREQ);
664 } else if (L_GINT(time_freq) < -MAXFREQ) {
665 L_LINT(time_freq, -MAXFREQ);
666 }
667 }
668
669
670 static int
671 kern_adjtime(struct timeval *delta)
672 {
673 struct timeval atv;
674 int64_t ltr, ltw;
675 boolean_t enable;
676
677 if (delta == NULL) {
678 return EINVAL;
679 }
680
681 ltw = (int64_t)delta->tv_sec * (int64_t)USEC_PER_SEC + delta->tv_usec;
682
683 NTP_LOCK(enable);
684 ltr = time_adjtime;
685 time_adjtime = ltw;
686 #if DEVELOPMENT || DEBUG
687 if (g_should_log_clock_adjustments) {
688 os_log(OS_LOG_DEFAULT, "%s:AFTER offset %lld freq %lld status %d constant %ld time_adjtime %lld\n",
689 __func__, time_offset, time_freq, time_status, time_constant, time_adjtime);
690 }
691 #endif
692 NTP_UNLOCK(enable);
693
694 atv.tv_sec = (__darwin_time_t)(ltr / (int64_t)USEC_PER_SEC);
695 atv.tv_usec = ltr % (int64_t)USEC_PER_SEC;
696 if (atv.tv_usec < 0) {
697 atv.tv_usec += (suseconds_t)USEC_PER_SEC;
698 atv.tv_sec--;
699 }
700
701 *delta = atv;
702
703 start_ntp_loop();
704
705 return 0;
706 }
707
708 int
709 adjtime(struct proc *p, struct adjtime_args *uap, __unused int32_t *retval)
710 {
711 struct timeval atv;
712 int error;
713
714 /* Check that this task is entitled to set the time or it is root */
715 if (!IOTaskHasEntitlement(current_task(), SETTIME_ENTITLEMENT)) {
716 #if CONFIG_MACF
717 error = mac_system_check_settime(kauth_cred_get());
718 if (error) {
719 return error;
720 }
721 #endif
722 if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0))) {
723 return error;
724 }
725 }
726
727 if (IS_64BIT_PROCESS(p)) {
728 struct user64_timeval user_atv;
729 error = copyin(uap->delta, &user_atv, sizeof(user_atv));
730 atv.tv_sec = (__darwin_time_t)user_atv.tv_sec;
731 atv.tv_usec = user_atv.tv_usec;
732 } else {
733 struct user32_timeval user_atv;
734 error = copyin(uap->delta, &user_atv, sizeof(user_atv));
735 atv.tv_sec = user_atv.tv_sec;
736 atv.tv_usec = user_atv.tv_usec;
737 }
738 if (error) {
739 return error;
740 }
741
742 kern_adjtime(&atv);
743
744 if (uap->olddelta) {
745 if (IS_64BIT_PROCESS(p)) {
746 struct user64_timeval user_atv = {};
747 user_atv.tv_sec = atv.tv_sec;
748 user_atv.tv_usec = atv.tv_usec;
749 error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
750 } else {
751 struct user32_timeval user_atv = {};
752 user_atv.tv_sec = (user32_time_t)atv.tv_sec;
753 user_atv.tv_usec = atv.tv_usec;
754 error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
755 }
756 }
757
758 return error;
759 }
760
761 static void
762 ntp_loop_update_call(void)
763 {
764 boolean_t enable;
765
766 NTP_LOCK(enable);
767
768 /*
769 * Update the scale factor used by clock_calend.
770 * NOTE: clock_update_calendar will call ntp_update_second to compute the next adjustment.
771 */
772 clock_update_calendar();
773
774 refresh_ntp_loop();
775
776 NTP_UNLOCK(enable);
777 }
778
779 static void
780 refresh_ntp_loop(void)
781 {
782 NTP_ASSERT_LOCKED();
783 if (--ntp_loop_active == 0) {
784 /*
785 * Activate the timer only if the next second adjustment might change.
786 * ntp_update_second checks it and sets updated accordingly.
787 */
788 if (updated) {
789 clock_deadline_for_periodic_event(ntp_loop_period, mach_absolute_time(), &ntp_loop_deadline);
790
791 if (!timer_call_enter(&ntp_loop_update, ntp_loop_deadline, TIMER_CALL_SYS_CRITICAL)) {
792 ntp_loop_active++;
793 }
794 }
795 }
796 }
797
798 /*
799 * This function triggers a timer that each second will calculate the adjustment to
800 * provide to clock_calendar to scale the time (used by gettimeofday-family syscalls).
801 * The periodic timer will stop when the adjustment will reach a stable value.
802 */
803 static void
804 start_ntp_loop(void)
805 {
806 boolean_t enable;
807
808 NTP_LOCK(enable);
809
810 ntp_loop_deadline = mach_absolute_time() + ntp_loop_period;
811
812 if (!timer_call_enter(&ntp_loop_update, ntp_loop_deadline, TIMER_CALL_SYS_CRITICAL)) {
813 ntp_loop_active++;
814 }
815
816 NTP_UNLOCK(enable);
817 }
818
819
820 static void
821 init_ntp_loop(void)
822 {
823 uint64_t abstime;
824
825 ntp_loop_active = 0;
826 nanoseconds_to_absolutetime(NTP_LOOP_PERIOD_INTERVAL, &abstime);
827 ntp_loop_period = (uint32_t)abstime;
828 timer_call_setup(&ntp_loop_update, (timer_call_func_t)ntp_loop_update_call, NULL);
829 }
830
831 void
832 ntp_init(void)
833 {
834 L_CLR(time_offset);
835 L_CLR(time_freq);
836
837 ntp_lock_grp_attr = lck_grp_attr_alloc_init();
838 ntp_lock_grp = lck_grp_alloc_init("ntp_lock", ntp_lock_grp_attr);
839 ntp_lock_attr = lck_attr_alloc_init();
840 ntp_lock = lck_spin_alloc_init(ntp_lock_grp, ntp_lock_attr);
841
842 updated = 0;
843
844 init_ntp_loop();
845 }
846
847 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);