2 * Copyright (c) 2013-2017 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <mach/mach_types.h>
30 #include <mach/vm_param.h>
31 #include <mach/mach_vm.h>
32 #include <mach/clock_types.h>
33 #include <sys/errno.h>
34 #include <sys/stackshot.h>
35 #ifdef IMPORTANCE_INHERITANCE
36 #include <ipc/ipc_importance.h>
38 #include <sys/appleapiopts.h>
39 #include <kern/debug.h>
40 #include <kern/block_hint.h>
41 #include <uuid/uuid.h>
43 #include <kdp/kdp_dyld.h>
44 #include <kdp/kdp_en_debugger.h>
46 #include <libsa/types.h>
47 #include <libkern/version.h>
48 #include <libkern/section_keywords.h>
50 #include <string.h> /* bcopy */
52 #include <kern/coalition.h>
53 #include <kern/processor.h>
54 #include <kern/thread.h>
55 #include <kern/thread_group.h>
56 #include <kern/task.h>
57 #include <kern/telemetry.h>
58 #include <kern/clock.h>
59 #include <kern/policy_internal.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_pageout.h>
63 #include <vm/vm_fault.h>
64 #include <vm/vm_shared_region.h>
65 #include <libkern/OSKextLibPrivate.h>
67 #if defined(__x86_64__)
69 #include <i386/cpu_threads.h>
73 #include <pexpert/pexpert.h> /* For gPanicBase/gPanicBase */
77 #include <kern/monotonic.h>
78 #endif /* MONOTONIC */
80 #include <san/kasan.h>
82 extern unsigned int not_in_kdp
;
85 /* indicate to the compiler that some accesses are unaligned */
86 typedef uint64_t unaligned_u64
__attribute__((aligned(1)));
88 extern addr64_t
kdp_vtophys(pmap_t pmap
, addr64_t va
);
91 static kern_return_t stack_snapshot_ret
= 0;
92 static uint32_t stack_snapshot_bytes_traced
= 0;
94 static kcdata_descriptor_t stackshot_kcdata_p
= NULL
;
95 static void *stack_snapshot_buf
;
96 static uint32_t stack_snapshot_bufsize
;
97 int stack_snapshot_pid
;
98 static uint32_t stack_snapshot_flags
;
99 static uint64_t stack_snapshot_delta_since_timestamp
;
100 static boolean_t panic_stackshot
;
102 static boolean_t stack_enable_faulting
= FALSE
;
103 static struct stackshot_fault_stats fault_stats
;
105 static unaligned_u64
* stackshot_duration_outer
;
106 static uint64_t stackshot_microsecs
;
108 void * kernel_stackshot_buf
= NULL
; /* Pointer to buffer for stackshots triggered from the kernel and retrieved later */
109 int kernel_stackshot_buf_size
= 0;
111 void * stackshot_snapbuf
= NULL
; /* Used by stack_snapshot2 (to be removed) */
113 __private_extern__
void stackshot_init( void );
114 static boolean_t
memory_iszero(void *addr
, size_t size
);
116 kern_return_t
stack_microstackshot(user_addr_t tracebuf
, uint32_t tracebuf_size
, uint32_t flags
, int32_t *retval
);
118 uint32_t get_stackshot_estsize(uint32_t prev_size_hint
);
119 kern_return_t
kern_stack_snapshot_internal(int stackshot_config_version
, void *stackshot_config
,
120 size_t stackshot_config_size
, boolean_t stackshot_from_user
);
121 kern_return_t
do_stackshot(void *);
122 void kdp_snapshot_preflight(int pid
, void * tracebuf
, uint32_t tracebuf_size
, uint32_t flags
, kcdata_descriptor_t data_p
, uint64_t since_timestamp
);
123 boolean_t
stackshot_thread_is_idle_worker_unsafe(thread_t thread
);
124 static int kdp_stackshot_kcdata_format(int pid
, uint32_t trace_flags
, uint32_t *pBytesTraced
);
125 uint32_t kdp_stack_snapshot_bytes_traced(void);
126 static void kdp_mem_and_io_snapshot(struct mem_and_io_snapshot
*memio_snap
);
127 static boolean_t
kdp_copyin(vm_map_t map
, uint64_t uaddr
, void *dest
, size_t size
, boolean_t try_fault
, uint32_t *kdp_fault_result
);
128 static boolean_t
kdp_copyin_word(task_t task
, uint64_t addr
, uint64_t *result
, boolean_t try_fault
, uint32_t *kdp_fault_results
);
129 static uint64_t proc_was_throttled_from_task(task_t task
);
130 static void stackshot_thread_wait_owner_info(thread_t thread
, thread_waitinfo_t
* waitinfo
);
131 static int stackshot_thread_has_valid_waitinfo(thread_t thread
);
133 #if CONFIG_COALITIONS
134 static void stackshot_coalition_jetsam_count(void *arg
, int i
, coalition_t coal
);
135 static void stackshot_coalition_jetsam_snapshot(void *arg
, int i
, coalition_t coal
);
136 #endif /* CONFIG_COALITIONS */
139 extern uint32_t workqueue_get_pwq_state_kdp(void *proc
);
141 extern int proc_pid(void *p
);
142 extern uint64_t proc_uniqueid(void *p
);
143 extern uint64_t proc_was_throttled(void *p
);
144 extern uint64_t proc_did_throttle(void *p
);
145 extern int proc_exiting(void *p
);
146 extern int proc_in_teardown(void *p
);
147 static uint64_t proc_did_throttle_from_task(task_t task
);
148 extern void proc_name_kdp(task_t task
, char * buf
, int size
);
149 extern int proc_threadname_kdp(void * uth
, char * buf
, size_t size
);
150 extern void proc_starttime_kdp(void * p
, uint64_t * tv_sec
, uint64_t * tv_usec
, uint64_t * abstime
);
151 extern int memorystatus_get_pressure_status_kdp(void);
152 extern void memorystatus_proc_flags_unsafe(void * v
, boolean_t
*is_dirty
, boolean_t
*is_dirty_tracked
, boolean_t
*allow_idle_exit
);
154 extern int count_busy_buffers(void); /* must track with declaration in bsd/sys/buf_internal.h */
155 extern void bcopy_phys(addr64_t
, addr64_t
, vm_size_t
);
158 extern kern_return_t
stack_microstackshot(user_addr_t tracebuf
, uint32_t tracebuf_size
, uint32_t flags
, int32_t *retval
);
159 #endif /* CONFIG_TELEMETRY */
161 extern kern_return_t
kern_stack_snapshot_with_reason(char* reason
);
162 extern kern_return_t
kern_stack_snapshot_internal(int stackshot_config_version
, void *stackshot_config
, size_t stackshot_config_size
, boolean_t stackshot_from_user
);
165 * Validates that the given address is both a valid page and has
166 * default caching attributes for the current map. Returns
167 * 0 if the address is invalid, and a kernel virtual address for
168 * the given address if it is valid.
170 vm_offset_t
machine_trace_thread_get_kva(vm_offset_t cur_target_addr
, vm_map_t map
, uint32_t *thread_trace_flags
);
172 #define KDP_FAULT_RESULT_PAGED_OUT 0x1 /* some data was unable to be retrieved */
173 #define KDP_FAULT_RESULT_TRIED_FAULT 0x2 /* tried to fault in data */
174 #define KDP_FAULT_RESULT_FAULTED_IN 0x4 /* successfully faulted in data */
177 * Looks up the physical translation for the given address in the target map, attempting
178 * to fault data in if requested and it is not resident. Populates thread_trace_flags if requested
181 vm_offset_t
kdp_find_phys(vm_map_t map
, vm_offset_t target_addr
, boolean_t try_fault
, uint32_t *kdp_fault_results
);
183 static size_t stackshot_strlcpy(char *dst
, const char *src
, size_t maxlen
);
184 static void stackshot_memcpy(void *dst
, const void *src
, size_t len
);
186 /* Clears caching information used by the above validation routine
187 * (in case the current map has been changed or cleared).
189 void machine_trace_thread_clear_validation_cache(void);
191 #define MAX_FRAMES 1000
192 #define MAX_LOADINFOS 500
193 #define TASK_IMP_WALK_LIMIT 20
195 typedef struct thread_snapshot
*thread_snapshot_t
;
196 typedef struct task_snapshot
*task_snapshot_t
;
198 #if CONFIG_KDP_INTERACTIVE_DEBUGGING
199 extern kdp_send_t kdp_en_send_pkt
;
203 * Globals to support machine_trace_thread_get_kva.
205 static vm_offset_t prev_target_page
= 0;
206 static vm_offset_t prev_target_kva
= 0;
207 static boolean_t validate_next_addr
= TRUE
;
210 * Stackshot locking and other defines.
212 static lck_grp_t
*stackshot_subsys_lck_grp
;
213 static lck_grp_attr_t
*stackshot_subsys_lck_grp_attr
;
214 static lck_attr_t
*stackshot_subsys_lck_attr
;
215 static lck_mtx_t stackshot_subsys_mutex
;
217 #define STACKSHOT_SUBSYS_LOCK() lck_mtx_lock(&stackshot_subsys_mutex)
218 #define STACKSHOT_SUBSYS_TRY_LOCK() lck_mtx_try_lock(&stackshot_subsys_mutex)
219 #define STACKSHOT_SUBSYS_UNLOCK() lck_mtx_unlock(&stackshot_subsys_mutex)
221 #define SANE_BOOTPROFILE_TRACEBUF_SIZE (64ULL * 1024ULL * 1024ULL)
222 #define SANE_TRACEBUF_SIZE (8ULL * 1024ULL * 1024ULL)
224 #define TRACEBUF_SIZE_PER_GB (1024ULL * 1024ULL)
226 SECURITY_READ_ONLY_LATE(static uint32_t) max_tracebuf_size
= SANE_TRACEBUF_SIZE
;
229 * We currently set a ceiling of 3 milliseconds spent in the kdp fault path
230 * for non-panic stackshots where faulting is requested.
232 #define KDP_FAULT_PATH_MAX_TIME_PER_STACKSHOT_NSECS (3 * NSEC_PER_MSEC)
234 #define STACKSHOT_SUPP_SIZE (16 * 1024) /* Minimum stackshot size */
235 #define TASK_UUID_AVG_SIZE (16 * sizeof(uuid_t)) /* Average space consumed by UUIDs/task */
238 #define ROUNDUP(x, y) ((((x)+(y)-1)/(y))*(y))
242 * Initialize the mutex governing access to the stack snapshot subsystem
243 * and other stackshot related bits.
245 __private_extern__
void
246 stackshot_init( void )
248 mach_timebase_info_data_t timebase
;
250 stackshot_subsys_lck_grp_attr
= lck_grp_attr_alloc_init();
252 stackshot_subsys_lck_grp
= lck_grp_alloc_init("stackshot_subsys_lock", stackshot_subsys_lck_grp_attr
);
254 stackshot_subsys_lck_attr
= lck_attr_alloc_init();
256 lck_mtx_init(&stackshot_subsys_mutex
, stackshot_subsys_lck_grp
, stackshot_subsys_lck_attr
);
258 clock_timebase_info(&timebase
);
259 fault_stats
.sfs_system_max_fault_time
= ((KDP_FAULT_PATH_MAX_TIME_PER_STACKSHOT_NSECS
* timebase
.denom
) / timebase
.numer
);
261 max_tracebuf_size
= MAX(max_tracebuf_size
, (ROUNDUP(max_mem
, (1024ULL * 1024ULL * 1024ULL)) / TRACEBUF_SIZE_PER_GB
));
263 PE_parse_boot_argn("stackshot_maxsz", &max_tracebuf_size
, sizeof(max_tracebuf_size
));
267 * Method for grabbing timer values safely, in the sense that no infinite loop will occur
268 * Certain flavors of the timer_grab function, which would seem to be the thing to use,
269 * can loop infinitely if called while the timer is in the process of being updated.
270 * Unfortunately, it is (rarely) possible to get inconsistent top and bottom halves of
271 * the timer using this method. This seems insoluble, since stackshot runs in a context
272 * where the timer might be half-updated, and has no way of yielding control just long
273 * enough to finish the update.
277 safe_grab_timer_value(struct timer
*t
)
279 #if defined(__LP64__)
282 uint64_t time
= t
->high_bits
; /* endian independent grab */
283 time
= (time
<< 32) | t
->low_bits
;
289 * Called with interrupts disabled after stackshot context has been
290 * initialized. Updates stack_snapshot_ret.
297 #if defined(__x86_64__)
299 * Since mp_rendezvous and stackshot both attempt to capture cpus then perform an
300 * operation, it's essential to apply mutual exclusion to the other when one
301 * mechanism is in operation, lest there be a deadlock as the mechanisms race to
304 * Further, we assert that invoking stackshot from mp_rendezvous*() is not
305 * allowed, so we check to ensure there there is no rendezvous in progress before
306 * trying to grab the lock (if there is, a deadlock will occur when we try to
307 * grab the lock). This is accomplished by setting cpu_rendezvous_in_progress to
308 * TRUE in the mp rendezvous action function. If stackshot_trap() is called by
309 * a subordinate of the call chain within the mp rendezvous action, this flag will
310 * be set and can be used to detect the inevitable deadlock that would occur
311 * if this thread tried to grab the rendezvous lock.
314 if (current_cpu_datap()->cpu_rendezvous_in_progress
== TRUE
) {
315 panic("Calling stackshot from a rendezvous is not allowed!");
318 mp_rendezvous_lock();
321 rv
= DebuggerTrapWithState(DBOP_STACKSHOT
, NULL
, NULL
, NULL
, 0, NULL
, FALSE
, 0);
323 #if defined(__x86_64__)
324 mp_rendezvous_unlock();
331 stack_snapshot_from_kernel(int pid
, void *buf
, uint32_t size
, uint32_t flags
, uint64_t delta_since_timestamp
, unsigned *bytes_traced
)
333 kern_return_t error
= KERN_SUCCESS
;
336 #if DEVELOPMENT || DEBUG
337 if (kern_feature_override(KF_STACKSHOT_OVRD
) == TRUE
) {
338 error
= KERN_NOT_SUPPORTED
;
342 if ((buf
== NULL
) || (size
<= 0) || (bytes_traced
== NULL
)) {
343 return KERN_INVALID_ARGUMENT
;
346 /* cap in individual stackshot to max_tracebuf_size */
347 if (size
> max_tracebuf_size
) {
348 size
= max_tracebuf_size
;
351 /* Serialize tracing */
352 if (flags
& STACKSHOT_TRYLOCK
) {
353 if (!STACKSHOT_SUBSYS_TRY_LOCK()) {
354 return KERN_LOCK_OWNED
;
357 STACKSHOT_SUBSYS_LOCK();
360 struct kcdata_descriptor kcdata
;
361 uint32_t hdr_tag
= (flags
& STACKSHOT_COLLECT_DELTA_SNAPSHOT
) ?
362 KCDATA_BUFFER_BEGIN_DELTA_STACKSHOT
: KCDATA_BUFFER_BEGIN_STACKSHOT
;
364 error
= kcdata_memory_static_init(&kcdata
, (mach_vm_address_t
)buf
, hdr_tag
, size
,
365 KCFLAG_USE_MEMCOPY
| KCFLAG_NO_AUTO_ENDBUFFER
);
370 istate
= ml_set_interrupts_enabled(FALSE
);
372 /* Preload trace parameters*/
373 kdp_snapshot_preflight(pid
, buf
, size
, flags
, &kcdata
, delta_since_timestamp
);
376 * Trap to the debugger to obtain a coherent stack snapshot; this populates
379 error
= stackshot_trap();
381 ml_set_interrupts_enabled(istate
);
383 *bytes_traced
= kdp_stack_snapshot_bytes_traced();
386 stackshot_kcdata_p
= NULL
;
387 STACKSHOT_SUBSYS_UNLOCK();
393 stack_microstackshot(user_addr_t tracebuf
, uint32_t tracebuf_size
, uint32_t flags
, int32_t *retval
)
395 int error
= KERN_SUCCESS
;
396 uint32_t bytes_traced
= 0;
401 * Control related operations
403 if (flags
& STACKSHOT_GLOBAL_MICROSTACKSHOT_ENABLE
) {
404 telemetry_global_ctl(1);
407 } else if (flags
& STACKSHOT_GLOBAL_MICROSTACKSHOT_DISABLE
) {
408 telemetry_global_ctl(0);
414 * Data related operations
418 if ((((void*)tracebuf
) == NULL
) || (tracebuf_size
== 0)) {
419 error
= KERN_INVALID_ARGUMENT
;
423 STACKSHOT_SUBSYS_LOCK();
425 if (flags
& STACKSHOT_GET_MICROSTACKSHOT
) {
426 if (tracebuf_size
> max_tracebuf_size
) {
427 error
= KERN_INVALID_ARGUMENT
;
431 bytes_traced
= tracebuf_size
;
432 error
= telemetry_gather(tracebuf
, &bytes_traced
,
433 (flags
& STACKSHOT_SET_MICROSTACKSHOT_MARK
) ? TRUE
: FALSE
);
434 *retval
= (int)bytes_traced
;
438 if (flags
& STACKSHOT_GET_BOOT_PROFILE
) {
439 if (tracebuf_size
> SANE_BOOTPROFILE_TRACEBUF_SIZE
) {
440 error
= KERN_INVALID_ARGUMENT
;
444 bytes_traced
= tracebuf_size
;
445 error
= bootprofile_gather(tracebuf
, &bytes_traced
);
446 *retval
= (int)bytes_traced
;
450 STACKSHOT_SUBSYS_UNLOCK();
454 #endif /* CONFIG_TELEMETRY */
457 * Return the estimated size of a stackshot based on the
458 * number of currently running threads and tasks.
461 get_stackshot_estsize(uint32_t prev_size_hint
)
463 vm_size_t thread_total
;
464 vm_size_t task_total
;
465 uint32_t estimated_size
;
467 thread_total
= (threads_count
* sizeof(struct thread_snapshot
));
468 task_total
= (tasks_count
* (sizeof(struct task_snapshot
) + TASK_UUID_AVG_SIZE
));
470 estimated_size
= (uint32_t) VM_MAP_ROUND_PAGE((thread_total
+ task_total
+ STACKSHOT_SUPP_SIZE
), PAGE_MASK
);
471 if (estimated_size
< prev_size_hint
) {
472 estimated_size
= (uint32_t) VM_MAP_ROUND_PAGE(prev_size_hint
, PAGE_MASK
);
475 return estimated_size
;
479 * stackshot_remap_buffer: Utility function to remap bytes_traced bytes starting at stackshotbuf
480 * into the current task's user space and subsequently copy out the address
481 * at which the buffer has been mapped in user space to out_buffer_addr.
483 * Inputs: stackshotbuf - pointer to the original buffer in the kernel's address space
484 * bytes_traced - length of the buffer to remap starting from stackshotbuf
485 * out_buffer_addr - pointer to placeholder where newly mapped buffer will be mapped.
486 * out_size_addr - pointer to be filled in with the size of the buffer
488 * Outputs: ENOSPC if there is not enough free space in the task's address space to remap the buffer
489 * EINVAL for all other errors returned by task_remap_buffer/mach_vm_remap
490 * an error from copyout
493 stackshot_remap_buffer(void *stackshotbuf
, uint32_t bytes_traced
, uint64_t out_buffer_addr
, uint64_t out_size_addr
)
496 mach_vm_offset_t stackshotbuf_user_addr
= (mach_vm_offset_t
)NULL
;
497 vm_prot_t cur_prot
, max_prot
;
499 error
= mach_vm_remap_kernel(get_task_map(current_task()), &stackshotbuf_user_addr
, bytes_traced
, 0,
500 VM_FLAGS_ANYWHERE
, VM_KERN_MEMORY_NONE
, kernel_map
, (mach_vm_offset_t
)stackshotbuf
, FALSE
, &cur_prot
, &max_prot
, VM_INHERIT_DEFAULT
);
502 * If the call to mach_vm_remap fails, we return the appropriate converted error
504 if (error
== KERN_SUCCESS
) {
506 * If we fail to copy out the address or size of the new buffer, we remove the buffer mapping that
507 * we just made in the task's user space.
509 error
= copyout(CAST_DOWN(void *, &stackshotbuf_user_addr
), (user_addr_t
)out_buffer_addr
, sizeof(stackshotbuf_user_addr
));
510 if (error
!= KERN_SUCCESS
) {
511 mach_vm_deallocate(get_task_map(current_task()), stackshotbuf_user_addr
, (mach_vm_size_t
)bytes_traced
);
514 error
= copyout(&bytes_traced
, (user_addr_t
)out_size_addr
, sizeof(bytes_traced
));
515 if (error
!= KERN_SUCCESS
) {
516 mach_vm_deallocate(get_task_map(current_task()), stackshotbuf_user_addr
, (mach_vm_size_t
)bytes_traced
);
524 kern_stack_snapshot_internal(int stackshot_config_version
, void *stackshot_config
, size_t stackshot_config_size
, boolean_t stackshot_from_user
)
527 boolean_t prev_interrupt_state
;
528 uint32_t bytes_traced
= 0;
529 uint32_t stackshotbuf_size
= 0;
530 void * stackshotbuf
= NULL
;
531 kcdata_descriptor_t kcdata_p
= NULL
;
533 void * buf_to_free
= NULL
;
534 int size_to_free
= 0;
536 /* Parsed arguments */
537 uint64_t out_buffer_addr
;
538 uint64_t out_size_addr
;
541 uint64_t since_timestamp
;
542 uint32_t size_hint
= 0;
544 if (stackshot_config
== NULL
) {
545 return KERN_INVALID_ARGUMENT
;
547 #if DEVELOPMENT || DEBUG
548 /* TBD: ask stackshot clients to avoid issuing stackshots in this
549 * configuration in lieu of the kernel feature override.
551 if (kern_feature_override(KF_STACKSHOT_OVRD
) == TRUE
) {
552 return KERN_NOT_SUPPORTED
;
556 switch (stackshot_config_version
) {
557 case STACKSHOT_CONFIG_TYPE
:
558 if (stackshot_config_size
!= sizeof(stackshot_config_t
)) {
559 return KERN_INVALID_ARGUMENT
;
561 stackshot_config_t
*config
= (stackshot_config_t
*) stackshot_config
;
562 out_buffer_addr
= config
->sc_out_buffer_addr
;
563 out_size_addr
= config
->sc_out_size_addr
;
564 pid
= config
->sc_pid
;
565 flags
= config
->sc_flags
;
566 since_timestamp
= config
->sc_delta_timestamp
;
567 if (config
->sc_size
<= max_tracebuf_size
) {
568 size_hint
= config
->sc_size
;
572 return KERN_NOT_SUPPORTED
;
576 * Currently saving a kernel buffer and trylock are only supported from the
579 if (stackshot_from_user
) {
580 if (flags
& (STACKSHOT_TRYLOCK
| STACKSHOT_SAVE_IN_KERNEL_BUFFER
| STACKSHOT_FROM_PANIC
)) {
581 return KERN_NO_ACCESS
;
584 if (!(flags
& STACKSHOT_SAVE_IN_KERNEL_BUFFER
)) {
585 return KERN_NOT_SUPPORTED
;
589 if (!((flags
& STACKSHOT_KCDATA_FORMAT
) || (flags
& STACKSHOT_RETRIEVE_EXISTING_BUFFER
))) {
590 return KERN_NOT_SUPPORTED
;
594 * If we're not saving the buffer in the kernel pointer, we need a place to copy into.
596 if ((!out_buffer_addr
|| !out_size_addr
) && !(flags
& STACKSHOT_SAVE_IN_KERNEL_BUFFER
)) {
597 return KERN_INVALID_ARGUMENT
;
600 if (since_timestamp
!= 0 && ((flags
& STACKSHOT_COLLECT_DELTA_SNAPSHOT
) == 0)) {
601 return KERN_INVALID_ARGUMENT
;
605 if (!mt_core_supported
) {
606 flags
&= ~STACKSHOT_INSTRS_CYCLES
;
608 #else /* MONOTONIC */
609 flags
&= ~STACKSHOT_INSTRS_CYCLES
;
610 #endif /* !MONOTONIC */
612 STACKSHOT_SUBSYS_LOCK();
614 if (flags
& STACKSHOT_SAVE_IN_KERNEL_BUFFER
) {
616 * Don't overwrite an existing stackshot
618 if (kernel_stackshot_buf
!= NULL
) {
619 error
= KERN_MEMORY_PRESENT
;
622 } else if (flags
& STACKSHOT_RETRIEVE_EXISTING_BUFFER
) {
623 if ((kernel_stackshot_buf
== NULL
) || (kernel_stackshot_buf_size
<= 0)) {
624 error
= KERN_NOT_IN_SET
;
627 error
= stackshot_remap_buffer(kernel_stackshot_buf
, kernel_stackshot_buf_size
,
628 out_buffer_addr
, out_size_addr
);
630 * If we successfully remapped the buffer into the user's address space, we
631 * set buf_to_free and size_to_free so the prior kernel mapping will be removed
632 * and then clear the kernel stackshot pointer and associated size.
634 if (error
== KERN_SUCCESS
) {
635 buf_to_free
= kernel_stackshot_buf
;
636 size_to_free
= (int) VM_MAP_ROUND_PAGE(kernel_stackshot_buf_size
, PAGE_MASK
);
637 kernel_stackshot_buf
= NULL
;
638 kernel_stackshot_buf_size
= 0;
644 if (flags
& STACKSHOT_GET_BOOT_PROFILE
) {
645 void *bootprofile
= NULL
;
648 bootprofile_get(&bootprofile
, &len
);
650 if (!bootprofile
|| !len
) {
651 error
= KERN_NOT_IN_SET
;
654 error
= stackshot_remap_buffer(bootprofile
, len
, out_buffer_addr
, out_size_addr
);
658 stackshotbuf_size
= get_stackshot_estsize(size_hint
);
660 for (; stackshotbuf_size
<= max_tracebuf_size
; stackshotbuf_size
<<= 1) {
661 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&stackshotbuf
, stackshotbuf_size
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
662 error
= KERN_RESOURCE_SHORTAGE
;
667 uint32_t hdr_tag
= (flags
& STACKSHOT_COLLECT_DELTA_SNAPSHOT
) ? KCDATA_BUFFER_BEGIN_DELTA_STACKSHOT
: KCDATA_BUFFER_BEGIN_STACKSHOT
;
668 kcdata_p
= kcdata_memory_alloc_init((mach_vm_address_t
)stackshotbuf
, hdr_tag
, stackshotbuf_size
,
669 KCFLAG_USE_MEMCOPY
| KCFLAG_NO_AUTO_ENDBUFFER
);
671 stackshot_duration_outer
= NULL
;
672 uint64_t time_start
= mach_absolute_time();
675 * Disable interrupts and save the current interrupt state.
677 prev_interrupt_state
= ml_set_interrupts_enabled(FALSE
);
680 * Load stackshot parameters.
682 kdp_snapshot_preflight(pid
, stackshotbuf
, stackshotbuf_size
, flags
, kcdata_p
, since_timestamp
);
684 error
= stackshot_trap();
686 ml_set_interrupts_enabled(prev_interrupt_state
);
688 /* record the duration that interupts were disabled */
690 uint64_t time_end
= mach_absolute_time();
691 if (stackshot_duration_outer
) {
692 *stackshot_duration_outer
= time_end
- time_start
;
695 if (error
!= KERN_SUCCESS
) {
696 if (kcdata_p
!= NULL
) {
697 kcdata_memory_destroy(kcdata_p
);
699 stackshot_kcdata_p
= NULL
;
701 kmem_free(kernel_map
, (vm_offset_t
)stackshotbuf
, stackshotbuf_size
);
703 if (error
== KERN_INSUFFICIENT_BUFFER_SIZE
) {
705 * If we didn't allocate a big enough buffer, deallocate and try again.
713 bytes_traced
= kdp_stack_snapshot_bytes_traced();
715 if (bytes_traced
<= 0) {
716 error
= KERN_ABORTED
;
720 assert(bytes_traced
<= stackshotbuf_size
);
721 if (!(flags
& STACKSHOT_SAVE_IN_KERNEL_BUFFER
)) {
722 error
= stackshot_remap_buffer(stackshotbuf
, bytes_traced
, out_buffer_addr
, out_size_addr
);
727 * Save the stackshot in the kernel buffer.
729 kernel_stackshot_buf
= stackshotbuf
;
730 kernel_stackshot_buf_size
= bytes_traced
;
732 * Figure out if we didn't use all the pages in the buffer. If so, we set buf_to_free to the beginning of
733 * the next page after the end of the stackshot in the buffer so that the kmem_free clips the buffer and
734 * update size_to_free for kmem_free accordingly.
736 size_to_free
= stackshotbuf_size
- (int) VM_MAP_ROUND_PAGE(bytes_traced
, PAGE_MASK
);
738 assert(size_to_free
>= 0);
740 if (size_to_free
!= 0) {
741 buf_to_free
= (void *)((uint64_t)stackshotbuf
+ stackshotbuf_size
- size_to_free
);
745 stackshotbuf_size
= 0;
749 if (stackshotbuf_size
> max_tracebuf_size
) {
750 error
= KERN_RESOURCE_SHORTAGE
;
754 if (kcdata_p
!= NULL
) {
755 kcdata_memory_destroy(kcdata_p
);
757 stackshot_kcdata_p
= NULL
;
760 if (stackshotbuf
!= NULL
) {
761 kmem_free(kernel_map
, (vm_offset_t
)stackshotbuf
, stackshotbuf_size
);
763 if (buf_to_free
!= NULL
) {
764 kmem_free(kernel_map
, (vm_offset_t
)buf_to_free
, size_to_free
);
766 STACKSHOT_SUBSYS_UNLOCK();
771 * Cache stack snapshot parameters in preparation for a trace.
774 kdp_snapshot_preflight(int pid
, void * tracebuf
, uint32_t tracebuf_size
, uint32_t flags
,
775 kcdata_descriptor_t data_p
, uint64_t since_timestamp
)
777 uint64_t microsecs
= 0, secs
= 0;
778 clock_get_calendar_microtime((clock_sec_t
*)&secs
, (clock_usec_t
*)µsecs
);
780 stackshot_microsecs
= microsecs
+ (secs
* USEC_PER_SEC
);
781 stack_snapshot_pid
= pid
;
782 stack_snapshot_buf
= tracebuf
;
783 stack_snapshot_bufsize
= tracebuf_size
;
784 stack_snapshot_flags
= flags
;
785 stack_snapshot_delta_since_timestamp
= since_timestamp
;
787 panic_stackshot
= ((flags
& STACKSHOT_FROM_PANIC
) != 0);
789 assert(data_p
!= NULL
);
790 assert(stackshot_kcdata_p
== NULL
);
791 stackshot_kcdata_p
= data_p
;
793 stack_snapshot_bytes_traced
= 0;
797 panic_stackshot_reset_state()
799 stackshot_kcdata_p
= NULL
;
805 return stackshot_kcdata_p
!= NULL
;
809 kdp_stack_snapshot_bytes_traced(void)
811 return stack_snapshot_bytes_traced
;
815 memory_iszero(void *addr
, size_t size
)
817 char *data
= (char *)addr
;
818 for (size_t i
= 0; i
< size
; i
++) {
826 #define kcd_end_address(kcd) ((void *)((uint64_t)((kcd)->kcd_addr_begin) + kcdata_memory_get_used_bytes((kcd))))
827 #define kcd_max_address(kcd) ((void *)((kcd)->kcd_addr_begin + (kcd)->kcd_length))
829 * Use of the kcd_exit_on_error(action) macro requires a local
830 * 'kern_return_t error' variable and 'error_exit' label.
832 #define kcd_exit_on_error(action) \
834 if (KERN_SUCCESS != (error = (action))) { \
835 if (error == KERN_RESOURCE_SHORTAGE) { \
836 error = KERN_INSUFFICIENT_BUFFER_SIZE; \
840 } while (0); /* end kcd_exit_on_error */
843 kcdata_get_task_ss_flags(task_t task
)
845 uint64_t ss_flags
= 0;
846 boolean_t task_64bit_addr
= task_has_64Bit_addr(task
);
848 if (task_64bit_addr
) {
849 ss_flags
|= kUser64_p
;
851 if (!task
->active
|| task_is_a_corpse(task
) || proc_exiting(task
->bsd_info
)) {
852 ss_flags
|= kTerminatedSnapshot
;
854 if (task
->pidsuspended
) {
855 ss_flags
|= kPidSuspended
;
860 if (task
->effective_policy
.tep_darwinbg
== 1) {
861 ss_flags
|= kTaskDarwinBG
;
863 if (task
->requested_policy
.trp_role
== TASK_FOREGROUND_APPLICATION
) {
864 ss_flags
|= kTaskIsForeground
;
866 if (task
->requested_policy
.trp_boosted
== 1) {
867 ss_flags
|= kTaskIsBoosted
;
869 if (task
->effective_policy
.tep_sup_active
== 1) {
870 ss_flags
|= kTaskIsSuppressed
;
872 #if CONFIG_MEMORYSTATUS
874 boolean_t dirty
= FALSE
, dirty_tracked
= FALSE
, allow_idle_exit
= FALSE
;
875 memorystatus_proc_flags_unsafe(task
->bsd_info
, &dirty
, &dirty_tracked
, &allow_idle_exit
);
877 ss_flags
|= kTaskIsDirty
;
880 ss_flags
|= kTaskIsDirtyTracked
;
882 if (allow_idle_exit
) {
883 ss_flags
|= kTaskAllowIdleExit
;
887 if (task
->effective_policy
.tep_tal_engaged
) {
888 ss_flags
|= kTaskTALEngaged
;
891 ss_flags
|= (0x7 & workqueue_get_pwq_state_kdp(task
->bsd_info
)) << 17;
893 #if IMPORTANCE_INHERITANCE
894 if (task
->task_imp_base
) {
895 if (task
->task_imp_base
->iit_donor
) {
896 ss_flags
|= kTaskIsImpDonor
;
898 if (task
->task_imp_base
->iit_live_donor
) {
899 ss_flags
|= kTaskIsLiveImpDonor
;
907 kcdata_record_shared_cache_info(kcdata_descriptor_t kcd
, task_t task
, unaligned_u64
*task_snap_ss_flags
)
909 kern_return_t error
= KERN_SUCCESS
;
910 mach_vm_address_t out_addr
= 0;
912 uint64_t shared_cache_slide
= 0;
913 uint64_t shared_cache_base_address
= 0;
914 uint32_t kdp_fault_results
= 0;
916 assert(task_snap_ss_flags
!= NULL
);
918 if (task
->shared_region
&& ml_validate_nofault((vm_offset_t
)task
->shared_region
, sizeof(struct vm_shared_region
))) {
919 struct vm_shared_region
*sr
= task
->shared_region
;
920 shared_cache_base_address
= sr
->sr_base_address
+ sr
->sr_first_mapping
;
922 *task_snap_ss_flags
|= kTaskSharedRegionInfoUnavailable
;
926 /* We haven't copied in the shared region UUID yet as part of setup */
927 if (!shared_cache_base_address
|| !task
->shared_region
->sr_uuid_copied
) {
932 * No refcounting here, but we are in debugger
933 * context, so that should be safe.
935 shared_cache_slide
= task
->shared_region
->sr_slide_info
.slide
;
937 if (task
->shared_region
== init_task_shared_region
) {
938 /* skip adding shared cache info -- it's the same as the system level one */
942 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_SHAREDCACHE_LOADINFO
, sizeof(struct dyld_uuid_info_64_v2
), &out_addr
));
943 struct dyld_uuid_info_64_v2
*shared_cache_data
= (struct dyld_uuid_info_64_v2
*)out_addr
;
944 shared_cache_data
->imageLoadAddress
= shared_cache_slide
;
945 stackshot_memcpy(shared_cache_data
->imageUUID
, task
->shared_region
->sr_uuid
, sizeof(task
->shared_region
->sr_uuid
));
946 shared_cache_data
->imageSlidBaseAddress
= shared_cache_base_address
;
949 if (kdp_fault_results
& KDP_FAULT_RESULT_PAGED_OUT
) {
950 *task_snap_ss_flags
|= kTaskUUIDInfoMissing
;
953 if (kdp_fault_results
& KDP_FAULT_RESULT_TRIED_FAULT
) {
954 *task_snap_ss_flags
|= kTaskUUIDInfoTriedFault
;
957 if (kdp_fault_results
& KDP_FAULT_RESULT_FAULTED_IN
) {
958 *task_snap_ss_flags
|= kTaskUUIDInfoFaultedIn
;
965 kcdata_record_uuid_info(kcdata_descriptor_t kcd
, task_t task
, uint32_t trace_flags
, boolean_t have_pmap
, unaligned_u64
*task_snap_ss_flags
)
967 boolean_t save_loadinfo_p
= ((trace_flags
& STACKSHOT_SAVE_LOADINFO
) != 0);
968 boolean_t save_kextloadinfo_p
= ((trace_flags
& STACKSHOT_SAVE_KEXT_LOADINFO
) != 0);
969 boolean_t should_fault
= (trace_flags
& STACKSHOT_ENABLE_UUID_FAULTING
);
971 kern_return_t error
= KERN_SUCCESS
;
972 mach_vm_address_t out_addr
= 0;
974 uint32_t uuid_info_count
= 0;
975 mach_vm_address_t uuid_info_addr
= 0;
976 uint64_t uuid_info_timestamp
= 0;
977 uint32_t kdp_fault_results
= 0;
979 assert(task_snap_ss_flags
!= NULL
);
981 int task_pid
= pid_from_task(task
);
982 boolean_t task_64bit_addr
= task_has_64Bit_addr(task
);
984 if (save_loadinfo_p
&& have_pmap
&& task
->active
&& task_pid
> 0) {
985 /* Read the dyld_all_image_infos struct from the task memory to get UUID array count and location */
986 if (task_64bit_addr
) {
987 struct user64_dyld_all_image_infos task_image_infos
;
988 if (kdp_copyin(task
->map
, task
->all_image_info_addr
, &task_image_infos
,
989 sizeof(struct user64_dyld_all_image_infos
), should_fault
, &kdp_fault_results
)) {
990 uuid_info_count
= (uint32_t)task_image_infos
.uuidArrayCount
;
991 uuid_info_addr
= task_image_infos
.uuidArray
;
992 if (task_image_infos
.version
>= DYLD_ALL_IMAGE_INFOS_TIMESTAMP_MINIMUM_VERSION
) {
993 uuid_info_timestamp
= task_image_infos
.timestamp
;
997 struct user32_dyld_all_image_infos task_image_infos
;
998 if (kdp_copyin(task
->map
, task
->all_image_info_addr
, &task_image_infos
,
999 sizeof(struct user32_dyld_all_image_infos
), should_fault
, &kdp_fault_results
)) {
1000 uuid_info_count
= task_image_infos
.uuidArrayCount
;
1001 uuid_info_addr
= task_image_infos
.uuidArray
;
1002 if (task_image_infos
.version
>= DYLD_ALL_IMAGE_INFOS_TIMESTAMP_MINIMUM_VERSION
) {
1003 uuid_info_timestamp
= task_image_infos
.timestamp
;
1009 * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating
1010 * this data structure), we zero the uuid_info_count so that we won't even try to save load info
1013 if (!uuid_info_addr
) {
1014 uuid_info_count
= 0;
1018 if (have_pmap
&& task_pid
== 0) {
1019 if (save_kextloadinfo_p
&& ml_validate_nofault((vm_offset_t
)(gLoadedKextSummaries
), sizeof(OSKextLoadedKextSummaryHeader
))) {
1020 uuid_info_count
= gLoadedKextSummaries
->numSummaries
+ 1; /* include main kernel UUID */
1022 uuid_info_count
= 1; /* include kernelcache UUID (embedded) or kernel UUID (desktop) */
1026 if (task_pid
> 0 && uuid_info_count
> 0 && uuid_info_count
< MAX_LOADINFOS
) {
1027 uint32_t uuid_info_size
= (uint32_t)(task_64bit_addr
? sizeof(struct user64_dyld_uuid_info
) : sizeof(struct user32_dyld_uuid_info
));
1028 uint32_t uuid_info_array_size
= uuid_info_count
* uuid_info_size
;
1030 kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd
, (task_64bit_addr
? KCDATA_TYPE_LIBRARY_LOADINFO64
: KCDATA_TYPE_LIBRARY_LOADINFO
),
1031 uuid_info_size
, uuid_info_count
, &out_addr
));
1033 /* Copy in the UUID info array
1034 * It may be nonresident, in which case just fix up nloadinfos to 0 in the task_snap
1036 if (have_pmap
&& !kdp_copyin(task
->map
, uuid_info_addr
, (void *)out_addr
, uuid_info_array_size
, should_fault
, &kdp_fault_results
)) {
1037 bzero((void *)out_addr
, uuid_info_array_size
);
1039 } else if (task_pid
== 0 && uuid_info_count
> 0 && uuid_info_count
< MAX_LOADINFOS
) {
1040 uintptr_t image_load_address
;
1044 if (kernelcache_uuid_valid
&& !save_kextloadinfo_p
) {
1045 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_KERNELCACHE_LOADINFO
, sizeof(struct dyld_uuid_info_64
), &out_addr
));
1046 struct dyld_uuid_info_64
*kc_uuid
= (struct dyld_uuid_info_64
*)out_addr
;
1047 kc_uuid
->imageLoadAddress
= VM_MIN_KERNEL_AND_KEXT_ADDRESS
;
1048 stackshot_memcpy(&kc_uuid
->imageUUID
, &kernelcache_uuid
, sizeof(uuid_t
));
1051 #endif /* CONFIG_EMBEDDED */
1053 if (!kernel_uuid
|| !ml_validate_nofault((vm_offset_t
)kernel_uuid
, sizeof(uuid_t
))) {
1054 /* Kernel UUID not found or inaccessible */
1058 kcd_exit_on_error(kcdata_get_memory_addr_for_array(
1059 kcd
, (sizeof(kernel_uuid_info
) == sizeof(struct user64_dyld_uuid_info
)) ? KCDATA_TYPE_LIBRARY_LOADINFO64
1060 : KCDATA_TYPE_LIBRARY_LOADINFO
,
1061 sizeof(kernel_uuid_info
), uuid_info_count
, &out_addr
));
1062 kernel_uuid_info
*uuid_info_array
= (kernel_uuid_info
*)out_addr
;
1063 image_load_address
= (uintptr_t)VM_KERNEL_UNSLIDE(vm_kernel_stext
);
1064 uuid_info_array
[0].imageLoadAddress
= image_load_address
;
1065 stackshot_memcpy(&uuid_info_array
[0].imageUUID
, kernel_uuid
, sizeof(uuid_t
));
1067 if (save_kextloadinfo_p
&&
1068 ml_validate_nofault((vm_offset_t
)(gLoadedKextSummaries
), sizeof(OSKextLoadedKextSummaryHeader
)) &&
1069 ml_validate_nofault((vm_offset_t
)(&gLoadedKextSummaries
->summaries
[0]),
1070 gLoadedKextSummaries
->entry_size
* gLoadedKextSummaries
->numSummaries
)) {
1072 for (kexti
= 0; kexti
< gLoadedKextSummaries
->numSummaries
; kexti
++) {
1073 image_load_address
= (uintptr_t)VM_KERNEL_UNSLIDE(gLoadedKextSummaries
->summaries
[kexti
].address
);
1074 uuid_info_array
[kexti
+ 1].imageLoadAddress
= image_load_address
;
1075 stackshot_memcpy(&uuid_info_array
[kexti
+ 1].imageUUID
, &gLoadedKextSummaries
->summaries
[kexti
].uuid
, sizeof(uuid_t
));
1082 if (kdp_fault_results
& KDP_FAULT_RESULT_PAGED_OUT
) {
1083 *task_snap_ss_flags
|= kTaskUUIDInfoMissing
;
1086 if (kdp_fault_results
& KDP_FAULT_RESULT_TRIED_FAULT
) {
1087 *task_snap_ss_flags
|= kTaskUUIDInfoTriedFault
;
1090 if (kdp_fault_results
& KDP_FAULT_RESULT_FAULTED_IN
) {
1091 *task_snap_ss_flags
|= kTaskUUIDInfoFaultedIn
;
1097 static kern_return_t
1098 kcdata_record_task_iostats(kcdata_descriptor_t kcd
, task_t task
)
1100 kern_return_t error
= KERN_SUCCESS
;
1101 mach_vm_address_t out_addr
= 0;
1103 /* I/O Statistics if any counters are non zero */
1104 assert(IO_NUM_PRIORITIES
== STACKSHOT_IO_NUM_PRIORITIES
);
1105 if (task
->task_io_stats
&& !memory_iszero(task
->task_io_stats
, sizeof(struct io_stat_info
))) {
1106 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_IOSTATS
, sizeof(struct io_stats_snapshot
), &out_addr
));
1107 struct io_stats_snapshot
*_iostat
= (struct io_stats_snapshot
*)out_addr
;
1108 _iostat
->ss_disk_reads_count
= task
->task_io_stats
->disk_reads
.count
;
1109 _iostat
->ss_disk_reads_size
= task
->task_io_stats
->disk_reads
.size
;
1110 _iostat
->ss_disk_writes_count
= (task
->task_io_stats
->total_io
.count
- task
->task_io_stats
->disk_reads
.count
);
1111 _iostat
->ss_disk_writes_size
= (task
->task_io_stats
->total_io
.size
- task
->task_io_stats
->disk_reads
.size
);
1112 _iostat
->ss_paging_count
= task
->task_io_stats
->paging
.count
;
1113 _iostat
->ss_paging_size
= task
->task_io_stats
->paging
.size
;
1114 _iostat
->ss_non_paging_count
= (task
->task_io_stats
->total_io
.count
- task
->task_io_stats
->paging
.count
);
1115 _iostat
->ss_non_paging_size
= (task
->task_io_stats
->total_io
.size
- task
->task_io_stats
->paging
.size
);
1116 _iostat
->ss_metadata_count
= task
->task_io_stats
->metadata
.count
;
1117 _iostat
->ss_metadata_size
= task
->task_io_stats
->metadata
.size
;
1118 _iostat
->ss_data_count
= (task
->task_io_stats
->total_io
.count
- task
->task_io_stats
->metadata
.count
);
1119 _iostat
->ss_data_size
= (task
->task_io_stats
->total_io
.size
- task
->task_io_stats
->metadata
.size
);
1120 for (int i
= 0; i
< IO_NUM_PRIORITIES
; i
++) {
1121 _iostat
->ss_io_priority_count
[i
] = task
->task_io_stats
->io_priority
[i
].count
;
1122 _iostat
->ss_io_priority_size
[i
] = task
->task_io_stats
->io_priority
[i
].size
;
1131 static kern_return_t
1132 kcdata_record_task_instrs_cycles(kcdata_descriptor_t kcd
, task_t task
)
1134 uint64_t instrs
= 0, cycles
= 0;
1135 mt_stackshot_task(task
, &instrs
, &cycles
);
1137 kern_return_t error
= KERN_SUCCESS
;
1138 mach_vm_address_t out_addr
= 0;
1139 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_INSTRS_CYCLES
, sizeof(struct instrs_cycles_snapshot
), &out_addr
));
1140 struct instrs_cycles_snapshot
*instrs_cycles
= (struct instrs_cycles_snapshot
*)out_addr
;
1141 instrs_cycles
->ics_instructions
= instrs
;
1142 instrs_cycles
->ics_cycles
= cycles
;
1147 #endif /* MONOTONIC */
1149 static kern_return_t
1150 kcdata_record_task_snapshot(kcdata_descriptor_t kcd
, task_t task
, uint32_t trace_flags
, boolean_t have_pmap
, unaligned_u64
**task_snap_ss_flags
)
1152 boolean_t collect_delta_stackshot
= ((trace_flags
& STACKSHOT_COLLECT_DELTA_SNAPSHOT
) != 0);
1153 boolean_t collect_iostats
= !collect_delta_stackshot
&& !(trace_flags
& STACKSHOT_NO_IO_STATS
);
1155 boolean_t collect_instrs_cycles
= ((trace_flags
& STACKSHOT_INSTRS_CYCLES
) != 0);
1156 #endif /* MONOTONIC */
1157 #if __arm__ || __arm64__
1158 boolean_t collect_asid
= ((trace_flags
& STACKSHOT_ASID
) != 0);
1160 boolean_t collect_pagetables
= ((trace_flags
& STACKSHOT_PAGE_TABLES
) != 0);
1163 kern_return_t error
= KERN_SUCCESS
;
1164 mach_vm_address_t out_addr
= 0;
1165 struct task_snapshot_v2
* cur_tsnap
= NULL
;
1167 assert(task_snap_ss_flags
!= NULL
);
1169 int task_pid
= pid_from_task(task
);
1170 uint64_t task_uniqueid
= get_task_uniqueid(task
);
1171 uint64_t proc_starttime_secs
= 0;
1173 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_TASK_SNAPSHOT
, sizeof(struct task_snapshot_v2
), &out_addr
));
1174 cur_tsnap
= (struct task_snapshot_v2
*)out_addr
;
1175 bzero(cur_tsnap
, sizeof(*cur_tsnap
));
1177 cur_tsnap
->ts_unique_pid
= task_uniqueid
;
1178 cur_tsnap
->ts_ss_flags
= kcdata_get_task_ss_flags(task
);
1179 *task_snap_ss_flags
= (unaligned_u64
*)&cur_tsnap
->ts_ss_flags
;
1180 cur_tsnap
->ts_user_time_in_terminated_threads
= task
->total_user_time
;
1181 cur_tsnap
->ts_system_time_in_terminated_threads
= task
->total_system_time
;
1183 proc_starttime_kdp(task
->bsd_info
, &proc_starttime_secs
, NULL
, NULL
);
1184 cur_tsnap
->ts_p_start_sec
= proc_starttime_secs
;
1185 cur_tsnap
->ts_task_size
= have_pmap
? get_task_phys_footprint(task
) : 0;
1186 cur_tsnap
->ts_max_resident_size
= get_task_resident_max(task
);
1187 cur_tsnap
->ts_was_throttled
= (uint32_t) proc_was_throttled_from_task(task
);
1188 cur_tsnap
->ts_did_throttle
= (uint32_t) proc_did_throttle_from_task(task
);
1190 cur_tsnap
->ts_suspend_count
= task
->suspend_count
;
1191 cur_tsnap
->ts_faults
= task
->faults
;
1192 cur_tsnap
->ts_pageins
= task
->pageins
;
1193 cur_tsnap
->ts_cow_faults
= task
->cow_faults
;
1194 cur_tsnap
->ts_latency_qos
= (task
->effective_policy
.tep_latency_qos
== LATENCY_QOS_TIER_UNSPECIFIED
) ?
1195 LATENCY_QOS_TIER_UNSPECIFIED
: ((0xFF << 16) | task
->effective_policy
.tep_latency_qos
);
1196 cur_tsnap
->ts_pid
= task_pid
;
1198 #if __arm__ || __arm64__
1199 if (collect_asid
&& have_pmap
) {
1200 uint32_t asid
= task
->map
->pmap
->asid
;
1201 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_ASID
, sizeof(uint32_t), &out_addr
));
1202 stackshot_memcpy((void*)out_addr
, &asid
, sizeof(asid
));
1205 if (collect_pagetables
&& have_pmap
) {
1206 #if INTERRUPT_MASKED_DEBUG
1207 // pagetable dumps can be large; reset the interrupt timeout to avoid a panic
1208 ml_spin_debug_clear_self();
1210 size_t bytes_dumped
= pmap_dump_page_tables(task
->map
->pmap
, kcd_end_address(kcd
), kcd_max_address(kcd
));
1211 if (bytes_dumped
== 0) {
1212 error
= KERN_INSUFFICIENT_BUFFER_SIZE
;
1214 } else if (bytes_dumped
== (size_t)-1) {
1215 error
= KERN_NOT_SUPPORTED
;
1218 kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd
, STACKSHOT_KCTYPE_PAGE_TABLES
,
1219 sizeof(uint64_t), (uint32_t)(bytes_dumped
/ sizeof(uint64_t)), &out_addr
));
1223 /* Add the BSD process identifiers */
1224 if (task_pid
!= -1 && task
->bsd_info
!= NULL
) {
1225 proc_name_kdp(task
, cur_tsnap
->ts_p_comm
, sizeof(cur_tsnap
->ts_p_comm
));
1226 #if CONFIG_COALITIONS
1227 if ((trace_flags
& STACKSHOT_SAVE_JETSAM_COALITIONS
) && (task
->coalition
[COALITION_TYPE_JETSAM
] != NULL
)) {
1228 uint64_t jetsam_coal_id
= coalition_id(task
->coalition
[COALITION_TYPE_JETSAM
]);
1229 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_JETSAM_COALITION
, sizeof(jetsam_coal_id
), &out_addr
));
1230 stackshot_memcpy((void*)out_addr
, &jetsam_coal_id
, sizeof(jetsam_coal_id
));
1232 #endif /* CONFIG_COALITIONS */
1234 cur_tsnap
->ts_p_comm
[0] = '\0';
1235 #if IMPORTANCE_INHERITANCE && (DEVELOPMENT || DEBUG)
1236 if (task
->task_imp_base
!= NULL
) {
1237 stackshot_strlcpy(cur_tsnap
->ts_p_comm
, &task
->task_imp_base
->iit_procname
[0],
1238 MIN((int)sizeof(task
->task_imp_base
->iit_procname
), (int)sizeof(cur_tsnap
->ts_p_comm
)));
1240 #endif /* IMPORTANCE_INHERITANCE && (DEVELOPMENT || DEBUG) */
1243 if (collect_iostats
) {
1244 kcd_exit_on_error(kcdata_record_task_iostats(kcd
, task
));
1248 if (collect_instrs_cycles
) {
1249 kcd_exit_on_error(kcdata_record_task_instrs_cycles(kcd
, task
));
1251 #endif /* MONOTONIC */
1257 static kern_return_t
1258 kcdata_record_task_delta_snapshot(kcdata_descriptor_t kcd
, task_t task
, uint32_t trace_flags
, boolean_t have_pmap
, unaligned_u64
**task_snap_ss_flags
)
1261 #pragma unused(trace_flags)
1262 #endif /* !MONOTONIC */
1263 kern_return_t error
= KERN_SUCCESS
;
1264 struct task_delta_snapshot_v2
* cur_tsnap
= NULL
;
1265 mach_vm_address_t out_addr
= 0;
1267 #if __arm__ || __arm64__
1268 boolean_t collect_asid
= ((trace_flags
& STACKSHOT_ASID
) != 0);
1271 boolean_t collect_instrs_cycles
= ((trace_flags
& STACKSHOT_INSTRS_CYCLES
) != 0);
1272 #endif /* MONOTONIC */
1274 uint64_t task_uniqueid
= get_task_uniqueid(task
);
1275 assert(task_snap_ss_flags
!= NULL
);
1277 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_TASK_DELTA_SNAPSHOT
, sizeof(struct task_delta_snapshot_v2
), &out_addr
));
1279 cur_tsnap
= (struct task_delta_snapshot_v2
*)out_addr
;
1281 cur_tsnap
->tds_unique_pid
= task_uniqueid
;
1282 cur_tsnap
->tds_ss_flags
= kcdata_get_task_ss_flags(task
);
1283 *task_snap_ss_flags
= (unaligned_u64
*)&cur_tsnap
->tds_ss_flags
;
1285 cur_tsnap
->tds_user_time_in_terminated_threads
= task
->total_user_time
;
1286 cur_tsnap
->tds_system_time_in_terminated_threads
= task
->total_system_time
;
1288 cur_tsnap
->tds_task_size
= have_pmap
? get_task_phys_footprint(task
) : 0;
1290 cur_tsnap
->tds_max_resident_size
= get_task_resident_max(task
);
1291 cur_tsnap
->tds_suspend_count
= task
->suspend_count
;
1292 cur_tsnap
->tds_faults
= task
->faults
;
1293 cur_tsnap
->tds_pageins
= task
->pageins
;
1294 cur_tsnap
->tds_cow_faults
= task
->cow_faults
;
1295 cur_tsnap
->tds_was_throttled
= (uint32_t)proc_was_throttled_from_task(task
);
1296 cur_tsnap
->tds_did_throttle
= (uint32_t)proc_did_throttle_from_task(task
);
1297 cur_tsnap
->tds_latency_qos
= (task
->effective_policy
.tep_latency_qos
== LATENCY_QOS_TIER_UNSPECIFIED
)
1298 ? LATENCY_QOS_TIER_UNSPECIFIED
1299 : ((0xFF << 16) | task
->effective_policy
.tep_latency_qos
);
1301 #if __arm__ || __arm64__
1302 if (collect_asid
&& have_pmap
) {
1303 uint32_t asid
= task
->map
->pmap
->asid
;
1304 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_ASID
, sizeof(uint32_t), &out_addr
));
1305 stackshot_memcpy((void*)out_addr
, &asid
, sizeof(asid
));
1310 if (collect_instrs_cycles
) {
1311 kcd_exit_on_error(kcdata_record_task_instrs_cycles(kcd
, task
));
1313 #endif /* MONOTONIC */
1319 static kern_return_t
1320 kcdata_record_thread_iostats(kcdata_descriptor_t kcd
, thread_t thread
)
1322 kern_return_t error
= KERN_SUCCESS
;
1323 mach_vm_address_t out_addr
= 0;
1325 /* I/O Statistics */
1326 assert(IO_NUM_PRIORITIES
== STACKSHOT_IO_NUM_PRIORITIES
);
1327 if (thread
->thread_io_stats
&& !memory_iszero(thread
->thread_io_stats
, sizeof(struct io_stat_info
))) {
1328 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_IOSTATS
, sizeof(struct io_stats_snapshot
), &out_addr
));
1329 struct io_stats_snapshot
*_iostat
= (struct io_stats_snapshot
*)out_addr
;
1330 _iostat
->ss_disk_reads_count
= thread
->thread_io_stats
->disk_reads
.count
;
1331 _iostat
->ss_disk_reads_size
= thread
->thread_io_stats
->disk_reads
.size
;
1332 _iostat
->ss_disk_writes_count
= (thread
->thread_io_stats
->total_io
.count
- thread
->thread_io_stats
->disk_reads
.count
);
1333 _iostat
->ss_disk_writes_size
= (thread
->thread_io_stats
->total_io
.size
- thread
->thread_io_stats
->disk_reads
.size
);
1334 _iostat
->ss_paging_count
= thread
->thread_io_stats
->paging
.count
;
1335 _iostat
->ss_paging_size
= thread
->thread_io_stats
->paging
.size
;
1336 _iostat
->ss_non_paging_count
= (thread
->thread_io_stats
->total_io
.count
- thread
->thread_io_stats
->paging
.count
);
1337 _iostat
->ss_non_paging_size
= (thread
->thread_io_stats
->total_io
.size
- thread
->thread_io_stats
->paging
.size
);
1338 _iostat
->ss_metadata_count
= thread
->thread_io_stats
->metadata
.count
;
1339 _iostat
->ss_metadata_size
= thread
->thread_io_stats
->metadata
.size
;
1340 _iostat
->ss_data_count
= (thread
->thread_io_stats
->total_io
.count
- thread
->thread_io_stats
->metadata
.count
);
1341 _iostat
->ss_data_size
= (thread
->thread_io_stats
->total_io
.size
- thread
->thread_io_stats
->metadata
.size
);
1342 for (int i
= 0; i
< IO_NUM_PRIORITIES
; i
++) {
1343 _iostat
->ss_io_priority_count
[i
] = thread
->thread_io_stats
->io_priority
[i
].count
;
1344 _iostat
->ss_io_priority_size
[i
] = thread
->thread_io_stats
->io_priority
[i
].size
;
1352 static kern_return_t
1353 kcdata_record_thread_snapshot(
1354 kcdata_descriptor_t kcd
, thread_t thread
, task_t task
, uint32_t trace_flags
, boolean_t have_pmap
, boolean_t thread_on_core
)
1356 boolean_t dispatch_p
= ((trace_flags
& STACKSHOT_GET_DQ
) != 0);
1357 boolean_t active_kthreads_only_p
= ((trace_flags
& STACKSHOT_ACTIVE_KERNEL_THREADS_ONLY
) != 0);
1358 boolean_t trace_fp_p
= false;
1359 boolean_t collect_delta_stackshot
= ((trace_flags
& STACKSHOT_COLLECT_DELTA_SNAPSHOT
) != 0);
1360 boolean_t collect_iostats
= !collect_delta_stackshot
&& !(trace_flags
& STACKSHOT_NO_IO_STATS
);
1362 boolean_t collect_instrs_cycles
= ((trace_flags
& STACKSHOT_INSTRS_CYCLES
) != 0);
1363 #endif /* MONOTONIC */
1365 kern_return_t error
= KERN_SUCCESS
;
1366 mach_vm_address_t out_addr
= 0;
1367 int saved_count
= 0;
1369 struct thread_snapshot_v4
* cur_thread_snap
= NULL
;
1370 char cur_thread_name
[STACKSHOT_MAX_THREAD_NAME_SIZE
];
1372 const boolean_t is_64bit_data
= task_has_64Bit_data(task
);
1374 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_THREAD_SNAPSHOT
, sizeof(struct thread_snapshot_v4
), &out_addr
));
1375 cur_thread_snap
= (struct thread_snapshot_v4
*)out_addr
;
1377 /* Populate the thread snapshot header */
1378 cur_thread_snap
->ths_thread_id
= thread_tid(thread
);
1379 cur_thread_snap
->ths_wait_event
= VM_KERNEL_UNSLIDE_OR_PERM(thread
->wait_event
);
1380 cur_thread_snap
->ths_continuation
= VM_KERNEL_UNSLIDE(thread
->continuation
);
1381 cur_thread_snap
->ths_total_syscalls
= thread
->syscalls_mach
+ thread
->syscalls_unix
;
1383 if (IPC_VOUCHER_NULL
!= thread
->ith_voucher
) {
1384 cur_thread_snap
->ths_voucher_identifier
= VM_KERNEL_ADDRPERM(thread
->ith_voucher
);
1386 cur_thread_snap
->ths_voucher_identifier
= 0;
1389 cur_thread_snap
->ths_dqserialnum
= 0;
1390 if (dispatch_p
&& (task
!= kernel_task
) && (task
->active
) && have_pmap
) {
1391 uint64_t dqkeyaddr
= thread_dispatchqaddr(thread
);
1392 if (dqkeyaddr
!= 0) {
1393 uint64_t dqaddr
= 0;
1394 boolean_t copyin_ok
= kdp_copyin_word(task
, dqkeyaddr
, &dqaddr
, FALSE
, NULL
);
1395 if (copyin_ok
&& dqaddr
!= 0) {
1396 uint64_t dqserialnumaddr
= dqaddr
+ get_task_dispatchqueue_serialno_offset(task
);
1397 uint64_t dqserialnum
= 0;
1398 copyin_ok
= kdp_copyin_word(task
, dqserialnumaddr
, &dqserialnum
, FALSE
, NULL
);
1400 cur_thread_snap
->ths_ss_flags
|= kHasDispatchSerial
;
1401 cur_thread_snap
->ths_dqserialnum
= dqserialnum
;
1407 tval
= safe_grab_timer_value(&thread
->user_timer
);
1408 cur_thread_snap
->ths_user_time
= tval
;
1409 tval
= safe_grab_timer_value(&thread
->system_timer
);
1411 if (thread
->precise_user_kernel_time
) {
1412 cur_thread_snap
->ths_sys_time
= tval
;
1414 cur_thread_snap
->ths_user_time
+= tval
;
1415 cur_thread_snap
->ths_sys_time
= 0;
1418 cur_thread_snap
->ths_ss_flags
= 0;
1419 if (thread
->thread_tag
& THREAD_TAG_MAINTHREAD
) {
1420 cur_thread_snap
->ths_ss_flags
|= kThreadMain
;
1422 if (thread
->effective_policy
.thep_darwinbg
) {
1423 cur_thread_snap
->ths_ss_flags
|= kThreadDarwinBG
;
1425 if (proc_get_effective_thread_policy(thread
, TASK_POLICY_PASSIVE_IO
)) {
1426 cur_thread_snap
->ths_ss_flags
|= kThreadIOPassive
;
1428 if (thread
->suspend_count
> 0) {
1429 cur_thread_snap
->ths_ss_flags
|= kThreadSuspended
;
1431 if (thread
->options
& TH_OPT_GLOBAL_FORCED_IDLE
) {
1432 cur_thread_snap
->ths_ss_flags
|= kGlobalForcedIdle
;
1434 if (thread_on_core
) {
1435 cur_thread_snap
->ths_ss_flags
|= kThreadOnCore
;
1437 if (stackshot_thread_is_idle_worker_unsafe(thread
)) {
1438 cur_thread_snap
->ths_ss_flags
|= kThreadIdleWorker
;
1441 /* make sure state flags defined in kcdata.h still match internal flags */
1442 static_assert(SS_TH_WAIT
== TH_WAIT
);
1443 static_assert(SS_TH_SUSP
== TH_SUSP
);
1444 static_assert(SS_TH_RUN
== TH_RUN
);
1445 static_assert(SS_TH_UNINT
== TH_UNINT
);
1446 static_assert(SS_TH_TERMINATE
== TH_TERMINATE
);
1447 static_assert(SS_TH_TERMINATE2
== TH_TERMINATE2
);
1448 static_assert(SS_TH_IDLE
== TH_IDLE
);
1450 cur_thread_snap
->ths_last_run_time
= thread
->last_run_time
;
1451 cur_thread_snap
->ths_last_made_runnable_time
= thread
->last_made_runnable_time
;
1452 cur_thread_snap
->ths_state
= thread
->state
;
1453 cur_thread_snap
->ths_sched_flags
= thread
->sched_flags
;
1454 cur_thread_snap
->ths_base_priority
= thread
->base_pri
;
1455 cur_thread_snap
->ths_sched_priority
= thread
->sched_pri
;
1456 cur_thread_snap
->ths_eqos
= thread
->effective_policy
.thep_qos
;
1457 cur_thread_snap
->ths_rqos
= thread
->requested_policy
.thrp_qos
;
1458 cur_thread_snap
->ths_rqos_override
= MAX(thread
->requested_policy
.thrp_qos_override
,
1459 thread
->requested_policy
.thrp_qos_workq_override
);
1460 cur_thread_snap
->ths_io_tier
= proc_get_effective_thread_policy(thread
, TASK_POLICY_IO
);
1461 cur_thread_snap
->ths_thread_t
= VM_KERNEL_UNSLIDE_OR_PERM(thread
);
1463 static_assert(sizeof(thread
->effective_policy
) == sizeof(uint64_t));
1464 static_assert(sizeof(thread
->requested_policy
) == sizeof(uint64_t));
1465 cur_thread_snap
->ths_requested_policy
= *(unaligned_u64
*) &thread
->requested_policy
;
1466 cur_thread_snap
->ths_effective_policy
= *(unaligned_u64
*) &thread
->effective_policy
;
1468 /* if there is thread name then add to buffer */
1469 cur_thread_name
[0] = '\0';
1470 proc_threadname_kdp(thread
->uthread
, cur_thread_name
, STACKSHOT_MAX_THREAD_NAME_SIZE
);
1471 if (strnlen(cur_thread_name
, STACKSHOT_MAX_THREAD_NAME_SIZE
) > 0) {
1472 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_THREAD_NAME
, sizeof(cur_thread_name
), &out_addr
));
1473 stackshot_memcpy((void *)out_addr
, (void *)cur_thread_name
, sizeof(cur_thread_name
));
1476 /* record system, user, and runnable times */
1477 time_value_t user_time
, system_time
, runnable_time
;
1478 thread_read_times(thread
, &user_time
, &system_time
, &runnable_time
);
1479 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_CPU_TIMES
, sizeof(struct stackshot_cpu_times_v2
), &out_addr
));
1480 struct stackshot_cpu_times_v2
*stackshot_cpu_times
= (struct stackshot_cpu_times_v2
*)out_addr
;
1481 *stackshot_cpu_times
= (struct stackshot_cpu_times_v2
){
1482 .user_usec
= (uint64_t)user_time
.seconds
* USEC_PER_SEC
+ user_time
.microseconds
,
1483 .system_usec
= (uint64_t)system_time
.seconds
* USEC_PER_SEC
+ system_time
.microseconds
,
1484 .runnable_usec
= (uint64_t)runnable_time
.seconds
* USEC_PER_SEC
+ runnable_time
.microseconds
,
1487 /* Trace user stack, if any */
1488 if (!active_kthreads_only_p
&& task
->active
&& thread
->task
->map
!= kernel_map
) {
1489 uint32_t thread_snapshot_flags
= 0;
1491 /* Uses 64-bit machine state? */
1492 if (is_64bit_data
) {
1494 out_addr
= (mach_vm_address_t
)kcd_end_address(kcd
);
1495 saved_count
= machine_trace_thread64(thread
, (char *)out_addr
, (char *)kcd_max_address(kcd
), MAX_FRAMES
, TRUE
,
1496 trace_fp_p
, &thread_snapshot_flags
, &sp
);
1497 if (saved_count
> 0) {
1498 int frame_size
= trace_fp_p
? sizeof(struct stack_snapshot_frame64
) : sizeof(uint64_t);
1499 kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd
, trace_fp_p
? STACKSHOT_KCTYPE_USER_STACKFRAME64
1500 : STACKSHOT_KCTYPE_USER_STACKLR64
,
1501 frame_size
, saved_count
/ frame_size
, &out_addr
));
1502 cur_thread_snap
->ths_ss_flags
|= kUser64_p
;
1506 // I'm using 8 here and not sizeof(stack_contents) because this
1507 // code would not work if you just made stack_contents bigger.
1508 vm_offset_t kern_virt_addr
= machine_trace_thread_get_kva(sp
, thread
->task
->map
, &thread_snapshot_flags
);
1509 if (kern_virt_addr
&& (kern_virt_addr
% 8) == 0) {
1510 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_USER_STACKTOP
, sizeof(struct stack_snapshot_stacktop
), &out_addr
));
1511 struct stack_snapshot_stacktop
*stacktop
= (struct stack_snapshot_stacktop
*)out_addr
;
1513 memcpy(stacktop
->stack_contents
, (void*) kern_virt_addr
, 8);
1518 out_addr
= (mach_vm_address_t
)kcd_end_address(kcd
);
1519 saved_count
= machine_trace_thread(thread
, (char *)out_addr
, (char *)kcd_max_address(kcd
), MAX_FRAMES
, TRUE
, trace_fp_p
,
1520 &thread_snapshot_flags
);
1521 if (saved_count
> 0) {
1522 int frame_size
= trace_fp_p
? sizeof(struct stack_snapshot_frame32
) : sizeof(uint32_t);
1523 kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd
, trace_fp_p
? STACKSHOT_KCTYPE_USER_STACKFRAME
1524 : STACKSHOT_KCTYPE_USER_STACKLR
,
1525 frame_size
, saved_count
/ frame_size
, &out_addr
));
1529 if (thread_snapshot_flags
!= 0) {
1530 cur_thread_snap
->ths_ss_flags
|= thread_snapshot_flags
;
1534 /* Call through to the machine specific trace routines
1535 * Frames are added past the snapshot header.
1537 if (thread
->kernel_stack
!= 0) {
1538 uint32_t thread_snapshot_flags
= 0;
1539 #if defined(__LP64__)
1540 out_addr
= (mach_vm_address_t
)kcd_end_address(kcd
);
1541 saved_count
= machine_trace_thread64(thread
, (char *)out_addr
, (char *)kcd_max_address(kcd
), MAX_FRAMES
, FALSE
, trace_fp_p
,
1542 &thread_snapshot_flags
, NULL
);
1543 if (saved_count
> 0) {
1544 int frame_size
= trace_fp_p
? sizeof(struct stack_snapshot_frame64
) : sizeof(uint64_t);
1545 cur_thread_snap
->ths_ss_flags
|= kKernel64_p
;
1546 kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd
, trace_fp_p
? STACKSHOT_KCTYPE_KERN_STACKFRAME64
1547 : STACKSHOT_KCTYPE_KERN_STACKLR64
,
1548 frame_size
, saved_count
/ frame_size
, &out_addr
));
1551 out_addr
= (mach_vm_address_t
)kcd_end_address(kcd
);
1552 saved_count
= machine_trace_thread(thread
, (char *)out_addr
, (char *)kcd_max_address(kcd
), MAX_FRAMES
, FALSE
, trace_fp_p
,
1553 &thread_snapshot_flags
);
1554 if (saved_count
> 0) {
1555 int frame_size
= trace_fp_p
? sizeof(struct stack_snapshot_frame32
) : sizeof(uint32_t);
1557 kcdata_get_memory_addr_for_array(kcd
, trace_fp_p
? STACKSHOT_KCTYPE_KERN_STACKFRAME
: STACKSHOT_KCTYPE_KERN_STACKLR
,
1558 frame_size
, saved_count
/ frame_size
, &out_addr
));
1561 if (thread_snapshot_flags
!= 0) {
1562 cur_thread_snap
->ths_ss_flags
|= thread_snapshot_flags
;
1567 if (collect_iostats
) {
1568 kcd_exit_on_error(kcdata_record_thread_iostats(kcd
, thread
));
1572 if (collect_instrs_cycles
) {
1573 uint64_t instrs
= 0, cycles
= 0;
1574 mt_stackshot_thread(thread
, &instrs
, &cycles
);
1576 kcd_exit_on_error(kcdata_get_memory_addr(kcd
, STACKSHOT_KCTYPE_INSTRS_CYCLES
, sizeof(struct instrs_cycles_snapshot
), &out_addr
));
1577 struct instrs_cycles_snapshot
*instrs_cycles
= (struct instrs_cycles_snapshot
*)out_addr
;
1578 instrs_cycles
->ics_instructions
= instrs
;
1579 instrs_cycles
->ics_cycles
= cycles
;
1581 #endif /* MONOTONIC */
1588 kcdata_record_thread_delta_snapshot(struct thread_delta_snapshot_v3
* cur_thread_snap
, thread_t thread
, boolean_t thread_on_core
)
1590 cur_thread_snap
->tds_thread_id
= thread_tid(thread
);
1591 if (IPC_VOUCHER_NULL
!= thread
->ith_voucher
) {
1592 cur_thread_snap
->tds_voucher_identifier
= VM_KERNEL_ADDRPERM(thread
->ith_voucher
);
1594 cur_thread_snap
->tds_voucher_identifier
= 0;
1597 cur_thread_snap
->tds_ss_flags
= 0;
1598 if (thread
->effective_policy
.thep_darwinbg
) {
1599 cur_thread_snap
->tds_ss_flags
|= kThreadDarwinBG
;
1601 if (proc_get_effective_thread_policy(thread
, TASK_POLICY_PASSIVE_IO
)) {
1602 cur_thread_snap
->tds_ss_flags
|= kThreadIOPassive
;
1604 if (thread
->suspend_count
> 0) {
1605 cur_thread_snap
->tds_ss_flags
|= kThreadSuspended
;
1607 if (thread
->options
& TH_OPT_GLOBAL_FORCED_IDLE
) {
1608 cur_thread_snap
->tds_ss_flags
|= kGlobalForcedIdle
;
1610 if (thread_on_core
) {
1611 cur_thread_snap
->tds_ss_flags
|= kThreadOnCore
;
1613 if (stackshot_thread_is_idle_worker_unsafe(thread
)) {
1614 cur_thread_snap
->tds_ss_flags
|= kThreadIdleWorker
;
1617 cur_thread_snap
->tds_last_made_runnable_time
= thread
->last_made_runnable_time
;
1618 cur_thread_snap
->tds_state
= thread
->state
;
1619 cur_thread_snap
->tds_sched_flags
= thread
->sched_flags
;
1620 cur_thread_snap
->tds_base_priority
= thread
->base_pri
;
1621 cur_thread_snap
->tds_sched_priority
= thread
->sched_pri
;
1622 cur_thread_snap
->tds_eqos
= thread
->effective_policy
.thep_qos
;
1623 cur_thread_snap
->tds_rqos
= thread
->requested_policy
.thrp_qos
;
1624 cur_thread_snap
->tds_rqos_override
= MAX(thread
->requested_policy
.thrp_qos_override
,
1625 thread
->requested_policy
.thrp_qos_workq_override
);
1626 cur_thread_snap
->tds_io_tier
= proc_get_effective_thread_policy(thread
, TASK_POLICY_IO
);
1628 static_assert(sizeof(thread
->effective_policy
) == sizeof(uint64_t));
1629 static_assert(sizeof(thread
->requested_policy
) == sizeof(uint64_t));
1630 cur_thread_snap
->tds_requested_policy
= *(unaligned_u64
*) &thread
->requested_policy
;
1631 cur_thread_snap
->tds_effective_policy
= *(unaligned_u64
*) &thread
->effective_policy
;
1637 * Why 12? 12 strikes a decent balance between allocating a large array on
1638 * the stack and having large kcdata item overheads for recording nonrunable
1641 #define UNIQUEIDSPERFLUSH 12
1643 struct saved_uniqueids
{
1644 uint64_t ids
[UNIQUEIDSPERFLUSH
];
1648 enum thread_classification
{
1649 tc_full_snapshot
, /* take a full snapshot */
1650 tc_delta_snapshot
, /* take a delta snapshot */
1653 static enum thread_classification
1654 classify_thread(thread_t thread
, boolean_t
* thread_on_core_p
, uint32_t trace_flags
)
1656 boolean_t collect_delta_stackshot
= ((trace_flags
& STACKSHOT_COLLECT_DELTA_SNAPSHOT
) != 0);
1658 processor_t last_processor
= thread
->last_processor
;
1660 boolean_t thread_on_core
=
1661 (last_processor
!= PROCESSOR_NULL
&& last_processor
->state
== PROCESSOR_RUNNING
&& last_processor
->active_thread
== thread
);
1663 *thread_on_core_p
= thread_on_core
;
1665 /* Capture the full thread snapshot if this is not a delta stackshot or if the thread has run subsequent to the
1666 * previous full stackshot */
1667 if (!collect_delta_stackshot
|| thread_on_core
|| (thread
->last_run_time
> stack_snapshot_delta_since_timestamp
)) {
1668 return tc_full_snapshot
;
1670 return tc_delta_snapshot
;
1674 struct stackshot_context
{
1676 uint32_t trace_flags
;
1679 static kern_return_t
1680 kdp_stackshot_record_task(struct stackshot_context
*ctx
, task_t task
)
1682 boolean_t active_kthreads_only_p
= ((ctx
->trace_flags
& STACKSHOT_ACTIVE_KERNEL_THREADS_ONLY
) != 0);
1683 boolean_t save_donating_pids_p
= ((ctx
->trace_flags
& STACKSHOT_SAVE_IMP_DONATION_PIDS
) != 0);
1684 boolean_t collect_delta_stackshot
= ((ctx
->trace_flags
& STACKSHOT_COLLECT_DELTA_SNAPSHOT
) != 0);
1685 boolean_t save_owner_info
= ((ctx
->trace_flags
& STACKSHOT_THREAD_WAITINFO
) != 0);
1688 kern_return_t error
= KERN_SUCCESS
;
1689 mach_vm_address_t out_addr
= 0;
1690 int saved_count
= 0;
1693 uint64_t task_uniqueid
= 0;
1694 int num_delta_thread_snapshots
= 0;
1695 int num_nonrunnable_threads
= 0;
1696 int num_waitinfo_threads
= 0;
1698 uint64_t task_start_abstime
= 0;
1699 boolean_t task_delta_stackshot
= FALSE
;
1700 boolean_t have_map
= FALSE
, have_pmap
= FALSE
;
1701 boolean_t some_thread_ran
= FALSE
;
1702 unaligned_u64
*task_snap_ss_flags
= NULL
;
1704 if ((task
== NULL
) || !ml_validate_nofault((vm_offset_t
)task
, sizeof(struct task
))) {
1705 error
= KERN_FAILURE
;
1709 have_map
= (task
->map
!= NULL
) && (ml_validate_nofault((vm_offset_t
)(task
->map
), sizeof(struct _vm_map
)));
1710 have_pmap
= have_map
&& (task
->map
->pmap
!= NULL
) && (ml_validate_nofault((vm_offset_t
)(task
->map
->pmap
), sizeof(struct pmap
)));
1712 task_pid
= pid_from_task(task
);
1713 task_uniqueid
= get_task_uniqueid(task
);
1715 if (!task
->active
|| task_is_a_corpse(task
)) {
1717 * Not interested in terminated tasks without threads, and
1718 * at the moment, stackshot can't handle a task without a name.
1720 if (queue_empty(&task
->threads
) || task_pid
== -1) {
1721 return KERN_SUCCESS
;
1725 if (collect_delta_stackshot
) {
1726 proc_starttime_kdp(task
->bsd_info
, NULL
, NULL
, &task_start_abstime
);
1729 /* Trace everything, unless a process was specified */
1730 if ((ctx
->pid
== -1) || (ctx
->pid
== task_pid
)) {
1731 /* add task snapshot marker */
1732 kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p
, KCDATA_TYPE_CONTAINER_BEGIN
,
1733 STACKSHOT_KCCONTAINER_TASK
, task_uniqueid
));
1735 if (!collect_delta_stackshot
|| (task_start_abstime
== 0) ||
1736 (task_start_abstime
> stack_snapshot_delta_since_timestamp
)) {
1737 kcd_exit_on_error(kcdata_record_task_snapshot(stackshot_kcdata_p
, task
, ctx
->trace_flags
, have_pmap
, &task_snap_ss_flags
));
1739 task_delta_stackshot
= TRUE
;
1740 kcd_exit_on_error(kcdata_record_task_delta_snapshot(stackshot_kcdata_p
, task
, ctx
->trace_flags
, have_pmap
, &task_snap_ss_flags
));
1743 /* Iterate over task threads */
1744 thread_t thread
= THREAD_NULL
;
1745 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
)
1747 uint64_t thread_uniqueid
;
1749 if ((thread
== NULL
) || !ml_validate_nofault((vm_offset_t
)thread
, sizeof(struct thread
))) {
1750 error
= KERN_FAILURE
;
1754 if (active_kthreads_only_p
&& thread
->kernel_stack
== 0) {
1758 thread_uniqueid
= thread_tid(thread
);
1760 boolean_t thread_on_core
;
1761 enum thread_classification thread_classification
= classify_thread(thread
, &thread_on_core
, ctx
->trace_flags
);
1763 switch (thread_classification
) {
1764 case tc_full_snapshot
:
1765 /* add thread marker */
1766 kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p
, KCDATA_TYPE_CONTAINER_BEGIN
,
1767 STACKSHOT_KCCONTAINER_THREAD
, thread_uniqueid
));
1769 kcdata_record_thread_snapshot(stackshot_kcdata_p
, thread
, task
, ctx
->trace_flags
, have_pmap
, thread_on_core
));
1771 /* mark end of thread snapshot data */
1772 kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p
, KCDATA_TYPE_CONTAINER_END
,
1773 STACKSHOT_KCCONTAINER_THREAD
, thread_uniqueid
));
1775 some_thread_ran
= TRUE
;
1778 case tc_delta_snapshot
:
1779 num_delta_thread_snapshots
++;
1783 /* We want to report owner information regardless of whether a thread
1784 * has changed since the last delta, whether it's a normal stackshot,
1785 * or whether it's nonrunnable */
1786 if (save_owner_info
&& stackshot_thread_has_valid_waitinfo(thread
)) {
1787 num_waitinfo_threads
++;
1791 struct thread_delta_snapshot_v3
* delta_snapshots
= NULL
;
1792 int current_delta_snapshot_index
= 0;
1794 if (num_delta_thread_snapshots
> 0) {
1795 kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p
, STACKSHOT_KCTYPE_THREAD_DELTA_SNAPSHOT
,
1796 sizeof(struct thread_delta_snapshot_v3
),
1797 num_delta_thread_snapshots
, &out_addr
));
1798 delta_snapshots
= (struct thread_delta_snapshot_v3
*)out_addr
;
1801 uint64_t * nonrunnable_tids
= NULL
;
1803 if (num_nonrunnable_threads
> 0) {
1804 kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p
, STACKSHOT_KCTYPE_NONRUNNABLE_TIDS
,
1805 sizeof(uint64_t), num_nonrunnable_threads
, &out_addr
));
1806 nonrunnable_tids
= (uint64_t *)out_addr
;
1809 thread_waitinfo_t
*thread_waitinfo
= NULL
;
1810 int current_waitinfo_index
= 0;
1812 if (num_waitinfo_threads
> 0) {
1813 kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p
, STACKSHOT_KCTYPE_THREAD_WAITINFO
,
1814 sizeof(thread_waitinfo_t
), num_waitinfo_threads
, &out_addr
));
1815 thread_waitinfo
= (thread_waitinfo_t
*)out_addr
;
1818 if (num_delta_thread_snapshots
> 0 || num_nonrunnable_threads
> 0 || num_waitinfo_threads
> 0) {
1819 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
)
1821 if (active_kthreads_only_p
&& thread
->kernel_stack
== 0) {
1825 /* If we want owner info, we should capture it regardless of its classification */
1826 if (save_owner_info
&& stackshot_thread_has_valid_waitinfo(thread
)) {
1827 stackshot_thread_wait_owner_info(
1829 &thread_waitinfo
[current_waitinfo_index
++]);
1832 boolean_t thread_on_core
;
1833 enum thread_classification thread_classification
= classify_thread(thread
, &thread_on_core
, ctx
->trace_flags
);
1835 switch (thread_classification
) {
1836 case tc_full_snapshot
:
1837 /* full thread snapshot captured above */
1840 case tc_delta_snapshot
:
1841 kcd_exit_on_error(kcdata_record_thread_delta_snapshot(&delta_snapshots
[current_delta_snapshot_index
++],
1842 thread
, thread_on_core
));
1847 #if DEBUG || DEVELOPMENT
1848 if (current_delta_snapshot_index
!= num_delta_thread_snapshots
) {
1849 panic("delta thread snapshot count mismatch while capturing snapshots for task %p. expected %d, found %d", task
,
1850 num_delta_thread_snapshots
, current_delta_snapshot_index
);
1852 if (current_waitinfo_index
!= num_waitinfo_threads
) {
1853 panic("thread wait info count mismatch while capturing snapshots for task %p. expected %d, found %d", task
,
1854 num_waitinfo_threads
, current_waitinfo_index
);
1859 #if IMPORTANCE_INHERITANCE
1860 if (save_donating_pids_p
) {
1862 ((((mach_vm_address_t
)kcd_end_address(stackshot_kcdata_p
) + (TASK_IMP_WALK_LIMIT
* sizeof(int32_t))) <
1863 (mach_vm_address_t
)kcd_max_address(stackshot_kcdata_p
))
1865 : KERN_RESOURCE_SHORTAGE
));
1866 saved_count
= task_importance_list_pids(task
, TASK_IMP_LIST_DONATING_PIDS
,
1867 (void *)kcd_end_address(stackshot_kcdata_p
), TASK_IMP_WALK_LIMIT
);
1868 if (saved_count
> 0) {
1869 kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p
, STACKSHOT_KCTYPE_DONATING_PIDS
,
1870 sizeof(int32_t), saved_count
, &out_addr
));
1875 if (!collect_delta_stackshot
|| (num_delta_thread_snapshots
!= task
->thread_count
) || !task_delta_stackshot
) {
1877 * Collect shared cache info and UUID info in these scenarios
1878 * 1) a full stackshot
1879 * 2) a delta stackshot where the task started after the previous full stackshot OR
1880 * any thread from the task has run since the previous full stackshot
1883 kcd_exit_on_error(kcdata_record_shared_cache_info(stackshot_kcdata_p
, task
, task_snap_ss_flags
));
1884 kcd_exit_on_error(kcdata_record_uuid_info(stackshot_kcdata_p
, task
, ctx
->trace_flags
, have_pmap
, task_snap_ss_flags
));
1886 /* mark end of task snapshot data */
1887 kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p
, KCDATA_TYPE_CONTAINER_END
, STACKSHOT_KCCONTAINER_TASK
,
1896 static kern_return_t
1897 kdp_stackshot_kcdata_format(int pid
, uint32_t trace_flags
, uint32_t * pBytesTraced
)
1899 kern_return_t error
= KERN_SUCCESS
;
1900 mach_vm_address_t out_addr
= 0;
1901 uint64_t abs_time
= 0, abs_time_end
= 0;
1902 uint64_t *abs_time_addr
= NULL
;
1903 uint64_t system_state_flags
= 0;
1904 task_t task
= TASK_NULL
;
1905 mach_timebase_info_data_t timebase
= {0, 0};
1906 uint32_t length_to_copy
= 0, tmp32
= 0;
1907 abs_time
= mach_absolute_time();
1909 /* process the flags */
1910 boolean_t collect_delta_stackshot
= ((trace_flags
& STACKSHOT_COLLECT_DELTA_SNAPSHOT
) != 0);
1911 boolean_t use_fault_path
= ((trace_flags
& (STACKSHOT_ENABLE_UUID_FAULTING
| STACKSHOT_ENABLE_BT_FAULTING
)) != 0);
1912 stack_enable_faulting
= (trace_flags
& (STACKSHOT_ENABLE_BT_FAULTING
));
1915 /* KEXTs can't be described by just a base address on embedded */
1916 trace_flags
&= ~(STACKSHOT_SAVE_KEXT_LOADINFO
);
1919 struct stackshot_context ctx
= {};
1920 ctx
.trace_flags
= trace_flags
;
1923 if (use_fault_path
) {
1924 fault_stats
.sfs_pages_faulted_in
= 0;
1925 fault_stats
.sfs_time_spent_faulting
= 0;
1926 fault_stats
.sfs_stopped_faulting
= (uint8_t) FALSE
;
1929 if (sizeof(void *) == 8) {
1930 system_state_flags
|= kKernel64_p
;
1933 if (stackshot_kcdata_p
== NULL
|| pBytesTraced
== NULL
) {
1934 error
= KERN_INVALID_ARGUMENT
;
1938 /* setup mach_absolute_time and timebase info -- copy out in some cases and needed to convert since_timestamp to seconds for proc start time */
1939 clock_timebase_info(&timebase
);
1941 /* begin saving data into the buffer */
1943 kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p
, trace_flags
, "stackshot_in_flags"));
1944 kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p
, (uint32_t)pid
, "stackshot_in_pid"));
1945 kcd_exit_on_error(kcdata_add_uint64_with_description(stackshot_kcdata_p
, system_state_flags
, "system_state_flags"));
1948 tmp32
= memorystatus_get_pressure_status_kdp();
1949 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p
, STACKSHOT_KCTYPE_JETSAM_LEVEL
, sizeof(uint32_t), &out_addr
));
1950 stackshot_memcpy((void *)out_addr
, &tmp32
, sizeof(tmp32
));
1953 if (!collect_delta_stackshot
) {
1954 tmp32
= THREAD_POLICY_INTERNAL_STRUCT_VERSION
;
1955 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p
, STACKSHOT_KCTYPE_THREAD_POLICY_VERSION
, sizeof(uint32_t), &out_addr
));
1956 stackshot_memcpy((void *)out_addr
, &tmp32
, sizeof(tmp32
));
1959 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p
, STACKSHOT_KCTYPE_KERN_PAGE_SIZE
, sizeof(uint32_t), &out_addr
));
1960 stackshot_memcpy((void *)out_addr
, &tmp32
, sizeof(tmp32
));
1962 /* save boot-args and osversion string */
1963 length_to_copy
= MIN((uint32_t)(strlen(version
) + 1), OSVERSIZE
);
1964 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p
, STACKSHOT_KCTYPE_OSVERSION
, length_to_copy
, &out_addr
));
1965 stackshot_strlcpy((char*)out_addr
, &version
[0], length_to_copy
);
1967 length_to_copy
= MIN((uint32_t)(strlen(PE_boot_args()) + 1), OSVERSIZE
);
1968 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p
, STACKSHOT_KCTYPE_BOOTARGS
, length_to_copy
, &out_addr
));
1969 stackshot_strlcpy((char*)out_addr
, PE_boot_args(), length_to_copy
);
1971 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p
, KCDATA_TYPE_TIMEBASE
, sizeof(timebase
), &out_addr
));
1972 stackshot_memcpy((void *)out_addr
, &timebase
, sizeof(timebase
));
1974 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p
, STACKSHOT_KCTYPE_DELTA_SINCE_TIMESTAMP
, sizeof(uint64_t), &out_addr
));
1975 stackshot_memcpy((void*)out_addr
, &stack_snapshot_delta_since_timestamp
, sizeof(stack_snapshot_delta_since_timestamp
));
1978 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p
, KCDATA_TYPE_MACH_ABSOLUTE_TIME
, sizeof(uint64_t), &out_addr
));
1979 abs_time_addr
= (uint64_t *)out_addr
;
1980 stackshot_memcpy((void *)abs_time_addr
, &abs_time
, sizeof(uint64_t));
1982 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p
, KCDATA_TYPE_USECS_SINCE_EPOCH
, sizeof(uint64_t), &out_addr
));
1983 stackshot_memcpy((void *)out_addr
, &stackshot_microsecs
, sizeof(uint64_t));
1985 /* record system level shared cache load info (if available) */
1986 if (!collect_delta_stackshot
&& init_task_shared_region
&&
1987 ml_validate_nofault((vm_offset_t
)init_task_shared_region
, sizeof(struct vm_shared_region
))) {
1988 struct dyld_uuid_info_64_v2
*sys_shared_cache_info
= NULL
;
1989 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p
, STACKSHOT_KCTYPE_SHAREDCACHE_LOADINFO
,
1990 sizeof(struct dyld_uuid_info_64_v2
), &out_addr
));
1991 sys_shared_cache_info
= (struct dyld_uuid_info_64_v2
*)out_addr
;
1993 stackshot_memcpy(sys_shared_cache_info
->imageUUID
, &init_task_shared_region
->sr_uuid
, sizeof(init_task_shared_region
->sr_uuid
));
1994 sys_shared_cache_info
->imageLoadAddress
= init_task_shared_region
->sr_slide_info
.slide
;
1995 sys_shared_cache_info
->imageSlidBaseAddress
= init_task_shared_region
->sr_slide_info
.slide
+ init_task_shared_region
->sr_base_address
;
1997 if (trace_flags
& STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT
) {
1999 * Include a map of the system shared cache layout if it has been populated
2000 * (which is only when the system is using a custom shared cache).
2002 if (init_task_shared_region
->sr_images
&& ml_validate_nofault((vm_offset_t
)init_task_shared_region
->sr_images
,
2003 (init_task_shared_region
->sr_images_count
* sizeof(struct dyld_uuid_info_64
)))) {
2004 assert(init_task_shared_region
->sr_images_count
!= 0);
2005 kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p
, STACKSHOT_KCTYPE_SYS_SHAREDCACHE_LAYOUT
,
2006 sizeof(struct dyld_uuid_info_64
),
2007 init_task_shared_region
->sr_images_count
, &out_addr
));
2008 stackshot_memcpy((void*)out_addr
, init_task_shared_region
->sr_images
,
2009 (init_task_shared_region
->sr_images_count
* sizeof(struct dyld_uuid_info_64
)));
2014 /* Add requested information first */
2015 if (trace_flags
& STACKSHOT_GET_GLOBAL_MEM_STATS
) {
2016 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p
, STACKSHOT_KCTYPE_GLOBAL_MEM_STATS
, sizeof(struct mem_and_io_snapshot
), &out_addr
));
2017 kdp_mem_and_io_snapshot((struct mem_and_io_snapshot
*)out_addr
);
2020 #if CONFIG_COALITIONS
2021 int num_coalitions
= 0;
2022 struct jetsam_coalition_snapshot
*coalitions
= NULL
;
2023 /* Iterate over coalitions */
2024 if (trace_flags
& STACKSHOT_SAVE_JETSAM_COALITIONS
) {
2025 if (coalition_iterate_stackshot(stackshot_coalition_jetsam_count
, &num_coalitions
, COALITION_TYPE_JETSAM
) != KERN_SUCCESS
) {
2026 trace_flags
&= ~(STACKSHOT_SAVE_JETSAM_COALITIONS
);
2029 if (trace_flags
& STACKSHOT_SAVE_JETSAM_COALITIONS
) {
2030 if (num_coalitions
> 0) {
2031 kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p
, STACKSHOT_KCTYPE_JETSAM_COALITION_SNAPSHOT
, sizeof(struct jetsam_coalition_snapshot
), num_coalitions
, &out_addr
));
2032 coalitions
= (struct jetsam_coalition_snapshot
*)out_addr
;
2035 if (coalition_iterate_stackshot(stackshot_coalition_jetsam_snapshot
, coalitions
, COALITION_TYPE_JETSAM
) != KERN_SUCCESS
) {
2036 error
= KERN_FAILURE
;
2041 trace_flags
&= ~(STACKSHOT_SAVE_JETSAM_COALITIONS
);
2042 #endif /* CONFIG_COALITIONS */
2044 trace_flags
&= ~(STACKSHOT_THREAD_GROUP
);
2047 /* Iterate over tasks */
2048 queue_iterate(&tasks
, task
, task_t
, tasks
)
2050 error
= kdp_stackshot_record_task(&ctx
, task
);
2056 * Iterate over the tasks in the terminated tasks list. We only inspect
2057 * tasks that have a valid bsd_info pointer where P_LPEXIT is NOT set.
2058 * We're only interested in tasks that have remaining threads (which
2059 * could be involved in a deadlock, etc), and the last thread that tears
2060 * itself down during exit sets P_LPEXIT during proc_exit().
2062 queue_iterate(&terminated_tasks
, task
, task_t
, tasks
)
2064 if (task
->bsd_info
&& !proc_in_teardown(task
->bsd_info
)) {
2065 error
= kdp_stackshot_record_task(&ctx
, task
);
2072 if (use_fault_path
) {
2073 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p
, STACKSHOT_KCTYPE_STACKSHOT_FAULT_STATS
,
2074 sizeof(struct stackshot_fault_stats
), &out_addr
));
2075 stackshot_memcpy((void*)out_addr
, &fault_stats
, sizeof(struct stackshot_fault_stats
));
2078 /* update timestamp of the stackshot */
2079 abs_time_end
= mach_absolute_time();
2080 #if DEVELOPMENT || DEBUG
2081 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p
, STACKSHOT_KCTYPE_STACKSHOT_DURATION
,
2082 sizeof(struct stackshot_duration
), &out_addr
));
2083 struct stackshot_duration
* stackshot_duration
= (struct stackshot_duration
*)out_addr
;
2084 stackshot_duration
->stackshot_duration
= (abs_time_end
- abs_time
);
2085 stackshot_duration
->stackshot_duration_outer
= 0;
2086 stackshot_duration_outer
= (unaligned_u64
*)&stackshot_duration
->stackshot_duration_outer
;
2088 stackshot_memcpy((void *)abs_time_addr
, &abs_time_end
, sizeof(uint64_t));
2090 kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p
, trace_flags
, "stackshot_out_flags"));
2092 kcd_exit_on_error(kcdata_write_buffer_end(stackshot_kcdata_p
));
2094 /* === END of populating stackshot data === */
2096 *pBytesTraced
= (uint32_t) kcdata_memory_get_used_bytes(stackshot_kcdata_p
);
2099 #if INTERRUPT_MASKED_DEBUG
2100 if (!panic_stackshot
) {
2102 * Try to catch instances where stackshot takes too long BEFORE returning from
2105 ml_check_interrupts_disabled_duration(current_thread());
2109 stack_enable_faulting
= FALSE
;
2115 proc_was_throttled_from_task(task_t task
)
2117 uint64_t was_throttled
= 0;
2119 if (task
->bsd_info
) {
2120 was_throttled
= proc_was_throttled(task
->bsd_info
);
2123 return was_throttled
;
2127 proc_did_throttle_from_task(task_t task
)
2129 uint64_t did_throttle
= 0;
2131 if (task
->bsd_info
) {
2132 did_throttle
= proc_did_throttle(task
->bsd_info
);
2135 return did_throttle
;
2139 kdp_mem_and_io_snapshot(struct mem_and_io_snapshot
*memio_snap
)
2141 unsigned int pages_reclaimed
;
2142 unsigned int pages_wanted
;
2145 processor_t processor
;
2146 vm_statistics64_t stat
;
2147 vm_statistics64_data_t host_vm_stat
;
2149 processor
= processor_list
;
2150 stat
= &PROCESSOR_DATA(processor
, vm_stat
);
2151 host_vm_stat
= *stat
;
2153 if (processor_count
> 1) {
2155 * processor_list may be in the process of changing as we are
2156 * attempting a stackshot. Ordinarily it will be lock protected,
2157 * but it is not safe to lock in the context of the debugger.
2158 * Fortunately we never remove elements from the processor list,
2159 * and only add to to the end of the list, so we SHOULD be able
2160 * to walk it. If we ever want to truly tear down processors,
2161 * this will have to change.
2163 while ((processor
= processor
->processor_list
) != NULL
) {
2164 stat
= &PROCESSOR_DATA(processor
, vm_stat
);
2165 host_vm_stat
.compressions
+= stat
->compressions
;
2166 host_vm_stat
.decompressions
+= stat
->decompressions
;
2170 memio_snap
->snapshot_magic
= STACKSHOT_MEM_AND_IO_SNAPSHOT_MAGIC
;
2171 memio_snap
->free_pages
= vm_page_free_count
;
2172 memio_snap
->active_pages
= vm_page_active_count
;
2173 memio_snap
->inactive_pages
= vm_page_inactive_count
;
2174 memio_snap
->purgeable_pages
= vm_page_purgeable_count
;
2175 memio_snap
->wired_pages
= vm_page_wire_count
;
2176 memio_snap
->speculative_pages
= vm_page_speculative_count
;
2177 memio_snap
->throttled_pages
= vm_page_throttled_count
;
2178 memio_snap
->busy_buffer_count
= count_busy_buffers();
2179 memio_snap
->filebacked_pages
= vm_page_pageable_external_count
;
2180 memio_snap
->compressions
= (uint32_t)host_vm_stat
.compressions
;
2181 memio_snap
->decompressions
= (uint32_t)host_vm_stat
.decompressions
;
2182 memio_snap
->compressor_size
= VM_PAGE_COMPRESSOR_COUNT
;
2183 kErr
= mach_vm_pressure_monitor(FALSE
, VM_PRESSURE_TIME_WINDOW
, &pages_reclaimed
, &pages_wanted
);
2186 memio_snap
->pages_wanted
= (uint32_t)pages_wanted
;
2187 memio_snap
->pages_reclaimed
= (uint32_t)pages_reclaimed
;
2188 memio_snap
->pages_wanted_reclaimed_valid
= 1;
2190 memio_snap
->pages_wanted
= 0;
2191 memio_snap
->pages_reclaimed
= 0;
2192 memio_snap
->pages_wanted_reclaimed_valid
= 0;
2197 stackshot_memcpy(void *dst
, const void *src
, size_t len
)
2200 if (panic_stackshot
) {
2201 uint8_t *dest_bytes
= (uint8_t *)dst
;
2202 const uint8_t *src_bytes
= (const uint8_t *)src
;
2203 for (size_t i
= 0; i
< len
; i
++) {
2204 dest_bytes
[i
] = src_bytes
[i
];
2208 memcpy(dst
, src
, len
);
2212 stackshot_strlcpy(char *dst
, const char *src
, size_t maxlen
)
2214 const size_t srclen
= strlen(src
);
2216 if (srclen
< maxlen
) {
2217 stackshot_memcpy(dst
, src
, srclen
+ 1);
2218 } else if (maxlen
!= 0) {
2219 stackshot_memcpy(dst
, src
, maxlen
- 1);
2220 dst
[maxlen
- 1] = '\0';
2228 * Returns the physical address of the specified map:target address,
2229 * using the kdp fault path if requested and the page is not resident.
2232 kdp_find_phys(vm_map_t map
, vm_offset_t target_addr
, boolean_t try_fault
, uint32_t *kdp_fault_results
)
2234 vm_offset_t cur_phys_addr
;
2235 unsigned cur_wimg_bits
;
2236 uint64_t fault_start_time
= 0;
2238 if (map
== VM_MAP_NULL
) {
2242 cur_phys_addr
= kdp_vtophys(map
->pmap
, target_addr
);
2243 if (!pmap_valid_page((ppnum_t
) atop(cur_phys_addr
))) {
2244 if (!try_fault
|| fault_stats
.sfs_stopped_faulting
) {
2245 if (kdp_fault_results
) {
2246 *kdp_fault_results
|= KDP_FAULT_RESULT_PAGED_OUT
;
2253 * The pmap doesn't have a valid page so we start at the top level
2254 * vm map and try a lightweight fault. Update fault path usage stats.
2256 fault_start_time
= mach_absolute_time();
2257 cur_phys_addr
= kdp_lightweight_fault(map
, (target_addr
& ~PAGE_MASK
));
2258 fault_stats
.sfs_time_spent_faulting
+= (mach_absolute_time() - fault_start_time
);
2260 if ((fault_stats
.sfs_time_spent_faulting
>= fault_stats
.sfs_system_max_fault_time
) && !panic_stackshot
) {
2261 fault_stats
.sfs_stopped_faulting
= (uint8_t) TRUE
;
2264 cur_phys_addr
+= (target_addr
& PAGE_MASK
);
2266 if (!pmap_valid_page((ppnum_t
) atop(cur_phys_addr
))) {
2267 if (kdp_fault_results
) {
2268 *kdp_fault_results
|= (KDP_FAULT_RESULT_TRIED_FAULT
| KDP_FAULT_RESULT_PAGED_OUT
);
2274 if (kdp_fault_results
) {
2275 *kdp_fault_results
|= KDP_FAULT_RESULT_FAULTED_IN
;
2278 fault_stats
.sfs_pages_faulted_in
++;
2281 * This check is done in kdp_lightweight_fault for the fault path.
2283 cur_wimg_bits
= pmap_cache_attributes((ppnum_t
) atop(cur_phys_addr
));
2285 if ((cur_wimg_bits
& VM_WIMG_MASK
) != VM_WIMG_DEFAULT
) {
2290 return cur_phys_addr
;
2295 task_t task
, uint64_t addr
, uint64_t *result
, boolean_t try_fault
, uint32_t *kdp_fault_results
)
2297 if (task_has_64Bit_data(task
)) {
2298 return kdp_copyin(task
->map
, addr
, result
, sizeof(uint64_t), try_fault
, kdp_fault_results
);
2301 boolean_t r
= kdp_copyin(task
->map
, addr
, &buf
, sizeof(uint32_t), try_fault
, kdp_fault_results
);
2308 kdp_copyin(vm_map_t map
, uint64_t uaddr
, void *dest
, size_t size
, boolean_t try_fault
, uint32_t *kdp_fault_results
)
2311 char *kvaddr
= dest
;
2314 /* Identify if destination buffer is in panic storage area */
2315 if (panic_stackshot
&& ((vm_offset_t
)dest
>= gPanicBase
) && ((vm_offset_t
)dest
< (gPanicBase
+ gPanicSize
))) {
2316 if (((vm_offset_t
)dest
+ size
) > (gPanicBase
+ gPanicSize
)) {
2323 uint64_t phys_src
= kdp_find_phys(map
, uaddr
, try_fault
, kdp_fault_results
);
2324 uint64_t phys_dest
= kvtophys((vm_offset_t
)kvaddr
);
2325 uint64_t src_rem
= PAGE_SIZE
- (phys_src
& PAGE_MASK
);
2326 uint64_t dst_rem
= PAGE_SIZE
- (phys_dest
& PAGE_MASK
);
2327 size_t cur_size
= (uint32_t) MIN(src_rem
, dst_rem
);
2328 cur_size
= MIN(cur_size
, rem
);
2330 if (phys_src
&& phys_dest
) {
2333 * On embedded the panic buffer is mapped as device memory and doesn't allow
2334 * unaligned accesses. To prevent these, we copy over bytes individually here.
2336 if (panic_stackshot
) {
2337 stackshot_memcpy(kvaddr
, (const void *)phystokv(phys_src
), cur_size
);
2339 #endif /* CONFIG_EMBEDDED */
2340 bcopy_phys(phys_src
, phys_dest
, cur_size
);
2354 do_stackshot(void *context
)
2356 #pragma unused(context)
2359 stack_snapshot_ret
= kdp_stackshot_kcdata_format(stack_snapshot_pid
,
2360 stack_snapshot_flags
,
2361 &stack_snapshot_bytes_traced
);
2364 return stack_snapshot_ret
;
2368 * A fantastical routine that tries to be fast about returning
2369 * translations. Caches the last page we found a translation
2370 * for, so that we can be quick about multiple queries to the
2371 * same page. It turns out this is exactly the workflow
2372 * machine_trace_thread and its relatives tend to throw at us.
2374 * Please zero the nasty global this uses after a bulk lookup;
2375 * this isn't safe across a switch of the map or changes
2378 * This also means that if zero is a valid KVA, we are
2379 * screwed. Sucks to be us. Fortunately, this should never
2383 machine_trace_thread_get_kva(vm_offset_t cur_target_addr
, vm_map_t map
, uint32_t *thread_trace_flags
)
2385 vm_offset_t cur_target_page
;
2386 vm_offset_t cur_phys_addr
;
2387 vm_offset_t kern_virt_target_addr
;
2388 uint32_t kdp_fault_results
= 0;
2390 cur_target_page
= atop(cur_target_addr
);
2392 if ((cur_target_page
!= prev_target_page
) || validate_next_addr
) {
2394 * Alright; it wasn't our previous page. So
2395 * we must validate that there is a page
2396 * table entry for this address under the
2397 * current pmap, and that it has default
2398 * cache attributes (otherwise it may not be
2399 * safe to access it).
2401 cur_phys_addr
= kdp_find_phys(map
, cur_target_addr
, stack_enable_faulting
, &kdp_fault_results
);
2402 if (thread_trace_flags
) {
2403 if (kdp_fault_results
& KDP_FAULT_RESULT_PAGED_OUT
) {
2404 *thread_trace_flags
|= kThreadTruncatedBT
;
2407 if (kdp_fault_results
& KDP_FAULT_RESULT_TRIED_FAULT
) {
2408 *thread_trace_flags
|= kThreadTriedFaultBT
;
2411 if (kdp_fault_results
& KDP_FAULT_RESULT_FAULTED_IN
) {
2412 *thread_trace_flags
|= kThreadFaultedBT
;
2416 if (cur_phys_addr
== 0) {
2420 kern_virt_target_addr
= (vm_offset_t
) PHYSMAP_PTOV(cur_phys_addr
);
2421 #elif __arm__ || __arm64__
2422 kern_virt_target_addr
= phystokv(cur_phys_addr
);
2424 #error Oh come on... we should really unify the physical -> kernel virtual interface
2426 prev_target_page
= cur_target_page
;
2427 prev_target_kva
= (kern_virt_target_addr
& ~PAGE_MASK
);
2428 validate_next_addr
= FALSE
;
2430 /* We found a translation, so stash this page */
2431 kern_virt_target_addr
= prev_target_kva
+ (cur_target_addr
& PAGE_MASK
);
2435 kasan_notify_address(kern_virt_target_addr
, sizeof(uint64_t));
2437 return kern_virt_target_addr
;
2441 machine_trace_thread_clear_validation_cache(void)
2443 validate_next_addr
= TRUE
;
2447 stackshot_thread_is_idle_worker_unsafe(thread_t thread
)
2449 /* When the pthread kext puts a worker thread to sleep, it will
2450 * set kThreadWaitParkedWorkQueue in the block_hint of the thread
2451 * struct. See parkit() in kern/kern_support.c in libpthread.
2453 return (thread
->state
& TH_WAIT
) &&
2454 (thread
->block_hint
== kThreadWaitParkedWorkQueue
);
2457 #if CONFIG_COALITIONS
2459 stackshot_coalition_jetsam_count(void *arg
, int i
, coalition_t coal
)
2461 #pragma unused(i, coal)
2462 unsigned int *coalition_count
= (unsigned int*)arg
;
2463 (*coalition_count
)++;
2467 stackshot_coalition_jetsam_snapshot(void *arg
, int i
, coalition_t coal
)
2469 if (coalition_type(coal
) != COALITION_TYPE_JETSAM
) {
2473 struct jetsam_coalition_snapshot
*coalitions
= (struct jetsam_coalition_snapshot
*)arg
;
2474 struct jetsam_coalition_snapshot
*jcs
= &coalitions
[i
];
2475 task_t leader
= TASK_NULL
;
2476 jcs
->jcs_id
= coalition_id(coal
);
2479 if (coalition_term_requested(coal
)) {
2480 jcs
->jcs_flags
|= kCoalitionTermRequested
;
2482 if (coalition_is_terminated(coal
)) {
2483 jcs
->jcs_flags
|= kCoalitionTerminated
;
2485 if (coalition_is_reaped(coal
)) {
2486 jcs
->jcs_flags
|= kCoalitionReaped
;
2488 if (coalition_is_privileged(coal
)) {
2489 jcs
->jcs_flags
|= kCoalitionPrivileged
;
2493 leader
= kdp_coalition_get_leader(coal
);
2495 jcs
->jcs_leader_task_uniqueid
= get_task_uniqueid(leader
);
2497 jcs
->jcs_leader_task_uniqueid
= 0;
2500 #endif /* CONFIG_COALITIONS */
2503 /* Determine if a thread has waitinfo that stackshot can provide */
2505 stackshot_thread_has_valid_waitinfo(thread_t thread
)
2507 if (!(thread
->state
& TH_WAIT
)) {
2511 switch (thread
->block_hint
) {
2512 // If set to None or is a parked work queue, ignore it
2513 case kThreadWaitParkedWorkQueue
:
2514 case kThreadWaitNone
:
2516 // There is a short window where the pthread kext removes a thread
2517 // from its ksyn wait queue before waking the thread up
2518 case kThreadWaitPThreadMutex
:
2519 case kThreadWaitPThreadRWLockRead
:
2520 case kThreadWaitPThreadRWLockWrite
:
2521 case kThreadWaitPThreadCondVar
:
2522 return kdp_pthread_get_thread_kwq(thread
) != NULL
;
2523 // All other cases are valid block hints if in a wait state
2530 stackshot_thread_wait_owner_info(thread_t thread
, thread_waitinfo_t
*waitinfo
)
2532 waitinfo
->waiter
= thread_tid(thread
);
2533 waitinfo
->wait_type
= thread
->block_hint
;
2534 switch (waitinfo
->wait_type
) {
2535 case kThreadWaitKernelMutex
:
2536 kdp_lck_mtx_find_owner(thread
->waitq
, thread
->wait_event
, waitinfo
);
2538 case kThreadWaitPortReceive
:
2539 kdp_mqueue_recv_find_owner(thread
->waitq
, thread
->wait_event
, waitinfo
);
2541 case kThreadWaitPortSend
:
2542 kdp_mqueue_send_find_owner(thread
->waitq
, thread
->wait_event
, waitinfo
);
2544 case kThreadWaitSemaphore
:
2545 kdp_sema_find_owner(thread
->waitq
, thread
->wait_event
, waitinfo
);
2547 case kThreadWaitUserLock
:
2548 kdp_ulock_find_owner(thread
->waitq
, thread
->wait_event
, waitinfo
);
2550 case kThreadWaitKernelRWLockRead
:
2551 case kThreadWaitKernelRWLockWrite
:
2552 case kThreadWaitKernelRWLockUpgrade
:
2553 kdp_rwlck_find_owner(thread
->waitq
, thread
->wait_event
, waitinfo
);
2555 case kThreadWaitPThreadMutex
:
2556 case kThreadWaitPThreadRWLockRead
:
2557 case kThreadWaitPThreadRWLockWrite
:
2558 case kThreadWaitPThreadCondVar
:
2559 kdp_pthread_find_owner(thread
, waitinfo
);
2561 case kThreadWaitWorkloopSyncWait
:
2562 kdp_workloop_sync_wait_find_owner(thread
, thread
->wait_event
, waitinfo
);
2564 case kThreadWaitOnProcess
:
2565 kdp_wait4_find_process(thread
, thread
->wait_event
, waitinfo
);
2568 waitinfo
->owner
= 0;
2569 waitinfo
->context
= 0;