]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/uipc_socket2.c
0817894dfd351358286da9e5dcadb77307f6ad89
[apple/xnu.git] / bsd / kern / uipc_socket2.c
1 /*
2 * Copyright (c) 1998-2015 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/domain.h>
73 #include <sys/kernel.h>
74 #include <sys/proc_internal.h>
75 #include <sys/kauth.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/mcache.h>
79 #include <sys/protosw.h>
80 #include <sys/stat.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/signalvar.h>
84 #include <sys/sysctl.h>
85 #include <sys/syslog.h>
86 #include <sys/ev.h>
87 #include <kern/locks.h>
88 #include <net/route.h>
89 #include <net/content_filter.h>
90 #include <netinet/in.h>
91 #include <netinet/in_pcb.h>
92 #include <sys/kdebug.h>
93 #include <libkern/OSAtomic.h>
94
95 #if CONFIG_MACF
96 #include <security/mac_framework.h>
97 #endif
98
99 #include <mach/vm_param.h>
100
101 #if MPTCP
102 #include <netinet/mptcp_var.h>
103 #endif
104
105 #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
106 #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
107
108 extern char *proc_best_name(proc_t p);
109
110 SYSCTL_DECL(_kern_ipc);
111
112 __private_extern__ u_int32_t net_io_policy_throttle_best_effort = 0;
113 SYSCTL_INT(_kern_ipc, OID_AUTO, throttle_best_effort,
114 CTLFLAG_RW | CTLFLAG_LOCKED, &net_io_policy_throttle_best_effort, 0, "");
115
116 static inline void sbcompress(struct sockbuf *, struct mbuf *, struct mbuf *);
117 static struct socket *sonewconn_internal(struct socket *, int);
118 static int sbappendaddr_internal(struct sockbuf *, struct sockaddr *,
119 struct mbuf *, struct mbuf *);
120 static int sbappendcontrol_internal(struct sockbuf *, struct mbuf *,
121 struct mbuf *);
122 static void soevent_ifdenied(struct socket *);
123
124 /*
125 * Primitive routines for operating on sockets and socket buffers
126 */
127 static int soqlimitcompat = 1;
128 static int soqlencomp = 0;
129
130 /*
131 * Based on the number of mbuf clusters configured, high_sb_max and sb_max can
132 * get scaled up or down to suit that memory configuration. high_sb_max is a
133 * higher limit on sb_max that is checked when sb_max gets set through sysctl.
134 */
135
136 u_int32_t sb_max = SB_MAX; /* XXX should be static */
137 u_int32_t high_sb_max = SB_MAX;
138
139 static u_int32_t sb_efficiency = 8; /* parameter for sbreserve() */
140 int32_t total_sbmb_cnt __attribute__((aligned(8))) = 0;
141 int32_t total_sbmb_cnt_floor __attribute__((aligned(8))) = 0;
142 int32_t total_sbmb_cnt_peak __attribute__((aligned(8))) = 0;
143 int64_t sbmb_limreached __attribute__((aligned(8))) = 0;
144
145 /* Control whether to throttle sockets eligible to be throttled */
146 __private_extern__ u_int32_t net_io_policy_throttled = 0;
147 static int sysctl_io_policy_throttled SYSCTL_HANDLER_ARGS;
148
149 u_int32_t net_io_policy_log = 0; /* log socket policy changes */
150 #if CONFIG_PROC_UUID_POLICY
151 u_int32_t net_io_policy_uuid = 1; /* enable UUID socket policy */
152 #endif /* CONFIG_PROC_UUID_POLICY */
153
154 /*
155 * Procedures to manipulate state flags of socket
156 * and do appropriate wakeups. Normal sequence from the
157 * active (originating) side is that soisconnecting() is
158 * called during processing of connect() call,
159 * resulting in an eventual call to soisconnected() if/when the
160 * connection is established. When the connection is torn down
161 * soisdisconnecting() is called during processing of disconnect() call,
162 * and soisdisconnected() is called when the connection to the peer
163 * is totally severed. The semantics of these routines are such that
164 * connectionless protocols can call soisconnected() and soisdisconnected()
165 * only, bypassing the in-progress calls when setting up a ``connection''
166 * takes no time.
167 *
168 * From the passive side, a socket is created with
169 * two queues of sockets: so_incomp for connections in progress
170 * and so_comp for connections already made and awaiting user acceptance.
171 * As a protocol is preparing incoming connections, it creates a socket
172 * structure queued on so_incomp by calling sonewconn(). When the connection
173 * is established, soisconnected() is called, and transfers the
174 * socket structure to so_comp, making it available to accept().
175 *
176 * If a socket is closed with sockets on either
177 * so_incomp or so_comp, these sockets are dropped.
178 *
179 * If higher level protocols are implemented in
180 * the kernel, the wakeups done here will sometimes
181 * cause software-interrupt process scheduling.
182 */
183 void
184 soisconnecting(struct socket *so)
185 {
186
187 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
188 so->so_state |= SS_ISCONNECTING;
189
190 sflt_notify(so, sock_evt_connecting, NULL);
191 }
192
193 void
194 soisconnected(struct socket *so)
195 {
196
197 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
198 so->so_state |= SS_ISCONNECTED;
199
200 soreserve_preconnect(so, 0);
201
202 sflt_notify(so, sock_evt_connected, NULL);
203
204 if (so->so_head != NULL && (so->so_state & SS_INCOMP)) {
205 struct socket *head = so->so_head;
206 int locked = 0;
207
208 /*
209 * Enforce lock order when the protocol has per socket locks
210 */
211 if (head->so_proto->pr_getlock != NULL) {
212 socket_unlock(so, 0);
213 socket_lock(head, 1);
214 socket_lock(so, 0);
215 locked = 1;
216 }
217 if (so->so_head == head && (so->so_state & SS_INCOMP)) {
218 so->so_state &= ~SS_INCOMP;
219 so->so_state |= SS_COMP;
220 TAILQ_REMOVE(&head->so_incomp, so, so_list);
221 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
222 head->so_incqlen--;
223
224 if (locked != 0)
225 socket_unlock(so, 0);
226
227 postevent(head, 0, EV_RCONN);
228 sorwakeup(head);
229 wakeup_one((caddr_t)&head->so_timeo);
230
231 if (locked != 0)
232 socket_lock(so, 0);
233 }
234 if (locked != 0)
235 socket_unlock(head, 1);
236 } else {
237 postevent(so, 0, EV_WCONN);
238 wakeup((caddr_t)&so->so_timeo);
239 sorwakeup(so);
240 sowwakeup(so);
241 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CONNECTED |
242 SO_FILT_HINT_CONNINFO_UPDATED);
243 }
244 }
245
246 boolean_t
247 socanwrite(struct socket *so)
248 {
249 return ((so->so_state & SS_ISCONNECTED) ||
250 !(so->so_proto->pr_flags & PR_CONNREQUIRED) ||
251 (so->so_flags1 & SOF1_PRECONNECT_DATA));
252 }
253
254 void
255 soisdisconnecting(struct socket *so)
256 {
257 so->so_state &= ~SS_ISCONNECTING;
258 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
259 soevent(so, SO_FILT_HINT_LOCKED);
260 sflt_notify(so, sock_evt_disconnecting, NULL);
261 wakeup((caddr_t)&so->so_timeo);
262 sowwakeup(so);
263 sorwakeup(so);
264 }
265
266 void
267 soisdisconnected(struct socket *so)
268 {
269 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
270 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
271 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED |
272 SO_FILT_HINT_CONNINFO_UPDATED);
273 sflt_notify(so, sock_evt_disconnected, NULL);
274 wakeup((caddr_t)&so->so_timeo);
275 sowwakeup(so);
276 sorwakeup(so);
277
278 #if CONTENT_FILTER
279 /* Notify content filters as soon as we cannot send/receive data */
280 cfil_sock_notify_shutdown(so, SHUT_RDWR);
281 #endif /* CONTENT_FILTER */
282 }
283
284 /*
285 * This function will issue a wakeup like soisdisconnected but it will not
286 * notify the socket filters. This will avoid unlocking the socket
287 * in the midst of closing it.
288 */
289 void
290 sodisconnectwakeup(struct socket *so)
291 {
292 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
293 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
294 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED |
295 SO_FILT_HINT_CONNINFO_UPDATED);
296 wakeup((caddr_t)&so->so_timeo);
297 sowwakeup(so);
298 sorwakeup(so);
299
300 #if CONTENT_FILTER
301 /* Notify content filters as soon as we cannot send/receive data */
302 cfil_sock_notify_shutdown(so, SHUT_RDWR);
303 #endif /* CONTENT_FILTER */
304 }
305
306 /*
307 * When an attempt at a new connection is noted on a socket
308 * which accepts connections, sonewconn is called. If the
309 * connection is possible (subject to space constraints, etc.)
310 * then we allocate a new structure, propoerly linked into the
311 * data structure of the original socket, and return this.
312 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
313 */
314 static struct socket *
315 sonewconn_internal(struct socket *head, int connstatus)
316 {
317 int so_qlen, error = 0;
318 struct socket *so;
319 lck_mtx_t *mutex_held;
320
321 if (head->so_proto->pr_getlock != NULL)
322 mutex_held = (*head->so_proto->pr_getlock)(head, 0);
323 else
324 mutex_held = head->so_proto->pr_domain->dom_mtx;
325 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
326
327 if (!soqlencomp) {
328 /*
329 * This is the default case; so_qlen represents the
330 * sum of both incomplete and completed queues.
331 */
332 so_qlen = head->so_qlen;
333 } else {
334 /*
335 * When kern.ipc.soqlencomp is set to 1, so_qlen
336 * represents only the completed queue. Since we
337 * cannot let the incomplete queue goes unbounded
338 * (in case of SYN flood), we cap the incomplete
339 * queue length to at most somaxconn, and use that
340 * as so_qlen so that we fail immediately below.
341 */
342 so_qlen = head->so_qlen - head->so_incqlen;
343 if (head->so_incqlen > somaxconn)
344 so_qlen = somaxconn;
345 }
346
347 if (so_qlen >=
348 (soqlimitcompat ? head->so_qlimit : (3 * head->so_qlimit / 2)))
349 return ((struct socket *)0);
350 so = soalloc(1, SOCK_DOM(head), head->so_type);
351 if (so == NULL)
352 return ((struct socket *)0);
353 /* check if head was closed during the soalloc */
354 if (head->so_proto == NULL) {
355 sodealloc(so);
356 return ((struct socket *)0);
357 }
358
359 so->so_type = head->so_type;
360 so->so_options = head->so_options &~ SO_ACCEPTCONN;
361 so->so_linger = head->so_linger;
362 so->so_state = head->so_state | SS_NOFDREF;
363 so->so_proto = head->so_proto;
364 so->so_timeo = head->so_timeo;
365 so->so_pgid = head->so_pgid;
366 kauth_cred_ref(head->so_cred);
367 so->so_cred = head->so_cred;
368 so->last_pid = head->last_pid;
369 so->last_upid = head->last_upid;
370 memcpy(so->last_uuid, head->last_uuid, sizeof (so->last_uuid));
371 if (head->so_flags & SOF_DELEGATED) {
372 so->e_pid = head->e_pid;
373 so->e_upid = head->e_upid;
374 memcpy(so->e_uuid, head->e_uuid, sizeof (so->e_uuid));
375 }
376 /* inherit socket options stored in so_flags */
377 so->so_flags = head->so_flags &
378 (SOF_NOSIGPIPE | SOF_NOADDRAVAIL | SOF_REUSESHAREUID |
379 SOF_NOTIFYCONFLICT | SOF_BINDRANDOMPORT | SOF_NPX_SETOPTSHUT |
380 SOF_NODEFUNCT | SOF_PRIVILEGED_TRAFFIC_CLASS| SOF_NOTSENT_LOWAT |
381 SOF_USELRO | SOF_DELEGATED);
382 so->so_usecount = 1;
383 so->next_lock_lr = 0;
384 so->next_unlock_lr = 0;
385
386 so->so_rcv.sb_flags |= SB_RECV; /* XXX */
387 so->so_rcv.sb_so = so->so_snd.sb_so = so;
388 TAILQ_INIT(&so->so_evlist);
389
390 #if CONFIG_MACF_SOCKET
391 mac_socket_label_associate_accept(head, so);
392 #endif
393
394 /* inherit traffic management properties of listener */
395 so->so_flags1 |=
396 head->so_flags1 & (SOF1_TRAFFIC_MGT_SO_BACKGROUND);
397 so->so_background_thread = head->so_background_thread;
398 so->so_traffic_class = head->so_traffic_class;
399
400 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
401 sodealloc(so);
402 return ((struct socket *)0);
403 }
404 so->so_rcv.sb_flags |= (head->so_rcv.sb_flags & SB_USRSIZE);
405 so->so_snd.sb_flags |= (head->so_snd.sb_flags & SB_USRSIZE);
406
407 /*
408 * Must be done with head unlocked to avoid deadlock
409 * for protocol with per socket mutexes.
410 */
411 if (head->so_proto->pr_unlock)
412 socket_unlock(head, 0);
413 if (((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL) != 0) ||
414 error) {
415 sodealloc(so);
416 if (head->so_proto->pr_unlock)
417 socket_lock(head, 0);
418 return ((struct socket *)0);
419 }
420 if (head->so_proto->pr_unlock) {
421 socket_lock(head, 0);
422 /*
423 * Radar 7385998 Recheck that the head is still accepting
424 * to avoid race condition when head is getting closed.
425 */
426 if ((head->so_options & SO_ACCEPTCONN) == 0) {
427 so->so_state &= ~SS_NOFDREF;
428 soclose(so);
429 return ((struct socket *)0);
430 }
431 }
432
433 atomic_add_32(&so->so_proto->pr_domain->dom_refs, 1);
434
435 /* Insert in head appropriate lists */
436 so->so_head = head;
437
438 /*
439 * Since this socket is going to be inserted into the incomp
440 * queue, it can be picked up by another thread in
441 * tcp_dropdropablreq to get dropped before it is setup..
442 * To prevent this race, set in-progress flag which can be
443 * cleared later
444 */
445 so->so_flags |= SOF_INCOMP_INPROGRESS;
446
447 if (connstatus) {
448 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
449 so->so_state |= SS_COMP;
450 } else {
451 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
452 so->so_state |= SS_INCOMP;
453 head->so_incqlen++;
454 }
455 head->so_qlen++;
456
457 /* Attach socket filters for this protocol */
458 sflt_initsock(so);
459
460 if (connstatus) {
461 so->so_state |= connstatus;
462 sorwakeup(head);
463 wakeup((caddr_t)&head->so_timeo);
464 }
465 return (so);
466 }
467
468
469 struct socket *
470 sonewconn(struct socket *head, int connstatus, const struct sockaddr *from)
471 {
472 int error = sflt_connectin(head, from);
473 if (error) {
474 return (NULL);
475 }
476
477 return (sonewconn_internal(head, connstatus));
478 }
479
480 /*
481 * Socantsendmore indicates that no more data will be sent on the
482 * socket; it would normally be applied to a socket when the user
483 * informs the system that no more data is to be sent, by the protocol
484 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
485 * will be received, and will normally be applied to the socket by a
486 * protocol when it detects that the peer will send no more data.
487 * Data queued for reading in the socket may yet be read.
488 */
489
490 void
491 socantsendmore(struct socket *so)
492 {
493 so->so_state |= SS_CANTSENDMORE;
494 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTSENDMORE);
495 sflt_notify(so, sock_evt_cantsendmore, NULL);
496 sowwakeup(so);
497 }
498
499 void
500 socantrcvmore(struct socket *so)
501 {
502 so->so_state |= SS_CANTRCVMORE;
503 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTRCVMORE);
504 sflt_notify(so, sock_evt_cantrecvmore, NULL);
505 sorwakeup(so);
506 }
507
508 /*
509 * Wait for data to arrive at/drain from a socket buffer.
510 */
511 int
512 sbwait(struct sockbuf *sb)
513 {
514 boolean_t nointr = (sb->sb_flags & SB_NOINTR);
515 void *lr_saved = __builtin_return_address(0);
516 struct socket *so = sb->sb_so;
517 lck_mtx_t *mutex_held;
518 struct timespec ts;
519 int error = 0;
520
521 if (so == NULL) {
522 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
523 __func__, sb, sb->sb_flags, lr_saved);
524 /* NOTREACHED */
525 } else if (so->so_usecount < 1) {
526 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
527 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
528 so->so_usecount, lr_saved, solockhistory_nr(so));
529 /* NOTREACHED */
530 }
531
532 if ((so->so_state & SS_DRAINING) || (so->so_flags & SOF_DEFUNCT)) {
533 error = EBADF;
534 if (so->so_flags & SOF_DEFUNCT) {
535 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
536 "(%d)\n", __func__, proc_selfpid(),
537 proc_best_name(current_proc()),
538 (uint64_t)VM_KERNEL_ADDRPERM(so),
539 SOCK_DOM(so), SOCK_TYPE(so), error);
540 }
541 return (error);
542 }
543
544 if (so->so_proto->pr_getlock != NULL)
545 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
546 else
547 mutex_held = so->so_proto->pr_domain->dom_mtx;
548
549 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
550
551 ts.tv_sec = sb->sb_timeo.tv_sec;
552 ts.tv_nsec = sb->sb_timeo.tv_usec * 1000;
553
554 sb->sb_waiters++;
555 VERIFY(sb->sb_waiters != 0);
556
557 error = msleep((caddr_t)&sb->sb_cc, mutex_held,
558 nointr ? PSOCK : PSOCK | PCATCH,
559 nointr ? "sbwait_nointr" : "sbwait", &ts);
560
561 VERIFY(sb->sb_waiters != 0);
562 sb->sb_waiters--;
563
564 if (so->so_usecount < 1) {
565 panic("%s: 2 sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
566 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
567 so->so_usecount, lr_saved, solockhistory_nr(so));
568 /* NOTREACHED */
569 }
570
571 if ((so->so_state & SS_DRAINING) || (so->so_flags & SOF_DEFUNCT)) {
572 error = EBADF;
573 if (so->so_flags & SOF_DEFUNCT) {
574 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
575 "(%d)\n", __func__, proc_selfpid(),
576 proc_best_name(current_proc()),
577 (uint64_t)VM_KERNEL_ADDRPERM(so),
578 SOCK_DOM(so), SOCK_TYPE(so), error);
579 }
580 }
581
582 return (error);
583 }
584
585 void
586 sbwakeup(struct sockbuf *sb)
587 {
588 if (sb->sb_waiters > 0)
589 wakeup((caddr_t)&sb->sb_cc);
590 }
591
592 /*
593 * Wakeup processes waiting on a socket buffer.
594 * Do asynchronous notification via SIGIO
595 * if the socket has the SS_ASYNC flag set.
596 */
597 void
598 sowakeup(struct socket *so, struct sockbuf *sb)
599 {
600 if (so->so_flags & SOF_DEFUNCT) {
601 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] si 0x%x, "
602 "fl 0x%x [%s]\n", __func__, proc_selfpid(),
603 proc_best_name(current_proc()),
604 (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so),
605 SOCK_TYPE(so), (uint32_t)sb->sb_sel.si_flags, sb->sb_flags,
606 (sb->sb_flags & SB_RECV) ? "rcv" : "snd");
607 }
608
609 sb->sb_flags &= ~SB_SEL;
610 selwakeup(&sb->sb_sel);
611 sbwakeup(sb);
612 if (so->so_state & SS_ASYNC) {
613 if (so->so_pgid < 0)
614 gsignal(-so->so_pgid, SIGIO);
615 else if (so->so_pgid > 0)
616 proc_signal(so->so_pgid, SIGIO);
617 }
618 if (sb->sb_flags & SB_KNOTE) {
619 KNOTE(&sb->sb_sel.si_note, SO_FILT_HINT_LOCKED);
620 }
621 if (sb->sb_flags & SB_UPCALL) {
622 void (*sb_upcall)(struct socket *, void *, int);
623 caddr_t sb_upcallarg;
624
625 sb_upcall = sb->sb_upcall;
626 sb_upcallarg = sb->sb_upcallarg;
627 /* Let close know that we're about to do an upcall */
628 so->so_upcallusecount++;
629
630 socket_unlock(so, 0);
631 (*sb_upcall)(so, sb_upcallarg, M_DONTWAIT);
632 socket_lock(so, 0);
633
634 so->so_upcallusecount--;
635 /* Tell close that it's safe to proceed */
636 if ((so->so_flags & SOF_CLOSEWAIT) &&
637 so->so_upcallusecount == 0)
638 wakeup((caddr_t)&so->so_upcallusecount);
639 }
640 #if CONTENT_FILTER
641 /*
642 * Trap disconnection events for content filters
643 */
644 if ((so->so_flags & SOF_CONTENT_FILTER) != 0) {
645 if ((sb->sb_flags & SB_RECV)) {
646 if (so->so_state & (SS_CANTRCVMORE))
647 cfil_sock_notify_shutdown(so, SHUT_RD);
648 } else {
649 if (so->so_state & (SS_CANTSENDMORE))
650 cfil_sock_notify_shutdown(so, SHUT_WR);
651 }
652 }
653 #endif /* CONTENT_FILTER */
654 }
655
656 /*
657 * Socket buffer (struct sockbuf) utility routines.
658 *
659 * Each socket contains two socket buffers: one for sending data and
660 * one for receiving data. Each buffer contains a queue of mbufs,
661 * information about the number of mbufs and amount of data in the
662 * queue, and other fields allowing select() statements and notification
663 * on data availability to be implemented.
664 *
665 * Data stored in a socket buffer is maintained as a list of records.
666 * Each record is a list of mbufs chained together with the m_next
667 * field. Records are chained together with the m_nextpkt field. The upper
668 * level routine soreceive() expects the following conventions to be
669 * observed when placing information in the receive buffer:
670 *
671 * 1. If the protocol requires each message be preceded by the sender's
672 * name, then a record containing that name must be present before
673 * any associated data (mbuf's must be of type MT_SONAME).
674 * 2. If the protocol supports the exchange of ``access rights'' (really
675 * just additional data associated with the message), and there are
676 * ``rights'' to be received, then a record containing this data
677 * should be present (mbuf's must be of type MT_RIGHTS).
678 * 3. If a name or rights record exists, then it must be followed by
679 * a data record, perhaps of zero length.
680 *
681 * Before using a new socket structure it is first necessary to reserve
682 * buffer space to the socket, by calling sbreserve(). This should commit
683 * some of the available buffer space in the system buffer pool for the
684 * socket (currently, it does nothing but enforce limits). The space
685 * should be released by calling sbrelease() when the socket is destroyed.
686 */
687
688 /*
689 * Returns: 0 Success
690 * ENOBUFS
691 */
692 int
693 soreserve(struct socket *so, u_int32_t sndcc, u_int32_t rcvcc)
694 {
695 if (sbreserve(&so->so_snd, sndcc) == 0)
696 goto bad;
697 else
698 so->so_snd.sb_idealsize = sndcc;
699
700 if (sbreserve(&so->so_rcv, rcvcc) == 0)
701 goto bad2;
702 else
703 so->so_rcv.sb_idealsize = rcvcc;
704
705 if (so->so_rcv.sb_lowat == 0)
706 so->so_rcv.sb_lowat = 1;
707 if (so->so_snd.sb_lowat == 0)
708 so->so_snd.sb_lowat = MCLBYTES;
709 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
710 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
711 return (0);
712 bad2:
713 so->so_snd.sb_flags &= ~SB_SEL;
714 selthreadclear(&so->so_snd.sb_sel);
715 sbrelease(&so->so_snd);
716 bad:
717 return (ENOBUFS);
718 }
719
720 void
721 soreserve_preconnect(struct socket *so, unsigned int pre_cc)
722 {
723 /* As of now, same bytes for both preconnect read and write */
724 so->so_snd.sb_preconn_hiwat = pre_cc;
725 so->so_rcv.sb_preconn_hiwat = pre_cc;
726 }
727
728 /*
729 * Allot mbufs to a sockbuf.
730 * Attempt to scale mbmax so that mbcnt doesn't become limiting
731 * if buffering efficiency is near the normal case.
732 */
733 int
734 sbreserve(struct sockbuf *sb, u_int32_t cc)
735 {
736 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
737 return (0);
738 sb->sb_hiwat = cc;
739 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
740 if (sb->sb_lowat > sb->sb_hiwat)
741 sb->sb_lowat = sb->sb_hiwat;
742 return (1);
743 }
744
745 /*
746 * Free mbufs held by a socket, and reserved mbuf space.
747 */
748 /* WARNING needs to do selthreadclear() before calling this */
749 void
750 sbrelease(struct sockbuf *sb)
751 {
752 sbflush(sb);
753 sb->sb_hiwat = 0;
754 sb->sb_mbmax = 0;
755 }
756
757 /*
758 * Routines to add and remove
759 * data from an mbuf queue.
760 *
761 * The routines sbappend() or sbappendrecord() are normally called to
762 * append new mbufs to a socket buffer, after checking that adequate
763 * space is available, comparing the function sbspace() with the amount
764 * of data to be added. sbappendrecord() differs from sbappend() in
765 * that data supplied is treated as the beginning of a new record.
766 * To place a sender's address, optional access rights, and data in a
767 * socket receive buffer, sbappendaddr() should be used. To place
768 * access rights and data in a socket receive buffer, sbappendrights()
769 * should be used. In either case, the new data begins a new record.
770 * Note that unlike sbappend() and sbappendrecord(), these routines check
771 * for the caller that there will be enough space to store the data.
772 * Each fails if there is not enough space, or if it cannot find mbufs
773 * to store additional information in.
774 *
775 * Reliable protocols may use the socket send buffer to hold data
776 * awaiting acknowledgement. Data is normally copied from a socket
777 * send buffer in a protocol with m_copy for output to a peer,
778 * and then removing the data from the socket buffer with sbdrop()
779 * or sbdroprecord() when the data is acknowledged by the peer.
780 */
781
782 /*
783 * Append mbuf chain m to the last record in the
784 * socket buffer sb. The additional space associated
785 * the mbuf chain is recorded in sb. Empty mbufs are
786 * discarded and mbufs are compacted where possible.
787 */
788 int
789 sbappend(struct sockbuf *sb, struct mbuf *m)
790 {
791 struct socket *so = sb->sb_so;
792
793 if (m == NULL || (sb->sb_flags & SB_DROP)) {
794 if (m != NULL)
795 m_freem(m);
796 return (0);
797 }
798
799 SBLASTRECORDCHK(sb, "sbappend 1");
800
801 if (sb->sb_lastrecord != NULL && (sb->sb_mbtail->m_flags & M_EOR))
802 return (sbappendrecord(sb, m));
803
804 if (sb->sb_flags & SB_RECV && !(m && m->m_flags & M_SKIPCFIL)) {
805 int error = sflt_data_in(so, NULL, &m, NULL, 0);
806 SBLASTRECORDCHK(sb, "sbappend 2");
807
808 #if CONTENT_FILTER
809 if (error == 0)
810 error = cfil_sock_data_in(so, NULL, m, NULL, 0);
811 #endif /* CONTENT_FILTER */
812
813 if (error != 0) {
814 if (error != EJUSTRETURN)
815 m_freem(m);
816 return (0);
817 }
818 } else if (m) {
819 m->m_flags &= ~M_SKIPCFIL;
820 }
821
822 /* If this is the first record, it's also the last record */
823 if (sb->sb_lastrecord == NULL)
824 sb->sb_lastrecord = m;
825
826 sbcompress(sb, m, sb->sb_mbtail);
827 SBLASTRECORDCHK(sb, "sbappend 3");
828 return (1);
829 }
830
831 /*
832 * Similar to sbappend, except that this is optimized for stream sockets.
833 */
834 int
835 sbappendstream(struct sockbuf *sb, struct mbuf *m)
836 {
837 struct socket *so = sb->sb_so;
838
839 if (m == NULL || (sb->sb_flags & SB_DROP)) {
840 if (m != NULL)
841 m_freem(m);
842 return (0);
843 }
844
845 if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) {
846 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
847 m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
848 /* NOTREACHED */
849 }
850
851 SBLASTMBUFCHK(sb, __func__);
852
853 if (sb->sb_flags & SB_RECV && !(m && m->m_flags & M_SKIPCFIL)) {
854 int error = sflt_data_in(so, NULL, &m, NULL, 0);
855 SBLASTRECORDCHK(sb, "sbappendstream 1");
856
857 #if CONTENT_FILTER
858 if (error == 0)
859 error = cfil_sock_data_in(so, NULL, m, NULL, 0);
860 #endif /* CONTENT_FILTER */
861
862 if (error != 0) {
863 if (error != EJUSTRETURN)
864 m_freem(m);
865 return (0);
866 }
867 } else if (m) {
868 m->m_flags &= ~M_SKIPCFIL;
869 }
870
871 sbcompress(sb, m, sb->sb_mbtail);
872 sb->sb_lastrecord = sb->sb_mb;
873 SBLASTRECORDCHK(sb, "sbappendstream 2");
874 return (1);
875 }
876
877 #ifdef SOCKBUF_DEBUG
878 void
879 sbcheck(struct sockbuf *sb)
880 {
881 struct mbuf *m;
882 struct mbuf *n = 0;
883 u_int32_t len = 0, mbcnt = 0;
884 lck_mtx_t *mutex_held;
885
886 if (sb->sb_so->so_proto->pr_getlock != NULL)
887 mutex_held = (*sb->sb_so->so_proto->pr_getlock)(sb->sb_so, 0);
888 else
889 mutex_held = sb->sb_so->so_proto->pr_domain->dom_mtx;
890
891 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
892
893 if (sbchecking == 0)
894 return;
895
896 for (m = sb->sb_mb; m; m = n) {
897 n = m->m_nextpkt;
898 for (; m; m = m->m_next) {
899 len += m->m_len;
900 mbcnt += MSIZE;
901 /* XXX pretty sure this is bogus */
902 if (m->m_flags & M_EXT)
903 mbcnt += m->m_ext.ext_size;
904 }
905 }
906 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
907 panic("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
908 mbcnt, sb->sb_mbcnt);
909 }
910 }
911 #endif
912
913 void
914 sblastrecordchk(struct sockbuf *sb, const char *where)
915 {
916 struct mbuf *m = sb->sb_mb;
917
918 while (m && m->m_nextpkt)
919 m = m->m_nextpkt;
920
921 if (m != sb->sb_lastrecord) {
922 printf("sblastrecordchk: mb 0x%llx lastrecord 0x%llx "
923 "last 0x%llx\n",
924 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mb),
925 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_lastrecord),
926 (uint64_t)VM_KERNEL_ADDRPERM(m));
927 printf("packet chain:\n");
928 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
929 printf("\t0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(m));
930 panic("sblastrecordchk from %s", where);
931 }
932 }
933
934 void
935 sblastmbufchk(struct sockbuf *sb, const char *where)
936 {
937 struct mbuf *m = sb->sb_mb;
938 struct mbuf *n;
939
940 while (m && m->m_nextpkt)
941 m = m->m_nextpkt;
942
943 while (m && m->m_next)
944 m = m->m_next;
945
946 if (m != sb->sb_mbtail) {
947 printf("sblastmbufchk: mb 0x%llx mbtail 0x%llx last 0x%llx\n",
948 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mb),
949 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mbtail),
950 (uint64_t)VM_KERNEL_ADDRPERM(m));
951 printf("packet tree:\n");
952 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
953 printf("\t");
954 for (n = m; n != NULL; n = n->m_next)
955 printf("0x%llx ",
956 (uint64_t)VM_KERNEL_ADDRPERM(n));
957 printf("\n");
958 }
959 panic("sblastmbufchk from %s", where);
960 }
961 }
962
963 /*
964 * Similar to sbappend, except the mbuf chain begins a new record.
965 */
966 int
967 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
968 {
969 struct mbuf *m;
970 int space = 0;
971
972 if (m0 == NULL || (sb->sb_flags & SB_DROP)) {
973 if (m0 != NULL)
974 m_freem(m0);
975 return (0);
976 }
977
978 for (m = m0; m != NULL; m = m->m_next)
979 space += m->m_len;
980
981 if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX)) {
982 m_freem(m0);
983 return (0);
984 }
985
986 if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
987 int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL,
988 sock_data_filt_flag_record);
989
990 #if CONTENT_FILTER
991 if (error == 0)
992 error = cfil_sock_data_in(sb->sb_so, NULL, m0, NULL, 0);
993 #endif /* CONTENT_FILTER */
994
995 if (error != 0) {
996 SBLASTRECORDCHK(sb, "sbappendrecord 1");
997 if (error != EJUSTRETURN)
998 m_freem(m0);
999 return (0);
1000 }
1001 } else if (m0) {
1002 m0->m_flags &= ~M_SKIPCFIL;
1003 }
1004
1005 /*
1006 * Note this permits zero length records.
1007 */
1008 sballoc(sb, m0);
1009 SBLASTRECORDCHK(sb, "sbappendrecord 2");
1010 if (sb->sb_lastrecord != NULL) {
1011 sb->sb_lastrecord->m_nextpkt = m0;
1012 } else {
1013 sb->sb_mb = m0;
1014 }
1015 sb->sb_lastrecord = m0;
1016 sb->sb_mbtail = m0;
1017
1018 m = m0->m_next;
1019 m0->m_next = 0;
1020 if (m && (m0->m_flags & M_EOR)) {
1021 m0->m_flags &= ~M_EOR;
1022 m->m_flags |= M_EOR;
1023 }
1024 sbcompress(sb, m, m0);
1025 SBLASTRECORDCHK(sb, "sbappendrecord 3");
1026 return (1);
1027 }
1028
1029 /*
1030 * As above except that OOB data
1031 * is inserted at the beginning of the sockbuf,
1032 * but after any other OOB data.
1033 */
1034 int
1035 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
1036 {
1037 struct mbuf *m;
1038 struct mbuf **mp;
1039
1040 if (m0 == 0)
1041 return (0);
1042
1043 SBLASTRECORDCHK(sb, "sbinsertoob 1");
1044
1045 if ((sb->sb_flags & SB_RECV && !(m0->m_flags & M_SKIPCFIL)) != 0) {
1046 int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL,
1047 sock_data_filt_flag_oob);
1048
1049 SBLASTRECORDCHK(sb, "sbinsertoob 2");
1050
1051 #if CONTENT_FILTER
1052 if (error == 0)
1053 error = cfil_sock_data_in(sb->sb_so, NULL, m0, NULL, 0);
1054 #endif /* CONTENT_FILTER */
1055
1056 if (error) {
1057 if (error != EJUSTRETURN) {
1058 m_freem(m0);
1059 }
1060 return (0);
1061 }
1062 } else if (m0) {
1063 m0->m_flags &= ~M_SKIPCFIL;
1064 }
1065
1066 for (mp = &sb->sb_mb; *mp; mp = &((*mp)->m_nextpkt)) {
1067 m = *mp;
1068 again:
1069 switch (m->m_type) {
1070
1071 case MT_OOBDATA:
1072 continue; /* WANT next train */
1073
1074 case MT_CONTROL:
1075 m = m->m_next;
1076 if (m)
1077 goto again; /* inspect THIS train further */
1078 }
1079 break;
1080 }
1081 /*
1082 * Put the first mbuf on the queue.
1083 * Note this permits zero length records.
1084 */
1085 sballoc(sb, m0);
1086 m0->m_nextpkt = *mp;
1087 if (*mp == NULL) {
1088 /* m0 is actually the new tail */
1089 sb->sb_lastrecord = m0;
1090 }
1091 *mp = m0;
1092 m = m0->m_next;
1093 m0->m_next = 0;
1094 if (m && (m0->m_flags & M_EOR)) {
1095 m0->m_flags &= ~M_EOR;
1096 m->m_flags |= M_EOR;
1097 }
1098 sbcompress(sb, m, m0);
1099 SBLASTRECORDCHK(sb, "sbinsertoob 3");
1100 return (1);
1101 }
1102
1103 /*
1104 * Append address and data, and optionally, control (ancillary) data
1105 * to the receive queue of a socket. If present,
1106 * m0 must include a packet header with total length.
1107 * Returns 0 if no space in sockbuf or insufficient mbufs.
1108 *
1109 * Returns: 0 No space/out of mbufs
1110 * 1 Success
1111 */
1112 static int
1113 sbappendaddr_internal(struct sockbuf *sb, struct sockaddr *asa,
1114 struct mbuf *m0, struct mbuf *control)
1115 {
1116 struct mbuf *m, *n, *nlast;
1117 int space = asa->sa_len;
1118
1119 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1120 panic("sbappendaddr");
1121
1122 if (m0)
1123 space += m0->m_pkthdr.len;
1124 for (n = control; n; n = n->m_next) {
1125 space += n->m_len;
1126 if (n->m_next == 0) /* keep pointer to last control buf */
1127 break;
1128 }
1129 if (space > sbspace(sb))
1130 return (0);
1131 if (asa->sa_len > MLEN)
1132 return (0);
1133 MGET(m, M_DONTWAIT, MT_SONAME);
1134 if (m == 0)
1135 return (0);
1136 m->m_len = asa->sa_len;
1137 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
1138 if (n)
1139 n->m_next = m0; /* concatenate data to control */
1140 else
1141 control = m0;
1142 m->m_next = control;
1143
1144 SBLASTRECORDCHK(sb, "sbappendadddr 1");
1145
1146 for (n = m; n->m_next != NULL; n = n->m_next)
1147 sballoc(sb, n);
1148 sballoc(sb, n);
1149 nlast = n;
1150
1151 if (sb->sb_lastrecord != NULL) {
1152 sb->sb_lastrecord->m_nextpkt = m;
1153 } else {
1154 sb->sb_mb = m;
1155 }
1156 sb->sb_lastrecord = m;
1157 sb->sb_mbtail = nlast;
1158
1159 SBLASTMBUFCHK(sb, __func__);
1160 SBLASTRECORDCHK(sb, "sbappendadddr 2");
1161
1162 postevent(0, sb, EV_RWBYTES);
1163 return (1);
1164 }
1165
1166 /*
1167 * Returns: 0 Error: No space/out of mbufs/etc.
1168 * 1 Success
1169 *
1170 * Imputed: (*error_out) errno for error
1171 * ENOBUFS
1172 * sflt_data_in:??? [whatever a filter author chooses]
1173 */
1174 int
1175 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
1176 struct mbuf *control, int *error_out)
1177 {
1178 int result = 0;
1179 boolean_t sb_unix = (sb->sb_flags & SB_UNIX);
1180
1181 if (error_out)
1182 *error_out = 0;
1183
1184 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1185 panic("sbappendaddrorfree");
1186
1187 if (sb->sb_flags & SB_DROP) {
1188 if (m0 != NULL)
1189 m_freem(m0);
1190 if (control != NULL && !sb_unix)
1191 m_freem(control);
1192 if (error_out != NULL)
1193 *error_out = EINVAL;
1194 return (0);
1195 }
1196
1197 /* Call socket data in filters */
1198 if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
1199 int error;
1200 error = sflt_data_in(sb->sb_so, asa, &m0, &control, 0);
1201 SBLASTRECORDCHK(sb, __func__);
1202
1203 #if CONTENT_FILTER
1204 if (error == 0)
1205 error = cfil_sock_data_in(sb->sb_so, asa, m0, control,
1206 0);
1207 #endif /* CONTENT_FILTER */
1208
1209 if (error) {
1210 if (error != EJUSTRETURN) {
1211 if (m0)
1212 m_freem(m0);
1213 if (control != NULL && !sb_unix)
1214 m_freem(control);
1215 if (error_out)
1216 *error_out = error;
1217 }
1218 return (0);
1219 }
1220 } else if (m0) {
1221 m0->m_flags &= ~M_SKIPCFIL;
1222 }
1223
1224 result = sbappendaddr_internal(sb, asa, m0, control);
1225 if (result == 0) {
1226 if (m0)
1227 m_freem(m0);
1228 if (control != NULL && !sb_unix)
1229 m_freem(control);
1230 if (error_out)
1231 *error_out = ENOBUFS;
1232 }
1233
1234 return (result);
1235 }
1236
1237 static int
1238 sbappendcontrol_internal(struct sockbuf *sb, struct mbuf *m0,
1239 struct mbuf *control)
1240 {
1241 struct mbuf *m, *mlast, *n;
1242 int space = 0;
1243
1244 if (control == 0)
1245 panic("sbappendcontrol");
1246
1247 for (m = control; ; m = m->m_next) {
1248 space += m->m_len;
1249 if (m->m_next == 0)
1250 break;
1251 }
1252 n = m; /* save pointer to last control buffer */
1253 for (m = m0; m; m = m->m_next)
1254 space += m->m_len;
1255 if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX))
1256 return (0);
1257 n->m_next = m0; /* concatenate data to control */
1258 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1259
1260 for (m = control; m->m_next != NULL; m = m->m_next)
1261 sballoc(sb, m);
1262 sballoc(sb, m);
1263 mlast = m;
1264
1265 if (sb->sb_lastrecord != NULL) {
1266 sb->sb_lastrecord->m_nextpkt = control;
1267 } else {
1268 sb->sb_mb = control;
1269 }
1270 sb->sb_lastrecord = control;
1271 sb->sb_mbtail = mlast;
1272
1273 SBLASTMBUFCHK(sb, __func__);
1274 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1275
1276 postevent(0, sb, EV_RWBYTES);
1277 return (1);
1278 }
1279
1280 int
1281 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1282 int *error_out)
1283 {
1284 int result = 0;
1285 boolean_t sb_unix = (sb->sb_flags & SB_UNIX);
1286
1287 if (error_out)
1288 *error_out = 0;
1289
1290 if (sb->sb_flags & SB_DROP) {
1291 if (m0 != NULL)
1292 m_freem(m0);
1293 if (control != NULL && !sb_unix)
1294 m_freem(control);
1295 if (error_out != NULL)
1296 *error_out = EINVAL;
1297 return (0);
1298 }
1299
1300 if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
1301 int error;
1302
1303 error = sflt_data_in(sb->sb_so, NULL, &m0, &control, 0);
1304 SBLASTRECORDCHK(sb, __func__);
1305
1306 #if CONTENT_FILTER
1307 if (error == 0)
1308 error = cfil_sock_data_in(sb->sb_so, NULL, m0, control,
1309 0);
1310 #endif /* CONTENT_FILTER */
1311
1312 if (error) {
1313 if (error != EJUSTRETURN) {
1314 if (m0)
1315 m_freem(m0);
1316 if (control != NULL && !sb_unix)
1317 m_freem(control);
1318 if (error_out)
1319 *error_out = error;
1320 }
1321 return (0);
1322 }
1323 } else if (m0) {
1324 m0->m_flags &= ~M_SKIPCFIL;
1325 }
1326
1327 result = sbappendcontrol_internal(sb, m0, control);
1328 if (result == 0) {
1329 if (m0)
1330 m_freem(m0);
1331 if (control != NULL && !sb_unix)
1332 m_freem(control);
1333 if (error_out)
1334 *error_out = ENOBUFS;
1335 }
1336
1337 return (result);
1338 }
1339
1340 /*
1341 * Append a contiguous TCP data blob with TCP sequence number as control data
1342 * as a new msg to the receive socket buffer.
1343 */
1344 int
1345 sbappendmsgstream_rcv(struct sockbuf *sb, struct mbuf *m, uint32_t seqnum,
1346 int unordered)
1347 {
1348 struct mbuf *m_eor = NULL;
1349 u_int32_t data_len = 0;
1350 int ret = 0;
1351 struct socket *so = sb->sb_so;
1352
1353 VERIFY((m->m_flags & M_PKTHDR) && m_pktlen(m) > 0);
1354 VERIFY(so->so_msg_state != NULL);
1355 VERIFY(sb->sb_flags & SB_RECV);
1356
1357 /* Keep the TCP sequence number in the mbuf pkthdr */
1358 m->m_pkthdr.msg_seq = seqnum;
1359
1360 /* find last mbuf and set M_EOR */
1361 for (m_eor = m; ; m_eor = m_eor->m_next) {
1362 /*
1363 * If the msg is unordered, we need to account for
1364 * these bytes in receive socket buffer size. Otherwise,
1365 * the receive window advertised will shrink because
1366 * of the additional unordered bytes added to the
1367 * receive buffer.
1368 */
1369 if (unordered) {
1370 m_eor->m_flags |= M_UNORDERED_DATA;
1371 data_len += m_eor->m_len;
1372 so->so_msg_state->msg_uno_bytes += m_eor->m_len;
1373 } else {
1374 m_eor->m_flags &= ~M_UNORDERED_DATA;
1375 }
1376 if (m_eor->m_next == NULL)
1377 break;
1378 }
1379
1380 /* set EOR flag at end of byte blob */
1381 m_eor->m_flags |= M_EOR;
1382
1383 /* expand the receive socket buffer to allow unordered data */
1384 if (unordered && !sbreserve(sb, sb->sb_hiwat + data_len)) {
1385 /*
1386 * Could not allocate memory for unordered data, it
1387 * means this packet will have to be delivered in order
1388 */
1389 printf("%s: could not reserve space for unordered data\n",
1390 __func__);
1391 }
1392
1393 if (!unordered && (sb->sb_mbtail != NULL) &&
1394 !(sb->sb_mbtail->m_flags & M_UNORDERED_DATA)) {
1395 sb->sb_mbtail->m_flags &= ~M_EOR;
1396 sbcompress(sb, m, sb->sb_mbtail);
1397 ret = 1;
1398 } else {
1399 ret = sbappendrecord(sb, m);
1400 }
1401 VERIFY(sb->sb_mbtail->m_flags & M_EOR);
1402 return (ret);
1403 }
1404
1405 /*
1406 * TCP streams have message based out of order delivery support, or have
1407 * Multipath TCP support, or are regular TCP sockets
1408 */
1409 int
1410 sbappendstream_rcvdemux(struct socket *so, struct mbuf *m, uint32_t seqnum,
1411 int unordered)
1412 {
1413 int ret = 0;
1414
1415 if ((m != NULL) && (m_pktlen(m) <= 0)) {
1416 m_freem(m);
1417 return (ret);
1418 }
1419
1420 if (so->so_flags & SOF_ENABLE_MSGS) {
1421 ret = sbappendmsgstream_rcv(&so->so_rcv, m, seqnum, unordered);
1422 }
1423 #if MPTCP
1424 else if (so->so_flags & SOF_MPTCP_TRUE) {
1425 ret = sbappendmptcpstream_rcv(&so->so_rcv, m);
1426 }
1427 #endif /* MPTCP */
1428 else {
1429 ret = sbappendstream(&so->so_rcv, m);
1430 }
1431 return (ret);
1432 }
1433
1434 #if MPTCP
1435 int
1436 sbappendmptcpstream_rcv(struct sockbuf *sb, struct mbuf *m)
1437 {
1438 struct socket *so = sb->sb_so;
1439
1440 VERIFY(m == NULL || (m->m_flags & M_PKTHDR));
1441 /* SB_NOCOMPRESS must be set prevent loss of M_PKTHDR data */
1442 VERIFY((sb->sb_flags & (SB_RECV|SB_NOCOMPRESS)) ==
1443 (SB_RECV|SB_NOCOMPRESS));
1444
1445 if (m == NULL || m_pktlen(m) == 0 || (sb->sb_flags & SB_DROP) ||
1446 (so->so_state & SS_CANTRCVMORE)) {
1447 if (m != NULL)
1448 m_freem(m);
1449 return (0);
1450 }
1451 /* the socket is not closed, so SOF_MP_SUBFLOW must be set */
1452 VERIFY(so->so_flags & SOF_MP_SUBFLOW);
1453
1454 if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) {
1455 panic("%s: nexpkt %p || mb %p != lastrecord %p\n", __func__,
1456 m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
1457 /* NOTREACHED */
1458 }
1459
1460 SBLASTMBUFCHK(sb, __func__);
1461
1462 if (mptcp_adj_rmap(so, m) != 0)
1463 return (0);
1464
1465 /* No filter support (SB_RECV) on mptcp subflow sockets */
1466
1467 sbcompress(sb, m, sb->sb_mbtail);
1468 sb->sb_lastrecord = sb->sb_mb;
1469 SBLASTRECORDCHK(sb, __func__);
1470 return (1);
1471 }
1472 #endif /* MPTCP */
1473
1474 /*
1475 * Append message to send socket buffer based on priority.
1476 */
1477 int
1478 sbappendmsg_snd(struct sockbuf *sb, struct mbuf *m)
1479 {
1480 struct socket *so = sb->sb_so;
1481 struct msg_priq *priq;
1482 int set_eor = 0;
1483
1484 VERIFY(so->so_msg_state != NULL);
1485
1486 if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord))
1487 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
1488 m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
1489
1490 SBLASTMBUFCHK(sb, __func__);
1491
1492 if (m == NULL || (sb->sb_flags & SB_DROP) || so->so_msg_state == NULL) {
1493 if (m != NULL)
1494 m_freem(m);
1495 return (0);
1496 }
1497
1498 priq = &so->so_msg_state->msg_priq[m->m_pkthdr.msg_pri];
1499
1500 /* note if we need to propogate M_EOR to the last mbuf */
1501 if (m->m_flags & M_EOR) {
1502 set_eor = 1;
1503
1504 /* Reset M_EOR from the first mbuf */
1505 m->m_flags &= ~(M_EOR);
1506 }
1507
1508 if (priq->msgq_head == NULL) {
1509 VERIFY(priq->msgq_tail == NULL && priq->msgq_lastmsg == NULL);
1510 priq->msgq_head = priq->msgq_lastmsg = m;
1511 } else {
1512 VERIFY(priq->msgq_tail->m_next == NULL);
1513
1514 /* Check if the last message has M_EOR flag set */
1515 if (priq->msgq_tail->m_flags & M_EOR) {
1516 /* Insert as a new message */
1517 priq->msgq_lastmsg->m_nextpkt = m;
1518
1519 /* move the lastmsg pointer */
1520 priq->msgq_lastmsg = m;
1521 } else {
1522 /* Append to the existing message */
1523 priq->msgq_tail->m_next = m;
1524 }
1525 }
1526
1527 /* Update accounting and the queue tail pointer */
1528
1529 while (m->m_next != NULL) {
1530 sballoc(sb, m);
1531 priq->msgq_bytes += m->m_len;
1532 m = m->m_next;
1533 }
1534 sballoc(sb, m);
1535 priq->msgq_bytes += m->m_len;
1536
1537 if (set_eor) {
1538 m->m_flags |= M_EOR;
1539
1540 /*
1541 * Since the user space can not write a new msg
1542 * without completing the previous one, we can
1543 * reset this flag to start sending again.
1544 */
1545 priq->msgq_flags &= ~(MSGQ_MSG_NOTDONE);
1546 }
1547
1548 priq->msgq_tail = m;
1549
1550 SBLASTRECORDCHK(sb, "sbappendstream 2");
1551 postevent(0, sb, EV_RWBYTES);
1552 return (1);
1553 }
1554
1555 /*
1556 * Pull data from priority queues to the serial snd queue
1557 * right before sending.
1558 */
1559 void
1560 sbpull_unordered_data(struct socket *so, int32_t off, int32_t len)
1561 {
1562 int32_t topull, i;
1563 struct msg_priq *priq = NULL;
1564
1565 VERIFY(so->so_msg_state != NULL);
1566
1567 topull = (off + len) - so->so_msg_state->msg_serial_bytes;
1568
1569 i = MSG_PRI_MAX;
1570 while (i >= MSG_PRI_MIN && topull > 0) {
1571 struct mbuf *m = NULL, *mqhead = NULL, *mend = NULL;
1572 priq = &so->so_msg_state->msg_priq[i];
1573 if ((priq->msgq_flags & MSGQ_MSG_NOTDONE) &&
1574 priq->msgq_head == NULL) {
1575 /*
1576 * We were in the middle of sending
1577 * a message and we have not seen the
1578 * end of it.
1579 */
1580 VERIFY(priq->msgq_lastmsg == NULL &&
1581 priq->msgq_tail == NULL);
1582 return;
1583 }
1584 if (priq->msgq_head != NULL) {
1585 int32_t bytes = 0, topull_tmp = topull;
1586 /*
1587 * We found a msg while scanning the priority
1588 * queue from high to low priority.
1589 */
1590 m = priq->msgq_head;
1591 mqhead = m;
1592 mend = m;
1593
1594 /*
1595 * Move bytes from the priority queue to the
1596 * serial queue. Compute the number of bytes
1597 * being added.
1598 */
1599 while (mqhead->m_next != NULL && topull_tmp > 0) {
1600 bytes += mqhead->m_len;
1601 topull_tmp -= mqhead->m_len;
1602 mend = mqhead;
1603 mqhead = mqhead->m_next;
1604 }
1605
1606 if (mqhead->m_next == NULL) {
1607 /*
1608 * If we have only one more mbuf left,
1609 * move the last mbuf of this message to
1610 * serial queue and set the head of the
1611 * queue to be the next message.
1612 */
1613 bytes += mqhead->m_len;
1614 mend = mqhead;
1615 mqhead = m->m_nextpkt;
1616 if (!(mend->m_flags & M_EOR)) {
1617 /*
1618 * We have not seen the end of
1619 * this message, so we can not
1620 * pull anymore.
1621 */
1622 priq->msgq_flags |= MSGQ_MSG_NOTDONE;
1623 } else {
1624 /* Reset M_EOR */
1625 mend->m_flags &= ~(M_EOR);
1626 }
1627 } else {
1628 /* propogate the next msg pointer */
1629 mqhead->m_nextpkt = m->m_nextpkt;
1630 }
1631 priq->msgq_head = mqhead;
1632
1633 /*
1634 * if the lastmsg pointer points to
1635 * the mbuf that is being dequeued, update
1636 * it to point to the new head.
1637 */
1638 if (priq->msgq_lastmsg == m)
1639 priq->msgq_lastmsg = priq->msgq_head;
1640
1641 m->m_nextpkt = NULL;
1642 mend->m_next = NULL;
1643
1644 if (priq->msgq_head == NULL) {
1645 /* Moved all messages, update tail */
1646 priq->msgq_tail = NULL;
1647 VERIFY(priq->msgq_lastmsg == NULL);
1648 }
1649
1650 /* Move it to serial sb_mb queue */
1651 if (so->so_snd.sb_mb == NULL) {
1652 so->so_snd.sb_mb = m;
1653 } else {
1654 so->so_snd.sb_mbtail->m_next = m;
1655 }
1656
1657 priq->msgq_bytes -= bytes;
1658 VERIFY(priq->msgq_bytes >= 0);
1659 sbwakeup(&so->so_snd);
1660
1661 so->so_msg_state->msg_serial_bytes += bytes;
1662 so->so_snd.sb_mbtail = mend;
1663 so->so_snd.sb_lastrecord = so->so_snd.sb_mb;
1664
1665 topull =
1666 (off + len) - so->so_msg_state->msg_serial_bytes;
1667
1668 if (priq->msgq_flags & MSGQ_MSG_NOTDONE)
1669 break;
1670 } else {
1671 --i;
1672 }
1673 }
1674 sblastrecordchk(&so->so_snd, "sbpull_unordered_data");
1675 sblastmbufchk(&so->so_snd, "sbpull_unordered_data");
1676 }
1677
1678 /*
1679 * Compress mbuf chain m into the socket
1680 * buffer sb following mbuf n. If n
1681 * is null, the buffer is presumed empty.
1682 */
1683 static inline void
1684 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1685 {
1686 int eor = 0, compress = (!(sb->sb_flags & SB_NOCOMPRESS));
1687 struct mbuf *o;
1688
1689 if (m == NULL) {
1690 /* There is nothing to compress; just update the tail */
1691 for (; n->m_next != NULL; n = n->m_next)
1692 ;
1693 sb->sb_mbtail = n;
1694 goto done;
1695 }
1696
1697 while (m != NULL) {
1698 eor |= m->m_flags & M_EOR;
1699 if (compress && m->m_len == 0 && (eor == 0 ||
1700 (((o = m->m_next) || (o = n)) && o->m_type == m->m_type))) {
1701 if (sb->sb_lastrecord == m)
1702 sb->sb_lastrecord = m->m_next;
1703 m = m_free(m);
1704 continue;
1705 }
1706 if (compress && n != NULL && (n->m_flags & M_EOR) == 0 &&
1707 #ifndef __APPLE__
1708 M_WRITABLE(n) &&
1709 #endif
1710 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1711 m->m_len <= M_TRAILINGSPACE(n) &&
1712 n->m_type == m->m_type) {
1713 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
1714 (unsigned)m->m_len);
1715 n->m_len += m->m_len;
1716 sb->sb_cc += m->m_len;
1717 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1718 m->m_type != MT_OOBDATA) {
1719 /* XXX: Probably don't need */
1720 sb->sb_ctl += m->m_len;
1721 }
1722
1723 /* update send byte count */
1724 if (sb->sb_flags & SB_SNDBYTE_CNT) {
1725 inp_incr_sndbytes_total(sb->sb_so,
1726 m->m_len);
1727 inp_incr_sndbytes_unsent(sb->sb_so,
1728 m->m_len);
1729 }
1730 m = m_free(m);
1731 continue;
1732 }
1733 if (n != NULL)
1734 n->m_next = m;
1735 else
1736 sb->sb_mb = m;
1737 sb->sb_mbtail = m;
1738 sballoc(sb, m);
1739 n = m;
1740 m->m_flags &= ~M_EOR;
1741 m = m->m_next;
1742 n->m_next = NULL;
1743 }
1744 if (eor != 0) {
1745 if (n != NULL)
1746 n->m_flags |= eor;
1747 else
1748 printf("semi-panic: sbcompress\n");
1749 }
1750 done:
1751 SBLASTMBUFCHK(sb, __func__);
1752 postevent(0, sb, EV_RWBYTES);
1753 }
1754
1755 void
1756 sb_empty_assert(struct sockbuf *sb, const char *where)
1757 {
1758 if (!(sb->sb_cc == 0 && sb->sb_mb == NULL && sb->sb_mbcnt == 0 &&
1759 sb->sb_mbtail == NULL && sb->sb_lastrecord == NULL)) {
1760 panic("%s: sb %p so %p cc %d mbcnt %d mb %p mbtail %p "
1761 "lastrecord %p\n", where, sb, sb->sb_so, sb->sb_cc,
1762 sb->sb_mbcnt, sb->sb_mb, sb->sb_mbtail,
1763 sb->sb_lastrecord);
1764 /* NOTREACHED */
1765 }
1766 }
1767
1768 static void
1769 sbflush_priq(struct msg_priq *priq)
1770 {
1771 struct mbuf *m;
1772 m = priq->msgq_head;
1773 if (m != NULL)
1774 m_freem_list(m);
1775 priq->msgq_head = priq->msgq_tail = priq->msgq_lastmsg = NULL;
1776 priq->msgq_bytes = priq->msgq_flags = 0;
1777 }
1778
1779 /*
1780 * Free all mbufs in a sockbuf.
1781 * Check that all resources are reclaimed.
1782 */
1783 void
1784 sbflush(struct sockbuf *sb)
1785 {
1786 void *lr_saved = __builtin_return_address(0);
1787 struct socket *so = sb->sb_so;
1788 u_int32_t i;
1789
1790 /* so_usecount may be 0 if we get here from sofreelastref() */
1791 if (so == NULL) {
1792 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
1793 __func__, sb, sb->sb_flags, lr_saved);
1794 /* NOTREACHED */
1795 } else if (so->so_usecount < 0) {
1796 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
1797 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
1798 so->so_usecount, lr_saved, solockhistory_nr(so));
1799 /* NOTREACHED */
1800 }
1801
1802 /*
1803 * Obtain lock on the socket buffer (SB_LOCK). This is required
1804 * to prevent the socket buffer from being unexpectedly altered
1805 * while it is used by another thread in socket send/receive.
1806 *
1807 * sblock() must not fail here, hence the assertion.
1808 */
1809 (void) sblock(sb, SBL_WAIT | SBL_NOINTR | SBL_IGNDEFUNCT);
1810 VERIFY(sb->sb_flags & SB_LOCK);
1811
1812 while (sb->sb_mbcnt > 0) {
1813 /*
1814 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
1815 * we would loop forever. Panic instead.
1816 */
1817 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1818 break;
1819 sbdrop(sb, (int)sb->sb_cc);
1820 }
1821
1822 if (!(sb->sb_flags & SB_RECV) && (so->so_flags & SOF_ENABLE_MSGS)) {
1823 VERIFY(so->so_msg_state != NULL);
1824 for (i = MSG_PRI_MIN; i <= MSG_PRI_MAX; ++i) {
1825 sbflush_priq(&so->so_msg_state->msg_priq[i]);
1826 }
1827 so->so_msg_state->msg_serial_bytes = 0;
1828 so->so_msg_state->msg_uno_bytes = 0;
1829 }
1830
1831 sb_empty_assert(sb, __func__);
1832 postevent(0, sb, EV_RWBYTES);
1833
1834 sbunlock(sb, TRUE); /* keep socket locked */
1835 }
1836
1837 /*
1838 * Drop data from (the front of) a sockbuf.
1839 * use m_freem_list to free the mbuf structures
1840 * under a single lock... this is done by pruning
1841 * the top of the tree from the body by keeping track
1842 * of where we get to in the tree and then zeroing the
1843 * two pertinent pointers m_nextpkt and m_next
1844 * the socket buffer is then updated to point at the new
1845 * top of the tree and the pruned area is released via
1846 * m_freem_list.
1847 */
1848 void
1849 sbdrop(struct sockbuf *sb, int len)
1850 {
1851 struct mbuf *m, *free_list, *ml;
1852 struct mbuf *next, *last;
1853
1854 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1855 #if MPTCP
1856 if ((m != NULL) && (len > 0) &&
1857 (!(sb->sb_flags & SB_RECV)) &&
1858 ((sb->sb_so->so_flags & SOF_MP_SUBFLOW) ||
1859 ((SOCK_CHECK_DOM(sb->sb_so, PF_MULTIPATH)) &&
1860 (SOCK_CHECK_PROTO(sb->sb_so, IPPROTO_TCP)))) &&
1861 (!(sb->sb_so->so_flags1 & SOF1_POST_FALLBACK_SYNC))) {
1862 mptcp_preproc_sbdrop(sb->sb_so, m, (unsigned int)len);
1863 }
1864 #endif /* MPTCP */
1865 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0);
1866
1867 free_list = last = m;
1868 ml = (struct mbuf *)0;
1869
1870 while (len > 0) {
1871 if (m == NULL) {
1872 if (next == NULL) {
1873 /*
1874 * temporarily replacing this panic with printf
1875 * because it occurs occasionally when closing
1876 * a socket when there is no harm in ignoring
1877 * it. This problem will be investigated
1878 * further.
1879 */
1880 /* panic("sbdrop"); */
1881 printf("sbdrop - count not zero\n");
1882 len = 0;
1883 /*
1884 * zero the counts. if we have no mbufs,
1885 * we have no data (PR-2986815)
1886 */
1887 sb->sb_cc = 0;
1888 sb->sb_mbcnt = 0;
1889 if (!(sb->sb_flags & SB_RECV) &&
1890 (sb->sb_so->so_flags & SOF_ENABLE_MSGS)) {
1891 sb->sb_so->so_msg_state->
1892 msg_serial_bytes = 0;
1893 }
1894 break;
1895 }
1896 m = last = next;
1897 next = m->m_nextpkt;
1898 continue;
1899 }
1900 if (m->m_len > len) {
1901 m->m_len -= len;
1902 m->m_data += len;
1903 sb->sb_cc -= len;
1904 /* update the send byte count */
1905 if (sb->sb_flags & SB_SNDBYTE_CNT)
1906 inp_decr_sndbytes_total(sb->sb_so, len);
1907 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1908 m->m_type != MT_OOBDATA)
1909 sb->sb_ctl -= len;
1910 break;
1911 }
1912 len -= m->m_len;
1913 sbfree(sb, m);
1914
1915 ml = m;
1916 m = m->m_next;
1917 }
1918 while (m && m->m_len == 0) {
1919 sbfree(sb, m);
1920
1921 ml = m;
1922 m = m->m_next;
1923 }
1924 if (ml) {
1925 ml->m_next = (struct mbuf *)0;
1926 last->m_nextpkt = (struct mbuf *)0;
1927 m_freem_list(free_list);
1928 }
1929 if (m) {
1930 sb->sb_mb = m;
1931 m->m_nextpkt = next;
1932 } else {
1933 sb->sb_mb = next;
1934 }
1935
1936 /*
1937 * First part is an inline SB_EMPTY_FIXUP(). Second part
1938 * makes sure sb_lastrecord is up-to-date if we dropped
1939 * part of the last record.
1940 */
1941 m = sb->sb_mb;
1942 if (m == NULL) {
1943 sb->sb_mbtail = NULL;
1944 sb->sb_lastrecord = NULL;
1945 } else if (m->m_nextpkt == NULL) {
1946 sb->sb_lastrecord = m;
1947 }
1948
1949 #if CONTENT_FILTER
1950 cfil_sock_buf_update(sb);
1951 #endif /* CONTENT_FILTER */
1952
1953 postevent(0, sb, EV_RWBYTES);
1954
1955 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0);
1956 }
1957
1958 /*
1959 * Drop a record off the front of a sockbuf
1960 * and move the next record to the front.
1961 */
1962 void
1963 sbdroprecord(struct sockbuf *sb)
1964 {
1965 struct mbuf *m, *mn;
1966
1967 m = sb->sb_mb;
1968 if (m) {
1969 sb->sb_mb = m->m_nextpkt;
1970 do {
1971 sbfree(sb, m);
1972 MFREE(m, mn);
1973 m = mn;
1974 } while (m);
1975 }
1976 SB_EMPTY_FIXUP(sb);
1977 postevent(0, sb, EV_RWBYTES);
1978 }
1979
1980 /*
1981 * Create a "control" mbuf containing the specified data
1982 * with the specified type for presentation on a socket buffer.
1983 */
1984 struct mbuf *
1985 sbcreatecontrol(caddr_t p, int size, int type, int level)
1986 {
1987 struct cmsghdr *cp;
1988 struct mbuf *m;
1989
1990 if (CMSG_SPACE((u_int)size) > MLEN)
1991 return ((struct mbuf *)NULL);
1992 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1993 return ((struct mbuf *)NULL);
1994 cp = mtod(m, struct cmsghdr *);
1995 VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t)));
1996 /* XXX check size? */
1997 (void) memcpy(CMSG_DATA(cp), p, size);
1998 m->m_len = CMSG_SPACE(size);
1999 cp->cmsg_len = CMSG_LEN(size);
2000 cp->cmsg_level = level;
2001 cp->cmsg_type = type;
2002 return (m);
2003 }
2004
2005 struct mbuf **
2006 sbcreatecontrol_mbuf(caddr_t p, int size, int type, int level, struct mbuf **mp)
2007 {
2008 struct mbuf *m;
2009 struct cmsghdr *cp;
2010
2011 if (*mp == NULL) {
2012 *mp = sbcreatecontrol(p, size, type, level);
2013 return (mp);
2014 }
2015
2016 if (CMSG_SPACE((u_int)size) + (*mp)->m_len > MLEN) {
2017 mp = &(*mp)->m_next;
2018 *mp = sbcreatecontrol(p, size, type, level);
2019 return (mp);
2020 }
2021
2022 m = *mp;
2023
2024 cp = (struct cmsghdr *)(void *)(mtod(m, char *) + m->m_len);
2025 /* CMSG_SPACE ensures 32-bit alignment */
2026 VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t)));
2027 m->m_len += CMSG_SPACE(size);
2028
2029 /* XXX check size? */
2030 (void) memcpy(CMSG_DATA(cp), p, size);
2031 cp->cmsg_len = CMSG_LEN(size);
2032 cp->cmsg_level = level;
2033 cp->cmsg_type = type;
2034
2035 return (mp);
2036 }
2037
2038
2039 /*
2040 * Some routines that return EOPNOTSUPP for entry points that are not
2041 * supported by a protocol. Fill in as needed.
2042 */
2043 int
2044 pru_abort_notsupp(struct socket *so)
2045 {
2046 #pragma unused(so)
2047 return (EOPNOTSUPP);
2048 }
2049
2050 int
2051 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
2052 {
2053 #pragma unused(so, nam)
2054 return (EOPNOTSUPP);
2055 }
2056
2057 int
2058 pru_attach_notsupp(struct socket *so, int proto, struct proc *p)
2059 {
2060 #pragma unused(so, proto, p)
2061 return (EOPNOTSUPP);
2062 }
2063
2064 int
2065 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
2066 {
2067 #pragma unused(so, nam, p)
2068 return (EOPNOTSUPP);
2069 }
2070
2071 int
2072 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
2073 {
2074 #pragma unused(so, nam, p)
2075 return (EOPNOTSUPP);
2076 }
2077
2078 int
2079 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
2080 {
2081 #pragma unused(so1, so2)
2082 return (EOPNOTSUPP);
2083 }
2084
2085 int
2086 pru_connectx_notsupp(struct socket *so, struct sockaddr_list **src_sl,
2087 struct sockaddr_list **dst_sl, struct proc *p, uint32_t ifscope,
2088 sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg,
2089 uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written)
2090 {
2091 #pragma unused(so, src_sl, dst_sl, p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written)
2092 return (EOPNOTSUPP);
2093 }
2094
2095 int
2096 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
2097 struct ifnet *ifp, struct proc *p)
2098 {
2099 #pragma unused(so, cmd, data, ifp, p)
2100 return (EOPNOTSUPP);
2101 }
2102
2103 int
2104 pru_detach_notsupp(struct socket *so)
2105 {
2106 #pragma unused(so)
2107 return (EOPNOTSUPP);
2108 }
2109
2110 int
2111 pru_disconnect_notsupp(struct socket *so)
2112 {
2113 #pragma unused(so)
2114 return (EOPNOTSUPP);
2115 }
2116
2117 int
2118 pru_disconnectx_notsupp(struct socket *so, sae_associd_t aid, sae_connid_t cid)
2119 {
2120 #pragma unused(so, aid, cid)
2121 return (EOPNOTSUPP);
2122 }
2123
2124 int
2125 pru_listen_notsupp(struct socket *so, struct proc *p)
2126 {
2127 #pragma unused(so, p)
2128 return (EOPNOTSUPP);
2129 }
2130
2131 int
2132 pru_peeloff_notsupp(struct socket *so, sae_associd_t aid, struct socket **psop)
2133 {
2134 #pragma unused(so, aid, psop)
2135 return (EOPNOTSUPP);
2136 }
2137
2138 int
2139 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
2140 {
2141 #pragma unused(so, nam)
2142 return (EOPNOTSUPP);
2143 }
2144
2145 int
2146 pru_rcvd_notsupp(struct socket *so, int flags)
2147 {
2148 #pragma unused(so, flags)
2149 return (EOPNOTSUPP);
2150 }
2151
2152 int
2153 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
2154 {
2155 #pragma unused(so, m, flags)
2156 return (EOPNOTSUPP);
2157 }
2158
2159 int
2160 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
2161 struct sockaddr *addr, struct mbuf *control, struct proc *p)
2162 {
2163 #pragma unused(so, flags, m, addr, control, p)
2164 return (EOPNOTSUPP);
2165 }
2166
2167 int
2168 pru_send_list_notsupp(struct socket *so, int flags, struct mbuf *m,
2169 struct sockaddr *addr, struct mbuf *control, struct proc *p)
2170 {
2171 #pragma unused(so, flags, m, addr, control, p)
2172 return (EOPNOTSUPP);
2173 }
2174
2175 /*
2176 * This isn't really a ``null'' operation, but it's the default one
2177 * and doesn't do anything destructive.
2178 */
2179 int
2180 pru_sense_null(struct socket *so, void *ub, int isstat64)
2181 {
2182 if (isstat64 != 0) {
2183 struct stat64 *sb64;
2184
2185 sb64 = (struct stat64 *)ub;
2186 sb64->st_blksize = so->so_snd.sb_hiwat;
2187 } else {
2188 struct stat *sb;
2189
2190 sb = (struct stat *)ub;
2191 sb->st_blksize = so->so_snd.sb_hiwat;
2192 }
2193
2194 return (0);
2195 }
2196
2197
2198 int
2199 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
2200 struct mbuf *top, struct mbuf *control, int flags)
2201 {
2202 #pragma unused(so, addr, uio, top, control, flags)
2203 return (EOPNOTSUPP);
2204 }
2205
2206 int
2207 pru_sosend_list_notsupp(struct socket *so, struct uio **uio,
2208 u_int uiocnt, int flags)
2209 {
2210 #pragma unused(so, uio, uiocnt, flags)
2211 return (EOPNOTSUPP);
2212 }
2213
2214 int
2215 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
2216 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2217 {
2218 #pragma unused(so, paddr, uio, mp0, controlp, flagsp)
2219 return (EOPNOTSUPP);
2220 }
2221
2222 int
2223 pru_soreceive_list_notsupp(struct socket *so,
2224 struct recv_msg_elem *recv_msg_array, u_int uiocnt, int *flagsp)
2225 {
2226 #pragma unused(so, recv_msg_array, uiocnt, flagsp)
2227 return (EOPNOTSUPP);
2228 }
2229
2230 int
2231 pru_shutdown_notsupp(struct socket *so)
2232 {
2233 #pragma unused(so)
2234 return (EOPNOTSUPP);
2235 }
2236
2237 int
2238 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
2239 {
2240 #pragma unused(so, nam)
2241 return (EOPNOTSUPP);
2242 }
2243
2244 int
2245 pru_sopoll_notsupp(struct socket *so, int events, kauth_cred_t cred, void *wql)
2246 {
2247 #pragma unused(so, events, cred, wql)
2248 return (EOPNOTSUPP);
2249 }
2250
2251 int
2252 pru_socheckopt_null(struct socket *so, struct sockopt *sopt)
2253 {
2254 #pragma unused(so, sopt)
2255 /*
2256 * Allow all options for set/get by default.
2257 */
2258 return (0);
2259 }
2260
2261 static int
2262 pru_preconnect_null(struct socket *so)
2263 {
2264 #pragma unused(so)
2265 return (0);
2266 }
2267
2268 void
2269 pru_sanitize(struct pr_usrreqs *pru)
2270 {
2271 #define DEFAULT(foo, bar) if ((foo) == NULL) (foo) = (bar)
2272 DEFAULT(pru->pru_abort, pru_abort_notsupp);
2273 DEFAULT(pru->pru_accept, pru_accept_notsupp);
2274 DEFAULT(pru->pru_attach, pru_attach_notsupp);
2275 DEFAULT(pru->pru_bind, pru_bind_notsupp);
2276 DEFAULT(pru->pru_connect, pru_connect_notsupp);
2277 DEFAULT(pru->pru_connect2, pru_connect2_notsupp);
2278 DEFAULT(pru->pru_connectx, pru_connectx_notsupp);
2279 DEFAULT(pru->pru_control, pru_control_notsupp);
2280 DEFAULT(pru->pru_detach, pru_detach_notsupp);
2281 DEFAULT(pru->pru_disconnect, pru_disconnect_notsupp);
2282 DEFAULT(pru->pru_disconnectx, pru_disconnectx_notsupp);
2283 DEFAULT(pru->pru_listen, pru_listen_notsupp);
2284 DEFAULT(pru->pru_peeloff, pru_peeloff_notsupp);
2285 DEFAULT(pru->pru_peeraddr, pru_peeraddr_notsupp);
2286 DEFAULT(pru->pru_rcvd, pru_rcvd_notsupp);
2287 DEFAULT(pru->pru_rcvoob, pru_rcvoob_notsupp);
2288 DEFAULT(pru->pru_send, pru_send_notsupp);
2289 DEFAULT(pru->pru_send_list, pru_send_list_notsupp);
2290 DEFAULT(pru->pru_sense, pru_sense_null);
2291 DEFAULT(pru->pru_shutdown, pru_shutdown_notsupp);
2292 DEFAULT(pru->pru_sockaddr, pru_sockaddr_notsupp);
2293 DEFAULT(pru->pru_sopoll, pru_sopoll_notsupp);
2294 DEFAULT(pru->pru_soreceive, pru_soreceive_notsupp);
2295 DEFAULT(pru->pru_soreceive_list, pru_soreceive_list_notsupp);
2296 DEFAULT(pru->pru_sosend, pru_sosend_notsupp);
2297 DEFAULT(pru->pru_sosend_list, pru_sosend_list_notsupp);
2298 DEFAULT(pru->pru_socheckopt, pru_socheckopt_null);
2299 DEFAULT(pru->pru_preconnect, pru_preconnect_null);
2300 #undef DEFAULT
2301 }
2302
2303 /*
2304 * The following are macros on BSD and functions on Darwin
2305 */
2306
2307 /*
2308 * Do we need to notify the other side when I/O is possible?
2309 */
2310
2311 int
2312 sb_notify(struct sockbuf *sb)
2313 {
2314 return (sb->sb_waiters > 0 ||
2315 (sb->sb_flags & (SB_SEL|SB_ASYNC|SB_UPCALL|SB_KNOTE)));
2316 }
2317
2318 /*
2319 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
2320 * This is problematical if the fields are unsigned, as the space might
2321 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
2322 * overflow and return 0.
2323 */
2324 int
2325 sbspace(struct sockbuf *sb)
2326 {
2327 int pending = 0;
2328 int space = imin((int)(sb->sb_hiwat - sb->sb_cc),
2329 (int)(sb->sb_mbmax - sb->sb_mbcnt));
2330
2331 if (sb->sb_preconn_hiwat != 0)
2332 space = imin((int)(sb->sb_preconn_hiwat - sb->sb_cc), space);
2333
2334 if (space < 0)
2335 space = 0;
2336
2337 /* Compensate for data being processed by content filters */
2338 #if CONTENT_FILTER
2339 pending = cfil_sock_data_space(sb);
2340 #endif /* CONTENT_FILTER */
2341 if (pending > space)
2342 space = 0;
2343 else
2344 space -= pending;
2345
2346 return (space);
2347 }
2348
2349 /*
2350 * If this socket has priority queues, check if there is enough
2351 * space in the priority queue for this msg.
2352 */
2353 int
2354 msgq_sbspace(struct socket *so, struct mbuf *control)
2355 {
2356 int space = 0, error;
2357 u_int32_t msgpri;
2358 VERIFY(so->so_type == SOCK_STREAM &&
2359 SOCK_PROTO(so) == IPPROTO_TCP);
2360 if (control != NULL) {
2361 error = tcp_get_msg_priority(control, &msgpri);
2362 if (error)
2363 return (0);
2364 } else {
2365 msgpri = MSG_PRI_0;
2366 }
2367 space = (so->so_snd.sb_idealsize / MSG_PRI_COUNT) -
2368 so->so_msg_state->msg_priq[msgpri].msgq_bytes;
2369 if (space < 0)
2370 space = 0;
2371 return (space);
2372 }
2373
2374 /* do we have to send all at once on a socket? */
2375 int
2376 sosendallatonce(struct socket *so)
2377 {
2378 return (so->so_proto->pr_flags & PR_ATOMIC);
2379 }
2380
2381 /* can we read something from so? */
2382 int
2383 soreadable(struct socket *so)
2384 {
2385 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2386 ((so->so_state & SS_CANTRCVMORE)
2387 #if CONTENT_FILTER
2388 && cfil_sock_data_pending(&so->so_rcv) == 0
2389 #endif /* CONTENT_FILTER */
2390 ) ||
2391 so->so_comp.tqh_first || so->so_error);
2392 }
2393
2394 /* can we write something to so? */
2395
2396 int
2397 sowriteable(struct socket *so)
2398 {
2399 if ((so->so_state & SS_CANTSENDMORE) ||
2400 so->so_error > 0)
2401 return (1);
2402 if (so_wait_for_if_feedback(so) || !socanwrite(so))
2403 return (0);
2404 if (so->so_flags1 & SOF1_PRECONNECT_DATA)
2405 return(1);
2406
2407 if (sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat) {
2408 if (so->so_flags & SOF_NOTSENT_LOWAT) {
2409 if ((SOCK_DOM(so) == PF_INET6 ||
2410 SOCK_DOM(so) == PF_INET) &&
2411 so->so_type == SOCK_STREAM) {
2412 return (tcp_notsent_lowat_check(so));
2413 }
2414 #if MPTCP
2415 else if ((SOCK_DOM(so) == PF_MULTIPATH) &&
2416 (SOCK_PROTO(so) == IPPROTO_TCP)) {
2417 return (mptcp_notsent_lowat_check(so));
2418 }
2419 #endif
2420 else {
2421 return (1);
2422 }
2423 } else {
2424 return (1);
2425 }
2426 }
2427 return (0);
2428 }
2429
2430 /* adjust counters in sb reflecting allocation of m */
2431
2432 void
2433 sballoc(struct sockbuf *sb, struct mbuf *m)
2434 {
2435 u_int32_t cnt = 1;
2436 sb->sb_cc += m->m_len;
2437 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
2438 m->m_type != MT_OOBDATA)
2439 sb->sb_ctl += m->m_len;
2440 sb->sb_mbcnt += MSIZE;
2441
2442 if (m->m_flags & M_EXT) {
2443 sb->sb_mbcnt += m->m_ext.ext_size;
2444 cnt += (m->m_ext.ext_size >> MSIZESHIFT);
2445 }
2446 OSAddAtomic(cnt, &total_sbmb_cnt);
2447 VERIFY(total_sbmb_cnt > 0);
2448 if (total_sbmb_cnt > total_sbmb_cnt_peak)
2449 total_sbmb_cnt_peak = total_sbmb_cnt;
2450
2451 /*
2452 * If data is being added to the send socket buffer,
2453 * update the send byte count
2454 */
2455 if (sb->sb_flags & SB_SNDBYTE_CNT) {
2456 inp_incr_sndbytes_total(sb->sb_so, m->m_len);
2457 inp_incr_sndbytes_unsent(sb->sb_so, m->m_len);
2458 }
2459 }
2460
2461 /* adjust counters in sb reflecting freeing of m */
2462 void
2463 sbfree(struct sockbuf *sb, struct mbuf *m)
2464 {
2465 int cnt = -1;
2466
2467 sb->sb_cc -= m->m_len;
2468 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
2469 m->m_type != MT_OOBDATA)
2470 sb->sb_ctl -= m->m_len;
2471 sb->sb_mbcnt -= MSIZE;
2472 if (m->m_flags & M_EXT) {
2473 sb->sb_mbcnt -= m->m_ext.ext_size;
2474 cnt -= (m->m_ext.ext_size >> MSIZESHIFT);
2475 }
2476 OSAddAtomic(cnt, &total_sbmb_cnt);
2477 VERIFY(total_sbmb_cnt >= 0);
2478 if (total_sbmb_cnt < total_sbmb_cnt_floor)
2479 total_sbmb_cnt_floor = total_sbmb_cnt;
2480
2481 /*
2482 * If data is being removed from the send socket buffer,
2483 * update the send byte count
2484 */
2485 if (sb->sb_flags & SB_SNDBYTE_CNT)
2486 inp_decr_sndbytes_total(sb->sb_so, m->m_len);
2487 }
2488
2489 /*
2490 * Set lock on sockbuf sb; sleep if lock is already held.
2491 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
2492 * Returns error without lock if sleep is interrupted.
2493 */
2494 int
2495 sblock(struct sockbuf *sb, uint32_t flags)
2496 {
2497 boolean_t nointr = ((sb->sb_flags & SB_NOINTR) || (flags & SBL_NOINTR));
2498 void *lr_saved = __builtin_return_address(0);
2499 struct socket *so = sb->sb_so;
2500 void * wchan;
2501 int error = 0;
2502 thread_t tp = current_thread();
2503
2504 VERIFY((flags & SBL_VALID) == flags);
2505
2506 /* so_usecount may be 0 if we get here from sofreelastref() */
2507 if (so == NULL) {
2508 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
2509 __func__, sb, sb->sb_flags, lr_saved);
2510 /* NOTREACHED */
2511 } else if (so->so_usecount < 0) {
2512 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
2513 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
2514 so->so_usecount, lr_saved, solockhistory_nr(so));
2515 /* NOTREACHED */
2516 }
2517
2518 /*
2519 * The content filter thread must hold the sockbuf lock
2520 */
2521 if ((so->so_flags & SOF_CONTENT_FILTER) && sb->sb_cfil_thread == tp) {
2522 /*
2523 * Don't panic if we are defunct because SB_LOCK has
2524 * been cleared by sodefunct()
2525 */
2526 if (!(so->so_flags & SOF_DEFUNCT) && !(sb->sb_flags & SB_LOCK))
2527 panic("%s: SB_LOCK not held for %p\n",
2528 __func__, sb);
2529
2530 /* Keep the sockbuf locked */
2531 return (0);
2532 }
2533
2534 if ((sb->sb_flags & SB_LOCK) && !(flags & SBL_WAIT))
2535 return (EWOULDBLOCK);
2536 /*
2537 * We may get here from sorflush(), in which case "sb" may not
2538 * point to the real socket buffer. Use the actual socket buffer
2539 * address from the socket instead.
2540 */
2541 wchan = (sb->sb_flags & SB_RECV) ?
2542 &so->so_rcv.sb_flags : &so->so_snd.sb_flags;
2543
2544 /*
2545 * A content filter thread has exclusive access to the sockbuf
2546 * until it clears the
2547 */
2548 while ((sb->sb_flags & SB_LOCK) ||
2549 ((so->so_flags & SOF_CONTENT_FILTER) &&
2550 sb->sb_cfil_thread != NULL)) {
2551 lck_mtx_t *mutex_held;
2552
2553 /*
2554 * XXX: This code should be moved up above outside of this loop;
2555 * however, we may get here as part of sofreelastref(), and
2556 * at that time pr_getlock() may no longer be able to return
2557 * us the lock. This will be fixed in future.
2558 */
2559 if (so->so_proto->pr_getlock != NULL)
2560 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
2561 else
2562 mutex_held = so->so_proto->pr_domain->dom_mtx;
2563
2564 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
2565
2566 sb->sb_wantlock++;
2567 VERIFY(sb->sb_wantlock != 0);
2568
2569 error = msleep(wchan, mutex_held,
2570 nointr ? PSOCK : PSOCK | PCATCH,
2571 nointr ? "sb_lock_nointr" : "sb_lock", NULL);
2572
2573 VERIFY(sb->sb_wantlock != 0);
2574 sb->sb_wantlock--;
2575
2576 if (error == 0 && (so->so_flags & SOF_DEFUNCT) &&
2577 !(flags & SBL_IGNDEFUNCT)) {
2578 error = EBADF;
2579 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
2580 "(%d)\n", __func__, proc_selfpid(),
2581 proc_best_name(current_proc()),
2582 (uint64_t)VM_KERNEL_ADDRPERM(so),
2583 SOCK_DOM(so), SOCK_TYPE(so), error);
2584 }
2585
2586 if (error != 0)
2587 return (error);
2588 }
2589 sb->sb_flags |= SB_LOCK;
2590 return (0);
2591 }
2592
2593 /*
2594 * Release lock on sockbuf sb
2595 */
2596 void
2597 sbunlock(struct sockbuf *sb, boolean_t keeplocked)
2598 {
2599 void *lr_saved = __builtin_return_address(0);
2600 struct socket *so = sb->sb_so;
2601 thread_t tp = current_thread();
2602
2603 /* so_usecount may be 0 if we get here from sofreelastref() */
2604 if (so == NULL) {
2605 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
2606 __func__, sb, sb->sb_flags, lr_saved);
2607 /* NOTREACHED */
2608 } else if (so->so_usecount < 0) {
2609 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
2610 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
2611 so->so_usecount, lr_saved, solockhistory_nr(so));
2612 /* NOTREACHED */
2613 }
2614
2615 /*
2616 * The content filter thread must hold the sockbuf lock
2617 */
2618 if ((so->so_flags & SOF_CONTENT_FILTER) && sb->sb_cfil_thread == tp) {
2619 /*
2620 * Don't panic if we are defunct because SB_LOCK has
2621 * been cleared by sodefunct()
2622 */
2623 if (!(so->so_flags & SOF_DEFUNCT) &&
2624 !(sb->sb_flags & SB_LOCK) &&
2625 !(so->so_state & SS_DEFUNCT) &&
2626 !(so->so_flags1 & SOF1_DEFUNCTINPROG)) {
2627 panic("%s: SB_LOCK not held for %p\n",
2628 __func__, sb);
2629 }
2630 /* Keep the sockbuf locked and proceed */
2631 } else {
2632 VERIFY((sb->sb_flags & SB_LOCK) ||
2633 (so->so_state & SS_DEFUNCT) ||
2634 (so->so_flags1 & SOF1_DEFUNCTINPROG));
2635
2636 sb->sb_flags &= ~SB_LOCK;
2637
2638 if (sb->sb_wantlock > 0) {
2639 /*
2640 * We may get here from sorflush(), in which case "sb"
2641 * may not point to the real socket buffer. Use the
2642 * actual socket buffer address from the socket instead.
2643 */
2644 wakeup((sb->sb_flags & SB_RECV) ? &so->so_rcv.sb_flags :
2645 &so->so_snd.sb_flags);
2646 }
2647 }
2648
2649 if (!keeplocked) { /* unlock on exit */
2650 lck_mtx_t *mutex_held;
2651
2652 if (so->so_proto->pr_getlock != NULL)
2653 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
2654 else
2655 mutex_held = so->so_proto->pr_domain->dom_mtx;
2656
2657 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
2658
2659 VERIFY(so->so_usecount > 0);
2660 so->so_usecount--;
2661 so->unlock_lr[so->next_unlock_lr] = lr_saved;
2662 so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX;
2663 lck_mtx_unlock(mutex_held);
2664 }
2665 }
2666
2667 void
2668 sorwakeup(struct socket *so)
2669 {
2670 if (sb_notify(&so->so_rcv))
2671 sowakeup(so, &so->so_rcv);
2672 }
2673
2674 void
2675 sowwakeup(struct socket *so)
2676 {
2677 if (sb_notify(&so->so_snd))
2678 sowakeup(so, &so->so_snd);
2679 }
2680
2681 void
2682 soevent(struct socket *so, long hint)
2683 {
2684 if (so->so_flags & SOF_KNOTE)
2685 KNOTE(&so->so_klist, hint);
2686
2687 soevupcall(so, hint);
2688
2689 /*
2690 * Don't post an event if this a subflow socket or
2691 * the app has opted out of using cellular interface
2692 */
2693 if ((hint & SO_FILT_HINT_IFDENIED) &&
2694 !(so->so_flags & SOF_MP_SUBFLOW) &&
2695 !(so->so_restrictions & SO_RESTRICT_DENY_CELLULAR) &&
2696 !(so->so_restrictions & SO_RESTRICT_DENY_EXPENSIVE))
2697 soevent_ifdenied(so);
2698 }
2699
2700 void
2701 soevupcall(struct socket *so, u_int32_t hint)
2702 {
2703 if (so->so_event != NULL) {
2704 caddr_t so_eventarg = so->so_eventarg;
2705 int locked = hint & SO_FILT_HINT_LOCKED;
2706
2707 hint &= so->so_eventmask;
2708 if (hint != 0) {
2709 if (locked)
2710 socket_unlock(so, 0);
2711
2712 so->so_event(so, so_eventarg, hint);
2713
2714 if (locked)
2715 socket_lock(so, 0);
2716 }
2717 }
2718 }
2719
2720 static void
2721 soevent_ifdenied(struct socket *so)
2722 {
2723 struct kev_netpolicy_ifdenied ev_ifdenied;
2724
2725 bzero(&ev_ifdenied, sizeof (ev_ifdenied));
2726 /*
2727 * The event consumer is interested about the effective {upid,pid,uuid}
2728 * info which can be different than the those related to the process
2729 * that recently performed a system call on the socket, i.e. when the
2730 * socket is delegated.
2731 */
2732 if (so->so_flags & SOF_DELEGATED) {
2733 ev_ifdenied.ev_data.eupid = so->e_upid;
2734 ev_ifdenied.ev_data.epid = so->e_pid;
2735 uuid_copy(ev_ifdenied.ev_data.euuid, so->e_uuid);
2736 } else {
2737 ev_ifdenied.ev_data.eupid = so->last_upid;
2738 ev_ifdenied.ev_data.epid = so->last_pid;
2739 uuid_copy(ev_ifdenied.ev_data.euuid, so->last_uuid);
2740 }
2741
2742 if (++so->so_ifdenied_notifies > 1) {
2743 /*
2744 * Allow for at most one kernel event to be generated per
2745 * socket; so_ifdenied_notifies is reset upon changes in
2746 * the UUID policy. See comments in inp_update_policy.
2747 */
2748 if (net_io_policy_log) {
2749 uuid_string_t buf;
2750
2751 uuid_unparse(ev_ifdenied.ev_data.euuid, buf);
2752 log(LOG_DEBUG, "%s[%d]: so 0x%llx [%d,%d] epid %d "
2753 "euuid %s%s has %d redundant events supressed\n",
2754 __func__, so->last_pid,
2755 (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so),
2756 SOCK_TYPE(so), ev_ifdenied.ev_data.epid, buf,
2757 ((so->so_flags & SOF_DELEGATED) ?
2758 " [delegated]" : ""), so->so_ifdenied_notifies);
2759 }
2760 } else {
2761 if (net_io_policy_log) {
2762 uuid_string_t buf;
2763
2764 uuid_unparse(ev_ifdenied.ev_data.euuid, buf);
2765 log(LOG_DEBUG, "%s[%d]: so 0x%llx [%d,%d] epid %d "
2766 "euuid %s%s event posted\n", __func__,
2767 so->last_pid, (uint64_t)VM_KERNEL_ADDRPERM(so),
2768 SOCK_DOM(so), SOCK_TYPE(so),
2769 ev_ifdenied.ev_data.epid, buf,
2770 ((so->so_flags & SOF_DELEGATED) ?
2771 " [delegated]" : ""));
2772 }
2773 netpolicy_post_msg(KEV_NETPOLICY_IFDENIED, &ev_ifdenied.ev_data,
2774 sizeof (ev_ifdenied));
2775 }
2776 }
2777
2778 /*
2779 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
2780 */
2781 struct sockaddr *
2782 dup_sockaddr(struct sockaddr *sa, int canwait)
2783 {
2784 struct sockaddr *sa2;
2785
2786 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
2787 canwait ? M_WAITOK : M_NOWAIT);
2788 if (sa2)
2789 bcopy(sa, sa2, sa->sa_len);
2790 return (sa2);
2791 }
2792
2793 /*
2794 * Create an external-format (``xsocket'') structure using the information
2795 * in the kernel-format socket structure pointed to by so. This is done
2796 * to reduce the spew of irrelevant information over this interface,
2797 * to isolate user code from changes in the kernel structure, and
2798 * potentially to provide information-hiding if we decide that
2799 * some of this information should be hidden from users.
2800 */
2801 void
2802 sotoxsocket(struct socket *so, struct xsocket *xso)
2803 {
2804 xso->xso_len = sizeof (*xso);
2805 xso->xso_so = (_XSOCKET_PTR(struct socket *))VM_KERNEL_ADDRPERM(so);
2806 xso->so_type = so->so_type;
2807 xso->so_options = (short)(so->so_options & 0xffff);
2808 xso->so_linger = so->so_linger;
2809 xso->so_state = so->so_state;
2810 xso->so_pcb = (_XSOCKET_PTR(caddr_t))VM_KERNEL_ADDRPERM(so->so_pcb);
2811 if (so->so_proto) {
2812 xso->xso_protocol = SOCK_PROTO(so);
2813 xso->xso_family = SOCK_DOM(so);
2814 } else {
2815 xso->xso_protocol = xso->xso_family = 0;
2816 }
2817 xso->so_qlen = so->so_qlen;
2818 xso->so_incqlen = so->so_incqlen;
2819 xso->so_qlimit = so->so_qlimit;
2820 xso->so_timeo = so->so_timeo;
2821 xso->so_error = so->so_error;
2822 xso->so_pgid = so->so_pgid;
2823 xso->so_oobmark = so->so_oobmark;
2824 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
2825 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
2826 xso->so_uid = kauth_cred_getuid(so->so_cred);
2827 }
2828
2829
2830
2831 void
2832 sotoxsocket64(struct socket *so, struct xsocket64 *xso)
2833 {
2834 xso->xso_len = sizeof (*xso);
2835 xso->xso_so = (u_int64_t)VM_KERNEL_ADDRPERM(so);
2836 xso->so_type = so->so_type;
2837 xso->so_options = (short)(so->so_options & 0xffff);
2838 xso->so_linger = so->so_linger;
2839 xso->so_state = so->so_state;
2840 xso->so_pcb = (u_int64_t)VM_KERNEL_ADDRPERM(so->so_pcb);
2841 if (so->so_proto) {
2842 xso->xso_protocol = SOCK_PROTO(so);
2843 xso->xso_family = SOCK_DOM(so);
2844 } else {
2845 xso->xso_protocol = xso->xso_family = 0;
2846 }
2847 xso->so_qlen = so->so_qlen;
2848 xso->so_incqlen = so->so_incqlen;
2849 xso->so_qlimit = so->so_qlimit;
2850 xso->so_timeo = so->so_timeo;
2851 xso->so_error = so->so_error;
2852 xso->so_pgid = so->so_pgid;
2853 xso->so_oobmark = so->so_oobmark;
2854 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
2855 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
2856 xso->so_uid = kauth_cred_getuid(so->so_cred);
2857 }
2858
2859
2860 /*
2861 * This does the same for sockbufs. Note that the xsockbuf structure,
2862 * since it is always embedded in a socket, does not include a self
2863 * pointer nor a length. We make this entry point public in case
2864 * some other mechanism needs it.
2865 */
2866 void
2867 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
2868 {
2869 xsb->sb_cc = sb->sb_cc;
2870 xsb->sb_hiwat = sb->sb_hiwat;
2871 xsb->sb_mbcnt = sb->sb_mbcnt;
2872 xsb->sb_mbmax = sb->sb_mbmax;
2873 xsb->sb_lowat = sb->sb_lowat;
2874 xsb->sb_flags = sb->sb_flags;
2875 xsb->sb_timeo = (short)
2876 (sb->sb_timeo.tv_sec * hz) + sb->sb_timeo.tv_usec / tick;
2877 if (xsb->sb_timeo == 0 && sb->sb_timeo.tv_usec != 0)
2878 xsb->sb_timeo = 1;
2879 }
2880
2881 /*
2882 * Based on the policy set by an all knowing decison maker, throttle sockets
2883 * that either have been marked as belonging to "background" process.
2884 */
2885 inline int
2886 soisthrottled(struct socket *so)
2887 {
2888 /*
2889 * On non-embedded, we rely on implicit throttling by the
2890 * application, as we're missing the system wide "decision maker"
2891 */
2892 return (
2893 (so->so_flags1 & SOF1_TRAFFIC_MGT_SO_BACKGROUND));
2894 }
2895
2896 inline int
2897 soisprivilegedtraffic(struct socket *so)
2898 {
2899 return ((so->so_flags & SOF_PRIVILEGED_TRAFFIC_CLASS) ? 1 : 0);
2900 }
2901
2902 inline int
2903 soissrcbackground(struct socket *so)
2904 {
2905 return ((so->so_flags1 & SOF1_TRAFFIC_MGT_SO_BACKGROUND) ||
2906 IS_SO_TC_BACKGROUND(so->so_traffic_class));
2907 }
2908
2909 inline int
2910 soissrcrealtime(struct socket *so)
2911 {
2912 return (so->so_traffic_class >= SO_TC_AV &&
2913 so->so_traffic_class <= SO_TC_VO);
2914 }
2915
2916 inline int
2917 soissrcbesteffort(struct socket *so)
2918 {
2919 return (so->so_traffic_class == SO_TC_BE ||
2920 so->so_traffic_class == SO_TC_RD ||
2921 so->so_traffic_class == SO_TC_OAM);
2922 }
2923
2924 void
2925 sonullevent(struct socket *so, void *arg, uint32_t hint)
2926 {
2927 #pragma unused(so, arg, hint)
2928 }
2929
2930 /*
2931 * Here is the definition of some of the basic objects in the kern.ipc
2932 * branch of the MIB.
2933 */
2934 SYSCTL_NODE(_kern, KERN_IPC, ipc,
2935 CTLFLAG_RW|CTLFLAG_LOCKED|CTLFLAG_ANYBODY, 0, "IPC");
2936
2937 /* Check that the maximum socket buffer size is within a range */
2938
2939 static int
2940 sysctl_sb_max SYSCTL_HANDLER_ARGS
2941 {
2942 #pragma unused(oidp, arg1, arg2)
2943 u_int32_t new_value;
2944 int changed = 0;
2945 int error = sysctl_io_number(req, sb_max, sizeof (u_int32_t),
2946 &new_value, &changed);
2947 if (!error && changed) {
2948 if (new_value > LOW_SB_MAX && new_value <= high_sb_max) {
2949 sb_max = new_value;
2950 } else {
2951 error = ERANGE;
2952 }
2953 }
2954 return (error);
2955 }
2956
2957 static int
2958 sysctl_io_policy_throttled SYSCTL_HANDLER_ARGS
2959 {
2960 #pragma unused(arg1, arg2)
2961 int i, err;
2962
2963 i = net_io_policy_throttled;
2964
2965 err = sysctl_handle_int(oidp, &i, 0, req);
2966 if (err != 0 || req->newptr == USER_ADDR_NULL)
2967 return (err);
2968
2969 if (i != net_io_policy_throttled)
2970 SOTHROTTLELOG("throttle: network IO policy throttling is "
2971 "now %s\n", i ? "ON" : "OFF");
2972
2973 net_io_policy_throttled = i;
2974
2975 return (err);
2976 }
2977
2978 SYSCTL_PROC(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
2979 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
2980 &sb_max, 0, &sysctl_sb_max, "IU", "Maximum socket buffer size");
2981
2982 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor,
2983 CTLFLAG_RW | CTLFLAG_LOCKED, &sb_efficiency, 0, "");
2984
2985 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters,
2986 CTLFLAG_RD | CTLFLAG_LOCKED, &nmbclusters, 0, "");
2987
2988 SYSCTL_INT(_kern_ipc, OID_AUTO, njcl,
2989 CTLFLAG_RD | CTLFLAG_LOCKED, &njcl, 0, "");
2990
2991 SYSCTL_INT(_kern_ipc, OID_AUTO, njclbytes,
2992 CTLFLAG_RD | CTLFLAG_LOCKED, &njclbytes, 0, "");
2993
2994 SYSCTL_INT(_kern_ipc, KIPC_SOQLIMITCOMPAT, soqlimitcompat,
2995 CTLFLAG_RW | CTLFLAG_LOCKED, &soqlimitcompat, 1,
2996 "Enable socket queue limit compatibility");
2997
2998 SYSCTL_INT(_kern_ipc, OID_AUTO, soqlencomp, CTLFLAG_RW | CTLFLAG_LOCKED,
2999 &soqlencomp, 0, "Listen backlog represents only complete queue");
3000
3001 SYSCTL_INT(_kern_ipc, OID_AUTO, sbmb_cnt, CTLFLAG_RD | CTLFLAG_LOCKED,
3002 &total_sbmb_cnt, 0, "");
3003 SYSCTL_INT(_kern_ipc, OID_AUTO, sbmb_cnt_peak, CTLFLAG_RD | CTLFLAG_LOCKED,
3004 &total_sbmb_cnt_peak, 0, "");
3005 SYSCTL_INT(_kern_ipc, OID_AUTO, sbmb_cnt_floor, CTLFLAG_RD | CTLFLAG_LOCKED,
3006 &total_sbmb_cnt_floor, 0, "");
3007 SYSCTL_QUAD(_kern_ipc, OID_AUTO, sbmb_limreached, CTLFLAG_RD | CTLFLAG_LOCKED,
3008 &sbmb_limreached, "");
3009
3010
3011 SYSCTL_NODE(_kern_ipc, OID_AUTO, io_policy, CTLFLAG_RW, 0, "network IO policy");
3012
3013 SYSCTL_PROC(_kern_ipc_io_policy, OID_AUTO, throttled,
3014 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &net_io_policy_throttled, 0,
3015 sysctl_io_policy_throttled, "I", "");
3016
3017 SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, log, CTLFLAG_RW | CTLFLAG_LOCKED,
3018 &net_io_policy_log, 0, "");
3019
3020 #if CONFIG_PROC_UUID_POLICY
3021 SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, uuid, CTLFLAG_RW | CTLFLAG_LOCKED,
3022 &net_io_policy_uuid, 0, "");
3023 #endif /* CONFIG_PROC_UUID_POLICY */