2 * Copyright (c) 1998-2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/domain.h>
73 #include <sys/kernel.h>
74 #include <sys/proc_internal.h>
75 #include <sys/kauth.h>
76 #include <sys/malloc.h>
78 #include <sys/mcache.h>
79 #include <sys/protosw.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/signalvar.h>
84 #include <sys/sysctl.h>
85 #include <sys/syslog.h>
87 #include <kern/locks.h>
88 #include <net/route.h>
89 #include <net/content_filter.h>
90 #include <netinet/in.h>
91 #include <netinet/in_pcb.h>
92 #include <sys/kdebug.h>
93 #include <libkern/OSAtomic.h>
96 #include <security/mac_framework.h>
99 #include <mach/vm_param.h>
102 #include <netinet/mptcp_var.h>
105 #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
106 #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
108 extern char *proc_best_name(proc_t p
);
110 SYSCTL_DECL(_kern_ipc
);
112 __private_extern__ u_int32_t net_io_policy_throttle_best_effort
= 0;
113 SYSCTL_INT(_kern_ipc
, OID_AUTO
, throttle_best_effort
,
114 CTLFLAG_RW
| CTLFLAG_LOCKED
, &net_io_policy_throttle_best_effort
, 0, "");
116 static inline void sbcompress(struct sockbuf
*, struct mbuf
*, struct mbuf
*);
117 static struct socket
*sonewconn_internal(struct socket
*, int);
118 static int sbappendaddr_internal(struct sockbuf
*, struct sockaddr
*,
119 struct mbuf
*, struct mbuf
*);
120 static int sbappendcontrol_internal(struct sockbuf
*, struct mbuf
*,
122 static void soevent_ifdenied(struct socket
*);
125 * Primitive routines for operating on sockets and socket buffers
127 static int soqlimitcompat
= 1;
128 static int soqlencomp
= 0;
131 * Based on the number of mbuf clusters configured, high_sb_max and sb_max can
132 * get scaled up or down to suit that memory configuration. high_sb_max is a
133 * higher limit on sb_max that is checked when sb_max gets set through sysctl.
136 u_int32_t sb_max
= SB_MAX
; /* XXX should be static */
137 u_int32_t high_sb_max
= SB_MAX
;
139 static u_int32_t sb_efficiency
= 8; /* parameter for sbreserve() */
140 int32_t total_sbmb_cnt
__attribute__((aligned(8))) = 0;
141 int32_t total_sbmb_cnt_floor
__attribute__((aligned(8))) = 0;
142 int32_t total_sbmb_cnt_peak
__attribute__((aligned(8))) = 0;
143 int64_t sbmb_limreached
__attribute__((aligned(8))) = 0;
145 /* Control whether to throttle sockets eligible to be throttled */
146 __private_extern__ u_int32_t net_io_policy_throttled
= 0;
147 static int sysctl_io_policy_throttled SYSCTL_HANDLER_ARGS
;
149 u_int32_t net_io_policy_log
= 0; /* log socket policy changes */
150 #if CONFIG_PROC_UUID_POLICY
151 u_int32_t net_io_policy_uuid
= 1; /* enable UUID socket policy */
152 #endif /* CONFIG_PROC_UUID_POLICY */
155 * Procedures to manipulate state flags of socket
156 * and do appropriate wakeups. Normal sequence from the
157 * active (originating) side is that soisconnecting() is
158 * called during processing of connect() call,
159 * resulting in an eventual call to soisconnected() if/when the
160 * connection is established. When the connection is torn down
161 * soisdisconnecting() is called during processing of disconnect() call,
162 * and soisdisconnected() is called when the connection to the peer
163 * is totally severed. The semantics of these routines are such that
164 * connectionless protocols can call soisconnected() and soisdisconnected()
165 * only, bypassing the in-progress calls when setting up a ``connection''
168 * From the passive side, a socket is created with
169 * two queues of sockets: so_incomp for connections in progress
170 * and so_comp for connections already made and awaiting user acceptance.
171 * As a protocol is preparing incoming connections, it creates a socket
172 * structure queued on so_incomp by calling sonewconn(). When the connection
173 * is established, soisconnected() is called, and transfers the
174 * socket structure to so_comp, making it available to accept().
176 * If a socket is closed with sockets on either
177 * so_incomp or so_comp, these sockets are dropped.
179 * If higher level protocols are implemented in
180 * the kernel, the wakeups done here will sometimes
181 * cause software-interrupt process scheduling.
184 soisconnecting(struct socket
*so
)
187 so
->so_state
&= ~(SS_ISCONNECTED
|SS_ISDISCONNECTING
);
188 so
->so_state
|= SS_ISCONNECTING
;
190 sflt_notify(so
, sock_evt_connecting
, NULL
);
194 soisconnected(struct socket
*so
)
197 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISDISCONNECTING
|SS_ISCONFIRMING
);
198 so
->so_state
|= SS_ISCONNECTED
;
200 soreserve_preconnect(so
, 0);
202 sflt_notify(so
, sock_evt_connected
, NULL
);
204 if (so
->so_head
!= NULL
&& (so
->so_state
& SS_INCOMP
)) {
205 struct socket
*head
= so
->so_head
;
209 * Enforce lock order when the protocol has per socket locks
211 if (head
->so_proto
->pr_getlock
!= NULL
) {
212 socket_unlock(so
, 0);
213 socket_lock(head
, 1);
217 if (so
->so_head
== head
&& (so
->so_state
& SS_INCOMP
)) {
218 so
->so_state
&= ~SS_INCOMP
;
219 so
->so_state
|= SS_COMP
;
220 TAILQ_REMOVE(&head
->so_incomp
, so
, so_list
);
221 TAILQ_INSERT_TAIL(&head
->so_comp
, so
, so_list
);
225 socket_unlock(so
, 0);
227 postevent(head
, 0, EV_RCONN
);
229 wakeup_one((caddr_t
)&head
->so_timeo
);
235 socket_unlock(head
, 1);
237 postevent(so
, 0, EV_WCONN
);
238 wakeup((caddr_t
)&so
->so_timeo
);
241 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_CONNECTED
|
242 SO_FILT_HINT_CONNINFO_UPDATED
);
247 socanwrite(struct socket
*so
)
249 return ((so
->so_state
& SS_ISCONNECTED
) ||
250 !(so
->so_proto
->pr_flags
& PR_CONNREQUIRED
) ||
251 (so
->so_flags1
& SOF1_PRECONNECT_DATA
));
255 soisdisconnecting(struct socket
*so
)
257 so
->so_state
&= ~SS_ISCONNECTING
;
258 so
->so_state
|= (SS_ISDISCONNECTING
|SS_CANTRCVMORE
|SS_CANTSENDMORE
);
259 soevent(so
, SO_FILT_HINT_LOCKED
);
260 sflt_notify(so
, sock_evt_disconnecting
, NULL
);
261 wakeup((caddr_t
)&so
->so_timeo
);
267 soisdisconnected(struct socket
*so
)
269 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISCONNECTED
|SS_ISDISCONNECTING
);
270 so
->so_state
|= (SS_CANTRCVMORE
|SS_CANTSENDMORE
|SS_ISDISCONNECTED
);
271 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_DISCONNECTED
|
272 SO_FILT_HINT_CONNINFO_UPDATED
);
273 sflt_notify(so
, sock_evt_disconnected
, NULL
);
274 wakeup((caddr_t
)&so
->so_timeo
);
279 /* Notify content filters as soon as we cannot send/receive data */
280 cfil_sock_notify_shutdown(so
, SHUT_RDWR
);
281 #endif /* CONTENT_FILTER */
285 * This function will issue a wakeup like soisdisconnected but it will not
286 * notify the socket filters. This will avoid unlocking the socket
287 * in the midst of closing it.
290 sodisconnectwakeup(struct socket
*so
)
292 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISCONNECTED
|SS_ISDISCONNECTING
);
293 so
->so_state
|= (SS_CANTRCVMORE
|SS_CANTSENDMORE
|SS_ISDISCONNECTED
);
294 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_DISCONNECTED
|
295 SO_FILT_HINT_CONNINFO_UPDATED
);
296 wakeup((caddr_t
)&so
->so_timeo
);
301 /* Notify content filters as soon as we cannot send/receive data */
302 cfil_sock_notify_shutdown(so
, SHUT_RDWR
);
303 #endif /* CONTENT_FILTER */
307 * When an attempt at a new connection is noted on a socket
308 * which accepts connections, sonewconn is called. If the
309 * connection is possible (subject to space constraints, etc.)
310 * then we allocate a new structure, propoerly linked into the
311 * data structure of the original socket, and return this.
312 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
314 static struct socket
*
315 sonewconn_internal(struct socket
*head
, int connstatus
)
317 int so_qlen
, error
= 0;
319 lck_mtx_t
*mutex_held
;
321 if (head
->so_proto
->pr_getlock
!= NULL
)
322 mutex_held
= (*head
->so_proto
->pr_getlock
)(head
, 0);
324 mutex_held
= head
->so_proto
->pr_domain
->dom_mtx
;
325 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
329 * This is the default case; so_qlen represents the
330 * sum of both incomplete and completed queues.
332 so_qlen
= head
->so_qlen
;
335 * When kern.ipc.soqlencomp is set to 1, so_qlen
336 * represents only the completed queue. Since we
337 * cannot let the incomplete queue goes unbounded
338 * (in case of SYN flood), we cap the incomplete
339 * queue length to at most somaxconn, and use that
340 * as so_qlen so that we fail immediately below.
342 so_qlen
= head
->so_qlen
- head
->so_incqlen
;
343 if (head
->so_incqlen
> somaxconn
)
348 (soqlimitcompat
? head
->so_qlimit
: (3 * head
->so_qlimit
/ 2)))
349 return ((struct socket
*)0);
350 so
= soalloc(1, SOCK_DOM(head
), head
->so_type
);
352 return ((struct socket
*)0);
353 /* check if head was closed during the soalloc */
354 if (head
->so_proto
== NULL
) {
356 return ((struct socket
*)0);
359 so
->so_type
= head
->so_type
;
360 so
->so_options
= head
->so_options
&~ SO_ACCEPTCONN
;
361 so
->so_linger
= head
->so_linger
;
362 so
->so_state
= head
->so_state
| SS_NOFDREF
;
363 so
->so_proto
= head
->so_proto
;
364 so
->so_timeo
= head
->so_timeo
;
365 so
->so_pgid
= head
->so_pgid
;
366 kauth_cred_ref(head
->so_cred
);
367 so
->so_cred
= head
->so_cred
;
368 so
->last_pid
= head
->last_pid
;
369 so
->last_upid
= head
->last_upid
;
370 memcpy(so
->last_uuid
, head
->last_uuid
, sizeof (so
->last_uuid
));
371 if (head
->so_flags
& SOF_DELEGATED
) {
372 so
->e_pid
= head
->e_pid
;
373 so
->e_upid
= head
->e_upid
;
374 memcpy(so
->e_uuid
, head
->e_uuid
, sizeof (so
->e_uuid
));
376 /* inherit socket options stored in so_flags */
377 so
->so_flags
= head
->so_flags
&
378 (SOF_NOSIGPIPE
| SOF_NOADDRAVAIL
| SOF_REUSESHAREUID
|
379 SOF_NOTIFYCONFLICT
| SOF_BINDRANDOMPORT
| SOF_NPX_SETOPTSHUT
|
380 SOF_NODEFUNCT
| SOF_PRIVILEGED_TRAFFIC_CLASS
| SOF_NOTSENT_LOWAT
|
381 SOF_USELRO
| SOF_DELEGATED
);
383 so
->next_lock_lr
= 0;
384 so
->next_unlock_lr
= 0;
386 so
->so_rcv
.sb_flags
|= SB_RECV
; /* XXX */
387 so
->so_rcv
.sb_so
= so
->so_snd
.sb_so
= so
;
388 TAILQ_INIT(&so
->so_evlist
);
390 #if CONFIG_MACF_SOCKET
391 mac_socket_label_associate_accept(head
, so
);
394 /* inherit traffic management properties of listener */
396 head
->so_flags1
& (SOF1_TRAFFIC_MGT_SO_BACKGROUND
);
397 so
->so_background_thread
= head
->so_background_thread
;
398 so
->so_traffic_class
= head
->so_traffic_class
;
400 if (soreserve(so
, head
->so_snd
.sb_hiwat
, head
->so_rcv
.sb_hiwat
)) {
402 return ((struct socket
*)0);
404 so
->so_rcv
.sb_flags
|= (head
->so_rcv
.sb_flags
& SB_USRSIZE
);
405 so
->so_snd
.sb_flags
|= (head
->so_snd
.sb_flags
& SB_USRSIZE
);
408 * Must be done with head unlocked to avoid deadlock
409 * for protocol with per socket mutexes.
411 if (head
->so_proto
->pr_unlock
)
412 socket_unlock(head
, 0);
413 if (((*so
->so_proto
->pr_usrreqs
->pru_attach
)(so
, 0, NULL
) != 0) ||
416 if (head
->so_proto
->pr_unlock
)
417 socket_lock(head
, 0);
418 return ((struct socket
*)0);
420 if (head
->so_proto
->pr_unlock
) {
421 socket_lock(head
, 0);
423 * Radar 7385998 Recheck that the head is still accepting
424 * to avoid race condition when head is getting closed.
426 if ((head
->so_options
& SO_ACCEPTCONN
) == 0) {
427 so
->so_state
&= ~SS_NOFDREF
;
429 return ((struct socket
*)0);
433 atomic_add_32(&so
->so_proto
->pr_domain
->dom_refs
, 1);
435 /* Insert in head appropriate lists */
439 * Since this socket is going to be inserted into the incomp
440 * queue, it can be picked up by another thread in
441 * tcp_dropdropablreq to get dropped before it is setup..
442 * To prevent this race, set in-progress flag which can be
445 so
->so_flags
|= SOF_INCOMP_INPROGRESS
;
448 TAILQ_INSERT_TAIL(&head
->so_comp
, so
, so_list
);
449 so
->so_state
|= SS_COMP
;
451 TAILQ_INSERT_TAIL(&head
->so_incomp
, so
, so_list
);
452 so
->so_state
|= SS_INCOMP
;
457 /* Attach socket filters for this protocol */
461 so
->so_state
|= connstatus
;
463 wakeup((caddr_t
)&head
->so_timeo
);
470 sonewconn(struct socket
*head
, int connstatus
, const struct sockaddr
*from
)
472 int error
= sflt_connectin(head
, from
);
477 return (sonewconn_internal(head
, connstatus
));
481 * Socantsendmore indicates that no more data will be sent on the
482 * socket; it would normally be applied to a socket when the user
483 * informs the system that no more data is to be sent, by the protocol
484 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
485 * will be received, and will normally be applied to the socket by a
486 * protocol when it detects that the peer will send no more data.
487 * Data queued for reading in the socket may yet be read.
491 socantsendmore(struct socket
*so
)
493 so
->so_state
|= SS_CANTSENDMORE
;
494 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_CANTSENDMORE
);
495 sflt_notify(so
, sock_evt_cantsendmore
, NULL
);
500 socantrcvmore(struct socket
*so
)
502 so
->so_state
|= SS_CANTRCVMORE
;
503 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_CANTRCVMORE
);
504 sflt_notify(so
, sock_evt_cantrecvmore
, NULL
);
509 * Wait for data to arrive at/drain from a socket buffer.
512 sbwait(struct sockbuf
*sb
)
514 boolean_t nointr
= (sb
->sb_flags
& SB_NOINTR
);
515 void *lr_saved
= __builtin_return_address(0);
516 struct socket
*so
= sb
->sb_so
;
517 lck_mtx_t
*mutex_held
;
522 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
523 __func__
, sb
, sb
->sb_flags
, lr_saved
);
525 } else if (so
->so_usecount
< 1) {
526 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
527 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
528 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
532 if ((so
->so_state
& SS_DRAINING
) || (so
->so_flags
& SOF_DEFUNCT
)) {
534 if (so
->so_flags
& SOF_DEFUNCT
) {
535 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
536 "(%d)\n", __func__
, proc_selfpid(),
537 proc_best_name(current_proc()),
538 (uint64_t)VM_KERNEL_ADDRPERM(so
),
539 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
544 if (so
->so_proto
->pr_getlock
!= NULL
)
545 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
547 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
549 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
551 ts
.tv_sec
= sb
->sb_timeo
.tv_sec
;
552 ts
.tv_nsec
= sb
->sb_timeo
.tv_usec
* 1000;
555 VERIFY(sb
->sb_waiters
!= 0);
557 error
= msleep((caddr_t
)&sb
->sb_cc
, mutex_held
,
558 nointr
? PSOCK
: PSOCK
| PCATCH
,
559 nointr
? "sbwait_nointr" : "sbwait", &ts
);
561 VERIFY(sb
->sb_waiters
!= 0);
564 if (so
->so_usecount
< 1) {
565 panic("%s: 2 sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
566 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
567 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
571 if ((so
->so_state
& SS_DRAINING
) || (so
->so_flags
& SOF_DEFUNCT
)) {
573 if (so
->so_flags
& SOF_DEFUNCT
) {
574 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
575 "(%d)\n", __func__
, proc_selfpid(),
576 proc_best_name(current_proc()),
577 (uint64_t)VM_KERNEL_ADDRPERM(so
),
578 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
586 sbwakeup(struct sockbuf
*sb
)
588 if (sb
->sb_waiters
> 0)
589 wakeup((caddr_t
)&sb
->sb_cc
);
593 * Wakeup processes waiting on a socket buffer.
594 * Do asynchronous notification via SIGIO
595 * if the socket has the SS_ASYNC flag set.
598 sowakeup(struct socket
*so
, struct sockbuf
*sb
)
600 if (so
->so_flags
& SOF_DEFUNCT
) {
601 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] si 0x%x, "
602 "fl 0x%x [%s]\n", __func__
, proc_selfpid(),
603 proc_best_name(current_proc()),
604 (uint64_t)VM_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
605 SOCK_TYPE(so
), (uint32_t)sb
->sb_sel
.si_flags
, sb
->sb_flags
,
606 (sb
->sb_flags
& SB_RECV
) ? "rcv" : "snd");
609 sb
->sb_flags
&= ~SB_SEL
;
610 selwakeup(&sb
->sb_sel
);
612 if (so
->so_state
& SS_ASYNC
) {
614 gsignal(-so
->so_pgid
, SIGIO
);
615 else if (so
->so_pgid
> 0)
616 proc_signal(so
->so_pgid
, SIGIO
);
618 if (sb
->sb_flags
& SB_KNOTE
) {
619 KNOTE(&sb
->sb_sel
.si_note
, SO_FILT_HINT_LOCKED
);
621 if (sb
->sb_flags
& SB_UPCALL
) {
622 void (*sb_upcall
)(struct socket
*, void *, int);
623 caddr_t sb_upcallarg
;
625 sb_upcall
= sb
->sb_upcall
;
626 sb_upcallarg
= sb
->sb_upcallarg
;
627 /* Let close know that we're about to do an upcall */
628 so
->so_upcallusecount
++;
630 socket_unlock(so
, 0);
631 (*sb_upcall
)(so
, sb_upcallarg
, M_DONTWAIT
);
634 so
->so_upcallusecount
--;
635 /* Tell close that it's safe to proceed */
636 if ((so
->so_flags
& SOF_CLOSEWAIT
) &&
637 so
->so_upcallusecount
== 0)
638 wakeup((caddr_t
)&so
->so_upcallusecount
);
642 * Trap disconnection events for content filters
644 if ((so
->so_flags
& SOF_CONTENT_FILTER
) != 0) {
645 if ((sb
->sb_flags
& SB_RECV
)) {
646 if (so
->so_state
& (SS_CANTRCVMORE
))
647 cfil_sock_notify_shutdown(so
, SHUT_RD
);
649 if (so
->so_state
& (SS_CANTSENDMORE
))
650 cfil_sock_notify_shutdown(so
, SHUT_WR
);
653 #endif /* CONTENT_FILTER */
657 * Socket buffer (struct sockbuf) utility routines.
659 * Each socket contains two socket buffers: one for sending data and
660 * one for receiving data. Each buffer contains a queue of mbufs,
661 * information about the number of mbufs and amount of data in the
662 * queue, and other fields allowing select() statements and notification
663 * on data availability to be implemented.
665 * Data stored in a socket buffer is maintained as a list of records.
666 * Each record is a list of mbufs chained together with the m_next
667 * field. Records are chained together with the m_nextpkt field. The upper
668 * level routine soreceive() expects the following conventions to be
669 * observed when placing information in the receive buffer:
671 * 1. If the protocol requires each message be preceded by the sender's
672 * name, then a record containing that name must be present before
673 * any associated data (mbuf's must be of type MT_SONAME).
674 * 2. If the protocol supports the exchange of ``access rights'' (really
675 * just additional data associated with the message), and there are
676 * ``rights'' to be received, then a record containing this data
677 * should be present (mbuf's must be of type MT_RIGHTS).
678 * 3. If a name or rights record exists, then it must be followed by
679 * a data record, perhaps of zero length.
681 * Before using a new socket structure it is first necessary to reserve
682 * buffer space to the socket, by calling sbreserve(). This should commit
683 * some of the available buffer space in the system buffer pool for the
684 * socket (currently, it does nothing but enforce limits). The space
685 * should be released by calling sbrelease() when the socket is destroyed.
693 soreserve(struct socket
*so
, u_int32_t sndcc
, u_int32_t rcvcc
)
695 if (sbreserve(&so
->so_snd
, sndcc
) == 0)
698 so
->so_snd
.sb_idealsize
= sndcc
;
700 if (sbreserve(&so
->so_rcv
, rcvcc
) == 0)
703 so
->so_rcv
.sb_idealsize
= rcvcc
;
705 if (so
->so_rcv
.sb_lowat
== 0)
706 so
->so_rcv
.sb_lowat
= 1;
707 if (so
->so_snd
.sb_lowat
== 0)
708 so
->so_snd
.sb_lowat
= MCLBYTES
;
709 if (so
->so_snd
.sb_lowat
> so
->so_snd
.sb_hiwat
)
710 so
->so_snd
.sb_lowat
= so
->so_snd
.sb_hiwat
;
713 so
->so_snd
.sb_flags
&= ~SB_SEL
;
714 selthreadclear(&so
->so_snd
.sb_sel
);
715 sbrelease(&so
->so_snd
);
721 soreserve_preconnect(struct socket
*so
, unsigned int pre_cc
)
723 /* As of now, same bytes for both preconnect read and write */
724 so
->so_snd
.sb_preconn_hiwat
= pre_cc
;
725 so
->so_rcv
.sb_preconn_hiwat
= pre_cc
;
729 * Allot mbufs to a sockbuf.
730 * Attempt to scale mbmax so that mbcnt doesn't become limiting
731 * if buffering efficiency is near the normal case.
734 sbreserve(struct sockbuf
*sb
, u_int32_t cc
)
736 if ((u_quad_t
)cc
> (u_quad_t
)sb_max
* MCLBYTES
/ (MSIZE
+ MCLBYTES
))
739 sb
->sb_mbmax
= min(cc
* sb_efficiency
, sb_max
);
740 if (sb
->sb_lowat
> sb
->sb_hiwat
)
741 sb
->sb_lowat
= sb
->sb_hiwat
;
746 * Free mbufs held by a socket, and reserved mbuf space.
748 /* WARNING needs to do selthreadclear() before calling this */
750 sbrelease(struct sockbuf
*sb
)
758 * Routines to add and remove
759 * data from an mbuf queue.
761 * The routines sbappend() or sbappendrecord() are normally called to
762 * append new mbufs to a socket buffer, after checking that adequate
763 * space is available, comparing the function sbspace() with the amount
764 * of data to be added. sbappendrecord() differs from sbappend() in
765 * that data supplied is treated as the beginning of a new record.
766 * To place a sender's address, optional access rights, and data in a
767 * socket receive buffer, sbappendaddr() should be used. To place
768 * access rights and data in a socket receive buffer, sbappendrights()
769 * should be used. In either case, the new data begins a new record.
770 * Note that unlike sbappend() and sbappendrecord(), these routines check
771 * for the caller that there will be enough space to store the data.
772 * Each fails if there is not enough space, or if it cannot find mbufs
773 * to store additional information in.
775 * Reliable protocols may use the socket send buffer to hold data
776 * awaiting acknowledgement. Data is normally copied from a socket
777 * send buffer in a protocol with m_copy for output to a peer,
778 * and then removing the data from the socket buffer with sbdrop()
779 * or sbdroprecord() when the data is acknowledged by the peer.
783 * Append mbuf chain m to the last record in the
784 * socket buffer sb. The additional space associated
785 * the mbuf chain is recorded in sb. Empty mbufs are
786 * discarded and mbufs are compacted where possible.
789 sbappend(struct sockbuf
*sb
, struct mbuf
*m
)
791 struct socket
*so
= sb
->sb_so
;
793 if (m
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
799 SBLASTRECORDCHK(sb
, "sbappend 1");
801 if (sb
->sb_lastrecord
!= NULL
&& (sb
->sb_mbtail
->m_flags
& M_EOR
))
802 return (sbappendrecord(sb
, m
));
804 if (sb
->sb_flags
& SB_RECV
&& !(m
&& m
->m_flags
& M_SKIPCFIL
)) {
805 int error
= sflt_data_in(so
, NULL
, &m
, NULL
, 0);
806 SBLASTRECORDCHK(sb
, "sbappend 2");
810 error
= cfil_sock_data_in(so
, NULL
, m
, NULL
, 0);
811 #endif /* CONTENT_FILTER */
814 if (error
!= EJUSTRETURN
)
819 m
->m_flags
&= ~M_SKIPCFIL
;
822 /* If this is the first record, it's also the last record */
823 if (sb
->sb_lastrecord
== NULL
)
824 sb
->sb_lastrecord
= m
;
826 sbcompress(sb
, m
, sb
->sb_mbtail
);
827 SBLASTRECORDCHK(sb
, "sbappend 3");
832 * Similar to sbappend, except that this is optimized for stream sockets.
835 sbappendstream(struct sockbuf
*sb
, struct mbuf
*m
)
837 struct socket
*so
= sb
->sb_so
;
839 if (m
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
845 if (m
->m_nextpkt
!= NULL
|| (sb
->sb_mb
!= sb
->sb_lastrecord
)) {
846 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
847 m
->m_nextpkt
, sb
->sb_mb
, sb
->sb_lastrecord
);
851 SBLASTMBUFCHK(sb
, __func__
);
853 if (sb
->sb_flags
& SB_RECV
&& !(m
&& m
->m_flags
& M_SKIPCFIL
)) {
854 int error
= sflt_data_in(so
, NULL
, &m
, NULL
, 0);
855 SBLASTRECORDCHK(sb
, "sbappendstream 1");
859 error
= cfil_sock_data_in(so
, NULL
, m
, NULL
, 0);
860 #endif /* CONTENT_FILTER */
863 if (error
!= EJUSTRETURN
)
868 m
->m_flags
&= ~M_SKIPCFIL
;
871 sbcompress(sb
, m
, sb
->sb_mbtail
);
872 sb
->sb_lastrecord
= sb
->sb_mb
;
873 SBLASTRECORDCHK(sb
, "sbappendstream 2");
879 sbcheck(struct sockbuf
*sb
)
883 u_int32_t len
= 0, mbcnt
= 0;
884 lck_mtx_t
*mutex_held
;
886 if (sb
->sb_so
->so_proto
->pr_getlock
!= NULL
)
887 mutex_held
= (*sb
->sb_so
->so_proto
->pr_getlock
)(sb
->sb_so
, 0);
889 mutex_held
= sb
->sb_so
->so_proto
->pr_domain
->dom_mtx
;
891 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
896 for (m
= sb
->sb_mb
; m
; m
= n
) {
898 for (; m
; m
= m
->m_next
) {
901 /* XXX pretty sure this is bogus */
902 if (m
->m_flags
& M_EXT
)
903 mbcnt
+= m
->m_ext
.ext_size
;
906 if (len
!= sb
->sb_cc
|| mbcnt
!= sb
->sb_mbcnt
) {
907 panic("cc %ld != %ld || mbcnt %ld != %ld\n", len
, sb
->sb_cc
,
908 mbcnt
, sb
->sb_mbcnt
);
914 sblastrecordchk(struct sockbuf
*sb
, const char *where
)
916 struct mbuf
*m
= sb
->sb_mb
;
918 while (m
&& m
->m_nextpkt
)
921 if (m
!= sb
->sb_lastrecord
) {
922 printf("sblastrecordchk: mb 0x%llx lastrecord 0x%llx "
924 (uint64_t)VM_KERNEL_ADDRPERM(sb
->sb_mb
),
925 (uint64_t)VM_KERNEL_ADDRPERM(sb
->sb_lastrecord
),
926 (uint64_t)VM_KERNEL_ADDRPERM(m
));
927 printf("packet chain:\n");
928 for (m
= sb
->sb_mb
; m
!= NULL
; m
= m
->m_nextpkt
)
929 printf("\t0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(m
));
930 panic("sblastrecordchk from %s", where
);
935 sblastmbufchk(struct sockbuf
*sb
, const char *where
)
937 struct mbuf
*m
= sb
->sb_mb
;
940 while (m
&& m
->m_nextpkt
)
943 while (m
&& m
->m_next
)
946 if (m
!= sb
->sb_mbtail
) {
947 printf("sblastmbufchk: mb 0x%llx mbtail 0x%llx last 0x%llx\n",
948 (uint64_t)VM_KERNEL_ADDRPERM(sb
->sb_mb
),
949 (uint64_t)VM_KERNEL_ADDRPERM(sb
->sb_mbtail
),
950 (uint64_t)VM_KERNEL_ADDRPERM(m
));
951 printf("packet tree:\n");
952 for (m
= sb
->sb_mb
; m
!= NULL
; m
= m
->m_nextpkt
) {
954 for (n
= m
; n
!= NULL
; n
= n
->m_next
)
956 (uint64_t)VM_KERNEL_ADDRPERM(n
));
959 panic("sblastmbufchk from %s", where
);
964 * Similar to sbappend, except the mbuf chain begins a new record.
967 sbappendrecord(struct sockbuf
*sb
, struct mbuf
*m0
)
972 if (m0
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
978 for (m
= m0
; m
!= NULL
; m
= m
->m_next
)
981 if (space
> sbspace(sb
) && !(sb
->sb_flags
& SB_UNIX
)) {
986 if (sb
->sb_flags
& SB_RECV
&& !(m0
&& m0
->m_flags
& M_SKIPCFIL
)) {
987 int error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, NULL
,
988 sock_data_filt_flag_record
);
992 error
= cfil_sock_data_in(sb
->sb_so
, NULL
, m0
, NULL
, 0);
993 #endif /* CONTENT_FILTER */
996 SBLASTRECORDCHK(sb
, "sbappendrecord 1");
997 if (error
!= EJUSTRETURN
)
1002 m0
->m_flags
&= ~M_SKIPCFIL
;
1006 * Note this permits zero length records.
1009 SBLASTRECORDCHK(sb
, "sbappendrecord 2");
1010 if (sb
->sb_lastrecord
!= NULL
) {
1011 sb
->sb_lastrecord
->m_nextpkt
= m0
;
1015 sb
->sb_lastrecord
= m0
;
1020 if (m
&& (m0
->m_flags
& M_EOR
)) {
1021 m0
->m_flags
&= ~M_EOR
;
1022 m
->m_flags
|= M_EOR
;
1024 sbcompress(sb
, m
, m0
);
1025 SBLASTRECORDCHK(sb
, "sbappendrecord 3");
1030 * As above except that OOB data
1031 * is inserted at the beginning of the sockbuf,
1032 * but after any other OOB data.
1035 sbinsertoob(struct sockbuf
*sb
, struct mbuf
*m0
)
1043 SBLASTRECORDCHK(sb
, "sbinsertoob 1");
1045 if ((sb
->sb_flags
& SB_RECV
&& !(m0
->m_flags
& M_SKIPCFIL
)) != 0) {
1046 int error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, NULL
,
1047 sock_data_filt_flag_oob
);
1049 SBLASTRECORDCHK(sb
, "sbinsertoob 2");
1053 error
= cfil_sock_data_in(sb
->sb_so
, NULL
, m0
, NULL
, 0);
1054 #endif /* CONTENT_FILTER */
1057 if (error
!= EJUSTRETURN
) {
1063 m0
->m_flags
&= ~M_SKIPCFIL
;
1066 for (mp
= &sb
->sb_mb
; *mp
; mp
= &((*mp
)->m_nextpkt
)) {
1069 switch (m
->m_type
) {
1072 continue; /* WANT next train */
1077 goto again
; /* inspect THIS train further */
1082 * Put the first mbuf on the queue.
1083 * Note this permits zero length records.
1086 m0
->m_nextpkt
= *mp
;
1088 /* m0 is actually the new tail */
1089 sb
->sb_lastrecord
= m0
;
1094 if (m
&& (m0
->m_flags
& M_EOR
)) {
1095 m0
->m_flags
&= ~M_EOR
;
1096 m
->m_flags
|= M_EOR
;
1098 sbcompress(sb
, m
, m0
);
1099 SBLASTRECORDCHK(sb
, "sbinsertoob 3");
1104 * Append address and data, and optionally, control (ancillary) data
1105 * to the receive queue of a socket. If present,
1106 * m0 must include a packet header with total length.
1107 * Returns 0 if no space in sockbuf or insufficient mbufs.
1109 * Returns: 0 No space/out of mbufs
1113 sbappendaddr_internal(struct sockbuf
*sb
, struct sockaddr
*asa
,
1114 struct mbuf
*m0
, struct mbuf
*control
)
1116 struct mbuf
*m
, *n
, *nlast
;
1117 int space
= asa
->sa_len
;
1119 if (m0
&& (m0
->m_flags
& M_PKTHDR
) == 0)
1120 panic("sbappendaddr");
1123 space
+= m0
->m_pkthdr
.len
;
1124 for (n
= control
; n
; n
= n
->m_next
) {
1126 if (n
->m_next
== 0) /* keep pointer to last control buf */
1129 if (space
> sbspace(sb
))
1131 if (asa
->sa_len
> MLEN
)
1133 MGET(m
, M_DONTWAIT
, MT_SONAME
);
1136 m
->m_len
= asa
->sa_len
;
1137 bcopy((caddr_t
)asa
, mtod(m
, caddr_t
), asa
->sa_len
);
1139 n
->m_next
= m0
; /* concatenate data to control */
1142 m
->m_next
= control
;
1144 SBLASTRECORDCHK(sb
, "sbappendadddr 1");
1146 for (n
= m
; n
->m_next
!= NULL
; n
= n
->m_next
)
1151 if (sb
->sb_lastrecord
!= NULL
) {
1152 sb
->sb_lastrecord
->m_nextpkt
= m
;
1156 sb
->sb_lastrecord
= m
;
1157 sb
->sb_mbtail
= nlast
;
1159 SBLASTMBUFCHK(sb
, __func__
);
1160 SBLASTRECORDCHK(sb
, "sbappendadddr 2");
1162 postevent(0, sb
, EV_RWBYTES
);
1167 * Returns: 0 Error: No space/out of mbufs/etc.
1170 * Imputed: (*error_out) errno for error
1172 * sflt_data_in:??? [whatever a filter author chooses]
1175 sbappendaddr(struct sockbuf
*sb
, struct sockaddr
*asa
, struct mbuf
*m0
,
1176 struct mbuf
*control
, int *error_out
)
1179 boolean_t sb_unix
= (sb
->sb_flags
& SB_UNIX
);
1184 if (m0
&& (m0
->m_flags
& M_PKTHDR
) == 0)
1185 panic("sbappendaddrorfree");
1187 if (sb
->sb_flags
& SB_DROP
) {
1190 if (control
!= NULL
&& !sb_unix
)
1192 if (error_out
!= NULL
)
1193 *error_out
= EINVAL
;
1197 /* Call socket data in filters */
1198 if (sb
->sb_flags
& SB_RECV
&& !(m0
&& m0
->m_flags
& M_SKIPCFIL
)) {
1200 error
= sflt_data_in(sb
->sb_so
, asa
, &m0
, &control
, 0);
1201 SBLASTRECORDCHK(sb
, __func__
);
1205 error
= cfil_sock_data_in(sb
->sb_so
, asa
, m0
, control
,
1207 #endif /* CONTENT_FILTER */
1210 if (error
!= EJUSTRETURN
) {
1213 if (control
!= NULL
&& !sb_unix
)
1221 m0
->m_flags
&= ~M_SKIPCFIL
;
1224 result
= sbappendaddr_internal(sb
, asa
, m0
, control
);
1228 if (control
!= NULL
&& !sb_unix
)
1231 *error_out
= ENOBUFS
;
1238 sbappendcontrol_internal(struct sockbuf
*sb
, struct mbuf
*m0
,
1239 struct mbuf
*control
)
1241 struct mbuf
*m
, *mlast
, *n
;
1245 panic("sbappendcontrol");
1247 for (m
= control
; ; m
= m
->m_next
) {
1252 n
= m
; /* save pointer to last control buffer */
1253 for (m
= m0
; m
; m
= m
->m_next
)
1255 if (space
> sbspace(sb
) && !(sb
->sb_flags
& SB_UNIX
))
1257 n
->m_next
= m0
; /* concatenate data to control */
1258 SBLASTRECORDCHK(sb
, "sbappendcontrol 1");
1260 for (m
= control
; m
->m_next
!= NULL
; m
= m
->m_next
)
1265 if (sb
->sb_lastrecord
!= NULL
) {
1266 sb
->sb_lastrecord
->m_nextpkt
= control
;
1268 sb
->sb_mb
= control
;
1270 sb
->sb_lastrecord
= control
;
1271 sb
->sb_mbtail
= mlast
;
1273 SBLASTMBUFCHK(sb
, __func__
);
1274 SBLASTRECORDCHK(sb
, "sbappendcontrol 2");
1276 postevent(0, sb
, EV_RWBYTES
);
1281 sbappendcontrol(struct sockbuf
*sb
, struct mbuf
*m0
, struct mbuf
*control
,
1285 boolean_t sb_unix
= (sb
->sb_flags
& SB_UNIX
);
1290 if (sb
->sb_flags
& SB_DROP
) {
1293 if (control
!= NULL
&& !sb_unix
)
1295 if (error_out
!= NULL
)
1296 *error_out
= EINVAL
;
1300 if (sb
->sb_flags
& SB_RECV
&& !(m0
&& m0
->m_flags
& M_SKIPCFIL
)) {
1303 error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, &control
, 0);
1304 SBLASTRECORDCHK(sb
, __func__
);
1308 error
= cfil_sock_data_in(sb
->sb_so
, NULL
, m0
, control
,
1310 #endif /* CONTENT_FILTER */
1313 if (error
!= EJUSTRETURN
) {
1316 if (control
!= NULL
&& !sb_unix
)
1324 m0
->m_flags
&= ~M_SKIPCFIL
;
1327 result
= sbappendcontrol_internal(sb
, m0
, control
);
1331 if (control
!= NULL
&& !sb_unix
)
1334 *error_out
= ENOBUFS
;
1341 * Append a contiguous TCP data blob with TCP sequence number as control data
1342 * as a new msg to the receive socket buffer.
1345 sbappendmsgstream_rcv(struct sockbuf
*sb
, struct mbuf
*m
, uint32_t seqnum
,
1348 struct mbuf
*m_eor
= NULL
;
1349 u_int32_t data_len
= 0;
1351 struct socket
*so
= sb
->sb_so
;
1353 VERIFY((m
->m_flags
& M_PKTHDR
) && m_pktlen(m
) > 0);
1354 VERIFY(so
->so_msg_state
!= NULL
);
1355 VERIFY(sb
->sb_flags
& SB_RECV
);
1357 /* Keep the TCP sequence number in the mbuf pkthdr */
1358 m
->m_pkthdr
.msg_seq
= seqnum
;
1360 /* find last mbuf and set M_EOR */
1361 for (m_eor
= m
; ; m_eor
= m_eor
->m_next
) {
1363 * If the msg is unordered, we need to account for
1364 * these bytes in receive socket buffer size. Otherwise,
1365 * the receive window advertised will shrink because
1366 * of the additional unordered bytes added to the
1370 m_eor
->m_flags
|= M_UNORDERED_DATA
;
1371 data_len
+= m_eor
->m_len
;
1372 so
->so_msg_state
->msg_uno_bytes
+= m_eor
->m_len
;
1374 m_eor
->m_flags
&= ~M_UNORDERED_DATA
;
1376 if (m_eor
->m_next
== NULL
)
1380 /* set EOR flag at end of byte blob */
1381 m_eor
->m_flags
|= M_EOR
;
1383 /* expand the receive socket buffer to allow unordered data */
1384 if (unordered
&& !sbreserve(sb
, sb
->sb_hiwat
+ data_len
)) {
1386 * Could not allocate memory for unordered data, it
1387 * means this packet will have to be delivered in order
1389 printf("%s: could not reserve space for unordered data\n",
1393 if (!unordered
&& (sb
->sb_mbtail
!= NULL
) &&
1394 !(sb
->sb_mbtail
->m_flags
& M_UNORDERED_DATA
)) {
1395 sb
->sb_mbtail
->m_flags
&= ~M_EOR
;
1396 sbcompress(sb
, m
, sb
->sb_mbtail
);
1399 ret
= sbappendrecord(sb
, m
);
1401 VERIFY(sb
->sb_mbtail
->m_flags
& M_EOR
);
1406 * TCP streams have message based out of order delivery support, or have
1407 * Multipath TCP support, or are regular TCP sockets
1410 sbappendstream_rcvdemux(struct socket
*so
, struct mbuf
*m
, uint32_t seqnum
,
1415 if ((m
!= NULL
) && (m_pktlen(m
) <= 0)) {
1420 if (so
->so_flags
& SOF_ENABLE_MSGS
) {
1421 ret
= sbappendmsgstream_rcv(&so
->so_rcv
, m
, seqnum
, unordered
);
1424 else if (so
->so_flags
& SOF_MPTCP_TRUE
) {
1425 ret
= sbappendmptcpstream_rcv(&so
->so_rcv
, m
);
1429 ret
= sbappendstream(&so
->so_rcv
, m
);
1436 sbappendmptcpstream_rcv(struct sockbuf
*sb
, struct mbuf
*m
)
1438 struct socket
*so
= sb
->sb_so
;
1440 VERIFY(m
== NULL
|| (m
->m_flags
& M_PKTHDR
));
1441 /* SB_NOCOMPRESS must be set prevent loss of M_PKTHDR data */
1442 VERIFY((sb
->sb_flags
& (SB_RECV
|SB_NOCOMPRESS
)) ==
1443 (SB_RECV
|SB_NOCOMPRESS
));
1445 if (m
== NULL
|| m_pktlen(m
) == 0 || (sb
->sb_flags
& SB_DROP
) ||
1446 (so
->so_state
& SS_CANTRCVMORE
)) {
1451 /* the socket is not closed, so SOF_MP_SUBFLOW must be set */
1452 VERIFY(so
->so_flags
& SOF_MP_SUBFLOW
);
1454 if (m
->m_nextpkt
!= NULL
|| (sb
->sb_mb
!= sb
->sb_lastrecord
)) {
1455 panic("%s: nexpkt %p || mb %p != lastrecord %p\n", __func__
,
1456 m
->m_nextpkt
, sb
->sb_mb
, sb
->sb_lastrecord
);
1460 SBLASTMBUFCHK(sb
, __func__
);
1462 if (mptcp_adj_rmap(so
, m
) != 0)
1465 /* No filter support (SB_RECV) on mptcp subflow sockets */
1467 sbcompress(sb
, m
, sb
->sb_mbtail
);
1468 sb
->sb_lastrecord
= sb
->sb_mb
;
1469 SBLASTRECORDCHK(sb
, __func__
);
1475 * Append message to send socket buffer based on priority.
1478 sbappendmsg_snd(struct sockbuf
*sb
, struct mbuf
*m
)
1480 struct socket
*so
= sb
->sb_so
;
1481 struct msg_priq
*priq
;
1484 VERIFY(so
->so_msg_state
!= NULL
);
1486 if (m
->m_nextpkt
!= NULL
|| (sb
->sb_mb
!= sb
->sb_lastrecord
))
1487 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
1488 m
->m_nextpkt
, sb
->sb_mb
, sb
->sb_lastrecord
);
1490 SBLASTMBUFCHK(sb
, __func__
);
1492 if (m
== NULL
|| (sb
->sb_flags
& SB_DROP
) || so
->so_msg_state
== NULL
) {
1498 priq
= &so
->so_msg_state
->msg_priq
[m
->m_pkthdr
.msg_pri
];
1500 /* note if we need to propogate M_EOR to the last mbuf */
1501 if (m
->m_flags
& M_EOR
) {
1504 /* Reset M_EOR from the first mbuf */
1505 m
->m_flags
&= ~(M_EOR
);
1508 if (priq
->msgq_head
== NULL
) {
1509 VERIFY(priq
->msgq_tail
== NULL
&& priq
->msgq_lastmsg
== NULL
);
1510 priq
->msgq_head
= priq
->msgq_lastmsg
= m
;
1512 VERIFY(priq
->msgq_tail
->m_next
== NULL
);
1514 /* Check if the last message has M_EOR flag set */
1515 if (priq
->msgq_tail
->m_flags
& M_EOR
) {
1516 /* Insert as a new message */
1517 priq
->msgq_lastmsg
->m_nextpkt
= m
;
1519 /* move the lastmsg pointer */
1520 priq
->msgq_lastmsg
= m
;
1522 /* Append to the existing message */
1523 priq
->msgq_tail
->m_next
= m
;
1527 /* Update accounting and the queue tail pointer */
1529 while (m
->m_next
!= NULL
) {
1531 priq
->msgq_bytes
+= m
->m_len
;
1535 priq
->msgq_bytes
+= m
->m_len
;
1538 m
->m_flags
|= M_EOR
;
1541 * Since the user space can not write a new msg
1542 * without completing the previous one, we can
1543 * reset this flag to start sending again.
1545 priq
->msgq_flags
&= ~(MSGQ_MSG_NOTDONE
);
1548 priq
->msgq_tail
= m
;
1550 SBLASTRECORDCHK(sb
, "sbappendstream 2");
1551 postevent(0, sb
, EV_RWBYTES
);
1556 * Pull data from priority queues to the serial snd queue
1557 * right before sending.
1560 sbpull_unordered_data(struct socket
*so
, int32_t off
, int32_t len
)
1563 struct msg_priq
*priq
= NULL
;
1565 VERIFY(so
->so_msg_state
!= NULL
);
1567 topull
= (off
+ len
) - so
->so_msg_state
->msg_serial_bytes
;
1570 while (i
>= MSG_PRI_MIN
&& topull
> 0) {
1571 struct mbuf
*m
= NULL
, *mqhead
= NULL
, *mend
= NULL
;
1572 priq
= &so
->so_msg_state
->msg_priq
[i
];
1573 if ((priq
->msgq_flags
& MSGQ_MSG_NOTDONE
) &&
1574 priq
->msgq_head
== NULL
) {
1576 * We were in the middle of sending
1577 * a message and we have not seen the
1580 VERIFY(priq
->msgq_lastmsg
== NULL
&&
1581 priq
->msgq_tail
== NULL
);
1584 if (priq
->msgq_head
!= NULL
) {
1585 int32_t bytes
= 0, topull_tmp
= topull
;
1587 * We found a msg while scanning the priority
1588 * queue from high to low priority.
1590 m
= priq
->msgq_head
;
1595 * Move bytes from the priority queue to the
1596 * serial queue. Compute the number of bytes
1599 while (mqhead
->m_next
!= NULL
&& topull_tmp
> 0) {
1600 bytes
+= mqhead
->m_len
;
1601 topull_tmp
-= mqhead
->m_len
;
1603 mqhead
= mqhead
->m_next
;
1606 if (mqhead
->m_next
== NULL
) {
1608 * If we have only one more mbuf left,
1609 * move the last mbuf of this message to
1610 * serial queue and set the head of the
1611 * queue to be the next message.
1613 bytes
+= mqhead
->m_len
;
1615 mqhead
= m
->m_nextpkt
;
1616 if (!(mend
->m_flags
& M_EOR
)) {
1618 * We have not seen the end of
1619 * this message, so we can not
1622 priq
->msgq_flags
|= MSGQ_MSG_NOTDONE
;
1625 mend
->m_flags
&= ~(M_EOR
);
1628 /* propogate the next msg pointer */
1629 mqhead
->m_nextpkt
= m
->m_nextpkt
;
1631 priq
->msgq_head
= mqhead
;
1634 * if the lastmsg pointer points to
1635 * the mbuf that is being dequeued, update
1636 * it to point to the new head.
1638 if (priq
->msgq_lastmsg
== m
)
1639 priq
->msgq_lastmsg
= priq
->msgq_head
;
1641 m
->m_nextpkt
= NULL
;
1642 mend
->m_next
= NULL
;
1644 if (priq
->msgq_head
== NULL
) {
1645 /* Moved all messages, update tail */
1646 priq
->msgq_tail
= NULL
;
1647 VERIFY(priq
->msgq_lastmsg
== NULL
);
1650 /* Move it to serial sb_mb queue */
1651 if (so
->so_snd
.sb_mb
== NULL
) {
1652 so
->so_snd
.sb_mb
= m
;
1654 so
->so_snd
.sb_mbtail
->m_next
= m
;
1657 priq
->msgq_bytes
-= bytes
;
1658 VERIFY(priq
->msgq_bytes
>= 0);
1659 sbwakeup(&so
->so_snd
);
1661 so
->so_msg_state
->msg_serial_bytes
+= bytes
;
1662 so
->so_snd
.sb_mbtail
= mend
;
1663 so
->so_snd
.sb_lastrecord
= so
->so_snd
.sb_mb
;
1666 (off
+ len
) - so
->so_msg_state
->msg_serial_bytes
;
1668 if (priq
->msgq_flags
& MSGQ_MSG_NOTDONE
)
1674 sblastrecordchk(&so
->so_snd
, "sbpull_unordered_data");
1675 sblastmbufchk(&so
->so_snd
, "sbpull_unordered_data");
1679 * Compress mbuf chain m into the socket
1680 * buffer sb following mbuf n. If n
1681 * is null, the buffer is presumed empty.
1684 sbcompress(struct sockbuf
*sb
, struct mbuf
*m
, struct mbuf
*n
)
1686 int eor
= 0, compress
= (!(sb
->sb_flags
& SB_NOCOMPRESS
));
1690 /* There is nothing to compress; just update the tail */
1691 for (; n
->m_next
!= NULL
; n
= n
->m_next
)
1698 eor
|= m
->m_flags
& M_EOR
;
1699 if (compress
&& m
->m_len
== 0 && (eor
== 0 ||
1700 (((o
= m
->m_next
) || (o
= n
)) && o
->m_type
== m
->m_type
))) {
1701 if (sb
->sb_lastrecord
== m
)
1702 sb
->sb_lastrecord
= m
->m_next
;
1706 if (compress
&& n
!= NULL
&& (n
->m_flags
& M_EOR
) == 0 &&
1710 m
->m_len
<= MCLBYTES
/ 4 && /* XXX: Don't copy too much */
1711 m
->m_len
<= M_TRAILINGSPACE(n
) &&
1712 n
->m_type
== m
->m_type
) {
1713 bcopy(mtod(m
, caddr_t
), mtod(n
, caddr_t
) + n
->m_len
,
1714 (unsigned)m
->m_len
);
1715 n
->m_len
+= m
->m_len
;
1716 sb
->sb_cc
+= m
->m_len
;
1717 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
1718 m
->m_type
!= MT_OOBDATA
) {
1719 /* XXX: Probably don't need */
1720 sb
->sb_ctl
+= m
->m_len
;
1723 /* update send byte count */
1724 if (sb
->sb_flags
& SB_SNDBYTE_CNT
) {
1725 inp_incr_sndbytes_total(sb
->sb_so
,
1727 inp_incr_sndbytes_unsent(sb
->sb_so
,
1740 m
->m_flags
&= ~M_EOR
;
1748 printf("semi-panic: sbcompress\n");
1751 SBLASTMBUFCHK(sb
, __func__
);
1752 postevent(0, sb
, EV_RWBYTES
);
1756 sb_empty_assert(struct sockbuf
*sb
, const char *where
)
1758 if (!(sb
->sb_cc
== 0 && sb
->sb_mb
== NULL
&& sb
->sb_mbcnt
== 0 &&
1759 sb
->sb_mbtail
== NULL
&& sb
->sb_lastrecord
== NULL
)) {
1760 panic("%s: sb %p so %p cc %d mbcnt %d mb %p mbtail %p "
1761 "lastrecord %p\n", where
, sb
, sb
->sb_so
, sb
->sb_cc
,
1762 sb
->sb_mbcnt
, sb
->sb_mb
, sb
->sb_mbtail
,
1769 sbflush_priq(struct msg_priq
*priq
)
1772 m
= priq
->msgq_head
;
1775 priq
->msgq_head
= priq
->msgq_tail
= priq
->msgq_lastmsg
= NULL
;
1776 priq
->msgq_bytes
= priq
->msgq_flags
= 0;
1780 * Free all mbufs in a sockbuf.
1781 * Check that all resources are reclaimed.
1784 sbflush(struct sockbuf
*sb
)
1786 void *lr_saved
= __builtin_return_address(0);
1787 struct socket
*so
= sb
->sb_so
;
1790 /* so_usecount may be 0 if we get here from sofreelastref() */
1792 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
1793 __func__
, sb
, sb
->sb_flags
, lr_saved
);
1795 } else if (so
->so_usecount
< 0) {
1796 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
1797 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
1798 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
1803 * Obtain lock on the socket buffer (SB_LOCK). This is required
1804 * to prevent the socket buffer from being unexpectedly altered
1805 * while it is used by another thread in socket send/receive.
1807 * sblock() must not fail here, hence the assertion.
1809 (void) sblock(sb
, SBL_WAIT
| SBL_NOINTR
| SBL_IGNDEFUNCT
);
1810 VERIFY(sb
->sb_flags
& SB_LOCK
);
1812 while (sb
->sb_mbcnt
> 0) {
1814 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
1815 * we would loop forever. Panic instead.
1817 if (!sb
->sb_cc
&& (sb
->sb_mb
== NULL
|| sb
->sb_mb
->m_len
))
1819 sbdrop(sb
, (int)sb
->sb_cc
);
1822 if (!(sb
->sb_flags
& SB_RECV
) && (so
->so_flags
& SOF_ENABLE_MSGS
)) {
1823 VERIFY(so
->so_msg_state
!= NULL
);
1824 for (i
= MSG_PRI_MIN
; i
<= MSG_PRI_MAX
; ++i
) {
1825 sbflush_priq(&so
->so_msg_state
->msg_priq
[i
]);
1827 so
->so_msg_state
->msg_serial_bytes
= 0;
1828 so
->so_msg_state
->msg_uno_bytes
= 0;
1831 sb_empty_assert(sb
, __func__
);
1832 postevent(0, sb
, EV_RWBYTES
);
1834 sbunlock(sb
, TRUE
); /* keep socket locked */
1838 * Drop data from (the front of) a sockbuf.
1839 * use m_freem_list to free the mbuf structures
1840 * under a single lock... this is done by pruning
1841 * the top of the tree from the body by keeping track
1842 * of where we get to in the tree and then zeroing the
1843 * two pertinent pointers m_nextpkt and m_next
1844 * the socket buffer is then updated to point at the new
1845 * top of the tree and the pruned area is released via
1849 sbdrop(struct sockbuf
*sb
, int len
)
1851 struct mbuf
*m
, *free_list
, *ml
;
1852 struct mbuf
*next
, *last
;
1854 next
= (m
= sb
->sb_mb
) ? m
->m_nextpkt
: 0;
1856 if ((m
!= NULL
) && (len
> 0) &&
1857 (!(sb
->sb_flags
& SB_RECV
)) &&
1858 ((sb
->sb_so
->so_flags
& SOF_MP_SUBFLOW
) ||
1859 ((SOCK_CHECK_DOM(sb
->sb_so
, PF_MULTIPATH
)) &&
1860 (SOCK_CHECK_PROTO(sb
->sb_so
, IPPROTO_TCP
)))) &&
1861 (!(sb
->sb_so
->so_flags1
& SOF1_POST_FALLBACK_SYNC
))) {
1862 mptcp_preproc_sbdrop(sb
->sb_so
, m
, (unsigned int)len
);
1865 KERNEL_DEBUG((DBG_FNC_SBDROP
| DBG_FUNC_START
), sb
, len
, 0, 0, 0);
1867 free_list
= last
= m
;
1868 ml
= (struct mbuf
*)0;
1874 * temporarily replacing this panic with printf
1875 * because it occurs occasionally when closing
1876 * a socket when there is no harm in ignoring
1877 * it. This problem will be investigated
1880 /* panic("sbdrop"); */
1881 printf("sbdrop - count not zero\n");
1884 * zero the counts. if we have no mbufs,
1885 * we have no data (PR-2986815)
1889 if (!(sb
->sb_flags
& SB_RECV
) &&
1890 (sb
->sb_so
->so_flags
& SOF_ENABLE_MSGS
)) {
1891 sb
->sb_so
->so_msg_state
->
1892 msg_serial_bytes
= 0;
1897 next
= m
->m_nextpkt
;
1900 if (m
->m_len
> len
) {
1904 /* update the send byte count */
1905 if (sb
->sb_flags
& SB_SNDBYTE_CNT
)
1906 inp_decr_sndbytes_total(sb
->sb_so
, len
);
1907 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
1908 m
->m_type
!= MT_OOBDATA
)
1918 while (m
&& m
->m_len
== 0) {
1925 ml
->m_next
= (struct mbuf
*)0;
1926 last
->m_nextpkt
= (struct mbuf
*)0;
1927 m_freem_list(free_list
);
1931 m
->m_nextpkt
= next
;
1937 * First part is an inline SB_EMPTY_FIXUP(). Second part
1938 * makes sure sb_lastrecord is up-to-date if we dropped
1939 * part of the last record.
1943 sb
->sb_mbtail
= NULL
;
1944 sb
->sb_lastrecord
= NULL
;
1945 } else if (m
->m_nextpkt
== NULL
) {
1946 sb
->sb_lastrecord
= m
;
1950 cfil_sock_buf_update(sb
);
1951 #endif /* CONTENT_FILTER */
1953 postevent(0, sb
, EV_RWBYTES
);
1955 KERNEL_DEBUG((DBG_FNC_SBDROP
| DBG_FUNC_END
), sb
, 0, 0, 0, 0);
1959 * Drop a record off the front of a sockbuf
1960 * and move the next record to the front.
1963 sbdroprecord(struct sockbuf
*sb
)
1965 struct mbuf
*m
, *mn
;
1969 sb
->sb_mb
= m
->m_nextpkt
;
1977 postevent(0, sb
, EV_RWBYTES
);
1981 * Create a "control" mbuf containing the specified data
1982 * with the specified type for presentation on a socket buffer.
1985 sbcreatecontrol(caddr_t p
, int size
, int type
, int level
)
1990 if (CMSG_SPACE((u_int
)size
) > MLEN
)
1991 return ((struct mbuf
*)NULL
);
1992 if ((m
= m_get(M_DONTWAIT
, MT_CONTROL
)) == NULL
)
1993 return ((struct mbuf
*)NULL
);
1994 cp
= mtod(m
, struct cmsghdr
*);
1995 VERIFY(IS_P2ALIGNED(cp
, sizeof (u_int32_t
)));
1996 /* XXX check size? */
1997 (void) memcpy(CMSG_DATA(cp
), p
, size
);
1998 m
->m_len
= CMSG_SPACE(size
);
1999 cp
->cmsg_len
= CMSG_LEN(size
);
2000 cp
->cmsg_level
= level
;
2001 cp
->cmsg_type
= type
;
2006 sbcreatecontrol_mbuf(caddr_t p
, int size
, int type
, int level
, struct mbuf
**mp
)
2012 *mp
= sbcreatecontrol(p
, size
, type
, level
);
2016 if (CMSG_SPACE((u_int
)size
) + (*mp
)->m_len
> MLEN
) {
2017 mp
= &(*mp
)->m_next
;
2018 *mp
= sbcreatecontrol(p
, size
, type
, level
);
2024 cp
= (struct cmsghdr
*)(void *)(mtod(m
, char *) + m
->m_len
);
2025 /* CMSG_SPACE ensures 32-bit alignment */
2026 VERIFY(IS_P2ALIGNED(cp
, sizeof (u_int32_t
)));
2027 m
->m_len
+= CMSG_SPACE(size
);
2029 /* XXX check size? */
2030 (void) memcpy(CMSG_DATA(cp
), p
, size
);
2031 cp
->cmsg_len
= CMSG_LEN(size
);
2032 cp
->cmsg_level
= level
;
2033 cp
->cmsg_type
= type
;
2040 * Some routines that return EOPNOTSUPP for entry points that are not
2041 * supported by a protocol. Fill in as needed.
2044 pru_abort_notsupp(struct socket
*so
)
2047 return (EOPNOTSUPP
);
2051 pru_accept_notsupp(struct socket
*so
, struct sockaddr
**nam
)
2053 #pragma unused(so, nam)
2054 return (EOPNOTSUPP
);
2058 pru_attach_notsupp(struct socket
*so
, int proto
, struct proc
*p
)
2060 #pragma unused(so, proto, p)
2061 return (EOPNOTSUPP
);
2065 pru_bind_notsupp(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
2067 #pragma unused(so, nam, p)
2068 return (EOPNOTSUPP
);
2072 pru_connect_notsupp(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
2074 #pragma unused(so, nam, p)
2075 return (EOPNOTSUPP
);
2079 pru_connect2_notsupp(struct socket
*so1
, struct socket
*so2
)
2081 #pragma unused(so1, so2)
2082 return (EOPNOTSUPP
);
2086 pru_connectx_notsupp(struct socket
*so
, struct sockaddr_list
**src_sl
,
2087 struct sockaddr_list
**dst_sl
, struct proc
*p
, uint32_t ifscope
,
2088 sae_associd_t aid
, sae_connid_t
*pcid
, uint32_t flags
, void *arg
,
2089 uint32_t arglen
, struct uio
*uio
, user_ssize_t
*bytes_written
)
2091 #pragma unused(so, src_sl, dst_sl, p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written)
2092 return (EOPNOTSUPP
);
2096 pru_control_notsupp(struct socket
*so
, u_long cmd
, caddr_t data
,
2097 struct ifnet
*ifp
, struct proc
*p
)
2099 #pragma unused(so, cmd, data, ifp, p)
2100 return (EOPNOTSUPP
);
2104 pru_detach_notsupp(struct socket
*so
)
2107 return (EOPNOTSUPP
);
2111 pru_disconnect_notsupp(struct socket
*so
)
2114 return (EOPNOTSUPP
);
2118 pru_disconnectx_notsupp(struct socket
*so
, sae_associd_t aid
, sae_connid_t cid
)
2120 #pragma unused(so, aid, cid)
2121 return (EOPNOTSUPP
);
2125 pru_listen_notsupp(struct socket
*so
, struct proc
*p
)
2127 #pragma unused(so, p)
2128 return (EOPNOTSUPP
);
2132 pru_peeloff_notsupp(struct socket
*so
, sae_associd_t aid
, struct socket
**psop
)
2134 #pragma unused(so, aid, psop)
2135 return (EOPNOTSUPP
);
2139 pru_peeraddr_notsupp(struct socket
*so
, struct sockaddr
**nam
)
2141 #pragma unused(so, nam)
2142 return (EOPNOTSUPP
);
2146 pru_rcvd_notsupp(struct socket
*so
, int flags
)
2148 #pragma unused(so, flags)
2149 return (EOPNOTSUPP
);
2153 pru_rcvoob_notsupp(struct socket
*so
, struct mbuf
*m
, int flags
)
2155 #pragma unused(so, m, flags)
2156 return (EOPNOTSUPP
);
2160 pru_send_notsupp(struct socket
*so
, int flags
, struct mbuf
*m
,
2161 struct sockaddr
*addr
, struct mbuf
*control
, struct proc
*p
)
2163 #pragma unused(so, flags, m, addr, control, p)
2164 return (EOPNOTSUPP
);
2168 pru_send_list_notsupp(struct socket
*so
, int flags
, struct mbuf
*m
,
2169 struct sockaddr
*addr
, struct mbuf
*control
, struct proc
*p
)
2171 #pragma unused(so, flags, m, addr, control, p)
2172 return (EOPNOTSUPP
);
2176 * This isn't really a ``null'' operation, but it's the default one
2177 * and doesn't do anything destructive.
2180 pru_sense_null(struct socket
*so
, void *ub
, int isstat64
)
2182 if (isstat64
!= 0) {
2183 struct stat64
*sb64
;
2185 sb64
= (struct stat64
*)ub
;
2186 sb64
->st_blksize
= so
->so_snd
.sb_hiwat
;
2190 sb
= (struct stat
*)ub
;
2191 sb
->st_blksize
= so
->so_snd
.sb_hiwat
;
2199 pru_sosend_notsupp(struct socket
*so
, struct sockaddr
*addr
, struct uio
*uio
,
2200 struct mbuf
*top
, struct mbuf
*control
, int flags
)
2202 #pragma unused(so, addr, uio, top, control, flags)
2203 return (EOPNOTSUPP
);
2207 pru_sosend_list_notsupp(struct socket
*so
, struct uio
**uio
,
2208 u_int uiocnt
, int flags
)
2210 #pragma unused(so, uio, uiocnt, flags)
2211 return (EOPNOTSUPP
);
2215 pru_soreceive_notsupp(struct socket
*so
, struct sockaddr
**paddr
,
2216 struct uio
*uio
, struct mbuf
**mp0
, struct mbuf
**controlp
, int *flagsp
)
2218 #pragma unused(so, paddr, uio, mp0, controlp, flagsp)
2219 return (EOPNOTSUPP
);
2223 pru_soreceive_list_notsupp(struct socket
*so
,
2224 struct recv_msg_elem
*recv_msg_array
, u_int uiocnt
, int *flagsp
)
2226 #pragma unused(so, recv_msg_array, uiocnt, flagsp)
2227 return (EOPNOTSUPP
);
2231 pru_shutdown_notsupp(struct socket
*so
)
2234 return (EOPNOTSUPP
);
2238 pru_sockaddr_notsupp(struct socket
*so
, struct sockaddr
**nam
)
2240 #pragma unused(so, nam)
2241 return (EOPNOTSUPP
);
2245 pru_sopoll_notsupp(struct socket
*so
, int events
, kauth_cred_t cred
, void *wql
)
2247 #pragma unused(so, events, cred, wql)
2248 return (EOPNOTSUPP
);
2252 pru_socheckopt_null(struct socket
*so
, struct sockopt
*sopt
)
2254 #pragma unused(so, sopt)
2256 * Allow all options for set/get by default.
2262 pru_preconnect_null(struct socket
*so
)
2269 pru_sanitize(struct pr_usrreqs
*pru
)
2271 #define DEFAULT(foo, bar) if ((foo) == NULL) (foo) = (bar)
2272 DEFAULT(pru
->pru_abort
, pru_abort_notsupp
);
2273 DEFAULT(pru
->pru_accept
, pru_accept_notsupp
);
2274 DEFAULT(pru
->pru_attach
, pru_attach_notsupp
);
2275 DEFAULT(pru
->pru_bind
, pru_bind_notsupp
);
2276 DEFAULT(pru
->pru_connect
, pru_connect_notsupp
);
2277 DEFAULT(pru
->pru_connect2
, pru_connect2_notsupp
);
2278 DEFAULT(pru
->pru_connectx
, pru_connectx_notsupp
);
2279 DEFAULT(pru
->pru_control
, pru_control_notsupp
);
2280 DEFAULT(pru
->pru_detach
, pru_detach_notsupp
);
2281 DEFAULT(pru
->pru_disconnect
, pru_disconnect_notsupp
);
2282 DEFAULT(pru
->pru_disconnectx
, pru_disconnectx_notsupp
);
2283 DEFAULT(pru
->pru_listen
, pru_listen_notsupp
);
2284 DEFAULT(pru
->pru_peeloff
, pru_peeloff_notsupp
);
2285 DEFAULT(pru
->pru_peeraddr
, pru_peeraddr_notsupp
);
2286 DEFAULT(pru
->pru_rcvd
, pru_rcvd_notsupp
);
2287 DEFAULT(pru
->pru_rcvoob
, pru_rcvoob_notsupp
);
2288 DEFAULT(pru
->pru_send
, pru_send_notsupp
);
2289 DEFAULT(pru
->pru_send_list
, pru_send_list_notsupp
);
2290 DEFAULT(pru
->pru_sense
, pru_sense_null
);
2291 DEFAULT(pru
->pru_shutdown
, pru_shutdown_notsupp
);
2292 DEFAULT(pru
->pru_sockaddr
, pru_sockaddr_notsupp
);
2293 DEFAULT(pru
->pru_sopoll
, pru_sopoll_notsupp
);
2294 DEFAULT(pru
->pru_soreceive
, pru_soreceive_notsupp
);
2295 DEFAULT(pru
->pru_soreceive_list
, pru_soreceive_list_notsupp
);
2296 DEFAULT(pru
->pru_sosend
, pru_sosend_notsupp
);
2297 DEFAULT(pru
->pru_sosend_list
, pru_sosend_list_notsupp
);
2298 DEFAULT(pru
->pru_socheckopt
, pru_socheckopt_null
);
2299 DEFAULT(pru
->pru_preconnect
, pru_preconnect_null
);
2304 * The following are macros on BSD and functions on Darwin
2308 * Do we need to notify the other side when I/O is possible?
2312 sb_notify(struct sockbuf
*sb
)
2314 return (sb
->sb_waiters
> 0 ||
2315 (sb
->sb_flags
& (SB_SEL
|SB_ASYNC
|SB_UPCALL
|SB_KNOTE
)));
2319 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
2320 * This is problematical if the fields are unsigned, as the space might
2321 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
2322 * overflow and return 0.
2325 sbspace(struct sockbuf
*sb
)
2328 int space
= imin((int)(sb
->sb_hiwat
- sb
->sb_cc
),
2329 (int)(sb
->sb_mbmax
- sb
->sb_mbcnt
));
2331 if (sb
->sb_preconn_hiwat
!= 0)
2332 space
= imin((int)(sb
->sb_preconn_hiwat
- sb
->sb_cc
), space
);
2337 /* Compensate for data being processed by content filters */
2339 pending
= cfil_sock_data_space(sb
);
2340 #endif /* CONTENT_FILTER */
2341 if (pending
> space
)
2350 * If this socket has priority queues, check if there is enough
2351 * space in the priority queue for this msg.
2354 msgq_sbspace(struct socket
*so
, struct mbuf
*control
)
2356 int space
= 0, error
;
2358 VERIFY(so
->so_type
== SOCK_STREAM
&&
2359 SOCK_PROTO(so
) == IPPROTO_TCP
);
2360 if (control
!= NULL
) {
2361 error
= tcp_get_msg_priority(control
, &msgpri
);
2367 space
= (so
->so_snd
.sb_idealsize
/ MSG_PRI_COUNT
) -
2368 so
->so_msg_state
->msg_priq
[msgpri
].msgq_bytes
;
2374 /* do we have to send all at once on a socket? */
2376 sosendallatonce(struct socket
*so
)
2378 return (so
->so_proto
->pr_flags
& PR_ATOMIC
);
2381 /* can we read something from so? */
2383 soreadable(struct socket
*so
)
2385 return (so
->so_rcv
.sb_cc
>= so
->so_rcv
.sb_lowat
||
2386 ((so
->so_state
& SS_CANTRCVMORE
)
2388 && cfil_sock_data_pending(&so
->so_rcv
) == 0
2389 #endif /* CONTENT_FILTER */
2391 so
->so_comp
.tqh_first
|| so
->so_error
);
2394 /* can we write something to so? */
2397 sowriteable(struct socket
*so
)
2399 if ((so
->so_state
& SS_CANTSENDMORE
) ||
2402 if (so_wait_for_if_feedback(so
) || !socanwrite(so
))
2404 if (so
->so_flags1
& SOF1_PRECONNECT_DATA
)
2407 if (sbspace(&(so
)->so_snd
) >= (so
)->so_snd
.sb_lowat
) {
2408 if (so
->so_flags
& SOF_NOTSENT_LOWAT
) {
2409 if ((SOCK_DOM(so
) == PF_INET6
||
2410 SOCK_DOM(so
) == PF_INET
) &&
2411 so
->so_type
== SOCK_STREAM
) {
2412 return (tcp_notsent_lowat_check(so
));
2415 else if ((SOCK_DOM(so
) == PF_MULTIPATH
) &&
2416 (SOCK_PROTO(so
) == IPPROTO_TCP
)) {
2417 return (mptcp_notsent_lowat_check(so
));
2430 /* adjust counters in sb reflecting allocation of m */
2433 sballoc(struct sockbuf
*sb
, struct mbuf
*m
)
2436 sb
->sb_cc
+= m
->m_len
;
2437 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
2438 m
->m_type
!= MT_OOBDATA
)
2439 sb
->sb_ctl
+= m
->m_len
;
2440 sb
->sb_mbcnt
+= MSIZE
;
2442 if (m
->m_flags
& M_EXT
) {
2443 sb
->sb_mbcnt
+= m
->m_ext
.ext_size
;
2444 cnt
+= (m
->m_ext
.ext_size
>> MSIZESHIFT
);
2446 OSAddAtomic(cnt
, &total_sbmb_cnt
);
2447 VERIFY(total_sbmb_cnt
> 0);
2448 if (total_sbmb_cnt
> total_sbmb_cnt_peak
)
2449 total_sbmb_cnt_peak
= total_sbmb_cnt
;
2452 * If data is being added to the send socket buffer,
2453 * update the send byte count
2455 if (sb
->sb_flags
& SB_SNDBYTE_CNT
) {
2456 inp_incr_sndbytes_total(sb
->sb_so
, m
->m_len
);
2457 inp_incr_sndbytes_unsent(sb
->sb_so
, m
->m_len
);
2461 /* adjust counters in sb reflecting freeing of m */
2463 sbfree(struct sockbuf
*sb
, struct mbuf
*m
)
2467 sb
->sb_cc
-= m
->m_len
;
2468 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
2469 m
->m_type
!= MT_OOBDATA
)
2470 sb
->sb_ctl
-= m
->m_len
;
2471 sb
->sb_mbcnt
-= MSIZE
;
2472 if (m
->m_flags
& M_EXT
) {
2473 sb
->sb_mbcnt
-= m
->m_ext
.ext_size
;
2474 cnt
-= (m
->m_ext
.ext_size
>> MSIZESHIFT
);
2476 OSAddAtomic(cnt
, &total_sbmb_cnt
);
2477 VERIFY(total_sbmb_cnt
>= 0);
2478 if (total_sbmb_cnt
< total_sbmb_cnt_floor
)
2479 total_sbmb_cnt_floor
= total_sbmb_cnt
;
2482 * If data is being removed from the send socket buffer,
2483 * update the send byte count
2485 if (sb
->sb_flags
& SB_SNDBYTE_CNT
)
2486 inp_decr_sndbytes_total(sb
->sb_so
, m
->m_len
);
2490 * Set lock on sockbuf sb; sleep if lock is already held.
2491 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
2492 * Returns error without lock if sleep is interrupted.
2495 sblock(struct sockbuf
*sb
, uint32_t flags
)
2497 boolean_t nointr
= ((sb
->sb_flags
& SB_NOINTR
) || (flags
& SBL_NOINTR
));
2498 void *lr_saved
= __builtin_return_address(0);
2499 struct socket
*so
= sb
->sb_so
;
2502 thread_t tp
= current_thread();
2504 VERIFY((flags
& SBL_VALID
) == flags
);
2506 /* so_usecount may be 0 if we get here from sofreelastref() */
2508 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
2509 __func__
, sb
, sb
->sb_flags
, lr_saved
);
2511 } else if (so
->so_usecount
< 0) {
2512 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
2513 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
2514 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
2519 * The content filter thread must hold the sockbuf lock
2521 if ((so
->so_flags
& SOF_CONTENT_FILTER
) && sb
->sb_cfil_thread
== tp
) {
2523 * Don't panic if we are defunct because SB_LOCK has
2524 * been cleared by sodefunct()
2526 if (!(so
->so_flags
& SOF_DEFUNCT
) && !(sb
->sb_flags
& SB_LOCK
))
2527 panic("%s: SB_LOCK not held for %p\n",
2530 /* Keep the sockbuf locked */
2534 if ((sb
->sb_flags
& SB_LOCK
) && !(flags
& SBL_WAIT
))
2535 return (EWOULDBLOCK
);
2537 * We may get here from sorflush(), in which case "sb" may not
2538 * point to the real socket buffer. Use the actual socket buffer
2539 * address from the socket instead.
2541 wchan
= (sb
->sb_flags
& SB_RECV
) ?
2542 &so
->so_rcv
.sb_flags
: &so
->so_snd
.sb_flags
;
2545 * A content filter thread has exclusive access to the sockbuf
2546 * until it clears the
2548 while ((sb
->sb_flags
& SB_LOCK
) ||
2549 ((so
->so_flags
& SOF_CONTENT_FILTER
) &&
2550 sb
->sb_cfil_thread
!= NULL
)) {
2551 lck_mtx_t
*mutex_held
;
2554 * XXX: This code should be moved up above outside of this loop;
2555 * however, we may get here as part of sofreelastref(), and
2556 * at that time pr_getlock() may no longer be able to return
2557 * us the lock. This will be fixed in future.
2559 if (so
->so_proto
->pr_getlock
!= NULL
)
2560 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
2562 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
2564 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
2567 VERIFY(sb
->sb_wantlock
!= 0);
2569 error
= msleep(wchan
, mutex_held
,
2570 nointr
? PSOCK
: PSOCK
| PCATCH
,
2571 nointr
? "sb_lock_nointr" : "sb_lock", NULL
);
2573 VERIFY(sb
->sb_wantlock
!= 0);
2576 if (error
== 0 && (so
->so_flags
& SOF_DEFUNCT
) &&
2577 !(flags
& SBL_IGNDEFUNCT
)) {
2579 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
2580 "(%d)\n", __func__
, proc_selfpid(),
2581 proc_best_name(current_proc()),
2582 (uint64_t)VM_KERNEL_ADDRPERM(so
),
2583 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
2589 sb
->sb_flags
|= SB_LOCK
;
2594 * Release lock on sockbuf sb
2597 sbunlock(struct sockbuf
*sb
, boolean_t keeplocked
)
2599 void *lr_saved
= __builtin_return_address(0);
2600 struct socket
*so
= sb
->sb_so
;
2601 thread_t tp
= current_thread();
2603 /* so_usecount may be 0 if we get here from sofreelastref() */
2605 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
2606 __func__
, sb
, sb
->sb_flags
, lr_saved
);
2608 } else if (so
->so_usecount
< 0) {
2609 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
2610 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
2611 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
2616 * The content filter thread must hold the sockbuf lock
2618 if ((so
->so_flags
& SOF_CONTENT_FILTER
) && sb
->sb_cfil_thread
== tp
) {
2620 * Don't panic if we are defunct because SB_LOCK has
2621 * been cleared by sodefunct()
2623 if (!(so
->so_flags
& SOF_DEFUNCT
) &&
2624 !(sb
->sb_flags
& SB_LOCK
) &&
2625 !(so
->so_state
& SS_DEFUNCT
) &&
2626 !(so
->so_flags1
& SOF1_DEFUNCTINPROG
)) {
2627 panic("%s: SB_LOCK not held for %p\n",
2630 /* Keep the sockbuf locked and proceed */
2632 VERIFY((sb
->sb_flags
& SB_LOCK
) ||
2633 (so
->so_state
& SS_DEFUNCT
) ||
2634 (so
->so_flags1
& SOF1_DEFUNCTINPROG
));
2636 sb
->sb_flags
&= ~SB_LOCK
;
2638 if (sb
->sb_wantlock
> 0) {
2640 * We may get here from sorflush(), in which case "sb"
2641 * may not point to the real socket buffer. Use the
2642 * actual socket buffer address from the socket instead.
2644 wakeup((sb
->sb_flags
& SB_RECV
) ? &so
->so_rcv
.sb_flags
:
2645 &so
->so_snd
.sb_flags
);
2649 if (!keeplocked
) { /* unlock on exit */
2650 lck_mtx_t
*mutex_held
;
2652 if (so
->so_proto
->pr_getlock
!= NULL
)
2653 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
2655 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
2657 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
2659 VERIFY(so
->so_usecount
> 0);
2661 so
->unlock_lr
[so
->next_unlock_lr
] = lr_saved
;
2662 so
->next_unlock_lr
= (so
->next_unlock_lr
+ 1) % SO_LCKDBG_MAX
;
2663 lck_mtx_unlock(mutex_held
);
2668 sorwakeup(struct socket
*so
)
2670 if (sb_notify(&so
->so_rcv
))
2671 sowakeup(so
, &so
->so_rcv
);
2675 sowwakeup(struct socket
*so
)
2677 if (sb_notify(&so
->so_snd
))
2678 sowakeup(so
, &so
->so_snd
);
2682 soevent(struct socket
*so
, long hint
)
2684 if (so
->so_flags
& SOF_KNOTE
)
2685 KNOTE(&so
->so_klist
, hint
);
2687 soevupcall(so
, hint
);
2690 * Don't post an event if this a subflow socket or
2691 * the app has opted out of using cellular interface
2693 if ((hint
& SO_FILT_HINT_IFDENIED
) &&
2694 !(so
->so_flags
& SOF_MP_SUBFLOW
) &&
2695 !(so
->so_restrictions
& SO_RESTRICT_DENY_CELLULAR
) &&
2696 !(so
->so_restrictions
& SO_RESTRICT_DENY_EXPENSIVE
))
2697 soevent_ifdenied(so
);
2701 soevupcall(struct socket
*so
, u_int32_t hint
)
2703 if (so
->so_event
!= NULL
) {
2704 caddr_t so_eventarg
= so
->so_eventarg
;
2705 int locked
= hint
& SO_FILT_HINT_LOCKED
;
2707 hint
&= so
->so_eventmask
;
2710 socket_unlock(so
, 0);
2712 so
->so_event(so
, so_eventarg
, hint
);
2721 soevent_ifdenied(struct socket
*so
)
2723 struct kev_netpolicy_ifdenied ev_ifdenied
;
2725 bzero(&ev_ifdenied
, sizeof (ev_ifdenied
));
2727 * The event consumer is interested about the effective {upid,pid,uuid}
2728 * info which can be different than the those related to the process
2729 * that recently performed a system call on the socket, i.e. when the
2730 * socket is delegated.
2732 if (so
->so_flags
& SOF_DELEGATED
) {
2733 ev_ifdenied
.ev_data
.eupid
= so
->e_upid
;
2734 ev_ifdenied
.ev_data
.epid
= so
->e_pid
;
2735 uuid_copy(ev_ifdenied
.ev_data
.euuid
, so
->e_uuid
);
2737 ev_ifdenied
.ev_data
.eupid
= so
->last_upid
;
2738 ev_ifdenied
.ev_data
.epid
= so
->last_pid
;
2739 uuid_copy(ev_ifdenied
.ev_data
.euuid
, so
->last_uuid
);
2742 if (++so
->so_ifdenied_notifies
> 1) {
2744 * Allow for at most one kernel event to be generated per
2745 * socket; so_ifdenied_notifies is reset upon changes in
2746 * the UUID policy. See comments in inp_update_policy.
2748 if (net_io_policy_log
) {
2751 uuid_unparse(ev_ifdenied
.ev_data
.euuid
, buf
);
2752 log(LOG_DEBUG
, "%s[%d]: so 0x%llx [%d,%d] epid %d "
2753 "euuid %s%s has %d redundant events supressed\n",
2754 __func__
, so
->last_pid
,
2755 (uint64_t)VM_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
2756 SOCK_TYPE(so
), ev_ifdenied
.ev_data
.epid
, buf
,
2757 ((so
->so_flags
& SOF_DELEGATED
) ?
2758 " [delegated]" : ""), so
->so_ifdenied_notifies
);
2761 if (net_io_policy_log
) {
2764 uuid_unparse(ev_ifdenied
.ev_data
.euuid
, buf
);
2765 log(LOG_DEBUG
, "%s[%d]: so 0x%llx [%d,%d] epid %d "
2766 "euuid %s%s event posted\n", __func__
,
2767 so
->last_pid
, (uint64_t)VM_KERNEL_ADDRPERM(so
),
2768 SOCK_DOM(so
), SOCK_TYPE(so
),
2769 ev_ifdenied
.ev_data
.epid
, buf
,
2770 ((so
->so_flags
& SOF_DELEGATED
) ?
2771 " [delegated]" : ""));
2773 netpolicy_post_msg(KEV_NETPOLICY_IFDENIED
, &ev_ifdenied
.ev_data
,
2774 sizeof (ev_ifdenied
));
2779 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
2782 dup_sockaddr(struct sockaddr
*sa
, int canwait
)
2784 struct sockaddr
*sa2
;
2786 MALLOC(sa2
, struct sockaddr
*, sa
->sa_len
, M_SONAME
,
2787 canwait
? M_WAITOK
: M_NOWAIT
);
2789 bcopy(sa
, sa2
, sa
->sa_len
);
2794 * Create an external-format (``xsocket'') structure using the information
2795 * in the kernel-format socket structure pointed to by so. This is done
2796 * to reduce the spew of irrelevant information over this interface,
2797 * to isolate user code from changes in the kernel structure, and
2798 * potentially to provide information-hiding if we decide that
2799 * some of this information should be hidden from users.
2802 sotoxsocket(struct socket
*so
, struct xsocket
*xso
)
2804 xso
->xso_len
= sizeof (*xso
);
2805 xso
->xso_so
= (_XSOCKET_PTR(struct socket
*))VM_KERNEL_ADDRPERM(so
);
2806 xso
->so_type
= so
->so_type
;
2807 xso
->so_options
= (short)(so
->so_options
& 0xffff);
2808 xso
->so_linger
= so
->so_linger
;
2809 xso
->so_state
= so
->so_state
;
2810 xso
->so_pcb
= (_XSOCKET_PTR(caddr_t
))VM_KERNEL_ADDRPERM(so
->so_pcb
);
2812 xso
->xso_protocol
= SOCK_PROTO(so
);
2813 xso
->xso_family
= SOCK_DOM(so
);
2815 xso
->xso_protocol
= xso
->xso_family
= 0;
2817 xso
->so_qlen
= so
->so_qlen
;
2818 xso
->so_incqlen
= so
->so_incqlen
;
2819 xso
->so_qlimit
= so
->so_qlimit
;
2820 xso
->so_timeo
= so
->so_timeo
;
2821 xso
->so_error
= so
->so_error
;
2822 xso
->so_pgid
= so
->so_pgid
;
2823 xso
->so_oobmark
= so
->so_oobmark
;
2824 sbtoxsockbuf(&so
->so_snd
, &xso
->so_snd
);
2825 sbtoxsockbuf(&so
->so_rcv
, &xso
->so_rcv
);
2826 xso
->so_uid
= kauth_cred_getuid(so
->so_cred
);
2832 sotoxsocket64(struct socket
*so
, struct xsocket64
*xso
)
2834 xso
->xso_len
= sizeof (*xso
);
2835 xso
->xso_so
= (u_int64_t
)VM_KERNEL_ADDRPERM(so
);
2836 xso
->so_type
= so
->so_type
;
2837 xso
->so_options
= (short)(so
->so_options
& 0xffff);
2838 xso
->so_linger
= so
->so_linger
;
2839 xso
->so_state
= so
->so_state
;
2840 xso
->so_pcb
= (u_int64_t
)VM_KERNEL_ADDRPERM(so
->so_pcb
);
2842 xso
->xso_protocol
= SOCK_PROTO(so
);
2843 xso
->xso_family
= SOCK_DOM(so
);
2845 xso
->xso_protocol
= xso
->xso_family
= 0;
2847 xso
->so_qlen
= so
->so_qlen
;
2848 xso
->so_incqlen
= so
->so_incqlen
;
2849 xso
->so_qlimit
= so
->so_qlimit
;
2850 xso
->so_timeo
= so
->so_timeo
;
2851 xso
->so_error
= so
->so_error
;
2852 xso
->so_pgid
= so
->so_pgid
;
2853 xso
->so_oobmark
= so
->so_oobmark
;
2854 sbtoxsockbuf(&so
->so_snd
, &xso
->so_snd
);
2855 sbtoxsockbuf(&so
->so_rcv
, &xso
->so_rcv
);
2856 xso
->so_uid
= kauth_cred_getuid(so
->so_cred
);
2861 * This does the same for sockbufs. Note that the xsockbuf structure,
2862 * since it is always embedded in a socket, does not include a self
2863 * pointer nor a length. We make this entry point public in case
2864 * some other mechanism needs it.
2867 sbtoxsockbuf(struct sockbuf
*sb
, struct xsockbuf
*xsb
)
2869 xsb
->sb_cc
= sb
->sb_cc
;
2870 xsb
->sb_hiwat
= sb
->sb_hiwat
;
2871 xsb
->sb_mbcnt
= sb
->sb_mbcnt
;
2872 xsb
->sb_mbmax
= sb
->sb_mbmax
;
2873 xsb
->sb_lowat
= sb
->sb_lowat
;
2874 xsb
->sb_flags
= sb
->sb_flags
;
2875 xsb
->sb_timeo
= (short)
2876 (sb
->sb_timeo
.tv_sec
* hz
) + sb
->sb_timeo
.tv_usec
/ tick
;
2877 if (xsb
->sb_timeo
== 0 && sb
->sb_timeo
.tv_usec
!= 0)
2882 * Based on the policy set by an all knowing decison maker, throttle sockets
2883 * that either have been marked as belonging to "background" process.
2886 soisthrottled(struct socket
*so
)
2889 * On non-embedded, we rely on implicit throttling by the
2890 * application, as we're missing the system wide "decision maker"
2893 (so
->so_flags1
& SOF1_TRAFFIC_MGT_SO_BACKGROUND
));
2897 soisprivilegedtraffic(struct socket
*so
)
2899 return ((so
->so_flags
& SOF_PRIVILEGED_TRAFFIC_CLASS
) ? 1 : 0);
2903 soissrcbackground(struct socket
*so
)
2905 return ((so
->so_flags1
& SOF1_TRAFFIC_MGT_SO_BACKGROUND
) ||
2906 IS_SO_TC_BACKGROUND(so
->so_traffic_class
));
2910 soissrcrealtime(struct socket
*so
)
2912 return (so
->so_traffic_class
>= SO_TC_AV
&&
2913 so
->so_traffic_class
<= SO_TC_VO
);
2917 soissrcbesteffort(struct socket
*so
)
2919 return (so
->so_traffic_class
== SO_TC_BE
||
2920 so
->so_traffic_class
== SO_TC_RD
||
2921 so
->so_traffic_class
== SO_TC_OAM
);
2925 sonullevent(struct socket
*so
, void *arg
, uint32_t hint
)
2927 #pragma unused(so, arg, hint)
2931 * Here is the definition of some of the basic objects in the kern.ipc
2932 * branch of the MIB.
2934 SYSCTL_NODE(_kern
, KERN_IPC
, ipc
,
2935 CTLFLAG_RW
|CTLFLAG_LOCKED
|CTLFLAG_ANYBODY
, 0, "IPC");
2937 /* Check that the maximum socket buffer size is within a range */
2940 sysctl_sb_max SYSCTL_HANDLER_ARGS
2942 #pragma unused(oidp, arg1, arg2)
2943 u_int32_t new_value
;
2945 int error
= sysctl_io_number(req
, sb_max
, sizeof (u_int32_t
),
2946 &new_value
, &changed
);
2947 if (!error
&& changed
) {
2948 if (new_value
> LOW_SB_MAX
&& new_value
<= high_sb_max
) {
2958 sysctl_io_policy_throttled SYSCTL_HANDLER_ARGS
2960 #pragma unused(arg1, arg2)
2963 i
= net_io_policy_throttled
;
2965 err
= sysctl_handle_int(oidp
, &i
, 0, req
);
2966 if (err
!= 0 || req
->newptr
== USER_ADDR_NULL
)
2969 if (i
!= net_io_policy_throttled
)
2970 SOTHROTTLELOG("throttle: network IO policy throttling is "
2971 "now %s\n", i
? "ON" : "OFF");
2973 net_io_policy_throttled
= i
;
2978 SYSCTL_PROC(_kern_ipc
, KIPC_MAXSOCKBUF
, maxsockbuf
,
2979 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
2980 &sb_max
, 0, &sysctl_sb_max
, "IU", "Maximum socket buffer size");
2982 SYSCTL_INT(_kern_ipc
, KIPC_SOCKBUF_WASTE
, sockbuf_waste_factor
,
2983 CTLFLAG_RW
| CTLFLAG_LOCKED
, &sb_efficiency
, 0, "");
2985 SYSCTL_INT(_kern_ipc
, KIPC_NMBCLUSTERS
, nmbclusters
,
2986 CTLFLAG_RD
| CTLFLAG_LOCKED
, &nmbclusters
, 0, "");
2988 SYSCTL_INT(_kern_ipc
, OID_AUTO
, njcl
,
2989 CTLFLAG_RD
| CTLFLAG_LOCKED
, &njcl
, 0, "");
2991 SYSCTL_INT(_kern_ipc
, OID_AUTO
, njclbytes
,
2992 CTLFLAG_RD
| CTLFLAG_LOCKED
, &njclbytes
, 0, "");
2994 SYSCTL_INT(_kern_ipc
, KIPC_SOQLIMITCOMPAT
, soqlimitcompat
,
2995 CTLFLAG_RW
| CTLFLAG_LOCKED
, &soqlimitcompat
, 1,
2996 "Enable socket queue limit compatibility");
2998 SYSCTL_INT(_kern_ipc
, OID_AUTO
, soqlencomp
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
2999 &soqlencomp
, 0, "Listen backlog represents only complete queue");
3001 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sbmb_cnt
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
3002 &total_sbmb_cnt
, 0, "");
3003 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sbmb_cnt_peak
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
3004 &total_sbmb_cnt_peak
, 0, "");
3005 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sbmb_cnt_floor
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
3006 &total_sbmb_cnt_floor
, 0, "");
3007 SYSCTL_QUAD(_kern_ipc
, OID_AUTO
, sbmb_limreached
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
3008 &sbmb_limreached
, "");
3011 SYSCTL_NODE(_kern_ipc
, OID_AUTO
, io_policy
, CTLFLAG_RW
, 0, "network IO policy");
3013 SYSCTL_PROC(_kern_ipc_io_policy
, OID_AUTO
, throttled
,
3014 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &net_io_policy_throttled
, 0,
3015 sysctl_io_policy_throttled
, "I", "");
3017 SYSCTL_INT(_kern_ipc_io_policy
, OID_AUTO
, log
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
3018 &net_io_policy_log
, 0, "");
3020 #if CONFIG_PROC_UUID_POLICY
3021 SYSCTL_INT(_kern_ipc_io_policy
, OID_AUTO
, uuid
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
3022 &net_io_policy_uuid
, 0, "");
3023 #endif /* CONFIG_PROC_UUID_POLICY */