2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
62 * User-exported virtual memory functions.
66 * There are three implementations of the "XXX_allocate" functionality in
67 * the kernel: mach_vm_allocate (for any task on the platform), vm_allocate
68 * (for a task with the same address space size, especially the current task),
69 * and vm32_vm_allocate (for the specific case of a 32-bit task). vm_allocate
70 * in the kernel should only be used on the kernel_task. vm32_vm_allocate only
71 * makes sense on platforms where a user task can either be 32 or 64, or the kernel
72 * task can be 32 or 64. mach_vm_allocate makes sense everywhere, and is preferred
75 * The entrypoints into the kernel are more complex. All platforms support a
76 * mach_vm_allocate-style API (subsystem 4800) which operates with the largest
77 * size types for the platform. On platforms that only support U32/K32,
78 * subsystem 4800 is all you need. On platforms that support both U32 and U64,
79 * subsystem 3800 is used disambiguate the size of parameters, and they will
80 * always be 32-bit and call into the vm32_vm_allocate APIs. On non-U32/K32 platforms,
81 * the MIG glue should never call into vm_allocate directly, because the calling
82 * task and kernel_task are unlikely to use the same size parameters
84 * New VM call implementations should be added here and to mach_vm.defs
85 * (subsystem 4800), and use mach_vm_* "wide" types.
91 #include <mach/boolean.h>
92 #include <mach/kern_return.h>
93 #include <mach/mach_types.h> /* to get vm_address_t */
94 #include <mach/memory_object.h>
95 #include <mach/std_types.h> /* to get pointer_t */
97 #include <mach/vm_attributes.h>
98 #include <mach/vm_param.h>
99 #include <mach/vm_statistics.h>
100 #include <mach/mach_syscalls.h>
102 #include <mach/host_priv_server.h>
103 #include <mach/mach_vm_server.h>
104 #include <mach/vm_map_server.h>
106 #include <kern/host.h>
107 #include <kern/kalloc.h>
108 #include <kern/task.h>
109 #include <kern/misc_protos.h>
110 #include <vm/vm_fault.h>
111 #include <vm/vm_map.h>
112 #include <vm/vm_object.h>
113 #include <vm/vm_page.h>
114 #include <vm/memory_object.h>
115 #include <vm/vm_pageout.h>
116 #include <vm/vm_protos.h>
117 #include <vm/vm_purgeable_internal.h>
119 vm_size_t upl_offset_to_pagelist
= 0;
125 ipc_port_t dynamic_pager_control_port
=NULL
;
128 * mach_vm_allocate allocates "zero fill" memory in the specfied
134 mach_vm_offset_t
*addr
,
138 vm_map_offset_t map_addr
;
139 vm_map_size_t map_size
;
140 kern_return_t result
;
143 /* filter out any kernel-only flags */
144 if (flags
& ~VM_FLAGS_USER_ALLOCATE
)
145 return KERN_INVALID_ARGUMENT
;
147 if (map
== VM_MAP_NULL
)
148 return(KERN_INVALID_ARGUMENT
);
151 return(KERN_SUCCESS
);
154 anywhere
= ((VM_FLAGS_ANYWHERE
& flags
) != 0);
157 * No specific address requested, so start candidate address
158 * search at the minimum address in the map. However, if that
159 * minimum is 0, bump it up by PAGE_SIZE. We want to limit
160 * allocations of PAGEZERO to explicit requests since its
161 * normal use is to catch dereferences of NULL and many
162 * applications also treat pointers with a value of 0 as
163 * special and suddenly having address 0 contain useable
164 * memory would tend to confuse those applications.
166 map_addr
= vm_map_min(map
);
168 map_addr
+= VM_MAP_PAGE_SIZE(map
);
170 map_addr
= vm_map_trunc_page(*addr
,
171 VM_MAP_PAGE_MASK(map
));
172 map_size
= vm_map_round_page(size
,
173 VM_MAP_PAGE_MASK(map
));
175 return(KERN_INVALID_ARGUMENT
);
178 result
= vm_map_enter(
185 (vm_object_offset_t
)0,
197 * Legacy routine that allocates "zero fill" memory in the specfied
198 * map (which is limited to the same size as the kernel).
207 vm_map_offset_t map_addr
;
208 vm_map_size_t map_size
;
209 kern_return_t result
;
212 /* filter out any kernel-only flags */
213 if (flags
& ~VM_FLAGS_USER_ALLOCATE
)
214 return KERN_INVALID_ARGUMENT
;
216 if (map
== VM_MAP_NULL
)
217 return(KERN_INVALID_ARGUMENT
);
220 return(KERN_SUCCESS
);
223 anywhere
= ((VM_FLAGS_ANYWHERE
& flags
) != 0);
226 * No specific address requested, so start candidate address
227 * search at the minimum address in the map. However, if that
228 * minimum is 0, bump it up by PAGE_SIZE. We want to limit
229 * allocations of PAGEZERO to explicit requests since its
230 * normal use is to catch dereferences of NULL and many
231 * applications also treat pointers with a value of 0 as
232 * special and suddenly having address 0 contain useable
233 * memory would tend to confuse those applications.
235 map_addr
= vm_map_min(map
);
237 map_addr
+= VM_MAP_PAGE_SIZE(map
);
239 map_addr
= vm_map_trunc_page(*addr
,
240 VM_MAP_PAGE_MASK(map
));
241 map_size
= vm_map_round_page(size
,
242 VM_MAP_PAGE_MASK(map
));
244 return(KERN_INVALID_ARGUMENT
);
247 result
= vm_map_enter(
254 (vm_object_offset_t
)0,
260 *addr
= CAST_DOWN(vm_offset_t
, map_addr
);
265 * mach_vm_deallocate -
266 * deallocates the specified range of addresses in the
267 * specified address map.
272 mach_vm_offset_t start
,
275 if ((map
== VM_MAP_NULL
) || (start
+ size
< start
))
276 return(KERN_INVALID_ARGUMENT
);
278 if (size
== (mach_vm_offset_t
) 0)
279 return(KERN_SUCCESS
);
281 return(vm_map_remove(map
,
282 vm_map_trunc_page(start
,
283 VM_MAP_PAGE_MASK(map
)),
284 vm_map_round_page(start
+size
,
285 VM_MAP_PAGE_MASK(map
)),
291 * deallocates the specified range of addresses in the
292 * specified address map (limited to addresses the same
293 * size as the kernel).
297 register vm_map_t map
,
301 if ((map
== VM_MAP_NULL
) || (start
+ size
< start
))
302 return(KERN_INVALID_ARGUMENT
);
304 if (size
== (vm_offset_t
) 0)
305 return(KERN_SUCCESS
);
307 return(vm_map_remove(map
,
308 vm_map_trunc_page(start
,
309 VM_MAP_PAGE_MASK(map
)),
310 vm_map_round_page(start
+size
,
311 VM_MAP_PAGE_MASK(map
)),
317 * Sets the inheritance of the specified range in the
323 mach_vm_offset_t start
,
325 vm_inherit_t new_inheritance
)
327 if ((map
== VM_MAP_NULL
) || (start
+ size
< start
) ||
328 (new_inheritance
> VM_INHERIT_LAST_VALID
))
329 return(KERN_INVALID_ARGUMENT
);
334 return(vm_map_inherit(map
,
335 vm_map_trunc_page(start
,
336 VM_MAP_PAGE_MASK(map
)),
337 vm_map_round_page(start
+size
,
338 VM_MAP_PAGE_MASK(map
)),
344 * Sets the inheritance of the specified range in the
345 * specified map (range limited to addresses
349 register vm_map_t map
,
352 vm_inherit_t new_inheritance
)
354 if ((map
== VM_MAP_NULL
) || (start
+ size
< start
) ||
355 (new_inheritance
> VM_INHERIT_LAST_VALID
))
356 return(KERN_INVALID_ARGUMENT
);
361 return(vm_map_inherit(map
,
362 vm_map_trunc_page(start
,
363 VM_MAP_PAGE_MASK(map
)),
364 vm_map_round_page(start
+size
,
365 VM_MAP_PAGE_MASK(map
)),
371 * Sets the protection of the specified range in the
378 mach_vm_offset_t start
,
380 boolean_t set_maximum
,
381 vm_prot_t new_protection
)
383 if ((map
== VM_MAP_NULL
) || (start
+ size
< start
) ||
384 (new_protection
& ~(VM_PROT_ALL
| VM_PROT_COPY
)))
385 return(KERN_INVALID_ARGUMENT
);
390 return(vm_map_protect(map
,
391 vm_map_trunc_page(start
,
392 VM_MAP_PAGE_MASK(map
)),
393 vm_map_round_page(start
+size
,
394 VM_MAP_PAGE_MASK(map
)),
401 * Sets the protection of the specified range in the
402 * specified map. Addressability of the range limited
403 * to the same size as the kernel.
411 boolean_t set_maximum
,
412 vm_prot_t new_protection
)
414 if ((map
== VM_MAP_NULL
) || (start
+ size
< start
) ||
415 (new_protection
& ~(VM_PROT_ALL
| VM_PROT_COPY
)))
416 return(KERN_INVALID_ARGUMENT
);
421 return(vm_map_protect(map
,
422 vm_map_trunc_page(start
,
423 VM_MAP_PAGE_MASK(map
)),
424 vm_map_round_page(start
+size
,
425 VM_MAP_PAGE_MASK(map
)),
431 * mach_vm_machine_attributes -
432 * Handle machine-specific attributes for a mapping, such
433 * as cachability, migrability, etc.
436 mach_vm_machine_attribute(
438 mach_vm_address_t addr
,
440 vm_machine_attribute_t attribute
,
441 vm_machine_attribute_val_t
* value
) /* IN/OUT */
443 if ((map
== VM_MAP_NULL
) || (addr
+ size
< addr
))
444 return(KERN_INVALID_ARGUMENT
);
449 return vm_map_machine_attribute(
451 vm_map_trunc_page(addr
,
452 VM_MAP_PAGE_MASK(map
)),
453 vm_map_round_page(addr
+size
,
454 VM_MAP_PAGE_MASK(map
)),
460 * vm_machine_attribute -
461 * Handle machine-specific attributes for a mapping, such
462 * as cachability, migrability, etc. Limited addressability
463 * (same range limits as for the native kernel map).
466 vm_machine_attribute(
470 vm_machine_attribute_t attribute
,
471 vm_machine_attribute_val_t
* value
) /* IN/OUT */
473 if ((map
== VM_MAP_NULL
) || (addr
+ size
< addr
))
474 return(KERN_INVALID_ARGUMENT
);
479 return vm_map_machine_attribute(
481 vm_map_trunc_page(addr
,
482 VM_MAP_PAGE_MASK(map
)),
483 vm_map_round_page(addr
+size
,
484 VM_MAP_PAGE_MASK(map
)),
491 * Read/copy a range from one address space and return it to the caller.
493 * It is assumed that the address for the returned memory is selected by
494 * the IPC implementation as part of receiving the reply to this call.
495 * If IPC isn't used, the caller must deal with the vm_map_copy_t object
496 * that gets returned.
498 * JMM - because of mach_msg_type_number_t, this call is limited to a
499 * single 4GB region at this time.
505 mach_vm_address_t addr
,
508 mach_msg_type_number_t
*data_size
)
511 vm_map_copy_t ipc_address
;
513 if (map
== VM_MAP_NULL
)
514 return(KERN_INVALID_ARGUMENT
);
516 if ((mach_msg_type_number_t
) size
!= size
)
517 return KERN_INVALID_ARGUMENT
;
519 error
= vm_map_copyin(map
,
520 (vm_map_address_t
)addr
,
522 FALSE
, /* src_destroy */
525 if (KERN_SUCCESS
== error
) {
526 *data
= (pointer_t
) ipc_address
;
527 *data_size
= (mach_msg_type_number_t
) size
;
528 assert(*data_size
== size
);
535 * Read/copy a range from one address space and return it to the caller.
536 * Limited addressability (same range limits as for the native kernel map).
538 * It is assumed that the address for the returned memory is selected by
539 * the IPC implementation as part of receiving the reply to this call.
540 * If IPC isn't used, the caller must deal with the vm_map_copy_t object
541 * that gets returned.
549 mach_msg_type_number_t
*data_size
)
552 vm_map_copy_t ipc_address
;
554 if (map
== VM_MAP_NULL
)
555 return(KERN_INVALID_ARGUMENT
);
557 if (size
> (unsigned)(mach_msg_type_number_t
) -1) {
559 * The kernel could handle a 64-bit "size" value, but
560 * it could not return the size of the data in "*data_size"
561 * without overflowing.
562 * Let's reject this "size" as invalid.
564 return KERN_INVALID_ARGUMENT
;
567 error
= vm_map_copyin(map
,
568 (vm_map_address_t
)addr
,
570 FALSE
, /* src_destroy */
573 if (KERN_SUCCESS
== error
) {
574 *data
= (pointer_t
) ipc_address
;
575 *data_size
= (mach_msg_type_number_t
) size
;
576 assert(*data_size
== size
);
582 * mach_vm_read_list -
583 * Read/copy a list of address ranges from specified map.
585 * MIG does not know how to deal with a returned array of
586 * vm_map_copy_t structures, so we have to do the copyout
592 mach_vm_read_entry_t data_list
,
595 mach_msg_type_number_t i
;
599 if (map
== VM_MAP_NULL
||
600 count
> VM_MAP_ENTRY_MAX
)
601 return(KERN_INVALID_ARGUMENT
);
603 error
= KERN_SUCCESS
;
604 for(i
=0; i
<count
; i
++) {
605 vm_map_address_t map_addr
;
606 vm_map_size_t map_size
;
608 map_addr
= (vm_map_address_t
)(data_list
[i
].address
);
609 map_size
= (vm_map_size_t
)(data_list
[i
].size
);
612 error
= vm_map_copyin(map
,
615 FALSE
, /* src_destroy */
617 if (KERN_SUCCESS
== error
) {
618 error
= vm_map_copyout(
622 if (KERN_SUCCESS
== error
) {
623 data_list
[i
].address
= map_addr
;
626 vm_map_copy_discard(copy
);
629 data_list
[i
].address
= (mach_vm_address_t
)0;
630 data_list
[i
].size
= (mach_vm_size_t
)0;
637 * Read/copy a list of address ranges from specified map.
639 * MIG does not know how to deal with a returned array of
640 * vm_map_copy_t structures, so we have to do the copyout
643 * The source and destination ranges are limited to those
644 * that can be described with a vm_address_t (i.e. same
645 * size map as the kernel).
647 * JMM - If the result of the copyout is an address range
648 * that cannot be described with a vm_address_t (i.e. the
649 * caller had a larger address space but used this call
650 * anyway), it will result in a truncated address being
651 * returned (and a likely confused caller).
657 vm_read_entry_t data_list
,
660 mach_msg_type_number_t i
;
664 if (map
== VM_MAP_NULL
||
665 count
> VM_MAP_ENTRY_MAX
)
666 return(KERN_INVALID_ARGUMENT
);
668 error
= KERN_SUCCESS
;
669 for(i
=0; i
<count
; i
++) {
670 vm_map_address_t map_addr
;
671 vm_map_size_t map_size
;
673 map_addr
= (vm_map_address_t
)(data_list
[i
].address
);
674 map_size
= (vm_map_size_t
)(data_list
[i
].size
);
677 error
= vm_map_copyin(map
,
680 FALSE
, /* src_destroy */
682 if (KERN_SUCCESS
== error
) {
683 error
= vm_map_copyout(current_task()->map
,
686 if (KERN_SUCCESS
== error
) {
687 data_list
[i
].address
=
688 CAST_DOWN(vm_offset_t
, map_addr
);
691 vm_map_copy_discard(copy
);
694 data_list
[i
].address
= (mach_vm_address_t
)0;
695 data_list
[i
].size
= (mach_vm_size_t
)0;
701 * mach_vm_read_overwrite -
702 * Overwrite a range of the current map with data from the specified
705 * In making an assumption that the current thread is local, it is
706 * no longer cluster-safe without a fully supportive local proxy
707 * thread/task (but we don't support cluster's anymore so this is moot).
711 mach_vm_read_overwrite(
713 mach_vm_address_t address
,
715 mach_vm_address_t data
,
716 mach_vm_size_t
*data_size
)
721 if (map
== VM_MAP_NULL
)
722 return(KERN_INVALID_ARGUMENT
);
724 error
= vm_map_copyin(map
, (vm_map_address_t
)address
,
725 (vm_map_size_t
)size
, FALSE
, ©
);
727 if (KERN_SUCCESS
== error
) {
728 error
= vm_map_copy_overwrite(current_thread()->map
,
729 (vm_map_address_t
)data
,
731 if (KERN_SUCCESS
== error
) {
735 vm_map_copy_discard(copy
);
741 * vm_read_overwrite -
742 * Overwrite a range of the current map with data from the specified
745 * This routine adds the additional limitation that the source and
746 * destination ranges must be describable with vm_address_t values
747 * (i.e. the same size address spaces as the kernel, or at least the
748 * the ranges are in that first portion of the respective address
755 vm_address_t address
,
758 vm_size_t
*data_size
)
763 if (map
== VM_MAP_NULL
)
764 return(KERN_INVALID_ARGUMENT
);
766 error
= vm_map_copyin(map
, (vm_map_address_t
)address
,
767 (vm_map_size_t
)size
, FALSE
, ©
);
769 if (KERN_SUCCESS
== error
) {
770 error
= vm_map_copy_overwrite(current_thread()->map
,
771 (vm_map_address_t
)data
,
773 if (KERN_SUCCESS
== error
) {
777 vm_map_copy_discard(copy
);
785 * Overwrite the specified address range with the data provided
786 * (from the current map).
791 mach_vm_address_t address
,
793 __unused mach_msg_type_number_t size
)
795 if (map
== VM_MAP_NULL
)
796 return KERN_INVALID_ARGUMENT
;
798 return vm_map_copy_overwrite(map
, (vm_map_address_t
)address
,
799 (vm_map_copy_t
) data
, FALSE
/* interruptible XXX */);
804 * Overwrite the specified address range with the data provided
805 * (from the current map).
807 * The addressability of the range of addresses to overwrite is
808 * limited bu the use of a vm_address_t (same size as kernel map).
809 * Either the target map is also small, or the range is in the
810 * low addresses within it.
815 vm_address_t address
,
817 __unused mach_msg_type_number_t size
)
819 if (map
== VM_MAP_NULL
)
820 return KERN_INVALID_ARGUMENT
;
822 return vm_map_copy_overwrite(map
, (vm_map_address_t
)address
,
823 (vm_map_copy_t
) data
, FALSE
/* interruptible XXX */);
828 * Overwrite one range of the specified map with the contents of
829 * another range within that same map (i.e. both address ranges
835 mach_vm_address_t source_address
,
837 mach_vm_address_t dest_address
)
842 if (map
== VM_MAP_NULL
)
843 return KERN_INVALID_ARGUMENT
;
845 kr
= vm_map_copyin(map
, (vm_map_address_t
)source_address
,
846 (vm_map_size_t
)size
, FALSE
, ©
);
848 if (KERN_SUCCESS
== kr
) {
849 kr
= vm_map_copy_overwrite(map
,
850 (vm_map_address_t
)dest_address
,
851 copy
, FALSE
/* interruptible XXX */);
853 if (KERN_SUCCESS
!= kr
)
854 vm_map_copy_discard(copy
);
862 vm_address_t source_address
,
864 vm_address_t dest_address
)
869 if (map
== VM_MAP_NULL
)
870 return KERN_INVALID_ARGUMENT
;
872 kr
= vm_map_copyin(map
, (vm_map_address_t
)source_address
,
873 (vm_map_size_t
)size
, FALSE
, ©
);
875 if (KERN_SUCCESS
== kr
) {
876 kr
= vm_map_copy_overwrite(map
,
877 (vm_map_address_t
)dest_address
,
878 copy
, FALSE
/* interruptible XXX */);
880 if (KERN_SUCCESS
!= kr
)
881 vm_map_copy_discard(copy
);
888 * Map some range of an object into an address space.
890 * The object can be one of several types of objects:
891 * NULL - anonymous memory
892 * a named entry - a range within another address space
893 * or a range within a memory object
894 * a whole memory object
900 mach_vm_offset_t
*address
,
901 mach_vm_size_t initial_size
,
902 mach_vm_offset_t mask
,
905 vm_object_offset_t offset
,
907 vm_prot_t cur_protection
,
908 vm_prot_t max_protection
,
909 vm_inherit_t inheritance
)
912 vm_map_offset_t vmmaddr
;
914 vmmaddr
= (vm_map_offset_t
) *address
;
916 /* filter out any kernel-only flags */
917 if (flags
& ~VM_FLAGS_USER_MAP
)
918 return KERN_INVALID_ARGUMENT
;
920 kr
= vm_map_enter_mem_object(target_map
,
937 /* legacy interface */
941 vm_offset_t
*address
,
946 vm_object_offset_t offset
,
948 vm_prot_t cur_protection
,
949 vm_prot_t max_protection
,
950 vm_inherit_t inheritance
)
952 mach_vm_address_t map_addr
;
953 mach_vm_size_t map_size
;
954 mach_vm_offset_t map_mask
;
957 map_addr
= (mach_vm_address_t
)*address
;
958 map_size
= (mach_vm_size_t
)size
;
959 map_mask
= (mach_vm_offset_t
)mask
;
961 kr
= mach_vm_map(target_map
, &map_addr
, map_size
, map_mask
, flags
,
963 cur_protection
, max_protection
, inheritance
);
964 *address
= CAST_DOWN(vm_offset_t
, map_addr
);
968 /* temporary, until world build */
972 vm_offset_t
*address
,
979 vm_prot_t cur_protection
,
980 vm_prot_t max_protection
,
981 vm_inherit_t inheritance
)
983 mach_vm_address_t map_addr
;
984 mach_vm_size_t map_size
;
985 mach_vm_offset_t map_mask
;
986 vm_object_offset_t obj_offset
;
989 map_addr
= (mach_vm_address_t
)*address
;
990 map_size
= (mach_vm_size_t
)size
;
991 map_mask
= (mach_vm_offset_t
)mask
;
992 obj_offset
= (vm_object_offset_t
)offset
;
994 kr
= mach_vm_map(target_map
, &map_addr
, map_size
, map_mask
, flags
,
995 port
, obj_offset
, copy
,
996 cur_protection
, max_protection
, inheritance
);
997 *address
= CAST_DOWN(vm_offset_t
, map_addr
);
1003 * Remap a range of memory from one task into another,
1004 * to another address range within the same task, or
1005 * over top of itself (with altered permissions and/or
1006 * as an in-place copy of itself).
1011 vm_map_t target_map
,
1012 mach_vm_offset_t
*address
,
1013 mach_vm_size_t size
,
1014 mach_vm_offset_t mask
,
1017 mach_vm_offset_t memory_address
,
1019 vm_prot_t
*cur_protection
,
1020 vm_prot_t
*max_protection
,
1021 vm_inherit_t inheritance
)
1023 vm_map_offset_t map_addr
;
1026 if (VM_MAP_NULL
== target_map
|| VM_MAP_NULL
== src_map
)
1027 return KERN_INVALID_ARGUMENT
;
1029 /* filter out any kernel-only flags */
1030 if (flags
& ~VM_FLAGS_USER_REMAP
)
1031 return KERN_INVALID_ARGUMENT
;
1033 map_addr
= (vm_map_offset_t
)*address
;
1035 kr
= vm_map_remap(target_map
,
1046 *address
= map_addr
;
1052 * Remap a range of memory from one task into another,
1053 * to another address range within the same task, or
1054 * over top of itself (with altered permissions and/or
1055 * as an in-place copy of itself).
1057 * The addressability of the source and target address
1058 * range is limited by the size of vm_address_t (in the
1063 vm_map_t target_map
,
1064 vm_offset_t
*address
,
1069 vm_offset_t memory_address
,
1071 vm_prot_t
*cur_protection
,
1072 vm_prot_t
*max_protection
,
1073 vm_inherit_t inheritance
)
1075 vm_map_offset_t map_addr
;
1078 if (VM_MAP_NULL
== target_map
|| VM_MAP_NULL
== src_map
)
1079 return KERN_INVALID_ARGUMENT
;
1081 /* filter out any kernel-only flags */
1082 if (flags
& ~VM_FLAGS_USER_REMAP
)
1083 return KERN_INVALID_ARGUMENT
;
1085 map_addr
= (vm_map_offset_t
)*address
;
1087 kr
= vm_map_remap(target_map
,
1098 *address
= CAST_DOWN(vm_offset_t
, map_addr
);
1103 * NOTE: these routine (and this file) will no longer require mach_host_server.h
1104 * when mach_vm_wire and vm_wire are changed to use ledgers.
1106 #include <mach/mach_host_server.h>
1109 * Specify that the range of the virtual address space
1110 * of the target task must not cause page faults for
1111 * the indicated accesses.
1113 * [ To unwire the pages, specify VM_PROT_NONE. ]
1117 host_priv_t host_priv
,
1119 mach_vm_offset_t start
,
1120 mach_vm_size_t size
,
1125 if (host_priv
== HOST_PRIV_NULL
)
1126 return KERN_INVALID_HOST
;
1128 assert(host_priv
== &realhost
);
1130 if (map
== VM_MAP_NULL
)
1131 return KERN_INVALID_TASK
;
1133 if (access
& ~VM_PROT_ALL
|| (start
+ size
< start
))
1134 return KERN_INVALID_ARGUMENT
;
1136 if (access
!= VM_PROT_NONE
) {
1137 rc
= vm_map_wire(map
,
1138 vm_map_trunc_page(start
,
1139 VM_MAP_PAGE_MASK(map
)),
1140 vm_map_round_page(start
+size
,
1141 VM_MAP_PAGE_MASK(map
)),
1145 rc
= vm_map_unwire(map
,
1146 vm_map_trunc_page(start
,
1147 VM_MAP_PAGE_MASK(map
)),
1148 vm_map_round_page(start
+size
,
1149 VM_MAP_PAGE_MASK(map
)),
1157 * Specify that the range of the virtual address space
1158 * of the target task must not cause page faults for
1159 * the indicated accesses.
1161 * [ To unwire the pages, specify VM_PROT_NONE. ]
1165 host_priv_t host_priv
,
1166 register vm_map_t map
,
1173 if (host_priv
== HOST_PRIV_NULL
)
1174 return KERN_INVALID_HOST
;
1176 assert(host_priv
== &realhost
);
1178 if (map
== VM_MAP_NULL
)
1179 return KERN_INVALID_TASK
;
1181 if ((access
& ~VM_PROT_ALL
) || (start
+ size
< start
))
1182 return KERN_INVALID_ARGUMENT
;
1186 } else if (access
!= VM_PROT_NONE
) {
1187 rc
= vm_map_wire(map
,
1188 vm_map_trunc_page(start
,
1189 VM_MAP_PAGE_MASK(map
)),
1190 vm_map_round_page(start
+size
,
1191 VM_MAP_PAGE_MASK(map
)),
1195 rc
= vm_map_unwire(map
,
1196 vm_map_trunc_page(start
,
1197 VM_MAP_PAGE_MASK(map
)),
1198 vm_map_round_page(start
+size
,
1199 VM_MAP_PAGE_MASK(map
)),
1208 * Synchronises the memory range specified with its backing store
1209 * image by either flushing or cleaning the contents to the appropriate
1212 * interpretation of sync_flags
1213 * VM_SYNC_INVALIDATE - discard pages, only return precious
1216 * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS)
1217 * - discard pages, write dirty or precious
1218 * pages back to memory manager.
1220 * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS
1221 * - write dirty or precious pages back to
1222 * the memory manager.
1224 * VM_SYNC_CONTIGUOUS - does everything normally, but if there
1225 * is a hole in the region, and we would
1226 * have returned KERN_SUCCESS, return
1227 * KERN_INVALID_ADDRESS instead.
1230 * KERN_INVALID_TASK Bad task parameter
1231 * KERN_INVALID_ARGUMENT both sync and async were specified.
1232 * KERN_SUCCESS The usual.
1233 * KERN_INVALID_ADDRESS There was a hole in the region.
1239 mach_vm_address_t address
,
1240 mach_vm_size_t size
,
1241 vm_sync_t sync_flags
)
1244 if (map
== VM_MAP_NULL
)
1245 return(KERN_INVALID_TASK
);
1247 return vm_map_msync(map
, (vm_map_address_t
)address
,
1248 (vm_map_size_t
)size
, sync_flags
);
1254 * Synchronises the memory range specified with its backing store
1255 * image by either flushing or cleaning the contents to the appropriate
1258 * interpretation of sync_flags
1259 * VM_SYNC_INVALIDATE - discard pages, only return precious
1262 * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS)
1263 * - discard pages, write dirty or precious
1264 * pages back to memory manager.
1266 * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS
1267 * - write dirty or precious pages back to
1268 * the memory manager.
1270 * VM_SYNC_CONTIGUOUS - does everything normally, but if there
1271 * is a hole in the region, and we would
1272 * have returned KERN_SUCCESS, return
1273 * KERN_INVALID_ADDRESS instead.
1275 * The addressability of the range is limited to that which can
1276 * be described by a vm_address_t.
1279 * KERN_INVALID_TASK Bad task parameter
1280 * KERN_INVALID_ARGUMENT both sync and async were specified.
1281 * KERN_SUCCESS The usual.
1282 * KERN_INVALID_ADDRESS There was a hole in the region.
1288 vm_address_t address
,
1290 vm_sync_t sync_flags
)
1293 if (map
== VM_MAP_NULL
)
1294 return(KERN_INVALID_TASK
);
1296 return vm_map_msync(map
, (vm_map_address_t
)address
,
1297 (vm_map_size_t
)size
, sync_flags
);
1302 vm_toggle_entry_reuse(int toggle
, int *old_value
)
1304 vm_map_t map
= current_map();
1306 if(toggle
== VM_TOGGLE_GETVALUE
&& old_value
!= NULL
){
1307 *old_value
= map
->disable_vmentry_reuse
;
1308 } else if(toggle
== VM_TOGGLE_SET
){
1310 map
->disable_vmentry_reuse
= TRUE
;
1311 if (map
->first_free
== vm_map_to_entry(map
)) {
1312 map
->highest_entry_end
= vm_map_min(map
);
1314 map
->highest_entry_end
= map
->first_free
->vme_end
;
1317 } else if (toggle
== VM_TOGGLE_CLEAR
){
1319 map
->disable_vmentry_reuse
= FALSE
;
1322 return KERN_INVALID_ARGUMENT
;
1324 return KERN_SUCCESS
;
1328 * mach_vm_behavior_set
1330 * Sets the paging behavior attribute for the specified range
1331 * in the specified map.
1333 * This routine will fail with KERN_INVALID_ADDRESS if any address
1334 * in [start,start+size) is not a valid allocated memory region.
1337 mach_vm_behavior_set(
1339 mach_vm_offset_t start
,
1340 mach_vm_size_t size
,
1341 vm_behavior_t new_behavior
)
1343 if ((map
== VM_MAP_NULL
) || (start
+ size
< start
))
1344 return(KERN_INVALID_ARGUMENT
);
1347 return KERN_SUCCESS
;
1349 return(vm_map_behavior_set(map
,
1350 vm_map_trunc_page(start
,
1351 VM_MAP_PAGE_MASK(map
)),
1352 vm_map_round_page(start
+size
,
1353 VM_MAP_PAGE_MASK(map
)),
1360 * Sets the paging behavior attribute for the specified range
1361 * in the specified map.
1363 * This routine will fail with KERN_INVALID_ADDRESS if any address
1364 * in [start,start+size) is not a valid allocated memory region.
1366 * This routine is potentially limited in addressibility by the
1367 * use of vm_offset_t (if the map provided is larger than the
1375 vm_behavior_t new_behavior
)
1377 if ((map
== VM_MAP_NULL
) || (start
+ size
< start
))
1378 return(KERN_INVALID_ARGUMENT
);
1381 return KERN_SUCCESS
;
1383 return(vm_map_behavior_set(map
,
1384 vm_map_trunc_page(start
,
1385 VM_MAP_PAGE_MASK(map
)),
1386 vm_map_round_page(start
+size
,
1387 VM_MAP_PAGE_MASK(map
)),
1394 * User call to obtain information about a region in
1395 * a task's address map. Currently, only one flavor is
1398 * XXX The reserved and behavior fields cannot be filled
1399 * in until the vm merge from the IK is completed, and
1400 * vm_reserve is implemented.
1402 * XXX Dependency: syscall_vm_region() also supports only one flavor.
1408 mach_vm_offset_t
*address
, /* IN/OUT */
1409 mach_vm_size_t
*size
, /* OUT */
1410 vm_region_flavor_t flavor
, /* IN */
1411 vm_region_info_t info
, /* OUT */
1412 mach_msg_type_number_t
*count
, /* IN/OUT */
1413 mach_port_t
*object_name
) /* OUT */
1415 vm_map_offset_t map_addr
;
1416 vm_map_size_t map_size
;
1419 if (VM_MAP_NULL
== map
)
1420 return KERN_INVALID_ARGUMENT
;
1422 map_addr
= (vm_map_offset_t
)*address
;
1423 map_size
= (vm_map_size_t
)*size
;
1425 /* legacy conversion */
1426 if (VM_REGION_BASIC_INFO
== flavor
)
1427 flavor
= VM_REGION_BASIC_INFO_64
;
1429 kr
= vm_map_region(map
,
1430 &map_addr
, &map_size
,
1431 flavor
, info
, count
,
1434 *address
= map_addr
;
1440 * vm_region_64 and vm_region:
1442 * User call to obtain information about a region in
1443 * a task's address map. Currently, only one flavor is
1446 * XXX The reserved and behavior fields cannot be filled
1447 * in until the vm merge from the IK is completed, and
1448 * vm_reserve is implemented.
1450 * XXX Dependency: syscall_vm_region() also supports only one flavor.
1456 vm_offset_t
*address
, /* IN/OUT */
1457 vm_size_t
*size
, /* OUT */
1458 vm_region_flavor_t flavor
, /* IN */
1459 vm_region_info_t info
, /* OUT */
1460 mach_msg_type_number_t
*count
, /* IN/OUT */
1461 mach_port_t
*object_name
) /* OUT */
1463 vm_map_offset_t map_addr
;
1464 vm_map_size_t map_size
;
1467 if (VM_MAP_NULL
== map
)
1468 return KERN_INVALID_ARGUMENT
;
1470 map_addr
= (vm_map_offset_t
)*address
;
1471 map_size
= (vm_map_size_t
)*size
;
1473 /* legacy conversion */
1474 if (VM_REGION_BASIC_INFO
== flavor
)
1475 flavor
= VM_REGION_BASIC_INFO_64
;
1477 kr
= vm_map_region(map
,
1478 &map_addr
, &map_size
,
1479 flavor
, info
, count
,
1482 *address
= CAST_DOWN(vm_offset_t
, map_addr
);
1483 *size
= CAST_DOWN(vm_size_t
, map_size
);
1485 if (KERN_SUCCESS
== kr
&& map_addr
+ map_size
> VM_MAX_ADDRESS
)
1486 return KERN_INVALID_ADDRESS
;
1493 vm_address_t
*address
, /* IN/OUT */
1494 vm_size_t
*size
, /* OUT */
1495 vm_region_flavor_t flavor
, /* IN */
1496 vm_region_info_t info
, /* OUT */
1497 mach_msg_type_number_t
*count
, /* IN/OUT */
1498 mach_port_t
*object_name
) /* OUT */
1500 vm_map_address_t map_addr
;
1501 vm_map_size_t map_size
;
1504 if (VM_MAP_NULL
== map
)
1505 return KERN_INVALID_ARGUMENT
;
1507 map_addr
= (vm_map_address_t
)*address
;
1508 map_size
= (vm_map_size_t
)*size
;
1510 kr
= vm_map_region(map
,
1511 &map_addr
, &map_size
,
1512 flavor
, info
, count
,
1515 *address
= CAST_DOWN(vm_address_t
, map_addr
);
1516 *size
= CAST_DOWN(vm_size_t
, map_size
);
1518 if (KERN_SUCCESS
== kr
&& map_addr
+ map_size
> VM_MAX_ADDRESS
)
1519 return KERN_INVALID_ADDRESS
;
1524 * vm_region_recurse: A form of vm_region which follows the
1525 * submaps in a target map
1529 mach_vm_region_recurse(
1531 mach_vm_address_t
*address
,
1532 mach_vm_size_t
*size
,
1534 vm_region_recurse_info_t info
,
1535 mach_msg_type_number_t
*infoCnt
)
1537 vm_map_address_t map_addr
;
1538 vm_map_size_t map_size
;
1541 if (VM_MAP_NULL
== map
)
1542 return KERN_INVALID_ARGUMENT
;
1544 map_addr
= (vm_map_address_t
)*address
;
1545 map_size
= (vm_map_size_t
)*size
;
1547 kr
= vm_map_region_recurse_64(
1552 (vm_region_submap_info_64_t
)info
,
1555 *address
= map_addr
;
1561 * vm_region_recurse: A form of vm_region which follows the
1562 * submaps in a target map
1566 vm_region_recurse_64(
1568 vm_address_t
*address
,
1571 vm_region_recurse_info_64_t info
,
1572 mach_msg_type_number_t
*infoCnt
)
1574 vm_map_address_t map_addr
;
1575 vm_map_size_t map_size
;
1578 if (VM_MAP_NULL
== map
)
1579 return KERN_INVALID_ARGUMENT
;
1581 map_addr
= (vm_map_address_t
)*address
;
1582 map_size
= (vm_map_size_t
)*size
;
1584 kr
= vm_map_region_recurse_64(
1589 (vm_region_submap_info_64_t
)info
,
1592 *address
= CAST_DOWN(vm_address_t
, map_addr
);
1593 *size
= CAST_DOWN(vm_size_t
, map_size
);
1595 if (KERN_SUCCESS
== kr
&& map_addr
+ map_size
> VM_MAX_ADDRESS
)
1596 return KERN_INVALID_ADDRESS
;
1603 vm_offset_t
*address
, /* IN/OUT */
1604 vm_size_t
*size
, /* OUT */
1605 natural_t
*depth
, /* IN/OUT */
1606 vm_region_recurse_info_t info32
, /* IN/OUT */
1607 mach_msg_type_number_t
*infoCnt
) /* IN/OUT */
1609 vm_region_submap_info_data_64_t info64
;
1610 vm_region_submap_info_t info
;
1611 vm_map_address_t map_addr
;
1612 vm_map_size_t map_size
;
1615 if (VM_MAP_NULL
== map
|| *infoCnt
< VM_REGION_SUBMAP_INFO_COUNT
)
1616 return KERN_INVALID_ARGUMENT
;
1619 map_addr
= (vm_map_address_t
)*address
;
1620 map_size
= (vm_map_size_t
)*size
;
1621 info
= (vm_region_submap_info_t
)info32
;
1622 *infoCnt
= VM_REGION_SUBMAP_INFO_COUNT_64
;
1624 kr
= vm_map_region_recurse_64(map
, &map_addr
,&map_size
,
1625 depth
, &info64
, infoCnt
);
1627 info
->protection
= info64
.protection
;
1628 info
->max_protection
= info64
.max_protection
;
1629 info
->inheritance
= info64
.inheritance
;
1630 info
->offset
= (uint32_t)info64
.offset
; /* trouble-maker */
1631 info
->user_tag
= info64
.user_tag
;
1632 info
->pages_resident
= info64
.pages_resident
;
1633 info
->pages_shared_now_private
= info64
.pages_shared_now_private
;
1634 info
->pages_swapped_out
= info64
.pages_swapped_out
;
1635 info
->pages_dirtied
= info64
.pages_dirtied
;
1636 info
->ref_count
= info64
.ref_count
;
1637 info
->shadow_depth
= info64
.shadow_depth
;
1638 info
->external_pager
= info64
.external_pager
;
1639 info
->share_mode
= info64
.share_mode
;
1640 info
->is_submap
= info64
.is_submap
;
1641 info
->behavior
= info64
.behavior
;
1642 info
->object_id
= info64
.object_id
;
1643 info
->user_wired_count
= info64
.user_wired_count
;
1645 *address
= CAST_DOWN(vm_address_t
, map_addr
);
1646 *size
= CAST_DOWN(vm_size_t
, map_size
);
1647 *infoCnt
= VM_REGION_SUBMAP_INFO_COUNT
;
1649 if (KERN_SUCCESS
== kr
&& map_addr
+ map_size
> VM_MAX_ADDRESS
)
1650 return KERN_INVALID_ADDRESS
;
1655 mach_vm_purgable_control(
1657 mach_vm_offset_t address
,
1658 vm_purgable_t control
,
1661 if (VM_MAP_NULL
== map
)
1662 return KERN_INVALID_ARGUMENT
;
1664 return vm_map_purgable_control(map
,
1665 vm_map_trunc_page(address
, PAGE_MASK
),
1671 vm_purgable_control(
1673 vm_offset_t address
,
1674 vm_purgable_t control
,
1677 if (VM_MAP_NULL
== map
)
1678 return KERN_INVALID_ARGUMENT
;
1680 return vm_map_purgable_control(map
,
1681 vm_map_trunc_page(address
, PAGE_MASK
),
1688 * Ordinarily, the right to allocate CPM is restricted
1689 * to privileged applications (those that can gain access
1690 * to the host priv port). Set this variable to zero if
1691 * you want to let any application allocate CPM.
1693 unsigned int vm_allocate_cpm_privileged
= 0;
1696 * Allocate memory in the specified map, with the caveat that
1697 * the memory is physically contiguous. This call may fail
1698 * if the system can't find sufficient contiguous memory.
1699 * This call may cause or lead to heart-stopping amounts of
1702 * Memory obtained from this call should be freed in the
1703 * normal way, viz., via vm_deallocate.
1707 host_priv_t host_priv
,
1713 vm_map_address_t map_addr
;
1714 vm_map_size_t map_size
;
1717 if (vm_allocate_cpm_privileged
&& HOST_PRIV_NULL
== host_priv
)
1718 return KERN_INVALID_HOST
;
1720 if (VM_MAP_NULL
== map
)
1721 return KERN_INVALID_ARGUMENT
;
1723 map_addr
= (vm_map_address_t
)*addr
;
1724 map_size
= (vm_map_size_t
)size
;
1726 kr
= vm_map_enter_cpm(map
,
1731 *addr
= CAST_DOWN(vm_address_t
, map_addr
);
1739 mach_vm_offset_t offset
,
1743 if (VM_MAP_NULL
== map
)
1744 return KERN_INVALID_ARGUMENT
;
1746 return vm_map_page_query_internal(
1748 vm_map_trunc_page(offset
, PAGE_MASK
),
1749 disposition
, ref_count
);
1759 if (VM_MAP_NULL
== map
)
1760 return KERN_INVALID_ARGUMENT
;
1762 return vm_map_page_query_internal(
1764 vm_map_trunc_page(offset
, PAGE_MASK
),
1765 disposition
, ref_count
);
1771 mach_vm_address_t address
,
1772 vm_page_info_flavor_t flavor
,
1773 vm_page_info_t info
,
1774 mach_msg_type_number_t
*count
)
1778 if (map
== VM_MAP_NULL
) {
1779 return KERN_INVALID_ARGUMENT
;
1782 kr
= vm_map_page_info(map
, address
, flavor
, info
, count
);
1786 /* map a (whole) upl into an address space */
1791 vm_address_t
*dst_addr
)
1793 vm_map_offset_t map_addr
;
1796 if (VM_MAP_NULL
== map
)
1797 return KERN_INVALID_ARGUMENT
;
1799 kr
= vm_map_enter_upl(map
, upl
, &map_addr
);
1800 *dst_addr
= CAST_DOWN(vm_address_t
, map_addr
);
1809 if (VM_MAP_NULL
== map
)
1810 return KERN_INVALID_ARGUMENT
;
1812 return (vm_map_remove_upl(map
, upl
));
1815 /* Retrieve a upl for an object underlying an address range in a map */
1820 vm_map_offset_t map_offset
,
1821 upl_size_t
*upl_size
,
1823 upl_page_info_array_t page_list
,
1824 unsigned int *count
,
1826 int force_data_sync
)
1831 if (VM_MAP_NULL
== map
)
1832 return KERN_INVALID_ARGUMENT
;
1834 map_flags
= *flags
& ~UPL_NOZEROFILL
;
1835 if (force_data_sync
)
1836 map_flags
|= UPL_FORCE_DATA_SYNC
;
1838 kr
= vm_map_create_upl(map
,
1846 *flags
= (map_flags
& ~UPL_FORCE_DATA_SYNC
);
1851 * mach_make_memory_entry_64
1853 * Think of it as a two-stage vm_remap() operation. First
1854 * you get a handle. Second, you get map that handle in
1855 * somewhere else. Rather than doing it all at once (and
1856 * without needing access to the other whole map).
1860 mach_make_memory_entry_64(
1861 vm_map_t target_map
,
1862 memory_object_size_t
*size
,
1863 memory_object_offset_t offset
,
1864 vm_prot_t permission
,
1865 ipc_port_t
*object_handle
,
1866 ipc_port_t parent_handle
)
1868 vm_map_version_t version
;
1869 vm_named_entry_t parent_entry
;
1870 vm_named_entry_t user_entry
;
1871 ipc_port_t user_handle
;
1875 /* needed for call to vm_map_lookup_locked */
1877 vm_object_offset_t obj_off
;
1879 struct vm_object_fault_info fault_info
;
1881 vm_object_t shadow_object
;
1883 /* needed for direct map entry manipulation */
1884 vm_map_entry_t map_entry
;
1885 vm_map_entry_t next_entry
;
1887 vm_map_t original_map
= target_map
;
1888 vm_map_size_t total_size
;
1889 vm_map_size_t map_size
;
1890 vm_map_offset_t map_offset
;
1891 vm_map_offset_t local_offset
;
1892 vm_object_size_t mappable_size
;
1895 * Stash the offset in the page for use by vm_map_enter_mem_object()
1896 * in the VM_FLAGS_RETURN_DATA_ADDR/MAP_MEM_USE_DATA_ADDR case.
1898 vm_object_offset_t offset_in_page
;
1900 unsigned int access
;
1901 vm_prot_t protections
;
1902 vm_prot_t original_protections
, mask_protections
;
1903 unsigned int wimg_mode
;
1905 boolean_t force_shadow
= FALSE
;
1906 boolean_t use_data_addr
;
1908 if (((permission
& 0x00FF0000) &
1910 MAP_MEM_NAMED_CREATE
|
1912 MAP_MEM_NAMED_REUSE
|
1913 MAP_MEM_USE_DATA_ADDR
|
1915 MAP_MEM_VM_SHARE
))) {
1917 * Unknown flag: reject for forward compatibility.
1919 return KERN_INVALID_VALUE
;
1922 if (parent_handle
!= IP_NULL
&&
1923 ip_kotype(parent_handle
) == IKOT_NAMED_ENTRY
) {
1924 parent_entry
= (vm_named_entry_t
) parent_handle
->ip_kobject
;
1926 parent_entry
= NULL
;
1929 if (parent_entry
&& parent_entry
->is_copy
) {
1930 return KERN_INVALID_ARGUMENT
;
1933 original_protections
= permission
& VM_PROT_ALL
;
1934 protections
= original_protections
;
1935 mask_protections
= permission
& VM_PROT_IS_MASK
;
1936 access
= GET_MAP_MEM(permission
);
1937 use_data_addr
= ((permission
& MAP_MEM_USE_DATA_ADDR
) != 0);
1939 user_handle
= IP_NULL
;
1942 map_offset
= vm_map_trunc_page(offset
, PAGE_MASK
);
1944 if (permission
& MAP_MEM_ONLY
) {
1945 boolean_t parent_is_object
;
1947 map_size
= vm_map_round_page(*size
, PAGE_MASK
);
1949 if (use_data_addr
|| parent_entry
== NULL
) {
1950 return KERN_INVALID_ARGUMENT
;
1953 parent_is_object
= !(parent_entry
->is_sub_map
||
1954 parent_entry
->is_pager
);
1955 object
= parent_entry
->backing
.object
;
1956 if(parent_is_object
&& object
!= VM_OBJECT_NULL
)
1957 wimg_mode
= object
->wimg_bits
;
1959 wimg_mode
= VM_WIMG_USE_DEFAULT
;
1960 if((access
!= GET_MAP_MEM(parent_entry
->protection
)) &&
1961 !(parent_entry
->protection
& VM_PROT_WRITE
)) {
1962 return KERN_INVALID_RIGHT
;
1964 if(access
== MAP_MEM_IO
) {
1965 SET_MAP_MEM(access
, parent_entry
->protection
);
1966 wimg_mode
= VM_WIMG_IO
;
1967 } else if (access
== MAP_MEM_COPYBACK
) {
1968 SET_MAP_MEM(access
, parent_entry
->protection
);
1969 wimg_mode
= VM_WIMG_USE_DEFAULT
;
1970 } else if (access
== MAP_MEM_INNERWBACK
) {
1971 SET_MAP_MEM(access
, parent_entry
->protection
);
1972 wimg_mode
= VM_WIMG_INNERWBACK
;
1973 } else if (access
== MAP_MEM_WTHRU
) {
1974 SET_MAP_MEM(access
, parent_entry
->protection
);
1975 wimg_mode
= VM_WIMG_WTHRU
;
1976 } else if (access
== MAP_MEM_WCOMB
) {
1977 SET_MAP_MEM(access
, parent_entry
->protection
);
1978 wimg_mode
= VM_WIMG_WCOMB
;
1980 if (parent_is_object
&& object
&&
1981 (access
!= MAP_MEM_NOOP
) &&
1982 (!(object
->nophyscache
))) {
1984 if (object
->wimg_bits
!= wimg_mode
) {
1985 vm_object_lock(object
);
1986 vm_object_change_wimg_mode(object
, wimg_mode
);
1987 vm_object_unlock(object
);
1991 *object_handle
= IP_NULL
;
1992 return KERN_SUCCESS
;
1993 } else if (permission
& MAP_MEM_NAMED_CREATE
) {
1994 map_size
= vm_map_round_page(*size
, PAGE_MASK
);
1996 if (use_data_addr
) {
1997 return KERN_INVALID_ARGUMENT
;
2000 kr
= mach_memory_entry_allocate(&user_entry
, &user_handle
);
2001 if (kr
!= KERN_SUCCESS
) {
2002 return KERN_FAILURE
;
2006 * Force the creation of the VM object now.
2008 if (map_size
> (vm_map_size_t
) ANON_MAX_SIZE
) {
2010 * LP64todo - for now, we can only allocate 4GB-4096
2011 * internal objects because the default pager can't
2012 * page bigger ones. Remove this when it can.
2018 object
= vm_object_allocate(map_size
);
2019 assert(object
!= VM_OBJECT_NULL
);
2021 if (permission
& MAP_MEM_PURGABLE
) {
2022 if (! (permission
& VM_PROT_WRITE
)) {
2023 /* if we can't write, we can't purge */
2024 vm_object_deallocate(object
);
2025 kr
= KERN_INVALID_ARGUMENT
;
2028 object
->purgable
= VM_PURGABLE_NONVOLATILE
;
2029 assert(object
->vo_purgeable_owner
== NULL
);
2030 assert(object
->resident_page_count
== 0);
2031 assert(object
->wired_page_count
== 0);
2032 vm_object_lock(object
);
2033 vm_purgeable_nonvolatile_enqueue(object
,
2035 vm_object_unlock(object
);
2039 * The VM object is brand new and nobody else knows about it,
2040 * so we don't need to lock it.
2043 wimg_mode
= object
->wimg_bits
;
2044 if (access
== MAP_MEM_IO
) {
2045 wimg_mode
= VM_WIMG_IO
;
2046 } else if (access
== MAP_MEM_COPYBACK
) {
2047 wimg_mode
= VM_WIMG_USE_DEFAULT
;
2048 } else if (access
== MAP_MEM_INNERWBACK
) {
2049 wimg_mode
= VM_WIMG_INNERWBACK
;
2050 } else if (access
== MAP_MEM_WTHRU
) {
2051 wimg_mode
= VM_WIMG_WTHRU
;
2052 } else if (access
== MAP_MEM_WCOMB
) {
2053 wimg_mode
= VM_WIMG_WCOMB
;
2055 if (access
!= MAP_MEM_NOOP
) {
2056 object
->wimg_bits
= wimg_mode
;
2058 /* the object has no pages, so no WIMG bits to update here */
2062 * We use this path when we want to make sure that
2063 * nobody messes with the object (coalesce, for
2064 * example) before we map it.
2065 * We might want to use these objects for transposition via
2066 * vm_object_transpose() too, so we don't want any copy or
2067 * shadow objects either...
2069 object
->copy_strategy
= MEMORY_OBJECT_COPY_NONE
;
2070 object
->true_share
= TRUE
;
2072 user_entry
->backing
.object
= object
;
2073 user_entry
->internal
= TRUE
;
2074 user_entry
->is_sub_map
= FALSE
;
2075 user_entry
->is_pager
= FALSE
;
2076 user_entry
->offset
= 0;
2077 user_entry
->data_offset
= 0;
2078 user_entry
->protection
= protections
;
2079 SET_MAP_MEM(access
, user_entry
->protection
);
2080 user_entry
->size
= map_size
;
2082 /* user_object pager and internal fields are not used */
2083 /* when the object field is filled in. */
2085 *size
= CAST_DOWN(vm_size_t
, map_size
);
2086 *object_handle
= user_handle
;
2087 return KERN_SUCCESS
;
2090 if (permission
& MAP_MEM_VM_COPY
) {
2093 if (target_map
== VM_MAP_NULL
) {
2094 return KERN_INVALID_TASK
;
2097 if (use_data_addr
) {
2098 map_size
= (vm_map_round_page(offset
+ *size
,
2101 offset_in_page
= offset
- map_offset
;
2103 map_size
= vm_map_round_page(*size
, PAGE_MASK
);
2107 kr
= vm_map_copyin(target_map
,
2112 if (kr
!= KERN_SUCCESS
) {
2116 kr
= mach_memory_entry_allocate(&user_entry
, &user_handle
);
2117 if (kr
!= KERN_SUCCESS
) {
2118 vm_map_copy_discard(copy
);
2119 return KERN_FAILURE
;
2122 user_entry
->backing
.copy
= copy
;
2123 user_entry
->internal
= FALSE
;
2124 user_entry
->is_sub_map
= FALSE
;
2125 user_entry
->is_pager
= FALSE
;
2126 user_entry
->is_copy
= TRUE
;
2127 user_entry
->offset
= 0;
2128 user_entry
->protection
= protections
;
2129 user_entry
->size
= map_size
;
2130 user_entry
->data_offset
= offset_in_page
;
2132 *size
= CAST_DOWN(vm_size_t
, map_size
);
2133 *object_handle
= user_handle
;
2134 return KERN_SUCCESS
;
2137 if (permission
& MAP_MEM_VM_SHARE
) {
2139 vm_prot_t cur_prot
, max_prot
;
2141 if (target_map
== VM_MAP_NULL
) {
2142 return KERN_INVALID_TASK
;
2145 if (use_data_addr
) {
2146 map_size
= (vm_map_round_page(offset
+ *size
,
2149 offset_in_page
= offset
- map_offset
;
2151 map_size
= vm_map_round_page(*size
, PAGE_MASK
);
2155 kr
= vm_map_copy_extract(target_map
,
2161 if (kr
!= KERN_SUCCESS
) {
2165 if (mask_protections
) {
2167 * We just want as much of "original_protections"
2168 * as we can get out of the actual "cur_prot".
2170 protections
&= cur_prot
;
2171 if (protections
== VM_PROT_NONE
) {
2172 /* no access at all: fail */
2173 vm_map_copy_discard(copy
);
2174 return KERN_PROTECTION_FAILURE
;
2178 * We want exactly "original_protections"
2179 * out of "cur_prot".
2181 if ((cur_prot
& protections
) != protections
) {
2182 vm_map_copy_discard(copy
);
2183 return KERN_PROTECTION_FAILURE
;
2187 kr
= mach_memory_entry_allocate(&user_entry
, &user_handle
);
2188 if (kr
!= KERN_SUCCESS
) {
2189 vm_map_copy_discard(copy
);
2190 return KERN_FAILURE
;
2193 user_entry
->backing
.copy
= copy
;
2194 user_entry
->internal
= FALSE
;
2195 user_entry
->is_sub_map
= FALSE
;
2196 user_entry
->is_pager
= FALSE
;
2197 user_entry
->is_copy
= TRUE
;
2198 user_entry
->offset
= 0;
2199 user_entry
->protection
= protections
;
2200 user_entry
->size
= map_size
;
2201 user_entry
->data_offset
= offset_in_page
;
2203 *size
= CAST_DOWN(vm_size_t
, map_size
);
2204 *object_handle
= user_handle
;
2205 return KERN_SUCCESS
;
2208 if (parent_entry
== NULL
||
2209 (permission
& MAP_MEM_NAMED_REUSE
)) {
2211 if (use_data_addr
) {
2212 map_size
= vm_map_round_page(offset
+ *size
, PAGE_MASK
) - map_offset
;
2213 offset_in_page
= offset
- map_offset
;
2215 map_size
= vm_map_round_page(*size
, PAGE_MASK
);
2219 /* Create a named object based on address range within the task map */
2220 /* Go find the object at given address */
2222 if (target_map
== VM_MAP_NULL
) {
2223 return KERN_INVALID_TASK
;
2227 protections
= original_protections
;
2228 vm_map_lock_read(target_map
);
2230 /* get the object associated with the target address */
2231 /* note we check the permission of the range against */
2232 /* that requested by the caller */
2234 kr
= vm_map_lookup_locked(&target_map
, map_offset
,
2235 protections
| mask_protections
,
2236 OBJECT_LOCK_EXCLUSIVE
, &version
,
2237 &object
, &obj_off
, &prot
, &wired
,
2240 if (kr
!= KERN_SUCCESS
) {
2241 vm_map_unlock_read(target_map
);
2244 if (mask_protections
) {
2246 * The caller asked us to use the "protections" as
2247 * a mask, so restrict "protections" to what this
2248 * mapping actually allows.
2250 protections
&= prot
;
2252 if (((prot
& protections
) != protections
)
2253 || (object
== kernel_object
)) {
2254 kr
= KERN_INVALID_RIGHT
;
2255 vm_object_unlock(object
);
2256 vm_map_unlock_read(target_map
);
2257 if(real_map
!= target_map
)
2258 vm_map_unlock_read(real_map
);
2259 if(object
== kernel_object
) {
2260 printf("Warning: Attempt to create a named"
2261 " entry from the kernel_object\n");
2266 /* We have an object, now check to see if this object */
2267 /* is suitable. If not, create a shadow and share that */
2270 * We have to unlock the VM object to avoid deadlocking with
2271 * a VM map lock (the lock ordering is map, the object), if we
2272 * need to modify the VM map to create a shadow object. Since
2273 * we might release the VM map lock below anyway, we have
2274 * to release the VM map lock now.
2275 * XXX FBDP There must be a way to avoid this double lookup...
2277 * Take an extra reference on the VM object to make sure it's
2278 * not going to disappear.
2280 vm_object_reference_locked(object
); /* extra ref to hold obj */
2281 vm_object_unlock(object
);
2283 local_map
= original_map
;
2284 local_offset
= map_offset
;
2285 if(target_map
!= local_map
) {
2286 vm_map_unlock_read(target_map
);
2287 if(real_map
!= target_map
)
2288 vm_map_unlock_read(real_map
);
2289 vm_map_lock_read(local_map
);
2290 target_map
= local_map
;
2291 real_map
= local_map
;
2294 if(!vm_map_lookup_entry(local_map
,
2295 local_offset
, &map_entry
)) {
2296 kr
= KERN_INVALID_ARGUMENT
;
2297 vm_map_unlock_read(target_map
);
2298 if(real_map
!= target_map
)
2299 vm_map_unlock_read(real_map
);
2300 vm_object_deallocate(object
); /* release extra ref */
2301 object
= VM_OBJECT_NULL
;
2304 if(!(map_entry
->is_sub_map
)) {
2305 if(map_entry
->object
.vm_object
!= object
) {
2306 kr
= KERN_INVALID_ARGUMENT
;
2307 vm_map_unlock_read(target_map
);
2308 if(real_map
!= target_map
)
2309 vm_map_unlock_read(real_map
);
2310 vm_object_deallocate(object
); /* release extra ref */
2311 object
= VM_OBJECT_NULL
;
2318 local_map
= map_entry
->object
.sub_map
;
2320 vm_map_lock_read(local_map
);
2321 vm_map_unlock_read(tmap
);
2322 target_map
= local_map
;
2323 real_map
= local_map
;
2324 local_offset
= local_offset
- map_entry
->vme_start
;
2325 local_offset
+= map_entry
->offset
;
2330 * We found the VM map entry, lock the VM object again.
2332 vm_object_lock(object
);
2333 if(map_entry
->wired_count
) {
2334 /* JMM - The check below should be reworked instead. */
2335 object
->true_share
= TRUE
;
2337 if (mask_protections
) {
2339 * The caller asked us to use the "protections" as
2340 * a mask, so restrict "protections" to what this
2341 * mapping actually allows.
2343 protections
&= map_entry
->max_protection
;
2345 if(((map_entry
->max_protection
) & protections
) != protections
) {
2346 kr
= KERN_INVALID_RIGHT
;
2347 vm_object_unlock(object
);
2348 vm_map_unlock_read(target_map
);
2349 if(real_map
!= target_map
)
2350 vm_map_unlock_read(real_map
);
2351 vm_object_deallocate(object
);
2352 object
= VM_OBJECT_NULL
;
2356 mappable_size
= fault_info
.hi_offset
- obj_off
;
2357 total_size
= map_entry
->vme_end
- map_entry
->vme_start
;
2358 if(map_size
> mappable_size
) {
2359 /* try to extend mappable size if the entries */
2360 /* following are from the same object and are */
2362 next_entry
= map_entry
->vme_next
;
2363 /* lets see if the next map entry is still */
2364 /* pointing at this object and is contiguous */
2365 while(map_size
> mappable_size
) {
2366 if((next_entry
->object
.vm_object
== object
) &&
2367 (next_entry
->vme_start
==
2368 next_entry
->vme_prev
->vme_end
) &&
2369 (next_entry
->offset
==
2370 next_entry
->vme_prev
->offset
+
2371 (next_entry
->vme_prev
->vme_end
-
2372 next_entry
->vme_prev
->vme_start
))) {
2373 if (mask_protections
) {
2375 * The caller asked us to use
2376 * the "protections" as a mask,
2377 * so restrict "protections" to
2378 * what this mapping actually
2381 protections
&= next_entry
->max_protection
;
2383 if ((next_entry
->wired_count
) &&
2384 (map_entry
->wired_count
== 0)) {
2387 if(((next_entry
->max_protection
)
2388 & protections
) != protections
) {
2391 if (next_entry
->needs_copy
!=
2392 map_entry
->needs_copy
)
2394 mappable_size
+= next_entry
->vme_end
2395 - next_entry
->vme_start
;
2396 total_size
+= next_entry
->vme_end
2397 - next_entry
->vme_start
;
2398 next_entry
= next_entry
->vme_next
;
2406 if (vm_map_entry_should_cow_for_true_share(map_entry
) &&
2407 object
->vo_size
> map_size
&&
2410 * Set up the targeted range for copy-on-write to
2411 * limit the impact of "true_share"/"copy_delay" to
2412 * that range instead of the entire VM object...
2415 vm_object_unlock(object
);
2416 if (vm_map_lock_read_to_write(target_map
)) {
2417 vm_object_deallocate(object
);
2418 target_map
= original_map
;
2422 vm_map_clip_start(target_map
,
2424 vm_map_trunc_page(offset
,
2425 VM_MAP_PAGE_MASK(target_map
)));
2426 vm_map_clip_end(target_map
,
2428 (vm_map_round_page(offset
+ map_size
,
2429 VM_MAP_PAGE_MASK(target_map
))));
2430 force_shadow
= TRUE
;
2432 if ((map_entry
->vme_end
- offset
) < map_size
) {
2433 map_size
= map_entry
->vme_end
- offset
;
2435 total_size
= map_entry
->vme_end
- map_entry
->vme_start
;
2437 vm_map_lock_write_to_read(target_map
);
2438 vm_object_lock(object
);
2441 if (object
->internal
) {
2442 /* vm_map_lookup_locked will create a shadow if */
2443 /* needs_copy is set but does not check for the */
2444 /* other two conditions shown. It is important to */
2445 /* set up an object which will not be pulled from */
2449 ((map_entry
->needs_copy
||
2451 (object
->vo_size
> total_size
&&
2452 (map_entry
->offset
!= 0 ||
2454 vm_map_round_page(total_size
,
2455 VM_MAP_PAGE_MASK(target_map
)))))
2456 && !object
->true_share
)) {
2458 * We have to unlock the VM object before
2459 * trying to upgrade the VM map lock, to
2460 * honor lock ordering (map then object).
2461 * Otherwise, we would deadlock if another
2462 * thread holds a read lock on the VM map and
2463 * is trying to acquire the VM object's lock.
2464 * We still hold an extra reference on the
2465 * VM object, guaranteeing that it won't
2468 vm_object_unlock(object
);
2470 if (vm_map_lock_read_to_write(target_map
)) {
2472 * We couldn't upgrade our VM map lock
2473 * from "read" to "write" and we lost
2475 * Start all over again...
2477 vm_object_deallocate(object
); /* extra ref */
2478 target_map
= original_map
;
2482 vm_object_lock(object
);
2486 * JMM - We need to avoid coming here when the object
2487 * is wired by anybody, not just the current map. Why
2488 * couldn't we use the standard vm_object_copy_quickly()
2492 /* create a shadow object */
2493 vm_object_shadow(&map_entry
->object
.vm_object
,
2494 &map_entry
->offset
, total_size
);
2495 shadow_object
= map_entry
->object
.vm_object
;
2497 vm_object_unlock(object
);
2500 prot
= map_entry
->protection
& ~VM_PROT_WRITE
;
2502 if (override_nx(target_map
, map_entry
->alias
) && prot
)
2503 prot
|= VM_PROT_EXECUTE
;
2505 vm_object_pmap_protect(
2506 object
, map_entry
->offset
,
2508 ((map_entry
->is_shared
2509 || target_map
->mapped_in_other_pmaps
)
2512 map_entry
->vme_start
,
2514 total_size
-= (map_entry
->vme_end
2515 - map_entry
->vme_start
);
2516 next_entry
= map_entry
->vme_next
;
2517 map_entry
->needs_copy
= FALSE
;
2519 vm_object_lock(shadow_object
);
2520 while (total_size
) {
2521 assert((next_entry
->wired_count
== 0) ||
2522 (map_entry
->wired_count
));
2524 if(next_entry
->object
.vm_object
== object
) {
2525 vm_object_reference_locked(shadow_object
);
2526 next_entry
->object
.vm_object
2528 vm_object_deallocate(object
);
2530 = next_entry
->vme_prev
->offset
+
2531 (next_entry
->vme_prev
->vme_end
2532 - next_entry
->vme_prev
->vme_start
);
2533 next_entry
->needs_copy
= FALSE
;
2535 panic("mach_make_memory_entry_64:"
2536 " map entries out of sync\n");
2540 - next_entry
->vme_start
;
2541 next_entry
= next_entry
->vme_next
;
2545 * Transfer our extra reference to the
2548 vm_object_reference_locked(shadow_object
);
2549 vm_object_deallocate(object
); /* extra ref */
2550 object
= shadow_object
;
2552 obj_off
= (local_offset
- map_entry
->vme_start
)
2553 + map_entry
->offset
;
2555 vm_map_lock_write_to_read(target_map
);
2559 /* note: in the future we can (if necessary) allow for */
2560 /* memory object lists, this will better support */
2561 /* fragmentation, but is it necessary? The user should */
2562 /* be encouraged to create address space oriented */
2563 /* shared objects from CLEAN memory regions which have */
2564 /* a known and defined history. i.e. no inheritence */
2565 /* share, make this call before making the region the */
2566 /* target of ipc's, etc. The code above, protecting */
2567 /* against delayed copy, etc. is mostly defensive. */
2569 wimg_mode
= object
->wimg_bits
;
2570 if(!(object
->nophyscache
)) {
2571 if(access
== MAP_MEM_IO
) {
2572 wimg_mode
= VM_WIMG_IO
;
2573 } else if (access
== MAP_MEM_COPYBACK
) {
2574 wimg_mode
= VM_WIMG_USE_DEFAULT
;
2575 } else if (access
== MAP_MEM_INNERWBACK
) {
2576 wimg_mode
= VM_WIMG_INNERWBACK
;
2577 } else if (access
== MAP_MEM_WTHRU
) {
2578 wimg_mode
= VM_WIMG_WTHRU
;
2579 } else if (access
== MAP_MEM_WCOMB
) {
2580 wimg_mode
= VM_WIMG_WCOMB
;
2584 #if VM_OBJECT_TRACKING_OP_TRUESHARE
2585 if (!object
->true_share
&&
2586 vm_object_tracking_inited
) {
2587 void *bt
[VM_OBJECT_TRACKING_BTDEPTH
];
2590 num
= OSBacktrace(bt
,
2591 VM_OBJECT_TRACKING_BTDEPTH
);
2592 btlog_add_entry(vm_object_tracking_btlog
,
2594 VM_OBJECT_TRACKING_OP_TRUESHARE
,
2598 #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */
2600 object
->true_share
= TRUE
;
2601 if (object
->copy_strategy
== MEMORY_OBJECT_COPY_SYMMETRIC
)
2602 object
->copy_strategy
= MEMORY_OBJECT_COPY_DELAY
;
2605 * The memory entry now points to this VM object and we
2606 * need to hold a reference on the VM object. Use the extra
2607 * reference we took earlier to keep the object alive when we
2611 vm_map_unlock_read(target_map
);
2612 if(real_map
!= target_map
)
2613 vm_map_unlock_read(real_map
);
2615 if (object
->wimg_bits
!= wimg_mode
)
2616 vm_object_change_wimg_mode(object
, wimg_mode
);
2618 /* the size of mapped entry that overlaps with our region */
2619 /* which is targeted for share. */
2620 /* (entry_end - entry_start) - */
2621 /* offset of our beg addr within entry */
2622 /* it corresponds to this: */
2624 if(map_size
> mappable_size
)
2625 map_size
= mappable_size
;
2627 if (permission
& MAP_MEM_NAMED_REUSE
) {
2629 * Compare what we got with the "parent_entry".
2630 * If they match, re-use the "parent_entry" instead
2631 * of creating a new one.
2633 if (parent_entry
!= NULL
&&
2634 parent_entry
->backing
.object
== object
&&
2635 parent_entry
->internal
== object
->internal
&&
2636 parent_entry
->is_sub_map
== FALSE
&&
2637 parent_entry
->is_pager
== FALSE
&&
2638 parent_entry
->offset
== obj_off
&&
2639 parent_entry
->protection
== protections
&&
2640 parent_entry
->size
== map_size
&&
2641 ((!use_data_addr
&& (parent_entry
->data_offset
== 0)) ||
2642 (use_data_addr
&& (parent_entry
->data_offset
== offset_in_page
)))) {
2644 * We have a match: re-use "parent_entry".
2646 /* release our extra reference on object */
2647 vm_object_unlock(object
);
2648 vm_object_deallocate(object
);
2649 /* parent_entry->ref_count++; XXX ? */
2650 /* Get an extra send-right on handle */
2651 ipc_port_copy_send(parent_handle
);
2653 *size
= CAST_DOWN(vm_size_t
, map_size
);
2654 *object_handle
= parent_handle
;
2655 return KERN_SUCCESS
;
2658 * No match: we need to create a new entry.
2664 vm_object_unlock(object
);
2665 if (mach_memory_entry_allocate(&user_entry
, &user_handle
)
2667 /* release our unused reference on the object */
2668 vm_object_deallocate(object
);
2669 return KERN_FAILURE
;
2672 user_entry
->backing
.object
= object
;
2673 user_entry
->internal
= object
->internal
;
2674 user_entry
->is_sub_map
= FALSE
;
2675 user_entry
->is_pager
= FALSE
;
2676 user_entry
->offset
= obj_off
;
2677 user_entry
->data_offset
= offset_in_page
;
2678 user_entry
->protection
= protections
;
2679 SET_MAP_MEM(GET_MAP_MEM(permission
), user_entry
->protection
);
2680 user_entry
->size
= map_size
;
2682 /* user_object pager and internal fields are not used */
2683 /* when the object field is filled in. */
2685 *size
= CAST_DOWN(vm_size_t
, map_size
);
2686 *object_handle
= user_handle
;
2687 return KERN_SUCCESS
;
2690 /* The new object will be base on an existing named object */
2691 if (parent_entry
== NULL
) {
2692 kr
= KERN_INVALID_ARGUMENT
;
2696 if (use_data_addr
) {
2698 * submaps and pagers should only be accessible from within
2699 * the kernel, which shouldn't use the data address flag, so can fail here.
2701 if (parent_entry
->is_pager
|| parent_entry
->is_sub_map
) {
2702 panic("Shouldn't be using data address with a parent entry that is a submap or pager.");
2705 * Account for offset to data in parent entry and
2706 * compute our own offset to data.
2708 if((offset
+ *size
+ parent_entry
->data_offset
) > parent_entry
->size
) {
2709 kr
= KERN_INVALID_ARGUMENT
;
2713 map_offset
= vm_map_trunc_page(offset
+ parent_entry
->data_offset
, PAGE_MASK
);
2714 offset_in_page
= (offset
+ parent_entry
->data_offset
) - map_offset
;
2715 map_size
= vm_map_round_page(offset
+ parent_entry
->data_offset
+ *size
, PAGE_MASK
) - map_offset
;
2717 map_size
= vm_map_round_page(*size
, PAGE_MASK
);
2720 if((offset
+ map_size
) > parent_entry
->size
) {
2721 kr
= KERN_INVALID_ARGUMENT
;
2726 if (mask_protections
) {
2728 * The caller asked us to use the "protections" as
2729 * a mask, so restrict "protections" to what this
2730 * mapping actually allows.
2732 protections
&= parent_entry
->protection
;
2734 if((protections
& parent_entry
->protection
) != protections
) {
2735 kr
= KERN_PROTECTION_FAILURE
;
2739 if (mach_memory_entry_allocate(&user_entry
, &user_handle
)
2745 user_entry
->size
= map_size
;
2746 user_entry
->offset
= parent_entry
->offset
+ map_offset
;
2747 user_entry
->data_offset
= offset_in_page
;
2748 user_entry
->is_sub_map
= parent_entry
->is_sub_map
;
2749 user_entry
->is_pager
= parent_entry
->is_pager
;
2750 user_entry
->is_copy
= parent_entry
->is_copy
;
2751 user_entry
->internal
= parent_entry
->internal
;
2752 user_entry
->protection
= protections
;
2754 if(access
!= MAP_MEM_NOOP
) {
2755 SET_MAP_MEM(access
, user_entry
->protection
);
2758 if(parent_entry
->is_sub_map
) {
2759 user_entry
->backing
.map
= parent_entry
->backing
.map
;
2760 vm_map_lock(user_entry
->backing
.map
);
2761 user_entry
->backing
.map
->ref_count
++;
2762 vm_map_unlock(user_entry
->backing
.map
);
2764 else if (parent_entry
->is_pager
) {
2765 user_entry
->backing
.pager
= parent_entry
->backing
.pager
;
2766 /* JMM - don't we need a reference here? */
2768 object
= parent_entry
->backing
.object
;
2769 assert(object
!= VM_OBJECT_NULL
);
2770 user_entry
->backing
.object
= object
;
2771 /* we now point to this object, hold on */
2772 vm_object_reference(object
);
2773 vm_object_lock(object
);
2774 #if VM_OBJECT_TRACKING_OP_TRUESHARE
2775 if (!object
->true_share
&&
2776 vm_object_tracking_inited
) {
2777 void *bt
[VM_OBJECT_TRACKING_BTDEPTH
];
2780 num
= OSBacktrace(bt
,
2781 VM_OBJECT_TRACKING_BTDEPTH
);
2782 btlog_add_entry(vm_object_tracking_btlog
,
2784 VM_OBJECT_TRACKING_OP_TRUESHARE
,
2788 #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */
2790 object
->true_share
= TRUE
;
2791 if (object
->copy_strategy
== MEMORY_OBJECT_COPY_SYMMETRIC
)
2792 object
->copy_strategy
= MEMORY_OBJECT_COPY_DELAY
;
2793 vm_object_unlock(object
);
2795 *size
= CAST_DOWN(vm_size_t
, map_size
);
2796 *object_handle
= user_handle
;
2797 return KERN_SUCCESS
;
2801 if (user_handle
!= IP_NULL
) {
2803 * Releasing "user_handle" causes the kernel object
2804 * associated with it ("user_entry" here) to also be
2805 * released and freed.
2807 mach_memory_entry_port_release(user_handle
);
2813 _mach_make_memory_entry(
2814 vm_map_t target_map
,
2815 memory_object_size_t
*size
,
2816 memory_object_offset_t offset
,
2817 vm_prot_t permission
,
2818 ipc_port_t
*object_handle
,
2819 ipc_port_t parent_entry
)
2821 memory_object_size_t mo_size
;
2824 mo_size
= (memory_object_size_t
)*size
;
2825 kr
= mach_make_memory_entry_64(target_map
, &mo_size
,
2826 (memory_object_offset_t
)offset
, permission
, object_handle
,
2833 mach_make_memory_entry(
2834 vm_map_t target_map
,
2837 vm_prot_t permission
,
2838 ipc_port_t
*object_handle
,
2839 ipc_port_t parent_entry
)
2841 memory_object_size_t mo_size
;
2844 mo_size
= (memory_object_size_t
)*size
;
2845 kr
= mach_make_memory_entry_64(target_map
, &mo_size
,
2846 (memory_object_offset_t
)offset
, permission
, object_handle
,
2848 *size
= CAST_DOWN(vm_size_t
, mo_size
);
2855 * Set or clear the map's wiring_required flag. This flag, if set,
2856 * will cause all future virtual memory allocation to allocate
2857 * user wired memory. Unwiring pages wired down as a result of
2858 * this routine is done with the vm_wire interface.
2863 boolean_t must_wire
)
2865 if (map
== VM_MAP_NULL
)
2866 return(KERN_INVALID_ARGUMENT
);
2869 map
->wiring_required
= TRUE
;
2871 map
->wiring_required
= FALSE
;
2873 return(KERN_SUCCESS
);
2876 __private_extern__ kern_return_t
2877 mach_memory_entry_allocate(
2878 vm_named_entry_t
*user_entry_p
,
2879 ipc_port_t
*user_handle_p
)
2881 vm_named_entry_t user_entry
;
2882 ipc_port_t user_handle
;
2883 ipc_port_t previous
;
2885 user_entry
= (vm_named_entry_t
) kalloc(sizeof *user_entry
);
2886 if (user_entry
== NULL
)
2887 return KERN_FAILURE
;
2889 named_entry_lock_init(user_entry
);
2891 user_handle
= ipc_port_alloc_kernel();
2892 if (user_handle
== IP_NULL
) {
2893 kfree(user_entry
, sizeof *user_entry
);
2894 return KERN_FAILURE
;
2896 ip_lock(user_handle
);
2898 /* make a sonce right */
2899 user_handle
->ip_sorights
++;
2900 ip_reference(user_handle
);
2902 user_handle
->ip_destination
= IP_NULL
;
2903 user_handle
->ip_receiver_name
= MACH_PORT_NULL
;
2904 user_handle
->ip_receiver
= ipc_space_kernel
;
2906 /* make a send right */
2907 user_handle
->ip_mscount
++;
2908 user_handle
->ip_srights
++;
2909 ip_reference(user_handle
);
2911 ipc_port_nsrequest(user_handle
, 1, user_handle
, &previous
);
2912 /* nsrequest unlocks user_handle */
2914 user_entry
->backing
.pager
= NULL
;
2915 user_entry
->is_sub_map
= FALSE
;
2916 user_entry
->is_pager
= FALSE
;
2917 user_entry
->is_copy
= FALSE
;
2918 user_entry
->internal
= FALSE
;
2919 user_entry
->size
= 0;
2920 user_entry
->offset
= 0;
2921 user_entry
->data_offset
= 0;
2922 user_entry
->protection
= VM_PROT_NONE
;
2923 user_entry
->ref_count
= 1;
2925 ipc_kobject_set(user_handle
, (ipc_kobject_t
) user_entry
,
2928 *user_entry_p
= user_entry
;
2929 *user_handle_p
= user_handle
;
2931 return KERN_SUCCESS
;
2935 * mach_memory_object_memory_entry_64
2937 * Create a named entry backed by the provided pager.
2939 * JMM - we need to hold a reference on the pager -
2940 * and release it when the named entry is destroyed.
2943 mach_memory_object_memory_entry_64(
2946 vm_object_offset_t size
,
2947 vm_prot_t permission
,
2948 memory_object_t pager
,
2949 ipc_port_t
*entry_handle
)
2951 unsigned int access
;
2952 vm_named_entry_t user_entry
;
2953 ipc_port_t user_handle
;
2955 if (host
== HOST_NULL
)
2956 return(KERN_INVALID_HOST
);
2958 if (mach_memory_entry_allocate(&user_entry
, &user_handle
)
2960 return KERN_FAILURE
;
2963 user_entry
->backing
.pager
= pager
;
2964 user_entry
->size
= size
;
2965 user_entry
->offset
= 0;
2966 user_entry
->protection
= permission
& VM_PROT_ALL
;
2967 access
= GET_MAP_MEM(permission
);
2968 SET_MAP_MEM(access
, user_entry
->protection
);
2969 user_entry
->internal
= internal
;
2970 user_entry
->is_sub_map
= FALSE
;
2971 user_entry
->is_pager
= TRUE
;
2972 assert(user_entry
->ref_count
== 1);
2974 *entry_handle
= user_handle
;
2975 return KERN_SUCCESS
;
2979 mach_memory_object_memory_entry(
2983 vm_prot_t permission
,
2984 memory_object_t pager
,
2985 ipc_port_t
*entry_handle
)
2987 return mach_memory_object_memory_entry_64( host
, internal
,
2988 (vm_object_offset_t
)size
, permission
, pager
, entry_handle
);
2993 mach_memory_entry_purgable_control(
2994 ipc_port_t entry_port
,
2995 vm_purgable_t control
,
2999 vm_named_entry_t mem_entry
;
3002 if (entry_port
== IP_NULL
||
3003 ip_kotype(entry_port
) != IKOT_NAMED_ENTRY
) {
3004 return KERN_INVALID_ARGUMENT
;
3006 if (control
!= VM_PURGABLE_SET_STATE
&&
3007 control
!= VM_PURGABLE_GET_STATE
)
3008 return(KERN_INVALID_ARGUMENT
);
3010 if (control
== VM_PURGABLE_SET_STATE
&&
3011 (((*state
& ~(VM_PURGABLE_ALL_MASKS
)) != 0) ||
3012 ((*state
& VM_PURGABLE_STATE_MASK
) > VM_PURGABLE_STATE_MASK
)))
3013 return(KERN_INVALID_ARGUMENT
);
3015 mem_entry
= (vm_named_entry_t
) entry_port
->ip_kobject
;
3017 named_entry_lock(mem_entry
);
3019 if (mem_entry
->is_sub_map
||
3020 mem_entry
->is_pager
||
3021 mem_entry
->is_copy
) {
3022 named_entry_unlock(mem_entry
);
3023 return KERN_INVALID_ARGUMENT
;
3026 object
= mem_entry
->backing
.object
;
3027 if (object
== VM_OBJECT_NULL
) {
3028 named_entry_unlock(mem_entry
);
3029 return KERN_INVALID_ARGUMENT
;
3032 vm_object_lock(object
);
3034 /* check that named entry covers entire object ? */
3035 if (mem_entry
->offset
!= 0 || object
->vo_size
!= mem_entry
->size
) {
3036 vm_object_unlock(object
);
3037 named_entry_unlock(mem_entry
);
3038 return KERN_INVALID_ARGUMENT
;
3041 named_entry_unlock(mem_entry
);
3043 kr
= vm_object_purgable_control(object
, control
, state
);
3045 vm_object_unlock(object
);
3051 mach_memory_entry_get_page_counts(
3052 ipc_port_t entry_port
,
3053 unsigned int *resident_page_count
,
3054 unsigned int *dirty_page_count
)
3057 vm_named_entry_t mem_entry
;
3059 vm_object_offset_t offset
;
3060 vm_object_size_t size
;
3062 if (entry_port
== IP_NULL
||
3063 ip_kotype(entry_port
) != IKOT_NAMED_ENTRY
) {
3064 return KERN_INVALID_ARGUMENT
;
3067 mem_entry
= (vm_named_entry_t
) entry_port
->ip_kobject
;
3069 named_entry_lock(mem_entry
);
3071 if (mem_entry
->is_sub_map
||
3072 mem_entry
->is_pager
||
3073 mem_entry
->is_copy
) {
3074 named_entry_unlock(mem_entry
);
3075 return KERN_INVALID_ARGUMENT
;
3078 object
= mem_entry
->backing
.object
;
3079 if (object
== VM_OBJECT_NULL
) {
3080 named_entry_unlock(mem_entry
);
3081 return KERN_INVALID_ARGUMENT
;
3084 vm_object_lock(object
);
3086 offset
= mem_entry
->offset
;
3087 size
= mem_entry
->size
;
3089 named_entry_unlock(mem_entry
);
3091 kr
= vm_object_get_page_counts(object
, offset
, size
, resident_page_count
, dirty_page_count
);
3093 vm_object_unlock(object
);
3099 * mach_memory_entry_port_release:
3101 * Release a send right on a named entry port. This is the correct
3102 * way to destroy a named entry. When the last right on the port is
3103 * released, ipc_kobject_destroy() will call mach_destroy_memory_entry().
3106 mach_memory_entry_port_release(
3109 assert(ip_kotype(port
) == IKOT_NAMED_ENTRY
);
3110 ipc_port_release_send(port
);
3114 * mach_destroy_memory_entry:
3116 * Drops a reference on a memory entry and destroys the memory entry if
3117 * there are no more references on it.
3118 * NOTE: This routine should not be called to destroy a memory entry from the
3119 * kernel, as it will not release the Mach port associated with the memory
3120 * entry. The proper way to destroy a memory entry in the kernel is to
3121 * call mach_memort_entry_port_release() to release the kernel's send-right on
3122 * the memory entry's port. When the last send right is released, the memory
3123 * entry will be destroyed via ipc_kobject_destroy().
3126 mach_destroy_memory_entry(
3129 vm_named_entry_t named_entry
;
3131 assert(ip_kotype(port
) == IKOT_NAMED_ENTRY
);
3132 #endif /* MACH_ASSERT */
3133 named_entry
= (vm_named_entry_t
)port
->ip_kobject
;
3135 named_entry_lock(named_entry
);
3136 named_entry
->ref_count
-= 1;
3138 if(named_entry
->ref_count
== 0) {
3139 if (named_entry
->is_sub_map
) {
3140 vm_map_deallocate(named_entry
->backing
.map
);
3141 } else if (named_entry
->is_pager
) {
3142 /* JMM - need to drop reference on pager in that case */
3143 } else if (named_entry
->is_copy
) {
3144 vm_map_copy_discard(named_entry
->backing
.copy
);
3146 /* release the VM object we've been pointing to */
3147 vm_object_deallocate(named_entry
->backing
.object
);
3150 named_entry_unlock(named_entry
);
3151 named_entry_lock_destroy(named_entry
);
3153 kfree((void *) port
->ip_kobject
,
3154 sizeof (struct vm_named_entry
));
3156 named_entry_unlock(named_entry
);
3159 /* Allow manipulation of individual page state. This is actually part of */
3160 /* the UPL regimen but takes place on the memory entry rather than on a UPL */
3163 mach_memory_entry_page_op(
3164 ipc_port_t entry_port
,
3165 vm_object_offset_t offset
,
3167 ppnum_t
*phys_entry
,
3170 vm_named_entry_t mem_entry
;
3174 if (entry_port
== IP_NULL
||
3175 ip_kotype(entry_port
) != IKOT_NAMED_ENTRY
) {
3176 return KERN_INVALID_ARGUMENT
;
3179 mem_entry
= (vm_named_entry_t
) entry_port
->ip_kobject
;
3181 named_entry_lock(mem_entry
);
3183 if (mem_entry
->is_sub_map
||
3184 mem_entry
->is_pager
||
3185 mem_entry
->is_copy
) {
3186 named_entry_unlock(mem_entry
);
3187 return KERN_INVALID_ARGUMENT
;
3190 object
= mem_entry
->backing
.object
;
3191 if (object
== VM_OBJECT_NULL
) {
3192 named_entry_unlock(mem_entry
);
3193 return KERN_INVALID_ARGUMENT
;
3196 vm_object_reference(object
);
3197 named_entry_unlock(mem_entry
);
3199 kr
= vm_object_page_op(object
, offset
, ops
, phys_entry
, flags
);
3201 vm_object_deallocate(object
);
3207 * mach_memory_entry_range_op offers performance enhancement over
3208 * mach_memory_entry_page_op for page_op functions which do not require page
3209 * level state to be returned from the call. Page_op was created to provide
3210 * a low-cost alternative to page manipulation via UPLs when only a single
3211 * page was involved. The range_op call establishes the ability in the _op
3212 * family of functions to work on multiple pages where the lack of page level
3213 * state handling allows the caller to avoid the overhead of the upl structures.
3217 mach_memory_entry_range_op(
3218 ipc_port_t entry_port
,
3219 vm_object_offset_t offset_beg
,
3220 vm_object_offset_t offset_end
,
3224 vm_named_entry_t mem_entry
;
3228 if (entry_port
== IP_NULL
||
3229 ip_kotype(entry_port
) != IKOT_NAMED_ENTRY
) {
3230 return KERN_INVALID_ARGUMENT
;
3233 mem_entry
= (vm_named_entry_t
) entry_port
->ip_kobject
;
3235 named_entry_lock(mem_entry
);
3237 if (mem_entry
->is_sub_map
||
3238 mem_entry
->is_pager
||
3239 mem_entry
->is_copy
) {
3240 named_entry_unlock(mem_entry
);
3241 return KERN_INVALID_ARGUMENT
;
3244 object
= mem_entry
->backing
.object
;
3245 if (object
== VM_OBJECT_NULL
) {
3246 named_entry_unlock(mem_entry
);
3247 return KERN_INVALID_ARGUMENT
;
3250 vm_object_reference(object
);
3251 named_entry_unlock(mem_entry
);
3253 kr
= vm_object_range_op(object
,
3257 (uint32_t *) range
);
3259 vm_object_deallocate(object
);
3266 set_dp_control_port(
3267 host_priv_t host_priv
,
3268 ipc_port_t control_port
)
3270 if (host_priv
== HOST_PRIV_NULL
)
3271 return (KERN_INVALID_HOST
);
3273 if (IP_VALID(dynamic_pager_control_port
))
3274 ipc_port_release_send(dynamic_pager_control_port
);
3276 dynamic_pager_control_port
= control_port
;
3277 return KERN_SUCCESS
;
3281 get_dp_control_port(
3282 host_priv_t host_priv
,
3283 ipc_port_t
*control_port
)
3285 if (host_priv
== HOST_PRIV_NULL
)
3286 return (KERN_INVALID_HOST
);
3288 *control_port
= ipc_port_copy_send(dynamic_pager_control_port
);
3289 return KERN_SUCCESS
;
3293 /* ******* Temporary Internal calls to UPL for BSD ***** */
3295 extern int kernel_upl_map(
3298 vm_offset_t
*dst_addr
);
3300 extern int kernel_upl_unmap(
3304 extern int kernel_upl_commit(
3306 upl_page_info_t
*pl
,
3307 mach_msg_type_number_t count
);
3309 extern int kernel_upl_commit_range(
3311 upl_offset_t offset
,
3314 upl_page_info_array_t pl
,
3315 mach_msg_type_number_t count
);
3317 extern int kernel_upl_abort(
3321 extern int kernel_upl_abort_range(
3323 upl_offset_t offset
,
3332 vm_offset_t
*dst_addr
)
3334 return vm_upl_map(map
, upl
, dst_addr
);
3343 return vm_upl_unmap(map
, upl
);
3349 upl_page_info_t
*pl
,
3350 mach_msg_type_number_t count
)
3354 kr
= upl_commit(upl
, pl
, count
);
3355 upl_deallocate(upl
);
3361 kernel_upl_commit_range(
3363 upl_offset_t offset
,
3366 upl_page_info_array_t pl
,
3367 mach_msg_type_number_t count
)
3369 boolean_t finished
= FALSE
;
3372 if (flags
& UPL_COMMIT_FREE_ON_EMPTY
)
3373 flags
|= UPL_COMMIT_NOTIFY_EMPTY
;
3375 if (flags
& UPL_COMMIT_KERNEL_ONLY_FLAGS
) {
3376 return KERN_INVALID_ARGUMENT
;
3379 kr
= upl_commit_range(upl
, offset
, size
, flags
, pl
, count
, &finished
);
3381 if ((flags
& UPL_COMMIT_NOTIFY_EMPTY
) && finished
)
3382 upl_deallocate(upl
);
3388 kernel_upl_abort_range(
3390 upl_offset_t offset
,
3395 boolean_t finished
= FALSE
;
3397 if (abort_flags
& UPL_COMMIT_FREE_ON_EMPTY
)
3398 abort_flags
|= UPL_COMMIT_NOTIFY_EMPTY
;
3400 kr
= upl_abort_range(upl
, offset
, size
, abort_flags
, &finished
);
3402 if ((abort_flags
& UPL_COMMIT_FREE_ON_EMPTY
) && finished
)
3403 upl_deallocate(upl
);
3415 kr
= upl_abort(upl
, abort_type
);
3416 upl_deallocate(upl
);
3421 * Now a kernel-private interface (for BootCache
3422 * use only). Need a cleaner way to create an
3423 * empty vm_map() and return a handle to it.
3427 vm_region_object_create(
3428 __unused vm_map_t target_map
,
3430 ipc_port_t
*object_handle
)
3432 vm_named_entry_t user_entry
;
3433 ipc_port_t user_handle
;
3437 if (mach_memory_entry_allocate(&user_entry
, &user_handle
)
3439 return KERN_FAILURE
;
3442 /* Create a named object based on a submap of specified size */
3444 new_map
= vm_map_create(PMAP_NULL
, VM_MAP_MIN_ADDRESS
,
3445 vm_map_round_page(size
,
3446 VM_MAP_PAGE_MASK(target_map
)),
3448 vm_map_set_page_shift(new_map
, VM_MAP_PAGE_SHIFT(target_map
));
3450 user_entry
->backing
.map
= new_map
;
3451 user_entry
->internal
= TRUE
;
3452 user_entry
->is_sub_map
= TRUE
;
3453 user_entry
->offset
= 0;
3454 user_entry
->protection
= VM_PROT_ALL
;
3455 user_entry
->size
= size
;
3456 assert(user_entry
->ref_count
== 1);
3458 *object_handle
= user_handle
;
3459 return KERN_SUCCESS
;
3463 ppnum_t
vm_map_get_phys_page( /* forward */
3465 vm_offset_t offset
);
3468 vm_map_get_phys_page(
3472 vm_object_offset_t offset
;
3474 vm_map_offset_t map_offset
;
3475 vm_map_entry_t entry
;
3476 ppnum_t phys_page
= 0;
3478 map_offset
= vm_map_trunc_page(addr
, PAGE_MASK
);
3481 while (vm_map_lookup_entry(map
, map_offset
, &entry
)) {
3483 if (entry
->object
.vm_object
== VM_OBJECT_NULL
) {
3487 if (entry
->is_sub_map
) {
3489 vm_map_lock(entry
->object
.sub_map
);
3491 map
= entry
->object
.sub_map
;
3492 map_offset
= entry
->offset
+ (map_offset
- entry
->vme_start
);
3493 vm_map_unlock(old_map
);
3496 if (entry
->object
.vm_object
->phys_contiguous
) {
3497 /* These are not standard pageable memory mappings */
3498 /* If they are not present in the object they will */
3499 /* have to be picked up from the pager through the */
3500 /* fault mechanism. */
3501 if(entry
->object
.vm_object
->vo_shadow_offset
== 0) {
3502 /* need to call vm_fault */
3504 vm_fault(map
, map_offset
, VM_PROT_NONE
,
3505 FALSE
, THREAD_UNINT
, NULL
, 0);
3509 offset
= entry
->offset
+ (map_offset
- entry
->vme_start
);
3510 phys_page
= (ppnum_t
)
3511 ((entry
->object
.vm_object
->vo_shadow_offset
3512 + offset
) >> PAGE_SHIFT
);
3516 offset
= entry
->offset
+ (map_offset
- entry
->vme_start
);
3517 object
= entry
->object
.vm_object
;
3518 vm_object_lock(object
);
3520 vm_page_t dst_page
= vm_page_lookup(object
,offset
);
3521 if(dst_page
== VM_PAGE_NULL
) {
3522 if(object
->shadow
) {
3523 vm_object_t old_object
;
3524 vm_object_lock(object
->shadow
);
3525 old_object
= object
;
3526 offset
= offset
+ object
->vo_shadow_offset
;
3527 object
= object
->shadow
;
3528 vm_object_unlock(old_object
);
3530 vm_object_unlock(object
);
3534 phys_page
= (ppnum_t
)(dst_page
->phys_page
);
3535 vm_object_unlock(object
);
3549 kern_return_t
kernel_object_iopl_request( /* forward */
3550 vm_named_entry_t named_entry
,
3551 memory_object_offset_t offset
,
3552 upl_size_t
*upl_size
,
3554 upl_page_info_array_t user_page_list
,
3555 unsigned int *page_list_count
,
3559 kernel_object_iopl_request(
3560 vm_named_entry_t named_entry
,
3561 memory_object_offset_t offset
,
3562 upl_size_t
*upl_size
,
3564 upl_page_info_array_t user_page_list
,
3565 unsigned int *page_list_count
,
3573 caller_flags
= *flags
;
3575 if (caller_flags
& ~UPL_VALID_FLAGS
) {
3577 * For forward compatibility's sake,
3578 * reject any unknown flag.
3580 return KERN_INVALID_VALUE
;
3583 /* a few checks to make sure user is obeying rules */
3584 if(*upl_size
== 0) {
3585 if(offset
>= named_entry
->size
)
3586 return(KERN_INVALID_RIGHT
);
3587 *upl_size
= (upl_size_t
) (named_entry
->size
- offset
);
3588 if (*upl_size
!= named_entry
->size
- offset
)
3589 return KERN_INVALID_ARGUMENT
;
3591 if(caller_flags
& UPL_COPYOUT_FROM
) {
3592 if((named_entry
->protection
& VM_PROT_READ
)
3594 return(KERN_INVALID_RIGHT
);
3597 if((named_entry
->protection
&
3598 (VM_PROT_READ
| VM_PROT_WRITE
))
3599 != (VM_PROT_READ
| VM_PROT_WRITE
)) {
3600 return(KERN_INVALID_RIGHT
);
3603 if(named_entry
->size
< (offset
+ *upl_size
))
3604 return(KERN_INVALID_ARGUMENT
);
3606 /* the callers parameter offset is defined to be the */
3607 /* offset from beginning of named entry offset in object */
3608 offset
= offset
+ named_entry
->offset
;
3610 if (named_entry
->is_sub_map
||
3611 named_entry
->is_copy
)
3612 return KERN_INVALID_ARGUMENT
;
3614 named_entry_lock(named_entry
);
3616 if (named_entry
->is_pager
) {
3617 object
= vm_object_enter(named_entry
->backing
.pager
,
3618 named_entry
->offset
+ named_entry
->size
,
3619 named_entry
->internal
,
3622 if (object
== VM_OBJECT_NULL
) {
3623 named_entry_unlock(named_entry
);
3624 return(KERN_INVALID_OBJECT
);
3627 /* JMM - drop reference on the pager here? */
3629 /* create an extra reference for the object */
3630 vm_object_lock(object
);
3631 vm_object_reference_locked(object
);
3632 named_entry
->backing
.object
= object
;
3633 named_entry
->is_pager
= FALSE
;
3634 named_entry_unlock(named_entry
);
3636 /* wait for object (if any) to be ready */
3637 if (!named_entry
->internal
) {
3638 while (!object
->pager_ready
) {
3639 vm_object_wait(object
,
3640 VM_OBJECT_EVENT_PAGER_READY
,
3642 vm_object_lock(object
);
3645 vm_object_unlock(object
);
3648 /* This is the case where we are going to operate */
3649 /* an an already known object. If the object is */
3650 /* not ready it is internal. An external */
3651 /* object cannot be mapped until it is ready */
3652 /* we can therefore avoid the ready check */
3654 object
= named_entry
->backing
.object
;
3655 vm_object_reference(object
);
3656 named_entry_unlock(named_entry
);
3659 if (!object
->private) {
3660 if (*upl_size
> MAX_UPL_TRANSFER_BYTES
)
3661 *upl_size
= MAX_UPL_TRANSFER_BYTES
;
3662 if (object
->phys_contiguous
) {
3663 *flags
= UPL_PHYS_CONTIG
;
3668 *flags
= UPL_DEV_MEMORY
| UPL_PHYS_CONTIG
;
3671 ret
= vm_object_iopl_request(object
,
3678 vm_object_deallocate(object
);