]> git.saurik.com Git - apple/xnu.git/blob - libkern/zlib/adler32.c
00214cd2e351f19131c2286132a64575a833edd6
[apple/xnu.git] / libkern / zlib / adler32.c
1 /*
2 * Copyright (c) 2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* adler32.c -- compute the Adler-32 checksum of a data stream
29 * Copyright (C) 1995-2004 Mark Adler
30 * For conditions of distribution and use, see copyright notice in zlib.h
31 */
32
33 /* @(#) $Id$ */
34
35
36 #define ZLIB_INTERNAL
37 #if KERNEL
38 #include <libkern/zlib.h>
39 #else
40 #include "zlib.h"
41 #endif /* KERNEL */
42
43 #if defined __x86_64__ || defined __i386__ || defined _ARM_ARCH_6
44 #include <stdint.h> // For uintptr_t.
45 extern uLong adler32_vec(uLong adler, uLong sum2, const Bytef *buf, uInt len);
46 #endif
47
48 #define BASE 65521UL /* largest prime smaller than 65536 */
49 #define NMAX 5552
50 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
51
52 #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
53 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
54 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
55 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
56 #define DO16(buf) DO8(buf,0); DO8(buf,8);
57
58 /* use NO_DIVIDE if your processor does not do division in hardware */
59 #ifdef NO_DIVIDE
60 # define MOD(a) \
61 do { \
62 if (a >= (BASE << 16)) a -= (BASE << 16); \
63 if (a >= (BASE << 15)) a -= (BASE << 15); \
64 if (a >= (BASE << 14)) a -= (BASE << 14); \
65 if (a >= (BASE << 13)) a -= (BASE << 13); \
66 if (a >= (BASE << 12)) a -= (BASE << 12); \
67 if (a >= (BASE << 11)) a -= (BASE << 11); \
68 if (a >= (BASE << 10)) a -= (BASE << 10); \
69 if (a >= (BASE << 9)) a -= (BASE << 9); \
70 if (a >= (BASE << 8)) a -= (BASE << 8); \
71 if (a >= (BASE << 7)) a -= (BASE << 7); \
72 if (a >= (BASE << 6)) a -= (BASE << 6); \
73 if (a >= (BASE << 5)) a -= (BASE << 5); \
74 if (a >= (BASE << 4)) a -= (BASE << 4); \
75 if (a >= (BASE << 3)) a -= (BASE << 3); \
76 if (a >= (BASE << 2)) a -= (BASE << 2); \
77 if (a >= (BASE << 1)) a -= (BASE << 1); \
78 if (a >= BASE) a -= BASE; \
79 } while (0)
80 # define MOD4(a) \
81 do { \
82 if (a >= (BASE << 4)) a -= (BASE << 4); \
83 if (a >= (BASE << 3)) a -= (BASE << 3); \
84 if (a >= (BASE << 2)) a -= (BASE << 2); \
85 if (a >= (BASE << 1)) a -= (BASE << 1); \
86 if (a >= BASE) a -= BASE; \
87 } while (0)
88 #else
89 # define MOD(a) a %= BASE
90 # define MOD4(a) a %= BASE
91 #endif
92
93 /* ========================================================================= */
94 uLong ZEXPORT adler32(adler, buf, len)
95 uLong adler;
96 const Bytef *buf;
97 uInt len;
98 {
99 unsigned long sum2;
100 unsigned n;
101
102 /* split Adler-32 into component sums */
103 sum2 = (adler >> 16) & 0xffff;
104 adler &= 0xffff;
105
106 /* in case user likes doing a byte at a time, keep it fast */
107 if (len == 1) {
108 adler += buf[0];
109 if (adler >= BASE)
110 adler -= BASE;
111 sum2 += adler;
112 if (sum2 >= BASE)
113 sum2 -= BASE;
114 return adler | (sum2 << 16);
115 }
116
117 /* initial Adler-32 value (deferred check for len == 1 speed) */
118 if (buf == Z_NULL)
119 return 1L;
120
121 /* in case short lengths are provided, keep it somewhat fast */
122 if (len < 16) {
123 while (len--) {
124 adler += *buf++;
125 sum2 += adler;
126 }
127 if (adler >= BASE)
128 adler -= BASE;
129 MOD4(sum2); /* only added so many BASE's */
130 return adler | (sum2 << 16);
131 }
132
133 #if defined __x86_64__ || defined __i386__ || defined _ARM_ARCH_6
134
135 if (len>=32000) { /* use vector code only if len is sufficiently large to compensate registers save/restore */
136 /* align buf to 16-byte boundary */
137 while (((uintptr_t)buf)&15) { /* not on a 16-byte boundary */
138 len--;
139 adler += *buf++;
140 sum2 += adler;
141 if (adler >= BASE) adler -= BASE;
142 MOD4(sum2); /* only added so many BASE's */
143 }
144
145 return adler32_vec(adler, sum2, buf, len); // x86_64 or i386 (up to SSE3) or armv6 or up
146 }
147
148 #endif // defined __x86_64__ || defined __i386__ || defined _ARM_ARCH_6
149
150 /* do length NMAX blocks -- requires just one modulo operation */
151 while (len >= NMAX) {
152 len -= NMAX;
153 n = NMAX / 16; /* NMAX is divisible by 16 */
154 do {
155 DO16(buf); /* 16 sums unrolled */
156 buf += 16;
157 } while (--n);
158 MOD(adler);
159 MOD(sum2);
160 }
161
162 /* do remaining bytes (less than NMAX, still just one modulo) */
163 if (len) { /* avoid modulos if none remaining */
164 while (len >= 16) {
165 len -= 16;
166 DO16(buf);
167 buf += 16;
168 }
169 while (len--) {
170 adler += *buf++;
171 sum2 += adler;
172 }
173 MOD(adler);
174 MOD(sum2);
175 }
176
177 /* return recombined sums */
178 return adler | (sum2 << 16);
179 }
180
181 /* ========================================================================= */
182 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
183 uLong adler1;
184 uLong adler2;
185 z_off_t len2;
186 {
187 unsigned long sum1;
188 unsigned long sum2;
189 unsigned rem;
190
191 /* the derivation of this formula is left as an exercise for the reader */
192 rem = (unsigned)(len2 % BASE);
193 sum1 = adler1 & 0xffff;
194 sum2 = rem * sum1;
195 MOD(sum2);
196 sum1 += (adler2 & 0xffff) + BASE - 1;
197 sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
198 if (sum1 > BASE) sum1 -= BASE;
199 if (sum1 > BASE) sum1 -= BASE;
200 if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
201 if (sum2 > BASE) sum2 -= BASE;
202 return sum1 | (sum2 << 16);
203 }