]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/route.c
03c66249f98b0f0dad6861353c639e669de62f45
[apple/xnu.git] / bsd / net / route.c
1 /*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1980, 1986, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)route.c 8.2 (Berkeley) 11/15/93
61 * $FreeBSD: src/sys/net/route.c,v 1.59.2.3 2001/07/29 19:18:02 ume Exp $
62 */
63
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/socket.h>
70 #include <sys/domain.h>
71 #include <sys/syslog.h>
72 #include <sys/queue.h>
73 #include <sys/mcache.h>
74 #include <sys/protosw.h>
75 #include <sys/kernel.h>
76 #include <kern/lock.h>
77 #include <kern/zalloc.h>
78
79 #include <net/dlil.h>
80 #include <net/if.h>
81 #include <net/route.h>
82 #include <net/ntstat.h>
83
84 #include <netinet/in.h>
85 #include <netinet/in_var.h>
86 #include <netinet/ip_mroute.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/ip6.h>
89
90 #if INET6
91 #include <netinet6/ip6_var.h>
92 #include <netinet6/in6_var.h>
93 #include <netinet6/nd6.h>
94 #endif /* INET6 */
95
96 #include <net/if_dl.h>
97
98 #include <libkern/OSAtomic.h>
99 #include <libkern/OSDebug.h>
100
101 #include <pexpert/pexpert.h>
102
103 #if CONFIG_MACF
104 #include <sys/kauth.h>
105 #endif
106
107 /*
108 * Synchronization notes:
109 *
110 * Routing entries fall under two locking domains: the global routing table
111 * lock (rnh_lock) and the per-entry lock (rt_lock); the latter is a mutex that
112 * resides (statically defined) in the rtentry structure.
113 *
114 * The locking domains for routing are defined as follows:
115 *
116 * The global routing lock is used to serialize all accesses to the radix
117 * trees defined by rt_tables[], as well as the tree of masks. This includes
118 * lookups, insertions and removals of nodes to/from the respective tree.
119 * It is also used to protect certain fields in the route entry that aren't
120 * often modified and/or require global serialization (more details below.)
121 *
122 * The per-route entry lock is used to serialize accesses to several routing
123 * entry fields (more details below.) Acquiring and releasing this lock is
124 * done via RT_LOCK() and RT_UNLOCK() routines.
125 *
126 * In cases where both rnh_lock and rt_lock must be held, the former must be
127 * acquired first in order to maintain lock ordering. It is not a requirement
128 * that rnh_lock be acquired first before rt_lock, but in case both must be
129 * acquired in succession, the correct lock ordering must be followed.
130 *
131 * The fields of the rtentry structure are protected in the following way:
132 *
133 * rt_nodes[]
134 *
135 * - Routing table lock (rnh_lock).
136 *
137 * rt_parent, rt_mask, rt_llinfo_free, rt_tree_genid
138 *
139 * - Set once during creation and never changes; no locks to read.
140 *
141 * rt_flags, rt_genmask, rt_llinfo, rt_rmx, rt_refcnt, rt_gwroute
142 *
143 * - Routing entry lock (rt_lock) for read/write access.
144 *
145 * - Some values of rt_flags are either set once at creation time,
146 * or aren't currently used, and thus checking against them can
147 * be done without rt_lock: RTF_GATEWAY, RTF_HOST, RTF_DYNAMIC,
148 * RTF_DONE, RTF_XRESOLVE, RTF_STATIC, RTF_BLACKHOLE, RTF_ANNOUNCE,
149 * RTF_USETRAILERS, RTF_WASCLONED, RTF_PINNED, RTF_LOCAL,
150 * RTF_BROADCAST, RTF_MULTICAST, RTF_IFSCOPE, RTF_IFREF.
151 *
152 * rt_key, rt_gateway, rt_ifp, rt_ifa
153 *
154 * - Always written/modified with both rnh_lock and rt_lock held.
155 *
156 * - May be read freely with rnh_lock held, else must hold rt_lock
157 * for read access; holding both locks for read is also okay.
158 *
159 * - In the event rnh_lock is not acquired, or is not possible to be
160 * acquired across the operation, setting RTF_CONDEMNED on a route
161 * entry will prevent its rt_key, rt_gateway, rt_ifp and rt_ifa
162 * from being modified. This is typically done on a route that
163 * has been chosen for a removal (from the tree) prior to dropping
164 * the rt_lock, so that those values will remain the same until
165 * the route is freed.
166 *
167 * When rnh_lock is held rt_setgate(), rt_setif(), and rtsetifa() are
168 * single-threaded, thus exclusive. This flag will also prevent the
169 * route from being looked up via rt_lookup().
170 *
171 * rt_genid
172 *
173 * - Assumes that 32-bit writes are atomic; no locks.
174 *
175 * rt_dlt, rt_output
176 *
177 * - Currently unused; no locks.
178 *
179 * Operations on a route entry can be described as follows:
180 *
181 * CREATE an entry with reference count set to 0 as part of RTM_ADD/RESOLVE.
182 *
183 * INSERTION of an entry into the radix tree holds the rnh_lock, checks
184 * for duplicates and then adds the entry. rtrequest returns the entry
185 * after bumping up the reference count to 1 (for the caller).
186 *
187 * LOOKUP of an entry holds the rnh_lock and bumps up the reference count
188 * before returning; it is valid to also bump up the reference count using
189 * RT_ADDREF after the lookup has returned an entry.
190 *
191 * REMOVAL of an entry from the radix tree holds the rnh_lock, removes the
192 * entry but does not decrement the reference count. Removal happens when
193 * the route is explicitly deleted (RTM_DELETE) or when it is in the cached
194 * state and it expires. The route is said to be "down" when it is no
195 * longer present in the tree. Freeing the entry will happen on the last
196 * reference release of such a "down" route.
197 *
198 * RT_ADDREF/RT_REMREF operates on the routing entry which increments/
199 * decrements the reference count, rt_refcnt, atomically on the rtentry.
200 * rt_refcnt is modified only using this routine. The general rule is to
201 * do RT_ADDREF in the function that is passing the entry as an argument,
202 * in order to prevent the entry from being freed by the callee.
203 */
204
205 #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
206
207 extern void kdp_set_gateway_mac(void *gatewaymac);
208
209 __private_extern__ struct rtstat rtstat = { 0, 0, 0, 0, 0 };
210 struct radix_node_head *rt_tables[AF_MAX+1];
211
212 decl_lck_mtx_data(, rnh_lock_data); /* global routing tables mutex */
213 lck_mtx_t *rnh_lock = &rnh_lock_data;
214 static lck_attr_t *rnh_lock_attr;
215 static lck_grp_t *rnh_lock_grp;
216 static lck_grp_attr_t *rnh_lock_grp_attr;
217
218 /* Lock group and attribute for routing entry locks */
219 static lck_attr_t *rte_mtx_attr;
220 static lck_grp_t *rte_mtx_grp;
221 static lck_grp_attr_t *rte_mtx_grp_attr;
222
223 int rttrash = 0; /* routes not in table but not freed */
224
225 unsigned int rte_debug;
226
227 /* Possible flags for rte_debug */
228 #define RTD_DEBUG 0x1 /* enable or disable rtentry debug facility */
229 #define RTD_TRACE 0x2 /* trace alloc, free, refcnt and lock */
230 #define RTD_NO_FREE 0x4 /* don't free (good to catch corruptions) */
231
232 #define RTE_NAME "rtentry" /* name for zone and rt_lock */
233
234 static struct zone *rte_zone; /* special zone for rtentry */
235 #define RTE_ZONE_MAX 65536 /* maximum elements in zone */
236 #define RTE_ZONE_NAME RTE_NAME /* name of rtentry zone */
237
238 #define RTD_INUSE 0xFEEDFACE /* entry is in use */
239 #define RTD_FREED 0xDEADBEEF /* entry is freed */
240
241 /* For gdb */
242 __private_extern__ unsigned int ctrace_stack_size = CTRACE_STACK_SIZE;
243 __private_extern__ unsigned int ctrace_hist_size = CTRACE_HIST_SIZE;
244
245 /*
246 * Debug variant of rtentry structure.
247 */
248 struct rtentry_dbg {
249 struct rtentry rtd_entry; /* rtentry */
250 struct rtentry rtd_entry_saved; /* saved rtentry */
251 uint32_t rtd_inuse; /* in use pattern */
252 uint16_t rtd_refhold_cnt; /* # of rtref */
253 uint16_t rtd_refrele_cnt; /* # of rtunref */
254 uint32_t rtd_lock_cnt; /* # of locks */
255 uint32_t rtd_unlock_cnt; /* # of unlocks */
256 /*
257 * Alloc and free callers.
258 */
259 ctrace_t rtd_alloc;
260 ctrace_t rtd_free;
261 /*
262 * Circular lists of rtref and rtunref callers.
263 */
264 ctrace_t rtd_refhold[CTRACE_HIST_SIZE];
265 ctrace_t rtd_refrele[CTRACE_HIST_SIZE];
266 /*
267 * Circular lists of locks and unlocks.
268 */
269 ctrace_t rtd_lock[CTRACE_HIST_SIZE];
270 ctrace_t rtd_unlock[CTRACE_HIST_SIZE];
271 /*
272 * Trash list linkage
273 */
274 TAILQ_ENTRY(rtentry_dbg) rtd_trash_link;
275 };
276
277 /* List of trash route entries protected by rnh_lock */
278 static TAILQ_HEAD(, rtentry_dbg) rttrash_head;
279
280 static void rte_lock_init(struct rtentry *);
281 static void rte_lock_destroy(struct rtentry *);
282 static inline struct rtentry *rte_alloc_debug(void);
283 static inline void rte_free_debug(struct rtentry *);
284 static inline void rte_lock_debug(struct rtentry_dbg *);
285 static inline void rte_unlock_debug(struct rtentry_dbg *);
286 static void rt_maskedcopy(struct sockaddr *,
287 struct sockaddr *, struct sockaddr *);
288 static void rtable_init(void **);
289 static inline void rtref_audit(struct rtentry_dbg *);
290 static inline void rtunref_audit(struct rtentry_dbg *);
291 static struct rtentry *rtalloc1_common_locked(struct sockaddr *, int, uint32_t,
292 unsigned int);
293 static int rtrequest_common_locked(int, struct sockaddr *,
294 struct sockaddr *, struct sockaddr *, int, struct rtentry **,
295 unsigned int);
296 static struct rtentry *rtalloc1_locked(struct sockaddr *, int, uint32_t);
297 static void rtalloc_ign_common_locked(struct route *, uint32_t, unsigned int);
298 static inline void sin6_set_ifscope(struct sockaddr *, unsigned int);
299 static inline void sin6_set_embedded_ifscope(struct sockaddr *, unsigned int);
300 static inline unsigned int sin6_get_embedded_ifscope(struct sockaddr *);
301 static struct sockaddr *sa_copy(struct sockaddr *, struct sockaddr_storage *,
302 unsigned int *);
303 static struct sockaddr *ma_copy(int, struct sockaddr *,
304 struct sockaddr_storage *, unsigned int);
305 static struct sockaddr *sa_trim(struct sockaddr *, int);
306 static struct radix_node *node_lookup(struct sockaddr *, struct sockaddr *,
307 unsigned int);
308 static struct radix_node *node_lookup_default(int);
309 static struct rtentry *rt_lookup_common(boolean_t, boolean_t, struct sockaddr *,
310 struct sockaddr *, struct radix_node_head *, unsigned int);
311 static int rn_match_ifscope(struct radix_node *, void *);
312 static struct ifaddr *ifa_ifwithroute_common_locked(int,
313 const struct sockaddr *, const struct sockaddr *, unsigned int);
314 static struct rtentry *rte_alloc(void);
315 static void rte_free(struct rtentry *);
316 static void rtfree_common(struct rtentry *, boolean_t);
317 static void rte_if_ref(struct ifnet *, int);
318 static void rt_set_idleref(struct rtentry *);
319 static void rt_clear_idleref(struct rtentry *);
320 static void rt_str4(struct rtentry *, char *, uint32_t, char *, uint32_t);
321 #if INET6
322 static void rt_str6(struct rtentry *, char *, uint32_t, char *, uint32_t);
323 #endif /* INET6 */
324
325 uint32_t route_genid_inet = 0;
326 #if INET6
327 uint32_t route_genid_inet6 = 0;
328 #endif /* INET6 */
329
330 #define ASSERT_SINIFSCOPE(sa) { \
331 if ((sa)->sa_family != AF_INET || \
332 (sa)->sa_len < sizeof (struct sockaddr_in)) \
333 panic("%s: bad sockaddr_in %p\n", __func__, sa); \
334 }
335
336 #define ASSERT_SIN6IFSCOPE(sa) { \
337 if ((sa)->sa_family != AF_INET6 || \
338 (sa)->sa_len < sizeof (struct sockaddr_in6)) \
339 panic("%s: bad sockaddr_in %p\n", __func__, sa); \
340 }
341
342 /*
343 * Argument to leaf-matching routine; at present it is scoped routing
344 * specific but can be expanded in future to include other search filters.
345 */
346 struct matchleaf_arg {
347 unsigned int ifscope; /* interface scope */
348 };
349
350 /*
351 * For looking up the non-scoped default route (sockaddr instead
352 * of sockaddr_in for convenience).
353 */
354 static struct sockaddr sin_def = {
355 sizeof (struct sockaddr_in), AF_INET, { 0, }
356 };
357
358 static struct sockaddr_in6 sin6_def = {
359 sizeof (struct sockaddr_in6), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0
360 };
361
362 /*
363 * Interface index (scope) of the primary interface; determined at
364 * the time when the default, non-scoped route gets added, changed
365 * or deleted. Protected by rnh_lock.
366 */
367 static unsigned int primary_ifscope = IFSCOPE_NONE;
368 static unsigned int primary6_ifscope = IFSCOPE_NONE;
369
370 #define INET_DEFAULT(sa) \
371 ((sa)->sa_family == AF_INET && SIN(sa)->sin_addr.s_addr == 0)
372
373 #define INET6_DEFAULT(sa) \
374 ((sa)->sa_family == AF_INET6 && \
375 IN6_IS_ADDR_UNSPECIFIED(&SIN6(sa)->sin6_addr))
376
377 #define SA_DEFAULT(sa) (INET_DEFAULT(sa) || INET6_DEFAULT(sa))
378 #define RT(r) ((struct rtentry *)r)
379 #define RN(r) ((struct radix_node *)r)
380 #define RT_HOST(r) (RT(r)->rt_flags & RTF_HOST)
381
382 SYSCTL_DECL(_net_route);
383
384 unsigned int rt_verbose; /* verbosity level (0 to disable) */
385 SYSCTL_UINT(_net_route, OID_AUTO, verbose, CTLFLAG_RW | CTLFLAG_LOCKED,
386 &rt_verbose, 0, "");
387
388 static void
389 rtable_init(void **table)
390 {
391 struct domain *dom;
392
393 domain_proto_mtx_lock_assert_held();
394
395 TAILQ_FOREACH(dom, &domains, dom_entry) {
396 if (dom->dom_rtattach != NULL)
397 dom->dom_rtattach(&table[dom->dom_family],
398 dom->dom_rtoffset);
399 }
400 }
401
402 /*
403 * Called by route_dinit().
404 */
405 void
406 route_init(void)
407 {
408 int size;
409
410 #if INET6
411 _CASSERT(offsetof(struct route, ro_rt) ==
412 offsetof(struct route_in6, ro_rt));
413 _CASSERT(offsetof(struct route, ro_srcia) ==
414 offsetof(struct route_in6, ro_srcia));
415 _CASSERT(offsetof(struct route, ro_flags) ==
416 offsetof(struct route_in6, ro_flags));
417 _CASSERT(offsetof(struct route, ro_dst) ==
418 offsetof(struct route_in6, ro_dst));
419 #endif /* INET6 */
420
421 PE_parse_boot_argn("rte_debug", &rte_debug, sizeof (rte_debug));
422 if (rte_debug != 0)
423 rte_debug |= RTD_DEBUG;
424
425 rnh_lock_grp_attr = lck_grp_attr_alloc_init();
426 rnh_lock_grp = lck_grp_alloc_init("route", rnh_lock_grp_attr);
427 rnh_lock_attr = lck_attr_alloc_init();
428 lck_mtx_init(rnh_lock, rnh_lock_grp, rnh_lock_attr);
429
430 rte_mtx_grp_attr = lck_grp_attr_alloc_init();
431 rte_mtx_grp = lck_grp_alloc_init(RTE_NAME, rte_mtx_grp_attr);
432 rte_mtx_attr = lck_attr_alloc_init();
433
434 lck_mtx_lock(rnh_lock);
435 rn_init(); /* initialize all zeroes, all ones, mask table */
436 lck_mtx_unlock(rnh_lock);
437 rtable_init((void **)rt_tables);
438
439 if (rte_debug & RTD_DEBUG)
440 size = sizeof (struct rtentry_dbg);
441 else
442 size = sizeof (struct rtentry);
443
444 rte_zone = zinit(size, RTE_ZONE_MAX * size, 0, RTE_ZONE_NAME);
445 if (rte_zone == NULL) {
446 panic("%s: failed allocating rte_zone", __func__);
447 /* NOTREACHED */
448 }
449 zone_change(rte_zone, Z_EXPAND, TRUE);
450 zone_change(rte_zone, Z_CALLERACCT, FALSE);
451 zone_change(rte_zone, Z_NOENCRYPT, TRUE);
452
453 TAILQ_INIT(&rttrash_head);
454 }
455
456 /*
457 * Given a route, determine whether or not it is the non-scoped default
458 * route; dst typically comes from rt_key(rt) but may be coming from
459 * a separate place when rt is in the process of being created.
460 */
461 boolean_t
462 rt_primary_default(struct rtentry *rt, struct sockaddr *dst)
463 {
464 return (SA_DEFAULT(dst) && !(rt->rt_flags & RTF_IFSCOPE));
465 }
466
467 /*
468 * Set the ifscope of the primary interface; caller holds rnh_lock.
469 */
470 void
471 set_primary_ifscope(int af, unsigned int ifscope)
472 {
473 if (af == AF_INET)
474 primary_ifscope = ifscope;
475 else
476 primary6_ifscope = ifscope;
477 }
478
479 /*
480 * Return the ifscope of the primary interface; caller holds rnh_lock.
481 */
482 unsigned int
483 get_primary_ifscope(int af)
484 {
485 return (af == AF_INET ? primary_ifscope : primary6_ifscope);
486 }
487
488 /*
489 * Set the scope ID of a given a sockaddr_in.
490 */
491 void
492 sin_set_ifscope(struct sockaddr *sa, unsigned int ifscope)
493 {
494 /* Caller must pass in sockaddr_in */
495 ASSERT_SINIFSCOPE(sa);
496
497 SINIFSCOPE(sa)->sin_scope_id = ifscope;
498 }
499
500 /*
501 * Set the scope ID of given a sockaddr_in6.
502 */
503 static inline void
504 sin6_set_ifscope(struct sockaddr *sa, unsigned int ifscope)
505 {
506 /* Caller must pass in sockaddr_in6 */
507 ASSERT_SIN6IFSCOPE(sa);
508
509 SIN6IFSCOPE(sa)->sin6_scope_id = ifscope;
510 }
511
512 /*
513 * Given a sockaddr_in, return the scope ID to the caller.
514 */
515 unsigned int
516 sin_get_ifscope(struct sockaddr *sa)
517 {
518 /* Caller must pass in sockaddr_in */
519 ASSERT_SINIFSCOPE(sa);
520
521 return (SINIFSCOPE(sa)->sin_scope_id);
522 }
523
524 /*
525 * Given a sockaddr_in6, return the scope ID to the caller.
526 */
527 unsigned int
528 sin6_get_ifscope(struct sockaddr *sa)
529 {
530 /* Caller must pass in sockaddr_in6 */
531 ASSERT_SIN6IFSCOPE(sa);
532
533 return (SIN6IFSCOPE(sa)->sin6_scope_id);
534 }
535
536 static inline void
537 sin6_set_embedded_ifscope(struct sockaddr *sa, unsigned int ifscope)
538 {
539 /* Caller must pass in sockaddr_in6 */
540 ASSERT_SIN6IFSCOPE(sa);
541 VERIFY(IN6_IS_SCOPE_EMBED(&(SIN6(sa)->sin6_addr)));
542
543 SIN6(sa)->sin6_addr.s6_addr16[1] = htons(ifscope);
544 }
545
546 static inline unsigned int
547 sin6_get_embedded_ifscope(struct sockaddr *sa)
548 {
549 /* Caller must pass in sockaddr_in6 */
550 ASSERT_SIN6IFSCOPE(sa);
551
552 return (ntohs(SIN6(sa)->sin6_addr.s6_addr16[1]));
553 }
554
555 /*
556 * Copy a sockaddr_{in,in6} src to a dst storage and set scope ID into dst.
557 *
558 * To clear the scope ID, pass is a NULL pifscope. To set the scope ID, pass
559 * in a non-NULL pifscope with non-zero ifscope. Otherwise if pifscope is
560 * non-NULL and ifscope is IFSCOPE_NONE, the existing scope ID is left intact.
561 * In any case, the effective scope ID value is returned to the caller via
562 * pifscope, if it is non-NULL.
563 */
564 static struct sockaddr *
565 sa_copy(struct sockaddr *src, struct sockaddr_storage *dst,
566 unsigned int *pifscope)
567 {
568 int af = src->sa_family;
569 unsigned int ifscope = (pifscope != NULL) ? *pifscope : IFSCOPE_NONE;
570
571 VERIFY(af == AF_INET || af == AF_INET6);
572
573 bzero(dst, sizeof (*dst));
574
575 if (af == AF_INET) {
576 bcopy(src, dst, sizeof (struct sockaddr_in));
577 if (pifscope == NULL || ifscope != IFSCOPE_NONE)
578 sin_set_ifscope(SA(dst), ifscope);
579 } else {
580 bcopy(src, dst, sizeof (struct sockaddr_in6));
581 if (pifscope != NULL &&
582 IN6_IS_SCOPE_EMBED(&SIN6(dst)->sin6_addr)) {
583 unsigned int eifscope;
584 /*
585 * If the address contains the embedded scope ID,
586 * use that as the value for sin6_scope_id as long
587 * the caller doesn't insist on clearing it (by
588 * passing NULL) or setting it.
589 */
590 eifscope = sin6_get_embedded_ifscope(SA(dst));
591 if (eifscope != IFSCOPE_NONE && ifscope == IFSCOPE_NONE)
592 ifscope = eifscope;
593 sin6_set_ifscope(SA(dst), ifscope);
594 /*
595 * If sin6_scope_id is set but the address doesn't
596 * contain the equivalent embedded value, set it.
597 */
598 if (ifscope != IFSCOPE_NONE && eifscope != ifscope)
599 sin6_set_embedded_ifscope(SA(dst), ifscope);
600 } else if (pifscope == NULL || ifscope != IFSCOPE_NONE) {
601 sin6_set_ifscope(SA(dst), ifscope);
602 }
603 }
604
605 if (pifscope != NULL) {
606 *pifscope = (af == AF_INET) ? sin_get_ifscope(SA(dst)) :
607 sin6_get_ifscope(SA(dst));
608 }
609
610 return (SA(dst));
611 }
612
613 /*
614 * Copy a mask from src to a dst storage and set scope ID into dst.
615 */
616 static struct sockaddr *
617 ma_copy(int af, struct sockaddr *src, struct sockaddr_storage *dst,
618 unsigned int ifscope)
619 {
620 VERIFY(af == AF_INET || af == AF_INET6);
621
622 bzero(dst, sizeof (*dst));
623 rt_maskedcopy(src, SA(dst), src);
624
625 /*
626 * The length of the mask sockaddr would need to be adjusted
627 * to cover the additional {sin,sin6}_ifscope field; when ifscope
628 * is IFSCOPE_NONE, we'd end up clearing the scope ID field on
629 * the destination mask in addition to extending the length
630 * of the sockaddr, as a side effect. This is okay, as any
631 * trailing zeroes would be skipped by rn_addmask prior to
632 * inserting or looking up the mask in the mask tree.
633 */
634 if (af == AF_INET) {
635 SINIFSCOPE(dst)->sin_scope_id = ifscope;
636 SINIFSCOPE(dst)->sin_len =
637 offsetof(struct sockaddr_inifscope, sin_scope_id) +
638 sizeof (SINIFSCOPE(dst)->sin_scope_id);
639 } else {
640 SIN6IFSCOPE(dst)->sin6_scope_id = ifscope;
641 SIN6IFSCOPE(dst)->sin6_len =
642 offsetof(struct sockaddr_in6, sin6_scope_id) +
643 sizeof (SIN6IFSCOPE(dst)->sin6_scope_id);
644 }
645
646 return (SA(dst));
647 }
648
649 /*
650 * Trim trailing zeroes on a sockaddr and update its length.
651 */
652 static struct sockaddr *
653 sa_trim(struct sockaddr *sa, int skip)
654 {
655 caddr_t cp, base = (caddr_t)sa + skip;
656
657 if (sa->sa_len <= skip)
658 return (sa);
659
660 for (cp = base + (sa->sa_len - skip); cp > base && cp[-1] == 0; )
661 cp--;
662
663 sa->sa_len = (cp - base) + skip;
664 if (sa->sa_len < skip) {
665 /* Must not happen, and if so, panic */
666 panic("%s: broken logic (sa_len %d < skip %d )", __func__,
667 sa->sa_len, skip);
668 /* NOTREACHED */
669 } else if (sa->sa_len == skip) {
670 /* If we end up with all zeroes, then there's no mask */
671 sa->sa_len = 0;
672 }
673
674 return (sa);
675 }
676
677 /*
678 * Called by rtm_msg{1,2} routines to "scrub" socket address structures of
679 * kernel private information, so that clients of the routing socket will
680 * not be confused by the presence of the information, or the side effect of
681 * the increased length due to that. The source sockaddr is not modified;
682 * instead, the scrubbing happens on the destination sockaddr storage that
683 * is passed in by the caller.
684 *
685 * Scrubbing entails:
686 * - removing embedded scope identifiers from network mask and destination
687 * IPv4 and IPv6 socket addresses
688 * - optionally removing global scope interface hardware addresses from
689 * link-layer interface addresses when the MAC framework check fails.
690 */
691 struct sockaddr *
692 rtm_scrub(int type, int idx, struct sockaddr *hint, struct sockaddr *sa,
693 void *buf, uint32_t buflen, kauth_cred_t *credp)
694 {
695 struct sockaddr_storage *ss = (struct sockaddr_storage *)buf;
696 struct sockaddr *ret = sa;
697
698 VERIFY(buf != NULL && buflen >= sizeof (*ss));
699 bzero(buf, buflen);
700
701 switch (idx) {
702 case RTAX_DST:
703 /*
704 * If this is for an AF_INET/AF_INET6 destination address,
705 * call sa_copy() to clear the scope ID field.
706 */
707 if (sa->sa_family == AF_INET &&
708 SINIFSCOPE(sa)->sin_scope_id != IFSCOPE_NONE) {
709 ret = sa_copy(sa, ss, NULL);
710 } else if (sa->sa_family == AF_INET6 &&
711 SIN6IFSCOPE(sa)->sin6_scope_id != IFSCOPE_NONE) {
712 ret = sa_copy(sa, ss, NULL);
713 }
714 break;
715
716 case RTAX_NETMASK: {
717 int skip, af;
718 /*
719 * If this is for a mask, we can't tell whether or not there
720 * is an valid scope ID value, as the span of bytes between
721 * sa_len and the beginning of the mask (offset of sin_addr in
722 * the case of AF_INET, or sin6_addr for AF_INET6) may be
723 * filled with all-ones by rn_addmask(), and hence we cannot
724 * rely on sa_family. Because of this, we use the sa_family
725 * of the hint sockaddr (RTAX_{DST,IFA}) as indicator as to
726 * whether or not the mask is to be treated as one for AF_INET
727 * or AF_INET6. Clearing the scope ID field involves setting
728 * it to IFSCOPE_NONE followed by calling sa_trim() to trim
729 * trailing zeroes from the storage sockaddr, which reverses
730 * what was done earlier by ma_copy() on the source sockaddr.
731 */
732 if (hint == NULL ||
733 ((af = hint->sa_family) != AF_INET && af != AF_INET6))
734 break; /* nothing to do */
735
736 skip = (af == AF_INET) ?
737 offsetof(struct sockaddr_in, sin_addr) :
738 offsetof(struct sockaddr_in6, sin6_addr);
739
740 if (sa->sa_len > skip && sa->sa_len <= sizeof (*ss)) {
741 bcopy(sa, ss, sa->sa_len);
742 /*
743 * Don't use {sin,sin6}_set_ifscope() as sa_family
744 * and sa_len for the netmask might not be set to
745 * the corresponding expected values of the hint.
746 */
747 if (hint->sa_family == AF_INET)
748 SINIFSCOPE(ss)->sin_scope_id = IFSCOPE_NONE;
749 else
750 SIN6IFSCOPE(ss)->sin6_scope_id = IFSCOPE_NONE;
751 ret = sa_trim(SA(ss), skip);
752
753 /*
754 * For AF_INET6 mask, set sa_len appropriately unless
755 * this is requested via systl_dumpentry(), in which
756 * case we return the raw value.
757 */
758 if (hint->sa_family == AF_INET6 &&
759 type != RTM_GET && type != RTM_GET2)
760 SA(ret)->sa_len = sizeof (struct sockaddr_in6);
761 }
762 break;
763 }
764 case RTAX_IFP: {
765 if (sa->sa_family == AF_LINK && credp) {
766 struct sockaddr_dl *sdl = SDL(buf);
767 const void *bytes;
768 size_t size;
769
770 /* caller should handle worst case: SOCK_MAXADDRLEN */
771 VERIFY(buflen >= sa->sa_len);
772
773 bcopy(sa, sdl, sa->sa_len);
774 bytes = dlil_ifaddr_bytes(sdl, &size, credp);
775 if (bytes != CONST_LLADDR(sdl)) {
776 VERIFY(sdl->sdl_alen == size);
777 bcopy(bytes, LLADDR(sdl), size);
778 }
779 ret = (struct sockaddr *)sdl;
780 }
781 break;
782 }
783 default:
784 break;
785 }
786
787 return (ret);
788 }
789
790 /*
791 * Callback leaf-matching routine for rn_matchaddr_args used
792 * for looking up an exact match for a scoped route entry.
793 */
794 static int
795 rn_match_ifscope(struct radix_node *rn, void *arg)
796 {
797 struct rtentry *rt = (struct rtentry *)rn;
798 struct matchleaf_arg *ma = arg;
799 int af = rt_key(rt)->sa_family;
800
801 if (!(rt->rt_flags & RTF_IFSCOPE) || (af != AF_INET && af != AF_INET6))
802 return (0);
803
804 return (af == AF_INET ?
805 (SINIFSCOPE(rt_key(rt))->sin_scope_id == ma->ifscope) :
806 (SIN6IFSCOPE(rt_key(rt))->sin6_scope_id == ma->ifscope));
807 }
808
809 /*
810 * Atomically increment route generation counter
811 */
812 void
813 routegenid_update(void)
814 {
815 routegenid_inet_update();
816 #if INET6
817 routegenid_inet6_update();
818 #endif /* INET6 */
819 }
820
821 void
822 routegenid_inet_update(void)
823 {
824 atomic_add_32(&route_genid_inet, 1);
825 }
826
827 #if INET6
828 void
829 routegenid_inet6_update(void)
830 {
831 atomic_add_32(&route_genid_inet6, 1);
832 }
833 #endif /* INET6 */
834
835 /*
836 * Packet routing routines.
837 */
838 void
839 rtalloc(struct route *ro)
840 {
841 rtalloc_ign(ro, 0);
842 }
843
844 void
845 rtalloc_scoped(struct route *ro, unsigned int ifscope)
846 {
847 rtalloc_scoped_ign(ro, 0, ifscope);
848 }
849
850 static void
851 rtalloc_ign_common_locked(struct route *ro, uint32_t ignore,
852 unsigned int ifscope)
853 {
854 struct rtentry *rt;
855
856 if ((rt = ro->ro_rt) != NULL) {
857 RT_LOCK_SPIN(rt);
858 if (rt->rt_ifp != NULL && !ROUTE_UNUSABLE(ro)) {
859 RT_UNLOCK(rt);
860 return;
861 }
862 RT_UNLOCK(rt);
863 ROUTE_RELEASE_LOCKED(ro); /* rnh_lock already held */
864 }
865 ro->ro_rt = rtalloc1_common_locked(&ro->ro_dst, 1, ignore, ifscope);
866 if (ro->ro_rt != NULL) {
867 RT_GENID_SYNC(ro->ro_rt);
868 RT_LOCK_ASSERT_NOTHELD(ro->ro_rt);
869 }
870 }
871
872 void
873 rtalloc_ign(struct route *ro, uint32_t ignore)
874 {
875 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
876 lck_mtx_lock(rnh_lock);
877 rtalloc_ign_common_locked(ro, ignore, IFSCOPE_NONE);
878 lck_mtx_unlock(rnh_lock);
879 }
880
881 void
882 rtalloc_scoped_ign(struct route *ro, uint32_t ignore, unsigned int ifscope)
883 {
884 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
885 lck_mtx_lock(rnh_lock);
886 rtalloc_ign_common_locked(ro, ignore, ifscope);
887 lck_mtx_unlock(rnh_lock);
888 }
889
890 static struct rtentry *
891 rtalloc1_locked(struct sockaddr *dst, int report, uint32_t ignflags)
892 {
893 return (rtalloc1_common_locked(dst, report, ignflags, IFSCOPE_NONE));
894 }
895
896 struct rtentry *
897 rtalloc1_scoped_locked(struct sockaddr *dst, int report, uint32_t ignflags,
898 unsigned int ifscope)
899 {
900 return (rtalloc1_common_locked(dst, report, ignflags, ifscope));
901 }
902
903 /*
904 * Look up the route that matches the address given
905 * Or, at least try.. Create a cloned route if needed.
906 */
907 static struct rtentry *
908 rtalloc1_common_locked(struct sockaddr *dst, int report, uint32_t ignflags,
909 unsigned int ifscope)
910 {
911 struct radix_node_head *rnh = rt_tables[dst->sa_family];
912 struct rtentry *rt, *newrt = NULL;
913 struct rt_addrinfo info;
914 uint32_t nflags;
915 int err = 0, msgtype = RTM_MISS;
916
917 if (rnh == NULL)
918 goto unreachable;
919
920 /*
921 * Find the longest prefix or exact (in the scoped case) address match;
922 * callee adds a reference to entry and checks for root node as well
923 */
924 rt = rt_lookup(FALSE, dst, NULL, rnh, ifscope);
925 if (rt == NULL)
926 goto unreachable;
927
928 RT_LOCK_SPIN(rt);
929 newrt = rt;
930 nflags = rt->rt_flags & ~ignflags;
931 RT_UNLOCK(rt);
932 if (report && (nflags & (RTF_CLONING | RTF_PRCLONING))) {
933 /*
934 * We are apparently adding (report = 0 in delete).
935 * If it requires that it be cloned, do so.
936 * (This implies it wasn't a HOST route.)
937 */
938 err = rtrequest_locked(RTM_RESOLVE, dst, NULL, NULL, 0, &newrt);
939 if (err) {
940 /*
941 * If the cloning didn't succeed, maybe what we
942 * have from lookup above will do. Return that;
943 * no need to hold another reference since it's
944 * already done.
945 */
946 newrt = rt;
947 goto miss;
948 }
949
950 /*
951 * We cloned it; drop the original route found during lookup.
952 * The resulted cloned route (newrt) would now have an extra
953 * reference held during rtrequest.
954 */
955 rtfree_locked(rt);
956 if ((rt = newrt) && (rt->rt_flags & RTF_XRESOLVE)) {
957 /*
958 * If the new route specifies it be
959 * externally resolved, then go do that.
960 */
961 msgtype = RTM_RESOLVE;
962 goto miss;
963 }
964 }
965 goto done;
966
967 unreachable:
968 /*
969 * Either we hit the root or couldn't find any match,
970 * Which basically means "cant get there from here"
971 */
972 rtstat.rts_unreach++;
973 miss:
974 if (report) {
975 /*
976 * If required, report the failure to the supervising
977 * Authorities.
978 * For a delete, this is not an error. (report == 0)
979 */
980 bzero((caddr_t)&info, sizeof(info));
981 info.rti_info[RTAX_DST] = dst;
982 rt_missmsg(msgtype, &info, 0, err);
983 }
984 done:
985 return (newrt);
986 }
987
988 struct rtentry *
989 rtalloc1(struct sockaddr *dst, int report, uint32_t ignflags)
990 {
991 struct rtentry *entry;
992 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
993 lck_mtx_lock(rnh_lock);
994 entry = rtalloc1_locked(dst, report, ignflags);
995 lck_mtx_unlock(rnh_lock);
996 return (entry);
997 }
998
999 struct rtentry *
1000 rtalloc1_scoped(struct sockaddr *dst, int report, uint32_t ignflags,
1001 unsigned int ifscope)
1002 {
1003 struct rtentry *entry;
1004 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
1005 lck_mtx_lock(rnh_lock);
1006 entry = rtalloc1_scoped_locked(dst, report, ignflags, ifscope);
1007 lck_mtx_unlock(rnh_lock);
1008 return (entry);
1009 }
1010
1011 /*
1012 * Remove a reference count from an rtentry.
1013 * If the count gets low enough, take it out of the routing table
1014 */
1015 void
1016 rtfree_locked(struct rtentry *rt)
1017 {
1018 rtfree_common(rt, TRUE);
1019 }
1020
1021 static void
1022 rtfree_common(struct rtentry *rt, boolean_t locked)
1023 {
1024 struct radix_node_head *rnh;
1025
1026 lck_mtx_assert(rnh_lock, locked ?
1027 LCK_MTX_ASSERT_OWNED : LCK_MTX_ASSERT_NOTOWNED);
1028
1029 /*
1030 * Atomically decrement the reference count and if it reaches 0,
1031 * and there is a close function defined, call the close function.
1032 */
1033 RT_LOCK_SPIN(rt);
1034 if (rtunref(rt) > 0) {
1035 RT_UNLOCK(rt);
1036 return;
1037 }
1038
1039 /*
1040 * To avoid violating lock ordering, we must drop rt_lock before
1041 * trying to acquire the global rnh_lock. If we are called with
1042 * rnh_lock held, then we already have exclusive access; otherwise
1043 * we do the lock dance.
1044 */
1045 if (!locked) {
1046 /*
1047 * Note that we check it again below after grabbing rnh_lock,
1048 * since it is possible that another thread doing a lookup wins
1049 * the race, grabs the rnh_lock first, and bumps up reference
1050 * count in which case the route should be left alone as it is
1051 * still in use. It's also possible that another thread frees
1052 * the route after we drop rt_lock; to prevent the route from
1053 * being freed, we hold an extra reference.
1054 */
1055 RT_ADDREF_LOCKED(rt);
1056 RT_UNLOCK(rt);
1057 lck_mtx_lock(rnh_lock);
1058 RT_LOCK_SPIN(rt);
1059 if (rtunref(rt) > 0) {
1060 /* We've lost the race, so abort */
1061 RT_UNLOCK(rt);
1062 goto done;
1063 }
1064 }
1065
1066 /*
1067 * We may be blocked on other lock(s) as part of freeing
1068 * the entry below, so convert from spin to full mutex.
1069 */
1070 RT_CONVERT_LOCK(rt);
1071
1072 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
1073
1074 /* Negative refcnt must never happen */
1075 if (rt->rt_refcnt != 0) {
1076 panic("rt %p invalid refcnt %d", rt, rt->rt_refcnt);
1077 /* NOTREACHED */
1078 }
1079 /* Idle refcnt must have been dropped during rtunref() */
1080 VERIFY(!(rt->rt_flags & RTF_IFREF));
1081
1082 /*
1083 * find the tree for that address family
1084 * Note: in the case of igmp packets, there might not be an rnh
1085 */
1086 rnh = rt_tables[rt_key(rt)->sa_family];
1087
1088 /*
1089 * On last reference give the "close method" a chance to cleanup
1090 * private state. This also permits (for IPv4 and IPv6) a chance
1091 * to decide if the routing table entry should be purged immediately
1092 * or at a later time. When an immediate purge is to happen the
1093 * close routine typically issues RTM_DELETE which clears the RTF_UP
1094 * flag on the entry so that the code below reclaims the storage.
1095 */
1096 if (rnh != NULL && rnh->rnh_close != NULL)
1097 rnh->rnh_close((struct radix_node *)rt, rnh);
1098
1099 /*
1100 * If we are no longer "up" (and ref == 0) then we can free the
1101 * resources associated with the route.
1102 */
1103 if (!(rt->rt_flags & RTF_UP)) {
1104 struct rtentry *rt_parent;
1105 struct ifaddr *rt_ifa;
1106
1107 if (rt->rt_nodes->rn_flags & (RNF_ACTIVE | RNF_ROOT)) {
1108 panic("rt %p freed while in radix tree\n", rt);
1109 /* NOTREACHED */
1110 }
1111 /*
1112 * the rtentry must have been removed from the routing table
1113 * so it is represented in rttrash; remove that now.
1114 */
1115 (void) OSDecrementAtomic(&rttrash);
1116 if (rte_debug & RTD_DEBUG) {
1117 TAILQ_REMOVE(&rttrash_head, (struct rtentry_dbg *)rt,
1118 rtd_trash_link);
1119 }
1120
1121 /*
1122 * release references on items we hold them on..
1123 * e.g other routes and ifaddrs.
1124 */
1125 if ((rt_parent = rt->rt_parent) != NULL)
1126 rt->rt_parent = NULL;
1127
1128 if ((rt_ifa = rt->rt_ifa) != NULL)
1129 rt->rt_ifa = NULL;
1130
1131 /*
1132 * Now free any attached link-layer info.
1133 */
1134 if (rt->rt_llinfo != NULL) {
1135 if (rt->rt_llinfo_free != NULL)
1136 (*rt->rt_llinfo_free)(rt->rt_llinfo);
1137 else
1138 R_Free(rt->rt_llinfo);
1139 rt->rt_llinfo = NULL;
1140 }
1141
1142 /*
1143 * Route is no longer in the tree and refcnt is 0;
1144 * we have exclusive access, so destroy it.
1145 */
1146 RT_UNLOCK(rt);
1147
1148 if (rt_parent != NULL)
1149 rtfree_locked(rt_parent);
1150
1151 if (rt_ifa != NULL)
1152 IFA_REMREF(rt_ifa);
1153
1154 /*
1155 * The key is separately alloc'd so free it (see rt_setgate()).
1156 * This also frees the gateway, as they are always malloc'd
1157 * together.
1158 */
1159 R_Free(rt_key(rt));
1160
1161 /*
1162 * Free any statistics that may have been allocated
1163 */
1164 nstat_route_detach(rt);
1165
1166 /*
1167 * and the rtentry itself of course
1168 */
1169 rte_lock_destroy(rt);
1170 rte_free(rt);
1171 } else {
1172 /*
1173 * The "close method" has been called, but the route is
1174 * still in the radix tree with zero refcnt, i.e. "up"
1175 * and in the cached state.
1176 */
1177 RT_UNLOCK(rt);
1178 }
1179 done:
1180 if (!locked)
1181 lck_mtx_unlock(rnh_lock);
1182 }
1183
1184 void
1185 rtfree(struct rtentry *rt)
1186 {
1187 rtfree_common(rt, FALSE);
1188 }
1189
1190 /*
1191 * Decrements the refcount but does not free the route when
1192 * the refcount reaches zero. Unless you have really good reason,
1193 * use rtfree not rtunref.
1194 */
1195 int
1196 rtunref(struct rtentry *p)
1197 {
1198 RT_LOCK_ASSERT_HELD(p);
1199
1200 if (p->rt_refcnt == 0) {
1201 panic("%s(%p) bad refcnt\n", __func__, p);
1202 /* NOTREACHED */
1203 } else if (--p->rt_refcnt == 0) {
1204 /*
1205 * Release any idle reference count held on the interface;
1206 * if the route is eligible, still UP and the refcnt becomes
1207 * non-zero at some point in future before it is purged from
1208 * the routing table, rt_set_idleref() will undo this.
1209 */
1210 rt_clear_idleref(p);
1211 }
1212
1213 if (rte_debug & RTD_DEBUG)
1214 rtunref_audit((struct rtentry_dbg *)p);
1215
1216 /* Return new value */
1217 return (p->rt_refcnt);
1218 }
1219
1220 static inline void
1221 rtunref_audit(struct rtentry_dbg *rte)
1222 {
1223 uint16_t idx;
1224
1225 if (rte->rtd_inuse != RTD_INUSE) {
1226 panic("rtunref: on freed rte=%p\n", rte);
1227 /* NOTREACHED */
1228 }
1229 idx = atomic_add_16_ov(&rte->rtd_refrele_cnt, 1) % CTRACE_HIST_SIZE;
1230 if (rte_debug & RTD_TRACE)
1231 ctrace_record(&rte->rtd_refrele[idx]);
1232 }
1233
1234 /*
1235 * Add a reference count from an rtentry.
1236 */
1237 void
1238 rtref(struct rtentry *p)
1239 {
1240 RT_LOCK_ASSERT_HELD(p);
1241
1242 if (++p->rt_refcnt == 0) {
1243 panic("%s(%p) bad refcnt\n", __func__, p);
1244 /* NOTREACHED */
1245 } else if (p->rt_refcnt == 1) {
1246 /*
1247 * Hold an idle reference count on the interface,
1248 * if the route is eligible for it.
1249 */
1250 rt_set_idleref(p);
1251 }
1252
1253 if (rte_debug & RTD_DEBUG)
1254 rtref_audit((struct rtentry_dbg *)p);
1255 }
1256
1257 static inline void
1258 rtref_audit(struct rtentry_dbg *rte)
1259 {
1260 uint16_t idx;
1261
1262 if (rte->rtd_inuse != RTD_INUSE) {
1263 panic("rtref_audit: on freed rte=%p\n", rte);
1264 /* NOTREACHED */
1265 }
1266 idx = atomic_add_16_ov(&rte->rtd_refhold_cnt, 1) % CTRACE_HIST_SIZE;
1267 if (rte_debug & RTD_TRACE)
1268 ctrace_record(&rte->rtd_refhold[idx]);
1269 }
1270
1271 void
1272 rtsetifa(struct rtentry *rt, struct ifaddr *ifa)
1273 {
1274 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
1275
1276 RT_LOCK_ASSERT_HELD(rt);
1277
1278 if (rt->rt_ifa == ifa)
1279 return;
1280
1281 /* Become a regular mutex, just in case */
1282 RT_CONVERT_LOCK(rt);
1283
1284 /* Release the old ifa */
1285 if (rt->rt_ifa)
1286 IFA_REMREF(rt->rt_ifa);
1287
1288 /* Set rt_ifa */
1289 rt->rt_ifa = ifa;
1290
1291 /* Take a reference to the ifa */
1292 if (rt->rt_ifa)
1293 IFA_ADDREF(rt->rt_ifa);
1294 }
1295
1296 /*
1297 * Force a routing table entry to the specified
1298 * destination to go through the given gateway.
1299 * Normally called as a result of a routing redirect
1300 * message from the network layer.
1301 */
1302 void
1303 rtredirect(struct ifnet *ifp, struct sockaddr *dst, struct sockaddr *gateway,
1304 struct sockaddr *netmask, int flags, struct sockaddr *src,
1305 struct rtentry **rtp)
1306 {
1307 struct rtentry *rt = NULL;
1308 int error = 0;
1309 short *stat = 0;
1310 struct rt_addrinfo info;
1311 struct ifaddr *ifa = NULL;
1312 unsigned int ifscope = (ifp != NULL) ? ifp->if_index : IFSCOPE_NONE;
1313 struct sockaddr_storage ss;
1314 int af = src->sa_family;
1315
1316 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
1317 lck_mtx_lock(rnh_lock);
1318
1319 /*
1320 * Transform src into the internal routing table form for
1321 * comparison against rt_gateway below.
1322 */
1323 #if INET6
1324 if ((af == AF_INET && ip_doscopedroute) ||
1325 (af == AF_INET6 && ip6_doscopedroute))
1326 #else
1327 if (af == AF_INET && ip_doscopedroute)
1328 #endif /* !INET6 */
1329 src = sa_copy(src, &ss, &ifscope);
1330
1331 /*
1332 * Verify the gateway is directly reachable; if scoped routing
1333 * is enabled, verify that it is reachable from the interface
1334 * where the ICMP redirect arrived on.
1335 */
1336 if ((ifa = ifa_ifwithnet_scoped(gateway, ifscope)) == NULL) {
1337 error = ENETUNREACH;
1338 goto out;
1339 }
1340
1341 /* Lookup route to the destination (from the original IP header) */
1342 rt = rtalloc1_scoped_locked(dst, 0, RTF_CLONING|RTF_PRCLONING, ifscope);
1343 if (rt != NULL)
1344 RT_LOCK(rt);
1345
1346 /*
1347 * If the redirect isn't from our current router for this dst,
1348 * it's either old or wrong. If it redirects us to ourselves,
1349 * we have a routing loop, perhaps as a result of an interface
1350 * going down recently. Holding rnh_lock here prevents the
1351 * possibility of rt_ifa/ifa's ifa_addr from changing (e.g.
1352 * in_ifinit), so okay to access ifa_addr without locking.
1353 */
1354 if (!(flags & RTF_DONE) && rt != NULL &&
1355 (!equal(src, rt->rt_gateway) || !equal(rt->rt_ifa->ifa_addr,
1356 ifa->ifa_addr))) {
1357 error = EINVAL;
1358 } else {
1359 IFA_REMREF(ifa);
1360 if ((ifa = ifa_ifwithaddr(gateway))) {
1361 IFA_REMREF(ifa);
1362 ifa = NULL;
1363 error = EHOSTUNREACH;
1364 }
1365 }
1366
1367 if (ifa) {
1368 IFA_REMREF(ifa);
1369 ifa = NULL;
1370 }
1371
1372 if (error) {
1373 if (rt != NULL)
1374 RT_UNLOCK(rt);
1375 goto done;
1376 }
1377
1378 /*
1379 * Create a new entry if we just got back a wildcard entry
1380 * or the the lookup failed. This is necessary for hosts
1381 * which use routing redirects generated by smart gateways
1382 * to dynamically build the routing tables.
1383 */
1384 if ((rt == NULL) || (rt_mask(rt) != NULL && rt_mask(rt)->sa_len < 2))
1385 goto create;
1386 /*
1387 * Don't listen to the redirect if it's
1388 * for a route to an interface.
1389 */
1390 RT_LOCK_ASSERT_HELD(rt);
1391 if (rt->rt_flags & RTF_GATEWAY) {
1392 if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) {
1393 /*
1394 * Changing from route to net => route to host.
1395 * Create new route, rather than smashing route
1396 * to net; similar to cloned routes, the newly
1397 * created host route is scoped as well.
1398 */
1399 create:
1400 if (rt != NULL)
1401 RT_UNLOCK(rt);
1402 flags |= RTF_GATEWAY | RTF_DYNAMIC;
1403 error = rtrequest_scoped_locked(RTM_ADD, dst,
1404 gateway, netmask, flags, NULL, ifscope);
1405 stat = &rtstat.rts_dynamic;
1406 } else {
1407 /*
1408 * Smash the current notion of the gateway to
1409 * this destination. Should check about netmask!!!
1410 */
1411 rt->rt_flags |= RTF_MODIFIED;
1412 flags |= RTF_MODIFIED;
1413 stat = &rtstat.rts_newgateway;
1414 /*
1415 * add the key and gateway (in one malloc'd chunk).
1416 */
1417 error = rt_setgate(rt, rt_key(rt), gateway);
1418 RT_UNLOCK(rt);
1419 }
1420 } else {
1421 RT_UNLOCK(rt);
1422 error = EHOSTUNREACH;
1423 }
1424 done:
1425 if (rt != NULL) {
1426 RT_LOCK_ASSERT_NOTHELD(rt);
1427 if (rtp && !error)
1428 *rtp = rt;
1429 else
1430 rtfree_locked(rt);
1431 }
1432 out:
1433 if (error) {
1434 rtstat.rts_badredirect++;
1435 } else {
1436 if (stat != NULL)
1437 (*stat)++;
1438
1439 if (af == AF_INET)
1440 routegenid_inet_update();
1441 #if INET6
1442 else if (af == AF_INET6)
1443 routegenid_inet6_update();
1444 #endif /* INET6 */
1445 }
1446 lck_mtx_unlock(rnh_lock);
1447 bzero((caddr_t)&info, sizeof(info));
1448 info.rti_info[RTAX_DST] = dst;
1449 info.rti_info[RTAX_GATEWAY] = gateway;
1450 info.rti_info[RTAX_NETMASK] = netmask;
1451 info.rti_info[RTAX_AUTHOR] = src;
1452 rt_missmsg(RTM_REDIRECT, &info, flags, error);
1453 }
1454
1455 /*
1456 * Routing table ioctl interface.
1457 */
1458 int
1459 rtioctl(unsigned long req, caddr_t data, struct proc *p)
1460 {
1461 #pragma unused(p)
1462 #if INET && MROUTING
1463 return (mrt_ioctl(req, data));
1464 #else
1465 #pragma unused(req)
1466 #pragma unused(data)
1467 return (ENXIO);
1468 #endif
1469 }
1470
1471 struct ifaddr *
1472 ifa_ifwithroute(
1473 int flags,
1474 const struct sockaddr *dst,
1475 const struct sockaddr *gateway)
1476 {
1477 struct ifaddr *ifa;
1478
1479 lck_mtx_lock(rnh_lock);
1480 ifa = ifa_ifwithroute_locked(flags, dst, gateway);
1481 lck_mtx_unlock(rnh_lock);
1482
1483 return (ifa);
1484 }
1485
1486 struct ifaddr *
1487 ifa_ifwithroute_locked(int flags, const struct sockaddr *dst,
1488 const struct sockaddr *gateway)
1489 {
1490 return (ifa_ifwithroute_common_locked((flags & ~RTF_IFSCOPE), dst,
1491 gateway, IFSCOPE_NONE));
1492 }
1493
1494 struct ifaddr *
1495 ifa_ifwithroute_scoped_locked(int flags, const struct sockaddr *dst,
1496 const struct sockaddr *gateway, unsigned int ifscope)
1497 {
1498 if (ifscope != IFSCOPE_NONE)
1499 flags |= RTF_IFSCOPE;
1500 else
1501 flags &= ~RTF_IFSCOPE;
1502
1503 return (ifa_ifwithroute_common_locked(flags, dst, gateway, ifscope));
1504 }
1505
1506 static struct ifaddr *
1507 ifa_ifwithroute_common_locked(int flags, const struct sockaddr *dst,
1508 const struct sockaddr *gw, unsigned int ifscope)
1509 {
1510 struct ifaddr *ifa = NULL;
1511 struct rtentry *rt = NULL;
1512 struct sockaddr_storage dst_ss, gw_ss;
1513
1514 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
1515
1516 /*
1517 * Just in case the sockaddr passed in by the caller
1518 * contains a scope ID, make sure to clear it since
1519 * interface addresses aren't scoped.
1520 */
1521 #if INET6
1522 if (dst != NULL &&
1523 ((dst->sa_family == AF_INET && ip_doscopedroute) ||
1524 (dst->sa_family == AF_INET6 && ip6_doscopedroute)))
1525 #else
1526 if (dst != NULL && dst->sa_family == AF_INET && ip_doscopedroute)
1527 #endif /* !INET6 */
1528 dst = sa_copy(SA((uintptr_t)dst), &dst_ss, NULL);
1529
1530 #if INET6
1531 if (gw != NULL &&
1532 ((gw->sa_family == AF_INET && ip_doscopedroute) ||
1533 (gw->sa_family == AF_INET6 && ip6_doscopedroute)))
1534 #else
1535 if (gw != NULL && gw->sa_family == AF_INET && ip_doscopedroute)
1536 #endif /* !INET6 */
1537 gw = sa_copy(SA((uintptr_t)gw), &gw_ss, NULL);
1538
1539 if (!(flags & RTF_GATEWAY)) {
1540 /*
1541 * If we are adding a route to an interface,
1542 * and the interface is a pt to pt link
1543 * we should search for the destination
1544 * as our clue to the interface. Otherwise
1545 * we can use the local address.
1546 */
1547 if (flags & RTF_HOST) {
1548 ifa = ifa_ifwithdstaddr(dst);
1549 }
1550 if (ifa == NULL)
1551 ifa = ifa_ifwithaddr_scoped(gw, ifscope);
1552 } else {
1553 /*
1554 * If we are adding a route to a remote net
1555 * or host, the gateway may still be on the
1556 * other end of a pt to pt link.
1557 */
1558 ifa = ifa_ifwithdstaddr(gw);
1559 }
1560 if (ifa == NULL)
1561 ifa = ifa_ifwithnet_scoped(gw, ifscope);
1562 if (ifa == NULL) {
1563 /* Workaround to avoid gcc warning regarding const variable */
1564 rt = rtalloc1_scoped_locked((struct sockaddr *)(size_t)dst,
1565 0, 0, ifscope);
1566 if (rt != NULL) {
1567 RT_LOCK_SPIN(rt);
1568 ifa = rt->rt_ifa;
1569 if (ifa != NULL) {
1570 /* Become a regular mutex */
1571 RT_CONVERT_LOCK(rt);
1572 IFA_ADDREF(ifa);
1573 }
1574 RT_REMREF_LOCKED(rt);
1575 RT_UNLOCK(rt);
1576 rt = NULL;
1577 }
1578 }
1579 /*
1580 * Holding rnh_lock here prevents the possibility of ifa from
1581 * changing (e.g. in_ifinit), so it is safe to access its
1582 * ifa_addr (here and down below) without locking.
1583 */
1584 if (ifa != NULL && ifa->ifa_addr->sa_family != dst->sa_family) {
1585 struct ifaddr *newifa;
1586 /* Callee adds reference to newifa upon success */
1587 newifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp);
1588 if (newifa != NULL) {
1589 IFA_REMREF(ifa);
1590 ifa = newifa;
1591 }
1592 }
1593 /*
1594 * If we are adding a gateway, it is quite possible that the
1595 * routing table has a static entry in place for the gateway,
1596 * that may not agree with info garnered from the interfaces.
1597 * The routing table should carry more precedence than the
1598 * interfaces in this matter. Must be careful not to stomp
1599 * on new entries from rtinit, hence (ifa->ifa_addr != gw).
1600 */
1601 if ((ifa == NULL ||
1602 !equal(ifa->ifa_addr, (struct sockaddr *)(size_t)gw)) &&
1603 (rt = rtalloc1_scoped_locked((struct sockaddr *)(size_t)gw,
1604 0, 0, ifscope)) != NULL) {
1605 if (ifa != NULL)
1606 IFA_REMREF(ifa);
1607 RT_LOCK_SPIN(rt);
1608 ifa = rt->rt_ifa;
1609 if (ifa != NULL) {
1610 /* Become a regular mutex */
1611 RT_CONVERT_LOCK(rt);
1612 IFA_ADDREF(ifa);
1613 }
1614 RT_REMREF_LOCKED(rt);
1615 RT_UNLOCK(rt);
1616 }
1617 /*
1618 * If an interface scope was specified, the interface index of
1619 * the found ifaddr must be equivalent to that of the scope;
1620 * otherwise there is no match.
1621 */
1622 if ((flags & RTF_IFSCOPE) &&
1623 ifa != NULL && ifa->ifa_ifp->if_index != ifscope) {
1624 IFA_REMREF(ifa);
1625 ifa = NULL;
1626 }
1627
1628 return (ifa);
1629 }
1630
1631 static int rt_fixdelete(struct radix_node *, void *);
1632 static int rt_fixchange(struct radix_node *, void *);
1633
1634 struct rtfc_arg {
1635 struct rtentry *rt0;
1636 struct radix_node_head *rnh;
1637 };
1638
1639 int
1640 rtrequest_locked(int req, struct sockaddr *dst, struct sockaddr *gateway,
1641 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt)
1642 {
1643 return (rtrequest_common_locked(req, dst, gateway, netmask,
1644 (flags & ~RTF_IFSCOPE), ret_nrt, IFSCOPE_NONE));
1645 }
1646
1647 int
1648 rtrequest_scoped_locked(int req, struct sockaddr *dst,
1649 struct sockaddr *gateway, struct sockaddr *netmask, int flags,
1650 struct rtentry **ret_nrt, unsigned int ifscope)
1651 {
1652 if (ifscope != IFSCOPE_NONE)
1653 flags |= RTF_IFSCOPE;
1654 else
1655 flags &= ~RTF_IFSCOPE;
1656
1657 return (rtrequest_common_locked(req, dst, gateway, netmask,
1658 flags, ret_nrt, ifscope));
1659 }
1660
1661 /*
1662 * Do appropriate manipulations of a routing tree given all the bits of
1663 * info needed.
1664 *
1665 * Storing the scope ID in the radix key is an internal job that should be
1666 * left to routines in this module. Callers should specify the scope value
1667 * to the "scoped" variants of route routines instead of manipulating the
1668 * key itself. This is typically done when creating a scoped route, e.g.
1669 * rtrequest(RTM_ADD). Once such a route is created and marked with the
1670 * RTF_IFSCOPE flag, callers can simply use its rt_key(rt) to clone it
1671 * (RTM_RESOLVE) or to remove it (RTM_DELETE). An exception to this is
1672 * during certain routing socket operations where the search key might be
1673 * derived from the routing message itself, in which case the caller must
1674 * specify the destination address and scope value for RTM_ADD/RTM_DELETE.
1675 */
1676 static int
1677 rtrequest_common_locked(int req, struct sockaddr *dst0,
1678 struct sockaddr *gateway, struct sockaddr *netmask, int flags,
1679 struct rtentry **ret_nrt, unsigned int ifscope)
1680 {
1681 int error = 0;
1682 struct rtentry *rt;
1683 struct radix_node *rn;
1684 struct radix_node_head *rnh;
1685 struct ifaddr *ifa = NULL;
1686 struct sockaddr *ndst, *dst = dst0;
1687 struct sockaddr_storage ss, mask;
1688 struct timeval caltime;
1689 int af = dst->sa_family;
1690 void (*ifa_rtrequest)(int, struct rtentry *, struct sockaddr *);
1691
1692 #define senderr(x) { error = x; goto bad; }
1693
1694 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
1695 /*
1696 * Find the correct routing tree to use for this Address Family
1697 */
1698 if ((rnh = rt_tables[af]) == NULL)
1699 senderr(ESRCH);
1700 /*
1701 * If we are adding a host route then we don't want to put
1702 * a netmask in the tree
1703 */
1704 if (flags & RTF_HOST)
1705 netmask = NULL;
1706
1707 /*
1708 * If Scoped Routing is enabled, use a local copy of the destination
1709 * address to store the scope ID into. This logic is repeated below
1710 * in the RTM_RESOLVE handler since the caller does not normally
1711 * specify such a flag during a resolve, as well as for the handling
1712 * of IPv4 link-local address; instead, it passes in the route used for
1713 * cloning for which the scope info is derived from. Note also that
1714 * in the case of RTM_DELETE, the address passed in by the caller
1715 * might already contain the scope ID info when it is the key itself,
1716 * thus making RTF_IFSCOPE unnecessary; one instance where it is
1717 * explicitly set is inside route_output() as part of handling a
1718 * routing socket request.
1719 */
1720 #if INET6
1721 if (req != RTM_RESOLVE &&
1722 ((af == AF_INET && ip_doscopedroute) ||
1723 (af == AF_INET6 && ip6_doscopedroute))) {
1724 #else
1725 if (req != RTM_RESOLVE && af == AF_INET && ip_doscopedroute) {
1726 #endif /* !INET6 */
1727 /* Transform dst into the internal routing table form */
1728 dst = sa_copy(dst, &ss, &ifscope);
1729
1730 /* Transform netmask into the internal routing table form */
1731 if (netmask != NULL)
1732 netmask = ma_copy(af, netmask, &mask, ifscope);
1733
1734 if (ifscope != IFSCOPE_NONE)
1735 flags |= RTF_IFSCOPE;
1736 } else {
1737 if ((flags & RTF_IFSCOPE) && (af != AF_INET && af != AF_INET6))
1738 senderr(EINVAL);
1739
1740 #if INET6
1741 if ((af == AF_INET && !ip_doscopedroute) ||
1742 (af == AF_INET6 && !ip6_doscopedroute))
1743 #else
1744 if (af == AF_INET && !ip_doscopedroute)
1745 #endif /* !INET6 */
1746 ifscope = IFSCOPE_NONE;
1747 }
1748
1749 if (ifscope == IFSCOPE_NONE)
1750 flags &= ~RTF_IFSCOPE;
1751
1752 switch (req) {
1753 case RTM_DELETE: {
1754 struct rtentry *gwrt = NULL;
1755 /*
1756 * Remove the item from the tree and return it.
1757 * Complain if it is not there and do no more processing.
1758 */
1759 if ((rn = rnh->rnh_deladdr(dst, netmask, rnh)) == NULL)
1760 senderr(ESRCH);
1761 if (rn->rn_flags & (RNF_ACTIVE | RNF_ROOT)) {
1762 panic("rtrequest delete");
1763 /* NOTREACHED */
1764 }
1765 rt = (struct rtentry *)rn;
1766
1767 RT_LOCK(rt);
1768 rt->rt_flags &= ~RTF_UP;
1769 /*
1770 * Release any idle reference count held on the interface
1771 * as this route is no longer externally visible.
1772 */
1773 rt_clear_idleref(rt);
1774 /*
1775 * Take an extra reference to handle the deletion of a route
1776 * entry whose reference count is already 0; e.g. an expiring
1777 * cloned route entry or an entry that was added to the table
1778 * with 0 reference. If the caller is interested in this route,
1779 * we will return it with the reference intact. Otherwise we
1780 * will decrement the reference via rtfree_locked() and then
1781 * possibly deallocate it.
1782 */
1783 RT_ADDREF_LOCKED(rt);
1784
1785 /*
1786 * For consistency, in case the caller didn't set the flag.
1787 */
1788 rt->rt_flags |= RTF_CONDEMNED;
1789
1790 /*
1791 * Clear RTF_ROUTER if it's set.
1792 */
1793 if (rt->rt_flags & RTF_ROUTER) {
1794 VERIFY(rt->rt_flags & RTF_HOST);
1795 rt->rt_flags &= ~RTF_ROUTER;
1796 }
1797
1798 /*
1799 * Now search what's left of the subtree for any cloned
1800 * routes which might have been formed from this node.
1801 */
1802 if ((rt->rt_flags & (RTF_CLONING | RTF_PRCLONING)) &&
1803 rt_mask(rt)) {
1804 RT_UNLOCK(rt);
1805 rnh->rnh_walktree_from(rnh, dst, rt_mask(rt),
1806 rt_fixdelete, rt);
1807 RT_LOCK(rt);
1808 }
1809
1810 /*
1811 * Remove any external references we may have.
1812 */
1813 if ((gwrt = rt->rt_gwroute) != NULL)
1814 rt->rt_gwroute = NULL;
1815
1816 /*
1817 * give the protocol a chance to keep things in sync.
1818 */
1819 if ((ifa = rt->rt_ifa) != NULL) {
1820 IFA_LOCK_SPIN(ifa);
1821 ifa_rtrequest = ifa->ifa_rtrequest;
1822 IFA_UNLOCK(ifa);
1823 if (ifa_rtrequest != NULL)
1824 ifa_rtrequest(RTM_DELETE, rt, NULL);
1825 /* keep reference on rt_ifa */
1826 ifa = NULL;
1827 }
1828
1829 /*
1830 * one more rtentry floating around that is not
1831 * linked to the routing table.
1832 */
1833 (void) OSIncrementAtomic(&rttrash);
1834 if (rte_debug & RTD_DEBUG) {
1835 TAILQ_INSERT_TAIL(&rttrash_head,
1836 (struct rtentry_dbg *)rt, rtd_trash_link);
1837 }
1838
1839 /*
1840 * If this is the (non-scoped) default route, clear
1841 * the interface index used for the primary ifscope.
1842 */
1843 if (rt_primary_default(rt, rt_key(rt))) {
1844 set_primary_ifscope(rt_key(rt)->sa_family,
1845 IFSCOPE_NONE);
1846 }
1847
1848 RT_UNLOCK(rt);
1849
1850 /*
1851 * This might result in another rtentry being freed if
1852 * we held its last reference. Do this after the rtentry
1853 * lock is dropped above, as it could lead to the same
1854 * lock being acquired if gwrt is a clone of rt.
1855 */
1856 if (gwrt != NULL)
1857 rtfree_locked(gwrt);
1858
1859 /*
1860 * If the caller wants it, then it can have it,
1861 * but it's up to it to free the rtentry as we won't be
1862 * doing it.
1863 */
1864 if (ret_nrt != NULL) {
1865 /* Return the route to caller with reference intact */
1866 *ret_nrt = rt;
1867 } else {
1868 /* Dereference or deallocate the route */
1869 rtfree_locked(rt);
1870 }
1871 if (af == AF_INET)
1872 routegenid_inet_update();
1873 #if INET6
1874 else if (af == AF_INET6)
1875 routegenid_inet6_update();
1876 #endif /* INET6 */
1877 break;
1878 }
1879 case RTM_RESOLVE:
1880 if (ret_nrt == NULL || (rt = *ret_nrt) == NULL)
1881 senderr(EINVAL);
1882 /*
1883 * If cloning, we have the parent route given by the caller
1884 * and will use its rt_gateway, rt_rmx as part of the cloning
1885 * process below. Since rnh_lock is held at this point, the
1886 * parent's rt_ifa and rt_gateway will not change, and its
1887 * relevant rt_flags will not change as well. The only thing
1888 * that could change are the metrics, and thus we hold the
1889 * parent route's rt_lock later on during the actual copying
1890 * of rt_rmx.
1891 */
1892 ifa = rt->rt_ifa;
1893 IFA_ADDREF(ifa);
1894 flags = rt->rt_flags &
1895 ~(RTF_CLONING | RTF_PRCLONING | RTF_STATIC);
1896 flags |= RTF_WASCLONED;
1897 gateway = rt->rt_gateway;
1898 if ((netmask = rt->rt_genmask) == NULL)
1899 flags |= RTF_HOST;
1900
1901 #if INET6
1902 if ((af != AF_INET && af != AF_INET6) ||
1903 (af == AF_INET && !ip_doscopedroute) ||
1904 (af == AF_INET6 && !ip6_doscopedroute))
1905 #else
1906 if (af != AF_INET || !ip_doscopedroute)
1907 #endif /* !INET6 */
1908 goto makeroute;
1909
1910 /*
1911 * When scoped routing is enabled, cloned entries are
1912 * always scoped according to the interface portion of
1913 * the parent route. The exception to this are IPv4
1914 * link local addresses, or those routes that are cloned
1915 * from a RTF_PROXY route. For the latter, the clone
1916 * gets to keep the RTF_PROXY flag.
1917 */
1918 if ((af == AF_INET &&
1919 IN_LINKLOCAL(ntohl(SIN(dst)->sin_addr.s_addr))) ||
1920 (rt->rt_flags & RTF_PROXY)) {
1921 ifscope = IFSCOPE_NONE;
1922 flags &= ~RTF_IFSCOPE;
1923 /*
1924 * These types of cloned routes aren't currently
1925 * eligible for idle interface reference counting.
1926 */
1927 flags |= RTF_NOIFREF;
1928 } else {
1929 if (flags & RTF_IFSCOPE) {
1930 ifscope = (af == AF_INET) ?
1931 sin_get_ifscope(rt_key(rt)) :
1932 sin6_get_ifscope(rt_key(rt));
1933 } else {
1934 ifscope = rt->rt_ifp->if_index;
1935 flags |= RTF_IFSCOPE;
1936 }
1937 VERIFY(ifscope != IFSCOPE_NONE);
1938 }
1939
1940 /*
1941 * Transform dst into the internal routing table form,
1942 * clearing out the scope ID field if ifscope isn't set.
1943 */
1944 dst = sa_copy(dst, &ss, (ifscope == IFSCOPE_NONE) ?
1945 NULL : &ifscope);
1946
1947 /* Transform netmask into the internal routing table form */
1948 if (netmask != NULL)
1949 netmask = ma_copy(af, netmask, &mask, ifscope);
1950
1951 goto makeroute;
1952
1953 case RTM_ADD:
1954 if ((flags & RTF_GATEWAY) && !gateway) {
1955 panic("rtrequest: RTF_GATEWAY but no gateway");
1956 /* NOTREACHED */
1957 }
1958 if (flags & RTF_IFSCOPE) {
1959 ifa = ifa_ifwithroute_scoped_locked(flags, dst0,
1960 gateway, ifscope);
1961 } else {
1962 ifa = ifa_ifwithroute_locked(flags, dst0, gateway);
1963 }
1964 if (ifa == NULL)
1965 senderr(ENETUNREACH);
1966 makeroute:
1967 if ((rt = rte_alloc()) == NULL)
1968 senderr(ENOBUFS);
1969 Bzero(rt, sizeof(*rt));
1970 rte_lock_init(rt);
1971 getmicrotime(&caltime);
1972 rt->base_calendartime = caltime.tv_sec;
1973 rt->base_uptime = net_uptime();
1974 RT_LOCK(rt);
1975 rt->rt_flags = RTF_UP | flags;
1976
1977 /*
1978 * Point the generation ID to the tree's.
1979 */
1980 switch (af) {
1981 case AF_INET:
1982 rt->rt_tree_genid = &route_genid_inet;
1983 break;
1984 #if INET6
1985 case AF_INET6:
1986 rt->rt_tree_genid = &route_genid_inet6;
1987 break;
1988 #endif /* INET6 */
1989 default:
1990 break;
1991 }
1992
1993 /*
1994 * Add the gateway. Possibly re-malloc-ing the storage for it
1995 * also add the rt_gwroute if possible.
1996 */
1997 if ((error = rt_setgate(rt, dst, gateway)) != 0) {
1998 int tmp = error;
1999 RT_UNLOCK(rt);
2000 nstat_route_detach(rt);
2001 rte_lock_destroy(rt);
2002 rte_free(rt);
2003 senderr(tmp);
2004 }
2005
2006 /*
2007 * point to the (possibly newly malloc'd) dest address.
2008 */
2009 ndst = rt_key(rt);
2010
2011 /*
2012 * make sure it contains the value we want (masked if needed).
2013 */
2014 if (netmask)
2015 rt_maskedcopy(dst, ndst, netmask);
2016 else
2017 Bcopy(dst, ndst, dst->sa_len);
2018
2019 /*
2020 * Note that we now have a reference to the ifa.
2021 * This moved from below so that rnh->rnh_addaddr() can
2022 * examine the ifa and ifa->ifa_ifp if it so desires.
2023 */
2024 rtsetifa(rt, ifa);
2025 rt->rt_ifp = rt->rt_ifa->ifa_ifp;
2026
2027 /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */
2028
2029 rn = rnh->rnh_addaddr((caddr_t)ndst, (caddr_t)netmask,
2030 rnh, rt->rt_nodes);
2031 if (rn == 0) {
2032 struct rtentry *rt2;
2033 /*
2034 * Uh-oh, we already have one of these in the tree.
2035 * We do a special hack: if the route that's already
2036 * there was generated by the protocol-cloning
2037 * mechanism, then we just blow it away and retry
2038 * the insertion of the new one.
2039 */
2040 if (flags & RTF_IFSCOPE) {
2041 rt2 = rtalloc1_scoped_locked(dst0, 0,
2042 RTF_CLONING | RTF_PRCLONING, ifscope);
2043 } else {
2044 rt2 = rtalloc1_locked(dst, 0,
2045 RTF_CLONING | RTF_PRCLONING);
2046 }
2047 if (rt2 && rt2->rt_parent) {
2048 /*
2049 * rnh_lock is held here, so rt_key and
2050 * rt_gateway of rt2 will not change.
2051 */
2052 (void) rtrequest_locked(RTM_DELETE, rt_key(rt2),
2053 rt2->rt_gateway, rt_mask(rt2),
2054 rt2->rt_flags, 0);
2055 rtfree_locked(rt2);
2056 rn = rnh->rnh_addaddr((caddr_t)ndst,
2057 (caddr_t)netmask, rnh, rt->rt_nodes);
2058 } else if (rt2) {
2059 /* undo the extra ref we got */
2060 rtfree_locked(rt2);
2061 }
2062 }
2063
2064 /*
2065 * If it still failed to go into the tree,
2066 * then un-make it (this should be a function)
2067 */
2068 if (rn == NULL) {
2069 /* Clear gateway route */
2070 rt_set_gwroute(rt, rt_key(rt), NULL);
2071 if (rt->rt_ifa) {
2072 IFA_REMREF(rt->rt_ifa);
2073 rt->rt_ifa = NULL;
2074 }
2075 R_Free(rt_key(rt));
2076 RT_UNLOCK(rt);
2077 nstat_route_detach(rt);
2078 rte_lock_destroy(rt);
2079 rte_free(rt);
2080 senderr(EEXIST);
2081 }
2082
2083 rt->rt_parent = NULL;
2084
2085 /*
2086 * If we got here from RESOLVE, then we are cloning so clone
2087 * the rest, and note that we are a clone (and increment the
2088 * parent's references). rnh_lock is still held, which prevents
2089 * a lookup from returning the newly-created route. Hence
2090 * holding and releasing the parent's rt_lock while still
2091 * holding the route's rt_lock is safe since the new route
2092 * is not yet externally visible.
2093 */
2094 if (req == RTM_RESOLVE) {
2095 RT_LOCK_SPIN(*ret_nrt);
2096 VERIFY((*ret_nrt)->rt_expire == 0 ||
2097 (*ret_nrt)->rt_rmx.rmx_expire != 0);
2098 VERIFY((*ret_nrt)->rt_expire != 0 ||
2099 (*ret_nrt)->rt_rmx.rmx_expire == 0);
2100 rt->rt_rmx = (*ret_nrt)->rt_rmx;
2101 rt_setexpire(rt, (*ret_nrt)->rt_expire);
2102 if ((*ret_nrt)->rt_flags &
2103 (RTF_CLONING | RTF_PRCLONING)) {
2104 rt->rt_parent = (*ret_nrt);
2105 RT_ADDREF_LOCKED(*ret_nrt);
2106 }
2107 RT_UNLOCK(*ret_nrt);
2108 }
2109
2110 /*
2111 * if this protocol has something to add to this then
2112 * allow it to do that as well.
2113 */
2114 IFA_LOCK_SPIN(ifa);
2115 ifa_rtrequest = ifa->ifa_rtrequest;
2116 IFA_UNLOCK(ifa);
2117 if (ifa_rtrequest != NULL)
2118 ifa_rtrequest(req, rt, SA(ret_nrt ? *ret_nrt : NULL));
2119 IFA_REMREF(ifa);
2120 ifa = NULL;
2121
2122 /*
2123 * If this is the (non-scoped) default route, record
2124 * the interface index used for the primary ifscope.
2125 */
2126 if (rt_primary_default(rt, rt_key(rt))) {
2127 set_primary_ifscope(rt_key(rt)->sa_family,
2128 rt->rt_ifp->if_index);
2129 }
2130
2131 /*
2132 * actually return a resultant rtentry and
2133 * give the caller a single reference.
2134 */
2135 if (ret_nrt) {
2136 *ret_nrt = rt;
2137 RT_ADDREF_LOCKED(rt);
2138 }
2139
2140 if (af == AF_INET)
2141 routegenid_inet_update();
2142 #if INET6
2143 else if (af == AF_INET6)
2144 routegenid_inet6_update();
2145 #endif /* INET6 */
2146
2147 RT_GENID_SYNC(rt);
2148
2149 /*
2150 * We repeat the same procedures from rt_setgate() here
2151 * because they weren't completed when we called it earlier,
2152 * since the node was embryonic.
2153 */
2154 if ((rt->rt_flags & RTF_GATEWAY) && rt->rt_gwroute != NULL)
2155 rt_set_gwroute(rt, rt_key(rt), rt->rt_gwroute);
2156
2157 if (req == RTM_ADD &&
2158 !(rt->rt_flags & RTF_HOST) && rt_mask(rt) != NULL) {
2159 struct rtfc_arg arg;
2160 arg.rnh = rnh;
2161 arg.rt0 = rt;
2162 RT_UNLOCK(rt);
2163 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
2164 rt_fixchange, &arg);
2165 } else {
2166 RT_UNLOCK(rt);
2167 }
2168
2169 nstat_route_new_entry(rt);
2170 break;
2171 }
2172 bad:
2173 if (ifa)
2174 IFA_REMREF(ifa);
2175 return (error);
2176 }
2177 #undef senderr
2178
2179 int
2180 rtrequest(int req, struct sockaddr *dst, struct sockaddr *gateway,
2181 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt)
2182 {
2183 int error;
2184 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2185 lck_mtx_lock(rnh_lock);
2186 error = rtrequest_locked(req, dst, gateway, netmask, flags, ret_nrt);
2187 lck_mtx_unlock(rnh_lock);
2188 return (error);
2189 }
2190
2191 int
2192 rtrequest_scoped(int req, struct sockaddr *dst, struct sockaddr *gateway,
2193 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt,
2194 unsigned int ifscope)
2195 {
2196 int error;
2197 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2198 lck_mtx_lock(rnh_lock);
2199 error = rtrequest_scoped_locked(req, dst, gateway, netmask, flags,
2200 ret_nrt, ifscope);
2201 lck_mtx_unlock(rnh_lock);
2202 return (error);
2203 }
2204
2205 /*
2206 * Called from rtrequest(RTM_DELETE, ...) to fix up the route's ``family''
2207 * (i.e., the routes related to it by the operation of cloning). This
2208 * routine is iterated over all potential former-child-routes by way of
2209 * rnh->rnh_walktree_from() above, and those that actually are children of
2210 * the late parent (passed in as VP here) are themselves deleted.
2211 */
2212 static int
2213 rt_fixdelete(struct radix_node *rn, void *vp)
2214 {
2215 struct rtentry *rt = (struct rtentry *)rn;
2216 struct rtentry *rt0 = vp;
2217
2218 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2219
2220 RT_LOCK(rt);
2221 if (rt->rt_parent == rt0 &&
2222 !(rt->rt_flags & (RTF_CLONING | RTF_PRCLONING))) {
2223 /*
2224 * Safe to drop rt_lock and use rt_key, since holding
2225 * rnh_lock here prevents another thread from calling
2226 * rt_setgate() on this route.
2227 */
2228 RT_UNLOCK(rt);
2229 return (rtrequest_locked(RTM_DELETE, rt_key(rt), NULL,
2230 rt_mask(rt), rt->rt_flags, NULL));
2231 }
2232 RT_UNLOCK(rt);
2233 return (0);
2234 }
2235
2236 /*
2237 * This routine is called from rt_setgate() to do the analogous thing for
2238 * adds and changes. There is the added complication in this case of a
2239 * middle insert; i.e., insertion of a new network route between an older
2240 * network route and (cloned) host routes. For this reason, a simple check
2241 * of rt->rt_parent is insufficient; each candidate route must be tested
2242 * against the (mask, value) of the new route (passed as before in vp)
2243 * to see if the new route matches it.
2244 *
2245 * XXX - it may be possible to do fixdelete() for changes and reserve this
2246 * routine just for adds. I'm not sure why I thought it was necessary to do
2247 * changes this way.
2248 */
2249 static int
2250 rt_fixchange(struct radix_node *rn, void *vp)
2251 {
2252 struct rtentry *rt = (struct rtentry *)rn;
2253 struct rtfc_arg *ap = vp;
2254 struct rtentry *rt0 = ap->rt0;
2255 struct radix_node_head *rnh = ap->rnh;
2256 u_char *xk1, *xm1, *xk2, *xmp;
2257 int i, len;
2258
2259 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2260
2261 RT_LOCK(rt);
2262
2263 if (!rt->rt_parent ||
2264 (rt->rt_flags & (RTF_CLONING | RTF_PRCLONING))) {
2265 RT_UNLOCK(rt);
2266 return (0);
2267 }
2268
2269 if (rt->rt_parent == rt0)
2270 goto delete_rt;
2271
2272 /*
2273 * There probably is a function somewhere which does this...
2274 * if not, there should be.
2275 */
2276 len = imin(rt_key(rt0)->sa_len, rt_key(rt)->sa_len);
2277
2278 xk1 = (u_char *)rt_key(rt0);
2279 xm1 = (u_char *)rt_mask(rt0);
2280 xk2 = (u_char *)rt_key(rt);
2281
2282 /*
2283 * Avoid applying a less specific route; do this only if the parent
2284 * route (rt->rt_parent) is a network route, since otherwise its mask
2285 * will be NULL if it is a cloning host route.
2286 */
2287 if ((xmp = (u_char *)rt_mask(rt->rt_parent)) != NULL) {
2288 int mlen = rt_mask(rt->rt_parent)->sa_len;
2289 if (mlen > rt_mask(rt0)->sa_len) {
2290 RT_UNLOCK(rt);
2291 return (0);
2292 }
2293
2294 for (i = rnh->rnh_treetop->rn_offset; i < mlen; i++) {
2295 if ((xmp[i] & ~(xmp[i] ^ xm1[i])) != xmp[i]) {
2296 RT_UNLOCK(rt);
2297 return (0);
2298 }
2299 }
2300 }
2301
2302 for (i = rnh->rnh_treetop->rn_offset; i < len; i++) {
2303 if ((xk2[i] & xm1[i]) != xk1[i]) {
2304 RT_UNLOCK(rt);
2305 return (0);
2306 }
2307 }
2308
2309 /*
2310 * OK, this node is a clone, and matches the node currently being
2311 * changed/added under the node's mask. So, get rid of it.
2312 */
2313 delete_rt:
2314 /*
2315 * Safe to drop rt_lock and use rt_key, since holding rnh_lock here
2316 * prevents another thread from calling rt_setgate() on this route.
2317 */
2318 RT_UNLOCK(rt);
2319 return (rtrequest_locked(RTM_DELETE, rt_key(rt), NULL,
2320 rt_mask(rt), rt->rt_flags, NULL));
2321 }
2322
2323 /*
2324 * Round up sockaddr len to multiples of 32-bytes. This will reduce
2325 * or even eliminate the need to re-allocate the chunk of memory used
2326 * for rt_key and rt_gateway in the event the gateway portion changes.
2327 * Certain code paths (e.g. IPSec) are notorious for caching the address
2328 * of rt_gateway; this rounding-up would help ensure that the gateway
2329 * portion never gets deallocated (though it may change contents) and
2330 * thus greatly simplifies things.
2331 */
2332 #define SA_SIZE(x) (-(-((uintptr_t)(x)) & -(32)))
2333
2334 /*
2335 * Sets the gateway and/or gateway route portion of a route; may be
2336 * called on an existing route to modify the gateway portion. Both
2337 * rt_key and rt_gateway are allocated out of the same memory chunk.
2338 * Route entry lock must be held by caller; this routine will return
2339 * with the lock held.
2340 */
2341 int
2342 rt_setgate(struct rtentry *rt, struct sockaddr *dst, struct sockaddr *gate)
2343 {
2344 int dlen = SA_SIZE(dst->sa_len), glen = SA_SIZE(gate->sa_len);
2345 struct radix_node_head *rnh = rt_tables[dst->sa_family];
2346 boolean_t loop = FALSE;
2347
2348 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2349 RT_LOCK_ASSERT_HELD(rt);
2350
2351 /*
2352 * If this is for a route that is on its way of being removed,
2353 * or is temporarily frozen, reject the modification request.
2354 */
2355 if (rt->rt_flags & RTF_CONDEMNED)
2356 return (EBUSY);
2357
2358 /* Add an extra ref for ourselves */
2359 RT_ADDREF_LOCKED(rt);
2360
2361 if (rt->rt_flags & RTF_GATEWAY) {
2362 if ((dst->sa_len == gate->sa_len) &&
2363 (dst->sa_family == AF_INET || dst->sa_family == AF_INET6)) {
2364 struct sockaddr_storage dst_ss, gate_ss;
2365
2366 (void) sa_copy(dst, &dst_ss, NULL);
2367 (void) sa_copy(gate, &gate_ss, NULL);
2368
2369 loop = equal(SA(&dst_ss), SA(&gate_ss));
2370 } else {
2371 loop = (dst->sa_len == gate->sa_len &&
2372 equal(dst, gate));
2373 }
2374 }
2375
2376 /*
2377 * A (cloning) network route with the destination equal to the gateway
2378 * will create an endless loop (see notes below), so disallow it.
2379 */
2380 if (((rt->rt_flags & (RTF_HOST|RTF_GATEWAY|RTF_LLINFO)) ==
2381 RTF_GATEWAY) && loop) {
2382 /* Release extra ref */
2383 RT_REMREF_LOCKED(rt);
2384 return (EADDRNOTAVAIL);
2385 }
2386
2387 /*
2388 * A host route with the destination equal to the gateway
2389 * will interfere with keeping LLINFO in the routing
2390 * table, so disallow it.
2391 */
2392 if (((rt->rt_flags & (RTF_HOST|RTF_GATEWAY|RTF_LLINFO)) ==
2393 (RTF_HOST|RTF_GATEWAY)) && loop) {
2394 /*
2395 * The route might already exist if this is an RTM_CHANGE
2396 * or a routing redirect, so try to delete it.
2397 */
2398 if (rt_key(rt) != NULL) {
2399 /*
2400 * Safe to drop rt_lock and use rt_key, rt_gateway,
2401 * since holding rnh_lock here prevents another thread
2402 * from calling rt_setgate() on this route.
2403 */
2404 RT_UNLOCK(rt);
2405 (void) rtrequest_locked(RTM_DELETE, rt_key(rt),
2406 rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
2407 RT_LOCK(rt);
2408 }
2409 /* Release extra ref */
2410 RT_REMREF_LOCKED(rt);
2411 return (EADDRNOTAVAIL);
2412 }
2413
2414 /*
2415 * The destination is not directly reachable. Get a route
2416 * to the next-hop gateway and store it in rt_gwroute.
2417 */
2418 if (rt->rt_flags & RTF_GATEWAY) {
2419 struct rtentry *gwrt;
2420 unsigned int ifscope;
2421
2422 if (dst->sa_family == AF_INET)
2423 ifscope = sin_get_ifscope(dst);
2424 else if (dst->sa_family == AF_INET6)
2425 ifscope = sin6_get_ifscope(dst);
2426 else
2427 ifscope = IFSCOPE_NONE;
2428
2429 RT_UNLOCK(rt);
2430 /*
2431 * Don't ignore RTF_CLONING, since we prefer that rt_gwroute
2432 * points to a clone rather than a cloning route; see above
2433 * check for cloning loop avoidance (dst == gate).
2434 */
2435 gwrt = rtalloc1_scoped_locked(gate, 1, RTF_PRCLONING, ifscope);
2436 if (gwrt != NULL)
2437 RT_LOCK_ASSERT_NOTHELD(gwrt);
2438 RT_LOCK(rt);
2439
2440 /*
2441 * Cloning loop avoidance:
2442 *
2443 * In the presence of protocol-cloning and bad configuration,
2444 * it is possible to get stuck in bottomless mutual recursion
2445 * (rtrequest rt_setgate rtalloc1). We avoid this by not
2446 * allowing protocol-cloning to operate for gateways (which
2447 * is probably the correct choice anyway), and avoid the
2448 * resulting reference loops by disallowing any route to run
2449 * through itself as a gateway. This is obviously mandatory
2450 * when we get rt->rt_output(). It implies that a route to
2451 * the gateway must already be present in the system in order
2452 * for the gateway to be referred to by another route.
2453 */
2454 if (gwrt == rt) {
2455 RT_REMREF_LOCKED(gwrt);
2456 /* Release extra ref */
2457 RT_REMREF_LOCKED(rt);
2458 return (EADDRINUSE); /* failure */
2459 }
2460
2461 /*
2462 * If scoped, the gateway route must use the same interface;
2463 * we're holding rnh_lock now, so rt_gateway and rt_ifp of gwrt
2464 * should not change and are freely accessible.
2465 */
2466 if (ifscope != IFSCOPE_NONE && (rt->rt_flags & RTF_IFSCOPE) &&
2467 gwrt != NULL && gwrt->rt_ifp != NULL &&
2468 gwrt->rt_ifp->if_index != ifscope) {
2469 rtfree_locked(gwrt); /* rt != gwrt, no deadlock */
2470 /* Release extra ref */
2471 RT_REMREF_LOCKED(rt);
2472 return ((rt->rt_flags & RTF_HOST) ?
2473 EHOSTUNREACH : ENETUNREACH);
2474 }
2475
2476 /* Check again since we dropped the lock above */
2477 if (rt->rt_flags & RTF_CONDEMNED) {
2478 if (gwrt != NULL)
2479 rtfree_locked(gwrt);
2480 /* Release extra ref */
2481 RT_REMREF_LOCKED(rt);
2482 return (EBUSY);
2483 }
2484
2485 /* Set gateway route; callee adds ref to gwrt if non-NULL */
2486 rt_set_gwroute(rt, dst, gwrt);
2487
2488 /*
2489 * In case the (non-scoped) default route gets modified via
2490 * an ICMP redirect, record the interface index used for the
2491 * primary ifscope. Also done in rt_setif() to take care
2492 * of the non-redirect cases.
2493 */
2494 if (rt_primary_default(rt, dst) && rt->rt_ifp != NULL) {
2495 set_primary_ifscope(dst->sa_family,
2496 rt->rt_ifp->if_index);
2497 }
2498
2499 /*
2500 * Tell the kernel debugger about the new default gateway
2501 * if the gateway route uses the primary interface, or
2502 * if we are in a transient state before the non-scoped
2503 * default gateway is installed (similar to how the system
2504 * was behaving in the past). In future, it would be good
2505 * to do all this only when KDP is enabled.
2506 */
2507 if ((dst->sa_family == AF_INET) &&
2508 gwrt != NULL && gwrt->rt_gateway->sa_family == AF_LINK &&
2509 (gwrt->rt_ifp->if_index == get_primary_ifscope(AF_INET) ||
2510 get_primary_ifscope(AF_INET) == IFSCOPE_NONE)) {
2511 kdp_set_gateway_mac(SDL((void *)gwrt->rt_gateway)->
2512 sdl_data);
2513 }
2514
2515 /* Release extra ref from rtalloc1() */
2516 if (gwrt != NULL)
2517 RT_REMREF(gwrt);
2518 }
2519
2520 /*
2521 * Prepare to store the gateway in rt_gateway. Both dst and gateway
2522 * are stored one after the other in the same malloc'd chunk. If we
2523 * have room, reuse the old buffer since rt_gateway already points
2524 * to the right place. Otherwise, malloc a new block and update
2525 * the 'dst' address and point rt_gateway to the right place.
2526 */
2527 if (rt->rt_gateway == NULL || glen > SA_SIZE(rt->rt_gateway->sa_len)) {
2528 caddr_t new;
2529
2530 /* The underlying allocation is done with M_WAITOK set */
2531 R_Malloc(new, caddr_t, dlen + glen);
2532 if (new == NULL) {
2533 /* Clear gateway route */
2534 rt_set_gwroute(rt, dst, NULL);
2535 /* Release extra ref */
2536 RT_REMREF_LOCKED(rt);
2537 return (ENOBUFS);
2538 }
2539
2540 /*
2541 * Copy from 'dst' and not rt_key(rt) because we can get
2542 * here to initialize a newly allocated route entry, in
2543 * which case rt_key(rt) is NULL (and so does rt_gateway).
2544 */
2545 bzero(new, dlen + glen);
2546 Bcopy(dst, new, dst->sa_len);
2547 R_Free(rt_key(rt)); /* free old block; NULL is okay */
2548 rt->rt_nodes->rn_key = new;
2549 rt->rt_gateway = (struct sockaddr *)(new + dlen);
2550 }
2551
2552 /*
2553 * Copy the new gateway value into the memory chunk.
2554 */
2555 Bcopy(gate, rt->rt_gateway, gate->sa_len);
2556
2557 /*
2558 * For consistency between rt_gateway and rt_key(gwrt).
2559 */
2560 if ((rt->rt_flags & RTF_GATEWAY) && rt->rt_gwroute != NULL &&
2561 (rt->rt_gwroute->rt_flags & RTF_IFSCOPE)) {
2562 if (rt->rt_gateway->sa_family == AF_INET &&
2563 rt_key(rt->rt_gwroute)->sa_family == AF_INET) {
2564 sin_set_ifscope(rt->rt_gateway,
2565 sin_get_ifscope(rt_key(rt->rt_gwroute)));
2566 } else if (rt->rt_gateway->sa_family == AF_INET6 &&
2567 rt_key(rt->rt_gwroute)->sa_family == AF_INET6) {
2568 sin6_set_ifscope(rt->rt_gateway,
2569 sin6_get_ifscope(rt_key(rt->rt_gwroute)));
2570 }
2571 }
2572
2573 /*
2574 * This isn't going to do anything useful for host routes, so
2575 * don't bother. Also make sure we have a reasonable mask
2576 * (we don't yet have one during adds).
2577 */
2578 if (!(rt->rt_flags & RTF_HOST) && rt_mask(rt) != 0) {
2579 struct rtfc_arg arg;
2580 arg.rnh = rnh;
2581 arg.rt0 = rt;
2582 RT_UNLOCK(rt);
2583 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
2584 rt_fixchange, &arg);
2585 RT_LOCK(rt);
2586 }
2587
2588 /* Release extra ref */
2589 RT_REMREF_LOCKED(rt);
2590 return (0);
2591 }
2592
2593 #undef SA_SIZE
2594
2595 void
2596 rt_set_gwroute(struct rtentry *rt, struct sockaddr *dst, struct rtentry *gwrt)
2597 {
2598 boolean_t gwrt_isrouter;
2599
2600 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2601 RT_LOCK_ASSERT_HELD(rt);
2602
2603 if (gwrt != NULL)
2604 RT_ADDREF(gwrt); /* for this routine */
2605
2606 /*
2607 * Get rid of existing gateway route; if rt_gwroute is already
2608 * set to gwrt, this is slightly redundant (though safe since
2609 * we held an extra ref above) but makes the code simpler.
2610 */
2611 if (rt->rt_gwroute != NULL) {
2612 struct rtentry *ogwrt = rt->rt_gwroute;
2613
2614 VERIFY(rt != ogwrt); /* sanity check */
2615 rt->rt_gwroute = NULL;
2616 RT_UNLOCK(rt);
2617 rtfree_locked(ogwrt);
2618 RT_LOCK(rt);
2619 VERIFY(rt->rt_gwroute == NULL);
2620 }
2621
2622 /*
2623 * And associate the new gateway route.
2624 */
2625 if ((rt->rt_gwroute = gwrt) != NULL) {
2626 RT_ADDREF(gwrt); /* for rt */
2627
2628 if (rt->rt_flags & RTF_WASCLONED) {
2629 /* rt_parent might be NULL if rt is embryonic */
2630 gwrt_isrouter = (rt->rt_parent != NULL &&
2631 SA_DEFAULT(rt_key(rt->rt_parent)) &&
2632 !RT_HOST(rt->rt_parent));
2633 } else {
2634 gwrt_isrouter = (SA_DEFAULT(dst) && !RT_HOST(rt));
2635 }
2636
2637 /* If gwrt points to a default router, mark it accordingly */
2638 if (gwrt_isrouter && RT_HOST(gwrt) &&
2639 !(gwrt->rt_flags & RTF_ROUTER)) {
2640 RT_LOCK(gwrt);
2641 gwrt->rt_flags |= RTF_ROUTER;
2642 RT_UNLOCK(gwrt);
2643 }
2644
2645 RT_REMREF(gwrt); /* for this routine */
2646 }
2647 }
2648
2649 static void
2650 rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst,
2651 struct sockaddr *netmask)
2652 {
2653 u_char *cp1 = (u_char *)src;
2654 u_char *cp2 = (u_char *)dst;
2655 u_char *cp3 = (u_char *)netmask;
2656 u_char *cplim = cp2 + *cp3;
2657 u_char *cplim2 = cp2 + *cp1;
2658
2659 *cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */
2660 cp3 += 2;
2661 if (cplim > cplim2)
2662 cplim = cplim2;
2663 while (cp2 < cplim)
2664 *cp2++ = *cp1++ & *cp3++;
2665 if (cp2 < cplim2)
2666 bzero((caddr_t)cp2, (unsigned)(cplim2 - cp2));
2667 }
2668
2669 /*
2670 * Lookup an AF_INET/AF_INET6 scoped or non-scoped route depending on the
2671 * ifscope value passed in by the caller (IFSCOPE_NONE implies non-scoped).
2672 */
2673 static struct radix_node *
2674 node_lookup(struct sockaddr *dst, struct sockaddr *netmask,
2675 unsigned int ifscope)
2676 {
2677 struct radix_node_head *rnh;
2678 struct radix_node *rn;
2679 struct sockaddr_storage ss, mask;
2680 int af = dst->sa_family;
2681 struct matchleaf_arg ma = { ifscope };
2682 rn_matchf_t *f = rn_match_ifscope;
2683 void *w = &ma;
2684
2685 if (af != AF_INET && af != AF_INET6)
2686 return (NULL);
2687
2688 rnh = rt_tables[af];
2689
2690 /*
2691 * Transform dst into the internal routing table form,
2692 * clearing out the scope ID field if ifscope isn't set.
2693 */
2694 dst = sa_copy(dst, &ss, (ifscope == IFSCOPE_NONE) ? NULL : &ifscope);
2695
2696 /* Transform netmask into the internal routing table form */
2697 if (netmask != NULL)
2698 netmask = ma_copy(af, netmask, &mask, ifscope);
2699
2700 if (ifscope == IFSCOPE_NONE)
2701 f = w = NULL;
2702
2703 rn = rnh->rnh_lookup_args(dst, netmask, rnh, f, w);
2704 if (rn != NULL && (rn->rn_flags & RNF_ROOT))
2705 rn = NULL;
2706
2707 return (rn);
2708 }
2709
2710 /*
2711 * Lookup the AF_INET/AF_INET6 non-scoped default route.
2712 */
2713 static struct radix_node *
2714 node_lookup_default(int af)
2715 {
2716 struct radix_node_head *rnh;
2717
2718 VERIFY(af == AF_INET || af == AF_INET6);
2719 rnh = rt_tables[af];
2720
2721 return (af == AF_INET ? rnh->rnh_lookup(&sin_def, NULL, rnh) :
2722 rnh->rnh_lookup(&sin6_def, NULL, rnh));
2723 }
2724
2725 /*
2726 * Common routine to lookup/match a route. It invokes the lookup/matchaddr
2727 * callback which could be address family-specific. The main difference
2728 * between the two (at least for AF_INET/AF_INET6) is that a lookup does
2729 * not alter the expiring state of a route, whereas a match would unexpire
2730 * or revalidate the route.
2731 *
2732 * The optional scope or interface index property of a route allows for a
2733 * per-interface route instance. This permits multiple route entries having
2734 * the same destination (but not necessarily the same gateway) to exist in
2735 * the routing table; each of these entries is specific to the corresponding
2736 * interface. This is made possible by storing the scope ID value into the
2737 * radix key, thus making each route entry unique. These scoped entries
2738 * exist along with the regular, non-scoped entries in the same radix tree
2739 * for a given address family (AF_INET/AF_INET6); the scope logically
2740 * partitions it into multiple per-interface sub-trees.
2741 *
2742 * When a scoped route lookup is performed, the routing table is searched for
2743 * the best match that would result in a route using the same interface as the
2744 * one associated with the scope (the exception to this are routes that point
2745 * to the loopback interface). The search rule follows the longest matching
2746 * prefix with the additional interface constraint.
2747 */
2748 static struct rtentry *
2749 rt_lookup_common(boolean_t lookup_only, boolean_t coarse, struct sockaddr *dst,
2750 struct sockaddr *netmask, struct radix_node_head *rnh, unsigned int ifscope)
2751 {
2752 struct radix_node *rn0, *rn;
2753 boolean_t dontcare;
2754 int af = dst->sa_family;
2755 struct sockaddr_storage dst_ss, mask_ss;
2756
2757 VERIFY(!coarse || ifscope == IFSCOPE_NONE);
2758
2759 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2760 #if INET6
2761 /*
2762 * While we have rnh_lock held, see if we need to schedule the timer.
2763 */
2764 if (nd6_sched_timeout_want)
2765 nd6_sched_timeout(NULL, NULL);
2766 #endif /* INET6 */
2767
2768 if (!lookup_only)
2769 netmask = NULL;
2770
2771 /*
2772 * Non-scoped route lookup.
2773 */
2774 #if INET6
2775 if ((af != AF_INET && af != AF_INET6) ||
2776 (af == AF_INET && !ip_doscopedroute) ||
2777 (af == AF_INET6 && !ip6_doscopedroute)) {
2778 #else
2779 if (af != AF_INET || !ip_doscopedroute) {
2780 #endif /* !INET6 */
2781 rn = rnh->rnh_matchaddr(dst, rnh);
2782
2783 /*
2784 * Don't return a root node; also, rnh_matchaddr callback
2785 * would have done the necessary work to clear RTPRF_OURS
2786 * for certain protocol families.
2787 */
2788 if (rn != NULL && (rn->rn_flags & RNF_ROOT))
2789 rn = NULL;
2790 if (rn != NULL) {
2791 RT_LOCK_SPIN(RT(rn));
2792 if (!(RT(rn)->rt_flags & RTF_CONDEMNED)) {
2793 RT_ADDREF_LOCKED(RT(rn));
2794 RT_UNLOCK(RT(rn));
2795 } else {
2796 RT_UNLOCK(RT(rn));
2797 rn = NULL;
2798 }
2799 }
2800 return (RT(rn));
2801 }
2802
2803 /* Transform dst/netmask into the internal routing table form */
2804 dst = sa_copy(dst, &dst_ss, &ifscope);
2805 if (netmask != NULL)
2806 netmask = ma_copy(af, netmask, &mask_ss, ifscope);
2807 dontcare = (ifscope == IFSCOPE_NONE);
2808
2809 /*
2810 * Scoped route lookup:
2811 *
2812 * We first perform a non-scoped lookup for the original result.
2813 * Afterwards, depending on whether or not the caller has specified
2814 * a scope, we perform a more specific scoped search and fallback
2815 * to this original result upon failure.
2816 */
2817 rn0 = rn = node_lookup(dst, netmask, IFSCOPE_NONE);
2818
2819 /*
2820 * If the caller did not specify a scope, use the primary scope
2821 * derived from the system's non-scoped default route. If, for
2822 * any reason, there is no primary interface, ifscope will be
2823 * set to IFSCOPE_NONE; if the above lookup resulted in a route,
2824 * we'll do a more-specific search below, scoped to the interface
2825 * of that route.
2826 */
2827 if (dontcare)
2828 ifscope = get_primary_ifscope(af);
2829
2830 /*
2831 * Keep the original result if either of the following is true:
2832 *
2833 * 1) The interface portion of the route has the same interface
2834 * index as the scope value and it is marked with RTF_IFSCOPE.
2835 * 2) The route uses the loopback interface, in which case the
2836 * destination (host/net) is local/loopback.
2837 *
2838 * Otherwise, do a more specified search using the scope;
2839 * we're holding rnh_lock now, so rt_ifp should not change.
2840 */
2841 if (rn != NULL) {
2842 struct rtentry *rt = RT(rn);
2843 if (!(rt->rt_ifp->if_flags & IFF_LOOPBACK)) {
2844 if (rt->rt_ifp->if_index != ifscope) {
2845 /*
2846 * Wrong interface; keep the original result
2847 * only if the caller did not specify a scope,
2848 * and do a more specific scoped search using
2849 * the scope of the found route. Otherwise,
2850 * start again from scratch.
2851 */
2852 rn = NULL;
2853 if (dontcare)
2854 ifscope = rt->rt_ifp->if_index;
2855 else
2856 rn0 = NULL;
2857 } else if (!(rt->rt_flags & RTF_IFSCOPE)) {
2858 /*
2859 * Right interface, except that this route
2860 * isn't marked with RTF_IFSCOPE. Do a more
2861 * specific scoped search. Keep the original
2862 * result and return it it in case the scoped
2863 * search fails.
2864 */
2865 rn = NULL;
2866 }
2867 }
2868 }
2869
2870 /*
2871 * Scoped search. Find the most specific entry having the same
2872 * interface scope as the one requested. The following will result
2873 * in searching for the longest prefix scoped match.
2874 */
2875 if (rn == NULL)
2876 rn = node_lookup(dst, netmask, ifscope);
2877
2878 /*
2879 * Use the original result if either of the following is true:
2880 *
2881 * 1) The scoped search did not yield any result.
2882 * 2) The caller insists on performing a coarse-grained lookup.
2883 * 3) The result from the scoped search is a scoped default route,
2884 * and the original (non-scoped) result is not a default route,
2885 * i.e. the original result is a more specific host/net route.
2886 * 4) The scoped search yielded a net route but the original
2887 * result is a host route, i.e. the original result is treated
2888 * as a more specific route.
2889 */
2890 if (rn == NULL || coarse || (rn0 != NULL &&
2891 ((SA_DEFAULT(rt_key(RT(rn))) && !SA_DEFAULT(rt_key(RT(rn0)))) ||
2892 (!RT_HOST(rn) && RT_HOST(rn0)))))
2893 rn = rn0;
2894
2895 /*
2896 * If we still don't have a route, use the non-scoped default
2897 * route as long as the interface portion satistifes the scope.
2898 */
2899 if (rn == NULL && (rn = node_lookup_default(af)) != NULL &&
2900 RT(rn)->rt_ifp->if_index != ifscope)
2901 rn = NULL;
2902
2903 if (rn != NULL) {
2904 /*
2905 * Manually clear RTPRF_OURS using rt_validate() and
2906 * bump up the reference count after, and not before;
2907 * we only get here for AF_INET/AF_INET6. node_lookup()
2908 * has done the check against RNF_ROOT, so we can be sure
2909 * that we're not returning a root node here.
2910 */
2911 RT_LOCK_SPIN(RT(rn));
2912 if (rt_validate(RT(rn))) {
2913 RT_ADDREF_LOCKED(RT(rn));
2914 RT_UNLOCK(RT(rn));
2915 } else {
2916 RT_UNLOCK(RT(rn));
2917 rn = NULL;
2918 }
2919 }
2920
2921 return (RT(rn));
2922 }
2923
2924 struct rtentry *
2925 rt_lookup(boolean_t lookup_only, struct sockaddr *dst, struct sockaddr *netmask,
2926 struct radix_node_head *rnh, unsigned int ifscope)
2927 {
2928 return (rt_lookup_common(lookup_only, FALSE, dst, netmask,
2929 rnh, ifscope));
2930 }
2931
2932 struct rtentry *
2933 rt_lookup_coarse(boolean_t lookup_only, struct sockaddr *dst,
2934 struct sockaddr *netmask, struct radix_node_head *rnh)
2935 {
2936 return (rt_lookup_common(lookup_only, TRUE, dst, netmask,
2937 rnh, IFSCOPE_NONE));
2938 }
2939
2940 boolean_t
2941 rt_validate(struct rtentry *rt)
2942 {
2943 RT_LOCK_ASSERT_HELD(rt);
2944
2945 if ((rt->rt_flags & (RTF_UP | RTF_CONDEMNED)) == RTF_UP) {
2946 int af = rt_key(rt)->sa_family;
2947
2948 if (af == AF_INET)
2949 (void) in_validate(RN(rt));
2950 else if (af == AF_INET6)
2951 (void) in6_validate(RN(rt));
2952 } else {
2953 rt = NULL;
2954 }
2955
2956 return (rt != NULL);
2957 }
2958
2959 /*
2960 * Set up a routing table entry, normally
2961 * for an interface.
2962 */
2963 int
2964 rtinit(struct ifaddr *ifa, int cmd, int flags)
2965 {
2966 int error;
2967
2968 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2969
2970 lck_mtx_lock(rnh_lock);
2971 error = rtinit_locked(ifa, cmd, flags);
2972 lck_mtx_unlock(rnh_lock);
2973
2974 return (error);
2975 }
2976
2977 int
2978 rtinit_locked(struct ifaddr *ifa, int cmd, int flags)
2979 {
2980 struct radix_node_head *rnh;
2981 uint8_t nbuf[128]; /* long enough for IPv6 */
2982 char dbuf[MAX_IPv6_STR_LEN], gbuf[MAX_IPv6_STR_LEN];
2983 char abuf[MAX_IPv6_STR_LEN];
2984 struct rtentry *rt = NULL;
2985 struct sockaddr *dst;
2986 struct sockaddr *netmask;
2987 int error = 0;
2988
2989 /*
2990 * Holding rnh_lock here prevents the possibility of ifa from
2991 * changing (e.g. in_ifinit), so it is safe to access its
2992 * ifa_{dst}addr (here and down below) without locking.
2993 */
2994 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2995
2996 if (flags & RTF_HOST) {
2997 dst = ifa->ifa_dstaddr;
2998 netmask = NULL;
2999 } else {
3000 dst = ifa->ifa_addr;
3001 netmask = ifa->ifa_netmask;
3002 }
3003
3004 if (dst->sa_len == 0) {
3005 log(LOG_ERR, "%s: %s failed, invalid dst sa_len %d\n",
3006 __func__, rtm2str(cmd), dst->sa_len);
3007 error = EINVAL;
3008 goto done;
3009 }
3010 if (netmask != NULL && netmask->sa_len > sizeof (nbuf)) {
3011 log(LOG_ERR, "%s: %s failed, mask sa_len %d too large\n",
3012 __func__, rtm2str(cmd), dst->sa_len);
3013 error = EINVAL;
3014 goto done;
3015 }
3016
3017 if (dst->sa_family == AF_INET) {
3018 (void) inet_ntop(AF_INET, &SIN(dst)->sin_addr.s_addr,
3019 abuf, sizeof (abuf));
3020 }
3021 #if INET6
3022 else if (dst->sa_family == AF_INET6) {
3023 (void) inet_ntop(AF_INET6, &SIN6(dst)->sin6_addr,
3024 abuf, sizeof (abuf));
3025 }
3026 #endif /* INET6 */
3027
3028 if ((rnh = rt_tables[dst->sa_family]) == NULL) {
3029 error = EINVAL;
3030 goto done;
3031 }
3032
3033 /*
3034 * If it's a delete, check that if it exists, it's on the correct
3035 * interface or we might scrub a route to another ifa which would
3036 * be confusing at best and possibly worse.
3037 */
3038 if (cmd == RTM_DELETE) {
3039 /*
3040 * It's a delete, so it should already exist..
3041 * If it's a net, mask off the host bits
3042 * (Assuming we have a mask)
3043 */
3044 if (netmask != NULL) {
3045 rt_maskedcopy(dst, SA(nbuf), netmask);
3046 dst = SA(nbuf);
3047 }
3048 /*
3049 * Get an rtentry that is in the routing tree and contains
3050 * the correct info. Note that we perform a coarse-grained
3051 * lookup here, in case there is a scoped variant of the
3052 * subnet/prefix route which we should ignore, as we never
3053 * add a scoped subnet/prefix route as part of adding an
3054 * interface address.
3055 */
3056 rt = rt_lookup_coarse(TRUE, dst, NULL, rnh);
3057 if (rt != NULL) {
3058 rt_str(rt, dbuf, sizeof (dbuf), gbuf, sizeof (gbuf));
3059 /*
3060 * Ok so we found the rtentry. it has an extra reference
3061 * for us at this stage. we won't need that so
3062 * lop that off now.
3063 */
3064 RT_LOCK(rt);
3065 if (rt->rt_ifa != ifa) {
3066 /*
3067 * If the interface address in the rtentry
3068 * doesn't match the interface we are using,
3069 * then we don't want to delete it, so return
3070 * an error. This seems to be the only point
3071 * of this whole RTM_DELETE clause.
3072 */
3073 if (rt_verbose) {
3074 log(LOG_DEBUG, "%s: not removing "
3075 "route to %s->%s->%s, flags %b, "
3076 "ifaddr %s, rt_ifa 0x%llx != "
3077 "ifa 0x%llx\n", __func__, dbuf,
3078 gbuf, ((rt->rt_ifp != NULL) ?
3079 rt->rt_ifp->if_xname : ""),
3080 rt->rt_flags, RTF_BITS, abuf,
3081 (uint64_t)VM_KERNEL_ADDRPERM(
3082 rt->rt_ifa),
3083 (uint64_t)VM_KERNEL_ADDRPERM(ifa));
3084 }
3085 RT_REMREF_LOCKED(rt);
3086 RT_UNLOCK(rt);
3087 rt = NULL;
3088 error = ((flags & RTF_HOST) ?
3089 EHOSTUNREACH : ENETUNREACH);
3090 goto done;
3091 } else if (rt->rt_flags & RTF_STATIC) {
3092 /*
3093 * Don't remove the subnet/prefix route if
3094 * this was manually added from above.
3095 */
3096 if (rt_verbose) {
3097 log(LOG_DEBUG, "%s: not removing "
3098 "static route to %s->%s->%s, "
3099 "flags %b, ifaddr %s\n", __func__,
3100 dbuf, gbuf, ((rt->rt_ifp != NULL) ?
3101 rt->rt_ifp->if_xname : ""),
3102 rt->rt_flags, RTF_BITS, abuf);
3103 }
3104 RT_REMREF_LOCKED(rt);
3105 RT_UNLOCK(rt);
3106 rt = NULL;
3107 error = EBUSY;
3108 goto done;
3109 }
3110 if (rt_verbose) {
3111 log(LOG_DEBUG, "%s: removing route to "
3112 "%s->%s->%s, flags %b, ifaddr %s\n",
3113 __func__, dbuf, gbuf,
3114 ((rt->rt_ifp != NULL) ?
3115 rt->rt_ifp->if_xname : ""),
3116 rt->rt_flags, RTF_BITS, abuf);
3117 }
3118 RT_REMREF_LOCKED(rt);
3119 RT_UNLOCK(rt);
3120 rt = NULL;
3121 }
3122 }
3123 /*
3124 * Do the actual request
3125 */
3126 if ((error = rtrequest_locked(cmd, dst, ifa->ifa_addr, netmask,
3127 flags | ifa->ifa_flags, &rt)) != 0)
3128 goto done;
3129
3130 VERIFY(rt != NULL);
3131
3132 rt_str(rt, dbuf, sizeof (dbuf), gbuf, sizeof (gbuf));
3133
3134 switch (cmd) {
3135 case RTM_DELETE:
3136 /*
3137 * If we are deleting, and we found an entry, then it's
3138 * been removed from the tree. Notify any listening
3139 * routing agents of the change and throw it away.
3140 */
3141 RT_LOCK(rt);
3142 rt_newaddrmsg(cmd, ifa, error, rt);
3143 RT_UNLOCK(rt);
3144 if (rt_verbose) {
3145 log(LOG_DEBUG, "%s: removed route to %s->%s->%s, "
3146 "flags %b, ifaddr %s\n", __func__, dbuf, gbuf,
3147 ((rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : ""),
3148 rt->rt_flags, RTF_BITS, abuf);
3149 }
3150 rtfree_locked(rt);
3151 break;
3152
3153 case RTM_ADD:
3154 /*
3155 * We are adding, and we have a returned routing entry.
3156 * We need to sanity check the result. If it came back
3157 * with an unexpected interface, then it must have already
3158 * existed or something.
3159 */
3160 RT_LOCK(rt);
3161 if (rt->rt_ifa != ifa) {
3162 void (*ifa_rtrequest)
3163 (int, struct rtentry *, struct sockaddr *);
3164
3165 if (!(rt->rt_ifa->ifa_ifp->if_flags &
3166 (IFF_POINTOPOINT|IFF_LOOPBACK))) {
3167 log(LOG_ERR, "%s: %s route to %s->%s->%s, "
3168 "flags %b, ifaddr %s, rt_ifa 0x%llx != "
3169 "ifa 0x%llx\n", __func__, rtm2str(cmd),
3170 dbuf, gbuf, ((rt->rt_ifp != NULL) ?
3171 rt->rt_ifp->if_xname : ""), rt->rt_flags,
3172 RTF_BITS, abuf,
3173 (uint64_t)VM_KERNEL_ADDRPERM(rt->rt_ifa),
3174 (uint64_t)VM_KERNEL_ADDRPERM(ifa));
3175 }
3176
3177 if (rt_verbose) {
3178 log(LOG_DEBUG, "%s: %s route to %s->%s->%s, "
3179 "flags %b, ifaddr %s, rt_ifa was 0x%llx "
3180 "now 0x%llx\n", __func__, rtm2str(cmd),
3181 dbuf, gbuf, ((rt->rt_ifp != NULL) ?
3182 rt->rt_ifp->if_xname : ""), rt->rt_flags,
3183 RTF_BITS, abuf,
3184 (uint64_t)VM_KERNEL_ADDRPERM(rt->rt_ifa),
3185 (uint64_t)VM_KERNEL_ADDRPERM(ifa));
3186 }
3187
3188 /*
3189 * Ask that the protocol in question
3190 * remove anything it has associated with
3191 * this route and ifaddr.
3192 */
3193 ifa_rtrequest = rt->rt_ifa->ifa_rtrequest;
3194 if (ifa_rtrequest != NULL)
3195 ifa_rtrequest(RTM_DELETE, rt, NULL);
3196 /*
3197 * Set the route's ifa.
3198 */
3199 rtsetifa(rt, ifa);
3200
3201 if (rt->rt_ifp != ifa->ifa_ifp) {
3202 /*
3203 * Purge any link-layer info caching.
3204 */
3205 if (rt->rt_llinfo_purge != NULL)
3206 rt->rt_llinfo_purge(rt);
3207 /*
3208 * Adjust route ref count for the interfaces.
3209 */
3210 if (rt->rt_if_ref_fn != NULL) {
3211 rt->rt_if_ref_fn(ifa->ifa_ifp, 1);
3212 rt->rt_if_ref_fn(rt->rt_ifp, -1);
3213 }
3214 }
3215
3216 /*
3217 * And substitute in references to the ifaddr
3218 * we are adding.
3219 */
3220 rt->rt_ifp = ifa->ifa_ifp;
3221 /*
3222 * If rmx_mtu is not locked, update it
3223 * to the MTU used by the new interface.
3224 */
3225 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
3226 rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu;
3227
3228 /*
3229 * Now ask the protocol to check if it needs
3230 * any special processing in its new form.
3231 */
3232 ifa_rtrequest = ifa->ifa_rtrequest;
3233 if (ifa_rtrequest != NULL)
3234 ifa_rtrequest(RTM_ADD, rt, NULL);
3235 } else {
3236 if (rt_verbose) {
3237 log(LOG_DEBUG, "%s: added route to %s->%s->%s, "
3238 "flags %b, ifaddr %s\n", __func__, dbuf,
3239 gbuf, ((rt->rt_ifp != NULL) ?
3240 rt->rt_ifp->if_xname : ""), rt->rt_flags,
3241 RTF_BITS, abuf);
3242 }
3243 }
3244 /*
3245 * notify any listenning routing agents of the change
3246 */
3247 rt_newaddrmsg(cmd, ifa, error, rt);
3248 /*
3249 * We just wanted to add it; we don't actually need a
3250 * reference. This will result in a route that's added
3251 * to the routing table without a reference count. The
3252 * RTM_DELETE code will do the necessary step to adjust
3253 * the reference count at deletion time.
3254 */
3255 RT_REMREF_LOCKED(rt);
3256 RT_UNLOCK(rt);
3257 break;
3258
3259 default:
3260 VERIFY(0);
3261 /* NOTREACHED */
3262 }
3263 done:
3264 return (error);
3265 }
3266
3267 static void
3268 rt_set_idleref(struct rtentry *rt)
3269 {
3270 RT_LOCK_ASSERT_HELD(rt);
3271
3272 /*
3273 * We currently keep idle refcnt only on unicast cloned routes
3274 * that aren't marked with RTF_NOIFREF.
3275 */
3276 if (rt->rt_parent != NULL && !(rt->rt_flags &
3277 (RTF_NOIFREF|RTF_BROADCAST | RTF_MULTICAST)) &&
3278 (rt->rt_flags & (RTF_UP|RTF_WASCLONED|RTF_IFREF)) ==
3279 (RTF_UP|RTF_WASCLONED)) {
3280 rt_clear_idleref(rt); /* drop existing refcnt if any */
3281 rt->rt_if_ref_fn = rte_if_ref;
3282 /* Become a regular mutex, just in case */
3283 RT_CONVERT_LOCK(rt);
3284 rt->rt_if_ref_fn(rt->rt_ifp, 1);
3285 rt->rt_flags |= RTF_IFREF;
3286 }
3287 }
3288
3289 void
3290 rt_clear_idleref(struct rtentry *rt)
3291 {
3292 RT_LOCK_ASSERT_HELD(rt);
3293
3294 if (rt->rt_if_ref_fn != NULL) {
3295 VERIFY((rt->rt_flags & (RTF_NOIFREF | RTF_IFREF)) == RTF_IFREF);
3296 /* Become a regular mutex, just in case */
3297 RT_CONVERT_LOCK(rt);
3298 rt->rt_if_ref_fn(rt->rt_ifp, -1);
3299 rt->rt_flags &= ~RTF_IFREF;
3300 rt->rt_if_ref_fn = NULL;
3301 }
3302 }
3303
3304 void
3305 rt_set_proxy(struct rtentry *rt, boolean_t set)
3306 {
3307 lck_mtx_lock(rnh_lock);
3308 RT_LOCK(rt);
3309 /*
3310 * Search for any cloned routes which might have
3311 * been formed from this node, and delete them.
3312 */
3313 if (rt->rt_flags & (RTF_CLONING | RTF_PRCLONING)) {
3314 struct radix_node_head *rnh = rt_tables[rt_key(rt)->sa_family];
3315
3316 if (set)
3317 rt->rt_flags |= RTF_PROXY;
3318 else
3319 rt->rt_flags &= ~RTF_PROXY;
3320
3321 RT_UNLOCK(rt);
3322 if (rnh != NULL && rt_mask(rt)) {
3323 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
3324 rt_fixdelete, rt);
3325 }
3326 } else {
3327 RT_UNLOCK(rt);
3328 }
3329 lck_mtx_unlock(rnh_lock);
3330 }
3331
3332 static void
3333 rte_lock_init(struct rtentry *rt)
3334 {
3335 lck_mtx_init(&rt->rt_lock, rte_mtx_grp, rte_mtx_attr);
3336 }
3337
3338 static void
3339 rte_lock_destroy(struct rtentry *rt)
3340 {
3341 RT_LOCK_ASSERT_NOTHELD(rt);
3342 lck_mtx_destroy(&rt->rt_lock, rte_mtx_grp);
3343 }
3344
3345 void
3346 rt_lock(struct rtentry *rt, boolean_t spin)
3347 {
3348 RT_LOCK_ASSERT_NOTHELD(rt);
3349 if (spin)
3350 lck_mtx_lock_spin(&rt->rt_lock);
3351 else
3352 lck_mtx_lock(&rt->rt_lock);
3353 if (rte_debug & RTD_DEBUG)
3354 rte_lock_debug((struct rtentry_dbg *)rt);
3355 }
3356
3357 void
3358 rt_unlock(struct rtentry *rt)
3359 {
3360 if (rte_debug & RTD_DEBUG)
3361 rte_unlock_debug((struct rtentry_dbg *)rt);
3362 lck_mtx_unlock(&rt->rt_lock);
3363
3364 }
3365
3366 static inline void
3367 rte_lock_debug(struct rtentry_dbg *rte)
3368 {
3369 uint32_t idx;
3370
3371 RT_LOCK_ASSERT_HELD((struct rtentry *)rte);
3372 idx = atomic_add_32_ov(&rte->rtd_lock_cnt, 1) % CTRACE_HIST_SIZE;
3373 if (rte_debug & RTD_TRACE)
3374 ctrace_record(&rte->rtd_lock[idx]);
3375 }
3376
3377 static inline void
3378 rte_unlock_debug(struct rtentry_dbg *rte)
3379 {
3380 uint32_t idx;
3381
3382 RT_LOCK_ASSERT_HELD((struct rtentry *)rte);
3383 idx = atomic_add_32_ov(&rte->rtd_unlock_cnt, 1) % CTRACE_HIST_SIZE;
3384 if (rte_debug & RTD_TRACE)
3385 ctrace_record(&rte->rtd_unlock[idx]);
3386 }
3387
3388 static struct rtentry *
3389 rte_alloc(void)
3390 {
3391 if (rte_debug & RTD_DEBUG)
3392 return (rte_alloc_debug());
3393
3394 return ((struct rtentry *)zalloc(rte_zone));
3395 }
3396
3397 static void
3398 rte_free(struct rtentry *p)
3399 {
3400 if (rte_debug & RTD_DEBUG) {
3401 rte_free_debug(p);
3402 return;
3403 }
3404
3405 if (p->rt_refcnt != 0) {
3406 panic("rte_free: rte=%p refcnt=%d non-zero\n", p, p->rt_refcnt);
3407 /* NOTREACHED */
3408 }
3409 zfree(rte_zone, p);
3410 }
3411
3412 static void
3413 rte_if_ref(struct ifnet *ifp, int cnt)
3414 {
3415 struct kev_msg ev_msg;
3416 struct net_event_data ev_data;
3417 uint32_t old;
3418
3419 /* Force cnt to 1 increment/decrement */
3420 if (cnt < -1 || cnt > 1) {
3421 panic("%s: invalid count argument (%d)", __func__, cnt);
3422 /* NOTREACHED */
3423 }
3424 old = atomic_add_32_ov(&ifp->if_route_refcnt, cnt);
3425 if (cnt < 0 && old == 0) {
3426 panic("%s: ifp=%p negative route refcnt!", __func__, ifp);
3427 /* NOTREACHED */
3428 }
3429 /*
3430 * The following is done without first holding the ifnet lock,
3431 * for performance reasons. The relevant ifnet fields, with
3432 * the exception of the if_idle_flags, are never changed
3433 * during the lifetime of the ifnet. The if_idle_flags
3434 * may possibly be modified, so in the event that the value
3435 * is stale because IFRF_IDLE_NOTIFY was cleared, we'd end up
3436 * sending the event anyway. This is harmless as it is just
3437 * a notification to the monitoring agent in user space, and
3438 * it is expected to check via SIOCGIFGETRTREFCNT again anyway.
3439 */
3440 if ((ifp->if_idle_flags & IFRF_IDLE_NOTIFY) && cnt < 0 && old == 1) {
3441 bzero(&ev_msg, sizeof (ev_msg));
3442 bzero(&ev_data, sizeof (ev_data));
3443
3444 ev_msg.vendor_code = KEV_VENDOR_APPLE;
3445 ev_msg.kev_class = KEV_NETWORK_CLASS;
3446 ev_msg.kev_subclass = KEV_DL_SUBCLASS;
3447 ev_msg.event_code = KEV_DL_IF_IDLE_ROUTE_REFCNT;
3448
3449 strlcpy(&ev_data.if_name[0], ifp->if_name, IFNAMSIZ);
3450
3451 ev_data.if_family = ifp->if_family;
3452 ev_data.if_unit = ifp->if_unit;
3453 ev_msg.dv[0].data_length = sizeof (struct net_event_data);
3454 ev_msg.dv[0].data_ptr = &ev_data;
3455
3456 kev_post_msg(&ev_msg);
3457 }
3458 }
3459
3460 static inline struct rtentry *
3461 rte_alloc_debug(void)
3462 {
3463 struct rtentry_dbg *rte;
3464
3465 rte = ((struct rtentry_dbg *)zalloc(rte_zone));
3466 if (rte != NULL) {
3467 bzero(rte, sizeof (*rte));
3468 if (rte_debug & RTD_TRACE)
3469 ctrace_record(&rte->rtd_alloc);
3470 rte->rtd_inuse = RTD_INUSE;
3471 }
3472 return ((struct rtentry *)rte);
3473 }
3474
3475 static inline void
3476 rte_free_debug(struct rtentry *p)
3477 {
3478 struct rtentry_dbg *rte = (struct rtentry_dbg *)p;
3479
3480 if (p->rt_refcnt != 0) {
3481 panic("rte_free: rte=%p refcnt=%d\n", p, p->rt_refcnt);
3482 /* NOTREACHED */
3483 }
3484 if (rte->rtd_inuse == RTD_FREED) {
3485 panic("rte_free: double free rte=%p\n", rte);
3486 /* NOTREACHED */
3487 } else if (rte->rtd_inuse != RTD_INUSE) {
3488 panic("rte_free: corrupted rte=%p\n", rte);
3489 /* NOTREACHED */
3490 }
3491 bcopy((caddr_t)p, (caddr_t)&rte->rtd_entry_saved, sizeof (*p));
3492 /* Preserve rt_lock to help catch use-after-free cases */
3493 bzero((caddr_t)p, offsetof(struct rtentry, rt_lock));
3494
3495 rte->rtd_inuse = RTD_FREED;
3496
3497 if (rte_debug & RTD_TRACE)
3498 ctrace_record(&rte->rtd_free);
3499
3500 if (!(rte_debug & RTD_NO_FREE))
3501 zfree(rte_zone, p);
3502 }
3503
3504 void
3505 ctrace_record(ctrace_t *tr)
3506 {
3507 tr->th = current_thread();
3508 bzero(tr->pc, sizeof (tr->pc));
3509 (void) OSBacktrace(tr->pc, CTRACE_STACK_SIZE);
3510 }
3511
3512 void
3513 route_copyout(struct route *dst, const struct route *src, size_t length)
3514 {
3515 /* Copy everything (rt, srcif, flags, dst) from src */
3516 bcopy(src, dst, length);
3517
3518 /* Hold one reference for the local copy of struct route */
3519 if (dst->ro_rt != NULL)
3520 RT_ADDREF(dst->ro_rt);
3521
3522 /* Hold one reference for the local copy of struct ifaddr */
3523 if (dst->ro_srcia != NULL)
3524 IFA_ADDREF(dst->ro_srcia);
3525 }
3526
3527 void
3528 route_copyin(struct route *src, struct route *dst, size_t length)
3529 {
3530 /* No cached route at the destination? */
3531 if (dst->ro_rt == NULL) {
3532 /*
3533 * Ditch the address in the cached copy (dst) since
3534 * we're about to take everything there is in src.
3535 */
3536 if (dst->ro_srcia != NULL)
3537 IFA_REMREF(dst->ro_srcia);
3538 /*
3539 * Copy everything (rt, srcia, flags, dst) from src; the
3540 * references to rt and/or srcia were held at the time
3541 * of storage and are kept intact.
3542 */
3543 bcopy(src, dst, length);
3544 } else if (src->ro_rt != NULL) {
3545 /*
3546 * If the same, update srcia and flags, and ditch the route
3547 * in the local copy. Else ditch the one that is currently
3548 * cached, and cache the new route.
3549 */
3550 if (dst->ro_rt == src->ro_rt) {
3551 dst->ro_flags = src->ro_flags;
3552 if (dst->ro_srcia != src->ro_srcia) {
3553 if (dst->ro_srcia != NULL)
3554 IFA_REMREF(dst->ro_srcia);
3555 dst->ro_srcia = src->ro_srcia;
3556 } else if (src->ro_srcia != NULL) {
3557 IFA_REMREF(src->ro_srcia);
3558 }
3559 rtfree(src->ro_rt);
3560 } else {
3561 rtfree(dst->ro_rt);
3562 if (dst->ro_srcia != NULL)
3563 IFA_REMREF(dst->ro_srcia);
3564 bcopy(src, dst, length);
3565 }
3566 } else if (src->ro_srcia != NULL) {
3567 /*
3568 * Ditch src address in the local copy (src) since we're
3569 * not caching the route entry anyway (ro_rt is NULL).
3570 */
3571 IFA_REMREF(src->ro_srcia);
3572 }
3573
3574 /* This function consumes the references on src */
3575 src->ro_rt = NULL;
3576 src->ro_srcia = NULL;
3577 }
3578
3579 /*
3580 * route_to_gwroute will find the gateway route for a given route.
3581 *
3582 * If the route is down, look the route up again.
3583 * If the route goes through a gateway, get the route to the gateway.
3584 * If the gateway route is down, look it up again.
3585 * If the route is set to reject, verify it hasn't expired.
3586 *
3587 * If the returned route is non-NULL, the caller is responsible for
3588 * releasing the reference and unlocking the route.
3589 */
3590 #define senderr(e) { error = (e); goto bad; }
3591 errno_t
3592 route_to_gwroute(const struct sockaddr *net_dest, struct rtentry *hint0,
3593 struct rtentry **out_route)
3594 {
3595 uint64_t timenow;
3596 struct rtentry *rt = hint0, *hint = hint0;
3597 errno_t error = 0;
3598 unsigned int ifindex;
3599 boolean_t gwroute;
3600
3601 *out_route = NULL;
3602
3603 if (rt == NULL)
3604 return (0);
3605
3606 /*
3607 * Next hop determination. Because we may involve the gateway route
3608 * in addition to the original route, locking is rather complicated.
3609 * The general concept is that regardless of whether the route points
3610 * to the original route or to the gateway route, this routine takes
3611 * an extra reference on such a route. This extra reference will be
3612 * released at the end.
3613 *
3614 * Care must be taken to ensure that the "hint0" route never gets freed
3615 * via rtfree(), since the caller may have stored it inside a struct
3616 * route with a reference held for that placeholder.
3617 */
3618 RT_LOCK_SPIN(rt);
3619 ifindex = rt->rt_ifp->if_index;
3620 RT_ADDREF_LOCKED(rt);
3621 if (!(rt->rt_flags & RTF_UP)) {
3622 RT_REMREF_LOCKED(rt);
3623 RT_UNLOCK(rt);
3624 /* route is down, find a new one */
3625 hint = rt = rtalloc1_scoped((struct sockaddr *)
3626 (size_t)net_dest, 1, 0, ifindex);
3627 if (hint != NULL) {
3628 RT_LOCK_SPIN(rt);
3629 ifindex = rt->rt_ifp->if_index;
3630 } else {
3631 senderr(EHOSTUNREACH);
3632 }
3633 }
3634
3635 /*
3636 * We have a reference to "rt" by now; it will either
3637 * be released or freed at the end of this routine.
3638 */
3639 RT_LOCK_ASSERT_HELD(rt);
3640 if ((gwroute = (rt->rt_flags & RTF_GATEWAY))) {
3641 struct rtentry *gwrt = rt->rt_gwroute;
3642 struct sockaddr_storage ss;
3643 struct sockaddr *gw = (struct sockaddr *)&ss;
3644
3645 VERIFY(rt == hint);
3646 RT_ADDREF_LOCKED(hint);
3647
3648 /* If there's no gateway rt, look it up */
3649 if (gwrt == NULL) {
3650 bcopy(rt->rt_gateway, gw, MIN(sizeof (ss),
3651 rt->rt_gateway->sa_len));
3652 RT_UNLOCK(rt);
3653 goto lookup;
3654 }
3655 /* Become a regular mutex */
3656 RT_CONVERT_LOCK(rt);
3657
3658 /*
3659 * Take gwrt's lock while holding route's lock;
3660 * this is okay since gwrt never points back
3661 * to "rt", so no lock ordering issues.
3662 */
3663 RT_LOCK_SPIN(gwrt);
3664 if (!(gwrt->rt_flags & RTF_UP)) {
3665 rt->rt_gwroute = NULL;
3666 RT_UNLOCK(gwrt);
3667 bcopy(rt->rt_gateway, gw, MIN(sizeof (ss),
3668 rt->rt_gateway->sa_len));
3669 RT_UNLOCK(rt);
3670 rtfree(gwrt);
3671 lookup:
3672 lck_mtx_lock(rnh_lock);
3673 gwrt = rtalloc1_scoped_locked(gw, 1, 0, ifindex);
3674
3675 RT_LOCK(rt);
3676 /*
3677 * Bail out if the route is down, no route
3678 * to gateway, circular route, or if the
3679 * gateway portion of "rt" has changed.
3680 */
3681 if (!(rt->rt_flags & RTF_UP) || gwrt == NULL ||
3682 gwrt == rt || !equal(gw, rt->rt_gateway)) {
3683 if (gwrt == rt) {
3684 RT_REMREF_LOCKED(gwrt);
3685 gwrt = NULL;
3686 }
3687 VERIFY(rt == hint);
3688 RT_REMREF_LOCKED(hint);
3689 hint = NULL;
3690 RT_UNLOCK(rt);
3691 if (gwrt != NULL)
3692 rtfree_locked(gwrt);
3693 lck_mtx_unlock(rnh_lock);
3694 senderr(EHOSTUNREACH);
3695 }
3696 VERIFY(gwrt != NULL);
3697 /*
3698 * Set gateway route; callee adds ref to gwrt;
3699 * gwrt has an extra ref from rtalloc1() for
3700 * this routine.
3701 */
3702 rt_set_gwroute(rt, rt_key(rt), gwrt);
3703 VERIFY(rt == hint);
3704 RT_REMREF_LOCKED(rt); /* hint still holds a refcnt */
3705 RT_UNLOCK(rt);
3706 lck_mtx_unlock(rnh_lock);
3707 rt = gwrt;
3708 } else {
3709 RT_ADDREF_LOCKED(gwrt);
3710 RT_UNLOCK(gwrt);
3711 VERIFY(rt == hint);
3712 RT_REMREF_LOCKED(rt); /* hint still holds a refcnt */
3713 RT_UNLOCK(rt);
3714 rt = gwrt;
3715 }
3716 VERIFY(rt == gwrt && rt != hint);
3717
3718 /*
3719 * This is an opportunity to revalidate the parent route's
3720 * rt_gwroute, in case it now points to a dead route entry.
3721 * Parent route won't go away since the clone (hint) holds
3722 * a reference to it. rt == gwrt.
3723 */
3724 RT_LOCK_SPIN(hint);
3725 if ((hint->rt_flags & (RTF_WASCLONED | RTF_UP)) ==
3726 (RTF_WASCLONED | RTF_UP)) {
3727 struct rtentry *prt = hint->rt_parent;
3728 VERIFY(prt != NULL);
3729
3730 RT_CONVERT_LOCK(hint);
3731 RT_ADDREF(prt);
3732 RT_UNLOCK(hint);
3733 rt_revalidate_gwroute(prt, rt);
3734 RT_REMREF(prt);
3735 } else {
3736 RT_UNLOCK(hint);
3737 }
3738
3739 /* Clean up "hint" now; see notes above regarding hint0 */
3740 if (hint == hint0)
3741 RT_REMREF(hint);
3742 else
3743 rtfree(hint);
3744 hint = NULL;
3745
3746 /* rt == gwrt; if it is now down, give up */
3747 RT_LOCK_SPIN(rt);
3748 if (!(rt->rt_flags & RTF_UP)) {
3749 RT_UNLOCK(rt);
3750 senderr(EHOSTUNREACH);
3751 }
3752 }
3753
3754 if (rt->rt_flags & RTF_REJECT) {
3755 VERIFY(rt->rt_expire == 0 || rt->rt_rmx.rmx_expire != 0);
3756 VERIFY(rt->rt_expire != 0 || rt->rt_rmx.rmx_expire == 0);
3757 timenow = net_uptime();
3758 if (rt->rt_expire == 0 || timenow < rt->rt_expire) {
3759 RT_UNLOCK(rt);
3760 senderr(!gwroute ? EHOSTDOWN : EHOSTUNREACH);
3761 }
3762 }
3763
3764 /* Become a regular mutex */
3765 RT_CONVERT_LOCK(rt);
3766
3767 /* Caller is responsible for cleaning up "rt" */
3768 *out_route = rt;
3769 return (0);
3770
3771 bad:
3772 /* Clean up route (either it is "rt" or "gwrt") */
3773 if (rt != NULL) {
3774 RT_LOCK_SPIN(rt);
3775 if (rt == hint0) {
3776 RT_REMREF_LOCKED(rt);
3777 RT_UNLOCK(rt);
3778 } else {
3779 RT_UNLOCK(rt);
3780 rtfree(rt);
3781 }
3782 }
3783 return (error);
3784 }
3785 #undef senderr
3786
3787 void
3788 rt_revalidate_gwroute(struct rtentry *rt, struct rtentry *gwrt)
3789 {
3790 VERIFY(rt->rt_flags & (RTF_CLONING | RTF_PRCLONING));
3791 VERIFY(gwrt != NULL);
3792
3793 RT_LOCK_SPIN(rt);
3794 if ((rt->rt_flags & (RTF_GATEWAY | RTF_UP)) == (RTF_GATEWAY | RTF_UP) &&
3795 rt->rt_ifp == gwrt->rt_ifp && rt->rt_gateway->sa_family ==
3796 rt_key(gwrt)->sa_family && (rt->rt_gwroute == NULL ||
3797 !(rt->rt_gwroute->rt_flags & RTF_UP))) {
3798 boolean_t isequal;
3799
3800 if (rt->rt_gateway->sa_family == AF_INET ||
3801 rt->rt_gateway->sa_family == AF_INET6) {
3802 struct sockaddr_storage key_ss, gw_ss;
3803 /*
3804 * We need to compare rt_key and rt_gateway; create
3805 * local copies to get rid of any ifscope association.
3806 */
3807 (void) sa_copy(rt_key(gwrt), &key_ss, NULL);
3808 (void) sa_copy(rt->rt_gateway, &gw_ss, NULL);
3809
3810 isequal = equal(SA(&key_ss), SA(&gw_ss));
3811 } else {
3812 isequal = equal(rt_key(gwrt), rt->rt_gateway);
3813 }
3814
3815 /* If they are the same, update gwrt */
3816 if (isequal) {
3817 RT_UNLOCK(rt);
3818 lck_mtx_lock(rnh_lock);
3819 RT_LOCK(rt);
3820 rt_set_gwroute(rt, rt_key(rt), gwrt);
3821 RT_UNLOCK(rt);
3822 lck_mtx_unlock(rnh_lock);
3823 } else {
3824 RT_UNLOCK(rt);
3825 }
3826 } else {
3827 RT_UNLOCK(rt);
3828 }
3829 }
3830
3831 static void
3832 rt_str4(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen)
3833 {
3834 VERIFY(rt_key(rt)->sa_family == AF_INET);
3835
3836 if (ds != NULL)
3837 (void) inet_ntop(AF_INET,
3838 &SIN(rt_key(rt))->sin_addr.s_addr, ds, dslen);
3839 if (gs != NULL) {
3840 if (rt->rt_flags & RTF_GATEWAY) {
3841 (void) inet_ntop(AF_INET,
3842 &SIN(rt->rt_gateway)->sin_addr.s_addr, gs, gslen);
3843 } else if (rt->rt_ifp != NULL) {
3844 snprintf(gs, gslen, "link#%u", rt->rt_ifp->if_unit);
3845 } else {
3846 snprintf(gs, gslen, "%s", "link");
3847 }
3848 }
3849 }
3850
3851 #if INET6
3852 static void
3853 rt_str6(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen)
3854 {
3855 VERIFY(rt_key(rt)->sa_family == AF_INET6);
3856
3857 if (ds != NULL)
3858 (void) inet_ntop(AF_INET6,
3859 &SIN6(rt_key(rt))->sin6_addr, ds, dslen);
3860 if (gs != NULL) {
3861 if (rt->rt_flags & RTF_GATEWAY) {
3862 (void) inet_ntop(AF_INET6,
3863 &SIN6(rt->rt_gateway)->sin6_addr, gs, gslen);
3864 } else if (rt->rt_ifp != NULL) {
3865 snprintf(gs, gslen, "link#%u", rt->rt_ifp->if_unit);
3866 } else {
3867 snprintf(gs, gslen, "%s", "link");
3868 }
3869 }
3870 }
3871 #endif /* INET6 */
3872
3873
3874 void
3875 rt_str(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen)
3876 {
3877 switch (rt_key(rt)->sa_family) {
3878 case AF_INET:
3879 rt_str4(rt, ds, dslen, gs, gslen);
3880 break;
3881 #if INET6
3882 case AF_INET6:
3883 rt_str6(rt, ds, dslen, gs, gslen);
3884 break;
3885 #endif /* INET6 */
3886 default:
3887 if (ds != NULL)
3888 bzero(ds, dslen);
3889 if (gs != NULL)
3890 bzero(gs, gslen);
3891 break;
3892 }
3893 }