]> git.saurik.com Git - apple/xnu.git/blob - iokit/Kernel/IOWorkLoop.cpp
0789f66bb4baf299359bf97ef220eaa319e61492
[apple/xnu.git] / iokit / Kernel / IOWorkLoop.cpp
1 /*
2 * Copyright (c) 1998-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <pexpert/pexpert.h>
30 #include <IOKit/IOWorkLoop.h>
31 #include <IOKit/IOEventSource.h>
32 #include <IOKit/IOInterruptEventSource.h>
33 #include <IOKit/IOCommandGate.h>
34 #include <IOKit/IOTimeStamp.h>
35 #include <IOKit/IOKitDebug.h>
36 #include <libkern/OSDebug.h>
37 #include <kern/thread.h>
38
39 #define super OSObject
40
41 OSDefineMetaClassAndStructors(IOWorkLoop, OSObject);
42
43 // Block of unused functions intended for future use
44 #if __LP64__
45 OSMetaClassDefineReservedUnused(IOWorkLoop, 0);
46 OSMetaClassDefineReservedUnused(IOWorkLoop, 1);
47 OSMetaClassDefineReservedUnused(IOWorkLoop, 2);
48 #else
49 OSMetaClassDefineReservedUsed(IOWorkLoop, 0);
50 OSMetaClassDefineReservedUsed(IOWorkLoop, 1);
51 OSMetaClassDefineReservedUsed(IOWorkLoop, 2);
52 #endif
53 OSMetaClassDefineReservedUnused(IOWorkLoop, 3);
54 OSMetaClassDefineReservedUnused(IOWorkLoop, 4);
55 OSMetaClassDefineReservedUnused(IOWorkLoop, 5);
56 OSMetaClassDefineReservedUnused(IOWorkLoop, 6);
57 OSMetaClassDefineReservedUnused(IOWorkLoop, 7);
58
59 enum IOWorkLoopState { kLoopRestart = 0x1, kLoopTerminate = 0x2 };
60 static inline void SETP(void *addr, unsigned int flag)
61 { unsigned char *num = (unsigned char *) addr; *num |= flag; }
62 static inline void CLRP(void *addr, unsigned int flag)
63 { unsigned char *num = (unsigned char *) addr; *num &= ~flag; }
64 static inline bool ISSETP(void *addr, unsigned int flag)
65 { unsigned char *num = (unsigned char *) addr; return (*num & flag) != 0; }
66
67 #define fFlags loopRestart
68
69 #define passiveEventChain reserved->passiveEventChain
70
71 #if IOKITSTATS
72
73 #define IOStatisticsRegisterCounter() \
74 do { \
75 reserved->counter = IOStatistics::registerWorkLoop(this); \
76 } while(0)
77
78 #define IOStatisticsUnregisterCounter() \
79 do { \
80 if (reserved) \
81 IOStatistics::unregisterWorkLoop(reserved->counter); \
82 } while(0)
83
84 #define IOStatisticsOpenGate() \
85 do { \
86 IOStatistics::countWorkLoopOpenGate(reserved->counter); \
87 } while(0)
88
89 #define IOStatisticsCloseGate() \
90 do { \
91 IOStatistics::countWorkLoopCloseGate(reserved->counter); \
92 } while(0)
93
94 #define IOStatisticsAttachEventSource() \
95 do { \
96 IOStatistics::attachWorkLoopEventSource(reserved->counter, inEvent->reserved->counter); \
97 } while(0)
98
99 #define IOStatisticsDetachEventSource() \
100 do { \
101 IOStatistics::detachWorkLoopEventSource(reserved->counter, inEvent->reserved->counter); \
102 } while(0)
103
104 #else
105
106 #define IOStatisticsRegisterCounter()
107 #define IOStatisticsUnregisterCounter()
108 #define IOStatisticsOpenGate()
109 #define IOStatisticsCloseGate()
110 #define IOStatisticsAttachEventSource()
111 #define IOStatisticsDetachEventSource()
112
113 #endif /* IOKITSTATS */
114
115 bool IOWorkLoop::init()
116 {
117 // The super init and gateLock allocation MUST be done first.
118 if ( !super::init() )
119 return false;
120
121 // Allocate our ExpansionData if it hasn't been allocated already.
122 if ( !reserved )
123 {
124 reserved = IONew(ExpansionData,1);
125 if ( !reserved )
126 return false;
127
128 bzero(reserved,sizeof(ExpansionData));
129 }
130
131 #if DEBUG
132 OSBacktrace ( reserved->allocationBacktrace, sizeof ( reserved->allocationBacktrace ) / sizeof ( reserved->allocationBacktrace[0] ) );
133 #endif
134
135 if ( gateLock == NULL ) {
136 if ( !( gateLock = IORecursiveLockAlloc()) )
137 return false;
138 }
139
140 if ( workToDoLock == NULL ) {
141 if ( !(workToDoLock = IOSimpleLockAlloc()) )
142 return false;
143 IOSimpleLockInit(workToDoLock);
144 workToDo = false;
145 }
146
147 IOStatisticsRegisterCounter();
148
149 if ( controlG == NULL ) {
150 controlG = IOCommandGate::commandGate(
151 this,
152 OSMemberFunctionCast(
153 IOCommandGate::Action,
154 this,
155 &IOWorkLoop::_maintRequest));
156
157 if ( !controlG )
158 return false;
159 // Point the controlGate at the workLoop. Usually addEventSource
160 // does this automatically. The problem is in this case addEventSource
161 // uses the control gate and it has to be bootstrapped.
162 controlG->setWorkLoop(this);
163 if (addEventSource(controlG) != kIOReturnSuccess)
164 return false;
165 }
166
167 if ( workThread == NULL ) {
168 thread_continue_t cptr = OSMemberFunctionCast(
169 thread_continue_t,
170 this,
171 &IOWorkLoop::threadMain);
172 if (KERN_SUCCESS != kernel_thread_start(cptr, this, &workThread))
173 return false;
174 }
175
176 (void) thread_set_tag(workThread, THREAD_TAG_IOWORKLOOP);
177 return true;
178 }
179
180 IOWorkLoop *
181 IOWorkLoop::workLoop()
182 {
183 return IOWorkLoop::workLoopWithOptions(0);
184 }
185
186 IOWorkLoop *
187 IOWorkLoop::workLoopWithOptions(IOOptionBits options)
188 {
189 IOWorkLoop *me = new IOWorkLoop;
190
191 if (me && options) {
192 me->reserved = IONew(ExpansionData,1);
193 if (!me->reserved) {
194 me->release();
195 return 0;
196 }
197 bzero(me->reserved,sizeof(ExpansionData));
198 me->reserved->options = options;
199 }
200
201 if (me && !me->init()) {
202 me->release();
203 return 0;
204 }
205
206 return me;
207 }
208
209 // Free is called twice:
210 // First when the atomic retainCount transitions from 1 -> 0
211 // Secondly when the work loop itself is commiting hari kari
212 // Hence the each leg of the free must be single threaded.
213 void IOWorkLoop::free()
214 {
215 if (workThread) {
216 IOInterruptState is;
217
218 // If we are here then we must be trying to shut down this work loop
219 // in this case disable all of the event source, mark the loop
220 // as terminating and wakeup the work thread itself and return
221 // Note: we hold the gate across the entire operation mainly for the
222 // benefit of our event sources so we can disable them cleanly.
223 closeGate();
224
225 disableAllEventSources();
226
227 is = IOSimpleLockLockDisableInterrupt(workToDoLock);
228 SETP(&fFlags, kLoopTerminate);
229 thread_wakeup_one((void *) &workToDo);
230 IOSimpleLockUnlockEnableInterrupt(workToDoLock, is);
231
232 openGate();
233 }
234 else /* !workThread */ {
235 IOEventSource *event, *next;
236
237 for (event = eventChain; event; event = next) {
238 next = event->getNext();
239 event->setWorkLoop(0);
240 event->setNext(0);
241 event->release();
242 }
243 eventChain = 0;
244
245 for (event = passiveEventChain; event; event = next) {
246 next = event->getNext();
247 event->setWorkLoop(0);
248 event->setNext(0);
249 event->release();
250 }
251 passiveEventChain = 0;
252
253 // Either we have a partial initialization to clean up
254 // or the workThread itself is performing hari-kari.
255 // Either way clean up all of our resources and return.
256
257 if (controlG) {
258 controlG->release();
259 controlG = 0;
260 }
261
262 if (workToDoLock) {
263 IOSimpleLockFree(workToDoLock);
264 workToDoLock = 0;
265 }
266
267 if (gateLock) {
268 IORecursiveLockFree(gateLock);
269 gateLock = 0;
270 }
271
272 IOStatisticsUnregisterCounter();
273
274 if (reserved) {
275 IODelete(reserved, ExpansionData, 1);
276 reserved = 0;
277 }
278
279 super::free();
280 }
281 }
282
283 IOReturn IOWorkLoop::addEventSource(IOEventSource *newEvent)
284 {
285 return controlG->runCommand((void *) mAddEvent, (void *) newEvent);
286 }
287
288 IOReturn IOWorkLoop::removeEventSource(IOEventSource *toRemove)
289 {
290 return controlG->runCommand((void *) mRemoveEvent, (void *) toRemove);
291 }
292
293 void IOWorkLoop::enableAllEventSources() const
294 {
295 IOEventSource *event;
296
297 for (event = eventChain; event; event = event->getNext())
298 event->enable();
299
300 for (event = passiveEventChain; event; event = event->getNext())
301 event->enable();
302 }
303
304 void IOWorkLoop::disableAllEventSources() const
305 {
306 IOEventSource *event;
307
308 for (event = eventChain; event; event = event->getNext())
309 event->disable();
310
311 /* NOTE: controlG is in passiveEventChain since it's an IOCommandGate */
312 for (event = passiveEventChain; event; event = event->getNext())
313 if (event != controlG) // Don't disable the control gate
314 event->disable();
315 }
316
317 void IOWorkLoop::enableAllInterrupts() const
318 {
319 IOEventSource *event;
320
321 for (event = eventChain; event; event = event->getNext())
322 if (OSDynamicCast(IOInterruptEventSource, event))
323 event->enable();
324 }
325
326 void IOWorkLoop::disableAllInterrupts() const
327 {
328 IOEventSource *event;
329
330 for (event = eventChain; event; event = event->getNext())
331 if (OSDynamicCast(IOInterruptEventSource, event))
332 event->disable();
333 }
334
335
336 /* virtual */ bool IOWorkLoop::runEventSources()
337 {
338 bool res = false;
339 bool traceWL = (gIOKitTrace & kIOTraceWorkLoops) ? true : false;
340 bool traceES = (gIOKitTrace & kIOTraceEventSources) ? true : false;
341
342 closeGate();
343 if (ISSETP(&fFlags, kLoopTerminate))
344 goto abort;
345
346 if (traceWL)
347 IOTimeStampStartConstant(IODBG_WORKLOOP(IOWL_WORK), (uintptr_t) this);
348
349 bool more;
350 do {
351 CLRP(&fFlags, kLoopRestart);
352 more = false;
353 IOInterruptState is = IOSimpleLockLockDisableInterrupt(workToDoLock);
354 workToDo = false;
355 IOSimpleLockUnlockEnableInterrupt(workToDoLock, is);
356 /* NOTE: only loop over event sources in eventChain. Bypass "passive" event sources for performance */
357 for (IOEventSource *evnt = eventChain; evnt; evnt = evnt->getNext()) {
358
359 if (traceES)
360 IOTimeStampStartConstant(IODBG_WORKLOOP(IOWL_CLIENT), (uintptr_t) this, (uintptr_t) evnt);
361
362 more |= evnt->checkForWork();
363
364 if (traceES)
365 IOTimeStampEndConstant(IODBG_WORKLOOP(IOWL_CLIENT), (uintptr_t) this, (uintptr_t) evnt);
366
367 if (ISSETP(&fFlags, kLoopTerminate))
368 goto abort;
369 else if (fFlags & kLoopRestart) {
370 more = true;
371 break;
372 }
373 }
374 } while (more);
375
376 res = true;
377
378 if (traceWL)
379 IOTimeStampEndConstant(IODBG_WORKLOOP(IOWL_WORK), (uintptr_t) this);
380
381 abort:
382 openGate();
383 return res;
384 }
385
386 /* virtual */ void IOWorkLoop::threadMain()
387 {
388 restartThread:
389 do {
390 if ( !runEventSources() )
391 goto exitThread;
392
393 IOInterruptState is = IOSimpleLockLockDisableInterrupt(workToDoLock);
394 if ( !ISSETP(&fFlags, kLoopTerminate) && !workToDo) {
395 assert_wait((void *) &workToDo, false);
396 IOSimpleLockUnlockEnableInterrupt(workToDoLock, is);
397 thread_continue_t cptr = NULL;
398 if (!reserved || !(kPreciousStack & reserved->options))
399 cptr = OSMemberFunctionCast(
400 thread_continue_t, this, &IOWorkLoop::threadMain);
401 thread_block_parameter(cptr, this);
402 goto restartThread;
403 /* NOTREACHED */
404 }
405
406 // At this point we either have work to do or we need
407 // to commit suicide. But no matter
408 // Clear the simple lock and retore the interrupt state
409 IOSimpleLockUnlockEnableInterrupt(workToDoLock, is);
410 } while(workToDo);
411
412 exitThread:
413 thread_t thread = workThread;
414 workThread = 0; // Say we don't have a loop and free ourselves
415 free();
416
417 thread_deallocate(thread);
418 (void) thread_terminate(thread);
419 }
420
421 IOThread IOWorkLoop::getThread() const
422 {
423 return workThread;
424 }
425
426 bool IOWorkLoop::onThread() const
427 {
428 return (IOThreadSelf() == workThread);
429 }
430
431 bool IOWorkLoop::inGate() const
432 {
433 return IORecursiveLockHaveLock(gateLock);
434 }
435
436 // Internal APIs used by event sources to control the thread
437 void IOWorkLoop::signalWorkAvailable()
438 {
439 if (workToDoLock) {
440 IOInterruptState is = IOSimpleLockLockDisableInterrupt(workToDoLock);
441 workToDo = true;
442 thread_wakeup_one((void *) &workToDo);
443 IOSimpleLockUnlockEnableInterrupt(workToDoLock, is);
444 }
445 }
446
447 void IOWorkLoop::openGate()
448 {
449 IOStatisticsOpenGate();
450 IORecursiveLockUnlock(gateLock);
451 }
452
453 void IOWorkLoop::closeGate()
454 {
455 IORecursiveLockLock(gateLock);
456 IOStatisticsCloseGate();
457 }
458
459 bool IOWorkLoop::tryCloseGate()
460 {
461 bool res = (IORecursiveLockTryLock(gateLock) != 0);
462 if (res) {
463 IOStatisticsCloseGate();
464 }
465 return res;
466 }
467
468 int IOWorkLoop::sleepGate(void *event, UInt32 interuptibleType)
469 {
470 int res;
471 IOStatisticsOpenGate();
472 res = IORecursiveLockSleep(gateLock, event, interuptibleType);
473 IOStatisticsCloseGate();
474 return res;
475 }
476
477 int IOWorkLoop::sleepGate(void *event, AbsoluteTime deadline, UInt32 interuptibleType)
478 {
479 int res;
480 IOStatisticsOpenGate();
481 res = IORecursiveLockSleepDeadline(gateLock, event, deadline, interuptibleType);
482 IOStatisticsCloseGate();
483 return res;
484 }
485
486 void IOWorkLoop::wakeupGate(void *event, bool oneThread)
487 {
488 IORecursiveLockWakeup(gateLock, event, oneThread);
489 }
490
491 IOReturn IOWorkLoop::runAction(Action inAction, OSObject *target,
492 void *arg0, void *arg1,
493 void *arg2, void *arg3)
494 {
495 IOReturn res;
496
497 // closeGate is recursive so don't worry if we already hold the lock.
498 closeGate();
499 res = (*inAction)(target, arg0, arg1, arg2, arg3);
500 openGate();
501
502 return res;
503 }
504
505 IOReturn IOWorkLoop::_maintRequest(void *inC, void *inD, void *, void *)
506 {
507 maintCommandEnum command = (maintCommandEnum) (uintptr_t) inC;
508 IOEventSource *inEvent = (IOEventSource *) inD;
509 IOReturn res = kIOReturnSuccess;
510
511 switch (command)
512 {
513 case mAddEvent:
514 if (!inEvent->getWorkLoop()) {
515 SETP(&fFlags, kLoopRestart);
516
517 inEvent->retain();
518 inEvent->setWorkLoop(this);
519 inEvent->setNext(0);
520
521 /* Check if this is a passive or active event source being added */
522 if (eventSourcePerformsWork(inEvent)) {
523
524 if (!eventChain)
525 eventChain = inEvent;
526 else {
527 IOEventSource *event, *next;
528
529 for (event = eventChain; (next = event->getNext()); event = next)
530 ;
531 event->setNext(inEvent);
532
533 }
534
535 }
536 else {
537
538 if (!passiveEventChain)
539 passiveEventChain = inEvent;
540 else {
541 IOEventSource *event, *next;
542
543 for (event = passiveEventChain; (next = event->getNext()); event = next)
544 ;
545 event->setNext(inEvent);
546
547 }
548
549 }
550 IOStatisticsAttachEventSource();
551 }
552 break;
553
554 case mRemoveEvent:
555 if (inEvent->getWorkLoop()) {
556 IOStatisticsDetachEventSource();
557
558 if (eventSourcePerformsWork(inEvent)) {
559 if (eventChain == inEvent)
560 eventChain = inEvent->getNext();
561 else {
562 IOEventSource *event, *next;
563
564 event = eventChain;
565 while ((next = event->getNext()) && next != inEvent)
566 event = next;
567
568 if (!next) {
569 res = kIOReturnBadArgument;
570 break;
571 }
572 event->setNext(inEvent->getNext());
573 }
574 }
575 else {
576 if (passiveEventChain == inEvent)
577 passiveEventChain = inEvent->getNext();
578 else {
579 IOEventSource *event, *next;
580
581 event = passiveEventChain;
582 while ((next = event->getNext()) && next != inEvent)
583 event = next;
584
585 if (!next) {
586 res = kIOReturnBadArgument;
587 break;
588 }
589 event->setNext(inEvent->getNext());
590 }
591 }
592
593 inEvent->setWorkLoop(0);
594 inEvent->setNext(0);
595 inEvent->release();
596 SETP(&fFlags, kLoopRestart);
597 }
598 break;
599
600 default:
601 return kIOReturnUnsupported;
602 }
603
604 return res;
605 }
606
607 bool
608 IOWorkLoop::eventSourcePerformsWork(IOEventSource *inEventSource)
609 {
610 bool result = true;
611
612 /*
613 * The idea here is to see if the subclass of IOEventSource has overridden checkForWork().
614 * The assumption is that if you override checkForWork(), you need to be
615 * active and not passive.
616 *
617 * We picked a known quantity controlG that does not override
618 * IOEventSource::checkForWork(), namely the IOCommandGate associated with
619 * the workloop to which this event source is getting attached.
620 *
621 * We do a pointer comparison on the offset in the vtable for inNewEvent against
622 * the offset in the vtable for inReferenceEvent. This works because
623 * IOCommandGate's slot for checkForWork() has the address of
624 * IOEventSource::checkForWork() in it.
625 *
626 * Think of OSMemberFunctionCast yielding the value at the vtable offset for
627 * checkForWork() here. We're just testing to see if it's the same or not.
628 *
629 */
630 if (controlG) {
631 void * ptr1;
632 void * ptr2;
633
634 ptr1 = OSMemberFunctionCast(void*, inEventSource, &IOEventSource::checkForWork);
635 ptr2 = OSMemberFunctionCast(void*, controlG, &IOEventSource::checkForWork);
636
637 if (ptr1 == ptr2)
638 result = false;
639 }
640
641 return result;
642 }