2 * Copyright (c) 2006 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 #include <kern/sched_prim.h>
31 #include <kern/kalloc.h>
32 #include <kern/assert.h>
33 #include <kern/debug.h>
34 #include <kern/locks.h>
35 #include <kern/task.h>
36 #include <kern/thread.h>
37 #include <kern/host.h>
38 #include <kern/policy_internal.h>
40 #include <IOKit/IOBSD.h>
42 #include <libkern/libkern.h>
43 #include <mach/coalition.h>
44 #include <mach/mach_time.h>
45 #include <mach/task.h>
46 #include <mach/host_priv.h>
47 #include <mach/mach_host.h>
48 #include <pexpert/pexpert.h>
49 #include <sys/coalition.h>
50 #include <sys/kern_event.h>
52 #include <sys/proc_info.h>
53 #include <sys/reason.h>
54 #include <sys/signal.h>
55 #include <sys/signalvar.h>
56 #include <sys/sysctl.h>
57 #include <sys/sysproto.h>
61 #include <vm/vm_pageout.h>
62 #include <vm/vm_protos.h>
65 #include <vm/vm_map.h>
66 #endif /* CONFIG_FREEZE */
68 #include <sys/kern_memorystatus.h>
70 #include <mach/machine/sdt.h>
72 /* For logging clarity */
73 static const char *jetsam_kill_cause_name
[] = {
75 "jettisoned" , /* kMemorystatusKilled */
76 "highwater" , /* kMemorystatusKilledHiwat */
77 "vnode-limit" , /* kMemorystatusKilledVnodes */
78 "vm-pageshortage" , /* kMemorystatusKilledVMPageShortage */
79 "vm-thrashing" , /* kMemorystatusKilledVMThrashing */
80 "fc-thrashing" , /* kMemorystatusKilledFCThrashing */
81 "per-process-limit" , /* kMemorystatusKilledPerProcessLimit */
82 "diagnostic" , /* kMemorystatusKilledDiagnostic */
83 "idle-exit" , /* kMemorystatusKilledIdleExit */
87 /* Does cause indicate vm or fc thrashing? */
89 is_thrashing(unsigned cause
)
92 case kMemorystatusKilledVMThrashing
:
93 case kMemorystatusKilledFCThrashing
:
100 /* Callback into vm_compressor.c to signal that thrashing has been mitigated. */
101 extern void vm_thrashing_jetsam_done(void);
102 #endif /* CONFIG_JETSAM */
104 /* These are very verbose printfs(), enable with
105 * MEMORYSTATUS_DEBUG_LOG
107 #if MEMORYSTATUS_DEBUG_LOG
108 #define MEMORYSTATUS_DEBUG(cond, format, ...) \
110 if (cond) { printf(format, ##__VA_ARGS__); } \
113 #define MEMORYSTATUS_DEBUG(cond, format, ...)
117 * Active / Inactive limit support
118 * proc list must be locked
120 * The SET_*** macros are used to initialize a limit
121 * for the first time.
123 * The CACHE_*** macros are use to cache the limit that will
124 * soon be in effect down in the ledgers.
127 #define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
129 (p)->p_memstat_memlimit_active = (limit); \
130 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_EXC_TRIGGERED; \
132 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
134 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
138 #define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
140 (p)->p_memstat_memlimit_inactive = (limit); \
141 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_EXC_TRIGGERED; \
143 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
145 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
149 #define CACHE_ACTIVE_LIMITS_LOCKED(p, trigger_exception) \
151 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \
152 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \
153 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
155 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
157 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_EXC_TRIGGERED) { \
158 trigger_exception = FALSE; \
160 trigger_exception = TRUE; \
164 #define CACHE_INACTIVE_LIMITS_LOCKED(p, trigger_exception) \
166 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \
167 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \
168 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
170 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
172 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_EXC_TRIGGERED) { \
173 trigger_exception = FALSE; \
175 trigger_exception = TRUE; \
180 /* General tunables */
182 unsigned long delta_percentage
= 5;
183 unsigned long critical_threshold_percentage
= 5;
184 unsigned long idle_offset_percentage
= 5;
185 unsigned long pressure_threshold_percentage
= 15;
186 unsigned long freeze_threshold_percentage
= 50;
187 unsigned long policy_more_free_offset_percentage
= 5;
189 /* General memorystatus stuff */
191 struct klist memorystatus_klist
;
192 static lck_mtx_t memorystatus_klist_mutex
;
194 static void memorystatus_klist_lock(void);
195 static void memorystatus_klist_unlock(void);
197 static uint64_t memorystatus_sysprocs_idle_delay_time
= 0;
198 static uint64_t memorystatus_apps_idle_delay_time
= 0;
201 * Memorystatus kevents
204 static int filt_memorystatusattach(struct knote
*kn
);
205 static void filt_memorystatusdetach(struct knote
*kn
);
206 static int filt_memorystatus(struct knote
*kn
, long hint
);
207 static int filt_memorystatustouch(struct knote
*kn
, struct kevent_internal_s
*kev
);
208 static int filt_memorystatusprocess(struct knote
*kn
, struct filt_process_s
*data
, struct kevent_internal_s
*kev
);
210 struct filterops memorystatus_filtops
= {
211 .f_attach
= filt_memorystatusattach
,
212 .f_detach
= filt_memorystatusdetach
,
213 .f_event
= filt_memorystatus
,
214 .f_touch
= filt_memorystatustouch
,
215 .f_process
= filt_memorystatusprocess
,
219 kMemorystatusNoPressure
= 0x1,
220 kMemorystatusPressure
= 0x2,
221 kMemorystatusLowSwap
= 0x4,
222 kMemorystatusProcLimitWarn
= 0x8,
223 kMemorystatusProcLimitCritical
= 0x10
226 /* Idle guard handling */
228 static int32_t memorystatus_scheduled_idle_demotions_sysprocs
= 0;
229 static int32_t memorystatus_scheduled_idle_demotions_apps
= 0;
231 static thread_call_t memorystatus_idle_demotion_call
;
233 static void memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
);
234 static void memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
);
235 static void memorystatus_invalidate_idle_demotion_locked(proc_t p
, boolean_t clean_state
);
236 static void memorystatus_reschedule_idle_demotion_locked(void);
238 static void memorystatus_update_priority_locked(proc_t p
, int priority
, boolean_t head_insert
, boolean_t skip_demotion_check
);
240 vm_pressure_level_t
convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t
);
242 boolean_t
is_knote_registered_modify_task_pressure_bits(struct knote
*, int, task_t
, vm_pressure_level_t
, vm_pressure_level_t
);
243 void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear
);
244 void memorystatus_send_low_swap_note(void);
246 int memorystatus_wakeup
= 0;
248 unsigned int memorystatus_level
= 0;
250 static int memorystatus_list_count
= 0;
252 #define MEMSTAT_BUCKET_COUNT (JETSAM_PRIORITY_MAX + 1)
254 typedef struct memstat_bucket
{
255 TAILQ_HEAD(, proc
) list
;
259 memstat_bucket_t memstat_bucket
[MEMSTAT_BUCKET_COUNT
];
261 uint64_t memstat_idle_demotion_deadline
= 0;
263 int system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
264 int applications_aging_band
= JETSAM_PRIORITY_IDLE
;
266 #define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)))
267 #define isApp(p) (! (p->p_memstat_dirty & P_DIRTY_TRACK))
268 #define isSysProc(p) ((p->p_memstat_dirty & P_DIRTY_TRACK))
270 #define kJetsamAgingPolicyNone (0)
271 #define kJetsamAgingPolicyLegacy (1)
272 #define kJetsamAgingPolicySysProcsReclaimedFirst (2)
273 #define kJetsamAgingPolicyAppsReclaimedFirst (3)
274 #define kJetsamAgingPolicyMax kJetsamAgingPolicyAppsReclaimedFirst
276 unsigned int jetsam_aging_policy
= kJetsamAgingPolicyLegacy
;
278 extern int corpse_for_fatal_memkill
;
279 extern unsigned long total_corpses_count
;
280 extern void task_purge_all_corpses(void);
284 /* Keeping around for future use if we need a utility that can do this OR an app that needs a dynamic adjustment. */
287 sysctl_set_jetsam_aging_policy SYSCTL_HANDLER_ARGS
289 #pragma unused(oidp, arg1, arg2)
291 int error
= 0, val
= 0;
292 memstat_bucket_t
*old_bucket
= 0;
293 int old_system_procs_aging_band
= 0, new_system_procs_aging_band
= 0;
294 int old_applications_aging_band
= 0, new_applications_aging_band
= 0;
295 proc_t p
= NULL
, next_proc
= NULL
;
298 error
= sysctl_io_number(req
, jetsam_aging_policy
, sizeof(int), &val
, NULL
);
299 if (error
|| !req
->newptr
) {
303 if ((val
< 0) || (val
> kJetsamAgingPolicyMax
)) {
304 printf("jetsam: ordering policy sysctl has invalid value - %d\n", val
);
309 * We need to synchronize with any potential adding/removal from aging bands
310 * that might be in progress currently. We use the proc_list_lock() just for
311 * consistency with all the routines dealing with 'aging' processes. We need
312 * a lighterweight lock.
316 old_system_procs_aging_band
= system_procs_aging_band
;
317 old_applications_aging_band
= applications_aging_band
;
321 case kJetsamAgingPolicyNone
:
322 new_system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
323 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
326 case kJetsamAgingPolicyLegacy
:
328 * Legacy behavior where some daemons get a 10s protection once and only before the first clean->dirty->clean transition before going into IDLE band.
330 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
331 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
334 case kJetsamAgingPolicySysProcsReclaimedFirst
:
335 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
336 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
339 case kJetsamAgingPolicyAppsReclaimedFirst
:
340 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
341 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
348 if (old_system_procs_aging_band
&& (old_system_procs_aging_band
!= new_system_procs_aging_band
)) {
350 old_bucket
= &memstat_bucket
[old_system_procs_aging_band
];
351 p
= TAILQ_FIRST(&old_bucket
->list
);
355 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
358 if (new_system_procs_aging_band
== JETSAM_PRIORITY_IDLE
) {
359 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
362 memorystatus_update_priority_locked(p
, new_system_procs_aging_band
, false, true);
370 if (old_applications_aging_band
&& (old_applications_aging_band
!= new_applications_aging_band
)) {
372 old_bucket
= &memstat_bucket
[old_applications_aging_band
];
373 p
= TAILQ_FIRST(&old_bucket
->list
);
377 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
380 if (new_applications_aging_band
== JETSAM_PRIORITY_IDLE
) {
381 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
384 memorystatus_update_priority_locked(p
, new_applications_aging_band
, false, true);
392 jetsam_aging_policy
= val
;
393 system_procs_aging_band
= new_system_procs_aging_band
;
394 applications_aging_band
= new_applications_aging_band
;
401 SYSCTL_PROC(_kern
, OID_AUTO
, set_jetsam_aging_policy
, CTLTYPE_INT
|CTLFLAG_RW
,
402 0, 0, sysctl_set_jetsam_aging_policy
, "I", "Jetsam Aging Policy");
406 sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS
408 #pragma unused(oidp, arg1, arg2)
410 int error
= 0, val
= 0, old_time_in_secs
= 0;
411 uint64_t old_time_in_ns
= 0;
413 absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time
, &old_time_in_ns
);
414 old_time_in_secs
= old_time_in_ns
/ NSEC_PER_SEC
;
416 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
417 if (error
|| !req
->newptr
) {
421 if ((val
< 0) || (val
> INT32_MAX
)) {
422 printf("jetsam: new idle delay interval has invalid value.\n");
426 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
431 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_sysprocs_idle_delay_time
, CTLTYPE_INT
|CTLFLAG_RW
,
432 0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time
, "I", "Aging window for system processes");
436 sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS
438 #pragma unused(oidp, arg1, arg2)
440 int error
= 0, val
= 0, old_time_in_secs
= 0;
441 uint64_t old_time_in_ns
= 0;
443 absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time
, &old_time_in_ns
);
444 old_time_in_secs
= old_time_in_ns
/ NSEC_PER_SEC
;
446 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
447 if (error
|| !req
->newptr
) {
451 if ((val
< 0) || (val
> INT32_MAX
)) {
452 printf("jetsam: new idle delay interval has invalid value.\n");
456 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
461 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_apps_idle_delay_time
, CTLTYPE_INT
|CTLFLAG_RW
,
462 0, 0, sysctl_jetsam_set_apps_idle_delay_time
, "I", "Aging window for applications");
464 SYSCTL_INT(_kern
, OID_AUTO
, jetsam_aging_policy
, CTLTYPE_INT
|CTLFLAG_RD
, &jetsam_aging_policy
, 0, "");
466 static unsigned int memorystatus_dirty_count
= 0;
468 SYSCTL_INT(_kern
, OID_AUTO
, max_task_pmem
, CTLFLAG_RD
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
, &max_task_footprint_mb
, 0, "");
472 memorystatus_get_level(__unused
struct proc
*p
, struct memorystatus_get_level_args
*args
, __unused
int *ret
)
474 user_addr_t level
= 0;
478 if (copyout(&memorystatus_level
, level
, sizeof(memorystatus_level
)) != 0) {
485 static proc_t
memorystatus_get_first_proc_locked(unsigned int *bucket_index
, boolean_t search
);
486 static proc_t
memorystatus_get_next_proc_locked(unsigned int *bucket_index
, proc_t p
, boolean_t search
);
488 static void memorystatus_thread(void *param __unused
, wait_result_t wr __unused
);
492 static int memorystatus_highwater_enabled
= 1; /* Update the cached memlimit data. */
494 static boolean_t
proc_jetsam_state_is_active_locked(proc_t
);
495 static boolean_t
memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
496 static boolean_t
memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
503 static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
);
505 static int memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
507 static int memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
);
509 static int memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
511 static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
513 int proc_get_memstat_priority(proc_t
, boolean_t
);
515 static boolean_t memorystatus_idle_snapshot
= 0;
517 unsigned int memorystatus_delta
= 0;
519 static unsigned int memorystatus_available_pages_critical_base
= 0;
520 //static unsigned int memorystatus_last_foreground_pressure_pages = (unsigned int)-1;
521 static unsigned int memorystatus_available_pages_critical_idle_offset
= 0;
523 /* Jetsam Loop Detection */
524 static boolean_t memorystatus_jld_enabled
= TRUE
; /* Enables jetsam loop detection on all devices */
525 static uint32_t memorystatus_jld_eval_period_msecs
= 0; /* Init pass sets this based on device memory size */
526 static int memorystatus_jld_eval_aggressive_count
= 3; /* Raise the priority max after 'n' aggressive loops */
527 static int memorystatus_jld_eval_aggressive_priority_band_max
= 15; /* Kill aggressively up through this band */
530 * A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as:
531 * --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands.
534 * - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was
535 * needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band.
537 * - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around.
539 * - Also, the transition of the 'requesting' app away from the FG band will void this special behavior.
542 #define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25
543 boolean_t memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
544 boolean_t memorystatus_aggressive_jetsam_lenient
= FALSE
;
546 #if DEVELOPMENT || DEBUG
548 * Jetsam Loop Detection tunables.
551 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_period_msecs
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_jld_eval_period_msecs
, 0, "");
552 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_count
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_count
, 0, "");
553 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_priority_band_max
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_priority_band_max
, 0, "");
554 #endif /* DEVELOPMENT || DEBUG */
556 #if DEVELOPMENT || DEBUG
557 static unsigned int memorystatus_jetsam_panic_debug
= 0;
558 static unsigned int memorystatus_jetsam_policy_offset_pages_diagnostic
= 0;
561 static unsigned int memorystatus_jetsam_policy
= kPolicyDefault
;
562 static unsigned int memorystatus_thread_wasted_wakeup
= 0;
564 static uint32_t kill_under_pressure_cause
= 0;
567 * default jetsam snapshot support
569 static memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot
;
570 #define memorystatus_jetsam_snapshot_list memorystatus_jetsam_snapshot->entries
571 static unsigned int memorystatus_jetsam_snapshot_count
= 0;
572 static unsigned int memorystatus_jetsam_snapshot_max
= 0;
573 static uint64_t memorystatus_jetsam_snapshot_last_timestamp
= 0;
574 static uint64_t memorystatus_jetsam_snapshot_timeout
= 0;
575 #define JETSAM_SNAPSHOT_TIMEOUT_SECS 30
578 * snapshot support for memstats collected at boot.
580 static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot
;
582 static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
);
583 static boolean_t
memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
);
584 static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
);
586 static void memorystatus_clear_errors(void);
587 static void memorystatus_get_task_page_counts(task_t task
, uint32_t *footprint
, uint32_t *max_footprint
, uint32_t *max_footprint_lifetime
, uint32_t *purgeable_pages
);
588 static void memorystatus_get_task_phys_footprint_page_counts(task_t task
,
589 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
590 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
591 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
592 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
);
594 static void memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
);
596 static uint32_t memorystatus_build_state(proc_t p
);
597 static void memorystatus_update_levels_locked(boolean_t critical_only
);
598 //static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured);
600 static boolean_t
memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
, int32_t *priority
, uint32_t *errors
);
601 static boolean_t
memorystatus_kill_top_process_aggressive(boolean_t any
, uint32_t cause
, os_reason_t jetsam_reason
, int aggr_count
, int32_t priority_max
, uint32_t *errors
);
602 static boolean_t
memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, int aggr_count
, uint32_t *errors
);
603 static boolean_t
memorystatus_kill_hiwat_proc(uint32_t *errors
);
605 static boolean_t
memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
);
607 /* Priority Band Sorting Routines */
608 static int memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
);
609 static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
);
610 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
);
611 static int memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
);
614 typedef int (*cmpfunc_t
)(const void *a
, const void *b
);
615 extern void qsort(void *a
, size_t n
, size_t es
, cmpfunc_t cmp
);
616 static int memstat_asc_cmp(const void *a
, const void *b
);
618 #endif /* CONFIG_JETSAM */
622 extern unsigned int vm_page_free_count
;
623 extern unsigned int vm_page_active_count
;
624 extern unsigned int vm_page_inactive_count
;
625 extern unsigned int vm_page_throttled_count
;
626 extern unsigned int vm_page_purgeable_count
;
627 extern unsigned int vm_page_wire_count
;
628 #if CONFIG_SECLUDED_MEMORY
629 extern unsigned int vm_page_secluded_count
;
630 #endif /* CONFIG_SECLUDED_MEMORY */
632 #if VM_PRESSURE_EVENTS
634 boolean_t
memorystatus_warn_process(pid_t pid
, boolean_t exceeded
);
636 vm_pressure_level_t memorystatus_vm_pressure_level
= kVMPressureNormal
;
638 #if CONFIG_MEMORYSTATUS
639 unsigned int memorystatus_available_pages
= (unsigned int)-1;
640 unsigned int memorystatus_available_pages_pressure
= 0;
641 unsigned int memorystatus_available_pages_critical
= 0;
642 unsigned int memorystatus_frozen_count
= 0;
643 unsigned int memorystatus_suspended_count
= 0;
644 unsigned int memorystatus_policy_more_free_offset_pages
= 0;
647 * We use this flag to signal if we have any HWM offenders
648 * on the system. This way we can reduce the number of wakeups
649 * of the memorystatus_thread when the system is between the
650 * "pressure" and "critical" threshold.
652 * The (re-)setting of this variable is done without any locks
653 * or synchronization simply because it is not possible (currently)
654 * to keep track of HWM offenders that drop down below their memory
655 * limit and/or exit. So, we choose to burn a couple of wasted wakeups
656 * by allowing the unguarded modification of this variable.
658 boolean_t memorystatus_hwm_candidates
= 0;
660 static int memorystatus_send_note(int event_code
, void *data
, size_t data_length
);
661 #endif /* CONFIG_MEMORYSTATUS */
663 #endif /* VM_PRESSURE_EVENTS */
666 #if DEVELOPMENT || DEBUG
668 lck_grp_attr_t
*disconnect_page_mappings_lck_grp_attr
;
669 lck_grp_t
*disconnect_page_mappings_lck_grp
;
670 static lck_mtx_t disconnect_page_mappings_mutex
;
679 boolean_t memorystatus_freeze_enabled
= FALSE
;
680 int memorystatus_freeze_wakeup
= 0;
682 lck_grp_attr_t
*freezer_lck_grp_attr
;
683 lck_grp_t
*freezer_lck_grp
;
684 static lck_mtx_t freezer_mutex
;
686 static inline boolean_t
memorystatus_can_freeze_processes(void);
687 static boolean_t
memorystatus_can_freeze(boolean_t
*memorystatus_freeze_swap_low
);
689 static void memorystatus_freeze_thread(void *param __unused
, wait_result_t wr __unused
);
692 static unsigned int memorystatus_freeze_threshold
= 0;
694 static unsigned int memorystatus_freeze_pages_min
= 0;
695 static unsigned int memorystatus_freeze_pages_max
= 0;
697 static unsigned int memorystatus_freeze_suspended_threshold
= FREEZE_SUSPENDED_THRESHOLD_DEFAULT
;
699 static unsigned int memorystatus_freeze_daily_mb_max
= FREEZE_DAILY_MB_MAX_DEFAULT
;
702 static uint64_t memorystatus_freeze_count
= 0;
703 static uint64_t memorystatus_freeze_pageouts
= 0;
706 static throttle_interval_t throttle_intervals
[] = {
707 { 60, 8, 0, 0, { 0, 0 }, FALSE
}, /* 1 hour intermediate interval, 8x burst */
708 { 24 * 60, 1, 0, 0, { 0, 0 }, FALSE
}, /* 24 hour long interval, no burst */
711 static uint64_t memorystatus_freeze_throttle_count
= 0;
713 static unsigned int memorystatus_suspended_footprint_total
= 0; /* pages */
715 extern uint64_t vm_swap_get_free_space(void);
717 static boolean_t
memorystatus_freeze_update_throttle();
719 #endif /* CONFIG_FREEZE */
723 extern struct knote
*vm_find_knote_from_pid(pid_t
, struct klist
*);
725 #if DEVELOPMENT || DEBUG
727 static unsigned int memorystatus_debug_dump_this_bucket
= 0;
730 memorystatus_debug_dump_bucket_locked (unsigned int bucket_index
)
734 int ledger_limit
= 0;
735 unsigned int b
= bucket_index
;
736 boolean_t traverse_all_buckets
= FALSE
;
738 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
739 traverse_all_buckets
= TRUE
;
742 traverse_all_buckets
= FALSE
;
747 * footprint reported in [pages / MB ]
748 * limits reported as:
749 * L-limit proc's Ledger limit
750 * C-limit proc's Cached limit, should match Ledger
751 * A-limit proc's Active limit
752 * IA-limit proc's Inactive limit
753 * F==Fatal, NF==NonFatal
756 printf("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n", PAGE_SIZE_64
);
757 printf("bucket [pid] [pages / MB] [state] [EP / RP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n");
758 p
= memorystatus_get_first_proc_locked(&b
, traverse_all_buckets
);
760 bytes
= get_task_phys_footprint(p
->task
);
761 task_get_phys_footprint_limit(p
->task
, &ledger_limit
);
762 printf("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n",
764 (bytes
/ PAGE_SIZE_64
), /* task's footprint converted from bytes to pages */
765 (bytes
/ (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */
766 p
->p_memstat_state
, p
->p_memstat_effectivepriority
, p
->p_memstat_requestedpriority
, p
->p_memstat_dirty
, p
->p_memstat_idledeadline
,
768 p
->p_memstat_memlimit
,
769 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"),
770 p
->p_memstat_memlimit_active
,
771 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
? "F " : "NF"),
772 p
->p_memstat_memlimit_inactive
,
773 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
? "F " : "NF"),
774 (*p
->p_name
? p
->p_name
: "unknown"));
775 p
= memorystatus_get_next_proc_locked(&b
, p
, traverse_all_buckets
);
777 printf("memorystatus_debug_dump ***END***\n");
781 sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS
783 #pragma unused(oidp, arg2)
784 int bucket_index
= 0;
786 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
787 if (error
|| !req
->newptr
) {
790 error
= SYSCTL_IN(req
, &bucket_index
, sizeof(int));
791 if (error
|| !req
->newptr
) {
794 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
796 * All jetsam buckets will be dumped.
800 * Only a single bucket will be dumped.
805 memorystatus_debug_dump_bucket_locked(bucket_index
);
807 memorystatus_debug_dump_this_bucket
= bucket_index
;
812 * Debug aid to look at jetsam buckets and proc jetsam fields.
813 * Use this sysctl to act on a particular jetsam bucket.
814 * Writing the sysctl triggers the dump.
815 * Usage: sysctl kern.memorystatus_debug_dump_this_bucket=<bucket_index>
818 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_debug_dump_this_bucket
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_debug_dump_this_bucket
, 0, sysctl_memorystatus_debug_dump_bucket
, "I", "");
821 /* Debug aid to aid determination of limit */
824 sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS
826 #pragma unused(oidp, arg2)
829 int error
, enable
= 0;
831 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
832 if (error
|| !req
->newptr
) {
836 error
= SYSCTL_IN(req
, &enable
, sizeof(int));
837 if (error
|| !req
->newptr
) {
841 if (!(enable
== 0 || enable
== 1)) {
847 p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
849 boolean_t trigger_exception
;
853 * No need to consider P_MEMSTAT_MEMLIMIT_BACKGROUND anymore.
854 * Background limits are described via the inactive limit slots.
857 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
858 CACHE_ACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
860 CACHE_INACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
865 * Disabling limits does not touch the stored variants.
866 * Set the cached limit fields to system_wide defaults.
868 p
->p_memstat_memlimit
= -1;
869 p
->p_memstat_state
|= P_MEMSTAT_FATAL_MEMLIMIT
;
870 trigger_exception
= TRUE
;
874 * Enforce the cached limit by writing to the ledger.
876 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, trigger_exception
);
878 p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
881 memorystatus_highwater_enabled
= enable
;
889 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_highwater_enabled
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_highwater_enabled
, 0, sysctl_memorystatus_highwater_enable
, "I", "");
891 #if VM_PRESSURE_EVENTS
894 * This routine is used for targeted notifications
895 * regardless of system memory pressure.
896 * "memnote" is the current user.
900 sysctl_memorystatus_vm_pressure_send SYSCTL_HANDLER_ARGS
902 #pragma unused(arg1, arg2)
904 int error
= 0, pid
= 0;
905 struct knote
*kn
= NULL
;
906 boolean_t found_knote
= FALSE
;
907 int fflags
= 0; /* filter flags for EVFILT_MEMORYSTATUS */
910 error
= sysctl_handle_quad(oidp
, &value
, 0, req
);
911 if (error
|| !req
->newptr
)
915 * Find the pid in the low 32 bits of value passed in.
917 pid
= (int)(value
& 0xFFFFFFFF);
920 * Find notification in the high 32 bits of the value passed in.
922 fflags
= (int)((value
>> 32) & 0xFFFFFFFF);
925 * For backwards compatibility, when no notification is
926 * passed in, default to the NOTE_MEMORYSTATUS_PRESSURE_WARN
929 fflags
= NOTE_MEMORYSTATUS_PRESSURE_WARN
;
930 // printf("memorystatus_vm_pressure_send: using default notification [0x%x]\n", fflags);
934 * See event.h ... fflags for EVFILT_MEMORYSTATUS
936 if (!((fflags
== NOTE_MEMORYSTATUS_PRESSURE_NORMAL
)||
937 (fflags
== NOTE_MEMORYSTATUS_PRESSURE_WARN
) ||
938 (fflags
== NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
) ||
939 (fflags
== NOTE_MEMORYSTATUS_LOW_SWAP
) ||
940 (fflags
== NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
) ||
941 (fflags
== NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
))) {
943 printf("memorystatus_vm_pressure_send: notification [0x%x] not supported \n", fflags
);
949 * Forcibly send pid a memorystatus notification.
952 memorystatus_klist_lock();
954 SLIST_FOREACH(kn
, &memorystatus_klist
, kn_selnext
) {
955 proc_t knote_proc
= knote_get_kq(kn
)->kq_p
;
956 pid_t knote_pid
= knote_proc
->p_pid
;
958 if (knote_pid
== pid
) {
960 * Forcibly send this pid a memorystatus notification.
962 kn
->kn_fflags
= fflags
;
968 KNOTE(&memorystatus_klist
, 0);
969 printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] sent to process [%d] \n", value
, fflags
, pid
);
972 printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] not sent to process [%d] (none registered?)\n", value
, fflags
, pid
);
976 memorystatus_klist_unlock();
981 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_pressure_send
, CTLTYPE_QUAD
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
982 0, 0, &sysctl_memorystatus_vm_pressure_send
, "Q", "");
984 #endif /* VM_PRESSURE_EVENTS */
988 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_idle_snapshot
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_idle_snapshot
, 0, "");
990 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
991 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_available_pages_critical
, 0, "");
992 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_base
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_base
, 0, "");
993 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_idle_offset
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_idle_offset
, 0, "");
994 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_policy_more_free_offset_pages
, CTLFLAG_RW
, &memorystatus_policy_more_free_offset_pages
, 0, "");
996 /* Diagnostic code */
999 kJetsamDiagnosticModeNone
= 0,
1000 kJetsamDiagnosticModeAll
= 1,
1001 kJetsamDiagnosticModeStopAtFirstActive
= 2,
1002 kJetsamDiagnosticModeCount
1003 } jetsam_diagnostic_mode
= kJetsamDiagnosticModeNone
;
1005 static int jetsam_diagnostic_suspended_one_active_proc
= 0;
1008 sysctl_jetsam_diagnostic_mode SYSCTL_HANDLER_ARGS
1010 #pragma unused(arg1, arg2)
1012 const char *diagnosticStrings
[] = {
1013 "jetsam: diagnostic mode: resetting critical level.",
1014 "jetsam: diagnostic mode: will examine all processes",
1015 "jetsam: diagnostic mode: will stop at first active process"
1018 int error
, val
= jetsam_diagnostic_mode
;
1019 boolean_t changed
= FALSE
;
1021 error
= sysctl_handle_int(oidp
, &val
, 0, req
);
1022 if (error
|| !req
->newptr
)
1024 if ((val
< 0) || (val
>= kJetsamDiagnosticModeCount
)) {
1025 printf("jetsam: diagnostic mode: invalid value - %d\n", val
);
1031 if ((unsigned int) val
!= jetsam_diagnostic_mode
) {
1032 jetsam_diagnostic_mode
= val
;
1034 memorystatus_jetsam_policy
&= ~kPolicyDiagnoseActive
;
1036 switch (jetsam_diagnostic_mode
) {
1037 case kJetsamDiagnosticModeNone
:
1038 /* Already cleared */
1040 case kJetsamDiagnosticModeAll
:
1041 memorystatus_jetsam_policy
|= kPolicyDiagnoseAll
;
1043 case kJetsamDiagnosticModeStopAtFirstActive
:
1044 memorystatus_jetsam_policy
|= kPolicyDiagnoseFirst
;
1047 /* Already validated */
1051 memorystatus_update_levels_locked(FALSE
);
1058 printf("%s\n", diagnosticStrings
[val
]);
1064 SYSCTL_PROC(_debug
, OID_AUTO
, jetsam_diagnostic_mode
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
|CTLFLAG_ANYBODY
,
1065 &jetsam_diagnostic_mode
, 0, sysctl_jetsam_diagnostic_mode
, "I", "Jetsam Diagnostic Mode");
1067 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jetsam_policy_offset_pages_diagnostic
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_jetsam_policy_offset_pages_diagnostic
, 0, "");
1069 #if VM_PRESSURE_EVENTS
1071 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_pressure
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_available_pages_pressure
, 0, "");
1073 #endif /* VM_PRESSURE_EVENTS */
1075 #endif /* CONFIG_JETSAM */
1079 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_daily_mb_max
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_daily_mb_max
, 0, "");
1081 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_threshold
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_threshold
, 0, "");
1083 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_pages_min
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_pages_min
, 0, "");
1084 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_pages_max
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_pages_max
, 0, "");
1086 SYSCTL_QUAD(_kern
, OID_AUTO
, memorystatus_freeze_count
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_freeze_count
, "");
1087 SYSCTL_QUAD(_kern
, OID_AUTO
, memorystatus_freeze_pageouts
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_freeze_pageouts
, "");
1088 SYSCTL_QUAD(_kern
, OID_AUTO
, memorystatus_freeze_throttle_count
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_freeze_throttle_count
, "");
1089 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_min_processes
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_suspended_threshold
, 0, "");
1091 boolean_t memorystatus_freeze_throttle_enabled
= TRUE
;
1092 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_throttle_enabled
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_throttle_enabled
, 0, "");
1094 #define VM_PAGES_FOR_ALL_PROCS (2)
1096 * Manual trigger of freeze and thaw for dev / debug kernels only.
1099 sysctl_memorystatus_freeze SYSCTL_HANDLER_ARGS
1101 #pragma unused(arg1, arg2)
1105 if (memorystatus_freeze_enabled
== FALSE
) {
1109 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1110 if (error
|| !req
->newptr
)
1113 if (pid
== VM_PAGES_FOR_ALL_PROCS
) {
1114 vm_pageout_anonymous_pages();
1119 lck_mtx_lock(&freezer_mutex
);
1123 uint32_t purgeable
, wired
, clean
, dirty
;
1125 uint32_t max_pages
= 0;
1127 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
1129 unsigned int avail_swap_space
= 0; /* in pages. */
1132 * Freezer backed by the compressor and swap file(s)
1133 * while will hold compressed data.
1135 avail_swap_space
= vm_swap_get_free_space() / PAGE_SIZE_64
;
1137 max_pages
= MIN(avail_swap_space
, memorystatus_freeze_pages_max
);
1141 * We only have the compressor without any swap.
1143 max_pages
= UINT32_MAX
- 1;
1146 error
= task_freeze(p
->task
, &purgeable
, &wired
, &clean
, &dirty
, max_pages
, &shared
, FALSE
);
1152 lck_mtx_unlock(&freezer_mutex
);
1156 lck_mtx_unlock(&freezer_mutex
);
1160 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_freeze
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
1161 0, 0, &sysctl_memorystatus_freeze
, "I", "");
1164 sysctl_memorystatus_available_pages_thaw SYSCTL_HANDLER_ARGS
1166 #pragma unused(arg1, arg2)
1171 if (memorystatus_freeze_enabled
== FALSE
) {
1175 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1176 if (error
|| !req
->newptr
)
1179 if (pid
== VM_PAGES_FOR_ALL_PROCS
) {
1180 do_fastwake_warmup_all();
1185 error
= task_thaw(p
->task
);
1197 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_thaw
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
1198 0, 0, &sysctl_memorystatus_available_pages_thaw
, "I", "");
1200 #endif /* CONFIG_FREEZE */
1202 #endif /* DEVELOPMENT || DEBUG */
1204 extern kern_return_t
kernel_thread_start_priority(thread_continue_t continuation
,
1207 thread_t
*new_thread
);
1209 #if DEVELOPMENT || DEBUG
1212 sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS
1214 #pragma unused(arg1, arg2)
1215 int error
= 0, pid
= 0;
1218 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1219 if (error
|| !req
->newptr
)
1222 lck_mtx_lock(&disconnect_page_mappings_mutex
);
1225 vm_pageout_disconnect_all_pages();
1230 error
= task_disconnect_page_mappings(p
->task
);
1239 lck_mtx_unlock(&disconnect_page_mappings_mutex
);
1244 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_disconnect_page_mappings
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
1245 0, 0, &sysctl_memorystatus_disconnect_page_mappings
, "I", "");
1247 #endif /* DEVELOPMENT || DEBUG */
1253 * Picks the sorting routine for a given jetsam priority band.
1256 * bucket_index - jetsam priority band to be sorted.
1257 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1258 * Currently sort_order is only meaningful when handling
1265 static int memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
)
1267 int coal_sort_order
;
1270 * Verify the jetsam priority
1272 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1276 #if DEVELOPMENT || DEBUG
1277 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1278 coal_sort_order
= COALITION_SORT_DEFAULT
;
1280 coal_sort_order
= sort_order
; /* only used for testing scenarios */
1283 /* Verify default */
1284 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1285 coal_sort_order
= COALITION_SORT_DEFAULT
;
1292 switch (bucket_index
) {
1293 case JETSAM_PRIORITY_FOREGROUND
:
1294 if (memorystatus_sort_by_largest_coalition_locked(bucket_index
, coal_sort_order
) == 0) {
1296 * Fall back to per process sorting when zero coalitions are found.
1298 memorystatus_sort_by_largest_process_locked(bucket_index
);
1302 memorystatus_sort_by_largest_process_locked(bucket_index
);
1311 * Sort processes by size for a single jetsam bucket.
1314 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
)
1316 proc_t p
= NULL
, insert_after_proc
= NULL
, max_proc
= NULL
;
1317 proc_t next_p
= NULL
, prev_max_proc
= NULL
;
1318 uint32_t pages
= 0, max_pages
= 0;
1319 memstat_bucket_t
*current_bucket
;
1321 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1325 current_bucket
= &memstat_bucket
[bucket_index
];
1327 p
= TAILQ_FIRST(¤t_bucket
->list
);
1330 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
1335 while ((next_p
= TAILQ_NEXT(p
, p_memstat_list
)) != NULL
) {
1336 /* traversing list until we find next largest process */
1338 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
1339 if (pages
> max_pages
) {
1345 if (prev_max_proc
!= max_proc
) {
1346 /* found a larger process, place it in the list */
1347 TAILQ_REMOVE(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1348 if (insert_after_proc
== NULL
) {
1349 TAILQ_INSERT_HEAD(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1351 TAILQ_INSERT_AFTER(¤t_bucket
->list
, insert_after_proc
, max_proc
, p_memstat_list
);
1353 prev_max_proc
= max_proc
;
1356 insert_after_proc
= max_proc
;
1358 p
= TAILQ_NEXT(max_proc
, p_memstat_list
);
1362 #endif /* CONFIG_JETSAM */
1364 static proc_t
memorystatus_get_first_proc_locked(unsigned int *bucket_index
, boolean_t search
) {
1365 memstat_bucket_t
*current_bucket
;
1368 if ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
) {
1372 current_bucket
= &memstat_bucket
[*bucket_index
];
1373 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1374 if (!next_p
&& search
) {
1375 while (!next_p
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1376 current_bucket
= &memstat_bucket
[*bucket_index
];
1377 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1384 static proc_t
memorystatus_get_next_proc_locked(unsigned int *bucket_index
, proc_t p
, boolean_t search
) {
1385 memstat_bucket_t
*current_bucket
;
1388 if (!p
|| ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
)) {
1392 next_p
= TAILQ_NEXT(p
, p_memstat_list
);
1393 while (!next_p
&& search
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1394 current_bucket
= &memstat_bucket
[*bucket_index
];
1395 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1401 __private_extern__
void
1402 memorystatus_init(void)
1404 thread_t thread
= THREAD_NULL
;
1405 kern_return_t result
;
1409 memorystatus_freeze_pages_min
= FREEZE_PAGES_MIN
;
1410 memorystatus_freeze_pages_max
= FREEZE_PAGES_MAX
;
1413 #if DEVELOPMENT || DEBUG
1414 disconnect_page_mappings_lck_grp_attr
= lck_grp_attr_alloc_init();
1415 disconnect_page_mappings_lck_grp
= lck_grp_alloc_init("disconnect_page_mappings", disconnect_page_mappings_lck_grp_attr
);
1417 lck_mtx_init(&disconnect_page_mappings_mutex
, disconnect_page_mappings_lck_grp
, NULL
);
1420 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
1421 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
1424 for (i
= 0; i
< MEMSTAT_BUCKET_COUNT
; i
++) {
1425 TAILQ_INIT(&memstat_bucket
[i
].list
);
1426 memstat_bucket
[i
].count
= 0;
1429 memorystatus_idle_demotion_call
= thread_call_allocate((thread_call_func_t
)memorystatus_perform_idle_demotion
, NULL
);
1431 /* Apply overrides */
1432 PE_get_default("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
));
1433 if (delta_percentage
== 0) {
1434 delta_percentage
= 5;
1436 assert(delta_percentage
< 100);
1437 PE_get_default("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
));
1438 assert(critical_threshold_percentage
< 100);
1439 PE_get_default("kern.jetsam_idle_offset", &idle_offset_percentage
, sizeof(idle_offset_percentage
));
1440 assert(idle_offset_percentage
< 100);
1441 PE_get_default("kern.jetsam_pressure_threshold", &pressure_threshold_percentage
, sizeof(pressure_threshold_percentage
));
1442 assert(pressure_threshold_percentage
< 100);
1443 PE_get_default("kern.jetsam_freeze_threshold", &freeze_threshold_percentage
, sizeof(freeze_threshold_percentage
));
1444 assert(freeze_threshold_percentage
< 100);
1446 if (!PE_parse_boot_argn("jetsam_aging_policy", &jetsam_aging_policy
,
1447 sizeof (jetsam_aging_policy
))) {
1449 if (!PE_get_default("kern.jetsam_aging_policy", &jetsam_aging_policy
,
1450 sizeof(jetsam_aging_policy
))) {
1452 jetsam_aging_policy
= kJetsamAgingPolicyLegacy
;
1456 if (jetsam_aging_policy
> kJetsamAgingPolicyMax
) {
1457 jetsam_aging_policy
= kJetsamAgingPolicyLegacy
;
1460 switch (jetsam_aging_policy
) {
1462 case kJetsamAgingPolicyNone
:
1463 system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
1464 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1467 case kJetsamAgingPolicyLegacy
:
1469 * Legacy behavior where some daemons get a 10s protection once
1470 * AND only before the first clean->dirty->clean transition before
1471 * going into IDLE band.
1473 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1474 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1477 case kJetsamAgingPolicySysProcsReclaimedFirst
:
1478 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1479 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1482 case kJetsamAgingPolicyAppsReclaimedFirst
:
1483 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1484 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1492 * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE
1493 * band and must be below it in priority. This is so that we don't have to make
1494 * our 'aging' code worry about a mix of processes, some of which need to age
1495 * and some others that need to stay elevated in the jetsam bands.
1497 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> system_procs_aging_band
);
1498 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> applications_aging_band
);
1501 /* Take snapshots for idle-exit kills by default? First check the boot-arg... */
1502 if (!PE_parse_boot_argn("jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof (memorystatus_idle_snapshot
))) {
1503 /* ...no boot-arg, so check the device tree */
1504 PE_get_default("kern.jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
));
1507 memorystatus_delta
= delta_percentage
* atop_64(max_mem
) / 100;
1508 memorystatus_available_pages_critical_idle_offset
= idle_offset_percentage
* atop_64(max_mem
) / 100;
1509 memorystatus_available_pages_critical_base
= (critical_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
1510 memorystatus_policy_more_free_offset_pages
= (policy_more_free_offset_percentage
/ delta_percentage
) * memorystatus_delta
;
1512 memorystatus_jetsam_snapshot_max
= maxproc
;
1513 memorystatus_jetsam_snapshot
=
1514 (memorystatus_jetsam_snapshot_t
*)kalloc(sizeof(memorystatus_jetsam_snapshot_t
) +
1515 sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_max
);
1516 if (!memorystatus_jetsam_snapshot
) {
1517 panic("Could not allocate memorystatus_jetsam_snapshot");
1520 nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS
* NSEC_PER_SEC
, &memorystatus_jetsam_snapshot_timeout
);
1522 memset(&memorystatus_at_boot_snapshot
, 0, sizeof(memorystatus_jetsam_snapshot_t
));
1524 /* No contention at this point */
1525 memorystatus_update_levels_locked(FALSE
);
1527 /* Jetsam Loop Detection */
1528 if (max_mem
<= (512 * 1024 * 1024)) {
1529 /* 512 MB devices */
1530 memorystatus_jld_eval_period_msecs
= 8000; /* 8000 msecs == 8 second window */
1532 /* 1GB and larger devices */
1533 memorystatus_jld_eval_period_msecs
= 6000; /* 6000 msecs == 6 second window */
1538 memorystatus_freeze_threshold
= (freeze_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
1541 result
= kernel_thread_start_priority(memorystatus_thread
, NULL
, 95 /* MAXPRI_KERNEL */, &thread
);
1542 if (result
== KERN_SUCCESS
) {
1543 thread_deallocate(thread
);
1545 panic("Could not create memorystatus_thread");
1549 /* Centralised for the purposes of allowing panic-on-jetsam */
1551 vm_run_compactor(void);
1554 * The jetsam no frills kill call
1555 * Return: 0 on success
1556 * error code on failure (EINVAL...)
1559 jetsam_do_kill(proc_t p
, int jetsam_flags
, os_reason_t jetsam_reason
) {
1561 error
= exit_with_reason(p
, W_EXITCODE(0, SIGKILL
), (int *)NULL
, FALSE
, FALSE
, jetsam_flags
, jetsam_reason
);
1566 * Wrapper for processes exiting with memorystatus details
1569 memorystatus_do_kill(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
) {
1572 __unused pid_t victim_pid
= p
->p_pid
;
1574 KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_START
,
1575 victim_pid
, cause
, vm_page_free_count
, 0, 0);
1577 DTRACE_MEMORYSTATUS3(memorystatus_do_kill
, proc_t
, p
, os_reason_t
, jetsam_reason
, uint32_t, cause
);
1578 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
1579 if (memorystatus_jetsam_panic_debug
& (1 << cause
)) {
1580 panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)", cause
);
1583 #pragma unused(cause)
1585 int jetsam_flags
= P_LTERM_JETSAM
;
1587 case kMemorystatusKilledHiwat
: jetsam_flags
|= P_JETSAM_HIWAT
; break;
1588 case kMemorystatusKilledVnodes
: jetsam_flags
|= P_JETSAM_VNODE
; break;
1589 case kMemorystatusKilledVMPageShortage
: jetsam_flags
|= P_JETSAM_VMPAGESHORTAGE
; break;
1590 case kMemorystatusKilledVMThrashing
: jetsam_flags
|= P_JETSAM_VMTHRASHING
; break;
1591 case kMemorystatusKilledFCThrashing
: jetsam_flags
|= P_JETSAM_FCTHRASHING
; break;
1592 case kMemorystatusKilledPerProcessLimit
: jetsam_flags
|= P_JETSAM_PID
; break;
1593 case kMemorystatusKilledIdleExit
: jetsam_flags
|= P_JETSAM_IDLEEXIT
; break;
1595 error
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
1597 KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_END
,
1598 victim_pid
, cause
, vm_page_free_count
, error
, 0);
1602 return (error
== 0);
1610 memorystatus_check_levels_locked(void) {
1613 memorystatus_update_levels_locked(TRUE
);
1618 * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work.
1619 * For an application: that means no longer in the FG band
1620 * For a daemon: that means no longer in its 'requested' jetsam priority band
1624 memorystatus_update_inactive_jetsam_priority_band(pid_t pid
, uint32_t op_flags
, boolean_t effective_now
)
1627 boolean_t enable
= FALSE
;
1630 if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
) {
1632 } else if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
) {
1641 if ((enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) ||
1642 (!enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == 0))) {
1644 * No change in state.
1652 p
->p_memstat_state
|= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1653 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1655 if (effective_now
) {
1656 if (p
->p_memstat_effectivepriority
< JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
1657 boolean_t trigger_exception
;
1658 CACHE_ACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
1659 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, trigger_exception
);
1660 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_ELEVATED_INACTIVE
, FALSE
, FALSE
);
1663 if (isProcessInAgingBands(p
)) {
1664 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1669 p
->p_memstat_state
&= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1670 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1672 if (effective_now
) {
1673 if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
1674 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1677 if (isProcessInAgingBands(p
)) {
1678 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1696 memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
)
1699 uint64_t current_time
= 0, idle_delay_time
= 0;
1700 int demote_prio_band
= 0;
1701 memstat_bucket_t
*demotion_bucket
;
1703 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n");
1705 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
1707 current_time
= mach_absolute_time();
1711 demote_prio_band
= JETSAM_PRIORITY_IDLE
+ 1;
1713 for (; demote_prio_band
< JETSAM_PRIORITY_MAX
; demote_prio_band
++) {
1715 if (demote_prio_band
!= system_procs_aging_band
&& demote_prio_band
!= applications_aging_band
)
1718 demotion_bucket
= &memstat_bucket
[demote_prio_band
];
1719 p
= TAILQ_FIRST(&demotion_bucket
->list
);
1722 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n", p
->p_pid
);
1724 assert(p
->p_memstat_idledeadline
);
1726 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
1728 if (current_time
>= p
->p_memstat_idledeadline
) {
1730 if ((isSysProc(p
) &&
1731 ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
|P_DIRTY_IS_DIRTY
)) != P_DIRTY_IDLE_EXIT_ENABLED
)) || /* system proc marked dirty*/
1732 task_has_assertions((struct task
*)(p
->task
))) { /* has outstanding assertions which might indicate outstanding work too */
1733 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_delay_time
: memorystatus_apps_idle_delay_time
;
1735 p
->p_memstat_idledeadline
+= idle_delay_time
;
1736 p
= TAILQ_NEXT(p
, p_memstat_list
);
1740 proc_t next_proc
= NULL
;
1742 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
1743 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1745 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, false, true);
1752 // No further candidates
1759 memorystatus_reschedule_idle_demotion_locked();
1763 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
1767 memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
)
1769 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1770 boolean_t present_in_apps_aging_bucket
= FALSE
;
1771 uint64_t idle_delay_time
= 0;
1773 if (jetsam_aging_policy
== kJetsamAgingPolicyNone
) {
1777 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
1779 * This process isn't going to be making the trip to the lower bands.
1784 if (isProcessInAgingBands(p
)){
1786 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1787 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) != P_DIRTY_AGING_IN_PROGRESS
);
1790 if (isSysProc(p
) && system_procs_aging_band
) {
1791 present_in_sysprocs_aging_bucket
= TRUE
;
1793 } else if (isApp(p
) && applications_aging_band
) {
1794 present_in_apps_aging_bucket
= TRUE
;
1798 assert(!present_in_sysprocs_aging_bucket
);
1799 assert(!present_in_apps_aging_bucket
);
1801 MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n",
1802 p
->p_pid
, p
->p_memstat_dirty
, set_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1805 assert((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
);
1808 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_delay_time
: memorystatus_apps_idle_delay_time
;
1811 p
->p_memstat_dirty
|= P_DIRTY_AGING_IN_PROGRESS
;
1812 p
->p_memstat_idledeadline
= mach_absolute_time() + idle_delay_time
;
1815 assert(p
->p_memstat_idledeadline
);
1817 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== FALSE
) {
1818 memorystatus_scheduled_idle_demotions_sysprocs
++;
1820 } else if (isApp(p
) && present_in_apps_aging_bucket
== FALSE
) {
1821 memorystatus_scheduled_idle_demotions_apps
++;
1826 memorystatus_invalidate_idle_demotion_locked(proc_t p
, boolean_t clear_state
)
1828 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1829 boolean_t present_in_apps_aging_bucket
= FALSE
;
1831 if (!system_procs_aging_band
&& !applications_aging_band
) {
1835 if ((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == 0) {
1839 if (isProcessInAgingBands(p
)) {
1841 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1842 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == P_DIRTY_AGING_IN_PROGRESS
);
1845 if (isSysProc(p
) && system_procs_aging_band
) {
1846 assert(p
->p_memstat_effectivepriority
== system_procs_aging_band
);
1847 assert(p
->p_memstat_idledeadline
);
1848 present_in_sysprocs_aging_bucket
= TRUE
;
1850 } else if (isApp(p
) && applications_aging_band
) {
1851 assert(p
->p_memstat_effectivepriority
== applications_aging_band
);
1852 assert(p
->p_memstat_idledeadline
);
1853 present_in_apps_aging_bucket
= TRUE
;
1857 MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n",
1858 p
->p_pid
, clear_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1862 p
->p_memstat_idledeadline
= 0;
1863 p
->p_memstat_dirty
&= ~P_DIRTY_AGING_IN_PROGRESS
;
1866 if (isSysProc(p
) &&present_in_sysprocs_aging_bucket
== TRUE
) {
1867 memorystatus_scheduled_idle_demotions_sysprocs
--;
1868 assert(memorystatus_scheduled_idle_demotions_sysprocs
>= 0);
1870 } else if (isApp(p
) && present_in_apps_aging_bucket
== TRUE
) {
1871 memorystatus_scheduled_idle_demotions_apps
--;
1872 assert(memorystatus_scheduled_idle_demotions_apps
>= 0);
1875 assert((memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
) >= 0);
1879 memorystatus_reschedule_idle_demotion_locked(void) {
1880 if (0 == (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
)) {
1881 if (memstat_idle_demotion_deadline
) {
1882 /* Transitioned 1->0, so cancel next call */
1883 thread_call_cancel(memorystatus_idle_demotion_call
);
1884 memstat_idle_demotion_deadline
= 0;
1887 memstat_bucket_t
*demotion_bucket
;
1888 proc_t p
= NULL
, p1
= NULL
, p2
= NULL
;
1890 if (system_procs_aging_band
) {
1892 demotion_bucket
= &memstat_bucket
[system_procs_aging_band
];
1893 p1
= TAILQ_FIRST(&demotion_bucket
->list
);
1898 if (applications_aging_band
) {
1900 demotion_bucket
= &memstat_bucket
[applications_aging_band
];
1901 p2
= TAILQ_FIRST(&demotion_bucket
->list
);
1904 p
= (p1
->p_memstat_idledeadline
> p2
->p_memstat_idledeadline
) ? p2
: p1
;
1906 p
= (p1
== NULL
) ? p2
: p1
;
1914 assert(p
&& p
->p_memstat_idledeadline
);
1915 if (memstat_idle_demotion_deadline
!= p
->p_memstat_idledeadline
){
1916 thread_call_enter_delayed(memorystatus_idle_demotion_call
, p
->p_memstat_idledeadline
);
1917 memstat_idle_demotion_deadline
= p
->p_memstat_idledeadline
;
1928 memorystatus_add(proc_t p
, boolean_t locked
)
1930 memstat_bucket_t
*bucket
;
1932 MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n", p
->p_pid
, p
->p_memstat_effectivepriority
);
1938 DTRACE_MEMORYSTATUS2(memorystatus_add
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
);
1940 /* Processes marked internal do not have priority tracked */
1941 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
1945 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
1947 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
1948 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
- 1);
1950 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
1951 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
- 1);
1953 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
1955 * Entering the idle band.
1956 * Record idle start time.
1958 p
->p_memstat_idle_start
= mach_absolute_time();
1961 TAILQ_INSERT_TAIL(&bucket
->list
, p
, p_memstat_list
);
1964 memorystatus_list_count
++;
1966 memorystatus_check_levels_locked();
1978 * Moves a process from one jetsam bucket to another.
1979 * which changes the LRU position of the process.
1981 * Monitors transition between buckets and if necessary
1982 * will update cached memory limits accordingly.
1984 * skip_demotion_check:
1985 * - if the 'jetsam aging policy' is NOT 'legacy':
1986 * When this flag is TRUE, it means we are going
1987 * to age the ripe processes out of the aging bands and into the
1988 * IDLE band and apply their inactive memory limits.
1990 * - if the 'jetsam aging policy' is 'legacy':
1991 * When this flag is TRUE, it might mean the above aging mechanism
1993 * It might be that we have a process that has used up its 'idle deferral'
1994 * stay that is given to it once per lifetime. And in this case, the process
1995 * won't be going through any aging codepaths. But we still need to apply
1996 * the right inactive limits and so we explicitly set this to TRUE if the
1997 * new priority for the process is the IDLE band.
2000 memorystatus_update_priority_locked(proc_t p
, int priority
, boolean_t head_insert
, boolean_t skip_demotion_check
)
2002 memstat_bucket_t
*old_bucket
, *new_bucket
;
2004 assert(priority
< MEMSTAT_BUCKET_COUNT
);
2006 /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */
2007 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2011 MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n",
2012 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, head_insert
? "head" : "tail");
2014 DTRACE_MEMORYSTATUS3(memorystatus_update_priority
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
, int, priority
);
2016 #if DEVELOPMENT || DEBUG
2017 if (priority
== JETSAM_PRIORITY_IDLE
&& /* if the process is on its way into the IDLE band */
2018 skip_demotion_check
== FALSE
&& /* and it isn't via the path that will set the INACTIVE memlimits */
2019 (p
->p_memstat_dirty
& P_DIRTY_TRACK
) && /* and it has 'DIRTY' tracking enabled */
2020 ((p
->p_memstat_memlimit
!= p
->p_memstat_memlimit_inactive
) || /* and we notice that the current limit isn't the right value (inactive) */
2021 ((p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) ? ( ! (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)) : (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)))) /* OR type (fatal vs non-fatal) */
2022 panic("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n", p
->p_name
, p
->p_memstat_state
, priority
, p
->p_memstat_memlimit
); /* then we must catch this */
2023 #endif /* DEVELOPMENT || DEBUG */
2025 old_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2027 if (skip_demotion_check
== FALSE
) {
2031 * For system processes, the memorystatus_dirty_* routines take care of adding/removing
2032 * the processes from the aging bands and balancing the demotion counts.
2033 * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute.
2036 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
&& (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
2037 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2039 assert(! (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2041 } else if (isApp(p
)) {
2044 * Check to see if the application is being lowered in jetsam priority. If so, and:
2045 * - it has an 'elevated inactive jetsam band' attribute, then put it in the JETSAM_PRIORITY_ELEVATED_INACTIVE band.
2046 * - it is a normal application, then let it age in the aging band if that policy is in effect.
2049 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
&& (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
2050 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2053 if (applications_aging_band
) {
2054 if (p
->p_memstat_effectivepriority
== applications_aging_band
) {
2055 assert(old_bucket
->count
== (memorystatus_scheduled_idle_demotions_apps
+ 1));
2058 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && (priority
<= applications_aging_band
)) {
2059 assert(! (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2060 priority
= applications_aging_band
;
2061 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2068 if ((system_procs_aging_band
&& (priority
== system_procs_aging_band
)) || (applications_aging_band
&& (priority
== applications_aging_band
))) {
2069 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
2072 TAILQ_REMOVE(&old_bucket
->list
, p
, p_memstat_list
);
2073 old_bucket
->count
--;
2075 new_bucket
= &memstat_bucket
[priority
];
2077 TAILQ_INSERT_HEAD(&new_bucket
->list
, p
, p_memstat_list
);
2079 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
2080 new_bucket
->count
++;
2082 if (memorystatus_highwater_enabled
) {
2083 boolean_t trigger_exception
;
2086 * If cached limit data is updated, then the limits
2087 * will be enforced by writing to the ledgers.
2089 boolean_t ledger_update_needed
= TRUE
;
2092 * No need to consider P_MEMSTAT_MEMLIMIT_BACKGROUND anymore.
2093 * Background limits are described via the inactive limit slots.
2095 * Here, we must update the cached memory limit if the task
2096 * is transitioning between:
2097 * active <--> inactive
2100 * dirty <--> clean is ignored
2102 * We bypass non-idle processes that have opted into dirty tracking because
2103 * a move between buckets does not imply a transition between the
2104 * dirty <--> clean state.
2107 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
2109 if (skip_demotion_check
== TRUE
&& priority
== JETSAM_PRIORITY_IDLE
) {
2110 CACHE_INACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
2112 ledger_update_needed
= FALSE
;
2115 } else if ((priority
>= JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
< JETSAM_PRIORITY_FOREGROUND
)) {
2117 * inactive --> active
2119 * assign active state
2121 CACHE_ACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
2123 } else if ((priority
< JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
)) {
2125 * active --> inactive
2127 * assign inactive state
2129 CACHE_INACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
2132 * The transition between jetsam priority buckets apparently did
2133 * not affect active/inactive state.
2134 * This is not unusual... especially during startup when
2135 * processes are getting established in their respective bands.
2137 ledger_update_needed
= FALSE
;
2141 * Enforce the new limits by writing to the ledger
2143 if (ledger_update_needed
) {
2144 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, trigger_exception
);
2146 MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n",
2147 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2148 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, priority
, p
->p_memstat_dirty
,
2149 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2154 * Record idle start or idle delta.
2156 if (p
->p_memstat_effectivepriority
== priority
) {
2158 * This process is not transitioning between
2159 * jetsam priority buckets. Do nothing.
2161 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2164 * Transitioning out of the idle priority bucket.
2165 * Record idle delta.
2167 assert(p
->p_memstat_idle_start
!= 0);
2168 now
= mach_absolute_time();
2169 if (now
> p
->p_memstat_idle_start
) {
2170 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2172 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
2174 * Transitioning into the idle priority bucket.
2175 * Record idle start.
2177 p
->p_memstat_idle_start
= mach_absolute_time();
2180 p
->p_memstat_effectivepriority
= priority
;
2182 #if CONFIG_SECLUDED_MEMORY
2183 if (secluded_for_apps
&&
2184 task_could_use_secluded_mem(p
->task
)) {
2185 task_set_can_use_secluded_mem(
2187 (priority
>= JETSAM_PRIORITY_FOREGROUND
));
2189 #endif /* CONFIG_SECLUDED_MEMORY */
2191 memorystatus_check_levels_locked();
2196 * Description: Update the jetsam priority and memory limit attributes for a given process.
2199 * p init this process's jetsam information.
2200 * priority The jetsam priority band
2201 * user_data user specific data, unused by the kernel
2202 * effective guards against race if process's update already occurred
2203 * update_memlimit When true we know this is the init step via the posix_spawn path.
2205 * memlimit_active Value in megabytes; The monitored footprint level while the
2206 * process is active. Exceeding it may result in termination
2207 * based on it's associated fatal flag.
2209 * memlimit_active_is_fatal When a process is active and exceeds its memory footprint,
2210 * this describes whether or not it should be immediately fatal.
2212 * memlimit_inactive Value in megabytes; The monitored footprint level while the
2213 * process is inactive. Exceeding it may result in termination
2214 * based on it's associated fatal flag.
2216 * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint,
2217 * this describes whether or not it should be immediatly fatal.
2219 * memlimit_background This process has a high-water-mark while in the background.
2220 * No longer meaningful. Background limits are described via
2221 * the inactive slots. Flag is ignored.
2224 * Returns: 0 Success
2229 memorystatus_update(proc_t p
, int priority
, uint64_t user_data
, boolean_t effective
, boolean_t update_memlimit
,
2230 int32_t memlimit_active
, boolean_t memlimit_active_is_fatal
,
2231 int32_t memlimit_inactive
, boolean_t memlimit_inactive_is_fatal
,
2232 __unused boolean_t memlimit_background
)
2235 boolean_t head_insert
= false;
2237 MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n", (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, user_data
);
2239 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_START
, p
->p_pid
, priority
, user_data
, effective
, 0);
2241 if (priority
== -1) {
2242 /* Use as shorthand for default priority */
2243 priority
= JETSAM_PRIORITY_DEFAULT
;
2244 } else if ((priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
2245 /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */
2246 priority
= JETSAM_PRIORITY_IDLE
;
2247 } else if (priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
2248 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */
2249 priority
= JETSAM_PRIORITY_IDLE
;
2251 } else if ((priority
< 0) || (priority
>= MEMSTAT_BUCKET_COUNT
)) {
2259 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2261 if (effective
&& (p
->p_memstat_state
& P_MEMSTAT_PRIORITYUPDATED
)) {
2264 MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n", p
->p_pid
);
2268 if ((p
->p_memstat_state
& P_MEMSTAT_TERMINATED
) || ((p
->p_listflag
& P_LIST_EXITED
) != 0)) {
2270 * This could happen when a process calling posix_spawn() is exiting on the jetsam thread.
2277 p
->p_memstat_state
|= P_MEMSTAT_PRIORITYUPDATED
;
2278 p
->p_memstat_userdata
= user_data
;
2279 p
->p_memstat_requestedpriority
= priority
;
2281 if (update_memlimit
) {
2282 boolean_t trigger_exception
;
2285 * Posix_spawn'd processes come through this path to instantiate ledger limits.
2286 * Forked processes do not come through this path, so no ledger limits exist.
2287 * (That's why forked processes can consume unlimited memory.)
2290 MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n",
2291 p
->p_pid
, priority
, p
->p_memstat_dirty
,
2292 memlimit_active
, (memlimit_active_is_fatal
? "F " : "NF"),
2293 memlimit_inactive
, (memlimit_inactive_is_fatal
? "F " : "NF"));
2295 if (memlimit_background
) {
2298 * With 2-level HWM support, we no longer honor P_MEMSTAT_MEMLIMIT_BACKGROUND.
2299 * Background limits are described via the inactive limit slots.
2302 // p->p_memstat_state |= P_MEMSTAT_MEMLIMIT_BACKGROUND;
2304 #if DEVELOPMENT || DEBUG
2305 printf("memorystatus_update: WARNING %s[%d] set unused flag P_MEMSTAT_MEMLIMIT_BACKGROUND [A==%dMB %s] [IA==%dMB %s]\n",
2306 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
,
2307 memlimit_active
, (memlimit_active_is_fatal
? "F " : "NF"),
2308 memlimit_inactive
, (memlimit_inactive_is_fatal
? "F " : "NF"));
2309 #endif /* DEVELOPMENT || DEBUG */
2312 if (memlimit_active
<= 0) {
2314 * This process will have a system_wide task limit when active.
2315 * System_wide task limit is always fatal.
2316 * It's quite common to see non-fatal flag passed in here.
2317 * It's not an error, we just ignore it.
2321 * For backward compatibility with some unexplained launchd behavior,
2322 * we allow a zero sized limit. But we still enforce system_wide limit
2323 * when written to the ledgers.
2326 if (memlimit_active
< 0) {
2327 memlimit_active
= -1; /* enforces system_wide task limit */
2329 memlimit_active_is_fatal
= TRUE
;
2332 if (memlimit_inactive
<= 0) {
2334 * This process will have a system_wide task limit when inactive.
2335 * System_wide task limit is always fatal.
2338 memlimit_inactive
= -1;
2339 memlimit_inactive_is_fatal
= TRUE
;
2343 * Initialize the active limit variants for this process.
2345 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_active
, memlimit_active_is_fatal
);
2348 * Initialize the inactive limit variants for this process.
2350 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive
, memlimit_inactive_is_fatal
);
2353 * Initialize the cached limits for target process.
2354 * When the target process is dirty tracked, it's typically
2355 * in a clean state. Non dirty tracked processes are
2356 * typically active (Foreground or above).
2357 * But just in case, we don't make assumptions...
2360 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
2361 CACHE_ACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
2363 CACHE_INACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
2367 * Enforce the cached limit by writing to the ledger.
2369 if (memorystatus_highwater_enabled
) {
2371 assert(trigger_exception
== TRUE
);
2372 task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, trigger_exception
);
2374 MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n",
2375 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2376 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), priority
, p
->p_memstat_dirty
,
2377 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2382 * We can't add to the aging bands buckets here.
2383 * But, we could be removing it from those buckets.
2384 * Check and take appropriate steps if so.
2387 if (isProcessInAgingBands(p
)) {
2389 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2390 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
2392 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
&& priority
== JETSAM_PRIORITY_IDLE
) {
2394 * Daemons with 'inactive' limits will go through the dirty tracking codepath.
2395 * This path deals with apps that may have 'inactive' limits e.g. WebContent processes.
2396 * If this is the legacy aging policy we explicitly need to apply those limits. If it
2397 * is any other aging policy, then we don't need to worry because all processes
2398 * will go through the aging bands and then the demotion thread will take care to
2399 * move them into the IDLE band and apply the required limits.
2401 memorystatus_update_priority_locked(p
, priority
, head_insert
, TRUE
);
2405 memorystatus_update_priority_locked(p
, priority
, head_insert
, FALSE
);
2411 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_END
, ret
, 0, 0, 0, 0);
2417 memorystatus_remove(proc_t p
, boolean_t locked
)
2420 memstat_bucket_t
*bucket
;
2421 boolean_t reschedule
= FALSE
;
2423 MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n", p
->p_pid
);
2429 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2431 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2433 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
2435 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
);
2438 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
2440 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
);
2448 if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2449 uint64_t now
= mach_absolute_time();
2450 if (now
> p
->p_memstat_idle_start
) {
2451 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2455 TAILQ_REMOVE(&bucket
->list
, p
, p_memstat_list
);
2458 memorystatus_list_count
--;
2460 /* If awaiting demotion to the idle band, clean up */
2462 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2463 memorystatus_reschedule_idle_demotion_locked();
2466 memorystatus_check_levels_locked();
2469 if (p
->p_memstat_state
& (P_MEMSTAT_FROZEN
)) {
2470 memorystatus_frozen_count
--;
2473 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
2474 memorystatus_suspended_footprint_total
-= p
->p_memstat_suspendedfootprint
;
2475 memorystatus_suspended_count
--;
2493 * Validate dirty tracking flags with process state.
2499 * The proc_list_lock is held by the caller.
2503 memorystatus_validate_track_flags(struct proc
*target_p
, uint32_t pcontrol
) {
2504 /* See that the process isn't marked for termination */
2505 if (target_p
->p_memstat_dirty
& P_DIRTY_TERMINATED
) {
2509 /* Idle exit requires that process be tracked */
2510 if ((pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) &&
2511 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2515 /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */
2516 if ((pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) &&
2517 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2521 /* Deferral is only relevant if idle exit is specified */
2522 if ((pcontrol
& PROC_DIRTY_DEFER
) &&
2523 !(pcontrol
& PROC_DIRTY_ALLOWS_IDLE_EXIT
)) {
2531 memorystatus_update_idle_priority_locked(proc_t p
) {
2534 MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n", p
->p_pid
, p
->p_memstat_dirty
);
2536 assert(isSysProc(p
));
2538 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
|P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2540 priority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2542 priority
= p
->p_memstat_requestedpriority
;
2545 if (priority
!= p
->p_memstat_effectivepriority
) {
2547 if ((jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) &&
2548 (priority
== JETSAM_PRIORITY_IDLE
)) {
2551 * This process is on its way into the IDLE band. The system is
2552 * using 'legacy' jetsam aging policy. That means, this process
2553 * has already used up its idle-deferral aging time that is given
2554 * once per its lifetime. So we need to set the INACTIVE limits
2555 * explicitly because it won't be going through the demotion paths
2556 * that take care to apply the limits appropriately.
2558 memorystatus_update_priority_locked(p
, priority
, false, true);
2561 memorystatus_update_priority_locked(p
, priority
, false, false);
2567 * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle
2568 * (clean). They may also indicate that they support termination when idle, with the result that they are promoted
2569 * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low
2570 * priority idle band when clean (and killed earlier, protecting higher priority procesess).
2572 * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by
2573 * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band
2574 * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to
2575 * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle
2576 * band. The deferral can be cleared early by clearing the appropriate flag.
2578 * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process
2579 * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be
2580 * re-enabled or the guard state cleared, depending on whether the guard deadline has passed.
2584 memorystatus_dirty_track(proc_t p
, uint32_t pcontrol
) {
2585 unsigned int old_dirty
;
2586 boolean_t reschedule
= FALSE
;
2587 boolean_t already_deferred
= FALSE
;
2588 boolean_t defer_now
= FALSE
;
2591 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_TRACK
),
2592 p
->p_pid
, p
->p_memstat_dirty
, pcontrol
, 0, 0);
2596 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2598 * Process is on its way out.
2604 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2609 if ((ret
= memorystatus_validate_track_flags(p
, pcontrol
)) != 0) {
2614 old_dirty
= p
->p_memstat_dirty
;
2616 /* These bits are cumulative, as per <rdar://problem/11159924> */
2617 if (pcontrol
& PROC_DIRTY_TRACK
) {
2618 p
->p_memstat_dirty
|= P_DIRTY_TRACK
;
2621 if (pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) {
2622 p
->p_memstat_dirty
|= P_DIRTY_ALLOW_IDLE_EXIT
;
2625 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
2626 p
->p_memstat_dirty
|= P_DIRTY_LAUNCH_IN_PROGRESS
;
2629 if (old_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
2630 already_deferred
= TRUE
;
2634 /* This can be set and cleared exactly once. */
2635 if (pcontrol
& PROC_DIRTY_DEFER
) {
2637 if ( !(old_dirty
& P_DIRTY_DEFER
)) {
2638 p
->p_memstat_dirty
|= P_DIRTY_DEFER
;
2644 MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n",
2645 ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) ? "Y" : "N",
2646 defer_now
? "Y" : "N",
2647 p
->p_memstat_dirty
& P_DIRTY
? "Y" : "N",
2650 /* Kick off or invalidate the idle exit deferment if there's a state transition. */
2651 if (!(p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)) {
2652 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2654 if (defer_now
&& !already_deferred
) {
2657 * Request to defer a clean process that's idle-exit enabled
2658 * and not already in the jetsam deferred band. Most likely a
2661 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2664 } else if (!defer_now
) {
2667 * The process isn't asking for the 'aging' facility.
2668 * Could be that it is:
2671 if (already_deferred
) {
2673 * already in the aging bands. Traditionally,
2674 * some processes have tried to use this to
2675 * opt out of the 'aging' facility.
2678 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2681 * agnostic to the 'aging' facility. In that case,
2682 * we'll go ahead and opt it in because this is likely
2683 * a new launch (clean process, dirty tracking enabled)
2686 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2695 * We are trying to operate on a dirty process. Dirty processes have to
2696 * be removed from the deferred band. The question is do we reset the
2697 * deferred state or not?
2699 * This could be a legal request like:
2700 * - this process had opted into the 'aging' band
2701 * - but it's now dirty and requests to opt out.
2702 * In this case, we remove the process from the band and reset its
2703 * state too. It'll opt back in properly when needed.
2705 * OR, this request could be a user-space bug. E.g.:
2706 * - this process had opted into the 'aging' band when clean
2707 * - and, then issues another request to again put it into the band except
2708 * this time the process is dirty.
2709 * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of
2710 * the deferred band with its state intact. So our request below is no-op.
2711 * But we do it here anyways for coverage.
2713 * memorystatus_update_idle_priority_locked()
2714 * single-mindedly treats a dirty process as "cannot be in the aging band".
2717 if (!defer_now
&& already_deferred
) {
2718 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2722 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
2724 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
2729 memorystatus_update_idle_priority_locked(p
);
2732 memorystatus_reschedule_idle_demotion_locked();
2744 memorystatus_dirty_set(proc_t p
, boolean_t self
, uint32_t pcontrol
) {
2746 boolean_t kill
= false;
2747 boolean_t reschedule
= FALSE
;
2748 boolean_t was_dirty
= FALSE
;
2749 boolean_t now_dirty
= FALSE
;
2751 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self
, p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
2752 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_SET
), p
->p_pid
, self
, pcontrol
, 0, 0);
2756 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2758 * Process is on its way out.
2764 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2769 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)
2772 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
2773 /* Dirty tracking not enabled */
2775 } else if (pcontrol
&& (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
2777 * Process is set to be terminated and we're attempting to mark it dirty.
2778 * Set for termination and marking as clean is OK - see <rdar://problem/10594349>.
2782 int flag
= (self
== TRUE
) ? P_DIRTY
: P_DIRTY_SHUTDOWN
;
2783 if (pcontrol
&& !(p
->p_memstat_dirty
& flag
)) {
2784 /* Mark the process as having been dirtied at some point */
2785 p
->p_memstat_dirty
|= (flag
| P_DIRTY_MARKED
);
2786 memorystatus_dirty_count
++;
2788 } else if ((pcontrol
== 0) && (p
->p_memstat_dirty
& flag
)) {
2789 if ((flag
== P_DIRTY_SHUTDOWN
) && (!(p
->p_memstat_dirty
& P_DIRTY
))) {
2790 /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */
2791 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
2793 } else if ((flag
== P_DIRTY
) && (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
2794 /* Kill previously terminated processes if set clean */
2797 p
->p_memstat_dirty
&= ~flag
;
2798 memorystatus_dirty_count
--;
2810 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)
2813 if ((was_dirty
== TRUE
&& now_dirty
== FALSE
) ||
2814 (was_dirty
== FALSE
&& now_dirty
== TRUE
)) {
2816 /* Manage idle exit deferral, if applied */
2817 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2820 * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back
2821 * there once it's clean again. For the legacy case, this only applies if it has some protection window left.
2823 * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over
2824 * in that band on it's way to IDLE.
2827 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
2829 * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE"
2831 * The process will move from its aging band to its higher requested
2834 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
2836 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
2841 * Process is back from "dirty" to "clean".
2844 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
2845 if (mach_absolute_time() >= p
->p_memstat_idledeadline
) {
2847 * The process' deadline has expired. It currently
2848 * does not reside in any of the aging buckets.
2850 * It's on its way to the JETSAM_PRIORITY_IDLE
2851 * bucket via memorystatus_update_idle_priority_locked()
2854 * So all we need to do is reset all the state on the
2855 * process that's related to the aging bucket i.e.
2856 * the AGING_IN_PROGRESS flag and the timer deadline.
2859 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2863 * It still has some protection window left and so
2864 * we just re-arm the timer without modifying any
2865 * state on the process iff it still wants into that band.
2868 if (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
2869 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
2875 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2881 memorystatus_update_idle_priority_locked(p
);
2883 if (memorystatus_highwater_enabled
) {
2884 boolean_t trigger_exception
= FALSE
, ledger_update_needed
= TRUE
;
2886 * We are in this path because this process transitioned between
2887 * dirty <--> clean state. Update the cached memory limits.
2890 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
2894 CACHE_ACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
2895 ledger_update_needed
= TRUE
;
2898 * process is clean...but if it has opted into pressured-exit
2899 * we don't apply the INACTIVE limit till the process has aged
2900 * out and is entering the IDLE band.
2901 * See memorystatus_update_priority_locked() for that.
2904 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
2905 ledger_update_needed
= FALSE
;
2907 CACHE_INACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
2908 ledger_update_needed
= TRUE
;
2913 * Enforce the new limits by writing to the ledger.
2915 * This is a hot path and holding the proc_list_lock while writing to the ledgers,
2916 * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock.
2917 * We aren't traversing the jetsam bucket list here, so we should be safe.
2918 * See rdar://21394491.
2921 if (ledger_update_needed
&& proc_ref_locked(p
) == p
) {
2923 if (p
->p_memstat_memlimit
> 0) {
2924 ledger_limit
= p
->p_memstat_memlimit
;
2929 task_set_phys_footprint_limit_internal(p
->task
, ledger_limit
, NULL
, trigger_exception
);
2931 proc_rele_locked(p
);
2933 MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n",
2934 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2935 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
2936 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2941 /* If the deferral state changed, reschedule the demotion timer */
2943 memorystatus_reschedule_idle_demotion_locked();
2948 if (proc_ref_locked(p
) == p
) {
2950 psignal(p
, SIGKILL
);
2952 proc_rele_locked(p
);
2963 memorystatus_dirty_clear(proc_t p
, uint32_t pcontrol
) {
2967 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n", p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
2969 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_CLEAR
), p
->p_pid
, pcontrol
, 0, 0, 0);
2973 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2975 * Process is on its way out.
2981 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2986 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
2987 /* Dirty tracking not enabled */
2992 if (!pcontrol
|| (pcontrol
& (PROC_DIRTY_LAUNCH_IN_PROGRESS
| PROC_DIRTY_DEFER
)) == 0) {
2997 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
2998 p
->p_memstat_dirty
&= ~P_DIRTY_LAUNCH_IN_PROGRESS
;
3001 /* This can be set and cleared exactly once. */
3002 if (pcontrol
& PROC_DIRTY_DEFER
) {
3004 if (p
->p_memstat_dirty
& P_DIRTY_DEFER
) {
3006 p
->p_memstat_dirty
&= ~P_DIRTY_DEFER
;
3008 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
3009 memorystatus_update_idle_priority_locked(p
);
3010 memorystatus_reschedule_idle_demotion_locked();
3022 memorystatus_dirty_get(proc_t p
) {
3027 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3028 ret
|= PROC_DIRTY_TRACKED
;
3029 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3030 ret
|= PROC_DIRTY_ALLOWS_IDLE_EXIT
;
3032 if (p
->p_memstat_dirty
& P_DIRTY
) {
3033 ret
|= PROC_DIRTY_IS_DIRTY
;
3035 if (p
->p_memstat_dirty
& P_DIRTY_LAUNCH_IN_PROGRESS
) {
3036 ret
|= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS
;
3046 memorystatus_on_terminate(proc_t p
) {
3051 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3053 if ((p
->p_memstat_dirty
& (P_DIRTY_TRACK
|P_DIRTY_IS_DIRTY
)) == P_DIRTY_TRACK
) {
3054 /* Clean; mark as terminated and issue SIGKILL */
3057 /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */
3067 memorystatus_on_suspend(proc_t p
)
3071 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
3075 p
->p_memstat_suspendedfootprint
= pages
;
3076 memorystatus_suspended_footprint_total
+= pages
;
3077 memorystatus_suspended_count
++;
3079 p
->p_memstat_state
|= P_MEMSTAT_SUSPENDED
;
3084 memorystatus_on_resume(proc_t p
)
3094 frozen
= (p
->p_memstat_state
& P_MEMSTAT_FROZEN
);
3096 memorystatus_frozen_count
--;
3097 p
->p_memstat_state
|= P_MEMSTAT_PRIOR_THAW
;
3100 memorystatus_suspended_footprint_total
-= p
->p_memstat_suspendedfootprint
;
3101 memorystatus_suspended_count
--;
3106 p
->p_memstat_state
&= ~(P_MEMSTAT_SUSPENDED
| P_MEMSTAT_FROZEN
);
3112 memorystatus_freeze_entry_t data
= { pid
, FALSE
, 0 };
3113 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
3119 memorystatus_on_inactivity(proc_t p
)
3123 /* Wake the freeze thread */
3124 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
3129 * The proc_list_lock is held by the caller.
3132 memorystatus_build_state(proc_t p
) {
3133 uint32_t snapshot_state
= 0;
3136 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
3137 snapshot_state
|= kMemorystatusSuspended
;
3139 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
3140 snapshot_state
|= kMemorystatusFrozen
;
3142 if (p
->p_memstat_state
& P_MEMSTAT_PRIOR_THAW
) {
3143 snapshot_state
|= kMemorystatusWasThawed
;
3147 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3148 snapshot_state
|= kMemorystatusTracked
;
3150 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
3151 snapshot_state
|= kMemorystatusSupportsIdleExit
;
3153 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3154 snapshot_state
|= kMemorystatusDirty
;
3157 return snapshot_state
;
3163 kill_idle_exit_proc(void)
3165 proc_t p
, victim_p
= PROC_NULL
;
3166 uint64_t current_time
;
3167 boolean_t killed
= FALSE
;
3169 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3171 /* Pick next idle exit victim. */
3172 current_time
= mach_absolute_time();
3174 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_IDLE_EXIT
);
3175 if (jetsam_reason
== OS_REASON_NULL
) {
3176 printf("kill_idle_exit_proc: failed to allocate jetsam reason\n");
3181 p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
3183 /* No need to look beyond the idle band */
3184 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
3188 if ((p
->p_memstat_dirty
& (P_DIRTY_ALLOW_IDLE_EXIT
|P_DIRTY_IS_DIRTY
|P_DIRTY_TERMINATED
)) == (P_DIRTY_ALLOW_IDLE_EXIT
)) {
3189 if (current_time
>= p
->p_memstat_idledeadline
) {
3190 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3191 victim_p
= proc_ref_locked(p
);
3196 p
= memorystatus_get_next_proc_locked(&i
, p
, FALSE
);
3202 printf("memorystatus_thread: idle exiting pid %d [%s]\n", victim_p
->p_pid
, (*victim_p
->p_name
? victim_p
->p_name
: "(unknown)"));
3203 killed
= memorystatus_do_kill(victim_p
, kMemorystatusKilledIdleExit
, jetsam_reason
);
3204 proc_rele(victim_p
);
3206 os_reason_free(jetsam_reason
);
3215 memorystatus_thread_wake(void) {
3216 thread_wakeup((event_t
)&memorystatus_wakeup
);
3218 #endif /* CONFIG_JETSAM */
3220 extern void vm_pressure_response(void);
3223 memorystatus_thread_block(uint32_t interval_ms
, thread_continue_t continuation
)
3226 assert_wait_timeout(&memorystatus_wakeup
, THREAD_UNINT
, interval_ms
, 1000 * NSEC_PER_USEC
);
3228 assert_wait(&memorystatus_wakeup
, THREAD_UNINT
);
3231 return thread_block(continuation
);
3235 memorystatus_thread(void *param __unused
, wait_result_t wr __unused
)
3237 static boolean_t is_vm_privileged
= FALSE
;
3240 boolean_t post_snapshot
= FALSE
;
3241 uint32_t errors
= 0;
3242 uint32_t hwm_kill
= 0;
3243 boolean_t sort_flag
= TRUE
;
3244 boolean_t corpse_list_purged
= FALSE
;
3246 /* Jetsam Loop Detection - locals */
3247 memstat_bucket_t
*bucket
;
3248 int jld_bucket_count
= 0;
3249 struct timeval jld_now_tstamp
= {0,0};
3250 uint64_t jld_now_msecs
= 0;
3251 int elevated_bucket_count
= 0;
3253 /* Jetsam Loop Detection - statics */
3254 static uint64_t jld_timestamp_msecs
= 0;
3255 static int jld_idle_kill_candidates
= 0; /* Number of available processes in band 0,1 at start */
3256 static int jld_idle_kills
= 0; /* Number of procs killed during eval period */
3257 static int jld_eval_aggressive_count
= 0; /* Bumps the max priority in aggressive loop */
3258 static int32_t jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3261 if (is_vm_privileged
== FALSE
) {
3263 * It's the first time the thread has run, so just mark the thread as privileged and block.
3264 * This avoids a spurious pass with unset variables, as set out in <rdar://problem/9609402>.
3266 thread_wire(host_priv_self(), current_thread(), TRUE
);
3267 is_vm_privileged
= TRUE
;
3269 if (vm_restricted_to_single_processor
== TRUE
)
3270 thread_vm_bind_group_add();
3272 memorystatus_thread_block(0, memorystatus_thread
);
3277 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_START
,
3278 memorystatus_available_pages
, memorystatus_jld_enabled
, memorystatus_jld_eval_period_msecs
, memorystatus_jld_eval_aggressive_count
,0);
3281 * Jetsam aware version.
3283 * The VM pressure notification thread is working it's way through clients in parallel.
3285 * So, while the pressure notification thread is targeting processes in order of
3286 * increasing jetsam priority, we can hopefully reduce / stop it's work by killing
3287 * any processes that have exceeded their highwater mark.
3289 * If we run out of HWM processes and our available pages drops below the critical threshold, then,
3290 * we target the least recently used process in order of increasing jetsam priority (exception: the FG band).
3292 while (is_thrashing(kill_under_pressure_cause
) ||
3293 memorystatus_available_pages
<= memorystatus_available_pages_pressure
) {
3297 uint64_t jetsam_reason_code
= JETSAM_REASON_INVALID
;
3298 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3300 cause
= kill_under_pressure_cause
;
3302 case kMemorystatusKilledFCThrashing
:
3303 jetsam_reason_code
= JETSAM_REASON_MEMORY_FCTHRASHING
;
3305 case kMemorystatusKilledVMThrashing
:
3306 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMTHRASHING
;
3308 case kMemorystatusKilledVMPageShortage
:
3311 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMPAGESHORTAGE
;
3312 cause
= kMemorystatusKilledVMPageShortage
;
3317 killed
= memorystatus_kill_hiwat_proc(&errors
);
3320 post_snapshot
= TRUE
;
3323 memorystatus_hwm_candidates
= FALSE
;
3326 /* No highwater processes to kill. Continue or stop for now? */
3327 if (!is_thrashing(kill_under_pressure_cause
) &&
3328 (memorystatus_available_pages
> memorystatus_available_pages_critical
)) {
3330 * We are _not_ out of pressure but we are above the critical threshold and there's:
3331 * - no compressor thrashing
3332 * - no more HWM processes left.
3333 * For now, don't kill any other processes.
3336 if (hwm_kill
== 0) {
3337 memorystatus_thread_wasted_wakeup
++;
3343 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, jetsam_reason_code
);
3344 if (jetsam_reason
== OS_REASON_NULL
) {
3345 printf("memorystatus_thread: failed to allocate jetsam reason\n");
3348 if (memorystatus_jld_enabled
== TRUE
) {
3351 * Jetsam Loop Detection: attempt to detect
3352 * rapid daemon relaunches in the lower bands.
3355 microuptime(&jld_now_tstamp
);
3358 * Ignore usecs in this calculation.
3359 * msecs granularity is close enough.
3361 jld_now_msecs
= (jld_now_tstamp
.tv_sec
* 1000);
3364 switch (jetsam_aging_policy
) {
3365 case kJetsamAgingPolicyLegacy
:
3366 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3367 jld_bucket_count
= bucket
->count
;
3368 bucket
= &memstat_bucket
[JETSAM_PRIORITY_AGING_BAND1
];
3369 jld_bucket_count
+= bucket
->count
;
3371 case kJetsamAgingPolicySysProcsReclaimedFirst
:
3372 case kJetsamAgingPolicyAppsReclaimedFirst
:
3373 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3374 jld_bucket_count
= bucket
->count
;
3375 bucket
= &memstat_bucket
[system_procs_aging_band
];
3376 jld_bucket_count
+= bucket
->count
;
3377 bucket
= &memstat_bucket
[applications_aging_band
];
3378 jld_bucket_count
+= bucket
->count
;
3380 case kJetsamAgingPolicyNone
:
3382 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3383 jld_bucket_count
= bucket
->count
;
3387 bucket
= &memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
];
3388 elevated_bucket_count
= bucket
->count
;
3393 * memorystatus_jld_eval_period_msecs is a tunable
3394 * memorystatus_jld_eval_aggressive_count is a tunable
3395 * memorystatus_jld_eval_aggressive_priority_band_max is a tunable
3397 if ( (jld_bucket_count
== 0) ||
3398 (jld_now_msecs
> (jld_timestamp_msecs
+ memorystatus_jld_eval_period_msecs
))) {
3401 * Refresh evaluation parameters
3403 jld_timestamp_msecs
= jld_now_msecs
;
3404 jld_idle_kill_candidates
= jld_bucket_count
;
3406 jld_eval_aggressive_count
= 0;
3407 jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3410 if (jld_idle_kills
> jld_idle_kill_candidates
) {
3411 jld_eval_aggressive_count
++;
3413 #if DEVELOPMENT || DEBUG
3414 printf("memorystatus: aggressive%d: beginning of window: %lld ms, : timestamp now: %lld ms\n",
3415 jld_eval_aggressive_count
,
3416 jld_timestamp_msecs
,
3418 printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n",
3419 jld_eval_aggressive_count
,
3420 jld_idle_kill_candidates
,
3422 #endif /* DEVELOPMENT || DEBUG */
3424 if ((jld_eval_aggressive_count
== memorystatus_jld_eval_aggressive_count
) &&
3425 (total_corpses_count
> 0) && (corpse_list_purged
== FALSE
)) {
3427 * If we reach this aggressive cycle, corpses might be causing memory pressure.
3428 * So, in an effort to avoid jetsams in the FG band, we will attempt to purge
3429 * corpse memory prior to this final march through JETSAM_PRIORITY_UI_SUPPORT.
3431 task_purge_all_corpses();
3432 corpse_list_purged
= TRUE
;
3434 else if (jld_eval_aggressive_count
> memorystatus_jld_eval_aggressive_count
) {
3436 * Bump up the jetsam priority limit (eg: the bucket index)
3437 * Enforce bucket index sanity.
3439 if ((memorystatus_jld_eval_aggressive_priority_band_max
< 0) ||
3440 (memorystatus_jld_eval_aggressive_priority_band_max
>= MEMSTAT_BUCKET_COUNT
)) {
3442 * Do nothing. Stick with the default level.
3445 jld_priority_band_max
= memorystatus_jld_eval_aggressive_priority_band_max
;
3449 /* Visit elevated processes first */
3450 while (elevated_bucket_count
) {
3452 elevated_bucket_count
--;
3455 * memorystatus_kill_elevated_process() drops a reference,
3456 * so take another one so we can continue to use this exit reason
3457 * even after it returns.
3460 os_reason_ref(jetsam_reason
);
3461 killed
= memorystatus_kill_elevated_process(
3462 kMemorystatusKilledVMThrashing
,
3464 jld_eval_aggressive_count
,
3468 post_snapshot
= TRUE
;
3469 if (memorystatus_available_pages
<= memorystatus_available_pages_pressure
) {
3471 * Still under pressure.
3472 * Find another pinned processes.
3480 * No pinned processes left to kill.
3481 * Abandon elevated band.
3488 * memorystatus_kill_top_process_aggressive() drops a reference,
3489 * so take another one so we can continue to use this exit reason
3490 * even after it returns
3492 os_reason_ref(jetsam_reason
);
3493 killed
= memorystatus_kill_top_process_aggressive(
3495 kMemorystatusKilledVMThrashing
,
3497 jld_eval_aggressive_count
,
3498 jld_priority_band_max
,
3502 /* Always generate logs after aggressive kill */
3503 post_snapshot
= TRUE
;
3511 * memorystatus_kill_top_process() drops a reference,
3512 * so take another one so we can continue to use this exit reason
3513 * even after it returns
3515 os_reason_ref(jetsam_reason
);
3518 killed
= memorystatus_kill_top_process(TRUE
, sort_flag
, cause
, jetsam_reason
, &priority
, &errors
);
3523 * Don't generate logs for steady-state idle-exit kills,
3524 * unless it is overridden for debug or by the device
3527 if ((priority
!= JETSAM_PRIORITY_IDLE
) || memorystatus_idle_snapshot
) {
3528 post_snapshot
= TRUE
;
3531 /* Jetsam Loop Detection */
3532 if (memorystatus_jld_enabled
== TRUE
) {
3533 if ((priority
== JETSAM_PRIORITY_IDLE
) || (priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
3537 * We've reached into bands beyond idle deferred.
3538 * We make no attempt to monitor them
3543 if ((priority
>= JETSAM_PRIORITY_UI_SUPPORT
) && (total_corpses_count
> 0) && (corpse_list_purged
== FALSE
)) {
3545 * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT
3546 * then we attempt to relieve pressure by purging corpse memory.
3548 task_purge_all_corpses();
3549 corpse_list_purged
= TRUE
;
3554 if (memorystatus_available_pages
<= memorystatus_available_pages_critical
) {
3556 * Still under pressure and unable to kill a process - purge corpse memory
3558 if (total_corpses_count
> 0) {
3559 task_purge_all_corpses();
3560 corpse_list_purged
= TRUE
;
3563 if (memorystatus_available_pages
<= memorystatus_available_pages_critical
) {
3565 * Still under pressure and unable to kill a process - panic
3567 panic("memorystatus_jetsam_thread: no victim! available pages:%d\n", memorystatus_available_pages
);
3574 * We do not want to over-kill when thrashing has been detected.
3575 * To avoid that, we reset the flag here and notify the
3578 if (is_thrashing(kill_under_pressure_cause
)) {
3579 kill_under_pressure_cause
= 0;
3580 vm_thrashing_jetsam_done();
3583 os_reason_free(jetsam_reason
);
3586 kill_under_pressure_cause
= 0;
3589 memorystatus_clear_errors();
3592 #if VM_PRESSURE_EVENTS
3594 * LD: We used to target the foreground process first and foremost here.
3595 * Now, we target all processes, starting from the non-suspended, background
3596 * processes first. We will target foreground too.
3598 * memorystatus_update_vm_pressure(TRUE);
3600 //vm_pressure_response();
3603 if (post_snapshot
) {
3605 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
3606 sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
);
3607 uint64_t timestamp_now
= mach_absolute_time();
3608 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
3609 memorystatus_jetsam_snapshot
->js_gencount
++;
3610 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
3611 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
3613 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
3616 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
3624 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_END
,
3625 memorystatus_available_pages
, 0, 0, 0, 0);
3627 #else /* CONFIG_JETSAM */
3630 * Jetsam not enabled
3633 #endif /* CONFIG_JETSAM */
3635 memorystatus_thread_block(0, memorystatus_thread
);
3641 * when an idle-exitable proc was killed
3643 * when there are no more idle-exitable procs found
3644 * when the attempt to kill an idle-exitable proc failed
3646 boolean_t
memorystatus_idle_exit_from_VM(void) {
3647 return(kill_idle_exit_proc());
3649 #endif /* !CONFIG_JETSAM */
3653 * when exceeding ledger footprint is fatal.
3655 * when exceeding ledger footprint is non fatal.
3658 memorystatus_turnoff_exception_and_get_fatalness(boolean_t warning
, const int max_footprint_mb
)
3660 proc_t p
= current_proc();
3665 is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
);
3667 if (warning
== FALSE
) {
3668 boolean_t is_active
;
3669 boolean_t state_changed
= FALSE
;
3672 * We are here because a process has exceeded its ledger limit.
3673 * That is, the process is no longer in the limit warning range.
3675 * When a process exceeds its ledger limit, we want an EXC_RESOURCE
3676 * to trigger, but only once per process per limit. We enforce that
3677 * here, by identifying the active/inactive limit type. We then turn
3678 * off the exception state by marking the limit as exception triggered.
3681 is_active
= proc_jetsam_state_is_active_locked(p
);
3683 if (is_active
== TRUE
) {
3685 * turn off exceptions for active state
3687 if (!(p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_EXC_TRIGGERED
)) {
3688 p
->p_memstat_state
|= P_MEMSTAT_MEMLIMIT_ACTIVE_EXC_TRIGGERED
;
3689 state_changed
= TRUE
;
3693 * turn off exceptions for inactive state
3695 if (!(p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_EXC_TRIGGERED
)) {
3696 p
->p_memstat_state
|= P_MEMSTAT_MEMLIMIT_INACTIVE_EXC_TRIGGERED
;
3697 state_changed
= TRUE
;
3702 * The limit violation is logged here, but only once per process per limit.
3703 * This avoids excessive logging when a process consistently exceeds a soft limit.
3704 * Soft memory limit is a non-fatal high-water-mark
3705 * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit.
3708 printf("process %d (%s) exceeded physical memory footprint, the %s%sMemoryLimit of %d MB\n",
3709 p
->p_pid
, (*p
->p_name
? p
->p_name
: "unknown"), (is_active
? "Active" : "Inactive"),
3710 (is_fatal
? "Hard" : "Soft"), max_footprint_mb
);
3720 * Callback invoked when allowable physical memory footprint exceeded
3721 * (dirty pages + IOKit mappings)
3723 * This is invoked for both advisory, non-fatal per-task high watermarks,
3724 * as well as the fatal task memory limits.
3727 memorystatus_on_ledger_footprint_exceeded(boolean_t warning
, boolean_t is_fatal
)
3729 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3731 proc_t p
= current_proc();
3733 #if VM_PRESSURE_EVENTS
3734 if (warning
== TRUE
) {
3736 * This is a warning path which implies that the current process is close, but has
3737 * not yet exceeded its per-process memory limit.
3739 if (memorystatus_warn_process(p
->p_pid
, FALSE
/* not exceeded */) != TRUE
) {
3740 /* Print warning, since it's possible that task has not registered for pressure notifications */
3741 printf("task_exceeded_footprint: failed to warn the current task (%d exiting, or no handler registered?).\n", p
->p_pid
);
3745 #endif /* VM_PRESSURE_EVENTS */
3749 * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task
3750 * has violated either the system-wide per-task memory limit OR its own task limit.
3752 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_PERPROCESSLIMIT
);
3753 if (jetsam_reason
== NULL
) {
3754 printf("task_exceeded footprint: failed to allocate jetsam reason\n");
3755 } else if (corpse_for_fatal_memkill
!= 0) {
3756 /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */
3757 jetsam_reason
->osr_flags
|= OS_REASON_FLAG_GENERATE_CRASH_REPORT
;
3760 if (memorystatus_kill_process_sync(p
->p_pid
, kMemorystatusKilledPerProcessLimit
, jetsam_reason
) != TRUE
) {
3761 printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n");
3765 * HWM offender exists. Done without locks or synchronization.
3766 * See comment near its declaration for more details.
3768 memorystatus_hwm_candidates
= TRUE
;
3770 #if VM_PRESSURE_EVENTS
3772 * The current process is not in the warning path.
3773 * This path implies the current process has exceeded a non-fatal (soft) memory limit.
3774 * Failure to send note is ignored here.
3776 (void)memorystatus_warn_process(p
->p_pid
, TRUE
/* exceeded */);
3778 #endif /* VM_PRESSURE_EVENTS */
3784 * Evaluates active vs. inactive process state.
3785 * Processes that opt into dirty tracking are evaluated
3786 * based on clean vs dirty state.
3788 * clean ==> inactive
3790 * Process that do not opt into dirty tracking are
3791 * evalulated based on priority level.
3792 * Foreground or above ==> active
3793 * Below Foreground ==> inactive
3795 * Return: TRUE if active
3800 proc_jetsam_state_is_active_locked(proc_t p
) {
3802 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3804 * process has opted into dirty tracking
3805 * active state is based on dirty vs. clean
3807 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3810 * implies active state
3816 * implies inactive state
3820 } else if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
3822 * process is Foreground or higher
3823 * implies active state
3828 * process found below Foreground
3829 * implies inactive state
3836 memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
) {
3840 uint32_t errors
= 0;
3842 if (victim_pid
== -1) {
3843 /* No pid, so kill first process */
3844 res
= memorystatus_kill_top_process(TRUE
, TRUE
, cause
, jetsam_reason
, NULL
, &errors
);
3846 res
= memorystatus_kill_specific_process(victim_pid
, cause
, jetsam_reason
);
3850 memorystatus_clear_errors();
3854 /* Fire off snapshot notification */
3856 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
3857 sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_count
;
3858 uint64_t timestamp_now
= mach_absolute_time();
3859 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
3860 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
3861 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
3863 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
3866 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
3873 #else /* !CONFIG_JETSAM */
3875 res
= memorystatus_kill_specific_process(victim_pid
, cause
, jetsam_reason
);
3877 #endif /* CONFIG_JETSAM */
3883 * Jetsam a specific process.
3886 memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
) {
3889 uint64_t killtime
= 0;
3891 clock_usec_t tv_usec
;
3894 /* TODO - add a victim queue and push this into the main jetsam thread */
3896 p
= proc_find(victim_pid
);
3898 os_reason_free(jetsam_reason
);
3905 if (memorystatus_jetsam_snapshot_count
== 0) {
3906 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
3909 killtime
= mach_absolute_time();
3910 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
3911 tv_msec
= tv_usec
/ 1000;
3913 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
3917 printf("%lu.%02d memorystatus: specifically killing pid %d [%s] (%s %d) - memorystatus_available_pages: %d\n",
3918 (unsigned long)tv_sec
, tv_msec
, victim_pid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
3919 jetsam_kill_cause_name
[cause
], p
->p_memstat_effectivepriority
, memorystatus_available_pages
);
3920 #else /* !CONFIG_JETSAM */
3923 killtime
= mach_absolute_time();
3924 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
3925 tv_msec
= tv_usec
/ 1000;
3926 printf("%lu.%02d memorystatus: specifically killing pid %d [%s] (%s %d)\n",
3927 (unsigned long)tv_sec
, tv_msec
, victim_pid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
3928 jetsam_kill_cause_name
[cause
], p
->p_memstat_effectivepriority
);
3929 #endif /* CONFIG_JETSAM */
3931 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
);
3939 * Toggle the P_MEMSTAT_TERMINATED state.
3940 * Takes the proc_list_lock.
3943 proc_memstat_terminated(proc_t p
, boolean_t set
)
3945 #if DEVELOPMENT || DEBUG
3949 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
3951 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
3956 #pragma unused(p, set)
3960 #endif /* DEVELOPMENT || DEBUG */
3967 * This is invoked when cpulimits have been exceeded while in fatal mode.
3968 * The jetsam_flags do not apply as those are for memory related kills.
3969 * We call this routine so that the offending process is killed with
3970 * a non-zero exit status.
3973 jetsam_on_ledger_cpulimit_exceeded(void)
3976 int jetsam_flags
= 0; /* make it obvious */
3977 proc_t p
= current_proc();
3978 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3980 printf("task_exceeded_cpulimit: killing pid %d [%s]\n",
3981 p
->p_pid
, (*p
->p_name
? p
->p_name
: "(unknown)"));
3983 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_CPULIMIT
);
3984 if (jetsam_reason
== OS_REASON_NULL
) {
3985 printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n");
3988 retval
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
3991 printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n");
3996 memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
)
4001 *count
= get_task_memory_region_count(task
);
4005 memorystatus_get_task_page_counts(task_t task
, uint32_t *footprint
, uint32_t *max_footprint
, uint32_t *max_footprint_lifetime
, uint32_t *purgeable_pages
)
4012 pages
= (get_task_phys_footprint(task
) / PAGE_SIZE_64
);
4013 assert(((uint32_t)pages
) == pages
);
4014 *footprint
= (uint32_t)pages
;
4016 if (max_footprint
) {
4017 pages
= (get_task_phys_footprint_max(task
) / PAGE_SIZE_64
);
4018 assert(((uint32_t)pages
) == pages
);
4019 *max_footprint
= (uint32_t)pages
;
4021 if (max_footprint_lifetime
) {
4022 pages
= (get_task_resident_max(task
) / PAGE_SIZE_64
);
4023 assert(((uint32_t)pages
) == pages
);
4024 *max_footprint_lifetime
= (uint32_t)pages
;
4026 if (purgeable_pages
) {
4027 pages
= (get_task_purgeable_size(task
) / PAGE_SIZE_64
);
4028 assert(((uint32_t)pages
) == pages
);
4029 *purgeable_pages
= (uint32_t)pages
;
4034 memorystatus_get_task_phys_footprint_page_counts(task_t task
,
4035 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
4036 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
4037 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
4038 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
)
4042 if (internal_pages
) {
4043 *internal_pages
= (get_task_internal(task
) / PAGE_SIZE_64
);
4046 if (internal_compressed_pages
) {
4047 *internal_compressed_pages
= (get_task_internal_compressed(task
) / PAGE_SIZE_64
);
4050 if (purgeable_nonvolatile_pages
) {
4051 *purgeable_nonvolatile_pages
= (get_task_purgeable_nonvolatile(task
) / PAGE_SIZE_64
);
4054 if (purgeable_nonvolatile_compressed_pages
) {
4055 *purgeable_nonvolatile_compressed_pages
= (get_task_purgeable_nonvolatile_compressed(task
) / PAGE_SIZE_64
);
4058 if (alternate_accounting_pages
) {
4059 *alternate_accounting_pages
= (get_task_alternate_accounting(task
) / PAGE_SIZE_64
);
4062 if (alternate_accounting_compressed_pages
) {
4063 *alternate_accounting_compressed_pages
= (get_task_alternate_accounting_compressed(task
) / PAGE_SIZE_64
);
4066 if (iokit_mapped_pages
) {
4067 *iokit_mapped_pages
= (get_task_iokit_mapped(task
) / PAGE_SIZE_64
);
4070 if (page_table_pages
) {
4071 *page_table_pages
= (get_task_page_table(task
) / PAGE_SIZE_64
);
4076 * This routine only acts on the global jetsam event snapshot.
4077 * Updating the process's entry can race when the memorystatus_thread
4078 * has chosen to kill a process that is racing to exit on another core.
4081 memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
)
4083 memorystatus_jetsam_snapshot_entry_t
*entry
= NULL
;
4084 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
4085 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
4089 if (memorystatus_jetsam_snapshot_count
== 0) {
4091 * No active snapshot.
4098 * Sanity check as this routine should only be called
4099 * from a jetsam kill path.
4101 assert(kill_cause
!= 0 && killtime
!= 0);
4103 snapshot
= memorystatus_jetsam_snapshot
;
4104 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
4106 for (i
= 0; i
< memorystatus_jetsam_snapshot_count
; i
++) {
4107 if (snapshot_list
[i
].pid
== p
->p_pid
) {
4109 entry
= &snapshot_list
[i
];
4111 if (entry
->killed
|| entry
->jse_killtime
) {
4113 * We apparently raced on the exit path
4114 * for this process, as it's snapshot entry
4115 * has already recorded a kill.
4117 assert(entry
->killed
&& entry
->jse_killtime
);
4122 * Update the entry we just found in the snapshot.
4125 entry
->killed
= kill_cause
;
4126 entry
->jse_killtime
= killtime
;
4127 entry
->jse_gencount
= snapshot
->js_gencount
;
4128 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
;
4131 * If a process has moved between bands since snapshot was
4132 * initialized, then likely these fields changed too.
4134 if (entry
->priority
!= p
->p_memstat_effectivepriority
) {
4136 strlcpy(entry
->name
, p
->p_name
, sizeof(entry
->name
));
4137 entry
->priority
= p
->p_memstat_effectivepriority
;
4138 entry
->state
= memorystatus_build_state(p
);
4139 entry
->user_data
= p
->p_memstat_userdata
;
4140 entry
->fds
= p
->p_fd
->fd_nfiles
;
4144 * Always update the page counts on a kill.
4148 uint32_t max_pages
= 0;
4149 uint32_t max_pages_lifetime
= 0;
4150 uint32_t purgeable_pages
= 0;
4152 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages
, &max_pages_lifetime
, &purgeable_pages
);
4153 entry
->pages
= (uint64_t)pages
;
4154 entry
->max_pages
= (uint64_t)max_pages
;
4155 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4156 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4158 uint64_t internal_pages
= 0;
4159 uint64_t internal_compressed_pages
= 0;
4160 uint64_t purgeable_nonvolatile_pages
= 0;
4161 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4162 uint64_t alternate_accounting_pages
= 0;
4163 uint64_t alternate_accounting_compressed_pages
= 0;
4164 uint64_t iokit_mapped_pages
= 0;
4165 uint64_t page_table_pages
= 0;
4167 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4168 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4169 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4170 &iokit_mapped_pages
, &page_table_pages
);
4172 entry
->jse_internal_pages
= internal_pages
;
4173 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4174 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4175 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4176 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4177 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4178 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4179 entry
->jse_page_table_pages
= page_table_pages
;
4181 uint64_t region_count
= 0;
4182 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4183 entry
->jse_memory_region_count
= region_count
;
4189 if (entry
== NULL
) {
4191 * The entry was not found in the snapshot, so the process must have
4192 * launched after the snapshot was initialized.
4193 * Let's try to append the new entry.
4195 if (memorystatus_jetsam_snapshot_count
< memorystatus_jetsam_snapshot_max
) {
4197 * A populated snapshot buffer exists
4198 * and there is room to init a new entry.
4200 assert(memorystatus_jetsam_snapshot_count
== snapshot
->entry_count
);
4202 unsigned int next
= memorystatus_jetsam_snapshot_count
;
4204 if(memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[next
], (snapshot
->js_gencount
)) == TRUE
) {
4206 entry
= &snapshot_list
[next
];
4207 entry
->killed
= kill_cause
;
4208 entry
->jse_killtime
= killtime
;
4210 snapshot
->entry_count
= ++next
;
4211 memorystatus_jetsam_snapshot_count
= next
;
4213 if (memorystatus_jetsam_snapshot_count
>= memorystatus_jetsam_snapshot_max
) {
4215 * We just used the last slot in the snapshot buffer.
4216 * We only want to log it once... so we do it here
4217 * when we notice we've hit the max.
4219 printf("memorystatus: WARNING snapshot buffer is full, count %d\n",
4220 memorystatus_jetsam_snapshot_count
);
4227 if (entry
== NULL
) {
4229 * If we reach here, the snapshot buffer could not be updated.
4230 * Most likely, the buffer is full, in which case we would have
4231 * logged a warning in the previous call.
4233 * For now, we will stop appending snapshot entries.
4234 * When the buffer is consumed, the snapshot state will reset.
4237 MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n",
4238 p
->p_pid
, p
->p_memstat_effectivepriority
, memorystatus_jetsam_snapshot_count
);
4244 void memorystatus_pages_update(unsigned int pages_avail
)
4246 memorystatus_available_pages
= pages_avail
;
4248 #if VM_PRESSURE_EVENTS
4250 * Since memorystatus_available_pages changes, we should
4251 * re-evaluate the pressure levels on the system and
4252 * check if we need to wake the pressure thread.
4253 * We also update memorystatus_level in that routine.
4255 vm_pressure_response();
4257 if (memorystatus_available_pages
<= memorystatus_available_pages_pressure
) {
4259 if (memorystatus_hwm_candidates
|| (memorystatus_available_pages
<= memorystatus_available_pages_critical
)) {
4260 memorystatus_thread_wake();
4263 #else /* VM_PRESSURE_EVENTS */
4265 boolean_t critical
, delta
;
4267 if (!memorystatus_delta
) {
4271 critical
= (pages_avail
< memorystatus_available_pages_critical
) ? TRUE
: FALSE
;
4272 delta
= ((pages_avail
>= (memorystatus_available_pages
+ memorystatus_delta
))
4273 || (memorystatus_available_pages
>= (pages_avail
+ memorystatus_delta
))) ? TRUE
: FALSE
;
4275 if (critical
|| delta
) {
4276 unsigned int total_pages
;
4278 total_pages
= (unsigned int) atop_64(max_mem
);
4279 #if CONFIG_SECLUDED_MEMORY
4280 total_pages
-= vm_page_secluded_count
;
4281 #endif /* CONFIG_SECLUDED_MEMORY */
4282 memorystatus_level
= memorystatus_available_pages
* 100 / total_pages
;
4283 memorystatus_thread_wake();
4285 #endif /* VM_PRESSURE_EVENTS */
4289 memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
)
4292 clock_usec_t tv_usec
;
4294 uint32_t max_pages
= 0;
4295 uint32_t max_pages_lifetime
= 0;
4296 uint32_t purgeable_pages
= 0;
4297 uint64_t internal_pages
= 0;
4298 uint64_t internal_compressed_pages
= 0;
4299 uint64_t purgeable_nonvolatile_pages
= 0;
4300 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4301 uint64_t alternate_accounting_pages
= 0;
4302 uint64_t alternate_accounting_compressed_pages
= 0;
4303 uint64_t iokit_mapped_pages
= 0;
4304 uint64_t page_table_pages
=0;
4305 uint64_t region_count
= 0;
4306 uint64_t cids
[COALITION_NUM_TYPES
];
4308 memset(entry
, 0, sizeof(memorystatus_jetsam_snapshot_entry_t
));
4310 entry
->pid
= p
->p_pid
;
4311 strlcpy(&entry
->name
[0], p
->p_name
, sizeof(entry
->name
));
4312 entry
->priority
= p
->p_memstat_effectivepriority
;
4314 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages
, &max_pages_lifetime
, &purgeable_pages
);
4315 entry
->pages
= (uint64_t)pages
;
4316 entry
->max_pages
= (uint64_t)max_pages
;
4317 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4318 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4320 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4321 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4322 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4323 &iokit_mapped_pages
, &page_table_pages
);
4325 entry
->jse_internal_pages
= internal_pages
;
4326 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4327 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4328 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4329 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4330 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4331 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4332 entry
->jse_page_table_pages
= page_table_pages
;
4334 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4335 entry
->jse_memory_region_count
= region_count
;
4337 entry
->state
= memorystatus_build_state(p
);
4338 entry
->user_data
= p
->p_memstat_userdata
;
4339 memcpy(&entry
->uuid
[0], &p
->p_uuid
[0], sizeof(p
->p_uuid
));
4340 entry
->fds
= p
->p_fd
->fd_nfiles
;
4342 absolutetime_to_microtime(get_task_cpu_time(p
->task
), &tv_sec
, &tv_usec
);
4343 entry
->cpu_time
.tv_sec
= tv_sec
;
4344 entry
->cpu_time
.tv_usec
= tv_usec
;
4346 assert(p
->p_stats
!= NULL
);
4347 entry
->jse_starttime
= p
->p_stats
->ps_start
; /* abstime process started */
4348 entry
->jse_killtime
= 0; /* abstime jetsam chose to kill process */
4349 entry
->killed
= 0; /* the jetsam kill cause */
4350 entry
->jse_gencount
= gencount
; /* indicates a pass through jetsam thread, when process was targeted to be killed */
4352 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
; /* Most recent timespan spent in idle-band */
4354 proc_coalitionids(p
, cids
);
4355 entry
->jse_coalition_jetsam_id
= cids
[COALITION_TYPE_JETSAM
];
4361 memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t
*snapshot
)
4363 kern_return_t kr
= KERN_SUCCESS
;
4364 mach_msg_type_number_t count
= HOST_VM_INFO64_COUNT
;
4365 vm_statistics64_data_t vm_stat
;
4367 if ((kr
= host_statistics64(host_self(), HOST_VM_INFO64
, (host_info64_t
)&vm_stat
, &count
) != KERN_SUCCESS
)) {
4368 printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n", kr
);
4369 memset(&snapshot
->stats
, 0, sizeof(snapshot
->stats
));
4371 snapshot
->stats
.free_pages
= vm_stat
.free_count
;
4372 snapshot
->stats
.active_pages
= vm_stat
.active_count
;
4373 snapshot
->stats
.inactive_pages
= vm_stat
.inactive_count
;
4374 snapshot
->stats
.throttled_pages
= vm_stat
.throttled_count
;
4375 snapshot
->stats
.purgeable_pages
= vm_stat
.purgeable_count
;
4376 snapshot
->stats
.wired_pages
= vm_stat
.wire_count
;
4378 snapshot
->stats
.speculative_pages
= vm_stat
.speculative_count
;
4379 snapshot
->stats
.filebacked_pages
= vm_stat
.external_page_count
;
4380 snapshot
->stats
.anonymous_pages
= vm_stat
.internal_page_count
;
4381 snapshot
->stats
.compressions
= vm_stat
.compressions
;
4382 snapshot
->stats
.decompressions
= vm_stat
.decompressions
;
4383 snapshot
->stats
.compressor_pages
= vm_stat
.compressor_page_count
;
4384 snapshot
->stats
.total_uncompressed_pages_in_compressor
= vm_stat
.total_uncompressed_pages_in_compressor
;
4389 * Collect vm statistics at boot.
4390 * Called only once (see kern_exec.c)
4391 * Data can be consumed at any time.
4394 memorystatus_init_at_boot_snapshot() {
4395 memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot
);
4396 memorystatus_at_boot_snapshot
.entry_count
= 0;
4397 memorystatus_at_boot_snapshot
.notification_time
= 0; /* updated when consumed */
4398 memorystatus_at_boot_snapshot
.snapshot_time
= mach_absolute_time();
4402 memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
)
4405 unsigned int b
= 0, i
= 0;
4407 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
4408 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
4409 unsigned int snapshot_max
= 0;
4413 * This is an on_demand snapshot
4415 snapshot
= od_snapshot
;
4416 snapshot_list
= od_snapshot
->entries
;
4417 snapshot_max
= ods_list_count
;
4420 * This is a jetsam event snapshot
4422 snapshot
= memorystatus_jetsam_snapshot
;
4423 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
4424 snapshot_max
= memorystatus_jetsam_snapshot_max
;
4428 * Init the snapshot header information
4430 memorystatus_init_snapshot_vmstats(snapshot
);
4431 snapshot
->snapshot_time
= mach_absolute_time();
4432 snapshot
->notification_time
= 0;
4433 snapshot
->js_gencount
= 0;
4435 next_p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
4438 next_p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
4440 if (FALSE
== memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[i
], snapshot
->js_gencount
)) {
4444 MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4446 p
->p_uuid
[0], p
->p_uuid
[1], p
->p_uuid
[2], p
->p_uuid
[3], p
->p_uuid
[4], p
->p_uuid
[5], p
->p_uuid
[6], p
->p_uuid
[7],
4447 p
->p_uuid
[8], p
->p_uuid
[9], p
->p_uuid
[10], p
->p_uuid
[11], p
->p_uuid
[12], p
->p_uuid
[13], p
->p_uuid
[14], p
->p_uuid
[15]);
4449 if (++i
== snapshot_max
) {
4454 snapshot
->entry_count
= i
;
4457 /* update the system buffer count */
4458 memorystatus_jetsam_snapshot_count
= i
;
4462 #if DEVELOPMENT || DEBUG
4465 memorystatus_cmd_set_panic_bits(user_addr_t buffer
, uint32_t buffer_size
) {
4467 memorystatus_jetsam_panic_options_t debug
;
4469 if (buffer_size
!= sizeof(memorystatus_jetsam_panic_options_t
)) {
4473 ret
= copyin(buffer
, &debug
, buffer_size
);
4478 /* Panic bits match kMemorystatusKilled* enum */
4479 memorystatus_jetsam_panic_debug
= (memorystatus_jetsam_panic_debug
& ~debug
.mask
) | (debug
.data
& debug
.mask
);
4481 /* Copyout new value */
4482 debug
.data
= memorystatus_jetsam_panic_debug
;
4483 ret
= copyout(&debug
, buffer
, sizeof(memorystatus_jetsam_panic_options_t
));
4489 * Triggers a sort_order on a specified jetsam priority band.
4490 * This is for testing only, used to force a path through the sort
4494 memorystatus_cmd_test_jetsam_sort(int priority
, int sort_order
) {
4498 unsigned int bucket_index
= 0;
4500 if (priority
== -1) {
4501 /* Use as shorthand for default priority */
4502 bucket_index
= JETSAM_PRIORITY_DEFAULT
;
4504 bucket_index
= (unsigned int)priority
;
4507 error
= memorystatus_sort_bucket(bucket_index
, sort_order
);
4512 #endif /* DEVELOPMENT || DEBUG */
4515 * Jetsam the first process in the queue.
4518 memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
,
4519 int32_t *priority
, uint32_t *errors
)
4522 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
4523 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
4527 uint64_t killtime
= 0;
4529 clock_usec_t tv_usec
;
4532 #ifndef CONFIG_FREEZE
4536 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
4537 memorystatus_available_pages
, 0, 0, 0, 0);
4540 if (sort_flag
== TRUE
) {
4541 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
4546 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
4548 #if DEVELOPMENT || DEBUG
4550 int procSuspendedForDiagnosis
;
4551 #endif /* DEVELOPMENT || DEBUG */
4554 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
4556 #if DEVELOPMENT || DEBUG
4557 activeProcess
= p
->p_memstat_state
& P_MEMSTAT_FOREGROUND
;
4558 procSuspendedForDiagnosis
= p
->p_memstat_state
& P_MEMSTAT_DIAG_SUSPENDED
;
4559 #endif /* DEVELOPMENT || DEBUG */
4562 aPid_ep
= p
->p_memstat_effectivepriority
;
4564 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
4565 continue; /* with lock held */
4568 #if DEVELOPMENT || DEBUG
4569 if ((memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) && procSuspendedForDiagnosis
) {
4570 printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n", aPid
);
4573 #endif /* DEVELOPMENT || DEBUG */
4575 if (cause
== kMemorystatusKilledVnodes
)
4578 * If the system runs out of vnodes, we systematically jetsam
4579 * processes in hopes of stumbling onto a vnode gain that helps
4580 * the system recover. The process that happens to trigger
4581 * this path has no known relationship to the vnode consumption.
4582 * We attempt to safeguard that process e.g: do not jetsam it.
4585 if (p
== current_proc()) {
4586 /* do not jetsam the current process */
4593 boolean_t reclaim_proc
= !(p
->p_memstat_state
& (P_MEMSTAT_LOCKED
| P_MEMSTAT_NORECLAIM
));
4594 if (any
|| reclaim_proc
) {
4606 * Capture a snapshot if none exists and:
4607 * - priority was not requested (this is something other than an ambient kill)
4608 * - the priority was requested *and* the targeted process is not at idle priority
4610 if ((memorystatus_jetsam_snapshot_count
== 0) &&
4611 (memorystatus_idle_snapshot
|| ((!priority
) || (priority
&& (aPid_ep
!= JETSAM_PRIORITY_IDLE
))))) {
4612 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
4613 new_snapshot
= TRUE
;
4617 * Mark as terminated so that if exit1() indicates success, but the process (for example)
4618 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
4619 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
4620 * acquisition of the proc lock.
4622 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
4624 killtime
= mach_absolute_time();
4625 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
4626 tv_msec
= tv_usec
/ 1000;
4628 #if DEVELOPMENT || DEBUG
4629 if ((memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) && activeProcess
) {
4630 MEMORYSTATUS_DEBUG(1, "jetsam: suspending pid %d [%s] (active) for diagnosis - memory_status_level: %d\n",
4631 aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"), memorystatus_level
);
4632 memorystatus_update_jetsam_snapshot_entry_locked(p
, kMemorystatusKilledDiagnostic
, killtime
);
4633 p
->p_memstat_state
|= P_MEMSTAT_DIAG_SUSPENDED
;
4634 if (memorystatus_jetsam_policy
& kPolicyDiagnoseFirst
) {
4635 jetsam_diagnostic_suspended_one_active_proc
= 1;
4636 printf("jetsam: returning after suspending first active proc - %d\n", aPid
);
4639 p
= proc_ref_locked(p
);
4642 task_suspend(p
->task
);
4644 *priority
= aPid_ep
;
4652 #endif /* DEVELOPMENT || DEBUG */
4654 /* Shift queue, update stats */
4655 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
4657 if (proc_ref_locked(p
) == p
) {
4659 printf("%lu.%02d memorystatus: %s %d [%s] (%s %d) - memorystatus_available_pages: %d\n",
4660 (unsigned long)tv_sec
, tv_msec
,
4661 ((aPid_ep
== JETSAM_PRIORITY_IDLE
) ? "idle exiting pid" : "jetsam killing top process pid"),
4662 aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
4663 jetsam_kill_cause_name
[cause
], aPid_ep
, memorystatus_available_pages
);
4666 * memorystatus_do_kill() drops a reference, so take another one so we can
4667 * continue to use this exit reason even after memorystatus_do_kill()
4670 os_reason_ref(jetsam_reason
);
4672 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
);
4677 *priority
= aPid_ep
;
4685 * Failure - first unwind the state,
4686 * then fall through to restart the search.
4689 proc_rele_locked(p
);
4690 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
4691 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
4696 * Failure - restart the search.
4698 * We might have raced with "p" exiting on another core, resulting in no
4699 * ref on "p". Or, we may have failed to kill "p".
4701 * Either way, we fall thru to here, leaving the proc in the
4702 * P_MEMSTAT_TERMINATED state.
4704 * And, we hold the the proc_list_lock at this point.
4708 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
4716 os_reason_free(jetsam_reason
);
4718 /* Clear snapshot if freshly captured and no target was found */
4719 if (new_snapshot
&& !killed
) {
4721 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
4725 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
4726 memorystatus_available_pages
, killed
? aPid
: 0, kill_count
, 0, 0);
4732 * Jetsam aggressively
4735 memorystatus_kill_top_process_aggressive(boolean_t any
, uint32_t cause
, os_reason_t jetsam_reason
, int aggr_count
,
4736 int32_t priority_max
, uint32_t *errors
)
4739 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
4740 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
4743 int32_t aPid_ep
= 0;
4744 unsigned int memorystatus_level_snapshot
= 0;
4745 uint64_t killtime
= 0;
4747 clock_usec_t tv_usec
;
4752 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
4753 memorystatus_available_pages
, priority_max
, 0, 0, 0);
4755 memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
4759 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
4761 #if DEVELOPMENT || DEBUG
4763 int procSuspendedForDiagnosis
;
4764 #endif /* DEVELOPMENT || DEBUG */
4766 if ((unsigned int)(next_p
->p_memstat_effectivepriority
) != i
) {
4769 * We have raced with next_p running on another core, as it has
4770 * moved to a different jetsam priority band. This means we have
4771 * lost our place in line while traversing the jetsam list. We
4772 * attempt to recover by rewinding to the beginning of the band
4773 * we were already traversing. By doing this, we do not guarantee
4774 * that no process escapes this aggressive march, but we can make
4775 * skipping an entire range of processes less likely. (PR-21069019)
4778 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding %s moved from band %d --> %d\n",
4779 aggr_count
, (*next_p
->p_name
? next_p
->p_name
: "unknown"), i
, next_p
->p_memstat_effectivepriority
);
4781 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
4786 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
4788 if (p
->p_memstat_effectivepriority
> priority_max
) {
4790 * Bail out of this killing spree if we have
4791 * reached beyond the priority_max jetsam band.
4792 * That is, we kill up to and through the
4793 * priority_max jetsam band.
4799 #if DEVELOPMENT || DEBUG
4800 activeProcess
= p
->p_memstat_state
& P_MEMSTAT_FOREGROUND
;
4801 procSuspendedForDiagnosis
= p
->p_memstat_state
& P_MEMSTAT_DIAG_SUSPENDED
;
4802 #endif /* DEVELOPMENT || DEBUG */
4805 aPid_ep
= p
->p_memstat_effectivepriority
;
4807 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
4811 #if DEVELOPMENT || DEBUG
4812 if ((memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) && procSuspendedForDiagnosis
) {
4813 printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n", aPid
);
4816 #endif /* DEVELOPMENT || DEBUG */
4819 * Capture a snapshot if none exists.
4821 if (memorystatus_jetsam_snapshot_count
== 0) {
4822 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
4823 new_snapshot
= TRUE
;
4827 * Mark as terminated so that if exit1() indicates success, but the process (for example)
4828 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
4829 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
4830 * acquisition of the proc lock.
4832 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
4834 killtime
= mach_absolute_time();
4835 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
4836 tv_msec
= tv_usec
/ 1000;
4838 /* Shift queue, update stats */
4839 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
4842 * In order to kill the target process, we will drop the proc_list_lock.
4843 * To guaranteee that p and next_p don't disappear out from under the lock,
4844 * we must take a ref on both.
4845 * If we cannot get a reference, then it's likely we've raced with
4846 * that process exiting on another core.
4848 if (proc_ref_locked(p
) == p
) {
4850 while (next_p
&& (proc_ref_locked(next_p
) != next_p
)) {
4854 * We must have raced with next_p exiting on another core.
4855 * Recover by getting the next eligible process in the band.
4858 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n",
4859 aggr_count
, next_p
->p_pid
, (*next_p
->p_name
? next_p
->p_name
: "(unknown)"));
4862 next_p
= memorystatus_get_next_proc_locked(&i
, temp_p
, TRUE
);
4867 printf("%lu.%01d memorystatus: aggressive%d: %s %d [%s] (%s %d) - memorystatus_available_pages: %d\n",
4868 (unsigned long)tv_sec
, tv_msec
, aggr_count
,
4869 ((aPid_ep
== JETSAM_PRIORITY_IDLE
) ? "idle exiting pid" : "jetsam killing pid"),
4870 aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
4871 jetsam_kill_cause_name
[cause
], aPid_ep
, memorystatus_available_pages
);
4873 memorystatus_level_snapshot
= memorystatus_level
;
4876 * memorystatus_do_kill() drops a reference, so take another one so we can
4877 * continue to use this exit reason even after memorystatus_do_kill()
4880 os_reason_ref(jetsam_reason
);
4881 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
);
4891 * Continue the killing spree.
4895 proc_rele_locked(next_p
);
4898 if (aPid_ep
== JETSAM_PRIORITY_FOREGROUND
&& memorystatus_aggressive_jetsam_lenient
== TRUE
) {
4899 if (memorystatus_level
> memorystatus_level_snapshot
&& ((memorystatus_level
- memorystatus_level_snapshot
) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD
)) {
4900 #if DEVELOPMENT || DEBUG
4901 printf("Disabling Lenient mode after one-time deployment.\n");
4902 #endif /* DEVELOPMENT || DEBUG */
4903 memorystatus_aggressive_jetsam_lenient
= FALSE
;
4912 * Failure - first unwind the state,
4913 * then fall through to restart the search.
4916 proc_rele_locked(p
);
4918 proc_rele_locked(next_p
);
4920 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
4921 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
4927 * Failure - restart the search at the beginning of
4928 * the band we were already traversing.
4930 * We might have raced with "p" exiting on another core, resulting in no
4931 * ref on "p". Or, we may have failed to kill "p".
4933 * Either way, we fall thru to here, leaving the proc in the
4934 * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state.
4936 * And, we hold the the proc_list_lock at this point.
4939 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
4945 os_reason_free(jetsam_reason
);
4947 /* Clear snapshot if freshly captured and no target was found */
4948 if (new_snapshot
&& (kill_count
== 0)) {
4949 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
4952 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
4953 memorystatus_available_pages
, killed
? aPid
: 0, kill_count
, 0, 0);
4955 if (kill_count
> 0) {
4964 memorystatus_kill_hiwat_proc(uint32_t *errors
)
4967 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
4968 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
4972 uint64_t killtime
= 0;
4974 clock_usec_t tv_usec
;
4976 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4977 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_START
,
4978 memorystatus_available_pages
, 0, 0, 0, 0);
4980 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_HIGHWATER
);
4981 if (jetsam_reason
== OS_REASON_NULL
) {
4982 printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n");
4987 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
4989 uint64_t footprint_in_bytes
= 0;
4990 uint64_t memlimit_in_bytes
= 0;
4994 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
4997 aPid_ep
= p
->p_memstat_effectivepriority
;
4999 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5003 /* skip if no limit set */
5004 if (p
->p_memstat_memlimit
<= 0) {
5010 * No need to consider P_MEMSTAT_MEMLIMIT_BACKGROUND anymore.
5011 * Background limits are described via the inactive limit slots.
5012 * Their fatal/non-fatal setting will drive whether or not to be
5013 * considered in this kill path.
5016 /* skip if a currently inapplicable limit is encountered */
5017 if ((p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_BACKGROUND
) && (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
)) {
5021 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
5022 memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
5023 skip
= (footprint_in_bytes
<= memlimit_in_bytes
);
5025 #if DEVELOPMENT || DEBUG
5026 if (!skip
&& (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
)) {
5027 if (p
->p_memstat_state
& P_MEMSTAT_DIAG_SUSPENDED
) {
5031 #endif /* DEVELOPMENT || DEBUG */
5035 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
5046 #if DEVELOPMENT || DEBUG
5047 MEMORYSTATUS_DEBUG(1, "jetsam: %s pid %d [%s] - %lld Mb > 1 (%d Mb)\n",
5048 (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) ? "suspending": "killing",
5049 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5050 (footprint_in_bytes
/ (1024ULL * 1024ULL)), /* converted bytes to MB */
5051 p
->p_memstat_memlimit
);
5052 #endif /* DEVELOPMENT || DEBUG */
5054 if (memorystatus_jetsam_snapshot_count
== 0) {
5055 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
5056 new_snapshot
= TRUE
;
5059 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5061 killtime
= mach_absolute_time();
5062 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5063 tv_msec
= tv_usec
/ 1000;
5065 #if DEVELOPMENT || DEBUG
5066 if (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) {
5067 MEMORYSTATUS_DEBUG(1, "jetsam: pid %d suspended for diagnosis - memorystatus_available_pages: %d\n", aPid
, memorystatus_available_pages
);
5068 memorystatus_update_jetsam_snapshot_entry_locked(p
, kMemorystatusKilledDiagnostic
, killtime
);
5069 p
->p_memstat_state
|= P_MEMSTAT_DIAG_SUSPENDED
;
5071 p
= proc_ref_locked(p
);
5074 task_suspend(p
->task
);
5081 #endif /* DEVELOPMENT || DEBUG */
5083 memorystatus_update_jetsam_snapshot_entry_locked(p
, kMemorystatusKilledHiwat
, killtime
);
5085 if (proc_ref_locked(p
) == p
) {
5088 printf("%lu.%02d memorystatus: jetsam killing pid %d [%s] (highwater %d) - memorystatus_available_pages: %d\n",
5089 (unsigned long)tv_sec
, tv_msec
, aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"), aPid_ep
, memorystatus_available_pages
);
5092 * memorystatus_do_kill drops a reference, so take another one so we can
5093 * continue to use this exit reason even after memorystatus_do_kill()
5096 os_reason_ref(jetsam_reason
);
5098 killed
= memorystatus_do_kill(p
, kMemorystatusKilledHiwat
, jetsam_reason
);
5108 * Failure - first unwind the state,
5109 * then fall through to restart the search.
5112 proc_rele_locked(p
);
5113 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5114 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5119 * Failure - restart the search.
5121 * We might have raced with "p" exiting on another core, resulting in no
5122 * ref on "p". Or, we may have failed to kill "p".
5124 * Either way, we fall thru to here, leaving the proc in the
5125 * P_MEMSTAT_TERMINATED state.
5127 * And, we hold the the proc_list_lock at this point.
5131 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5139 os_reason_free(jetsam_reason
);
5141 /* Clear snapshot if freshly captured and no target was found */
5142 if (new_snapshot
&& !killed
) {
5144 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5148 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_END
,
5149 memorystatus_available_pages
, killed
? aPid
: 0, kill_count
, 0, 0);
5155 * Jetsam a process pinned in the elevated band.
5157 * Return: true -- at least one pinned process was jetsammed
5158 * false -- no pinned process was jetsammed
5161 memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, int aggr_count
, uint32_t *errors
)
5164 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5165 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
5167 unsigned int i
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
5169 uint64_t killtime
= 0;
5171 clock_usec_t tv_usec
;
5175 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5176 memorystatus_available_pages
, 0, 0, 0, 0);
5180 next_p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
5184 next_p
= memorystatus_get_next_proc_locked(&i
, p
, FALSE
);
5187 aPid_ep
= p
->p_memstat_effectivepriority
;
5190 * Only pick a process pinned in this elevated band
5192 if (!(p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
5196 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5201 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
5206 #if DEVELOPMENT || DEBUG
5207 MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n",
5209 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5210 memorystatus_available_pages
);
5211 #endif /* DEVELOPMENT || DEBUG */
5213 if (memorystatus_jetsam_snapshot_count
== 0) {
5214 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
5215 new_snapshot
= TRUE
;
5218 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5220 killtime
= mach_absolute_time();
5221 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5222 tv_msec
= tv_usec
/ 1000;
5224 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5226 if (proc_ref_locked(p
) == p
) {
5230 printf("%lu.%01d memorystatus: elevated%d: jetsam killing pid %d [%s] (%s %d) - memorystatus_available_pages: %d\n",
5231 (unsigned long)tv_sec
, tv_msec
,
5233 aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
5234 jetsam_kill_cause_name
[cause
], aPid_ep
, memorystatus_available_pages
);
5237 * memorystatus_do_kill drops a reference, so take another one so we can
5238 * continue to use this exit reason even after memorystatus_do_kill()
5241 os_reason_ref(jetsam_reason
);
5242 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
);
5252 * Failure - first unwind the state,
5253 * then fall through to restart the search.
5256 proc_rele_locked(p
);
5257 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5258 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5263 * Failure - restart the search.
5265 * We might have raced with "p" exiting on another core, resulting in no
5266 * ref on "p". Or, we may have failed to kill "p".
5268 * Either way, we fall thru to here, leaving the proc in the
5269 * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state.
5271 * And, we hold the the proc_list_lock at this point.
5274 next_p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
5280 os_reason_free(jetsam_reason
);
5282 /* Clear snapshot if freshly captured and no target was found */
5283 if (new_snapshot
&& (kill_count
== 0)) {
5285 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5289 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5290 memorystatus_available_pages
, killed
? aPid
: 0, kill_count
, 0, 0);
5296 memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
) {
5298 * TODO: allow a general async path
5300 * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to
5301 * add the appropriate exit reason code mapping.
5303 if ((victim_pid
!= -1) || (cause
!= kMemorystatusKilledVMPageShortage
&& cause
!= kMemorystatusKilledVMThrashing
&&
5304 cause
!= kMemorystatusKilledFCThrashing
)) {
5308 kill_under_pressure_cause
= cause
;
5309 memorystatus_thread_wake();
5314 memorystatus_kill_on_VM_page_shortage(boolean_t async
) {
5316 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage
);
5318 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMPAGESHORTAGE
);
5319 if (jetsam_reason
== OS_REASON_NULL
) {
5320 printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n");
5323 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage
, jetsam_reason
);
5328 memorystatus_kill_on_VM_thrashing(boolean_t async
) {
5330 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMThrashing
);
5332 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMTHRASHING
);
5333 if (jetsam_reason
== OS_REASON_NULL
) {
5334 printf("memorystatus_kill_on_VM_thrashing -- sync: failed to allocate jetsam reason\n");
5337 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMThrashing
, jetsam_reason
);
5342 memorystatus_kill_on_FC_thrashing(boolean_t async
) {
5346 return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing
);
5348 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_FCTHRASHING
);
5349 if (jetsam_reason
== OS_REASON_NULL
) {
5350 printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n");
5353 return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing
, jetsam_reason
);
5358 memorystatus_kill_on_vnode_limit(void) {
5359 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_VNODE
);
5360 if (jetsam_reason
== OS_REASON_NULL
) {
5361 printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n");
5364 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes
, jetsam_reason
);
5367 #endif /* CONFIG_JETSAM */
5371 __private_extern__
void
5372 memorystatus_freeze_init(void)
5374 kern_return_t result
;
5377 freezer_lck_grp_attr
= lck_grp_attr_alloc_init();
5378 freezer_lck_grp
= lck_grp_alloc_init("freezer", freezer_lck_grp_attr
);
5380 lck_mtx_init(&freezer_mutex
, freezer_lck_grp
, NULL
);
5382 result
= kernel_thread_start(memorystatus_freeze_thread
, NULL
, &thread
);
5383 if (result
== KERN_SUCCESS
) {
5384 thread_deallocate(thread
);
5386 panic("Could not create memorystatus_freeze_thread");
5391 * Synchronously freeze the passed proc. Called with a reference to the proc held.
5393 * Returns EINVAL or the value returned by task_freeze().
5396 memorystatus_freeze_process_sync(proc_t p
)
5400 boolean_t memorystatus_freeze_swap_low
= FALSE
;
5402 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_FREEZE
) | DBG_FUNC_START
,
5403 memorystatus_available_pages
, 0, 0, 0, 0);
5405 lck_mtx_lock(&freezer_mutex
);
5411 if (memorystatus_freeze_enabled
== FALSE
) {
5415 if (!memorystatus_can_freeze(&memorystatus_freeze_swap_low
)) {
5419 if (memorystatus_freeze_update_throttle()) {
5420 printf("memorystatus_freeze_process_sync: in throttle, ignorning freeze\n");
5421 memorystatus_freeze_throttle_count
++;
5428 uint32_t purgeable
, wired
, clean
, dirty
, state
;
5429 uint32_t max_pages
, pages
, i
;
5433 state
= p
->p_memstat_state
;
5435 /* Ensure the process is eligible for freezing */
5436 if ((state
& (P_MEMSTAT_TERMINATED
| P_MEMSTAT_LOCKED
| P_MEMSTAT_FROZEN
)) || !(state
& P_MEMSTAT_SUSPENDED
)) {
5441 /* Only freeze processes meeting our minimum resident page criteria */
5442 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
5443 if (pages
< memorystatus_freeze_pages_min
) {
5448 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5450 unsigned int avail_swap_space
= 0; /* in pages. */
5453 * Freezer backed by the compressor and swap file(s)
5454 * while will hold compressed data.
5456 avail_swap_space
= vm_swap_get_free_space() / PAGE_SIZE_64
;
5458 max_pages
= MIN(avail_swap_space
, memorystatus_freeze_pages_max
);
5460 if (max_pages
< memorystatus_freeze_pages_min
) {
5466 * We only have the compressor without any swap.
5468 max_pages
= UINT32_MAX
- 1;
5471 /* Mark as locked temporarily to avoid kill */
5472 p
->p_memstat_state
|= P_MEMSTAT_LOCKED
;
5475 ret
= task_freeze(p
->task
, &purgeable
, &wired
, &clean
, &dirty
, max_pages
, &shared
, FALSE
);
5477 DTRACE_MEMORYSTATUS6(memorystatus_freeze
, proc_t
, p
, unsigned int, memorystatus_available_pages
, boolean_t
, purgeable
, unsigned int, wired
, uint32_t, clean
, uint32_t, dirty
);
5479 MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_process_sync: task_freeze %s for pid %d [%s] - "
5480 "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n",
5481 (ret
== KERN_SUCCESS
) ? "SUCCEEDED" : "FAILED", aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
5482 memorystatus_available_pages
, purgeable
, wired
, clean
, dirty
, max_pages
, shared
);
5485 p
->p_memstat_state
&= ~P_MEMSTAT_LOCKED
;
5487 if (ret
== KERN_SUCCESS
) {
5488 memorystatus_freeze_entry_t data
= { aPid
, TRUE
, dirty
};
5490 memorystatus_frozen_count
++;
5492 p
->p_memstat_state
|= (P_MEMSTAT_FROZEN
| (shared
? 0: P_MEMSTAT_NORECLAIM
));
5494 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5496 for (i
= 0; i
< sizeof(throttle_intervals
) / sizeof(struct throttle_interval_t
); i
++) {
5497 throttle_intervals
[i
].pageouts
+= dirty
;
5501 memorystatus_freeze_pageouts
+= dirty
;
5502 memorystatus_freeze_count
++;
5506 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
5513 lck_mtx_unlock(&freezer_mutex
);
5514 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_FREEZE
) | DBG_FUNC_END
,
5515 memorystatus_available_pages
, aPid
, 0, 0, 0);
5521 memorystatus_freeze_top_process(boolean_t
*memorystatus_freeze_swap_low
)
5525 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5528 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_FREEZE
) | DBG_FUNC_START
,
5529 memorystatus_available_pages
, 0, 0, 0, 0);
5533 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5536 uint32_t purgeable
, wired
, clean
, dirty
;
5539 uint32_t max_pages
= 0;
5543 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5546 state
= p
->p_memstat_state
;
5548 /* Ensure the process is eligible for freezing */
5549 if ((state
& (P_MEMSTAT_TERMINATED
| P_MEMSTAT_LOCKED
| P_MEMSTAT_FROZEN
)) || !(state
& P_MEMSTAT_SUSPENDED
)) {
5550 continue; // with lock held
5553 /* Only freeze processes meeting our minimum resident page criteria */
5554 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
5555 if (pages
< memorystatus_freeze_pages_min
) {
5556 continue; // with lock held
5559 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5561 /* Ensure there's enough free space to freeze this process. */
5563 unsigned int avail_swap_space
= 0; /* in pages. */
5566 * Freezer backed by the compressor and swap file(s)
5567 * while will hold compressed data.
5569 avail_swap_space
= vm_swap_get_free_space() / PAGE_SIZE_64
;
5571 max_pages
= MIN(avail_swap_space
, memorystatus_freeze_pages_max
);
5573 if (max_pages
< memorystatus_freeze_pages_min
) {
5574 *memorystatus_freeze_swap_low
= TRUE
;
5580 * We only have the compressor pool.
5582 max_pages
= UINT32_MAX
- 1;
5585 /* Mark as locked temporarily to avoid kill */
5586 p
->p_memstat_state
|= P_MEMSTAT_LOCKED
;
5588 p
= proc_ref_locked(p
);
5594 kr
= task_freeze(p
->task
, &purgeable
, &wired
, &clean
, &dirty
, max_pages
, &shared
, FALSE
);
5596 MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_top_process: task_freeze %s for pid %d [%s] - "
5597 "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n",
5598 (kr
== KERN_SUCCESS
) ? "SUCCEEDED" : "FAILED", aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
5599 memorystatus_available_pages
, purgeable
, wired
, clean
, dirty
, max_pages
, shared
);
5602 p
->p_memstat_state
&= ~P_MEMSTAT_LOCKED
;
5605 if (KERN_SUCCESS
== kr
) {
5606 memorystatus_freeze_entry_t data
= { aPid
, TRUE
, dirty
};
5608 memorystatus_frozen_count
++;
5610 p
->p_memstat_state
|= (P_MEMSTAT_FROZEN
| (shared
? 0: P_MEMSTAT_NORECLAIM
));
5612 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5614 for (i
= 0; i
< sizeof(throttle_intervals
) / sizeof(struct throttle_interval_t
); i
++) {
5615 throttle_intervals
[i
].pageouts
+= dirty
;
5619 memorystatus_freeze_pageouts
+= dirty
;
5620 memorystatus_freeze_count
++;
5624 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
5626 /* Return KERN_SUCESS */
5640 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_FREEZE
) | DBG_FUNC_END
,
5641 memorystatus_available_pages
, aPid
, 0, 0, 0);
5646 static inline boolean_t
5647 memorystatus_can_freeze_processes(void)
5653 if (memorystatus_suspended_count
) {
5654 uint32_t average_resident_pages
, estimated_processes
;
5656 /* Estimate the number of suspended processes we can fit */
5657 average_resident_pages
= memorystatus_suspended_footprint_total
/ memorystatus_suspended_count
;
5658 estimated_processes
= memorystatus_suspended_count
+
5659 ((memorystatus_available_pages
- memorystatus_available_pages_critical
) / average_resident_pages
);
5661 /* If it's predicted that no freeze will occur, lower the threshold temporarily */
5662 if (estimated_processes
<= FREEZE_SUSPENDED_THRESHOLD_DEFAULT
) {
5663 memorystatus_freeze_suspended_threshold
= FREEZE_SUSPENDED_THRESHOLD_LOW
;
5665 memorystatus_freeze_suspended_threshold
= FREEZE_SUSPENDED_THRESHOLD_DEFAULT
;
5668 MEMORYSTATUS_DEBUG(1, "memorystatus_can_freeze_processes: %d suspended processes, %d average resident pages / process, %d suspended processes estimated\n",
5669 memorystatus_suspended_count
, average_resident_pages
, estimated_processes
);
5671 if ((memorystatus_suspended_count
- memorystatus_frozen_count
) > memorystatus_freeze_suspended_threshold
) {
5686 memorystatus_can_freeze(boolean_t
*memorystatus_freeze_swap_low
)
5688 boolean_t can_freeze
= TRUE
;
5690 /* Only freeze if we're sufficiently low on memory; this holds off freeze right
5691 after boot, and is generally is a no-op once we've reached steady state. */
5692 if (memorystatus_available_pages
> memorystatus_freeze_threshold
) {
5696 /* Check minimum suspended process threshold. */
5697 if (!memorystatus_can_freeze_processes()) {
5700 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT
);
5702 if ( !VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5704 * In-core compressor used for freezing WITHOUT on-disk swap support.
5706 if (vm_compressor_low_on_space()) {
5707 if (*memorystatus_freeze_swap_low
) {
5708 *memorystatus_freeze_swap_low
= TRUE
;
5714 if (*memorystatus_freeze_swap_low
) {
5715 *memorystatus_freeze_swap_low
= FALSE
;
5722 * Freezing WITH on-disk swap support.
5724 * In-core compressor fronts the swap.
5726 if (vm_swap_low_on_space()) {
5727 if (*memorystatus_freeze_swap_low
) {
5728 *memorystatus_freeze_swap_low
= TRUE
;
5740 memorystatus_freeze_update_throttle_interval(mach_timespec_t
*ts
, struct throttle_interval_t
*interval
)
5742 unsigned int freeze_daily_pageouts_max
= memorystatus_freeze_daily_mb_max
* (1024 * 1024 / PAGE_SIZE
);
5743 if (CMP_MACH_TIMESPEC(ts
, &interval
->ts
) >= 0) {
5744 if (!interval
->max_pageouts
) {
5745 interval
->max_pageouts
= (interval
->burst_multiple
* (((uint64_t)interval
->mins
* freeze_daily_pageouts_max
) / (24 * 60)));
5747 printf("memorystatus_freeze_update_throttle_interval: %d minute throttle timeout, resetting\n", interval
->mins
);
5749 interval
->ts
.tv_sec
= interval
->mins
* 60;
5750 interval
->ts
.tv_nsec
= 0;
5751 ADD_MACH_TIMESPEC(&interval
->ts
, ts
);
5752 /* Since we update the throttle stats pre-freeze, adjust for overshoot here */
5753 if (interval
->pageouts
> interval
->max_pageouts
) {
5754 interval
->pageouts
-= interval
->max_pageouts
;
5756 interval
->pageouts
= 0;
5758 interval
->throttle
= FALSE
;
5759 } else if (!interval
->throttle
&& interval
->pageouts
>= interval
->max_pageouts
) {
5760 printf("memorystatus_freeze_update_throttle_interval: %d minute pageout limit exceeded; enabling throttle\n", interval
->mins
);
5761 interval
->throttle
= TRUE
;
5764 MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_update_throttle_interval: throttle updated - %d frozen (%d max) within %dm; %dm remaining; throttle %s\n",
5765 interval
->pageouts
, interval
->max_pageouts
, interval
->mins
, (interval
->ts
.tv_sec
- ts
->tv_sec
) / 60,
5766 interval
->throttle
? "on" : "off");
5770 memorystatus_freeze_update_throttle(void)
5776 boolean_t throttled
= FALSE
;
5778 #if DEVELOPMENT || DEBUG
5779 if (!memorystatus_freeze_throttle_enabled
)
5783 clock_get_system_nanotime(&sec
, &nsec
);
5787 /* Check freeze pageouts over multiple intervals and throttle if we've exceeded our budget.
5789 * This ensures that periods of inactivity can't be used as 'credit' towards freeze if the device has
5790 * remained dormant for a long period. We do, however, allow increased thresholds for shorter intervals in
5791 * order to allow for bursts of activity.
5793 for (i
= 0; i
< sizeof(throttle_intervals
) / sizeof(struct throttle_interval_t
); i
++) {
5794 memorystatus_freeze_update_throttle_interval(&ts
, &throttle_intervals
[i
]);
5795 if (throttle_intervals
[i
].throttle
== TRUE
)
5803 memorystatus_freeze_thread(void *param __unused
, wait_result_t wr __unused
)
5805 static boolean_t memorystatus_freeze_swap_low
= FALSE
;
5807 lck_mtx_lock(&freezer_mutex
);
5808 if (memorystatus_freeze_enabled
) {
5809 if (memorystatus_can_freeze(&memorystatus_freeze_swap_low
)) {
5810 /* Only freeze if we've not exceeded our pageout budgets.*/
5811 if (!memorystatus_freeze_update_throttle()) {
5812 memorystatus_freeze_top_process(&memorystatus_freeze_swap_low
);
5814 printf("memorystatus_freeze_thread: in throttle, ignoring freeze\n");
5815 memorystatus_freeze_throttle_count
++; /* Throttled, update stats */
5819 lck_mtx_unlock(&freezer_mutex
);
5821 assert_wait((event_t
) &memorystatus_freeze_wakeup
, THREAD_UNINT
);
5822 thread_block((thread_continue_t
) memorystatus_freeze_thread
);
5826 sysctl_memorystatus_do_fastwake_warmup_all SYSCTL_HANDLER_ARGS
5828 #pragma unused(oidp, req, arg1, arg2)
5830 /* Need to be root or have entitlement */
5831 if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT
)) {
5835 if (memorystatus_freeze_enabled
== FALSE
) {
5839 do_fastwake_warmup_all();
5844 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_do_fastwake_warmup_all
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
5845 0, 0, &sysctl_memorystatus_do_fastwake_warmup_all
, "I", "");
5847 #endif /* CONFIG_FREEZE */
5849 #if VM_PRESSURE_EVENTS
5851 #if CONFIG_MEMORYSTATUS
5854 memorystatus_send_note(int event_code
, void *data
, size_t data_length
) {
5856 struct kev_msg ev_msg
;
5858 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
5859 ev_msg
.kev_class
= KEV_SYSTEM_CLASS
;
5860 ev_msg
.kev_subclass
= KEV_MEMORYSTATUS_SUBCLASS
;
5862 ev_msg
.event_code
= event_code
;
5864 ev_msg
.dv
[0].data_length
= data_length
;
5865 ev_msg
.dv
[0].data_ptr
= data
;
5866 ev_msg
.dv
[1].data_length
= 0;
5868 ret
= kev_post_msg(&ev_msg
);
5870 printf("%s: kev_post_msg() failed, err %d\n", __func__
, ret
);
5877 memorystatus_warn_process(pid_t pid
, boolean_t limit_exceeded
) {
5879 boolean_t ret
= FALSE
;
5880 boolean_t found_knote
= FALSE
;
5881 struct knote
*kn
= NULL
;
5884 * See comment in sysctl_memorystatus_vm_pressure_send.
5887 memorystatus_klist_lock();
5889 SLIST_FOREACH(kn
, &memorystatus_klist
, kn_selnext
) {
5890 proc_t knote_proc
= knote_get_kq(kn
)->kq_p
;
5891 pid_t knote_pid
= knote_proc
->p_pid
;
5893 if (knote_pid
== pid
) {
5895 * By setting the "fflags" here, we are forcing
5896 * a process to deal with the case where it's
5897 * bumping up into its memory limits. If we don't
5898 * do this here, we will end up depending on the
5899 * system pressure snapshot evaluation in
5900 * filt_memorystatus().
5903 if (!limit_exceeded
) {
5906 * Processes on desktop are not expecting to handle a system-wide
5907 * critical or system-wide warning notification from this path.
5908 * Intentionally set only the unambiguous limit warning here.
5911 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
) {
5912 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
;
5918 * Send this notification when a process has exceeded a soft limit.
5920 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
) {
5921 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
;
5929 KNOTE(&memorystatus_klist
, 0);
5933 memorystatus_klist_unlock();
5939 * Can only be set by the current task on itself.
5942 memorystatus_low_mem_privileged_listener(uint32_t op_flags
)
5944 boolean_t set_privilege
= FALSE
;
5946 * Need an entitlement check here?
5948 if (op_flags
== MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE
) {
5949 set_privilege
= TRUE
;
5950 } else if (op_flags
== MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE
) {
5951 set_privilege
= FALSE
;
5956 return (task_low_mem_privileged_listener(current_task(), set_privilege
, NULL
));
5960 memorystatus_send_pressure_note(pid_t pid
) {
5961 MEMORYSTATUS_DEBUG(1, "memorystatus_send_pressure_note(): pid %d\n", pid
);
5962 return memorystatus_send_note(kMemorystatusPressureNote
, &pid
, sizeof(pid
));
5966 memorystatus_send_low_swap_note(void) {
5968 struct knote
*kn
= NULL
;
5970 memorystatus_klist_lock();
5971 SLIST_FOREACH(kn
, &memorystatus_klist
, kn_selnext
) {
5972 /* We call is_knote_registered_modify_task_pressure_bits to check if the sfflags for the
5973 * current note contain NOTE_MEMORYSTATUS_LOW_SWAP. Once we find one note in the memorystatus_klist
5974 * that has the NOTE_MEMORYSTATUS_LOW_SWAP flags in its sfflags set, we call KNOTE with
5975 * kMemoryStatusLowSwap as the hint to process and update all knotes on the memorystatus_klist accordingly. */
5976 if (is_knote_registered_modify_task_pressure_bits(kn
, NOTE_MEMORYSTATUS_LOW_SWAP
, NULL
, 0, 0) == TRUE
) {
5977 KNOTE(&memorystatus_klist
, kMemorystatusLowSwap
);
5982 memorystatus_klist_unlock();
5986 memorystatus_bg_pressure_eligible(proc_t p
) {
5987 boolean_t eligible
= FALSE
;
5991 MEMORYSTATUS_DEBUG(1, "memorystatus_bg_pressure_eligible: pid %d, state 0x%x\n", p
->p_pid
, p
->p_memstat_state
);
5993 /* Foreground processes have already been dealt with at this point, so just test for eligibility */
5994 if (!(p
->p_memstat_state
& (P_MEMSTAT_TERMINATED
| P_MEMSTAT_LOCKED
| P_MEMSTAT_SUSPENDED
| P_MEMSTAT_FROZEN
))) {
6004 memorystatus_is_foreground_locked(proc_t p
) {
6005 return ((p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_FOREGROUND
) ||
6006 (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_FOREGROUND_SUPPORT
));
6010 * This is meant for stackshot and kperf -- it does not take the proc_list_lock
6011 * to access the p_memstat_dirty field.
6014 memorystatus_proc_is_dirty_unsafe(void *v
)
6019 proc_t p
= (proc_t
)v
;
6020 return (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) != 0;
6023 #endif /* CONFIG_MEMORYSTATUS */
6026 * Trigger levels to test the mechanism.
6027 * Can be used via a sysctl.
6029 #define TEST_LOW_MEMORY_TRIGGER_ONE 1
6030 #define TEST_LOW_MEMORY_TRIGGER_ALL 2
6031 #define TEST_PURGEABLE_TRIGGER_ONE 3
6032 #define TEST_PURGEABLE_TRIGGER_ALL 4
6033 #define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE 5
6034 #define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL 6
6036 boolean_t memorystatus_manual_testing_on
= FALSE
;
6037 vm_pressure_level_t memorystatus_manual_testing_level
= kVMPressureNormal
;
6039 extern struct knote
*
6040 vm_pressure_select_optimal_candidate_to_notify(struct klist
*, int, boolean_t
);
6043 * This value is the threshold that a process must meet to be considered for scavenging.
6045 #define VM_PRESSURE_MINIMUM_RSIZE 10 /* MB */
6047 #define VM_PRESSURE_NOTIFY_WAIT_PERIOD 10000 /* milliseconds */
6050 #define VM_PRESSURE_DEBUG(cond, format, ...) \
6052 if (cond) { printf(format, ##__VA_ARGS__); } \
6055 #define VM_PRESSURE_DEBUG(cond, format, ...)
6058 #define INTER_NOTIFICATION_DELAY (250000) /* .25 second */
6060 void memorystatus_on_pageout_scan_end(void) {
6067 * knote_pressure_level - to check if the knote is registered for this notification level.
6069 * task - task whose bits we'll be modifying
6071 * pressure_level_to_clear - if the task has been notified of this past level, clear that notification bit so that if/when we revert to that level, the task will be notified again.
6073 * pressure_level_to_set - the task is about to be notified of this new level. Update the task's bit notification information appropriately.
6078 is_knote_registered_modify_task_pressure_bits(struct knote
*kn_max
, int knote_pressure_level
, task_t task
, vm_pressure_level_t pressure_level_to_clear
, vm_pressure_level_t pressure_level_to_set
)
6080 if (kn_max
->kn_sfflags
& knote_pressure_level
) {
6082 if (pressure_level_to_clear
&& task_has_been_notified(task
, pressure_level_to_clear
) == TRUE
) {
6084 task_clear_has_been_notified(task
, pressure_level_to_clear
);
6087 task_mark_has_been_notified(task
, pressure_level_to_set
);
6095 memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear
)
6097 struct knote
*kn
= NULL
;
6099 memorystatus_klist_lock();
6100 SLIST_FOREACH(kn
, &memorystatus_klist
, kn_selnext
) {
6102 proc_t p
= PROC_NULL
;
6103 struct task
* t
= TASK_NULL
;
6105 p
= knote_get_kq(kn
)->kq_p
;
6107 if (p
!= proc_ref_locked(p
)) {
6114 t
= (struct task
*)(p
->task
);
6116 task_clear_has_been_notified(t
, pressure_level_to_clear
);
6121 memorystatus_klist_unlock();
6124 extern kern_return_t
vm_pressure_notify_dispatch_vm_clients(boolean_t target_foreground_process
);
6127 vm_pressure_select_optimal_candidate_to_notify(struct klist
*candidate_list
, int level
, boolean_t target_foreground_process
);
6130 * Used by the vm_pressure_thread which is
6131 * signalled from within vm_pageout_scan().
6133 static void vm_dispatch_memory_pressure(void);
6134 void consider_vm_pressure_events(void);
6136 void consider_vm_pressure_events(void)
6138 vm_dispatch_memory_pressure();
6140 static void vm_dispatch_memory_pressure(void)
6142 memorystatus_update_vm_pressure(FALSE
);
6145 extern vm_pressure_level_t
6146 convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t
);
6149 vm_pressure_select_optimal_candidate_to_notify(struct klist
*candidate_list
, int level
, boolean_t target_foreground_process
)
6151 struct knote
*kn
= NULL
, *kn_max
= NULL
;
6152 uint64_t resident_max
= 0; /* MB */
6153 struct timeval curr_tstamp
= {0, 0};
6154 int elapsed_msecs
= 0;
6155 int selected_task_importance
= 0;
6156 static int pressure_snapshot
= -1;
6157 boolean_t pressure_increase
= FALSE
;
6159 if (pressure_snapshot
== -1) {
6163 pressure_snapshot
= level
;
6164 pressure_increase
= TRUE
;
6167 if (level
>= pressure_snapshot
) {
6168 pressure_increase
= TRUE
;
6170 pressure_increase
= FALSE
;
6173 pressure_snapshot
= level
;
6176 if (pressure_increase
== TRUE
) {
6178 * We'll start by considering the largest
6179 * unimportant task in our list.
6181 selected_task_importance
= INT_MAX
;
6184 * We'll start by considering the largest
6185 * important task in our list.
6187 selected_task_importance
= 0;
6190 microuptime(&curr_tstamp
);
6192 SLIST_FOREACH(kn
, candidate_list
, kn_selnext
) {
6194 uint64_t resident_size
= 0; /* MB */
6195 proc_t p
= PROC_NULL
;
6196 struct task
* t
= TASK_NULL
;
6197 int curr_task_importance
= 0;
6198 boolean_t consider_knote
= FALSE
;
6199 boolean_t privileged_listener
= FALSE
;
6201 p
= knote_get_kq(kn
)->kq_p
;
6203 if (p
!= proc_ref_locked(p
)) {
6210 #if CONFIG_MEMORYSTATUS
6211 if (target_foreground_process
== TRUE
&& !memorystatus_is_foreground_locked(p
)) {
6213 * Skip process not marked foreground.
6218 #endif /* CONFIG_MEMORYSTATUS */
6220 t
= (struct task
*)(p
->task
);
6222 timevalsub(&curr_tstamp
, &p
->vm_pressure_last_notify_tstamp
);
6223 elapsed_msecs
= curr_tstamp
.tv_sec
* 1000 + curr_tstamp
.tv_usec
/ 1000;
6225 vm_pressure_level_t dispatch_level
= convert_internal_pressure_level_to_dispatch_level(level
);
6227 if ((kn
->kn_sfflags
& dispatch_level
) == 0) {
6232 #if CONFIG_MEMORYSTATUS
6233 if (target_foreground_process
== FALSE
&& !memorystatus_bg_pressure_eligible(p
)) {
6234 VM_PRESSURE_DEBUG(1, "[vm_pressure] skipping process %d\n", p
->p_pid
);
6238 #endif /* CONFIG_MEMORYSTATUS */
6240 curr_task_importance
= task_importance_estimate(t
);
6243 * Privileged listeners are only considered in the multi-level pressure scheme
6244 * AND only if the pressure is increasing.
6248 if (task_has_been_notified(t
, level
) == FALSE
) {
6251 * Is this a privileged listener?
6253 if (task_low_mem_privileged_listener(t
, FALSE
, &privileged_listener
) == 0) {
6255 if (privileged_listener
) {
6265 } else if (level
== 0) {
6268 * Task wasn't notified when the pressure was increasing and so
6269 * no need to notify it that the pressure is decreasing.
6271 if ((task_has_been_notified(t
, kVMPressureWarning
) == FALSE
) && (task_has_been_notified(t
, kVMPressureCritical
) == FALSE
)) {
6278 * We don't want a small process to block large processes from
6279 * being notified again. <rdar://problem/7955532>
6281 resident_size
= (get_task_phys_footprint(t
))/(1024*1024ULL); /* MB */
6283 if (resident_size
>= VM_PRESSURE_MINIMUM_RSIZE
) {
6287 * Warning or Critical Pressure.
6289 if (pressure_increase
) {
6290 if ((curr_task_importance
< selected_task_importance
) ||
6291 ((curr_task_importance
== selected_task_importance
) && (resident_size
> resident_max
))) {
6294 * We have found a candidate process which is:
6295 * a) at a lower importance than the current selected process
6297 * b) has importance equal to that of the current selected process but is larger
6300 consider_knote
= TRUE
;
6303 if ((curr_task_importance
> selected_task_importance
) ||
6304 ((curr_task_importance
== selected_task_importance
) && (resident_size
> resident_max
))) {
6307 * We have found a candidate process which is:
6308 * a) at a higher importance than the current selected process
6310 * b) has importance equal to that of the current selected process but is larger
6313 consider_knote
= TRUE
;
6316 } else if (level
== 0) {
6318 * Pressure back to normal.
6320 if ((curr_task_importance
> selected_task_importance
) ||
6321 ((curr_task_importance
== selected_task_importance
) && (resident_size
> resident_max
))) {
6323 consider_knote
= TRUE
;
6327 if (consider_knote
) {
6328 resident_max
= resident_size
;
6330 selected_task_importance
= curr_task_importance
;
6331 consider_knote
= FALSE
; /* reset for the next candidate */
6334 /* There was no candidate with enough resident memory to scavenge */
6335 VM_PRESSURE_DEBUG(0, "[vm_pressure] threshold failed for pid %d with %llu resident...\n", p
->p_pid
, resident_size
);
6342 VM_DEBUG_CONSTANT_EVENT(vm_pressure_event
, VM_PRESSURE_EVENT
, DBG_FUNC_NONE
, knote_get_kq(kn_max
)->kq_p
->p_pid
, resident_max
, 0, 0);
6343 VM_PRESSURE_DEBUG(1, "[vm_pressure] sending event to pid %d with %llu resident\n", knote_get_kq(kn_max
)->kq_p
->p_pid
, resident_max
);
6349 #define VM_PRESSURE_DECREASED_SMOOTHING_PERIOD 5000 /* milliseconds */
6350 #define WARNING_NOTIFICATION_RESTING_PERIOD 25 /* seconds */
6351 #define CRITICAL_NOTIFICATION_RESTING_PERIOD 25 /* seconds */
6353 uint64_t next_warning_notification_sent_at_ts
= 0;
6354 uint64_t next_critical_notification_sent_at_ts
= 0;
6357 memorystatus_update_vm_pressure(boolean_t target_foreground_process
)
6359 struct knote
*kn_max
= NULL
;
6360 struct knote
*kn_cur
= NULL
, *kn_temp
= NULL
; /* for safe list traversal */
6361 pid_t target_pid
= -1;
6362 struct klist dispatch_klist
= { NULL
};
6363 proc_t target_proc
= PROC_NULL
;
6364 struct task
*task
= NULL
;
6365 boolean_t found_candidate
= FALSE
;
6367 static vm_pressure_level_t level_snapshot
= kVMPressureNormal
;
6368 static vm_pressure_level_t prev_level_snapshot
= kVMPressureNormal
;
6369 boolean_t smoothing_window_started
= FALSE
;
6370 struct timeval smoothing_window_start_tstamp
= {0, 0};
6371 struct timeval curr_tstamp
= {0, 0};
6372 int elapsed_msecs
= 0;
6373 uint64_t curr_ts
= mach_absolute_time();
6376 #define MAX_IDLE_KILLS 100 /* limit the number of idle kills allowed */
6378 int idle_kill_counter
= 0;
6381 * On desktop we take this opportunity to free up memory pressure
6382 * by immediately killing idle exitable processes. We use a delay
6383 * to avoid overkill. And we impose a max counter as a fail safe
6384 * in case daemons re-launch too fast.
6386 while ((memorystatus_vm_pressure_level
!= kVMPressureNormal
) && (idle_kill_counter
< MAX_IDLE_KILLS
)) {
6387 if (memorystatus_idle_exit_from_VM() == FALSE
) {
6388 /* No idle exitable processes left to kill */
6391 idle_kill_counter
++;
6393 if (memorystatus_manual_testing_on
== TRUE
) {
6395 * Skip the delay when testing
6396 * the pressure notification scheme.
6399 delay(1000000); /* 1 second */
6402 #endif /* !CONFIG_JETSAM */
6404 if (level_snapshot
!= kVMPressureNormal
) {
6407 * Check to see if we are still in the 'resting' period
6408 * after having notified all clients interested in
6409 * a particular pressure level.
6412 level_snapshot
= memorystatus_vm_pressure_level
;
6414 if (level_snapshot
== kVMPressureWarning
|| level_snapshot
== kVMPressureUrgent
) {
6416 if (curr_ts
< next_warning_notification_sent_at_ts
) {
6417 delay(INTER_NOTIFICATION_DELAY
* 4 /* 1 sec */);
6418 return KERN_SUCCESS
;
6420 } else if (level_snapshot
== kVMPressureCritical
) {
6422 if (curr_ts
< next_critical_notification_sent_at_ts
) {
6423 delay(INTER_NOTIFICATION_DELAY
* 4 /* 1 sec */);
6424 return KERN_SUCCESS
;
6432 * There is a race window here. But it's not clear
6433 * how much we benefit from having extra synchronization.
6435 level_snapshot
= memorystatus_vm_pressure_level
;
6437 if (prev_level_snapshot
> level_snapshot
) {
6439 * Pressure decreased? Let's take a little breather
6440 * and see if this condition stays.
6442 if (smoothing_window_started
== FALSE
) {
6444 smoothing_window_started
= TRUE
;
6445 microuptime(&smoothing_window_start_tstamp
);
6448 microuptime(&curr_tstamp
);
6449 timevalsub(&curr_tstamp
, &smoothing_window_start_tstamp
);
6450 elapsed_msecs
= curr_tstamp
.tv_sec
* 1000 + curr_tstamp
.tv_usec
/ 1000;
6452 if (elapsed_msecs
< VM_PRESSURE_DECREASED_SMOOTHING_PERIOD
) {
6454 delay(INTER_NOTIFICATION_DELAY
);
6459 prev_level_snapshot
= level_snapshot
;
6460 smoothing_window_started
= FALSE
;
6462 memorystatus_klist_lock();
6463 kn_max
= vm_pressure_select_optimal_candidate_to_notify(&memorystatus_klist
, level_snapshot
, target_foreground_process
);
6465 if (kn_max
== NULL
) {
6466 memorystatus_klist_unlock();
6469 * No more level-based clients to notify.
6471 * Start the 'resting' window within which clients will not be re-notified.
6474 if (level_snapshot
!= kVMPressureNormal
) {
6475 if (level_snapshot
== kVMPressureWarning
|| level_snapshot
== kVMPressureUrgent
) {
6476 nanoseconds_to_absolutetime(WARNING_NOTIFICATION_RESTING_PERIOD
* NSEC_PER_SEC
, &curr_ts
);
6477 next_warning_notification_sent_at_ts
= mach_absolute_time() + curr_ts
;
6479 memorystatus_klist_reset_all_for_level(kVMPressureWarning
);
6482 if (level_snapshot
== kVMPressureCritical
) {
6483 nanoseconds_to_absolutetime(CRITICAL_NOTIFICATION_RESTING_PERIOD
* NSEC_PER_SEC
, &curr_ts
);
6484 next_critical_notification_sent_at_ts
= mach_absolute_time() + curr_ts
;
6486 memorystatus_klist_reset_all_for_level(kVMPressureCritical
);
6489 return KERN_FAILURE
;
6492 target_proc
= knote_get_kq(kn_max
)->kq_p
;
6495 if (target_proc
!= proc_ref_locked(target_proc
)) {
6496 target_proc
= PROC_NULL
;
6498 memorystatus_klist_unlock();
6503 target_pid
= target_proc
->p_pid
;
6505 task
= (struct task
*)(target_proc
->task
);
6507 if (level_snapshot
!= kVMPressureNormal
) {
6509 if (level_snapshot
== kVMPressureWarning
|| level_snapshot
== kVMPressureUrgent
) {
6511 if (is_knote_registered_modify_task_pressure_bits(kn_max
, NOTE_MEMORYSTATUS_PRESSURE_WARN
, task
, 0, kVMPressureWarning
) == TRUE
) {
6512 found_candidate
= TRUE
;
6515 if (level_snapshot
== kVMPressureCritical
) {
6517 if (is_knote_registered_modify_task_pressure_bits(kn_max
, NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
, task
, 0, kVMPressureCritical
) == TRUE
) {
6518 found_candidate
= TRUE
;
6523 if (kn_max
->kn_sfflags
& NOTE_MEMORYSTATUS_PRESSURE_NORMAL
) {
6525 task_clear_has_been_notified(task
, kVMPressureWarning
);
6526 task_clear_has_been_notified(task
, kVMPressureCritical
);
6528 found_candidate
= TRUE
;
6532 if (found_candidate
== FALSE
) {
6533 proc_rele(target_proc
);
6534 memorystatus_klist_unlock();
6538 SLIST_FOREACH_SAFE(kn_cur
, &memorystatus_klist
, kn_selnext
, kn_temp
) {
6540 int knote_pressure_level
= convert_internal_pressure_level_to_dispatch_level(level_snapshot
);
6542 if (is_knote_registered_modify_task_pressure_bits(kn_cur
, knote_pressure_level
, task
, 0, level_snapshot
) == TRUE
) {
6543 proc_t knote_proc
= knote_get_kq(kn_cur
)->kq_p
;
6544 pid_t knote_pid
= knote_proc
->p_pid
;
6545 if (knote_pid
== target_pid
) {
6546 KNOTE_DETACH(&memorystatus_klist
, kn_cur
);
6547 KNOTE_ATTACH(&dispatch_klist
, kn_cur
);
6552 KNOTE(&dispatch_klist
, (level_snapshot
!= kVMPressureNormal
) ? kMemorystatusPressure
: kMemorystatusNoPressure
);
6554 SLIST_FOREACH_SAFE(kn_cur
, &dispatch_klist
, kn_selnext
, kn_temp
) {
6555 KNOTE_DETACH(&dispatch_klist
, kn_cur
);
6556 KNOTE_ATTACH(&memorystatus_klist
, kn_cur
);
6559 memorystatus_klist_unlock();
6561 microuptime(&target_proc
->vm_pressure_last_notify_tstamp
);
6562 proc_rele(target_proc
);
6564 if (memorystatus_manual_testing_on
== TRUE
&& target_foreground_process
== TRUE
) {
6568 if (memorystatus_manual_testing_on
== TRUE
) {
6570 * Testing out the pressure notification scheme.
6571 * No need for delays etc.
6575 uint32_t sleep_interval
= INTER_NOTIFICATION_DELAY
;
6577 unsigned int page_delta
= 0;
6578 unsigned int skip_delay_page_threshold
= 0;
6580 assert(memorystatus_available_pages_pressure
>= memorystatus_available_pages_critical_base
);
6582 page_delta
= (memorystatus_available_pages_pressure
- memorystatus_available_pages_critical_base
) / 2;
6583 skip_delay_page_threshold
= memorystatus_available_pages_pressure
- page_delta
;
6585 if (memorystatus_available_pages
<= skip_delay_page_threshold
) {
6587 * We are nearing the critcal mark fast and can't afford to wait between
6592 #endif /* CONFIG_JETSAM */
6594 if (sleep_interval
) {
6595 delay(sleep_interval
);
6600 return KERN_SUCCESS
;
6604 convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t internal_pressure_level
)
6606 vm_pressure_level_t dispatch_level
= NOTE_MEMORYSTATUS_PRESSURE_NORMAL
;
6608 switch (internal_pressure_level
) {
6610 case kVMPressureNormal
:
6612 dispatch_level
= NOTE_MEMORYSTATUS_PRESSURE_NORMAL
;
6616 case kVMPressureWarning
:
6617 case kVMPressureUrgent
:
6619 dispatch_level
= NOTE_MEMORYSTATUS_PRESSURE_WARN
;
6623 case kVMPressureCritical
:
6625 dispatch_level
= NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
;
6633 return dispatch_level
;
6637 sysctl_memorystatus_vm_pressure_level SYSCTL_HANDLER_ARGS
6639 #pragma unused(arg1, arg2, oidp)
6640 vm_pressure_level_t dispatch_level
= convert_internal_pressure_level_to_dispatch_level(memorystatus_vm_pressure_level
);
6642 return SYSCTL_OUT(req
, &dispatch_level
, sizeof(dispatch_level
));
6645 #if DEBUG || DEVELOPMENT
6647 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_pressure_level
, CTLTYPE_INT
|CTLFLAG_RD
|CTLFLAG_LOCKED
,
6648 0, 0, &sysctl_memorystatus_vm_pressure_level
, "I", "");
6650 #else /* DEBUG || DEVELOPMENT */
6652 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_pressure_level
, CTLTYPE_INT
|CTLFLAG_RD
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
6653 0, 0, &sysctl_memorystatus_vm_pressure_level
, "I", "");
6655 #endif /* DEBUG || DEVELOPMENT */
6657 extern int memorystatus_purge_on_warning
;
6658 extern int memorystatus_purge_on_critical
;
6661 sysctl_memorypressure_manual_trigger SYSCTL_HANDLER_ARGS
6663 #pragma unused(arg1, arg2)
6667 int pressure_level
= 0;
6668 int trigger_request
= 0;
6671 error
= sysctl_handle_int(oidp
, &level
, 0, req
);
6672 if (error
|| !req
->newptr
) {
6676 memorystatus_manual_testing_on
= TRUE
;
6678 trigger_request
= (level
>> 16) & 0xFFFF;
6679 pressure_level
= (level
& 0xFFFF);
6681 if (trigger_request
< TEST_LOW_MEMORY_TRIGGER_ONE
||
6682 trigger_request
> TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL
) {
6685 switch (pressure_level
) {
6686 case NOTE_MEMORYSTATUS_PRESSURE_NORMAL
:
6687 case NOTE_MEMORYSTATUS_PRESSURE_WARN
:
6688 case NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
:
6695 * The pressure level is being set from user-space.
6696 * And user-space uses the constants in sys/event.h
6697 * So we translate those events to our internal levels here.
6699 if (pressure_level
== NOTE_MEMORYSTATUS_PRESSURE_NORMAL
) {
6701 memorystatus_manual_testing_level
= kVMPressureNormal
;
6704 } else if (pressure_level
== NOTE_MEMORYSTATUS_PRESSURE_WARN
) {
6706 memorystatus_manual_testing_level
= kVMPressureWarning
;
6707 force_purge
= memorystatus_purge_on_warning
;
6709 } else if (pressure_level
== NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
) {
6711 memorystatus_manual_testing_level
= kVMPressureCritical
;
6712 force_purge
= memorystatus_purge_on_critical
;
6715 memorystatus_vm_pressure_level
= memorystatus_manual_testing_level
;
6717 /* purge according to the new pressure level */
6718 switch (trigger_request
) {
6719 case TEST_PURGEABLE_TRIGGER_ONE
:
6720 case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE
:
6721 if (force_purge
== 0) {
6722 /* no purging requested */
6725 vm_purgeable_object_purge_one_unlocked(force_purge
);
6727 case TEST_PURGEABLE_TRIGGER_ALL
:
6728 case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL
:
6729 if (force_purge
== 0) {
6730 /* no purging requested */
6733 while (vm_purgeable_object_purge_one_unlocked(force_purge
));
6737 if ((trigger_request
== TEST_LOW_MEMORY_TRIGGER_ONE
) ||
6738 (trigger_request
== TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE
)) {
6740 memorystatus_update_vm_pressure(TRUE
);
6743 if ((trigger_request
== TEST_LOW_MEMORY_TRIGGER_ALL
) ||
6744 (trigger_request
== TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL
)) {
6746 while (memorystatus_update_vm_pressure(FALSE
) == KERN_SUCCESS
) {
6751 if (pressure_level
== NOTE_MEMORYSTATUS_PRESSURE_NORMAL
) {
6752 memorystatus_manual_testing_on
= FALSE
;
6758 SYSCTL_PROC(_kern
, OID_AUTO
, memorypressure_manual_trigger
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
6759 0, 0, &sysctl_memorypressure_manual_trigger
, "I", "");
6762 extern int memorystatus_purge_on_warning
;
6763 extern int memorystatus_purge_on_urgent
;
6764 extern int memorystatus_purge_on_critical
;
6766 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_purge_on_warning
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_purge_on_warning
, 0, "");
6767 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_purge_on_urgent
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_purge_on_urgent
, 0, "");
6768 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_purge_on_critical
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_purge_on_critical
, 0, "");
6771 #endif /* VM_PRESSURE_EVENTS */
6773 /* Return both allocated and actual size, since there's a race between allocation and list compilation */
6775 memorystatus_get_priority_list(memorystatus_priority_entry_t
**list_ptr
, size_t *buffer_size
, size_t *list_size
, boolean_t size_only
)
6777 uint32_t list_count
, i
= 0;
6778 memorystatus_priority_entry_t
*list_entry
;
6781 list_count
= memorystatus_list_count
;
6782 *list_size
= sizeof(memorystatus_priority_entry_t
) * list_count
;
6784 /* Just a size check? */
6789 /* Otherwise, validate the size of the buffer */
6790 if (*buffer_size
< *list_size
) {
6794 *list_ptr
= (memorystatus_priority_entry_t
*)kalloc(*list_size
);
6799 memset(*list_ptr
, 0, *list_size
);
6801 *buffer_size
= *list_size
;
6804 list_entry
= *list_ptr
;
6808 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6809 while (p
&& (*list_size
< *buffer_size
)) {
6810 list_entry
->pid
= p
->p_pid
;
6811 list_entry
->priority
= p
->p_memstat_effectivepriority
;
6812 list_entry
->user_data
= p
->p_memstat_userdata
;
6815 * No need to consider P_MEMSTAT_MEMLIMIT_BACKGROUND anymore.
6816 * Background limits are described via the inactive limit slots.
6817 * So, here, the cached limit should always be valid.
6820 if (p
->p_memstat_memlimit
<= 0) {
6821 task_get_phys_footprint_limit(p
->task
, &list_entry
->limit
);
6823 list_entry
->limit
= p
->p_memstat_memlimit
;
6826 list_entry
->state
= memorystatus_build_state(p
);
6829 *list_size
+= sizeof(memorystatus_priority_entry_t
);
6831 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6836 MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size
);
6842 memorystatus_cmd_get_priority_list(user_addr_t buffer
, size_t buffer_size
, int32_t *retval
) {
6844 boolean_t size_only
;
6845 memorystatus_priority_entry_t
*list
= NULL
;
6848 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
6850 error
= memorystatus_get_priority_list(&list
, &buffer_size
, &list_size
, size_only
);
6856 error
= copyout(list
, buffer
, list_size
);
6860 *retval
= list_size
;
6865 kfree(list
, buffer_size
);
6874 memorystatus_clear_errors(void)
6879 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
6883 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6885 if (p
->p_memstat_state
& P_MEMSTAT_ERROR
) {
6886 p
->p_memstat_state
&= ~P_MEMSTAT_ERROR
;
6888 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6893 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
6897 memorystatus_update_levels_locked(boolean_t critical_only
) {
6899 memorystatus_available_pages_critical
= memorystatus_available_pages_critical_base
;
6902 * If there's an entry in the first bucket, we have idle processes.
6905 memstat_bucket_t
*first_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
6906 if (first_bucket
->count
) {
6907 memorystatus_available_pages_critical
+= memorystatus_available_pages_critical_idle_offset
;
6909 if (memorystatus_available_pages_critical
> memorystatus_available_pages_pressure
) {
6911 * The critical threshold must never exceed the pressure threshold
6913 memorystatus_available_pages_critical
= memorystatus_available_pages_pressure
;
6917 #if DEBUG || DEVELOPMENT
6918 if (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) {
6919 memorystatus_available_pages_critical
+= memorystatus_jetsam_policy_offset_pages_diagnostic
;
6921 if (memorystatus_available_pages_critical
> memorystatus_available_pages_pressure
) {
6923 * The critical threshold must never exceed the pressure threshold
6925 memorystatus_available_pages_critical
= memorystatus_available_pages_pressure
;
6930 if (memorystatus_jetsam_policy
& kPolicyMoreFree
) {
6931 memorystatus_available_pages_critical
+= memorystatus_policy_more_free_offset_pages
;
6934 if (critical_only
) {
6938 #if VM_PRESSURE_EVENTS
6939 memorystatus_available_pages_pressure
= (pressure_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
6940 #if DEBUG || DEVELOPMENT
6941 if (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) {
6942 memorystatus_available_pages_pressure
+= memorystatus_jetsam_policy_offset_pages_diagnostic
;
6949 sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS
6951 #pragma unused(arg1, arg2, oidp)
6952 int error
= 0, more_free
= 0;
6955 * TODO: Enable this privilege check?
6957 * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0);
6962 error
= sysctl_handle_int(oidp
, &more_free
, 0, req
);
6963 if (error
|| !req
->newptr
)
6966 if ((more_free
&& ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == kPolicyMoreFree
)) ||
6967 (!more_free
&& ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == 0))) {
6970 * No change in state.
6978 memorystatus_jetsam_policy
|= kPolicyMoreFree
;
6980 memorystatus_jetsam_policy
&= ~kPolicyMoreFree
;
6983 memorystatus_update_levels_locked(TRUE
);
6989 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_policy_more_free
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
6990 0, 0, &sysctl_kern_memorystatus_policy_more_free
, "I", "");
6993 * Get the at_boot snapshot
6996 memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
) {
6997 size_t input_size
= *snapshot_size
;
7000 * The at_boot snapshot has no entry list.
7002 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
);
7009 * Validate the size of the snapshot buffer
7011 if (input_size
< *snapshot_size
) {
7016 * Update the notification_time only
7018 memorystatus_at_boot_snapshot
.notification_time
= mach_absolute_time();
7019 *snapshot
= &memorystatus_at_boot_snapshot
;
7021 MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n",
7022 (long)input_size
, (long)*snapshot_size
, 0);
7027 memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
) {
7028 size_t input_size
= *snapshot_size
;
7029 uint32_t ods_list_count
= memorystatus_list_count
;
7030 memorystatus_jetsam_snapshot_t
*ods
= NULL
; /* The on_demand snapshot buffer */
7032 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (ods_list_count
));
7039 * Validate the size of the snapshot buffer.
7040 * This is inherently racey. May want to revisit
7041 * this error condition and trim the output when
7044 if (input_size
< *snapshot_size
) {
7049 * Allocate and initialize a snapshot buffer.
7051 ods
= (memorystatus_jetsam_snapshot_t
*)kalloc(*snapshot_size
);
7056 memset(ods
, 0, *snapshot_size
);
7059 memorystatus_init_jetsam_snapshot_locked(ods
, ods_list_count
);
7063 * Return the kernel allocated, on_demand buffer.
7064 * The caller of this routine will copy the data out
7065 * to user space and then free the kernel allocated
7070 MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
7071 (long)input_size
, (long)*snapshot_size
, (long)ods_list_count
);
7077 memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
) {
7078 size_t input_size
= *snapshot_size
;
7080 if (memorystatus_jetsam_snapshot_count
> 0) {
7081 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
));
7090 if (input_size
< *snapshot_size
) {
7094 *snapshot
= memorystatus_jetsam_snapshot
;
7096 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
7097 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_count
);
7104 memorystatus_cmd_get_jetsam_snapshot(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
) {
7106 boolean_t size_only
;
7107 boolean_t is_default_snapshot
= FALSE
;
7108 boolean_t is_on_demand_snapshot
= FALSE
;
7109 boolean_t is_at_boot_snapshot
= FALSE
;
7110 memorystatus_jetsam_snapshot_t
*snapshot
;
7112 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
7116 is_default_snapshot
= TRUE
;
7117 error
= memorystatus_get_jetsam_snapshot(&snapshot
, &buffer_size
, size_only
);
7119 if (flags
& ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
)) {
7121 * Unsupported bit set in flag.
7126 if ((flags
& (MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
)) ==
7127 (MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
)) {
7129 * Can't have both set at the same time.
7134 if (flags
& MEMORYSTATUS_SNAPSHOT_ON_DEMAND
) {
7135 is_on_demand_snapshot
= TRUE
;
7137 * When not requesting the size only, the following call will allocate
7138 * an on_demand snapshot buffer, which is freed below.
7140 error
= memorystatus_get_on_demand_snapshot(&snapshot
, &buffer_size
, size_only
);
7142 } else if (flags
& MEMORYSTATUS_SNAPSHOT_AT_BOOT
) {
7143 is_at_boot_snapshot
= TRUE
;
7144 error
= memorystatus_get_at_boot_snapshot(&snapshot
, &buffer_size
, size_only
);
7147 * Invalid flag setting.
7158 * Copy the data out to user space and clear the snapshot buffer.
7159 * If working with the jetsam snapshot,
7160 * clearing the buffer means, reset the count.
7161 * If working with an on_demand snapshot
7162 * clearing the buffer means, free it.
7163 * If working with the at_boot snapshot
7164 * there is nothing to clear or update.
7167 if ((error
= copyout(snapshot
, buffer
, buffer_size
)) == 0) {
7168 if (is_default_snapshot
) {
7170 * The jetsam snapshot is never freed, its count is simply reset.
7173 snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
7174 memorystatus_jetsam_snapshot_last_timestamp
= 0;
7179 if (is_on_demand_snapshot
) {
7181 * The on_demand snapshot is always freed,
7182 * even if the copyout failed.
7185 kfree(snapshot
, buffer_size
);
7191 *retval
= buffer_size
;
7198 * Routine: memorystatus_cmd_grp_set_properties
7199 * Purpose: Update properties for a group of processes.
7201 * Supported Properties:
7203 * Move each process out of its effective priority
7204 * band and into a new priority band.
7205 * Maintains relative order from lowest to highest priority.
7206 * In single band, maintains relative order from head to tail.
7208 * eg: before [effectivepriority | pid]
7210 * [17 | p55, p67, p19 ]
7215 * after [ new band | pid]
7216 * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101]
7218 * Returns: 0 on success, else non-zero.
7220 * Caveat: We know there is a race window regarding recycled pids.
7221 * A process could be killed before the kernel can act on it here.
7222 * If a pid cannot be found in any of the jetsam priority bands,
7223 * then we simply ignore it. No harm.
7224 * But, if the pid has been recycled then it could be an issue.
7225 * In that scenario, we might move an unsuspecting process to the new
7226 * priority band. It's not clear how the kernel can safeguard
7227 * against this, but it would be an extremely rare case anyway.
7228 * The caller of this api might avoid such race conditions by
7229 * ensuring that the processes passed in the pid list are suspended.
7233 /* This internal structure can expand when we add support for more properties */
7234 typedef struct memorystatus_internal_properties
7237 int32_t priority
; /* see memorytstatus_priority_entry_t : priority */
7238 } memorystatus_internal_properties_t
;
7242 memorystatus_cmd_grp_set_properties(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
7244 #pragma unused (flags)
7247 * We only handle setting priority
7252 memorystatus_priority_entry_t
*entries
= NULL
;
7253 uint32_t entry_count
= 0;
7255 /* This will be the ordered proc list */
7256 memorystatus_internal_properties_t
*table
= NULL
;
7257 size_t table_size
= 0;
7258 uint32_t table_count
= 0;
7261 uint32_t bucket_index
= 0;
7262 boolean_t head_insert
;
7263 int32_t new_priority
;
7268 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0) || ((buffer_size
% sizeof(memorystatus_priority_entry_t
)) != 0)) {
7273 entry_count
= (buffer_size
/ sizeof(memorystatus_priority_entry_t
));
7274 if ((entries
= (memorystatus_priority_entry_t
*)kalloc(buffer_size
)) == NULL
) {
7279 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, entry_count
, 0, 0, 0, 0);
7281 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
7285 /* Verify sanity of input priorities */
7286 for (i
=0; i
< entry_count
; i
++) {
7287 if (entries
[i
].priority
== -1) {
7288 /* Use as shorthand for default priority */
7289 entries
[i
].priority
= JETSAM_PRIORITY_DEFAULT
;
7290 } else if ((entries
[i
].priority
== system_procs_aging_band
) || (entries
[i
].priority
== applications_aging_band
)) {
7291 /* Both the aging bands are reserved for internal use;
7292 * if requested, adjust to JETSAM_PRIORITY_IDLE. */
7293 entries
[i
].priority
= JETSAM_PRIORITY_IDLE
;
7294 } else if (entries
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
7295 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle
7297 /* Deal with this later */
7298 } else if ((entries
[i
].priority
< 0) || (entries
[i
].priority
>= MEMSTAT_BUCKET_COUNT
)) {
7305 table_size
= sizeof(memorystatus_internal_properties_t
) * entry_count
;
7306 if ( (table
= (memorystatus_internal_properties_t
*)kalloc(table_size
)) == NULL
) {
7310 memset(table
, 0, table_size
);
7314 * For each jetsam bucket entry, spin through the input property list.
7315 * When a matching pid is found, populate an adjacent table with the
7316 * appropriate proc pointer and new property values.
7317 * This traversal automatically preserves order from lowest
7318 * to highest priority.
7325 /* Create the ordered table */
7326 p
= memorystatus_get_first_proc_locked(&bucket_index
, TRUE
);
7327 while (p
&& (table_count
< entry_count
)) {
7328 for (i
=0; i
< entry_count
; i
++ ) {
7329 if (p
->p_pid
== entries
[i
].pid
) {
7330 /* Build the table data */
7331 table
[table_count
].proc
= p
;
7332 table
[table_count
].priority
= entries
[i
].priority
;
7337 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, TRUE
);
7340 /* We now have ordered list of procs ready to move */
7341 for (i
=0; i
< table_count
; i
++) {
7345 /* Allow head inserts -- but relative order is now */
7346 if (table
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
7347 new_priority
= JETSAM_PRIORITY_IDLE
;
7350 new_priority
= table
[i
].priority
;
7351 head_insert
= false;
7355 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
7360 * Take appropriate steps if moving proc out of
7361 * either of the aging bands.
7363 if ((p
->p_memstat_effectivepriority
== system_procs_aging_band
) || (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
7364 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
7367 memorystatus_update_priority_locked(p
, new_priority
, head_insert
, false);
7373 * if (table_count != entry_count)
7374 * then some pids were not found in a jetsam band.
7375 * harmless but interesting...
7377 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, entry_count
, table_count
, 0, 0, 0);
7381 kfree(entries
, buffer_size
);
7383 kfree(table
, table_size
);
7390 * This routine is used to update a process's jetsam priority position and stored user_data.
7391 * It is not used for the setting of memory limits, which is why the last 6 args to the
7392 * memorystatus_update() call are 0 or FALSE.
7396 memorystatus_cmd_set_priority_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
7398 memorystatus_priority_properties_t mpp_entry
;
7400 /* Validate inputs */
7401 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_properties_t
))) {
7405 error
= copyin(buffer
, &mpp_entry
, buffer_size
);
7415 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
7420 error
= memorystatus_update(p
, mpp_entry
.priority
, mpp_entry
.user_data
, FALSE
, FALSE
, 0, 0, FALSE
, FALSE
, FALSE
);
7428 memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
7430 memorystatus_memlimit_properties_t mmp_entry
;
7432 /* Validate inputs */
7433 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_memlimit_properties_t
))) {
7437 error
= copyin(buffer
, &mmp_entry
, buffer_size
);
7440 error
= memorystatus_set_memlimit_properties(pid
, &mmp_entry
);
7447 * When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit().
7448 * That gets the proc's cached memlimit and there is no guarantee that the active/inactive
7449 * limits will be the same in the no-limit case. Instead we convert limits <= 0 using
7450 * task_convert_phys_footprint_limit(). It computes the same limit value that would be written
7451 * to the task's ledgers via task_set_phys_footprint_limit().
7454 memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
7456 memorystatus_memlimit_properties_t mmp_entry
;
7458 /* Validate inputs */
7459 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_memlimit_properties_t
))) {
7463 memset (&mmp_entry
, 0, sizeof(memorystatus_memlimit_properties_t
));
7465 proc_t p
= proc_find(pid
);
7471 * Get the active limit and attributes.
7472 * No locks taken since we hold a reference to the proc.
7475 if (p
->p_memstat_memlimit_active
> 0 ) {
7476 mmp_entry
.memlimit_active
= p
->p_memstat_memlimit_active
;
7478 task_convert_phys_footprint_limit(-1, &mmp_entry
.memlimit_active
);
7481 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
) {
7482 mmp_entry
.memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7486 * Get the inactive limit and attributes
7488 if (p
->p_memstat_memlimit_inactive
<= 0) {
7489 task_convert_phys_footprint_limit(-1, &mmp_entry
.memlimit_inactive
);
7491 mmp_entry
.memlimit_inactive
= p
->p_memstat_memlimit_inactive
;
7493 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) {
7494 mmp_entry
.memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7498 error
= copyout(&mmp_entry
, buffer
, buffer_size
);
7505 * SPI for kbd - pr24956468
7506 * This is a very simple snapshot that calculates how much a
7507 * process's phys_footprint exceeds a specific memory limit.
7508 * Only the inactive memory limit is supported for now.
7509 * The delta is returned as bytes in excess or zero.
7512 memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
7514 uint64_t footprint_in_bytes
= 0;
7515 uint64_t delta_in_bytes
= 0;
7516 int32_t memlimit_mb
= 0;
7517 uint64_t memlimit_bytes
= 0;
7519 /* Validate inputs */
7520 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(uint64_t)) || (flags
!= 0)) {
7524 proc_t p
= proc_find(pid
);
7530 * Get the inactive limit.
7531 * No locks taken since we hold a reference to the proc.
7534 if (p
->p_memstat_memlimit_inactive
<= 0) {
7535 task_convert_phys_footprint_limit(-1, &memlimit_mb
);
7537 memlimit_mb
= p
->p_memstat_memlimit_inactive
;
7540 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
7544 memlimit_bytes
= memlimit_mb
* 1024 * 1024; /* MB to bytes */
7547 * Computed delta always returns >= 0 bytes
7549 if (footprint_in_bytes
> memlimit_bytes
) {
7550 delta_in_bytes
= footprint_in_bytes
- memlimit_bytes
;
7553 error
= copyout(&delta_in_bytes
, buffer
, sizeof(delta_in_bytes
));
7560 memorystatus_cmd_get_pressure_status(int32_t *retval
) {
7563 /* Need privilege for check */
7564 error
= priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE
, 0);
7569 /* Inherently racy, so it's not worth taking a lock here */
7570 *retval
= (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7576 memorystatus_get_pressure_status_kdp() {
7577 return (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7581 * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM.
7583 * This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal
7584 * So, with 2-level HWM preserving previous behavior will map as follows.
7585 * - treat the limit passed in as both an active and inactive limit.
7586 * - treat the is_fatal_limit flag as though it applies to both active and inactive limits.
7588 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
7589 * - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft
7590 * - so mapping is (active/non-fatal, inactive/non-fatal)
7592 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
7593 * - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard
7594 * - so mapping is (active/fatal, inactive/fatal)
7598 memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
) {
7600 memorystatus_memlimit_properties_t entry
;
7602 entry
.memlimit_active
= high_water_mark
;
7603 entry
.memlimit_active_attr
= 0;
7604 entry
.memlimit_inactive
= high_water_mark
;
7605 entry
.memlimit_inactive_attr
= 0;
7607 if (is_fatal_limit
== TRUE
) {
7608 entry
.memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7609 entry
.memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7612 error
= memorystatus_set_memlimit_properties(pid
, &entry
);
7617 memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
) {
7619 int32_t memlimit_active
;
7620 boolean_t memlimit_active_is_fatal
;
7621 int32_t memlimit_inactive
;
7622 boolean_t memlimit_inactive_is_fatal
;
7623 uint32_t valid_attrs
= 0;
7626 proc_t p
= proc_find(pid
);
7632 * Check for valid attribute flags.
7634 valid_attrs
|= (MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
);
7635 if ((entry
->memlimit_active_attr
& (~valid_attrs
)) != 0) {
7639 if ((entry
->memlimit_inactive_attr
& (~valid_attrs
)) != 0) {
7645 * Setup the active memlimit properties
7647 memlimit_active
= entry
->memlimit_active
;
7648 if (entry
->memlimit_active_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
) {
7649 memlimit_active_is_fatal
= TRUE
;
7651 memlimit_active_is_fatal
= FALSE
;
7655 * Setup the inactive memlimit properties
7657 memlimit_inactive
= entry
->memlimit_inactive
;
7658 if (entry
->memlimit_inactive_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
) {
7659 memlimit_inactive_is_fatal
= TRUE
;
7661 memlimit_inactive_is_fatal
= FALSE
;
7665 * Setting a limit of <= 0 implies that the process has no
7666 * high-water-mark and has no per-task-limit. That means
7667 * the system_wide task limit is in place, which by the way,
7671 if (memlimit_active
<= 0) {
7673 * Enforce the fatal system_wide task limit while process is active.
7675 memlimit_active
= -1;
7676 memlimit_active_is_fatal
= TRUE
;
7679 if (memlimit_inactive
<= 0) {
7681 * Enforce the fatal system_wide task limit while process is inactive.
7683 memlimit_inactive
= -1;
7684 memlimit_inactive_is_fatal
= TRUE
;
7690 * Store the active limit variants in the proc.
7692 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_active
, memlimit_active_is_fatal
);
7695 * Store the inactive limit variants in the proc.
7697 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive
, memlimit_inactive_is_fatal
);
7700 * Enforce appropriate limit variant by updating the cached values
7701 * and writing the ledger.
7702 * Limit choice is based on process active/inactive state.
7705 if (memorystatus_highwater_enabled
) {
7706 boolean_t trigger_exception
;
7708 * No need to consider P_MEMSTAT_MEMLIMIT_BACKGROUND anymore.
7709 * Background limits are described via the inactive limit slots.
7712 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
7713 CACHE_ACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
7715 CACHE_INACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
7718 /* Enforce the limit by writing to the ledgers */
7719 assert(trigger_exception
== TRUE
);
7720 error
= (task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, trigger_exception
) == 0) ? 0 : EINVAL
;
7722 MEMORYSTATUS_DEBUG(3, "memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n",
7723 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
7724 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
7725 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
7726 DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit
, proc_t
, p
, int32_t, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1));
7736 * Returns the jetsam priority (effective or requested) of the process
7737 * associated with this task.
7740 proc_get_memstat_priority(proc_t p
, boolean_t effective_priority
)
7743 if (effective_priority
) {
7744 return p
->p_memstat_effectivepriority
;
7746 return p
->p_memstat_requestedpriority
;
7752 #endif /* CONFIG_JETSAM */
7755 memorystatus_control(struct proc
*p __unused
, struct memorystatus_control_args
*args
, int *ret
) {
7757 os_reason_t jetsam_reason
= OS_REASON_NULL
;
7761 #pragma unused(jetsam_reason)
7764 /* Need to be root or have entitlement */
7765 if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT
)) {
7772 * Do not enforce it for snapshots.
7774 if (args
->command
!= MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
) {
7775 if (args
->buffersize
> MEMORYSTATUS_BUFFERSIZE_MAX
) {
7781 switch (args
->command
) {
7782 case MEMORYSTATUS_CMD_GET_PRIORITY_LIST
:
7783 error
= memorystatus_cmd_get_priority_list(args
->buffer
, args
->buffersize
, ret
);
7786 case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES
:
7787 error
= memorystatus_cmd_set_priority_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7789 case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES
:
7790 error
= memorystatus_cmd_set_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7792 case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES
:
7793 error
= memorystatus_cmd_get_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7795 case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS
:
7796 error
= memorystatus_cmd_get_memlimit_excess_np(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7798 case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES
:
7799 error
= memorystatus_cmd_grp_set_properties((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7801 case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
:
7802 error
= memorystatus_cmd_get_jetsam_snapshot((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7804 case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS
:
7805 error
= memorystatus_cmd_get_pressure_status(ret
);
7807 case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
:
7809 * This call does not distinguish between active and inactive limits.
7810 * Default behavior in 2-level HWM world is to set both.
7811 * Non-fatal limit is also assumed for both.
7813 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, FALSE
);
7815 case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
:
7817 * This call does not distinguish between active and inactive limits.
7818 * Default behavior in 2-level HWM world is to set both.
7819 * Fatal limit is also assumed for both.
7821 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, TRUE
);
7824 #if DEVELOPMENT || DEBUG
7825 case MEMORYSTATUS_CMD_TEST_JETSAM
:
7826 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_GENERIC
);
7827 if (jetsam_reason
== OS_REASON_NULL
) {
7828 printf("memorystatus_control: failed to allocate jetsam reason\n");
7831 error
= memorystatus_kill_process_sync(args
->pid
, kMemorystatusKilled
, jetsam_reason
) ? 0 : EINVAL
;
7833 case MEMORYSTATUS_CMD_TEST_JETSAM_SORT
:
7834 error
= memorystatus_cmd_test_jetsam_sort(args
->pid
, (int32_t)args
->flags
);
7836 case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS
:
7837 error
= memorystatus_cmd_set_panic_bits(args
->buffer
, args
->buffersize
);
7839 #else /* DEVELOPMENT || DEBUG */
7840 #pragma unused(jetsam_reason)
7841 #endif /* DEVELOPMENT || DEBUG */
7842 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE
:
7843 if (memorystatus_aggressive_jetsam_lenient_allowed
== FALSE
) {
7844 #if DEVELOPMENT || DEBUG
7845 printf("Enabling Lenient Mode\n");
7846 #endif /* DEVELOPMENT || DEBUG */
7848 memorystatus_aggressive_jetsam_lenient_allowed
= TRUE
;
7849 memorystatus_aggressive_jetsam_lenient
= TRUE
;
7853 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE
:
7854 #if DEVELOPMENT || DEBUG
7855 printf("Disabling Lenient mode\n");
7856 #endif /* DEVELOPMENT || DEBUG */
7857 memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
7858 memorystatus_aggressive_jetsam_lenient
= FALSE
;
7861 #endif /* CONFIG_JETSAM */
7862 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE
:
7863 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE
:
7864 error
= memorystatus_low_mem_privileged_listener(args
->command
);
7868 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
:
7869 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
:
7870 error
= memorystatus_update_inactive_jetsam_priority_band(args
->pid
, args
->command
, args
->flags
? TRUE
: FALSE
);
7872 #endif /* CONFIG_JETSAM */
7884 filt_memorystatusattach(struct knote
*kn
)
7888 kn
->kn_flags
|= EV_CLEAR
;
7889 error
= memorystatus_knote_register(kn
);
7891 kn
->kn_flags
= EV_ERROR
;
7892 kn
->kn_data
= error
;
7898 filt_memorystatusdetach(struct knote
*kn
)
7900 memorystatus_knote_unregister(kn
);
7904 filt_memorystatus(struct knote
*kn __unused
, long hint
)
7908 case kMemorystatusNoPressure
:
7909 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PRESSURE_NORMAL
) {
7910 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PRESSURE_NORMAL
;
7913 case kMemorystatusPressure
:
7914 if (memorystatus_vm_pressure_level
== kVMPressureWarning
|| memorystatus_vm_pressure_level
== kVMPressureUrgent
) {
7915 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PRESSURE_WARN
) {
7916 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PRESSURE_WARN
;
7918 } else if (memorystatus_vm_pressure_level
== kVMPressureCritical
) {
7920 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
) {
7921 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
;
7925 case kMemorystatusLowSwap
:
7926 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_LOW_SWAP
) {
7927 kn
->kn_fflags
= NOTE_MEMORYSTATUS_LOW_SWAP
;
7931 case kMemorystatusProcLimitWarn
:
7932 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
) {
7933 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
;
7937 case kMemorystatusProcLimitCritical
:
7938 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
) {
7939 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
;
7948 return (kn
->kn_fflags
!= 0);
7952 filt_memorystatustouch(struct knote
*kn
, struct kevent_internal_s
*kev
)
7956 memorystatus_klist_lock();
7959 * copy in new kevent settings
7960 * (saving the "desired" data and fflags).
7962 kn
->kn_sfflags
= kev
->fflags
;
7964 if ((kn
->kn_status
& KN_UDATA_SPECIFIC
) == 0)
7965 kn
->kn_udata
= kev
->udata
;
7968 * reset the output flags based on a
7969 * combination of the old events and
7970 * the new desired event list.
7972 //kn->kn_fflags &= kn->kn_sfflags;
7974 res
= (kn
->kn_fflags
!= 0);
7976 memorystatus_klist_unlock();
7982 filt_memorystatusprocess(struct knote
*kn
, struct filt_process_s
*data
, struct kevent_internal_s
*kev
)
7984 #pragma unused(data)
7987 memorystatus_klist_lock();
7988 res
= (kn
->kn_fflags
!= 0);
7990 *kev
= kn
->kn_kevent
;
7991 kn
->kn_flags
|= EV_CLEAR
; /* automatic */
7995 memorystatus_klist_unlock();
8001 memorystatus_klist_lock(void) {
8002 lck_mtx_lock(&memorystatus_klist_mutex
);
8006 memorystatus_klist_unlock(void) {
8007 lck_mtx_unlock(&memorystatus_klist_mutex
);
8011 memorystatus_kevent_init(lck_grp_t
*grp
, lck_attr_t
*attr
) {
8012 lck_mtx_init(&memorystatus_klist_mutex
, grp
, attr
);
8013 klist_init(&memorystatus_klist
);
8017 memorystatus_knote_register(struct knote
*kn
) {
8020 memorystatus_klist_lock();
8022 if (kn
->kn_sfflags
& (NOTE_MEMORYSTATUS_PRESSURE_NORMAL
| NOTE_MEMORYSTATUS_PRESSURE_WARN
|
8023 NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
| NOTE_MEMORYSTATUS_LOW_SWAP
|
8024 NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
| NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
)) {
8026 KNOTE_ATTACH(&memorystatus_klist
, kn
);
8032 memorystatus_klist_unlock();
8038 memorystatus_knote_unregister(struct knote
*kn __unused
) {
8039 memorystatus_klist_lock();
8040 KNOTE_DETACH(&memorystatus_klist
, kn
);
8041 memorystatus_klist_unlock();
8046 #if CONFIG_JETSAM && VM_PRESSURE_EVENTS
8048 memorystatus_issue_pressure_kevent(boolean_t pressured
) {
8049 memorystatus_klist_lock();
8050 KNOTE(&memorystatus_klist
, pressured
? kMemorystatusPressure
: kMemorystatusNoPressure
);
8051 memorystatus_klist_unlock();
8054 #endif /* CONFIG_JETSAM && VM_PRESSURE_EVENTS */
8058 /* Coalition support */
8060 /* sorting info for a particular priority bucket */
8061 typedef struct memstat_sort_info
{
8062 coalition_t msi_coal
;
8063 uint64_t msi_page_count
;
8066 } memstat_sort_info_t
;
8069 * qsort from smallest page count to largest page count
8071 * return < 0 for a < b
8075 static int memstat_asc_cmp(const void *a
, const void *b
)
8077 const memstat_sort_info_t
*msA
= (const memstat_sort_info_t
*)a
;
8078 const memstat_sort_info_t
*msB
= (const memstat_sort_info_t
*)b
;
8080 return (int)((uint64_t)msA
->msi_page_count
- (uint64_t)msB
->msi_page_count
);
8084 * Return the number of pids rearranged during this sort.
8087 memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
)
8089 #define MAX_SORT_PIDS 80
8090 #define MAX_COAL_LEADERS 10
8092 unsigned int b
= bucket_index
;
8096 coalition_t coal
= COALITION_NULL
;
8098 int total_pids_moved
= 0;
8102 * The system is typically under memory pressure when in this
8103 * path, hence, we want to avoid dynamic memory allocation.
8105 memstat_sort_info_t leaders
[MAX_COAL_LEADERS
];
8106 pid_t pid_list
[MAX_SORT_PIDS
];
8108 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8113 * Clear the array that holds coalition leader information
8115 for (i
=0; i
< MAX_COAL_LEADERS
; i
++) {
8116 leaders
[i
].msi_coal
= COALITION_NULL
;
8117 leaders
[i
].msi_page_count
= 0; /* will hold total coalition page count */
8118 leaders
[i
].msi_pid
= 0; /* will hold coalition leader pid */
8119 leaders
[i
].msi_ntasks
= 0; /* will hold the number of tasks in a coalition */
8122 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
8124 if (coalition_is_leader(p
->task
, COALITION_TYPE_JETSAM
, &coal
)) {
8125 if (nleaders
< MAX_COAL_LEADERS
) {
8126 int coal_ntasks
= 0;
8127 uint64_t coal_page_count
= coalition_get_page_count(coal
, &coal_ntasks
);
8128 leaders
[nleaders
].msi_coal
= coal
;
8129 leaders
[nleaders
].msi_page_count
= coal_page_count
;
8130 leaders
[nleaders
].msi_pid
= p
->p_pid
; /* the coalition leader */
8131 leaders
[nleaders
].msi_ntasks
= coal_ntasks
;
8135 * We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions.
8136 * Abandoned coalitions will linger at the tail of the priority band
8137 * when this sort session ends.
8138 * TODO: should this be an assert?
8140 printf("%s: WARNING: more than %d leaders in priority band [%d]\n",
8141 __FUNCTION__
, MAX_COAL_LEADERS
, bucket_index
);
8145 p
=memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
8148 if (nleaders
== 0) {
8149 /* Nothing to sort */
8154 * Sort the coalition leader array, from smallest coalition page count
8155 * to largest coalition page count. When inserted in the priority bucket,
8156 * smallest coalition is handled first, resulting in the last to be jetsammed.
8159 qsort(leaders
, nleaders
, sizeof(memstat_sort_info_t
), memstat_asc_cmp
);
8163 for (i
= 0; i
< nleaders
; i
++) {
8164 printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n",
8165 __FUNCTION__
, i
, nleaders
, leaders
[i
].msi_pid
, leaders
[i
].msi_page_count
,
8166 leaders
[i
].msi_ntasks
);
8171 * During coalition sorting, processes in a priority band are rearranged
8172 * by being re-inserted at the head of the queue. So, when handling a
8173 * list, the first process that gets moved to the head of the queue,
8174 * ultimately gets pushed toward the queue tail, and hence, jetsams last.
8176 * So, for example, the coalition leader is expected to jetsam last,
8177 * after its coalition members. Therefore, the coalition leader is
8178 * inserted at the head of the queue first.
8180 * After processing a coalition, the jetsam order is as follows:
8181 * undefs(jetsam first), extensions, xpc services, leader(jetsam last)
8185 * Coalition members are rearranged in the priority bucket here,
8186 * based on their coalition role.
8188 total_pids_moved
= 0;
8189 for (i
=0; i
< nleaders
; i
++) {
8191 /* a bit of bookkeeping */
8194 /* Coalition leaders are jetsammed last, so move into place first */
8195 pid_list
[0] = leaders
[i
].msi_pid
;
8196 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
, 1);
8198 /* xpc services should jetsam after extensions */
8199 ntasks
= coalition_get_pid_list (leaders
[i
].msi_coal
, COALITION_ROLEMASK_XPC
,
8200 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8203 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8204 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8207 /* extensions should jetsam after unmarked processes */
8208 ntasks
= coalition_get_pid_list (leaders
[i
].msi_coal
, COALITION_ROLEMASK_EXT
,
8209 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8212 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8213 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8216 /* undefined coalition members should be the first to jetsam */
8217 ntasks
= coalition_get_pid_list (leaders
[i
].msi_coal
, COALITION_ROLEMASK_UNDEF
,
8218 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8221 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8222 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8226 if (pids_moved
== leaders
[i
].msi_ntasks
) {
8228 * All the pids in the coalition were found in this band.
8230 printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n", __FUNCTION__
,
8231 pids_moved
, leaders
[i
].msi_ntasks
);
8232 } else if (pids_moved
> leaders
[i
].msi_ntasks
) {
8234 * Apparently new coalition members showed up during the sort?
8236 printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n", __FUNCTION__
,
8237 pids_moved
, leaders
[i
].msi_ntasks
);
8240 * Apparently not all the pids in the coalition were found in this band?
8242 printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n", __FUNCTION__
,
8243 pids_moved
, leaders
[i
].msi_ntasks
);
8247 total_pids_moved
+= pids_moved
;
8251 return(total_pids_moved
);
8256 * Traverse a list of pids, searching for each within the priority band provided.
8257 * If pid is found, move it to the front of the priority band.
8258 * Never searches outside the priority band provided.
8261 * bucket_index - jetsam priority band.
8262 * pid_list - pointer to a list of pids.
8263 * list_sz - number of pids in the list.
8265 * Pid list ordering is important in that,
8266 * pid_list[n] is expected to jetsam ahead of pid_list[n+1].
8267 * The sort_order is set by the coalition default.
8270 * the number of pids found and hence moved within the priority band.
8273 memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
)
8275 memstat_bucket_t
*current_bucket
;
8279 if ((pid_list
== NULL
) || (list_sz
<= 0)) {
8283 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8287 current_bucket
= &memstat_bucket
[bucket_index
];
8288 for (i
=0; i
< list_sz
; i
++) {
8289 unsigned int b
= bucket_index
;
8291 proc_t aProc
= NULL
;
8295 list_index
= ((list_sz
- 1) - i
);
8296 aPid
= pid_list
[list_index
];
8298 /* never search beyond bucket_index provided */
8299 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
8301 if (p
->p_pid
== aPid
) {
8305 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
8308 if (aProc
== NULL
) {
8309 /* pid not found in this band, just skip it */
8312 TAILQ_REMOVE(¤t_bucket
->list
, aProc
, p_memstat_list
);
8313 TAILQ_INSERT_HEAD(¤t_bucket
->list
, aProc
, p_memstat_list
);
8319 #endif /* CONFIG_JETSAM */