]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2015-2020 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_FREE_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | ||
57 | /* | |
58 | * un-comment the following lines to debug the link/prepost tables | |
59 | * NOTE: this expands each element by ~40 bytes | |
60 | */ | |
61 | //#define KEEP_WAITQ_LINK_STATS | |
62 | //#define KEEP_WAITQ_PREPOST_STATS | |
63 | ||
64 | #include <kern/ast.h> | |
65 | #include <kern/backtrace.h> | |
66 | #include <kern/kern_types.h> | |
67 | #include <kern/ltable.h> | |
68 | #include <kern/mach_param.h> | |
69 | #include <kern/percpu.h> | |
70 | #include <kern/queue.h> | |
71 | #include <kern/sched_prim.h> | |
72 | #include <kern/simple_lock.h> | |
73 | #include <kern/spl.h> | |
74 | #include <kern/waitq.h> | |
75 | #include <kern/zalloc.h> | |
76 | #include <kern/policy_internal.h> | |
77 | #include <kern/turnstile.h> | |
78 | ||
79 | #include <os/hash.h> | |
80 | #include <libkern/OSAtomic.h> | |
81 | #include <mach/sync_policy.h> | |
82 | #include <vm/vm_kern.h> | |
83 | ||
84 | #include <sys/kdebug.h> | |
85 | ||
86 | #if defined(KEEP_WAITQ_LINK_STATS) || defined(KEEP_WAITQ_PREPOST_STATS) | |
87 | # if !CONFIG_LTABLE_STATS | |
88 | # error "You must configure LTABLE_STATS to use WAITQ_[LINK|PREPOST]_STATS" | |
89 | # endif | |
90 | # if !CONFIG_WAITQ_STATS | |
91 | # error "You must configure WAITQ_STATS to use WAITQ_[LINK|PREPOST]_STATS" | |
92 | # endif | |
93 | #endif | |
94 | ||
95 | #if CONFIG_WAITQ_DEBUG | |
96 | #define wqdbg(fmt, ...) \ | |
97 | printf("WQ[%s]: " fmt "\n", __func__, ## __VA_ARGS__) | |
98 | #else | |
99 | #define wqdbg(fmt, ...) do { } while (0) | |
100 | #endif | |
101 | ||
102 | #ifdef WAITQ_VERBOSE_DEBUG | |
103 | #define wqdbg_v(fmt, ...) \ | |
104 | printf("WQ[v:%s]: " fmt "\n", __func__, ## __VA_ARGS__) | |
105 | #else | |
106 | #define wqdbg_v(fmt, ...) do { } while (0) | |
107 | #endif | |
108 | ||
109 | #define wqinfo(fmt, ...) \ | |
110 | printf("WQ[%s]: " fmt "\n", __func__, ## __VA_ARGS__) | |
111 | ||
112 | #define wqerr(fmt, ...) \ | |
113 | printf("WQ[%s] ERROR: " fmt "\n", __func__, ## __VA_ARGS__) | |
114 | ||
115 | /* | |
116 | * file-static functions / data | |
117 | */ | |
118 | static thread_t waitq_select_one_locked(struct waitq *waitq, event64_t event, | |
119 | uint64_t *reserved_preposts, | |
120 | int priority, spl_t *spl); | |
121 | ||
122 | static kern_return_t waitq_select_thread_locked(struct waitq *waitq, | |
123 | event64_t event, | |
124 | thread_t thread, spl_t *spl); | |
125 | ||
126 | ZONE_DECLARE(waitq_set_zone, "waitq sets", | |
127 | sizeof(struct waitq_set), ZC_NOENCRYPT); | |
128 | ||
129 | /* waitq prepost cache */ | |
130 | #define WQP_CACHE_MAX 50 | |
131 | struct wqp_cache { | |
132 | uint64_t head; | |
133 | unsigned int avail; | |
134 | }; | |
135 | static struct wqp_cache PERCPU_DATA(wqp_cache); | |
136 | ||
137 | #define P2ROUNDUP(x, align) (-(-((uint32_t)(x)) & -(align))) | |
138 | #define ROUNDDOWN(x, y) (((x)/(y))*(y)) | |
139 | ||
140 | ||
141 | #if CONFIG_LTABLE_STATS || CONFIG_WAITQ_STATS | |
142 | static __inline__ void waitq_grab_backtrace(uintptr_t bt[NWAITQ_BTFRAMES], int skip); | |
143 | #endif | |
144 | ||
145 | LCK_GRP_DECLARE(waitq_lck_grp, "waitq"); | |
146 | ||
147 | #if __arm64__ | |
148 | ||
149 | #define waitq_lock_to(wq, to) \ | |
150 | (hw_lock_bit_to(&(wq)->waitq_interlock, LCK_ILOCK, to, &waitq_lck_grp)) | |
151 | ||
152 | #define waitq_lock_unlock(wq) \ | |
153 | (hw_unlock_bit(&(wq)->waitq_interlock, LCK_ILOCK)) | |
154 | ||
155 | #define waitq_lock_init(wq) \ | |
156 | (wq->waitq_interlock = 0) | |
157 | ||
158 | #else | |
159 | ||
160 | #define waitq_lock_to(wq, to) \ | |
161 | (hw_lock_to(&(wq)->waitq_interlock, to, &waitq_lck_grp)) | |
162 | ||
163 | #define waitq_lock_unlock(wq) \ | |
164 | (hw_lock_unlock(&(wq)->waitq_interlock)) | |
165 | ||
166 | #define waitq_lock_init(wq) \ | |
167 | (hw_lock_init(&(wq)->waitq_interlock)) | |
168 | ||
169 | #endif /* __arm64__ */ | |
170 | ||
171 | /* | |
172 | * Prepost callback function for specially marked waitq sets | |
173 | * (prepost alternative) | |
174 | */ | |
175 | extern void waitq_set__CALLING_PREPOST_HOOK__(waitq_set_prepost_hook_t *ctx); | |
176 | ||
177 | #define DEFAULT_MIN_FREE_TABLE_ELEM 100 | |
178 | static uint32_t g_min_free_table_elem; | |
179 | static uint32_t g_min_free_cache; | |
180 | ||
181 | ||
182 | /* ---------------------------------------------------------------------- | |
183 | * | |
184 | * SetID Link Table Implementation | |
185 | * | |
186 | * ---------------------------------------------------------------------- */ | |
187 | static struct link_table g_wqlinktable; | |
188 | ||
189 | enum wq_link_type { | |
190 | WQL_ALL = -1, | |
191 | WQL_FREE = LT_FREE, | |
192 | WQL_WQS = LT_ELEM, | |
193 | WQL_LINK = LT_LINK, | |
194 | }; | |
195 | ||
196 | struct waitq_link { | |
197 | struct lt_elem wqte; | |
198 | ||
199 | union { | |
200 | /* wqt_type == WQL_WQS (LT_ELEM) */ | |
201 | struct { | |
202 | struct waitq_set *wql_set; | |
203 | /* uint64_t sl_prepost_id; */ | |
204 | } wql_wqs; | |
205 | ||
206 | /* wqt_type == WQL_LINK (LT_LINK) */ | |
207 | struct { | |
208 | uint64_t left_setid; | |
209 | uint64_t right_setid; | |
210 | } wql_link; | |
211 | }; | |
212 | #ifdef KEEP_WAITQ_LINK_STATS | |
213 | thread_t sl_alloc_th; | |
214 | task_t sl_alloc_task; | |
215 | uintptr_t sl_alloc_bt[NWAITQ_BTFRAMES]; | |
216 | uint64_t sl_alloc_ts; | |
217 | uintptr_t sl_invalidate_bt[NWAITQ_BTFRAMES]; | |
218 | uint64_t sl_invalidate_ts; | |
219 | uintptr_t sl_mkvalid_bt[NWAITQ_BTFRAMES]; | |
220 | uint64_t sl_mkvalid_ts; | |
221 | uint64_t sl_free_ts; | |
222 | #endif | |
223 | }; | |
224 | #if !defined(KEEP_WAITQ_LINK_STATS) | |
225 | static_assert((sizeof(struct waitq_link) & (sizeof(struct waitq_link) - 1)) == 0, | |
226 | "waitq_link struct must be a power of two!"); | |
227 | #endif | |
228 | ||
229 | #define wql_refcnt(link) \ | |
230 | (lt_bits_refcnt((link)->wqte.lt_bits)) | |
231 | ||
232 | #define wql_type(link) \ | |
233 | (lt_bits_type((link)->wqte.lt_bits)) | |
234 | ||
235 | #define wql_mkvalid(link) \ | |
236 | do { \ | |
237 | lt_elem_mkvalid(&(link)->wqte); \ | |
238 | wql_do_mkvalid_stats(&(link)->wqte); \ | |
239 | } while (0) | |
240 | ||
241 | #define wql_is_valid(link) \ | |
242 | lt_bits_valid((link)->wqte.lt_bits) | |
243 | ||
244 | #define wql_setid wqte.lt_id | |
245 | ||
246 | #define WQL_WQS_POISON ((void *)(0xf00df00d)) | |
247 | #define WQL_LINK_POISON (0x0bad0badffffffffull) | |
248 | ||
249 | static void | |
250 | wql_poison(struct link_table *table, struct lt_elem *elem) | |
251 | { | |
252 | struct waitq_link *link = (struct waitq_link *)elem; | |
253 | (void)table; | |
254 | ||
255 | switch (wql_type(link)) { | |
256 | case WQL_WQS: | |
257 | link->wql_wqs.wql_set = WQL_WQS_POISON; | |
258 | break; | |
259 | case WQL_LINK: | |
260 | link->wql_link.left_setid = WQL_LINK_POISON; | |
261 | link->wql_link.right_setid = WQL_LINK_POISON; | |
262 | break; | |
263 | default: | |
264 | break; | |
265 | } | |
266 | #ifdef KEEP_WAITQ_LINK_STATS | |
267 | memset(link->sl_alloc_bt, 0, sizeof(link->sl_alloc_bt)); | |
268 | link->sl_alloc_ts = 0; | |
269 | memset(link->sl_mkvalid_bt, 0, sizeof(link->sl_mkvalid_bt)); | |
270 | link->sl_mkvalid_ts = 0; | |
271 | ||
272 | link->sl_alloc_th = THREAD_NULL; | |
273 | /* leave the sl_alloc_task in place for debugging */ | |
274 | ||
275 | link->sl_free_ts = mach_absolute_time(); | |
276 | #endif | |
277 | } | |
278 | ||
279 | #ifdef KEEP_WAITQ_LINK_STATS | |
280 | static __inline__ void | |
281 | wql_do_alloc_stats(struct lt_elem *elem) | |
282 | { | |
283 | if (elem) { | |
284 | struct waitq_link *link = (struct waitq_link *)elem; | |
285 | memset(link->sl_alloc_bt, 0, sizeof(link->sl_alloc_bt)); | |
286 | waitq_grab_backtrace(link->sl_alloc_bt, 0); | |
287 | link->sl_alloc_th = current_thread(); | |
288 | link->sl_alloc_task = current_task(); | |
289 | ||
290 | assert(link->sl_alloc_ts == 0); | |
291 | link->sl_alloc_ts = mach_absolute_time(); | |
292 | ||
293 | memset(link->sl_invalidate_bt, 0, sizeof(link->sl_invalidate_bt)); | |
294 | link->sl_invalidate_ts = 0; | |
295 | } | |
296 | } | |
297 | ||
298 | static __inline__ void | |
299 | wql_do_invalidate_stats(struct lt_elem *elem) | |
300 | { | |
301 | struct waitq_link *link = (struct waitq_link *)elem; | |
302 | ||
303 | if (!elem) { | |
304 | return; | |
305 | } | |
306 | ||
307 | assert(link->sl_mkvalid_ts > 0); | |
308 | ||
309 | memset(link->sl_invalidate_bt, 0, sizeof(link->sl_invalidate_bt)); | |
310 | link->sl_invalidate_ts = mach_absolute_time(); | |
311 | waitq_grab_backtrace(link->sl_invalidate_bt, 0); | |
312 | } | |
313 | ||
314 | static __inline__ void | |
315 | wql_do_mkvalid_stats(struct lt_elem *elem) | |
316 | { | |
317 | struct waitq_link *link = (struct waitq_link *)elem; | |
318 | ||
319 | if (!elem) { | |
320 | return; | |
321 | } | |
322 | ||
323 | memset(link->sl_mkvalid_bt, 0, sizeof(link->sl_mkvalid_bt)); | |
324 | link->sl_mkvalid_ts = mach_absolute_time(); | |
325 | waitq_grab_backtrace(link->sl_mkvalid_bt, 0); | |
326 | } | |
327 | #else | |
328 | #define wql_do_alloc_stats(e) | |
329 | #define wql_do_invalidate_stats(e) | |
330 | #define wql_do_mkvalid_stats(e) | |
331 | #endif /* KEEP_WAITQ_LINK_STATS */ | |
332 | ||
333 | static void | |
334 | wql_init(void) | |
335 | { | |
336 | uint32_t tablesz = 0, max_links = 0; | |
337 | ||
338 | if (PE_parse_boot_argn("wql_tsize", &tablesz, sizeof(tablesz)) != TRUE) { | |
339 | tablesz = (uint32_t)g_lt_max_tbl_size; | |
340 | } | |
341 | ||
342 | tablesz = P2ROUNDUP(tablesz, PAGE_SIZE); | |
343 | max_links = tablesz / sizeof(struct waitq_link); | |
344 | assert(max_links > 0 && tablesz > 0); | |
345 | ||
346 | /* we have a restricted index range */ | |
347 | if (max_links > (LT_IDX_MAX + 1)) { | |
348 | max_links = LT_IDX_MAX + 1; | |
349 | } | |
350 | ||
351 | wqinfo("init linktable with max:%d elements (%d bytes)", | |
352 | max_links, tablesz); | |
353 | ltable_init(&g_wqlinktable, "wqslab.wql", max_links, | |
354 | sizeof(struct waitq_link), wql_poison); | |
355 | } | |
356 | ||
357 | static void | |
358 | wql_ensure_free_space(void) | |
359 | { | |
360 | if (g_wqlinktable.nelem - g_wqlinktable.used_elem < g_min_free_table_elem) { | |
361 | /* | |
362 | * we don't hold locks on these values, so check for underflow | |
363 | */ | |
364 | if (g_wqlinktable.used_elem <= g_wqlinktable.nelem) { | |
365 | wqdbg_v("Forcing table growth: nelem=%d, used=%d, min_free=%d", | |
366 | g_wqlinktable.nelem, g_wqlinktable.used_elem, | |
367 | g_min_free_table_elem); | |
368 | ltable_grow(&g_wqlinktable, g_min_free_table_elem); | |
369 | } | |
370 | } | |
371 | } | |
372 | ||
373 | static struct waitq_link * | |
374 | wql_alloc_link(int type) | |
375 | { | |
376 | struct lt_elem *elem; | |
377 | ||
378 | elem = ltable_alloc_elem(&g_wqlinktable, type, 1, 0); | |
379 | wql_do_alloc_stats(elem); | |
380 | return (struct waitq_link *)elem; | |
381 | } | |
382 | ||
383 | static void | |
384 | wql_realloc_link(struct waitq_link *link, int type) | |
385 | { | |
386 | ltable_realloc_elem(&g_wqlinktable, &link->wqte, type); | |
387 | #ifdef KEEP_WAITQ_LINK_STATS | |
388 | memset(link->sl_alloc_bt, 0, sizeof(link->sl_alloc_bt)); | |
389 | link->sl_alloc_ts = 0; | |
390 | wql_do_alloc_stats(&link->wqte); | |
391 | ||
392 | memset(link->sl_invalidate_bt, 0, sizeof(link->sl_invalidate_bt)); | |
393 | link->sl_invalidate_ts = 0; | |
394 | #endif | |
395 | } | |
396 | ||
397 | static void | |
398 | wql_invalidate(struct waitq_link *link) | |
399 | { | |
400 | lt_elem_invalidate(&link->wqte); | |
401 | wql_do_invalidate_stats(&link->wqte); | |
402 | } | |
403 | ||
404 | static struct waitq_link * | |
405 | wql_get_link(uint64_t setid) | |
406 | { | |
407 | struct lt_elem *elem; | |
408 | ||
409 | elem = ltable_get_elem(&g_wqlinktable, setid); | |
410 | return (struct waitq_link *)elem; | |
411 | } | |
412 | ||
413 | static void | |
414 | wql_put_link(struct waitq_link *link) | |
415 | { | |
416 | if (!link) { | |
417 | return; | |
418 | } | |
419 | ltable_put_elem(&g_wqlinktable, (struct lt_elem *)link); | |
420 | } | |
421 | ||
422 | static struct waitq_link * | |
423 | wql_get_reserved(uint64_t setid, int type) | |
424 | { | |
425 | struct lt_elem *elem; | |
426 | ||
427 | elem = lt_elem_list_first(&g_wqlinktable, setid); | |
428 | if (!elem) { | |
429 | return NULL; | |
430 | } | |
431 | ltable_realloc_elem(&g_wqlinktable, elem, type); | |
432 | return (struct waitq_link *)elem; | |
433 | } | |
434 | ||
435 | ||
436 | static inline int waitq_maybe_remove_link(struct waitq *waitq, | |
437 | uint64_t setid, | |
438 | struct waitq_link *parent, | |
439 | struct waitq_link *left, | |
440 | struct waitq_link *right); | |
441 | ||
442 | enum { | |
443 | LINK_WALK_ONE_LEVEL = 0, | |
444 | LINK_WALK_FULL_DAG = 1, | |
445 | LINK_WALK_FULL_DAG_UNLOCKED = 2, | |
446 | }; | |
447 | ||
448 | typedef int (*wql_callback_func)(struct waitq *waitq, void *ctx, | |
449 | struct waitq_link *link); | |
450 | ||
451 | /** | |
452 | * walk_waitq_links: walk all table elements (of type 'link_type') pointed to by 'setid' | |
453 | * | |
454 | * Conditions: | |
455 | * waitq is locked (or NULL) | |
456 | * 'setid' is managed by 'waitq' | |
457 | * this could be direct (waitq->waitq_set_id == setid) | |
458 | * OR indirect (setid is the left/right ID in a LINK chain, | |
459 | * whose root is waitq->waitq_set_id) | |
460 | * | |
461 | * Notes: | |
462 | * This function uses recursion to walk the set of table elements | |
463 | * pointed to by 'setid'. For each element encountered, 'cb' will be | |
464 | * called. If non-zero, the return value of this callback function can | |
465 | * early-out of the table walk. | |
466 | * | |
467 | * For each link element encountered, the function takes a reference to | |
468 | * it. The reference is dropped only after the callback and any recursion | |
469 | * has completed. | |
470 | * | |
471 | * The assumed table/link/tree structure: | |
472 | * 'setid' | |
473 | * / \ | |
474 | * / \ | |
475 | * L(LINK) R(LINK) | |
476 | * /\ /\ | |
477 | * / \ / \ | |
478 | * / \ Rl(*) Rr(*) | |
479 | * Ll(*) Lr(*) /\ /\ | |
480 | * /\ /\ ... ... ... ... | |
481 | * ... ... ... ... | |
482 | * \ | |
483 | * WQS(wqset_q.waitq_setid == Sx) | |
484 | * [waitq set is a membet of setid, 'Sx') | |
485 | * | |
486 | * 'Sx' | |
487 | * / \ | |
488 | * / \ | |
489 | * L(LINK) R(LINK) | |
490 | * /\ /\ | |
491 | * ... ... ... ... | |
492 | * | |
493 | * The basic algorithm is as follows: | |
494 | * *) take a reference to the table object pointed to by 'setid' | |
495 | * *) if appropriate, call 'cb' (potentially early-out on non-zero return) | |
496 | * *) if the link object points to a waitq set, and the walk type | |
497 | * is 'FULL_DAG' (full directed-acyclic-graph), then try to lock | |
498 | * the associated waitq set object and recursively walk all sets to | |
499 | * which that set belongs. This is a DFS of the tree structure. | |
500 | * *) recurse down the left side of the tree (following the | |
501 | * 'left_setid' pointer in the link object | |
502 | * *) recurse down the right side of the tree (following the | |
503 | * 'right_setid' pointer in the link object | |
504 | */ | |
505 | static __attribute__((noinline)) | |
506 | int | |
507 | walk_waitq_links(int walk_type, struct waitq *waitq, | |
508 | uint64_t setid, int link_type, | |
509 | void *ctx, wql_callback_func cb) | |
510 | { | |
511 | struct waitq_link *link; | |
512 | uint64_t nextid; | |
513 | int wqltype; | |
514 | ||
515 | link = wql_get_link(setid); | |
516 | ||
517 | /* invalid link */ | |
518 | if (!link) { | |
519 | return WQ_ITERATE_CONTINUE; | |
520 | } | |
521 | ||
522 | setid = nextid = 0; | |
523 | wqltype = wql_type(link); | |
524 | if (wqltype == WQL_LINK) { | |
525 | setid = link->wql_link.left_setid; | |
526 | nextid = link->wql_link.right_setid; | |
527 | } | |
528 | ||
529 | /* | |
530 | * Make the callback only on specified link_type (or all links) | |
531 | * Note that after the callback, the link object may be | |
532 | * invalid. The only valid thing we can do is put our | |
533 | * reference to it (which may put it back on the free list) | |
534 | */ | |
535 | if (link_type == WQL_ALL || link_type == wqltype) { | |
536 | /* allow the callback to early-out */ | |
537 | int ret = cb(waitq, ctx, link); | |
538 | if (ret != WQ_ITERATE_CONTINUE) { | |
539 | wql_put_link(link); | |
540 | return ret; | |
541 | } | |
542 | } | |
543 | ||
544 | if (wqltype == WQL_WQS && | |
545 | (walk_type == LINK_WALK_FULL_DAG || | |
546 | walk_type == LINK_WALK_FULL_DAG_UNLOCKED)) { | |
547 | /* | |
548 | * Recurse down any sets to which this wait queue set was | |
549 | * added. We do this just before we put our reference to | |
550 | * the link object (which may free it). | |
551 | */ | |
552 | struct waitq_set *wqset = link->wql_wqs.wql_set; | |
553 | int ret = WQ_ITERATE_CONTINUE; | |
554 | int should_unlock = 0; | |
555 | uint64_t wqset_setid = 0; | |
556 | ||
557 | if (waitq_set_is_valid(wqset) && walk_type == LINK_WALK_FULL_DAG) { | |
558 | assert(!waitq_irq_safe(&wqset->wqset_q)); | |
559 | waitq_set_lock(wqset); | |
560 | should_unlock = 1; | |
561 | } | |
562 | ||
563 | /* | |
564 | * verify the linked waitq set as it could have been | |
565 | * invalidated before we grabbed the lock! | |
566 | */ | |
567 | if (wqset->wqset_id != link->wql_setid.id) { | |
568 | /* This is the bottom of the tree: just get out */ | |
569 | if (should_unlock) { | |
570 | waitq_set_unlock(wqset); | |
571 | } | |
572 | wql_put_link(link); | |
573 | return WQ_ITERATE_CONTINUE; | |
574 | } | |
575 | ||
576 | wqset_setid = wqset->wqset_q.waitq_set_id; | |
577 | ||
578 | if (wqset_setid > 0) { | |
579 | ret = walk_waitq_links(walk_type, &wqset->wqset_q, | |
580 | wqset_setid, link_type, ctx, cb); | |
581 | } | |
582 | if (should_unlock) { | |
583 | waitq_set_unlock(wqset); | |
584 | } | |
585 | if (ret != WQ_ITERATE_CONTINUE) { | |
586 | wql_put_link(link); | |
587 | return ret; | |
588 | } | |
589 | } | |
590 | ||
591 | wql_put_link(link); | |
592 | ||
593 | /* recurse down left side of the tree */ | |
594 | if (setid) { | |
595 | int ret = walk_waitq_links(walk_type, waitq, setid, link_type, ctx, cb); | |
596 | if (ret != WQ_ITERATE_CONTINUE) { | |
597 | return ret; | |
598 | } | |
599 | } | |
600 | ||
601 | /* recurse down right side of the tree */ | |
602 | if (nextid) { | |
603 | return walk_waitq_links(walk_type, waitq, nextid, link_type, ctx, cb); | |
604 | } | |
605 | ||
606 | return WQ_ITERATE_CONTINUE; | |
607 | } | |
608 | ||
609 | /* ---------------------------------------------------------------------- | |
610 | * | |
611 | * Prepost Link Table Implementation | |
612 | * | |
613 | * ---------------------------------------------------------------------- */ | |
614 | static struct link_table g_prepost_table; | |
615 | ||
616 | enum wq_prepost_type { | |
617 | WQP_FREE = LT_FREE, | |
618 | WQP_WQ = LT_ELEM, | |
619 | WQP_POST = LT_LINK, | |
620 | }; | |
621 | ||
622 | struct wq_prepost { | |
623 | struct lt_elem wqte; | |
624 | ||
625 | union { | |
626 | /* wqt_type == WQP_WQ (LT_ELEM) */ | |
627 | struct { | |
628 | struct waitq *wqp_wq_ptr; | |
629 | } wqp_wq; | |
630 | /* wqt_type == WQP_POST (LT_LINK) */ | |
631 | struct { | |
632 | uint64_t wqp_next_id; | |
633 | uint64_t wqp_wq_id; | |
634 | } wqp_post; | |
635 | }; | |
636 | #ifdef KEEP_WAITQ_PREPOST_STATS | |
637 | thread_t wqp_alloc_th; | |
638 | task_t wqp_alloc_task; | |
639 | uintptr_t wqp_alloc_bt[NWAITQ_BTFRAMES]; | |
640 | #endif | |
641 | }; | |
642 | #if !defined(KEEP_WAITQ_PREPOST_STATS) | |
643 | static_assert((sizeof(struct wq_prepost) & (sizeof(struct wq_prepost) - 1)) == 0, | |
644 | "wq_prepost struct must be a power of two!"); | |
645 | #endif | |
646 | ||
647 | #define wqp_refcnt(wqp) \ | |
648 | (lt_bits_refcnt((wqp)->wqte.lt_bits)) | |
649 | ||
650 | #define wqp_type(wqp) \ | |
651 | (lt_bits_type((wqp)->wqte.lt_bits)) | |
652 | ||
653 | #define wqp_set_valid(wqp) \ | |
654 | lt_elem_mkvalid(&(wqp)->wqte) | |
655 | ||
656 | #define wqp_is_valid(wqp) \ | |
657 | lt_bits_valid((wqp)->wqte.lt_bits) | |
658 | ||
659 | #define wqp_prepostid wqte.lt_id | |
660 | ||
661 | #define WQP_WQ_POISON (0x0bad0badffffffffull) | |
662 | #define WQP_POST_POISON (0xf00df00df00df00d) | |
663 | ||
664 | static void | |
665 | wqp_poison(struct link_table *table, struct lt_elem *elem) | |
666 | { | |
667 | struct wq_prepost *wqp = (struct wq_prepost *)elem; | |
668 | (void)table; | |
669 | ||
670 | switch (wqp_type(wqp)) { | |
671 | case WQP_WQ: | |
672 | break; | |
673 | case WQP_POST: | |
674 | wqp->wqp_post.wqp_next_id = WQP_POST_POISON; | |
675 | wqp->wqp_post.wqp_wq_id = WQP_POST_POISON; | |
676 | break; | |
677 | default: | |
678 | break; | |
679 | } | |
680 | } | |
681 | ||
682 | #ifdef KEEP_WAITQ_PREPOST_STATS | |
683 | static __inline__ void | |
684 | wqp_do_alloc_stats(struct lt_elem *elem) | |
685 | { | |
686 | if (!elem) { | |
687 | return; | |
688 | } | |
689 | ||
690 | struct wq_prepost *wqp = (struct wq_prepost *)elem; | |
691 | uintptr_t alloc_bt[sizeof(wqp->wqp_alloc_bt)]; | |
692 | ||
693 | waitq_grab_backtrace(alloc_bt, NWAITQ_BTFRAMES); | |
694 | ||
695 | /* be sure the take stats for _all_ allocated objects */ | |
696 | for (;;) { | |
697 | memcpy(wqp->wqp_alloc_bt, alloc_bt, sizeof(alloc_bt)); | |
698 | wqp->wqp_alloc_th = current_thread(); | |
699 | wqp->wqp_alloc_task = current_task(); | |
700 | wqp = (struct wq_prepost *)lt_elem_list_next(&g_prepost_table, &wqp->wqte); | |
701 | if (!wqp) { | |
702 | break; | |
703 | } | |
704 | } | |
705 | } | |
706 | #else | |
707 | #define wqp_do_alloc_stats(e) | |
708 | #endif /* KEEP_WAITQ_LINK_STATS */ | |
709 | ||
710 | static void | |
711 | wqp_init(void) | |
712 | { | |
713 | uint32_t tablesz = 0, max_wqp = 0; | |
714 | ||
715 | if (PE_parse_boot_argn("wqp_tsize", &tablesz, sizeof(tablesz)) != TRUE) { | |
716 | tablesz = (uint32_t)g_lt_max_tbl_size; | |
717 | } | |
718 | ||
719 | tablesz = P2ROUNDUP(tablesz, PAGE_SIZE); | |
720 | max_wqp = tablesz / sizeof(struct wq_prepost); | |
721 | assert(max_wqp > 0 && tablesz > 0); | |
722 | ||
723 | /* we have a restricted index range */ | |
724 | if (max_wqp > (LT_IDX_MAX + 1)) { | |
725 | max_wqp = LT_IDX_MAX + 1; | |
726 | } | |
727 | ||
728 | wqinfo("init prepost table with max:%d elements (%d bytes)", | |
729 | max_wqp, tablesz); | |
730 | ltable_init(&g_prepost_table, "wqslab.prepost", max_wqp, | |
731 | sizeof(struct wq_prepost), wqp_poison); | |
732 | } | |
733 | ||
734 | /* | |
735 | * Refill the per-CPU cache. | |
736 | */ | |
737 | static void | |
738 | wq_prepost_refill_cpu_cache(uint32_t nalloc) | |
739 | { | |
740 | struct lt_elem *new_head, *old_head; | |
741 | struct wqp_cache *cache; | |
742 | ||
743 | /* require preemption enabled to allocate elements */ | |
744 | if (get_preemption_level() != 0) { | |
745 | return; | |
746 | } | |
747 | ||
748 | new_head = ltable_alloc_elem(&g_prepost_table, | |
749 | LT_RESERVED, nalloc, 1); | |
750 | if (new_head == NULL) { | |
751 | return; | |
752 | } | |
753 | ||
754 | disable_preemption(); | |
755 | cache = PERCPU_GET(wqp_cache); | |
756 | ||
757 | /* check once more before putting these elements on the list */ | |
758 | if (cache->avail >= WQP_CACHE_MAX) { | |
759 | lt_elem_list_release(&g_prepost_table, new_head, LT_RESERVED); | |
760 | enable_preemption(); | |
761 | return; | |
762 | } | |
763 | ||
764 | cache->avail += nalloc; | |
765 | if (cache->head == 0 || cache->head == LT_IDX_MAX) { | |
766 | cache->head = new_head->lt_id.id; | |
767 | goto out; | |
768 | } | |
769 | ||
770 | old_head = lt_elem_list_first(&g_prepost_table, cache->head); | |
771 | (void)lt_elem_list_link(&g_prepost_table, new_head, old_head); | |
772 | cache->head = new_head->lt_id.id; | |
773 | ||
774 | out: | |
775 | enable_preemption(); | |
776 | return; | |
777 | } | |
778 | ||
779 | static void | |
780 | wq_prepost_ensure_free_space(void) | |
781 | { | |
782 | uint32_t free_elem; | |
783 | uint32_t min_free; | |
784 | struct wqp_cache *cache; | |
785 | ||
786 | if (g_min_free_cache == 0) { | |
787 | g_min_free_cache = (WQP_CACHE_MAX * ml_wait_max_cpus()); | |
788 | } | |
789 | ||
790 | /* | |
791 | * Ensure that we always have a pool of per-CPU prepost elements | |
792 | */ | |
793 | disable_preemption(); | |
794 | cache = PERCPU_GET(wqp_cache); | |
795 | free_elem = cache->avail; | |
796 | enable_preemption(); | |
797 | ||
798 | if (free_elem < (WQP_CACHE_MAX / 3)) { | |
799 | wq_prepost_refill_cpu_cache(WQP_CACHE_MAX - free_elem); | |
800 | } | |
801 | ||
802 | /* | |
803 | * Now ensure that we have a sufficient amount of free table space | |
804 | */ | |
805 | free_elem = g_prepost_table.nelem - g_prepost_table.used_elem; | |
806 | min_free = g_min_free_table_elem + g_min_free_cache; | |
807 | if (free_elem < min_free) { | |
808 | /* | |
809 | * we don't hold locks on these values, so check for underflow | |
810 | */ | |
811 | if (g_prepost_table.used_elem <= g_prepost_table.nelem) { | |
812 | wqdbg_v("Forcing table growth: nelem=%d, used=%d, min_free=%d+%d", | |
813 | g_prepost_table.nelem, g_prepost_table.used_elem, | |
814 | g_min_free_table_elem, g_min_free_cache); | |
815 | ltable_grow(&g_prepost_table, min_free); | |
816 | } | |
817 | } | |
818 | } | |
819 | ||
820 | static struct wq_prepost * | |
821 | wq_prepost_alloc(int type, int nelem) | |
822 | { | |
823 | struct lt_elem *elem; | |
824 | struct wq_prepost *wqp; | |
825 | struct wqp_cache *cache; | |
826 | ||
827 | if (type != LT_RESERVED) { | |
828 | goto do_alloc; | |
829 | } | |
830 | if (nelem == 0) { | |
831 | return NULL; | |
832 | } | |
833 | ||
834 | /* | |
835 | * First try to grab the elements from the per-CPU cache if we are | |
836 | * allocating RESERVED elements | |
837 | */ | |
838 | disable_preemption(); | |
839 | cache = PERCPU_GET(wqp_cache); | |
840 | if (nelem <= (int)cache->avail) { | |
841 | struct lt_elem *first, *next = NULL; | |
842 | int nalloc = nelem; | |
843 | ||
844 | cache->avail -= nelem; | |
845 | ||
846 | /* grab the first element */ | |
847 | first = lt_elem_list_first(&g_prepost_table, cache->head); | |
848 | ||
849 | /* find the last element and re-adjust the cache head */ | |
850 | for (elem = first; elem != NULL && nalloc > 0; elem = next) { | |
851 | next = lt_elem_list_next(&g_prepost_table, elem); | |
852 | if (--nalloc == 0) { | |
853 | /* terminate the allocated list */ | |
854 | elem->lt_next_idx = LT_IDX_MAX; | |
855 | break; | |
856 | } | |
857 | } | |
858 | assert(nalloc == 0); | |
859 | if (!next) { | |
860 | cache->head = LT_IDX_MAX; | |
861 | } else { | |
862 | cache->head = next->lt_id.id; | |
863 | } | |
864 | /* assert that we don't have mis-matched book keeping */ | |
865 | assert(!(cache->head == LT_IDX_MAX && cache->avail > 0)); | |
866 | enable_preemption(); | |
867 | elem = first; | |
868 | goto out; | |
869 | } | |
870 | enable_preemption(); | |
871 | ||
872 | do_alloc: | |
873 | /* fall-back to standard table allocation */ | |
874 | elem = ltable_alloc_elem(&g_prepost_table, type, nelem, 0); | |
875 | if (!elem) { | |
876 | return NULL; | |
877 | } | |
878 | ||
879 | out: | |
880 | wqp = (struct wq_prepost *)elem; | |
881 | wqp_do_alloc_stats(elem); | |
882 | return wqp; | |
883 | } | |
884 | ||
885 | static void | |
886 | wq_prepost_invalidate(struct wq_prepost *wqp) | |
887 | { | |
888 | lt_elem_invalidate(&wqp->wqte); | |
889 | } | |
890 | ||
891 | static struct wq_prepost * | |
892 | wq_prepost_get(uint64_t wqp_id) | |
893 | { | |
894 | struct lt_elem *elem; | |
895 | ||
896 | elem = ltable_get_elem(&g_prepost_table, wqp_id); | |
897 | return (struct wq_prepost *)elem; | |
898 | } | |
899 | ||
900 | static void | |
901 | wq_prepost_put(struct wq_prepost *wqp) | |
902 | { | |
903 | ltable_put_elem(&g_prepost_table, (struct lt_elem *)wqp); | |
904 | } | |
905 | ||
906 | static int | |
907 | wq_prepost_rlink(struct wq_prepost *parent, struct wq_prepost *child) | |
908 | { | |
909 | return lt_elem_list_link(&g_prepost_table, &parent->wqte, &child->wqte); | |
910 | } | |
911 | ||
912 | static struct wq_prepost * | |
913 | wq_prepost_get_rnext(struct wq_prepost *head) | |
914 | { | |
915 | struct lt_elem *elem; | |
916 | struct wq_prepost *wqp; | |
917 | uint64_t id; | |
918 | ||
919 | elem = lt_elem_list_next(&g_prepost_table, &head->wqte); | |
920 | if (!elem) { | |
921 | return NULL; | |
922 | } | |
923 | id = elem->lt_id.id; | |
924 | elem = ltable_get_elem(&g_prepost_table, id); | |
925 | ||
926 | if (!elem) { | |
927 | return NULL; | |
928 | } | |
929 | wqp = (struct wq_prepost *)elem; | |
930 | if (elem->lt_id.id != id || | |
931 | wqp_type(wqp) != WQP_POST || | |
932 | wqp->wqp_post.wqp_next_id != head->wqp_prepostid.id) { | |
933 | ltable_put_elem(&g_prepost_table, elem); | |
934 | return NULL; | |
935 | } | |
936 | ||
937 | return wqp; | |
938 | } | |
939 | ||
940 | static void | |
941 | wq_prepost_reset_rnext(struct wq_prepost *wqp) | |
942 | { | |
943 | (void)lt_elem_list_break(&g_prepost_table, &wqp->wqte); | |
944 | } | |
945 | ||
946 | ||
947 | /** | |
948 | * remove 'wqp' from the prepost list on 'wqset' | |
949 | * | |
950 | * Conditions: | |
951 | * wqset is locked | |
952 | * caller holds a reference on wqp (and is responsible to release it) | |
953 | * | |
954 | * Result: | |
955 | * wqp is invalidated, wqset is potentially updated with a new | |
956 | * prepost ID, and the next element of the prepost list may be | |
957 | * consumed as well (if the list contained only 2 objects) | |
958 | */ | |
959 | static int | |
960 | wq_prepost_remove(struct waitq_set *wqset, | |
961 | struct wq_prepost *wqp) | |
962 | { | |
963 | int more_posts = 1; | |
964 | uint64_t next_id = wqp->wqp_post.wqp_next_id; | |
965 | uint64_t wqp_id = wqp->wqp_prepostid.id; | |
966 | struct wq_prepost *prev_wqp, *next_wqp; | |
967 | ||
968 | assert(wqp_type(wqp) == WQP_POST); | |
969 | assert(wqset->wqset_q.waitq_prepost == 1); | |
970 | ||
971 | if (next_id == wqp_id) { | |
972 | /* the list is singular and becoming empty */ | |
973 | wqset->wqset_prepost_id = 0; | |
974 | more_posts = 0; | |
975 | goto out; | |
976 | } | |
977 | ||
978 | prev_wqp = wq_prepost_get_rnext(wqp); | |
979 | assert(prev_wqp != NULL); | |
980 | assert(prev_wqp->wqp_post.wqp_next_id == wqp_id); | |
981 | assert(prev_wqp->wqp_prepostid.id != wqp_id); | |
982 | assert(wqp_type(prev_wqp) == WQP_POST); | |
983 | ||
984 | if (prev_wqp->wqp_prepostid.id == next_id) { | |
985 | /* | |
986 | * There are two items in the list, and we're removing one. We | |
987 | * only need to keep the WQP_WQ pointer from 'prev_wqp' | |
988 | */ | |
989 | wqset->wqset_prepost_id = prev_wqp->wqp_post.wqp_wq_id; | |
990 | wq_prepost_invalidate(prev_wqp); | |
991 | wq_prepost_put(prev_wqp); | |
992 | more_posts = 0; | |
993 | goto out; | |
994 | } | |
995 | ||
996 | /* prev->next = next */ | |
997 | prev_wqp->wqp_post.wqp_next_id = next_id; | |
998 | ||
999 | /* next->prev = prev */ | |
1000 | next_wqp = wq_prepost_get(next_id); | |
1001 | assert(next_wqp != NULL); | |
1002 | assert(next_wqp != wqp); | |
1003 | assert(next_wqp != prev_wqp); | |
1004 | assert(wqp_type(next_wqp) == WQP_POST); | |
1005 | ||
1006 | wq_prepost_reset_rnext(next_wqp); | |
1007 | wq_prepost_rlink(next_wqp, prev_wqp); | |
1008 | ||
1009 | /* If we remove the head of the list, update the wqset */ | |
1010 | if (wqp_id == wqset->wqset_prepost_id) { | |
1011 | wqset->wqset_prepost_id = next_id; | |
1012 | } | |
1013 | ||
1014 | wq_prepost_put(prev_wqp); | |
1015 | wq_prepost_put(next_wqp); | |
1016 | ||
1017 | out: | |
1018 | wq_prepost_reset_rnext(wqp); | |
1019 | wq_prepost_invalidate(wqp); | |
1020 | return more_posts; | |
1021 | } | |
1022 | ||
1023 | static struct wq_prepost * | |
1024 | wq_prepost_rfirst(uint64_t id) | |
1025 | { | |
1026 | struct lt_elem *elem; | |
1027 | elem = lt_elem_list_first(&g_prepost_table, id); | |
1028 | wqp_do_alloc_stats(elem); | |
1029 | return (struct wq_prepost *)(void *)elem; | |
1030 | } | |
1031 | ||
1032 | static struct wq_prepost * | |
1033 | wq_prepost_rpop(uint64_t *id, int type) | |
1034 | { | |
1035 | struct lt_elem *elem; | |
1036 | elem = lt_elem_list_pop(&g_prepost_table, id, type); | |
1037 | wqp_do_alloc_stats(elem); | |
1038 | return (struct wq_prepost *)(void *)elem; | |
1039 | } | |
1040 | ||
1041 | static void | |
1042 | wq_prepost_release_rlist(struct wq_prepost *wqp) | |
1043 | { | |
1044 | int nelem = 0; | |
1045 | struct wqp_cache *cache; | |
1046 | struct lt_elem *elem; | |
1047 | ||
1048 | if (!wqp) { | |
1049 | return; | |
1050 | } | |
1051 | ||
1052 | elem = &wqp->wqte; | |
1053 | ||
1054 | /* | |
1055 | * These are reserved elements: release them back to the per-cpu pool | |
1056 | * if our cache is running low. | |
1057 | */ | |
1058 | disable_preemption(); | |
1059 | cache = PERCPU_GET(wqp_cache); | |
1060 | if (cache->avail < WQP_CACHE_MAX) { | |
1061 | struct lt_elem *tmp = NULL; | |
1062 | if (cache->head != LT_IDX_MAX) { | |
1063 | tmp = lt_elem_list_first(&g_prepost_table, cache->head); | |
1064 | } | |
1065 | nelem = lt_elem_list_link(&g_prepost_table, elem, tmp); | |
1066 | cache->head = elem->lt_id.id; | |
1067 | cache->avail += nelem; | |
1068 | enable_preemption(); | |
1069 | return; | |
1070 | } | |
1071 | enable_preemption(); | |
1072 | ||
1073 | /* release these elements back to the main table */ | |
1074 | nelem = lt_elem_list_release(&g_prepost_table, elem, LT_RESERVED); | |
1075 | ||
1076 | #if CONFIG_WAITQ_STATS | |
1077 | g_prepost_table.nreserved_releases += 1; | |
1078 | OSDecrementAtomic64(&g_prepost_table.nreservations); | |
1079 | #endif | |
1080 | } | |
1081 | ||
1082 | typedef int (*wqp_callback_func)(struct waitq_set *wqset, | |
1083 | void *ctx, | |
1084 | struct wq_prepost *wqp, | |
1085 | struct waitq *waitq); | |
1086 | ||
1087 | /** | |
1088 | * iterate over a chain of preposts associated with a waitq set. | |
1089 | * | |
1090 | * Conditions: | |
1091 | * wqset is locked | |
1092 | * | |
1093 | * Notes: | |
1094 | * This loop performs automatic prepost chain management / culling, and | |
1095 | * may reset or adjust the waitq set's prepost ID pointer. If you don't | |
1096 | * want this extra processing, you can use wq_prepost_iterate(). | |
1097 | */ | |
1098 | static int | |
1099 | wq_prepost_foreach_locked(struct waitq_set *wqset, | |
1100 | void *ctx, wqp_callback_func cb) | |
1101 | { | |
1102 | int ret = WQ_ITERATE_SUCCESS; | |
1103 | struct wq_prepost *wqp, *tmp_wqp; | |
1104 | ||
1105 | assert(cb != NULL); | |
1106 | ||
1107 | if (!wqset || !waitq_set_maybe_preposted(wqset)) { | |
1108 | return WQ_ITERATE_SUCCESS; | |
1109 | } | |
1110 | ||
1111 | restart: | |
1112 | wqp = wq_prepost_get(wqset->wqset_prepost_id); | |
1113 | if (!wqp) { | |
1114 | /* | |
1115 | * The prepost object is no longer valid, reset the waitq | |
1116 | * set's prepost id. | |
1117 | */ | |
1118 | wqset->wqset_prepost_id = 0; | |
1119 | return WQ_ITERATE_SUCCESS; | |
1120 | } | |
1121 | ||
1122 | if (wqp_type(wqp) == WQP_WQ) { | |
1123 | uint64_t __assert_only wqp_id = wqp->wqp_prepostid.id; | |
1124 | ||
1125 | ret = cb(wqset, ctx, wqp, wqp->wqp_wq.wqp_wq_ptr); | |
1126 | ||
1127 | switch (ret) { | |
1128 | case WQ_ITERATE_INVALIDATE_CONTINUE: | |
1129 | /* the caller wants to remove the only prepost here */ | |
1130 | assert(wqp_id == wqset->wqset_prepost_id); | |
1131 | wqset->wqset_prepost_id = 0; | |
1132 | OS_FALLTHROUGH; | |
1133 | case WQ_ITERATE_CONTINUE: | |
1134 | wq_prepost_put(wqp); | |
1135 | ret = WQ_ITERATE_SUCCESS; | |
1136 | break; | |
1137 | case WQ_ITERATE_RESTART: | |
1138 | wq_prepost_put(wqp); | |
1139 | OS_FALLTHROUGH; | |
1140 | case WQ_ITERATE_DROPPED: | |
1141 | goto restart; | |
1142 | default: | |
1143 | wq_prepost_put(wqp); | |
1144 | break; | |
1145 | } | |
1146 | return ret; | |
1147 | } | |
1148 | ||
1149 | assert(wqp->wqp_prepostid.id == wqset->wqset_prepost_id); | |
1150 | assert(wqp_type(wqp) == WQP_POST); | |
1151 | ||
1152 | /* | |
1153 | * At this point we know we have a list of POST objects. | |
1154 | * Grab a handle to the last element in the list and start | |
1155 | * the iteration. | |
1156 | */ | |
1157 | tmp_wqp = wq_prepost_get_rnext(wqp); | |
1158 | assert(tmp_wqp != NULL && wqp_type(tmp_wqp) == WQP_POST); | |
1159 | ||
1160 | uint64_t last_id = tmp_wqp->wqp_prepostid.id; | |
1161 | wq_prepost_put(tmp_wqp); | |
1162 | ||
1163 | ret = WQ_ITERATE_SUCCESS; | |
1164 | for (;;) { | |
1165 | uint64_t wqp_id, first_id, next_id; | |
1166 | ||
1167 | wqp_id = wqp->wqp_prepostid.id; | |
1168 | first_id = wqset->wqset_prepost_id; | |
1169 | next_id = wqp->wqp_post.wqp_next_id; | |
1170 | ||
1171 | /* grab the WQP_WQ object this _POST points to */ | |
1172 | tmp_wqp = wq_prepost_get(wqp->wqp_post.wqp_wq_id); | |
1173 | if (!tmp_wqp) { | |
1174 | /* | |
1175 | * This WQP_POST object points to an invalid | |
1176 | * WQP_WQ object - remove the POST object from | |
1177 | * the list. | |
1178 | */ | |
1179 | if (wq_prepost_remove(wqset, wqp) == 0) { | |
1180 | wq_prepost_put(wqp); | |
1181 | goto restart; | |
1182 | } | |
1183 | goto next_prepost; | |
1184 | } | |
1185 | assert(wqp_type(tmp_wqp) == WQP_WQ); | |
1186 | /* | |
1187 | * make the callback: note that this could remove 'wqp' or | |
1188 | * drop the lock on our waitq set. We need to re-validate | |
1189 | * our state when this function returns. | |
1190 | */ | |
1191 | ret = cb(wqset, ctx, wqp, tmp_wqp->wqp_wq.wqp_wq_ptr); | |
1192 | wq_prepost_put(tmp_wqp); | |
1193 | ||
1194 | switch (ret) { | |
1195 | case WQ_ITERATE_CONTINUE: | |
1196 | /* continue iteration */ | |
1197 | break; | |
1198 | case WQ_ITERATE_INVALIDATE_CONTINUE: | |
1199 | assert(next_id == wqp->wqp_post.wqp_next_id); | |
1200 | if (wq_prepost_remove(wqset, wqp) == 0) { | |
1201 | wq_prepost_put(wqp); | |
1202 | goto restart; | |
1203 | } | |
1204 | goto next_prepost; | |
1205 | case WQ_ITERATE_RESTART: | |
1206 | wq_prepost_put(wqp); | |
1207 | OS_FALLTHROUGH; | |
1208 | case WQ_ITERATE_DROPPED: | |
1209 | /* the callback dropped the ref to wqp: just restart */ | |
1210 | goto restart; | |
1211 | default: | |
1212 | /* break out of the iteration for some other reason */ | |
1213 | goto finish_prepost_foreach; | |
1214 | } | |
1215 | ||
1216 | /* | |
1217 | * the set lock may have been dropped during callback, | |
1218 | * if something looks different, restart the prepost iteration | |
1219 | */ | |
1220 | if (!wqp_is_valid(wqp) || | |
1221 | (wqp->wqp_post.wqp_next_id != next_id) || | |
1222 | wqset->wqset_prepost_id != first_id) { | |
1223 | wq_prepost_put(wqp); | |
1224 | goto restart; | |
1225 | } | |
1226 | ||
1227 | next_prepost: | |
1228 | /* this was the last object in the list */ | |
1229 | if (wqp_id == last_id) { | |
1230 | break; | |
1231 | } | |
1232 | ||
1233 | /* get the next object */ | |
1234 | tmp_wqp = wq_prepost_get(next_id); | |
1235 | if (!tmp_wqp) { | |
1236 | /* | |
1237 | * At this point we've already checked our state | |
1238 | * after the callback (which may have dropped the set | |
1239 | * lock). If we find an invalid member of the list | |
1240 | * then something is wrong. | |
1241 | */ | |
1242 | panic("Invalid WQP_POST member 0x%llx in waitq set " | |
1243 | "0x%llx prepost list (first:%llx, " | |
1244 | "wqp:%p)", | |
1245 | next_id, wqset->wqset_id, first_id, wqp); | |
1246 | } | |
1247 | wq_prepost_put(wqp); | |
1248 | wqp = tmp_wqp; | |
1249 | ||
1250 | assert(wqp_type(wqp) == WQP_POST); | |
1251 | } | |
1252 | ||
1253 | finish_prepost_foreach: | |
1254 | wq_prepost_put(wqp); | |
1255 | if (ret == WQ_ITERATE_CONTINUE) { | |
1256 | ret = WQ_ITERATE_SUCCESS; | |
1257 | } | |
1258 | ||
1259 | return ret; | |
1260 | } | |
1261 | ||
1262 | /** | |
1263 | * Perform a simple loop over a chain of prepost objects | |
1264 | * | |
1265 | * Conditions: | |
1266 | * If 'prepost_id' is associated with a waitq (set) then that object must | |
1267 | * be locked before calling this function. | |
1268 | * Callback function, 'cb', must be able to handle a NULL wqset pointer | |
1269 | * and a NULL waitq pointer! | |
1270 | * | |
1271 | * Notes: | |
1272 | * This prepost chain iteration will _not_ automatically adjust any chain | |
1273 | * element or linkage. This is the responsibility of the caller! If you | |
1274 | * want automatic prepost chain management (at a cost of extra CPU time), | |
1275 | * you can use: wq_prepost_foreach_locked(). | |
1276 | */ | |
1277 | static int | |
1278 | wq_prepost_iterate(uint64_t prepost_id, | |
1279 | void *ctx, wqp_callback_func cb) | |
1280 | { | |
1281 | int ret; | |
1282 | struct wq_prepost *wqp; | |
1283 | ||
1284 | if (!prepost_id) { | |
1285 | return WQ_ITERATE_SUCCESS; | |
1286 | } | |
1287 | ||
1288 | wqp = wq_prepost_get(prepost_id); | |
1289 | if (!wqp) { | |
1290 | return WQ_ITERATE_SUCCESS; | |
1291 | } | |
1292 | ||
1293 | if (wqp_type(wqp) == WQP_WQ) { | |
1294 | ret = WQ_ITERATE_SUCCESS; | |
1295 | if (cb) { | |
1296 | ret = cb(NULL, ctx, wqp, wqp->wqp_wq.wqp_wq_ptr); | |
1297 | } | |
1298 | ||
1299 | if (ret != WQ_ITERATE_DROPPED) { | |
1300 | wq_prepost_put(wqp); | |
1301 | } | |
1302 | return ret; | |
1303 | } | |
1304 | ||
1305 | assert(wqp->wqp_prepostid.id == prepost_id); | |
1306 | assert(wqp_type(wqp) == WQP_POST); | |
1307 | ||
1308 | /* at this point we know we have a list of POST objects */ | |
1309 | uint64_t next_id; | |
1310 | ||
1311 | ret = WQ_ITERATE_CONTINUE; | |
1312 | do { | |
1313 | struct wq_prepost *tmp_wqp; | |
1314 | struct waitq *wq = NULL; | |
1315 | ||
1316 | next_id = wqp->wqp_post.wqp_next_id; | |
1317 | ||
1318 | /* grab the WQP_WQ object this _POST points to */ | |
1319 | tmp_wqp = wq_prepost_get(wqp->wqp_post.wqp_wq_id); | |
1320 | if (tmp_wqp) { | |
1321 | assert(wqp_type(tmp_wqp) == WQP_WQ); | |
1322 | wq = tmp_wqp->wqp_wq.wqp_wq_ptr; | |
1323 | } | |
1324 | ||
1325 | if (cb) { | |
1326 | ret = cb(NULL, ctx, wqp, wq); | |
1327 | } | |
1328 | if (tmp_wqp) { | |
1329 | wq_prepost_put(tmp_wqp); | |
1330 | } | |
1331 | ||
1332 | if (ret != WQ_ITERATE_CONTINUE) { | |
1333 | break; | |
1334 | } | |
1335 | ||
1336 | tmp_wqp = wq_prepost_get(next_id); | |
1337 | if (!tmp_wqp) { | |
1338 | /* | |
1339 | * the chain is broken: nothing we can do here besides | |
1340 | * bail from the iteration. | |
1341 | */ | |
1342 | ret = WQ_ITERATE_ABORTED; | |
1343 | break; | |
1344 | } | |
1345 | ||
1346 | wq_prepost_put(wqp); | |
1347 | wqp = tmp_wqp; | |
1348 | ||
1349 | assert(wqp_type(wqp) == WQP_POST); | |
1350 | } while (next_id != prepost_id); | |
1351 | ||
1352 | if (ret != WQ_ITERATE_DROPPED) { | |
1353 | wq_prepost_put(wqp); | |
1354 | } | |
1355 | ||
1356 | if (ret == WQ_ITERATE_CONTINUE) { | |
1357 | ret = WQ_ITERATE_SUCCESS; | |
1358 | } | |
1359 | return ret; | |
1360 | } | |
1361 | ||
1362 | ||
1363 | struct _is_posted_ctx { | |
1364 | struct waitq *posting_wq; | |
1365 | int did_prepost; | |
1366 | }; | |
1367 | ||
1368 | static int | |
1369 | wq_is_preposted_on_set_cb(struct waitq_set *wqset, void *ctx, | |
1370 | struct wq_prepost *wqp, struct waitq *waitq) | |
1371 | { | |
1372 | struct _is_posted_ctx *pctx = (struct _is_posted_ctx *)ctx; | |
1373 | ||
1374 | (void)wqset; | |
1375 | (void)wqp; | |
1376 | ||
1377 | /* | |
1378 | * Don't early-out, run through the _entire_ list: | |
1379 | * This ensures that we retain a minimum number of invalid elements. | |
1380 | */ | |
1381 | if (pctx->posting_wq == waitq) { | |
1382 | pctx->did_prepost = 1; | |
1383 | } | |
1384 | ||
1385 | return WQ_ITERATE_CONTINUE; | |
1386 | } | |
1387 | ||
1388 | ||
1389 | /** | |
1390 | * checks if 'waitq' has already preposted on 'wqset' | |
1391 | * | |
1392 | * Parameters: | |
1393 | * waitq The waitq that's preposting | |
1394 | * wqset The set onto which waitq may be preposted | |
1395 | * | |
1396 | * Conditions: | |
1397 | * both waitq and wqset are locked | |
1398 | * | |
1399 | * Returns non-zero if 'waitq' has already preposted to 'wqset' | |
1400 | */ | |
1401 | static int | |
1402 | wq_is_preposted_on_set(struct waitq *waitq, struct waitq_set *wqset) | |
1403 | { | |
1404 | int ret; | |
1405 | struct _is_posted_ctx pctx; | |
1406 | ||
1407 | /* | |
1408 | * If the set's only prepost matches the waitq's prepost ID, | |
1409 | * then it obviously already preposted to the set. | |
1410 | */ | |
1411 | if (waitq->waitq_prepost_id != 0 && | |
1412 | wqset->wqset_prepost_id == waitq->waitq_prepost_id) { | |
1413 | return 1; | |
1414 | } | |
1415 | ||
1416 | /* use full prepost iteration: always trim the list */ | |
1417 | pctx.posting_wq = waitq; | |
1418 | pctx.did_prepost = 0; | |
1419 | ret = wq_prepost_foreach_locked(wqset, (void *)&pctx, | |
1420 | wq_is_preposted_on_set_cb); | |
1421 | return pctx.did_prepost; | |
1422 | } | |
1423 | ||
1424 | static struct wq_prepost * | |
1425 | wq_get_prepost_obj(uint64_t *reserved, int type) | |
1426 | { | |
1427 | struct wq_prepost *wqp = NULL; | |
1428 | /* | |
1429 | * don't fail just because the caller doesn't have enough | |
1430 | * reservations, we've kept a low-water mark on the prepost table, | |
1431 | * so there should be some available for us. | |
1432 | */ | |
1433 | if (reserved && *reserved) { | |
1434 | wqp = wq_prepost_rpop(reserved, type); | |
1435 | assert(wqp->wqte.lt_id.idx < g_prepost_table.nelem); | |
1436 | } else { | |
1437 | /* | |
1438 | * TODO: if in interrupt context, grab from a special | |
1439 | * region / reserved list! | |
1440 | */ | |
1441 | wqp = wq_prepost_alloc(type, 1); | |
1442 | } | |
1443 | ||
1444 | if (wqp == NULL) { | |
1445 | panic("Couldn't allocate prepost object!"); | |
1446 | } | |
1447 | return wqp; | |
1448 | } | |
1449 | ||
1450 | ||
1451 | /** | |
1452 | * prepost a waitq onto a waitq set | |
1453 | * | |
1454 | * Parameters: | |
1455 | * wqset The set onto which waitq will be preposted | |
1456 | * waitq The waitq that's preposting | |
1457 | * reserved List (lt_elem_list_ style) of pre-allocated prepost elements | |
1458 | * Could be NULL | |
1459 | * | |
1460 | * Conditions: | |
1461 | * both wqset and waitq are locked | |
1462 | * | |
1463 | * Notes: | |
1464 | * If reserved is NULL, this may block on prepost table growth. | |
1465 | */ | |
1466 | static void | |
1467 | wq_prepost_do_post_locked(struct waitq_set *wqset, | |
1468 | struct waitq *waitq, | |
1469 | uint64_t *reserved) | |
1470 | { | |
1471 | struct wq_prepost *wqp_post, *wqp_head, *wqp_tail; | |
1472 | ||
1473 | assert(waitq_held(waitq) && waitq_held(&wqset->wqset_q)); | |
1474 | ||
1475 | /* | |
1476 | * nothing to do if it's already preposted: | |
1477 | * note that this also culls any invalid prepost objects | |
1478 | */ | |
1479 | if (wq_is_preposted_on_set(waitq, wqset)) { | |
1480 | return; | |
1481 | } | |
1482 | ||
1483 | assert(waitqs_is_linked(wqset)); | |
1484 | ||
1485 | /* | |
1486 | * This function is called because an event is being posted to 'waitq'. | |
1487 | * We need a prepost object associated with this queue. Allocate one | |
1488 | * now if the waitq isn't already associated with one. | |
1489 | */ | |
1490 | if (waitq->waitq_prepost_id == 0) { | |
1491 | struct wq_prepost *wqp; | |
1492 | wqp = wq_get_prepost_obj(reserved, WQP_WQ); | |
1493 | wqp->wqp_wq.wqp_wq_ptr = waitq; | |
1494 | wqp_set_valid(wqp); | |
1495 | waitq->waitq_prepost_id = wqp->wqp_prepostid.id; | |
1496 | wq_prepost_put(wqp); | |
1497 | } | |
1498 | ||
1499 | #if CONFIG_LTABLE_STATS | |
1500 | g_prepost_table.npreposts += 1; | |
1501 | #endif | |
1502 | ||
1503 | wqdbg_v("preposting waitq %p (0x%llx) to set 0x%llx", | |
1504 | (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq), | |
1505 | waitq->waitq_prepost_id, wqset->wqset_id); | |
1506 | ||
1507 | if (wqset->wqset_prepost_id == 0) { | |
1508 | /* the set has no previous preposts */ | |
1509 | wqset->wqset_prepost_id = waitq->waitq_prepost_id; | |
1510 | return; | |
1511 | } | |
1512 | ||
1513 | wqp_head = wq_prepost_get(wqset->wqset_prepost_id); | |
1514 | if (!wqp_head) { | |
1515 | /* the previous prepost has become invalid */ | |
1516 | wqset->wqset_prepost_id = waitq->waitq_prepost_id; | |
1517 | return; | |
1518 | } | |
1519 | ||
1520 | assert(wqp_head->wqp_prepostid.id == wqset->wqset_prepost_id); | |
1521 | ||
1522 | /* | |
1523 | * If we get here, we're going to need at least one new wq_prepost | |
1524 | * object. If the previous wqset_prepost_id points to a WQP_WQ, we | |
1525 | * actually need to allocate 2 wq_prepost objects because the WQP_WQ | |
1526 | * is tied to the waitq and shared across all sets. | |
1527 | */ | |
1528 | wqp_post = wq_get_prepost_obj(reserved, WQP_POST); | |
1529 | ||
1530 | wqp_post->wqp_post.wqp_wq_id = waitq->waitq_prepost_id; | |
1531 | wqdbg_v("POST 0x%llx :: WQ 0x%llx", wqp_post->wqp_prepostid.id, | |
1532 | waitq->waitq_prepost_id); | |
1533 | ||
1534 | if (wqp_type(wqp_head) == WQP_WQ) { | |
1535 | /* | |
1536 | * We must replace the wqset_prepost_id with a pointer | |
1537 | * to two new WQP_POST objects | |
1538 | */ | |
1539 | uint64_t wqp_id = wqp_head->wqp_prepostid.id; | |
1540 | wqdbg_v("set 0x%llx previous had 1 WQ prepost (0x%llx): " | |
1541 | "replacing with two POST preposts", | |
1542 | wqset->wqset_id, wqp_id); | |
1543 | ||
1544 | /* drop the old reference */ | |
1545 | wq_prepost_put(wqp_head); | |
1546 | ||
1547 | /* grab another new object (the 2nd of two) */ | |
1548 | wqp_head = wq_get_prepost_obj(reserved, WQP_POST); | |
1549 | ||
1550 | /* point this one to the original WQP_WQ object */ | |
1551 | wqp_head->wqp_post.wqp_wq_id = wqp_id; | |
1552 | wqdbg_v("POST 0x%llx :: WQ 0x%llx", | |
1553 | wqp_head->wqp_prepostid.id, wqp_id); | |
1554 | ||
1555 | /* link it to the new wqp_post object allocated earlier */ | |
1556 | wqp_head->wqp_post.wqp_next_id = wqp_post->wqp_prepostid.id; | |
1557 | /* make the list a double-linked and circular */ | |
1558 | wq_prepost_rlink(wqp_head, wqp_post); | |
1559 | ||
1560 | /* | |
1561 | * Finish setting up the new prepost: point it back to the | |
1562 | * POST object we allocated to replace the original wqset | |
1563 | * WQ prepost object | |
1564 | */ | |
1565 | wqp_post->wqp_post.wqp_next_id = wqp_head->wqp_prepostid.id; | |
1566 | wq_prepost_rlink(wqp_post, wqp_head); | |
1567 | ||
1568 | /* mark objects valid, and reset the wqset prepost list head */ | |
1569 | wqp_set_valid(wqp_head); | |
1570 | wqp_set_valid(wqp_post); | |
1571 | wqset->wqset_prepost_id = wqp_head->wqp_prepostid.id; | |
1572 | ||
1573 | /* release both references */ | |
1574 | wq_prepost_put(wqp_head); | |
1575 | wq_prepost_put(wqp_post); | |
1576 | ||
1577 | wqdbg_v("set 0x%llx: 0x%llx/0x%llx -> 0x%llx/0x%llx -> 0x%llx", | |
1578 | wqset->wqset_id, wqset->wqset_prepost_id, | |
1579 | wqp_head->wqp_prepostid.id, wqp_head->wqp_post.wqp_next_id, | |
1580 | wqp_post->wqp_prepostid.id, | |
1581 | wqp_post->wqp_post.wqp_next_id); | |
1582 | return; | |
1583 | } | |
1584 | ||
1585 | assert(wqp_type(wqp_head) == WQP_POST); | |
1586 | ||
1587 | /* | |
1588 | * Add the new prepost to the end of the prepost list | |
1589 | */ | |
1590 | wqp_tail = wq_prepost_get_rnext(wqp_head); | |
1591 | assert(wqp_tail != NULL); | |
1592 | assert(wqp_tail->wqp_post.wqp_next_id == wqset->wqset_prepost_id); | |
1593 | ||
1594 | /* | |
1595 | * link the head to the new tail | |
1596 | * NOTE: this needs to happen first in case wqp_tail == wqp_head | |
1597 | */ | |
1598 | wq_prepost_reset_rnext(wqp_head); | |
1599 | wq_prepost_rlink(wqp_head, wqp_post); | |
1600 | ||
1601 | /* point the new object to the list head, and list tail */ | |
1602 | wqp_post->wqp_post.wqp_next_id = wqp_head->wqp_prepostid.id; | |
1603 | wq_prepost_rlink(wqp_post, wqp_tail); | |
1604 | ||
1605 | /* point the last item in the waitq set's list to the new object */ | |
1606 | wqp_tail->wqp_post.wqp_next_id = wqp_post->wqp_prepostid.id; | |
1607 | ||
1608 | wqp_set_valid(wqp_post); | |
1609 | ||
1610 | wq_prepost_put(wqp_head); | |
1611 | wq_prepost_put(wqp_tail); | |
1612 | wq_prepost_put(wqp_post); | |
1613 | ||
1614 | wqdbg_v("set 0x%llx (wqp:0x%llx) last_prepost:0x%llx, " | |
1615 | "new_prepost:0x%llx->0x%llx", wqset->wqset_id, | |
1616 | wqset->wqset_prepost_id, wqp_head->wqp_prepostid.id, | |
1617 | wqp_post->wqp_prepostid.id, wqp_post->wqp_post.wqp_next_id); | |
1618 | ||
1619 | return; | |
1620 | } | |
1621 | ||
1622 | ||
1623 | /* ---------------------------------------------------------------------- | |
1624 | * | |
1625 | * Stats collection / reporting | |
1626 | * | |
1627 | * ---------------------------------------------------------------------- */ | |
1628 | #if CONFIG_LTABLE_STATS && CONFIG_WAITQ_STATS | |
1629 | static void | |
1630 | wq_table_stats(struct link_table *table, struct wq_table_stats *stats) | |
1631 | { | |
1632 | stats->version = WAITQ_STATS_VERSION; | |
1633 | stats->table_elements = table->nelem; | |
1634 | stats->table_used_elems = table->used_elem; | |
1635 | stats->table_elem_sz = table->elem_sz; | |
1636 | stats->table_slabs = table->nslabs; | |
1637 | stats->table_slab_sz = table->slab_sz; | |
1638 | ||
1639 | stats->table_num_allocs = table->nallocs; | |
1640 | stats->table_num_preposts = table->npreposts; | |
1641 | stats->table_num_reservations = table->nreservations; | |
1642 | ||
1643 | stats->table_max_used = table->max_used; | |
1644 | stats->table_avg_used = table->avg_used; | |
1645 | stats->table_max_reservations = table->max_reservations; | |
1646 | stats->table_avg_reservations = table->avg_reservations; | |
1647 | } | |
1648 | ||
1649 | void | |
1650 | waitq_link_stats(struct wq_table_stats *stats) | |
1651 | { | |
1652 | if (!stats) { | |
1653 | return; | |
1654 | } | |
1655 | wq_table_stats(&g_wqlinktable, stats); | |
1656 | } | |
1657 | ||
1658 | void | |
1659 | waitq_prepost_stats(struct wq_table_stats *stats) | |
1660 | { | |
1661 | wq_table_stats(&g_prepost_table, stats); | |
1662 | } | |
1663 | #endif | |
1664 | ||
1665 | ||
1666 | /* ---------------------------------------------------------------------- | |
1667 | * | |
1668 | * Global Wait Queues | |
1669 | * | |
1670 | * ---------------------------------------------------------------------- */ | |
1671 | ||
1672 | static struct waitq g_boot_waitq; | |
1673 | static struct waitq *global_waitqs = &g_boot_waitq; | |
1674 | static uint32_t g_num_waitqs = 1; | |
1675 | ||
1676 | /* | |
1677 | * Zero out the used MSBs of the event. | |
1678 | */ | |
1679 | #define _CAST_TO_EVENT_MASK(event) ((uintptr_t)(event) & ((1ul << _EVENT_MASK_BITS) - 1ul)) | |
1680 | ||
1681 | static __inline__ uint32_t | |
1682 | waitq_hash(char *key, size_t length) | |
1683 | { | |
1684 | uint32_t hash = os_hash_jenkins(key, length); | |
1685 | ||
1686 | hash &= (g_num_waitqs - 1); | |
1687 | return hash; | |
1688 | } | |
1689 | ||
1690 | /* return a global waitq pointer corresponding to the given event */ | |
1691 | struct waitq * | |
1692 | _global_eventq(char *event, size_t event_length) | |
1693 | { | |
1694 | return &global_waitqs[waitq_hash(event, event_length)]; | |
1695 | } | |
1696 | ||
1697 | /* return an indexed global waitq pointer */ | |
1698 | struct waitq * | |
1699 | global_waitq(int index) | |
1700 | { | |
1701 | return &global_waitqs[index % g_num_waitqs]; | |
1702 | } | |
1703 | ||
1704 | ||
1705 | #if CONFIG_LTABLE_STATS || CONFIG_WAITQ_STATS | |
1706 | /* this global is for lldb */ | |
1707 | const uint32_t g_nwaitq_btframes = NWAITQ_BTFRAMES; | |
1708 | ||
1709 | static __inline__ void | |
1710 | waitq_grab_backtrace(uintptr_t bt[NWAITQ_BTFRAMES], int skip) | |
1711 | { | |
1712 | uintptr_t buf[NWAITQ_BTFRAMES + skip]; | |
1713 | if (skip < 0) { | |
1714 | skip = 0; | |
1715 | } | |
1716 | memset(buf, 0, (NWAITQ_BTFRAMES + skip) * sizeof(uintptr_t)); | |
1717 | backtrace(buf, g_nwaitq_btframes + skip, NULL); | |
1718 | memcpy(&bt[0], &buf[skip], NWAITQ_BTFRAMES * sizeof(uintptr_t)); | |
1719 | } | |
1720 | #else /* no stats */ | |
1721 | #define waitq_grab_backtrace(...) | |
1722 | #endif | |
1723 | ||
1724 | #if CONFIG_WAITQ_STATS | |
1725 | ||
1726 | struct wq_stats g_boot_stats; | |
1727 | struct wq_stats *g_waitq_stats = &g_boot_stats; | |
1728 | ||
1729 | static __inline__ struct wq_stats * | |
1730 | waitq_global_stats(struct waitq *waitq) | |
1731 | { | |
1732 | struct wq_stats *wqs; | |
1733 | uint32_t idx; | |
1734 | ||
1735 | if (!waitq_is_global(waitq)) { | |
1736 | return NULL; | |
1737 | } | |
1738 | ||
1739 | idx = (uint32_t)(((uintptr_t)waitq - (uintptr_t)global_waitqs) / sizeof(*waitq)); | |
1740 | assert(idx < g_num_waitqs); | |
1741 | wqs = &g_waitq_stats[idx]; | |
1742 | return wqs; | |
1743 | } | |
1744 | ||
1745 | static __inline__ void | |
1746 | waitq_stats_count_wait(struct waitq *waitq) | |
1747 | { | |
1748 | struct wq_stats *wqs = waitq_global_stats(waitq); | |
1749 | if (wqs != NULL) { | |
1750 | wqs->waits++; | |
1751 | waitq_grab_backtrace(wqs->last_wait, 2); | |
1752 | } | |
1753 | } | |
1754 | ||
1755 | static __inline__ void | |
1756 | waitq_stats_count_wakeup(struct waitq *waitq) | |
1757 | { | |
1758 | struct wq_stats *wqs = waitq_global_stats(waitq); | |
1759 | if (wqs != NULL) { | |
1760 | wqs->wakeups++; | |
1761 | waitq_grab_backtrace(wqs->last_wakeup, 2); | |
1762 | } | |
1763 | } | |
1764 | ||
1765 | static __inline__ void | |
1766 | waitq_stats_count_clear_wakeup(struct waitq *waitq) | |
1767 | { | |
1768 | struct wq_stats *wqs = waitq_global_stats(waitq); | |
1769 | if (wqs != NULL) { | |
1770 | wqs->wakeups++; | |
1771 | wqs->clears++; | |
1772 | waitq_grab_backtrace(wqs->last_wakeup, 2); | |
1773 | } | |
1774 | } | |
1775 | ||
1776 | static __inline__ void | |
1777 | waitq_stats_count_fail(struct waitq *waitq) | |
1778 | { | |
1779 | struct wq_stats *wqs = waitq_global_stats(waitq); | |
1780 | if (wqs != NULL) { | |
1781 | wqs->failed_wakeups++; | |
1782 | waitq_grab_backtrace(wqs->last_failed_wakeup, 2); | |
1783 | } | |
1784 | } | |
1785 | #else /* !CONFIG_WAITQ_STATS */ | |
1786 | #define waitq_stats_count_wait(q) do { } while (0) | |
1787 | #define waitq_stats_count_wakeup(q) do { } while (0) | |
1788 | #define waitq_stats_count_clear_wakeup(q) do { } while (0) | |
1789 | #define waitq_stats_count_fail(q) do { } while (0) | |
1790 | #endif | |
1791 | ||
1792 | int | |
1793 | waitq_is_valid(struct waitq *waitq) | |
1794 | { | |
1795 | return (waitq != NULL) && waitq->waitq_isvalid; | |
1796 | } | |
1797 | ||
1798 | int | |
1799 | waitq_set_is_valid(struct waitq_set *wqset) | |
1800 | { | |
1801 | return (wqset != NULL) && wqset->wqset_q.waitq_isvalid && waitqs_is_set(wqset); | |
1802 | } | |
1803 | ||
1804 | int | |
1805 | waitq_is_global(struct waitq *waitq) | |
1806 | { | |
1807 | if (waitq >= global_waitqs && waitq < global_waitqs + g_num_waitqs) { | |
1808 | return 1; | |
1809 | } | |
1810 | return 0; | |
1811 | } | |
1812 | ||
1813 | int | |
1814 | waitq_irq_safe(struct waitq *waitq) | |
1815 | { | |
1816 | /* global wait queues have this bit set on initialization */ | |
1817 | return waitq->waitq_irq; | |
1818 | } | |
1819 | ||
1820 | static inline bool | |
1821 | waitq_empty(struct waitq *wq) | |
1822 | { | |
1823 | if (waitq_is_turnstile_queue(wq)) { | |
1824 | return priority_queue_empty(&wq->waitq_prio_queue); | |
1825 | } else if (waitq_is_turnstile_proxy(wq)) { | |
1826 | struct turnstile *ts = wq->waitq_ts; | |
1827 | return ts == TURNSTILE_NULL || | |
1828 | priority_queue_empty(&ts->ts_waitq.waitq_prio_queue); | |
1829 | } else { | |
1830 | return queue_empty(&wq->waitq_queue); | |
1831 | } | |
1832 | } | |
1833 | ||
1834 | static struct waitq * | |
1835 | waitq_get_safeq(struct waitq *waitq) | |
1836 | { | |
1837 | /* Check if it's a port waitq */ | |
1838 | if (waitq_is_turnstile_proxy(waitq)) { | |
1839 | struct turnstile *ts = waitq->waitq_ts; | |
1840 | return ts ? &ts->ts_waitq : NULL; | |
1841 | } | |
1842 | return global_eventq(waitq); | |
1843 | } | |
1844 | ||
1845 | static uint32_t | |
1846 | waitq_hash_size(void) | |
1847 | { | |
1848 | uint32_t hsize, queues; | |
1849 | ||
1850 | if (PE_parse_boot_argn("wqsize", &hsize, sizeof(hsize))) { | |
1851 | return hsize; | |
1852 | } | |
1853 | ||
1854 | queues = thread_max / 5; | |
1855 | hsize = P2ROUNDUP(queues * sizeof(struct waitq), PAGE_SIZE); | |
1856 | ||
1857 | return hsize; | |
1858 | } | |
1859 | ||
1860 | /* | |
1861 | * Since the priority ordered waitq uses basepri as the | |
1862 | * ordering key assert that this value fits in a uint8_t. | |
1863 | */ | |
1864 | static_assert(MAXPRI <= UINT8_MAX); | |
1865 | ||
1866 | static inline void | |
1867 | waitq_thread_insert(struct waitq *wq, | |
1868 | thread_t thread, boolean_t fifo) | |
1869 | { | |
1870 | if (waitq_is_turnstile_queue(wq)) { | |
1871 | turnstile_stats_update(0, TSU_TURNSTILE_BLOCK_COUNT, NULL); | |
1872 | turnstile_waitq_add_thread_priority_queue(wq, thread); | |
1873 | } else { | |
1874 | turnstile_stats_update(0, TSU_REGULAR_WAITQ_BLOCK_COUNT, NULL); | |
1875 | if (fifo) { | |
1876 | enqueue_tail(&wq->waitq_queue, &thread->wait_links); | |
1877 | } else { | |
1878 | enqueue_head(&wq->waitq_queue, &thread->wait_links); | |
1879 | } | |
1880 | } | |
1881 | } | |
1882 | ||
1883 | static inline void | |
1884 | waitq_thread_remove(struct waitq *wq, | |
1885 | thread_t thread) | |
1886 | { | |
1887 | if (waitq_is_turnstile_queue(wq)) { | |
1888 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
1889 | (TURNSTILE_CODE(TURNSTILE_HEAP_OPERATIONS, (THREAD_REMOVED_FROM_TURNSTILE_WAITQ))) | DBG_FUNC_NONE, | |
1890 | VM_KERNEL_UNSLIDE_OR_PERM(waitq_to_turnstile(wq)), | |
1891 | thread_tid(thread), | |
1892 | 0, 0, 0); | |
1893 | priority_queue_remove(&wq->waitq_prio_queue, &thread->wait_prioq_links); | |
1894 | } else { | |
1895 | remqueue(&(thread->wait_links)); | |
1896 | } | |
1897 | } | |
1898 | ||
1899 | void | |
1900 | waitq_bootstrap(void) | |
1901 | { | |
1902 | kern_return_t kret; | |
1903 | uint32_t whsize, qsz, tmp32; | |
1904 | ||
1905 | g_min_free_table_elem = DEFAULT_MIN_FREE_TABLE_ELEM; | |
1906 | if (PE_parse_boot_argn("wqt_min_free", &tmp32, sizeof(tmp32)) == TRUE) { | |
1907 | g_min_free_table_elem = tmp32; | |
1908 | } | |
1909 | wqdbg("Minimum free table elements: %d", tmp32); | |
1910 | ||
1911 | /* | |
1912 | * Determine the amount of memory we're willing to reserve for | |
1913 | * the waitqueue hash table | |
1914 | */ | |
1915 | whsize = waitq_hash_size(); | |
1916 | ||
1917 | /* Determine the number of waitqueues we can fit. */ | |
1918 | qsz = sizeof(struct waitq); | |
1919 | whsize = ROUNDDOWN(whsize, qsz); | |
1920 | g_num_waitqs = whsize / qsz; | |
1921 | ||
1922 | /* | |
1923 | * The hash algorithm requires that this be a power of 2, so we | |
1924 | * just mask off all the low-order bits. | |
1925 | */ | |
1926 | for (uint32_t i = 0; i < 31; i++) { | |
1927 | uint32_t bit = (1 << i); | |
1928 | if ((g_num_waitqs & bit) == g_num_waitqs) { | |
1929 | break; | |
1930 | } | |
1931 | g_num_waitqs &= ~bit; | |
1932 | } | |
1933 | assert(g_num_waitqs > 0); | |
1934 | ||
1935 | /* Now determine how much memory we really need. */ | |
1936 | whsize = P2ROUNDUP(g_num_waitqs * qsz, PAGE_SIZE); | |
1937 | ||
1938 | wqdbg("allocating %d global queues (%d bytes)", g_num_waitqs, whsize); | |
1939 | kret = kernel_memory_allocate(kernel_map, (vm_offset_t *)&global_waitqs, | |
1940 | whsize, 0, KMA_KOBJECT | KMA_NOPAGEWAIT, VM_KERN_MEMORY_WAITQ); | |
1941 | if (kret != KERN_SUCCESS || global_waitqs == NULL) { | |
1942 | panic("kernel_memory_allocate() failed to alloc global_waitqs" | |
1943 | ", error: %d, whsize: 0x%x", kret, whsize); | |
1944 | } | |
1945 | ||
1946 | #if CONFIG_WAITQ_STATS | |
1947 | whsize = P2ROUNDUP(g_num_waitqs * sizeof(struct wq_stats), PAGE_SIZE); | |
1948 | kret = kernel_memory_allocate(kernel_map, (vm_offset_t *)&g_waitq_stats, | |
1949 | whsize, 0, KMA_KOBJECT | KMA_NOPAGEWAIT, VM_KERN_MEMORY_WAITQ); | |
1950 | if (kret != KERN_SUCCESS || global_waitqs == NULL) { | |
1951 | panic("kernel_memory_allocate() failed to alloc g_waitq_stats" | |
1952 | ", error: %d, whsize: 0x%x", kret, whsize); | |
1953 | } | |
1954 | memset(g_waitq_stats, 0, whsize); | |
1955 | #endif | |
1956 | ||
1957 | for (uint32_t i = 0; i < g_num_waitqs; i++) { | |
1958 | waitq_init(&global_waitqs[i], SYNC_POLICY_FIFO | SYNC_POLICY_DISABLE_IRQ); | |
1959 | } | |
1960 | ||
1961 | /* initialize the global waitq link table */ | |
1962 | wql_init(); | |
1963 | ||
1964 | /* initialize the global waitq prepost table */ | |
1965 | wqp_init(); | |
1966 | } | |
1967 | ||
1968 | ||
1969 | /* ---------------------------------------------------------------------- | |
1970 | * | |
1971 | * Wait Queue Implementation | |
1972 | * | |
1973 | * ---------------------------------------------------------------------- */ | |
1974 | ||
1975 | /* | |
1976 | * Double the standard lock timeout, because wait queues tend | |
1977 | * to iterate over a number of threads - locking each. If there is | |
1978 | * a problem with a thread lock, it normally times out at the wait | |
1979 | * queue level first, hiding the real problem. | |
1980 | */ | |
1981 | /* For x86, the hardware timeout is in TSC units. */ | |
1982 | #if defined(__i386__) || defined(__x86_64__) | |
1983 | #define hwLockTimeOut LockTimeOutTSC | |
1984 | #else | |
1985 | #define hwLockTimeOut LockTimeOut | |
1986 | #endif | |
1987 | ||
1988 | void | |
1989 | waitq_lock(struct waitq *wq) | |
1990 | { | |
1991 | if (__improbable(waitq_lock_to(wq, | |
1992 | hwLockTimeOut * 2) == 0)) { | |
1993 | boolean_t wql_acquired = FALSE; | |
1994 | ||
1995 | while (machine_timeout_suspended()) { | |
1996 | mp_enable_preemption(); | |
1997 | wql_acquired = waitq_lock_to(wq, | |
1998 | hwLockTimeOut * 2); | |
1999 | if (wql_acquired) { | |
2000 | break; | |
2001 | } | |
2002 | } | |
2003 | if (wql_acquired == FALSE) { | |
2004 | panic("waitq deadlock - waitq=%p, cpu=%d\n", | |
2005 | wq, cpu_number()); | |
2006 | } | |
2007 | } | |
2008 | #if defined(__x86_64__) | |
2009 | pltrace(FALSE); | |
2010 | #endif | |
2011 | assert(waitq_held(wq)); | |
2012 | } | |
2013 | ||
2014 | void | |
2015 | waitq_unlock(struct waitq *wq) | |
2016 | { | |
2017 | assert(waitq_held(wq)); | |
2018 | #if defined(__x86_64__) | |
2019 | pltrace(TRUE); | |
2020 | #endif | |
2021 | waitq_lock_unlock(wq); | |
2022 | } | |
2023 | ||
2024 | ||
2025 | /** | |
2026 | * clear the thread-related waitq state | |
2027 | * | |
2028 | * Conditions: | |
2029 | * 'thread' is locked | |
2030 | */ | |
2031 | static inline void | |
2032 | thread_clear_waitq_state(thread_t thread) | |
2033 | { | |
2034 | thread->waitq = NULL; | |
2035 | thread->wait_event = NO_EVENT64; | |
2036 | thread->at_safe_point = FALSE; | |
2037 | } | |
2038 | ||
2039 | ||
2040 | typedef thread_t (*waitq_select_cb)(void *ctx, struct waitq *waitq, | |
2041 | int is_global, thread_t thread); | |
2042 | ||
2043 | struct waitq_select_args { | |
2044 | /* input parameters */ | |
2045 | struct waitq *posted_waitq; | |
2046 | struct waitq *waitq; | |
2047 | event64_t event; | |
2048 | waitq_select_cb select_cb; | |
2049 | void *select_ctx; | |
2050 | int priority; | |
2051 | ||
2052 | uint64_t *reserved_preposts; | |
2053 | ||
2054 | /* output parameters */ | |
2055 | queue_t threadq; | |
2056 | int max_threads; | |
2057 | int *nthreads; | |
2058 | spl_t *spl; | |
2059 | }; | |
2060 | ||
2061 | static void do_waitq_select_n_locked(struct waitq_select_args *args); | |
2062 | ||
2063 | /** | |
2064 | * callback invoked once for every waitq set to which a waitq belongs | |
2065 | * | |
2066 | * Conditions: | |
2067 | * ctx->posted_waitq is locked | |
2068 | * 'link' points to a valid waitq set | |
2069 | * | |
2070 | * Notes: | |
2071 | * Takes the waitq set lock on the set pointed to by 'link' | |
2072 | * Calls do_waitq_select_n_locked() which could recurse back into | |
2073 | * this function if the waitq set is a member of other sets. | |
2074 | * If no threads were selected, it preposts the input waitq | |
2075 | * onto the waitq set pointed to by 'link'. | |
2076 | */ | |
2077 | static int | |
2078 | waitq_select_walk_cb(struct waitq *waitq, void *ctx, | |
2079 | struct waitq_link *link) | |
2080 | { | |
2081 | int ret = WQ_ITERATE_CONTINUE; | |
2082 | struct waitq_select_args args = *((struct waitq_select_args *)ctx); | |
2083 | struct waitq_set *wqset; | |
2084 | ||
2085 | (void)waitq; | |
2086 | assert(wql_type(link) == WQL_WQS); | |
2087 | ||
2088 | wqset = link->wql_wqs.wql_set; | |
2089 | args.waitq = &wqset->wqset_q; | |
2090 | ||
2091 | assert(!waitq_irq_safe(waitq)); | |
2092 | assert(!waitq_irq_safe(&wqset->wqset_q)); | |
2093 | ||
2094 | waitq_set_lock(wqset); | |
2095 | /* | |
2096 | * verify that the link wasn't invalidated just before | |
2097 | * we were able to take the lock. | |
2098 | */ | |
2099 | if (wqset->wqset_id != link->wql_setid.id) { | |
2100 | goto out_unlock; | |
2101 | } | |
2102 | ||
2103 | assert(waitqs_is_linked(wqset)); | |
2104 | ||
2105 | /* | |
2106 | * Find any threads waiting on this wait queue set, | |
2107 | * and recurse into any waitq set to which this set belongs. | |
2108 | */ | |
2109 | do_waitq_select_n_locked(&args); | |
2110 | ||
2111 | if (*args.nthreads > 0 || (args.threadq && !queue_empty(args.threadq))) { | |
2112 | /* at least 1 thread was selected and returned: don't prepost */ | |
2113 | if (args.max_threads > 0 && *args.nthreads >= args.max_threads) { | |
2114 | /* break out of the setid walk */ | |
2115 | ret = WQ_ITERATE_FOUND; | |
2116 | } | |
2117 | } else if (args.event == NO_EVENT64) { | |
2118 | /* | |
2119 | * No thread selected: prepost 'waitq' to 'wqset' | |
2120 | * if wqset can handle preposts and the event is set to 0. | |
2121 | * We also make sure to not post waitq sets to other sets. | |
2122 | * | |
2123 | * If the set doesn't support preposts, but does support | |
2124 | * prepost callout/hook interaction, invoke the predefined | |
2125 | * callout function and pass the set's 'prepost_hook.' This | |
2126 | * could potentially release another thread to handle events. | |
2127 | */ | |
2128 | if (waitq_set_can_prepost(wqset)) { | |
2129 | wq_prepost_do_post_locked( | |
2130 | wqset, waitq, args.reserved_preposts); | |
2131 | } else if (waitq_set_has_prepost_hook(wqset)) { | |
2132 | waitq_set_prepost_hook_t *hook = wqset->wqset_prepost_hook; | |
2133 | ||
2134 | /* | |
2135 | * When calling out to the prepost hook, | |
2136 | * we drop the waitq lock, to allow for the kevent | |
2137 | * subsytem to call into the waitq subsystem again, | |
2138 | * without risking a deadlock. | |
2139 | * | |
2140 | * However, we need to guard against wqset going away, | |
2141 | * so we increment the prepost hook use count | |
2142 | * while the lock is dropped. | |
2143 | * | |
2144 | * This lets waitq_set_deinit() know to wait for the | |
2145 | * prepost hook call to be done before it can proceed. | |
2146 | * | |
2147 | * Note: we need to keep preemption disabled the whole | |
2148 | * time as waitq_set_deinit will spin on this. | |
2149 | */ | |
2150 | ||
2151 | disable_preemption(); | |
2152 | os_atomic_add(hook, (uint16_t)1, relaxed); | |
2153 | waitq_set_unlock(wqset); | |
2154 | ||
2155 | waitq_set__CALLING_PREPOST_HOOK__(hook); | |
2156 | ||
2157 | /* Note: after this decrement, the wqset may be deallocated */ | |
2158 | os_atomic_add(hook, (uint16_t)-1, relaxed); | |
2159 | enable_preemption(); | |
2160 | return ret; | |
2161 | } | |
2162 | } | |
2163 | ||
2164 | out_unlock: | |
2165 | waitq_set_unlock(wqset); | |
2166 | return ret; | |
2167 | } | |
2168 | ||
2169 | /** | |
2170 | * Routine to iterate over the waitq for non-priority ordered waitqs | |
2171 | * | |
2172 | * Conditions: | |
2173 | * args->waitq (and args->posted_waitq) is locked | |
2174 | * | |
2175 | * Notes: | |
2176 | * Uses the optional select callback function to refine the selection | |
2177 | * of one or more threads from a waitq. The select callback is invoked | |
2178 | * once for every thread that is found to be waiting on the input args->waitq. | |
2179 | * | |
2180 | * If one or more threads are selected, this may disable interrupts. | |
2181 | * The previous interrupt state is returned in args->spl and should | |
2182 | * be used in a call to splx() if threads are returned to the caller. | |
2183 | */ | |
2184 | static thread_t | |
2185 | waitq_queue_iterate_locked(struct waitq *safeq, struct waitq *waitq, | |
2186 | spl_t spl, struct waitq_select_args *args, | |
2187 | uint32_t *remaining_eventmask) | |
2188 | { | |
2189 | int max_threads = args->max_threads; | |
2190 | int *nthreads = args->nthreads; | |
2191 | thread_t thread = THREAD_NULL; | |
2192 | thread_t first_thread = THREAD_NULL; | |
2193 | ||
2194 | qe_foreach_element_safe(thread, &safeq->waitq_queue, wait_links) { | |
2195 | thread_t t = THREAD_NULL; | |
2196 | assert_thread_magic(thread); | |
2197 | ||
2198 | /* | |
2199 | * For non-priority ordered waitqs, we allow multiple events to be | |
2200 | * mux'ed into the same waitq. Also safeqs may contain threads from | |
2201 | * multiple waitqs. Only pick threads that match the | |
2202 | * requested wait event. | |
2203 | */ | |
2204 | if (thread->waitq == waitq && thread->wait_event == args->event) { | |
2205 | t = thread; | |
2206 | if (first_thread == THREAD_NULL) { | |
2207 | first_thread = thread; | |
2208 | } | |
2209 | ||
2210 | /* allow the caller to futher refine the selection */ | |
2211 | if (args->select_cb) { | |
2212 | t = args->select_cb(args->select_ctx, waitq, | |
2213 | waitq_is_global(waitq), thread); | |
2214 | } | |
2215 | if (t != THREAD_NULL) { | |
2216 | *nthreads += 1; | |
2217 | if (args->threadq) { | |
2218 | /* if output queue, add locked thread to it */ | |
2219 | if (*nthreads == 1) { | |
2220 | *(args->spl) = (safeq != waitq) ? spl : splsched(); | |
2221 | } | |
2222 | thread_lock(t); | |
2223 | thread_clear_waitq_state(t); | |
2224 | re_queue_tail(args->threadq, &t->wait_links); | |
2225 | } | |
2226 | /* only enqueue up to 'max' threads */ | |
2227 | if (*nthreads >= max_threads && max_threads > 0) { | |
2228 | break; | |
2229 | } | |
2230 | } | |
2231 | } | |
2232 | /* thread wasn't selected so track it's event */ | |
2233 | if (t == THREAD_NULL) { | |
2234 | *remaining_eventmask |= (thread->waitq != safeq) ? | |
2235 | _CAST_TO_EVENT_MASK(thread->waitq) : _CAST_TO_EVENT_MASK(thread->wait_event); | |
2236 | } | |
2237 | } | |
2238 | ||
2239 | return first_thread; | |
2240 | } | |
2241 | ||
2242 | /** | |
2243 | * Routine to iterate and remove threads from priority ordered waitqs | |
2244 | * | |
2245 | * Conditions: | |
2246 | * args->waitq (and args->posted_waitq) is locked | |
2247 | * | |
2248 | * Notes: | |
2249 | * The priority ordered waitqs only support maximum priority element removal. | |
2250 | * | |
2251 | * Also, the implementation makes sure that all threads in a priority ordered | |
2252 | * waitq are waiting on the same wait event. This is not necessarily true for | |
2253 | * non-priority ordered waitqs. If one or more threads are selected, this may | |
2254 | * disable interrupts. The previous interrupt state is returned in args->spl | |
2255 | * and should be used in a call to splx() if threads are returned to the caller. | |
2256 | * | |
2257 | * In the future, we could support priority ordered waitqs with multiple wait | |
2258 | * events in the same queue. The way to implement that would be to keep removing | |
2259 | * elements from the waitq and if the event does not match the requested one, | |
2260 | * add it to a local list. This local list of elements needs to be re-inserted | |
2261 | * into the priority queue at the end and the select_cb return value & | |
2262 | * remaining_eventmask would need to be handled appropriately. The implementation | |
2263 | * is not very efficient but would work functionally. | |
2264 | */ | |
2265 | static thread_t | |
2266 | waitq_prioq_iterate_locked(struct waitq *safeq, struct waitq *waitq, | |
2267 | spl_t spl, struct waitq_select_args *args, | |
2268 | uint32_t *remaining_eventmask) | |
2269 | { | |
2270 | int max_threads = args->max_threads; | |
2271 | int *nthreads = args->nthreads; | |
2272 | thread_t first_thread = THREAD_NULL; | |
2273 | thread_t thread = THREAD_NULL; | |
2274 | ||
2275 | /* | |
2276 | * The waitq select routines need to handle two cases: | |
2277 | * Case 1: Peek at maximum priority thread in the waitq (remove_op = 0) | |
2278 | * Get the maximum priority thread from the waitq without removing it. | |
2279 | * In that case args->threadq == NULL and max_threads == 1. | |
2280 | * Case 2: Remove 'n' highest priority threads from waitq (remove_op = 1) | |
2281 | * Get max_threads (if available) while removing them from the waitq. | |
2282 | * In that case args->threadq != NULL and max_threads is one of {-1, 1}. | |
2283 | * | |
2284 | * The only possible values for remaining_eventmask for the priority queue | |
2285 | * waitq are either 0 (for the remove all threads case) or the original | |
2286 | * safeq->waitq_eventmask (for the lookup/remove one thread cases). | |
2287 | */ | |
2288 | *remaining_eventmask = safeq->waitq_eventmask; | |
2289 | boolean_t remove_op = !!(args->threadq); | |
2290 | ||
2291 | while ((max_threads <= 0) || (*nthreads < max_threads)) { | |
2292 | if (priority_queue_empty(&(safeq->waitq_prio_queue))) { | |
2293 | *remaining_eventmask = 0; | |
2294 | break; | |
2295 | } | |
2296 | ||
2297 | if (remove_op) { | |
2298 | thread = priority_queue_remove_max(&safeq->waitq_prio_queue, | |
2299 | struct thread, wait_prioq_links); | |
2300 | } else { | |
2301 | /* For the peek operation, the only valid value for max_threads is 1 */ | |
2302 | assert(max_threads == 1); | |
2303 | thread = priority_queue_max(&safeq->waitq_prio_queue, | |
2304 | struct thread, wait_prioq_links); | |
2305 | } | |
2306 | /* | |
2307 | * Ensure the wait event matches since priority ordered waitqs do not | |
2308 | * support multiple events in the same waitq. | |
2309 | */ | |
2310 | assert((thread->waitq == waitq) && (thread->wait_event == args->event)); | |
2311 | ||
2312 | if (args->select_cb) { | |
2313 | /* | |
2314 | * Call the select_cb passed into the waitq_select args. The callback | |
2315 | * updates the select_ctx with information about the highest priority | |
2316 | * thread which is eventually used by the caller. | |
2317 | */ | |
2318 | thread_t __assert_only ret_thread = args->select_cb(args->select_ctx, waitq, | |
2319 | waitq_is_global(waitq), thread); | |
2320 | if (!remove_op) { | |
2321 | /* For the peek operation, the thread should not be selected for addition */ | |
2322 | assert(ret_thread == THREAD_NULL); | |
2323 | } else { | |
2324 | /* | |
2325 | * For the remove operation, the select routine should always return a valid | |
2326 | * thread for priority waitqs. Since all threads in a prioq are equally | |
2327 | * eligible, it should match the thread removed from the prioq. If this | |
2328 | * invariant changes, the implementation would need to handle the | |
2329 | * remaining_eventmask here correctly. | |
2330 | */ | |
2331 | assert(ret_thread == thread); | |
2332 | } | |
2333 | } | |
2334 | ||
2335 | if (first_thread == THREAD_NULL) { | |
2336 | first_thread = thread; | |
2337 | /* | |
2338 | * turnstile_kernel_update_inheritor_on_wake_locked will lock | |
2339 | * first_thread, so call it before locking it. | |
2340 | */ | |
2341 | if (args->priority == WAITQ_PROMOTE_ON_WAKE && first_thread != THREAD_NULL && waitq_is_turnstile_queue(safeq)) { | |
2342 | turnstile_kernel_update_inheritor_on_wake_locked(waitq_to_turnstile(safeq), (turnstile_inheritor_t)first_thread, TURNSTILE_INHERITOR_THREAD); | |
2343 | } | |
2344 | } | |
2345 | ||
2346 | /* For the peek operation, break out early */ | |
2347 | if (!remove_op) { | |
2348 | break; | |
2349 | } | |
2350 | ||
2351 | /* Add the thread to the result thread list */ | |
2352 | *nthreads += 1; | |
2353 | if (*nthreads == 1) { | |
2354 | *(args->spl) = (safeq != waitq) ? spl : splsched(); | |
2355 | } | |
2356 | thread_lock(thread); | |
2357 | thread_clear_waitq_state(thread); | |
2358 | enqueue_tail(args->threadq, &(thread->wait_links)); | |
2359 | } | |
2360 | ||
2361 | return first_thread; | |
2362 | } | |
2363 | ||
2364 | /** | |
2365 | * generic thread selection from a waitq (and sets to which the waitq belongs) | |
2366 | * | |
2367 | * Conditions: | |
2368 | * args->waitq (and args->posted_waitq) is locked | |
2369 | * | |
2370 | * Notes: | |
2371 | * Uses the optional select callback function to refine the selection | |
2372 | * of one or more threads from a waitq and any set to which the waitq | |
2373 | * belongs. The select callback is invoked once for every thread that | |
2374 | * is found to be waiting on the input args->waitq. | |
2375 | * | |
2376 | * If one or more threads are selected, this may disable interrupts. | |
2377 | * The previous interrupt state is returned in args->spl and should | |
2378 | * be used in a call to splx() if threads are returned to the caller. | |
2379 | */ | |
2380 | static void | |
2381 | do_waitq_select_n_locked(struct waitq_select_args *args) | |
2382 | { | |
2383 | struct waitq *waitq = args->waitq; | |
2384 | int max_threads = args->max_threads; | |
2385 | thread_t first_thread = THREAD_NULL; | |
2386 | struct waitq *safeq; | |
2387 | uint32_t remaining_eventmask = 0; | |
2388 | uint32_t eventmask; | |
2389 | int *nthreads = args->nthreads; | |
2390 | spl_t spl = 0; | |
2391 | ||
2392 | assert(max_threads != 0); | |
2393 | ||
2394 | if (!waitq_irq_safe(waitq)) { | |
2395 | /* JMM - add flag to waitq to avoid global lookup if no waiters */ | |
2396 | eventmask = _CAST_TO_EVENT_MASK(waitq); | |
2397 | safeq = waitq_get_safeq(waitq); | |
2398 | if (safeq == NULL) { | |
2399 | /* | |
2400 | * in the WQT_TSPROXY case, if there's no turnstile, | |
2401 | * there's no queue and no waiters, so we can move straight | |
2402 | * to the waitq set recursion | |
2403 | */ | |
2404 | goto handle_waitq_set; | |
2405 | } | |
2406 | ||
2407 | if (*nthreads == 0) { | |
2408 | spl = splsched(); | |
2409 | } | |
2410 | waitq_lock(safeq); | |
2411 | } else { | |
2412 | eventmask = _CAST_TO_EVENT_MASK(args->event); | |
2413 | safeq = waitq; | |
2414 | } | |
2415 | ||
2416 | /* | |
2417 | * If the safeq doesn't have an eventmask (not global) or the event | |
2418 | * we're looking for IS set in its eventmask, then scan the threads | |
2419 | * in that queue for ones that match the original <waitq,event> pair. | |
2420 | */ | |
2421 | if (!waitq_is_global(safeq) || | |
2422 | (safeq->waitq_eventmask & eventmask) == eventmask) { | |
2423 | if (waitq_is_turnstile_queue(safeq)) { | |
2424 | first_thread = waitq_prioq_iterate_locked(safeq, waitq, | |
2425 | spl, args, | |
2426 | &remaining_eventmask); | |
2427 | } else { | |
2428 | first_thread = waitq_queue_iterate_locked(safeq, waitq, | |
2429 | spl, args, | |
2430 | &remaining_eventmask); | |
2431 | } | |
2432 | ||
2433 | /* | |
2434 | * Update the eventmask of global queues we just scanned: | |
2435 | * - If we selected all the threads in the queue, we can clear its | |
2436 | * eventmask. | |
2437 | * | |
2438 | * - If we didn't find enough threads to fill our needs, then we can | |
2439 | * assume we looked at every thread in the queue and the mask we | |
2440 | * computed is complete - so reset it. | |
2441 | */ | |
2442 | if (waitq_is_global(safeq)) { | |
2443 | if (waitq_empty(safeq)) { | |
2444 | safeq->waitq_eventmask = 0; | |
2445 | } else if (max_threads < 0 || *nthreads < max_threads) { | |
2446 | safeq->waitq_eventmask = remaining_eventmask; | |
2447 | } | |
2448 | } | |
2449 | } | |
2450 | ||
2451 | /* | |
2452 | * Grab the first thread in the queue if no other thread was selected. | |
2453 | * We can guarantee that no one has manipulated this thread because | |
2454 | * it's waiting on the given waitq, and we have that waitq locked. | |
2455 | */ | |
2456 | if (*nthreads == 0 && first_thread != THREAD_NULL && args->threadq) { | |
2457 | /* we know this is the first (and only) thread */ | |
2458 | ++(*nthreads); | |
2459 | *(args->spl) = (safeq != waitq) ? spl : splsched(); | |
2460 | ||
2461 | thread_lock(first_thread); | |
2462 | thread_clear_waitq_state(first_thread); | |
2463 | waitq_thread_remove(safeq, first_thread); | |
2464 | enqueue_tail(args->threadq, &(first_thread->wait_links)); | |
2465 | ||
2466 | /* update the eventmask on [now] empty global queues */ | |
2467 | if (waitq_is_global(safeq) && waitq_empty(safeq)) { | |
2468 | safeq->waitq_eventmask = 0; | |
2469 | } | |
2470 | } | |
2471 | ||
2472 | /* unlock the safe queue if we locked one above */ | |
2473 | if (safeq != waitq) { | |
2474 | waitq_unlock(safeq); | |
2475 | if (*nthreads == 0) { | |
2476 | splx(spl); | |
2477 | } | |
2478 | } | |
2479 | ||
2480 | if (max_threads > 0 && *nthreads >= max_threads) { | |
2481 | return; | |
2482 | } | |
2483 | ||
2484 | handle_waitq_set: | |
2485 | /* | |
2486 | * wait queues that are not in any sets | |
2487 | * are the bottom of the recursion | |
2488 | */ | |
2489 | if (!waitq->waitq_set_id) { | |
2490 | return; | |
2491 | } | |
2492 | ||
2493 | /* check to see if the set ID for this wait queue is valid */ | |
2494 | struct waitq_link *link = wql_get_link(waitq->waitq_set_id); | |
2495 | if (!link) { | |
2496 | /* the waitq set to which this waitq belonged, has been invalidated */ | |
2497 | waitq->waitq_set_id = 0; | |
2498 | return; | |
2499 | } | |
2500 | ||
2501 | wql_put_link(link); | |
2502 | ||
2503 | /* | |
2504 | * If this waitq is a member of any wait queue sets, we need to look | |
2505 | * for waiting thread(s) in any of those sets, and prepost all sets that | |
2506 | * don't have active waiters. | |
2507 | * | |
2508 | * Note that we do a local walk of this waitq's links - we manually | |
2509 | * recurse down wait queue set's with non-zero wqset_q.waitq_set_id | |
2510 | */ | |
2511 | (void)walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id, | |
2512 | WQL_WQS, (void *)args, waitq_select_walk_cb); | |
2513 | } | |
2514 | ||
2515 | /** | |
2516 | * main entry point for thread selection from a waitq | |
2517 | * | |
2518 | * Conditions: | |
2519 | * waitq is locked | |
2520 | * | |
2521 | * Returns: | |
2522 | * The number of threads waiting on 'waitq' for 'event' which have | |
2523 | * been placed onto the input 'threadq' | |
2524 | * | |
2525 | * Notes: | |
2526 | * The 'select_cb' function is invoked for every thread found waiting on | |
2527 | * 'waitq' for 'event'. The thread is _not_ locked upon callback | |
2528 | * invocation. This parameter may be NULL. | |
2529 | * | |
2530 | * If one or more threads are returned in 'threadq' then the caller is | |
2531 | * responsible to call splx() using the returned 'spl' value. Each | |
2532 | * returned thread is locked. | |
2533 | */ | |
2534 | static __inline__ int | |
2535 | waitq_select_n_locked(struct waitq *waitq, | |
2536 | event64_t event, | |
2537 | waitq_select_cb select_cb, | |
2538 | void *select_ctx, | |
2539 | uint64_t *reserved_preposts, | |
2540 | queue_t threadq, | |
2541 | int max_threads, spl_t *spl, | |
2542 | int priority) | |
2543 | { | |
2544 | int nthreads = 0; | |
2545 | ||
2546 | struct waitq_select_args args = { | |
2547 | .posted_waitq = waitq, | |
2548 | .waitq = waitq, | |
2549 | .event = event, | |
2550 | .select_cb = select_cb, | |
2551 | .select_ctx = select_ctx, | |
2552 | .priority = priority, | |
2553 | .reserved_preposts = reserved_preposts, | |
2554 | .threadq = threadq, | |
2555 | .max_threads = max_threads, | |
2556 | .nthreads = &nthreads, | |
2557 | .spl = spl, | |
2558 | }; | |
2559 | ||
2560 | do_waitq_select_n_locked(&args); | |
2561 | return nthreads; | |
2562 | } | |
2563 | ||
2564 | /** | |
2565 | * select from a waitq a single thread waiting for a given event | |
2566 | * | |
2567 | * Conditions: | |
2568 | * 'waitq' is locked | |
2569 | * | |
2570 | * Returns: | |
2571 | * A locked thread that's been removed from the waitq, but has not | |
2572 | * yet been put on a run queue. Caller is responsible to call splx | |
2573 | * with the '*spl' value. | |
2574 | */ | |
2575 | static thread_t | |
2576 | waitq_select_one_locked(struct waitq *waitq, event64_t event, | |
2577 | uint64_t *reserved_preposts, | |
2578 | int priority, spl_t *spl) | |
2579 | { | |
2580 | int nthreads; | |
2581 | queue_head_t threadq; | |
2582 | ||
2583 | queue_init(&threadq); | |
2584 | ||
2585 | nthreads = waitq_select_n_locked(waitq, event, NULL, NULL, | |
2586 | reserved_preposts, &threadq, 1, spl, priority); | |
2587 | ||
2588 | /* if we selected a thread, return it (still locked) */ | |
2589 | if (!queue_empty(&threadq)) { | |
2590 | thread_t t; | |
2591 | queue_entry_t qe = dequeue_head(&threadq); | |
2592 | t = qe_element(qe, struct thread, wait_links); | |
2593 | assert(queue_empty(&threadq)); /* there should be 1 entry */ | |
2594 | /* t has been locked and removed from all queues */ | |
2595 | return t; | |
2596 | } | |
2597 | ||
2598 | return THREAD_NULL; | |
2599 | } | |
2600 | ||
2601 | struct select_thread_ctx { | |
2602 | thread_t thread; | |
2603 | event64_t event; | |
2604 | spl_t *spl; | |
2605 | }; | |
2606 | ||
2607 | /** | |
2608 | * link walk callback invoked once for each set to which a waitq belongs | |
2609 | * | |
2610 | * Conditions: | |
2611 | * initial waitq is locked | |
2612 | * ctx->thread is unlocked | |
2613 | * | |
2614 | * Notes: | |
2615 | * This may disable interrupts and early-out of the full DAG link walk by | |
2616 | * returning KERN_ALREADY_IN_SET. In this case, the returned thread has | |
2617 | * been removed from the waitq, it's waitq state has been reset, and the | |
2618 | * caller is responsible to call splx() with the returned interrupt state | |
2619 | * in ctx->spl. | |
2620 | */ | |
2621 | static int | |
2622 | waitq_select_thread_cb(struct waitq *waitq, void *ctx, | |
2623 | struct waitq_link *link) | |
2624 | { | |
2625 | struct select_thread_ctx *stctx = (struct select_thread_ctx *)ctx; | |
2626 | struct waitq_set *wqset; | |
2627 | struct waitq *wqsetq; | |
2628 | struct waitq *safeq; | |
2629 | spl_t s; | |
2630 | ||
2631 | (void)waitq; | |
2632 | ||
2633 | thread_t thread = stctx->thread; | |
2634 | event64_t event = stctx->event; | |
2635 | ||
2636 | if (wql_type(link) != WQL_WQS) { | |
2637 | return WQ_ITERATE_CONTINUE; | |
2638 | } | |
2639 | ||
2640 | wqset = link->wql_wqs.wql_set; | |
2641 | wqsetq = &wqset->wqset_q; | |
2642 | ||
2643 | assert(!waitq_irq_safe(waitq)); | |
2644 | assert(!waitq_irq_safe(wqsetq)); | |
2645 | ||
2646 | waitq_set_lock(wqset); | |
2647 | ||
2648 | s = splsched(); | |
2649 | ||
2650 | /* find and lock the interrupt-safe waitq the thread is thought to be on */ | |
2651 | safeq = waitq_get_safeq(wqsetq); | |
2652 | waitq_lock(safeq); | |
2653 | ||
2654 | thread_lock(thread); | |
2655 | ||
2656 | if ((thread->waitq == wqsetq) && (thread->wait_event == event)) { | |
2657 | waitq_thread_remove(wqsetq, thread); | |
2658 | if (waitq_empty(safeq)) { | |
2659 | safeq->waitq_eventmask = 0; | |
2660 | } | |
2661 | thread_clear_waitq_state(thread); | |
2662 | waitq_unlock(safeq); | |
2663 | waitq_set_unlock(wqset); | |
2664 | /* | |
2665 | * thread still locked, | |
2666 | * return non-zero to break out of WQS walk | |
2667 | */ | |
2668 | *(stctx->spl) = s; | |
2669 | return WQ_ITERATE_FOUND; | |
2670 | } | |
2671 | ||
2672 | thread_unlock(thread); | |
2673 | waitq_set_unlock(wqset); | |
2674 | waitq_unlock(safeq); | |
2675 | splx(s); | |
2676 | ||
2677 | return WQ_ITERATE_CONTINUE; | |
2678 | } | |
2679 | ||
2680 | /** | |
2681 | * returns KERN_SUCCESS and locks 'thread' if-and-only-if 'thread' is waiting | |
2682 | * on 'waitq' (or any set to which waitq belongs) for 'event' | |
2683 | * | |
2684 | * Conditions: | |
2685 | * 'waitq' is locked | |
2686 | * 'thread' is unlocked | |
2687 | */ | |
2688 | static kern_return_t | |
2689 | waitq_select_thread_locked(struct waitq *waitq, | |
2690 | event64_t event, | |
2691 | thread_t thread, spl_t *spl) | |
2692 | { | |
2693 | struct waitq *safeq; | |
2694 | struct waitq_link *link; | |
2695 | struct select_thread_ctx ctx; | |
2696 | kern_return_t kr; | |
2697 | spl_t s; | |
2698 | ||
2699 | /* Find and lock the interrupts disabled queue the thread is actually on */ | |
2700 | if (!waitq_irq_safe(waitq)) { | |
2701 | safeq = waitq_get_safeq(waitq); | |
2702 | if (safeq == NULL) { | |
2703 | /* | |
2704 | * in the WQT_TSPROXY case, if there's no turnstile, | |
2705 | * there's no queue and no waiters, so we can move straight | |
2706 | * to the waitq set recursion | |
2707 | */ | |
2708 | goto handle_waitq_set; | |
2709 | } | |
2710 | ||
2711 | s = splsched(); | |
2712 | waitq_lock(safeq); | |
2713 | } else { | |
2714 | s = splsched(); | |
2715 | safeq = waitq; | |
2716 | } | |
2717 | ||
2718 | thread_lock(thread); | |
2719 | ||
2720 | if ((thread->waitq == waitq) && (thread->wait_event == event)) { | |
2721 | waitq_thread_remove(safeq, thread); | |
2722 | if (waitq_empty(safeq)) { | |
2723 | safeq->waitq_eventmask = 0; | |
2724 | } | |
2725 | thread_clear_waitq_state(thread); | |
2726 | *spl = s; | |
2727 | /* thread still locked */ | |
2728 | return KERN_SUCCESS; | |
2729 | } | |
2730 | ||
2731 | thread_unlock(thread); | |
2732 | ||
2733 | if (safeq != waitq) { | |
2734 | waitq_unlock(safeq); | |
2735 | } | |
2736 | ||
2737 | splx(s); | |
2738 | ||
2739 | handle_waitq_set: | |
2740 | if (!waitq->waitq_set_id) { | |
2741 | return KERN_NOT_WAITING; | |
2742 | } | |
2743 | ||
2744 | /* check to see if the set ID for this wait queue is valid */ | |
2745 | link = wql_get_link(waitq->waitq_set_id); | |
2746 | if (!link) { | |
2747 | /* the waitq to which this set belonged, has been invalidated */ | |
2748 | waitq->waitq_set_id = 0; | |
2749 | return KERN_NOT_WAITING; | |
2750 | } | |
2751 | ||
2752 | /* | |
2753 | * The thread may be waiting on a wait queue set to which | |
2754 | * the input 'waitq' belongs. Go look for the thread in | |
2755 | * all wait queue sets. If it's there, we'll remove it | |
2756 | * because it's equivalent to waiting directly on the input waitq. | |
2757 | */ | |
2758 | ctx.thread = thread; | |
2759 | ctx.event = event; | |
2760 | ctx.spl = spl; | |
2761 | kr = walk_waitq_links(LINK_WALK_FULL_DAG, waitq, waitq->waitq_set_id, | |
2762 | WQL_WQS, (void *)&ctx, waitq_select_thread_cb); | |
2763 | ||
2764 | wql_put_link(link); | |
2765 | ||
2766 | /* we found a thread, return success */ | |
2767 | if (kr == WQ_ITERATE_FOUND) { | |
2768 | return KERN_SUCCESS; | |
2769 | } | |
2770 | ||
2771 | return KERN_NOT_WAITING; | |
2772 | } | |
2773 | ||
2774 | static int | |
2775 | prepost_exists_cb(struct waitq_set __unused *wqset, | |
2776 | void __unused *ctx, | |
2777 | struct wq_prepost __unused *wqp, | |
2778 | struct waitq __unused *waitq) | |
2779 | { | |
2780 | /* if we get here, then we know that there is a valid prepost object! */ | |
2781 | return WQ_ITERATE_FOUND; | |
2782 | } | |
2783 | ||
2784 | /** | |
2785 | * declare a thread's intent to wait on 'waitq' for 'wait_event' | |
2786 | * | |
2787 | * Conditions: | |
2788 | * 'waitq' is locked | |
2789 | */ | |
2790 | wait_result_t | |
2791 | waitq_assert_wait64_locked(struct waitq *waitq, | |
2792 | event64_t wait_event, | |
2793 | wait_interrupt_t interruptible, | |
2794 | wait_timeout_urgency_t urgency, | |
2795 | uint64_t deadline, | |
2796 | uint64_t leeway, | |
2797 | thread_t thread) | |
2798 | { | |
2799 | wait_result_t wait_result; | |
2800 | int realtime = 0; | |
2801 | struct waitq *safeq; | |
2802 | uintptr_t eventmask; | |
2803 | spl_t s; | |
2804 | ||
2805 | ||
2806 | /* | |
2807 | * Warning: Do _not_ place debugging print statements here. | |
2808 | * The waitq is locked! | |
2809 | */ | |
2810 | assert(!thread->started || thread == current_thread()); | |
2811 | ||
2812 | if (thread->waitq != NULL) { | |
2813 | panic("thread already waiting on %p", thread->waitq); | |
2814 | } | |
2815 | ||
2816 | if (waitq_is_set(waitq)) { | |
2817 | struct waitq_set *wqset = (struct waitq_set *)waitq; | |
2818 | /* | |
2819 | * early-out if the thread is waiting on a wait queue set | |
2820 | * that has already been pre-posted. | |
2821 | */ | |
2822 | if (wait_event == NO_EVENT64 && waitq_set_maybe_preposted(wqset)) { | |
2823 | int ret; | |
2824 | /* | |
2825 | * Run through the list of potential preposts. Because | |
2826 | * this is a hot path, we short-circuit the iteration | |
2827 | * if we find just one prepost object. | |
2828 | */ | |
2829 | ret = wq_prepost_foreach_locked(wqset, NULL, | |
2830 | prepost_exists_cb); | |
2831 | if (ret == WQ_ITERATE_FOUND) { | |
2832 | s = splsched(); | |
2833 | thread_lock(thread); | |
2834 | thread->wait_result = THREAD_AWAKENED; | |
2835 | thread_unlock(thread); | |
2836 | splx(s); | |
2837 | return THREAD_AWAKENED; | |
2838 | } | |
2839 | } | |
2840 | } | |
2841 | ||
2842 | s = splsched(); | |
2843 | ||
2844 | /* | |
2845 | * If already dealing with an irq safe wait queue, we are all set. | |
2846 | * Otherwise, determine a global queue to use and lock it. | |
2847 | */ | |
2848 | if (!waitq_irq_safe(waitq)) { | |
2849 | safeq = waitq_get_safeq(waitq); | |
2850 | if (__improbable(safeq == NULL)) { | |
2851 | panic("Trying to assert_wait on a turnstile proxy " | |
2852 | "that hasn't been donated one (waitq: %p)", waitq); | |
2853 | } | |
2854 | eventmask = _CAST_TO_EVENT_MASK(waitq); | |
2855 | waitq_lock(safeq); | |
2856 | } else { | |
2857 | safeq = waitq; | |
2858 | eventmask = _CAST_TO_EVENT_MASK(wait_event); | |
2859 | } | |
2860 | ||
2861 | /* lock the thread now that we have the irq-safe waitq locked */ | |
2862 | thread_lock(thread); | |
2863 | ||
2864 | /* | |
2865 | * Realtime threads get priority for wait queue placements. | |
2866 | * This allows wait_queue_wakeup_one to prefer a waiting | |
2867 | * realtime thread, similar in principle to performing | |
2868 | * a wait_queue_wakeup_all and allowing scheduler prioritization | |
2869 | * to run the realtime thread, but without causing the | |
2870 | * lock contention of that scenario. | |
2871 | */ | |
2872 | if (thread->sched_pri >= BASEPRI_REALTIME) { | |
2873 | realtime = 1; | |
2874 | } | |
2875 | ||
2876 | /* | |
2877 | * This is the extent to which we currently take scheduling attributes | |
2878 | * into account. If the thread is vm priviledged, we stick it at | |
2879 | * the front of the queue. Later, these queues will honor the policy | |
2880 | * value set at waitq_init time. | |
2881 | */ | |
2882 | wait_result = thread_mark_wait_locked(thread, interruptible); | |
2883 | /* thread->wait_result has been set */ | |
2884 | if (wait_result == THREAD_WAITING) { | |
2885 | if (!safeq->waitq_fifo | |
2886 | || (thread->options & TH_OPT_VMPRIV) || realtime) { | |
2887 | waitq_thread_insert(safeq, thread, false); | |
2888 | } else { | |
2889 | waitq_thread_insert(safeq, thread, true); | |
2890 | } | |
2891 | ||
2892 | /* mark the event and real waitq, even if enqueued on a global safeq */ | |
2893 | thread->wait_event = wait_event; | |
2894 | thread->waitq = waitq; | |
2895 | ||
2896 | if (deadline != 0) { | |
2897 | boolean_t act; | |
2898 | ||
2899 | act = timer_call_enter_with_leeway(&thread->wait_timer, | |
2900 | NULL, | |
2901 | deadline, leeway, | |
2902 | urgency, FALSE); | |
2903 | if (!act) { | |
2904 | thread->wait_timer_active++; | |
2905 | } | |
2906 | thread->wait_timer_is_set = TRUE; | |
2907 | } | |
2908 | ||
2909 | if (waitq_is_global(safeq)) { | |
2910 | safeq->waitq_eventmask |= eventmask; | |
2911 | } | |
2912 | ||
2913 | waitq_stats_count_wait(waitq); | |
2914 | } | |
2915 | ||
2916 | /* unlock the thread */ | |
2917 | thread_unlock(thread); | |
2918 | ||
2919 | /* update the inheritor's thread priority if the waitq is embedded in turnstile */ | |
2920 | if (waitq_is_turnstile_queue(safeq) && wait_result == THREAD_WAITING) { | |
2921 | turnstile_recompute_priority_locked(waitq_to_turnstile(safeq)); | |
2922 | turnstile_update_inheritor_locked(waitq_to_turnstile(safeq)); | |
2923 | } | |
2924 | ||
2925 | /* unlock the safeq if we locked it here */ | |
2926 | if (safeq != waitq) { | |
2927 | waitq_unlock(safeq); | |
2928 | } | |
2929 | ||
2930 | splx(s); | |
2931 | ||
2932 | return wait_result; | |
2933 | } | |
2934 | ||
2935 | /** | |
2936 | * remove 'thread' from its current blocking state on 'waitq' | |
2937 | * | |
2938 | * Conditions: | |
2939 | * 'thread' is locked | |
2940 | * | |
2941 | * Notes: | |
2942 | * This function is primarily used by clear_wait_internal in | |
2943 | * sched_prim.c from the thread timer wakeup path | |
2944 | * (i.e. the thread was waiting on 'waitq' with a timeout that expired) | |
2945 | */ | |
2946 | int | |
2947 | waitq_pull_thread_locked(struct waitq *waitq, thread_t thread) | |
2948 | { | |
2949 | struct waitq *safeq; | |
2950 | ||
2951 | assert_thread_magic(thread); | |
2952 | assert(thread->waitq == waitq); | |
2953 | ||
2954 | /* Find the interrupts disabled queue thread is waiting on */ | |
2955 | if (!waitq_irq_safe(waitq)) { | |
2956 | safeq = waitq_get_safeq(waitq); | |
2957 | if (__improbable(safeq == NULL)) { | |
2958 | panic("Trying to clear_wait on a turnstile proxy " | |
2959 | "that hasn't been donated one (waitq: %p)", waitq); | |
2960 | } | |
2961 | } else { | |
2962 | safeq = waitq; | |
2963 | } | |
2964 | ||
2965 | /* thread is already locked so have to try for the waitq lock */ | |
2966 | if (!waitq_lock_try(safeq)) { | |
2967 | return 0; | |
2968 | } | |
2969 | ||
2970 | waitq_thread_remove(safeq, thread); | |
2971 | thread_clear_waitq_state(thread); | |
2972 | waitq_stats_count_clear_wakeup(waitq); | |
2973 | ||
2974 | /* clear the global event mask if this was the last thread there! */ | |
2975 | if (waitq_is_global(safeq) && waitq_empty(safeq)) { | |
2976 | safeq->waitq_eventmask = 0; | |
2977 | /* JMM - also mark no-waiters on waitq (if not the same as the safeq) */ | |
2978 | } | |
2979 | ||
2980 | waitq_unlock(safeq); | |
2981 | ||
2982 | return 1; | |
2983 | } | |
2984 | ||
2985 | ||
2986 | static __inline__ | |
2987 | void | |
2988 | maybe_adjust_thread_pri(thread_t thread, | |
2989 | int priority, | |
2990 | __kdebug_only struct waitq *waitq) | |
2991 | { | |
2992 | /* | |
2993 | * If the caller is requesting the waitq subsystem to promote the | |
2994 | * priority of the awoken thread, then boost the thread's priority to | |
2995 | * the default WAITQ_BOOST_PRIORITY (if it's not already equal or | |
2996 | * higher priority). This boost must be removed via a call to | |
2997 | * waitq_clear_promotion_locked before the thread waits again. | |
2998 | * | |
2999 | * WAITQ_PROMOTE_PRIORITY is -2. | |
3000 | * Anything above 0 represents a mutex promotion. | |
3001 | * The default 'no action' value is -1. | |
3002 | * TODO: define this in a header | |
3003 | */ | |
3004 | if (priority == WAITQ_PROMOTE_PRIORITY) { | |
3005 | uintptr_t trace_waitq = 0; | |
3006 | if (__improbable(kdebug_enable)) { | |
3007 | trace_waitq = VM_KERNEL_UNSLIDE_OR_PERM(waitq); | |
3008 | } | |
3009 | ||
3010 | sched_thread_promote_reason(thread, TH_SFLAG_WAITQ_PROMOTED, trace_waitq); | |
3011 | } | |
3012 | } | |
3013 | ||
3014 | /* | |
3015 | * Clear a potential thread priority promotion from a waitq wakeup | |
3016 | * with WAITQ_PROMOTE_PRIORITY. | |
3017 | * | |
3018 | * This must be called on the thread which was woken up with TH_SFLAG_WAITQ_PROMOTED. | |
3019 | */ | |
3020 | void | |
3021 | waitq_clear_promotion_locked(struct waitq *waitq, thread_t thread) | |
3022 | { | |
3023 | spl_t s; | |
3024 | ||
3025 | assert(waitq_held(waitq)); | |
3026 | assert(thread != THREAD_NULL); | |
3027 | assert(thread == current_thread()); | |
3028 | ||
3029 | /* This flag is only cleared by the thread itself, so safe to check outside lock */ | |
3030 | if ((thread->sched_flags & TH_SFLAG_WAITQ_PROMOTED) != TH_SFLAG_WAITQ_PROMOTED) { | |
3031 | return; | |
3032 | } | |
3033 | ||
3034 | if (!waitq_irq_safe(waitq)) { | |
3035 | s = splsched(); | |
3036 | } | |
3037 | thread_lock(thread); | |
3038 | ||
3039 | sched_thread_unpromote_reason(thread, TH_SFLAG_WAITQ_PROMOTED, 0); | |
3040 | ||
3041 | thread_unlock(thread); | |
3042 | if (!waitq_irq_safe(waitq)) { | |
3043 | splx(s); | |
3044 | } | |
3045 | } | |
3046 | ||
3047 | /** | |
3048 | * wakeup all threads waiting on 'waitq' for 'wake_event' | |
3049 | * | |
3050 | * Conditions: | |
3051 | * 'waitq' is locked | |
3052 | * | |
3053 | * Notes: | |
3054 | * May temporarily disable and re-enable interrupts | |
3055 | * and re-adjust thread priority of each awoken thread. | |
3056 | * | |
3057 | * If the input 'lock_state' == WAITQ_UNLOCK then the waitq will have | |
3058 | * been unlocked before calling thread_go() on any returned threads, and | |
3059 | * is guaranteed to be unlocked upon function return. | |
3060 | */ | |
3061 | kern_return_t | |
3062 | waitq_wakeup64_all_locked(struct waitq *waitq, | |
3063 | event64_t wake_event, | |
3064 | wait_result_t result, | |
3065 | uint64_t *reserved_preposts, | |
3066 | int priority, | |
3067 | waitq_lock_state_t lock_state) | |
3068 | { | |
3069 | kern_return_t ret; | |
3070 | thread_t thread; | |
3071 | spl_t th_spl; | |
3072 | int nthreads; | |
3073 | queue_head_t wakeup_queue; | |
3074 | ||
3075 | assert(waitq_held(waitq)); | |
3076 | queue_init(&wakeup_queue); | |
3077 | ||
3078 | nthreads = waitq_select_n_locked(waitq, wake_event, NULL, NULL, | |
3079 | reserved_preposts, | |
3080 | &wakeup_queue, -1, &th_spl, priority); | |
3081 | ||
3082 | /* set each thread running */ | |
3083 | ret = KERN_NOT_WAITING; | |
3084 | ||
3085 | #if CONFIG_WAITQ_STATS | |
3086 | qe_foreach_element(thread, &wakeup_queue, wait_links) | |
3087 | waitq_stats_count_wakeup(waitq); | |
3088 | #endif | |
3089 | if (lock_state == WAITQ_UNLOCK) { | |
3090 | waitq_unlock(waitq); | |
3091 | } | |
3092 | ||
3093 | qe_foreach_element_safe(thread, &wakeup_queue, wait_links) { | |
3094 | assert_thread_magic(thread); | |
3095 | remqueue(&thread->wait_links); | |
3096 | maybe_adjust_thread_pri(thread, priority, waitq); | |
3097 | ret = thread_go(thread, result, WQ_OPTION_NONE); | |
3098 | assert(ret == KERN_SUCCESS); | |
3099 | thread_unlock(thread); | |
3100 | } | |
3101 | if (nthreads > 0) { | |
3102 | splx(th_spl); | |
3103 | } else { | |
3104 | waitq_stats_count_fail(waitq); | |
3105 | } | |
3106 | ||
3107 | return ret; | |
3108 | } | |
3109 | ||
3110 | /** | |
3111 | * wakeup one thread waiting on 'waitq' for 'wake_event' | |
3112 | * | |
3113 | * Conditions: | |
3114 | * 'waitq' is locked | |
3115 | * | |
3116 | * Notes: | |
3117 | * May temporarily disable and re-enable interrupts. | |
3118 | */ | |
3119 | kern_return_t | |
3120 | waitq_wakeup64_one_locked(struct waitq *waitq, | |
3121 | event64_t wake_event, | |
3122 | wait_result_t result, | |
3123 | uint64_t *reserved_preposts, | |
3124 | int priority, | |
3125 | waitq_lock_state_t lock_state, | |
3126 | waitq_options_t option) | |
3127 | { | |
3128 | thread_t thread; | |
3129 | spl_t th_spl; | |
3130 | ||
3131 | assert(waitq_held(waitq)); | |
3132 | ||
3133 | thread = waitq_select_one_locked(waitq, wake_event, | |
3134 | reserved_preposts, | |
3135 | priority, &th_spl); | |
3136 | ||
3137 | if (thread != THREAD_NULL) { | |
3138 | waitq_stats_count_wakeup(waitq); | |
3139 | } else { | |
3140 | waitq_stats_count_fail(waitq); | |
3141 | } | |
3142 | ||
3143 | if (lock_state == WAITQ_UNLOCK) { | |
3144 | waitq_unlock(waitq); | |
3145 | } | |
3146 | ||
3147 | if (thread != THREAD_NULL) { | |
3148 | maybe_adjust_thread_pri(thread, priority, waitq); | |
3149 | kern_return_t ret = thread_go(thread, result, option); | |
3150 | assert(ret == KERN_SUCCESS); | |
3151 | thread_unlock(thread); | |
3152 | splx(th_spl); | |
3153 | return ret; | |
3154 | } | |
3155 | ||
3156 | return KERN_NOT_WAITING; | |
3157 | } | |
3158 | ||
3159 | /** | |
3160 | * wakeup one thread waiting on 'waitq' for 'wake_event' | |
3161 | * | |
3162 | * Conditions: | |
3163 | * 'waitq' is locked | |
3164 | * | |
3165 | * Returns: | |
3166 | * A locked, runnable thread. | |
3167 | * If return value is non-NULL, interrupts have also | |
3168 | * been disabled, and the caller is responsible to call | |
3169 | * splx() with the returned '*spl' value. | |
3170 | */ | |
3171 | thread_t | |
3172 | waitq_wakeup64_identify_locked(struct waitq *waitq, | |
3173 | event64_t wake_event, | |
3174 | wait_result_t result, | |
3175 | spl_t *spl, | |
3176 | uint64_t *reserved_preposts, | |
3177 | int priority, | |
3178 | waitq_lock_state_t lock_state) | |
3179 | { | |
3180 | thread_t thread; | |
3181 | ||
3182 | assert(waitq_held(waitq)); | |
3183 | ||
3184 | thread = waitq_select_one_locked(waitq, wake_event, | |
3185 | reserved_preposts, | |
3186 | priority, spl); | |
3187 | ||
3188 | if (thread != THREAD_NULL) { | |
3189 | waitq_stats_count_wakeup(waitq); | |
3190 | } else { | |
3191 | waitq_stats_count_fail(waitq); | |
3192 | } | |
3193 | ||
3194 | if (lock_state == WAITQ_UNLOCK) { | |
3195 | waitq_unlock(waitq); | |
3196 | } | |
3197 | ||
3198 | if (thread != THREAD_NULL) { | |
3199 | kern_return_t __assert_only ret; | |
3200 | ret = thread_go(thread, result, WQ_OPTION_NONE); | |
3201 | assert(ret == KERN_SUCCESS); | |
3202 | } | |
3203 | ||
3204 | return thread; /* locked if not NULL (caller responsible for spl) */ | |
3205 | } | |
3206 | ||
3207 | /** | |
3208 | * wakeup a specific thread iff it's waiting on 'waitq' for 'wake_event' | |
3209 | * | |
3210 | * Conditions: | |
3211 | * 'waitq' is locked | |
3212 | * 'thread' is unlocked | |
3213 | * | |
3214 | * Notes: | |
3215 | * May temporarily disable and re-enable interrupts | |
3216 | * | |
3217 | * If the input lock_state == WAITQ_UNLOCK then the waitq will have been | |
3218 | * unlocked before calling thread_go() if 'thread' is to be awoken, and | |
3219 | * is guaranteed to be unlocked upon function return. | |
3220 | */ | |
3221 | kern_return_t | |
3222 | waitq_wakeup64_thread_locked(struct waitq *waitq, | |
3223 | event64_t wake_event, | |
3224 | thread_t thread, | |
3225 | wait_result_t result, | |
3226 | waitq_lock_state_t lock_state) | |
3227 | { | |
3228 | kern_return_t ret; | |
3229 | spl_t th_spl; | |
3230 | ||
3231 | assert(waitq_held(waitq)); | |
3232 | assert_thread_magic(thread); | |
3233 | ||
3234 | /* | |
3235 | * See if the thread was still waiting there. If so, it got | |
3236 | * dequeued and returned locked. | |
3237 | */ | |
3238 | ret = waitq_select_thread_locked(waitq, wake_event, thread, &th_spl); | |
3239 | ||
3240 | if (ret == KERN_SUCCESS) { | |
3241 | waitq_stats_count_wakeup(waitq); | |
3242 | } else { | |
3243 | waitq_stats_count_fail(waitq); | |
3244 | } | |
3245 | ||
3246 | if (lock_state == WAITQ_UNLOCK) { | |
3247 | waitq_unlock(waitq); | |
3248 | } | |
3249 | ||
3250 | if (ret != KERN_SUCCESS) { | |
3251 | return KERN_NOT_WAITING; | |
3252 | } | |
3253 | ||
3254 | ret = thread_go(thread, result, WQ_OPTION_NONE); | |
3255 | assert(ret == KERN_SUCCESS); | |
3256 | thread_unlock(thread); | |
3257 | splx(th_spl); | |
3258 | ||
3259 | return ret; | |
3260 | } | |
3261 | ||
3262 | ||
3263 | ||
3264 | /* ---------------------------------------------------------------------- | |
3265 | * | |
3266 | * In-Kernel API | |
3267 | * | |
3268 | * ---------------------------------------------------------------------- */ | |
3269 | ||
3270 | /** | |
3271 | * initialize a waitq object | |
3272 | */ | |
3273 | kern_return_t | |
3274 | waitq_init(struct waitq *waitq, int policy) | |
3275 | { | |
3276 | assert(waitq != NULL); | |
3277 | ||
3278 | /* only FIFO and LIFO for now */ | |
3279 | if ((policy & SYNC_POLICY_FIXED_PRIORITY) != 0) { | |
3280 | return KERN_INVALID_ARGUMENT; | |
3281 | } | |
3282 | ||
3283 | waitq->waitq_fifo = ((policy & SYNC_POLICY_REVERSED) == 0); | |
3284 | waitq->waitq_irq = !!(policy & SYNC_POLICY_DISABLE_IRQ); | |
3285 | waitq->waitq_prepost = 0; | |
3286 | if (policy & SYNC_POLICY_TURNSTILE_PROXY) { | |
3287 | waitq->waitq_type = WQT_TSPROXY; | |
3288 | } else { | |
3289 | waitq->waitq_type = WQT_QUEUE; | |
3290 | } | |
3291 | waitq->waitq_turnstile = !!(policy & SYNC_POLICY_TURNSTILE); | |
3292 | waitq->waitq_eventmask = 0; | |
3293 | ||
3294 | waitq->waitq_set_id = 0; | |
3295 | waitq->waitq_prepost_id = 0; | |
3296 | ||
3297 | waitq_lock_init(waitq); | |
3298 | if (waitq_is_turnstile_queue(waitq)) { | |
3299 | /* For turnstile, initialize it as a priority queue */ | |
3300 | priority_queue_init(&waitq->waitq_prio_queue); | |
3301 | assert(waitq->waitq_fifo == 0); | |
3302 | } else if (policy & SYNC_POLICY_TURNSTILE_PROXY) { | |
3303 | waitq->waitq_ts = TURNSTILE_NULL; | |
3304 | waitq->waitq_tspriv = NULL; | |
3305 | } else { | |
3306 | queue_init(&waitq->waitq_queue); | |
3307 | } | |
3308 | ||
3309 | waitq->waitq_isvalid = 1; | |
3310 | return KERN_SUCCESS; | |
3311 | } | |
3312 | ||
3313 | struct wq_unlink_ctx { | |
3314 | struct waitq *unlink_wq; | |
3315 | struct waitq_set *unlink_wqset; | |
3316 | }; | |
3317 | ||
3318 | static int waitq_unlink_prepost_cb(struct waitq_set __unused *wqset, void *ctx, | |
3319 | struct wq_prepost *wqp, struct waitq *waitq); | |
3320 | ||
3321 | /** | |
3322 | * walk_waitq_links callback to invalidate 'link' parameter | |
3323 | * | |
3324 | * Conditions: | |
3325 | * Called from walk_waitq_links. | |
3326 | * Note that unlink other callbacks, this one make no assumptions about | |
3327 | * the 'waitq' parameter, specifically it does not have to be locked or | |
3328 | * even valid. | |
3329 | */ | |
3330 | static int | |
3331 | waitq_unlink_all_cb(struct waitq *waitq, void *ctx, | |
3332 | struct waitq_link *link) | |
3333 | { | |
3334 | (void)waitq; | |
3335 | (void)ctx; | |
3336 | if (wql_type(link) == WQL_LINK && wql_is_valid(link)) { | |
3337 | wql_invalidate(link); | |
3338 | } | |
3339 | ||
3340 | if (wql_type(link) == WQL_WQS) { | |
3341 | struct waitq_set *wqset; | |
3342 | struct wq_unlink_ctx ulctx; | |
3343 | ||
3344 | /* | |
3345 | * When destroying the waitq, take the time to clear out any | |
3346 | * preposts it may have made. This could potentially save time | |
3347 | * on the IPC send path which would otherwise have to iterate | |
3348 | * over lots of dead port preposts. | |
3349 | */ | |
3350 | if (waitq->waitq_prepost_id == 0) { | |
3351 | goto out; | |
3352 | } | |
3353 | ||
3354 | wqset = link->wql_wqs.wql_set; | |
3355 | assert(wqset != NULL); | |
3356 | assert(!waitq_irq_safe(&wqset->wqset_q)); | |
3357 | ||
3358 | waitq_set_lock(wqset); | |
3359 | ||
3360 | if (!waitq_set_is_valid(wqset)) { | |
3361 | /* someone raced us to teardown */ | |
3362 | goto out_unlock; | |
3363 | } | |
3364 | if (!waitq_set_maybe_preposted(wqset)) { | |
3365 | goto out_unlock; | |
3366 | } | |
3367 | ||
3368 | ulctx.unlink_wq = waitq; | |
3369 | ulctx.unlink_wqset = wqset; | |
3370 | (void)wq_prepost_iterate(wqset->wqset_prepost_id, &ulctx, | |
3371 | waitq_unlink_prepost_cb); | |
3372 | out_unlock: | |
3373 | waitq_set_unlock(wqset); | |
3374 | } | |
3375 | ||
3376 | out: | |
3377 | return WQ_ITERATE_CONTINUE; | |
3378 | } | |
3379 | ||
3380 | ||
3381 | /** | |
3382 | * cleanup any link/prepost table resources associated with a waitq | |
3383 | */ | |
3384 | void | |
3385 | waitq_deinit(struct waitq *waitq) | |
3386 | { | |
3387 | spl_t s; | |
3388 | ||
3389 | assert(waitq); | |
3390 | if (!waitq_is_valid(waitq)) { | |
3391 | return; | |
3392 | } | |
3393 | ||
3394 | if (!waitq_is_queue(waitq) && !waitq_is_turnstile_proxy(waitq)) { | |
3395 | return; | |
3396 | } | |
3397 | ||
3398 | if (waitq_irq_safe(waitq)) { | |
3399 | s = splsched(); | |
3400 | } | |
3401 | waitq_lock(waitq); | |
3402 | ||
3403 | if (waitq_valid(waitq)) { | |
3404 | waitq->waitq_isvalid = 0; | |
3405 | if (!waitq_irq_safe(waitq)) { | |
3406 | waitq_unlink_all_unlock(waitq); | |
3407 | /* waitq unlocked and set links deallocated */ | |
3408 | goto out; | |
3409 | } | |
3410 | } | |
3411 | ||
3412 | waitq_unlock(waitq); | |
3413 | if (waitq_irq_safe(waitq)) { | |
3414 | splx(s); | |
3415 | } | |
3416 | ||
3417 | out: | |
3418 | #if MACH_ASSERT | |
3419 | if (waitq_is_turnstile_queue(waitq)) { | |
3420 | assert(priority_queue_empty(&waitq->waitq_prio_queue)); | |
3421 | } else if (waitq_is_turnstile_proxy(waitq)) { | |
3422 | assert(waitq->waitq_ts == TURNSTILE_NULL); | |
3423 | } else { | |
3424 | assert(queue_empty(&waitq->waitq_queue)); | |
3425 | } | |
3426 | #else | |
3427 | (void)0; | |
3428 | #endif // MACH_ASSERT | |
3429 | } | |
3430 | ||
3431 | void | |
3432 | waitq_invalidate_locked(struct waitq *waitq) | |
3433 | { | |
3434 | assert(waitq_held(waitq)); | |
3435 | assert(waitq_is_valid(waitq)); | |
3436 | waitq->waitq_isvalid = 0; | |
3437 | } | |
3438 | ||
3439 | /** | |
3440 | * invalidate the given wq_prepost object | |
3441 | * | |
3442 | * Conditions: | |
3443 | * Called from wq_prepost_iterate (_not_ from wq_prepost_foreach_locked!) | |
3444 | */ | |
3445 | static int | |
3446 | wqset_clear_prepost_chain_cb(struct waitq_set __unused *wqset, | |
3447 | void __unused *ctx, | |
3448 | struct wq_prepost *wqp, | |
3449 | struct waitq __unused *waitq) | |
3450 | { | |
3451 | if (wqp_type(wqp) == WQP_POST) { | |
3452 | wq_prepost_invalidate(wqp); | |
3453 | } | |
3454 | return WQ_ITERATE_CONTINUE; | |
3455 | } | |
3456 | ||
3457 | ||
3458 | /** | |
3459 | * allocate and initialize a waitq set object | |
3460 | * | |
3461 | * Conditions: | |
3462 | * may block | |
3463 | * | |
3464 | * Returns: | |
3465 | * allocated / initialized waitq_set object. | |
3466 | * the waits_set object returned does not have | |
3467 | * a waitq_link associated. | |
3468 | * | |
3469 | * NULL on failure | |
3470 | */ | |
3471 | struct waitq_set * | |
3472 | waitq_set_alloc(int policy, waitq_set_prepost_hook_t *prepost_hook) | |
3473 | { | |
3474 | struct waitq_set *wqset; | |
3475 | ||
3476 | wqset = (struct waitq_set *)zalloc(waitq_set_zone); | |
3477 | if (!wqset) { | |
3478 | panic("Can't allocate a new waitq set from zone %p", waitq_set_zone); | |
3479 | } | |
3480 | ||
3481 | kern_return_t ret; | |
3482 | ret = waitq_set_init(wqset, policy, NULL, prepost_hook); | |
3483 | if (ret != KERN_SUCCESS) { | |
3484 | zfree(waitq_set_zone, wqset); | |
3485 | wqset = NULL; | |
3486 | } | |
3487 | ||
3488 | return wqset; | |
3489 | } | |
3490 | ||
3491 | /** | |
3492 | * initialize a waitq set object | |
3493 | * | |
3494 | * if no 'reserved_link' object is passed | |
3495 | * the waitq_link will be lazily allocated | |
3496 | * on demand through waitq_set_lazy_init_link. | |
3497 | */ | |
3498 | kern_return_t | |
3499 | waitq_set_init(struct waitq_set *wqset, | |
3500 | int policy, uint64_t *reserved_link, | |
3501 | waitq_set_prepost_hook_t *prepost_hook) | |
3502 | { | |
3503 | struct waitq_link *link; | |
3504 | kern_return_t ret; | |
3505 | ||
3506 | memset(wqset, 0, sizeof(*wqset)); | |
3507 | ||
3508 | ret = waitq_init(&wqset->wqset_q, policy); | |
3509 | if (ret != KERN_SUCCESS) { | |
3510 | return ret; | |
3511 | } | |
3512 | ||
3513 | wqset->wqset_q.waitq_type = WQT_SET; | |
3514 | if (policy & SYNC_POLICY_PREPOST) { | |
3515 | wqset->wqset_q.waitq_prepost = 1; | |
3516 | wqset->wqset_prepost_id = 0; | |
3517 | assert(prepost_hook == NULL); | |
3518 | } else { | |
3519 | wqset->wqset_q.waitq_prepost = 0; | |
3520 | wqset->wqset_prepost_hook = prepost_hook; | |
3521 | } | |
3522 | ||
3523 | if (reserved_link && *reserved_link != 0) { | |
3524 | link = wql_get_reserved(*reserved_link, WQL_WQS); | |
3525 | ||
3526 | if (!link) { | |
3527 | panic("Can't allocate link object for waitq set: %p", wqset); | |
3528 | } | |
3529 | ||
3530 | /* always consume the caller's reference */ | |
3531 | *reserved_link = 0; | |
3532 | ||
3533 | link->wql_wqs.wql_set = wqset; | |
3534 | wql_mkvalid(link); | |
3535 | ||
3536 | wqset->wqset_id = link->wql_setid.id; | |
3537 | wql_put_link(link); | |
3538 | } else { | |
3539 | /* | |
3540 | * Lazy allocate the link only when an actual id is needed. | |
3541 | */ | |
3542 | wqset->wqset_id = WQSET_NOT_LINKED; | |
3543 | } | |
3544 | ||
3545 | return KERN_SUCCESS; | |
3546 | } | |
3547 | ||
3548 | #if DEVELOPMENT || DEBUG | |
3549 | ||
3550 | int | |
3551 | sysctl_helper_waitq_set_nelem(void) | |
3552 | { | |
3553 | return ltable_nelem(&g_wqlinktable); | |
3554 | } | |
3555 | ||
3556 | #endif | |
3557 | ||
3558 | /** | |
3559 | * initialize a waitq set link. | |
3560 | * | |
3561 | * Conditions: | |
3562 | * may block | |
3563 | * locks and unlocks the waiq set lock | |
3564 | * | |
3565 | */ | |
3566 | void | |
3567 | waitq_set_lazy_init_link(struct waitq_set *wqset) | |
3568 | { | |
3569 | struct waitq_link *link; | |
3570 | ||
3571 | assert(get_preemption_level() == 0 && waitq_wait_possible(current_thread())); | |
3572 | ||
3573 | waitq_set_lock(wqset); | |
3574 | if (!waitq_set_should_lazy_init_link(wqset)) { | |
3575 | waitq_set_unlock(wqset); | |
3576 | return; | |
3577 | } | |
3578 | ||
3579 | assert(wqset->wqset_id == WQSET_NOT_LINKED); | |
3580 | waitq_set_unlock(wqset); | |
3581 | ||
3582 | link = wql_alloc_link(WQL_WQS); | |
3583 | if (!link) { | |
3584 | panic("Can't allocate link object for waitq set: %p", wqset); | |
3585 | } | |
3586 | ||
3587 | link->wql_wqs.wql_set = wqset; | |
3588 | ||
3589 | waitq_set_lock(wqset); | |
3590 | if (waitq_set_should_lazy_init_link(wqset)) { | |
3591 | wql_mkvalid(link); | |
3592 | wqset->wqset_id = link->wql_setid.id; | |
3593 | } | |
3594 | ||
3595 | assert(wqset->wqset_id != 0); | |
3596 | assert(wqset->wqset_id != WQSET_NOT_LINKED); | |
3597 | ||
3598 | waitq_set_unlock(wqset); | |
3599 | ||
3600 | wql_put_link(link); | |
3601 | ||
3602 | return; | |
3603 | } | |
3604 | ||
3605 | /** | |
3606 | * checks if a waitq set needs to be linked. | |
3607 | * | |
3608 | */ | |
3609 | boolean_t | |
3610 | waitq_set_should_lazy_init_link(struct waitq_set *wqset) | |
3611 | { | |
3612 | if (waitqs_is_linked(wqset) || wqset->wqset_id == 0) { | |
3613 | return FALSE; | |
3614 | } | |
3615 | return TRUE; | |
3616 | } | |
3617 | ||
3618 | /** | |
3619 | * clear out / release any resources associated with a waitq set | |
3620 | * | |
3621 | * Conditions: | |
3622 | * may block | |
3623 | * Note: | |
3624 | * This will render the waitq set invalid, and it must | |
3625 | * be re-initialized with waitq_set_init before it can be used again | |
3626 | */ | |
3627 | void | |
3628 | waitq_set_deinit(struct waitq_set *wqset) | |
3629 | { | |
3630 | struct waitq_link *link = NULL; | |
3631 | uint64_t set_id, prepost_id; | |
3632 | ||
3633 | if (!waitqs_is_set(wqset)) { | |
3634 | panic("trying to de-initialize an invalid wqset @%p", wqset); | |
3635 | } | |
3636 | ||
3637 | assert(!waitq_irq_safe(&wqset->wqset_q)); | |
3638 | ||
3639 | waitq_set_lock(wqset); | |
3640 | ||
3641 | if (waitq_set_has_prepost_hook(wqset)) { | |
3642 | waitq_set_prepost_hook_t *hook = wqset->wqset_prepost_hook; | |
3643 | /* | |
3644 | * If the wqset_prepost_hook value is non 0, | |
3645 | * then another core is currently posting to this waitq set | |
3646 | * and we need for it to finish what it's doing. | |
3647 | */ | |
3648 | while (os_atomic_load(hook, relaxed) != 0) { | |
3649 | waitq_set_unlock(wqset); | |
3650 | delay(1); | |
3651 | waitq_set_lock(wqset); | |
3652 | } | |
3653 | } | |
3654 | ||
3655 | set_id = wqset->wqset_id; | |
3656 | ||
3657 | if (waitqs_is_linked(wqset) || set_id == 0) { | |
3658 | /* grab the set's link object */ | |
3659 | link = wql_get_link(set_id); | |
3660 | if (link) { | |
3661 | wql_invalidate(link); | |
3662 | } | |
3663 | /* someone raced us to deinit */ | |
3664 | if (!link || wqset->wqset_id != set_id || set_id != link->wql_setid.id) { | |
3665 | if (link) { | |
3666 | wql_put_link(link); | |
3667 | } | |
3668 | waitq_set_unlock(wqset); | |
3669 | return; | |
3670 | } | |
3671 | ||
3672 | /* the link should be a valid link object at this point */ | |
3673 | assert(link != NULL && wql_type(link) == WQL_WQS); | |
3674 | ||
3675 | wqset->wqset_id = 0; | |
3676 | } | |
3677 | ||
3678 | /* | |
3679 | * This set may have a lot of preposts, or may have been a member of | |
3680 | * many other sets. To minimize spinlock hold times, we clear out the | |
3681 | * waitq set data structure under the lock-hold, but don't clear any | |
3682 | * table objects. We keep handles to the prepost and set linkage | |
3683 | * objects and free those outside the critical section. | |
3684 | */ | |
3685 | prepost_id = 0; | |
3686 | if (wqset->wqset_q.waitq_prepost && wqset->wqset_prepost_id) { | |
3687 | assert(link != NULL); | |
3688 | prepost_id = wqset->wqset_prepost_id; | |
3689 | } | |
3690 | /* else { TODO: notify kqueue subsystem? } */ | |
3691 | wqset->wqset_prepost_id = 0; | |
3692 | ||
3693 | wqset->wqset_q.waitq_fifo = 0; | |
3694 | wqset->wqset_q.waitq_prepost = 0; | |
3695 | wqset->wqset_q.waitq_isvalid = 0; | |
3696 | ||
3697 | /* don't clear the 'waitq_irq' bit: it's used in locking! */ | |
3698 | wqset->wqset_q.waitq_eventmask = 0; | |
3699 | ||
3700 | waitq_unlink_all_unlock(&wqset->wqset_q); | |
3701 | /* wqset->wqset_q unlocked and set links deallocated */ | |
3702 | ||
3703 | ||
3704 | if (link) { | |
3705 | /* | |
3706 | * walk_waitq_links may race with us for access to the waitq set. | |
3707 | * If walk_waitq_links has a reference to the set, then we should wait | |
3708 | * until the link's refcount goes to 1 (our reference) before we exit | |
3709 | * this function. That way we ensure that the waitq set memory will | |
3710 | * remain valid even though it's been cleared out. | |
3711 | */ | |
3712 | while (wql_refcnt(link) > 1) { | |
3713 | delay(1); | |
3714 | } | |
3715 | wql_put_link(link); | |
3716 | } | |
3717 | ||
3718 | /* drop / unlink all the prepost table objects */ | |
3719 | /* JMM - can this happen before the delay? */ | |
3720 | if (prepost_id) { | |
3721 | (void)wq_prepost_iterate(prepost_id, NULL, | |
3722 | wqset_clear_prepost_chain_cb); | |
3723 | } | |
3724 | } | |
3725 | ||
3726 | /** | |
3727 | * de-initialize and free an allocated waitq set object | |
3728 | * | |
3729 | * Conditions: | |
3730 | * may block | |
3731 | */ | |
3732 | kern_return_t | |
3733 | waitq_set_free(struct waitq_set *wqset) | |
3734 | { | |
3735 | waitq_set_deinit(wqset); | |
3736 | ||
3737 | memset(wqset, 0, sizeof(*wqset)); | |
3738 | zfree(waitq_set_zone, wqset); | |
3739 | ||
3740 | return KERN_SUCCESS; | |
3741 | } | |
3742 | ||
3743 | #if DEVELOPMENT || DEBUG | |
3744 | #if CONFIG_WAITQ_DEBUG | |
3745 | /** | |
3746 | * return the set ID of 'wqset' | |
3747 | */ | |
3748 | uint64_t | |
3749 | wqset_id(struct waitq_set *wqset) | |
3750 | { | |
3751 | if (!wqset) { | |
3752 | return 0; | |
3753 | } | |
3754 | ||
3755 | assert(waitqs_is_set(wqset)); | |
3756 | ||
3757 | if (!waitqs_is_linked(wqset)) { | |
3758 | waitq_set_lazy_init_link(wqset); | |
3759 | } | |
3760 | ||
3761 | return wqset->wqset_id; | |
3762 | } | |
3763 | ||
3764 | /** | |
3765 | * returns a pointer to the waitq object embedded in 'wqset' | |
3766 | */ | |
3767 | struct waitq * | |
3768 | wqset_waitq(struct waitq_set *wqset) | |
3769 | { | |
3770 | if (!wqset) { | |
3771 | return NULL; | |
3772 | } | |
3773 | ||
3774 | assert(waitqs_is_set(wqset)); | |
3775 | ||
3776 | return &wqset->wqset_q; | |
3777 | } | |
3778 | #endif /* CONFIG_WAITQ_DEBUG */ | |
3779 | #endif /* DEVELOPMENT || DEBUG */ | |
3780 | ||
3781 | ||
3782 | /** | |
3783 | * clear all preposts originating from 'waitq' | |
3784 | * | |
3785 | * Conditions: | |
3786 | * 'waitq' locked | |
3787 | * may (rarely) spin waiting for another on-core thread to | |
3788 | * release the last reference to the waitq's prepost link object | |
3789 | * | |
3790 | * NOTE: | |
3791 | * If this function needs to spin, it will drop the waitq lock! | |
3792 | * The return value of the function indicates whether or not this | |
3793 | * happened: 1 == lock was dropped, 0 == lock held | |
3794 | */ | |
3795 | int | |
3796 | waitq_clear_prepost_locked(struct waitq *waitq) | |
3797 | { | |
3798 | struct wq_prepost *wqp; | |
3799 | int dropped_lock = 0; | |
3800 | ||
3801 | assert(!waitq_irq_safe(waitq)); | |
3802 | ||
3803 | if (waitq->waitq_prepost_id == 0) { | |
3804 | return 0; | |
3805 | } | |
3806 | ||
3807 | wqp = wq_prepost_get(waitq->waitq_prepost_id); | |
3808 | waitq->waitq_prepost_id = 0; | |
3809 | if (wqp) { | |
3810 | uint64_t wqp_id = wqp->wqp_prepostid.id; | |
3811 | wqdbg_v("invalidate prepost 0x%llx (refcnt:%d)", | |
3812 | wqp->wqp_prepostid.id, wqp_refcnt(wqp)); | |
3813 | wq_prepost_invalidate(wqp); | |
3814 | while (wqp_refcnt(wqp) > 1) { | |
3815 | /* | |
3816 | * Some other thread must have raced us to grab a link | |
3817 | * object reference before we invalidated it. This | |
3818 | * means that they are probably trying to access the | |
3819 | * waitq to which the prepost object points. We need | |
3820 | * to wait here until the other thread drops their | |
3821 | * reference. We know that no one else can get a | |
3822 | * reference (the object has been invalidated), and | |
3823 | * that prepost references are short-lived (dropped on | |
3824 | * a call to wq_prepost_put). We also know that no one | |
3825 | * blocks while holding a reference therefore the | |
3826 | * other reference holder must be on-core. We'll just | |
3827 | * sit and wait for the other reference to be dropped. | |
3828 | */ | |
3829 | disable_preemption(); | |
3830 | ||
3831 | waitq_unlock(waitq); | |
3832 | dropped_lock = 1; | |
3833 | /* | |
3834 | * don't yield here, just spin and assume the other | |
3835 | * consumer is already on core... | |
3836 | */ | |
3837 | delay(1); | |
3838 | ||
3839 | waitq_lock(waitq); | |
3840 | ||
3841 | enable_preemption(); | |
3842 | } | |
3843 | if (wqp_refcnt(wqp) > 0 && wqp->wqp_prepostid.id == wqp_id) { | |
3844 | wq_prepost_put(wqp); | |
3845 | } | |
3846 | } | |
3847 | ||
3848 | return dropped_lock; | |
3849 | } | |
3850 | ||
3851 | /** | |
3852 | * clear all preposts originating from 'waitq' | |
3853 | * | |
3854 | * Conditions: | |
3855 | * 'waitq' is not locked | |
3856 | * may disable and re-enable interrupts | |
3857 | */ | |
3858 | void | |
3859 | waitq_clear_prepost(struct waitq *waitq) | |
3860 | { | |
3861 | assert(waitq_valid(waitq)); | |
3862 | assert(!waitq_irq_safe(waitq)); | |
3863 | ||
3864 | waitq_lock(waitq); | |
3865 | /* it doesn't matter to us if the lock is dropped here */ | |
3866 | (void)waitq_clear_prepost_locked(waitq); | |
3867 | waitq_unlock(waitq); | |
3868 | } | |
3869 | ||
3870 | /** | |
3871 | * return a the waitq's prepost object ID (allocate if necessary) | |
3872 | * | |
3873 | * Conditions: | |
3874 | * 'waitq' is unlocked | |
3875 | */ | |
3876 | uint64_t | |
3877 | waitq_get_prepost_id(struct waitq *waitq) | |
3878 | { | |
3879 | struct wq_prepost *wqp; | |
3880 | uint64_t wqp_id = 0; | |
3881 | ||
3882 | if (!waitq_valid(waitq)) { | |
3883 | return 0; | |
3884 | } | |
3885 | ||
3886 | assert(!waitq_irq_safe(waitq)); | |
3887 | ||
3888 | waitq_lock(waitq); | |
3889 | ||
3890 | if (!waitq_valid(waitq)) { | |
3891 | goto out_unlock; | |
3892 | } | |
3893 | ||
3894 | if (waitq->waitq_prepost_id) { | |
3895 | wqp_id = waitq->waitq_prepost_id; | |
3896 | goto out_unlock; | |
3897 | } | |
3898 | ||
3899 | /* don't hold a spinlock while allocating a prepost object */ | |
3900 | waitq_unlock(waitq); | |
3901 | ||
3902 | wqp = wq_prepost_alloc(WQP_WQ, 1); | |
3903 | if (!wqp) { | |
3904 | return 0; | |
3905 | } | |
3906 | ||
3907 | /* re-acquire the waitq lock */ | |
3908 | waitq_lock(waitq); | |
3909 | ||
3910 | if (!waitq_valid(waitq)) { | |
3911 | wq_prepost_put(wqp); | |
3912 | wqp_id = 0; | |
3913 | goto out_unlock; | |
3914 | } | |
3915 | ||
3916 | if (waitq->waitq_prepost_id) { | |
3917 | /* we were beat by someone else */ | |
3918 | wq_prepost_put(wqp); | |
3919 | wqp_id = waitq->waitq_prepost_id; | |
3920 | goto out_unlock; | |
3921 | } | |
3922 | ||
3923 | wqp->wqp_wq.wqp_wq_ptr = waitq; | |
3924 | ||
3925 | wqp_set_valid(wqp); | |
3926 | wqp_id = wqp->wqp_prepostid.id; | |
3927 | waitq->waitq_prepost_id = wqp_id; | |
3928 | ||
3929 | wq_prepost_put(wqp); | |
3930 | ||
3931 | out_unlock: | |
3932 | waitq_unlock(waitq); | |
3933 | ||
3934 | return wqp_id; | |
3935 | } | |
3936 | ||
3937 | ||
3938 | static int | |
3939 | waitq_inset_cb(struct waitq *waitq, void *ctx, struct waitq_link *link) | |
3940 | { | |
3941 | uint64_t setid = *(uint64_t *)ctx; | |
3942 | int wqltype = wql_type(link); | |
3943 | (void)waitq; | |
3944 | if (wqltype == WQL_WQS && link->wql_setid.id == setid) { | |
3945 | wqdbg_v(" waitq already in set 0x%llx", setid); | |
3946 | return WQ_ITERATE_FOUND; | |
3947 | } else if (wqltype == WQL_LINK) { | |
3948 | /* | |
3949 | * break out early if we see a link that points to the setid | |
3950 | * in question. This saves us a step in the | |
3951 | * iteration/recursion | |
3952 | */ | |
3953 | wqdbg_v(" waitq already in set 0x%llx (WQL_LINK)", setid); | |
3954 | if (link->wql_link.left_setid == setid || | |
3955 | link->wql_link.right_setid == setid) { | |
3956 | return WQ_ITERATE_FOUND; | |
3957 | } | |
3958 | } | |
3959 | ||
3960 | return WQ_ITERATE_CONTINUE; | |
3961 | } | |
3962 | ||
3963 | /** | |
3964 | * determine if 'waitq' is a member of 'wqset' | |
3965 | * | |
3966 | * Conditions: | |
3967 | * neither 'waitq' nor 'wqset' is not locked | |
3968 | * may disable and re-enable interrupts while locking 'waitq' | |
3969 | */ | |
3970 | boolean_t | |
3971 | waitq_member(struct waitq *waitq, struct waitq_set *wqset) | |
3972 | { | |
3973 | kern_return_t kr = WQ_ITERATE_SUCCESS; | |
3974 | uint64_t setid; | |
3975 | ||
3976 | if (!waitq_valid(waitq)) { | |
3977 | panic("Invalid waitq: %p", waitq); | |
3978 | } | |
3979 | assert(!waitq_irq_safe(waitq)); | |
3980 | ||
3981 | if (!waitqs_is_set(wqset)) { | |
3982 | return FALSE; | |
3983 | } | |
3984 | ||
3985 | waitq_lock(waitq); | |
3986 | ||
3987 | if (!waitqs_is_linked(wqset)) { | |
3988 | goto out_unlock; | |
3989 | } | |
3990 | ||
3991 | setid = wqset->wqset_id; | |
3992 | ||
3993 | /* fast path: most waitqs are members of only 1 set */ | |
3994 | if (waitq->waitq_set_id == setid) { | |
3995 | waitq_unlock(waitq); | |
3996 | return TRUE; | |
3997 | } | |
3998 | ||
3999 | /* walk the link table and look for the Set ID of wqset */ | |
4000 | kr = walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id, | |
4001 | WQL_ALL, (void *)&setid, waitq_inset_cb); | |
4002 | ||
4003 | out_unlock: | |
4004 | waitq_unlock(waitq); | |
4005 | return kr == WQ_ITERATE_FOUND; | |
4006 | } | |
4007 | ||
4008 | /** | |
4009 | * Returns true is the given waitq is a member of at least 1 set | |
4010 | */ | |
4011 | boolean_t | |
4012 | waitq_in_set(struct waitq *waitq) | |
4013 | { | |
4014 | struct waitq_link *link; | |
4015 | boolean_t inset = FALSE; | |
4016 | ||
4017 | if (waitq_irq_safe(waitq)) { | |
4018 | return FALSE; | |
4019 | } | |
4020 | ||
4021 | waitq_lock(waitq); | |
4022 | ||
4023 | if (!waitq->waitq_set_id) { | |
4024 | goto out_unlock; | |
4025 | } | |
4026 | ||
4027 | link = wql_get_link(waitq->waitq_set_id); | |
4028 | if (link) { | |
4029 | /* if we get here, the waitq is in _at_least_one_ set */ | |
4030 | inset = TRUE; | |
4031 | wql_put_link(link); | |
4032 | } else { | |
4033 | /* we can just optimize this for next time */ | |
4034 | waitq->waitq_set_id = 0; | |
4035 | } | |
4036 | ||
4037 | out_unlock: | |
4038 | waitq_unlock(waitq); | |
4039 | return inset; | |
4040 | } | |
4041 | ||
4042 | ||
4043 | /** | |
4044 | * pre-allocate a waitq link structure from the link table | |
4045 | * | |
4046 | * Conditions: | |
4047 | * 'waitq' is not locked | |
4048 | * may (rarely) block if link table needs to grow | |
4049 | */ | |
4050 | uint64_t | |
4051 | waitq_link_reserve(struct waitq *waitq) | |
4052 | { | |
4053 | struct waitq_link *link; | |
4054 | uint64_t reserved_id = 0; | |
4055 | ||
4056 | assert(get_preemption_level() == 0 && waitq_wait_possible(current_thread())); | |
4057 | ||
4058 | /* | |
4059 | * We've asserted that the caller can block, so we enforce a | |
4060 | * minimum-free table element policy here. | |
4061 | */ | |
4062 | wql_ensure_free_space(); | |
4063 | ||
4064 | (void)waitq; | |
4065 | link = wql_alloc_link(LT_RESERVED); | |
4066 | if (!link) { | |
4067 | return 0; | |
4068 | } | |
4069 | ||
4070 | reserved_id = link->wql_setid.id; | |
4071 | ||
4072 | return reserved_id; | |
4073 | } | |
4074 | ||
4075 | /** | |
4076 | * release a pre-allocated waitq link structure | |
4077 | */ | |
4078 | void | |
4079 | waitq_link_release(uint64_t id) | |
4080 | { | |
4081 | struct waitq_link *link; | |
4082 | ||
4083 | if (id == 0) { | |
4084 | return; | |
4085 | } | |
4086 | ||
4087 | link = wql_get_reserved(id, WQL_LINK); | |
4088 | if (!link) { | |
4089 | return; | |
4090 | } | |
4091 | ||
4092 | /* | |
4093 | * if we successfully got a link object, then we know | |
4094 | * it's not been marked valid, and can be released with | |
4095 | * a standard wql_put_link() which should free the element. | |
4096 | */ | |
4097 | wql_put_link(link); | |
4098 | #if CONFIG_LTABLE_STATS | |
4099 | g_wqlinktable.nreserved_releases += 1; | |
4100 | #endif | |
4101 | } | |
4102 | ||
4103 | /** | |
4104 | * link 'waitq' to the set identified by 'setid' using the 'link' structure | |
4105 | * | |
4106 | * Conditions: | |
4107 | * 'waitq' is locked | |
4108 | * caller should have a reference to the 'link' object | |
4109 | */ | |
4110 | static kern_return_t | |
4111 | waitq_link_internal(struct waitq *waitq, | |
4112 | uint64_t setid, struct waitq_link *link) | |
4113 | { | |
4114 | struct waitq_link *qlink; | |
4115 | kern_return_t kr; | |
4116 | ||
4117 | assert(waitq_held(waitq)); | |
4118 | assert(setid != 0); | |
4119 | assert(setid != WQSET_NOT_LINKED); | |
4120 | ||
4121 | /* | |
4122 | * If the waitq_set_id field is empty, then this waitq is not | |
4123 | * a member of any other set. All we have to do is update the | |
4124 | * field. | |
4125 | */ | |
4126 | if (!waitq->waitq_set_id) { | |
4127 | waitq->waitq_set_id = setid; | |
4128 | return KERN_SUCCESS; | |
4129 | } | |
4130 | ||
4131 | qlink = wql_get_link(waitq->waitq_set_id); | |
4132 | if (!qlink) { | |
4133 | /* | |
4134 | * The set to which this wait queue belonged has been | |
4135 | * destroyed / invalidated. We can re-use the waitq field. | |
4136 | */ | |
4137 | waitq->waitq_set_id = setid; | |
4138 | return KERN_SUCCESS; | |
4139 | } | |
4140 | wql_put_link(qlink); | |
4141 | ||
4142 | /* | |
4143 | * Check to see if it's already a member of the set. | |
4144 | * | |
4145 | * TODO: check for cycles! | |
4146 | */ | |
4147 | kr = walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id, | |
4148 | WQL_ALL, (void *)&setid, waitq_inset_cb); | |
4149 | if (kr == WQ_ITERATE_FOUND) { | |
4150 | return KERN_ALREADY_IN_SET; | |
4151 | } | |
4152 | ||
4153 | /* | |
4154 | * This wait queue is a member of at least one set already, | |
4155 | * and _not_ a member of the given set. Use our previously | |
4156 | * allocated link object, and hook it up to the wait queue. | |
4157 | * Note that it's possible that one or more of the wait queue sets to | |
4158 | * which the wait queue belongs was invalidated before we allocated | |
4159 | * this link object. That's OK because the next time we use that | |
4160 | * object we'll just ignore it. | |
4161 | */ | |
4162 | link->wql_link.left_setid = setid; | |
4163 | link->wql_link.right_setid = waitq->waitq_set_id; | |
4164 | wql_mkvalid(link); | |
4165 | ||
4166 | waitq->waitq_set_id = link->wql_setid.id; | |
4167 | ||
4168 | return KERN_SUCCESS; | |
4169 | } | |
4170 | ||
4171 | /** | |
4172 | * link 'waitq' to 'wqset' | |
4173 | * | |
4174 | * Conditions: | |
4175 | * if 'lock_state' contains WAITQ_SHOULD_LOCK, 'waitq' must be unlocked. | |
4176 | * Otherwise, 'waitq' must be locked. | |
4177 | * | |
4178 | * may (rarely) block on link table allocation if the table has to grow, | |
4179 | * and no 'reserved_link' object is passed. | |
4180 | * | |
4181 | * may block and acquire wqset lock if the wqset passed has no link. | |
4182 | * | |
4183 | * Notes: | |
4184 | * The caller can guarantee that this function will never block by | |
4185 | * - pre-allocating a link table object and passing its ID in 'reserved_link' | |
4186 | * - and pre-allocating the waitq set link calling waitq_set_lazy_init_link. | |
4187 | * It is not possible to provide a reserved_link without having also linked | |
4188 | * the wqset. | |
4189 | */ | |
4190 | kern_return_t | |
4191 | waitq_link(struct waitq *waitq, struct waitq_set *wqset, | |
4192 | waitq_lock_state_t lock_state, uint64_t *reserved_link) | |
4193 | { | |
4194 | kern_return_t kr; | |
4195 | struct waitq_link *link; | |
4196 | int should_lock = (lock_state == WAITQ_SHOULD_LOCK); | |
4197 | ||
4198 | if (!waitq_valid(waitq) || waitq_irq_safe(waitq)) { | |
4199 | panic("Invalid waitq: %p", waitq); | |
4200 | } | |
4201 | ||
4202 | if (!waitqs_is_set(wqset)) { | |
4203 | return KERN_INVALID_ARGUMENT; | |
4204 | } | |
4205 | ||
4206 | if (!reserved_link || *reserved_link == 0) { | |
4207 | if (!waitqs_is_linked(wqset)) { | |
4208 | waitq_set_lazy_init_link(wqset); | |
4209 | } | |
4210 | } | |
4211 | ||
4212 | wqdbg_v("Link waitq %p to wqset 0x%llx", | |
4213 | (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq), wqset->wqset_id); | |
4214 | ||
4215 | /* | |
4216 | * We _might_ need a new link object here, so we'll grab outside | |
4217 | * the lock because the alloc call _might_ block. | |
4218 | * | |
4219 | * If the caller reserved a link beforehand, then wql_get_link | |
4220 | * is guaranteed not to block because the caller holds an extra | |
4221 | * reference to the link which, in turn, hold a reference to the | |
4222 | * link table. | |
4223 | */ | |
4224 | if (reserved_link && *reserved_link != 0) { | |
4225 | link = wql_get_reserved(*reserved_link, WQL_LINK); | |
4226 | /* always consume the caller's reference */ | |
4227 | *reserved_link = 0; | |
4228 | } else { | |
4229 | link = wql_alloc_link(WQL_LINK); | |
4230 | } | |
4231 | if (!link) { | |
4232 | return KERN_NO_SPACE; | |
4233 | } | |
4234 | ||
4235 | if (should_lock) { | |
4236 | waitq_lock(waitq); | |
4237 | } | |
4238 | ||
4239 | kr = waitq_link_internal(waitq, wqset->wqset_id, link); | |
4240 | ||
4241 | if (should_lock) { | |
4242 | waitq_unlock(waitq); | |
4243 | } | |
4244 | ||
4245 | wql_put_link(link); | |
4246 | ||
4247 | return kr; | |
4248 | } | |
4249 | ||
4250 | /** | |
4251 | * helper: unlink 'waitq' from waitq set identified by 'setid' | |
4252 | * this function also prunes invalid objects from the tree | |
4253 | * | |
4254 | * Conditions: | |
4255 | * MUST be called from walk_waitq_links link table walk | |
4256 | * 'waitq' is locked | |
4257 | * | |
4258 | * Notes: | |
4259 | * This is a helper function which compresses the link table by culling | |
4260 | * unused or unnecessary links. See comments below for different | |
4261 | * scenarios. | |
4262 | */ | |
4263 | static inline int | |
4264 | waitq_maybe_remove_link(struct waitq *waitq, | |
4265 | uint64_t setid, | |
4266 | struct waitq_link *parent, | |
4267 | struct waitq_link *left, | |
4268 | struct waitq_link *right) | |
4269 | { | |
4270 | uint64_t *wq_setid = &waitq->waitq_set_id; | |
4271 | ||
4272 | /* | |
4273 | * There are two scenarios: | |
4274 | * | |
4275 | * Scenario 1: | |
4276 | * -------------------------------------------------------------------- | |
4277 | * waitq->waitq_set_id == parent | |
4278 | * | |
4279 | * parent(LINK) | |
4280 | * / \ | |
4281 | * / \ | |
4282 | * / \ | |
4283 | * L(LINK/WQS_l) R(LINK/WQS_r) | |
4284 | * | |
4285 | * In this scenario, we assert that the original waitq points to the | |
4286 | * parent link we were passed in. If WQS_l (or WQS_r) is the waitq | |
4287 | * set we're looking for, we can set the corresponding parent | |
4288 | * link id (left or right) to 0. To compress the tree, we can reset the | |
4289 | * waitq_set_id of the original waitq to point to the side of the | |
4290 | * parent that is still valid. We then discard the parent link object. | |
4291 | */ | |
4292 | if (*wq_setid == parent->wql_setid.id) { | |
4293 | if (!left && !right) { | |
4294 | /* completely invalid children */ | |
4295 | wql_invalidate(parent); | |
4296 | wqdbg_v("S1, L+R"); | |
4297 | *wq_setid = 0; | |
4298 | return WQ_ITERATE_INVALID; | |
4299 | } else if (!left || left->wql_setid.id == setid) { | |
4300 | /* | |
4301 | * left side matches we know it points either to the | |
4302 | * WQS we're unlinking, or to an invalid object: | |
4303 | * no need to invalidate it | |
4304 | */ | |
4305 | *wq_setid = right ? right->wql_setid.id : 0; | |
4306 | wql_invalidate(parent); | |
4307 | wqdbg_v("S1, L"); | |
4308 | return left ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID; | |
4309 | } else if (!right || right->wql_setid.id == setid) { | |
4310 | /* | |
4311 | * if right side matches we know it points either to the | |
4312 | * WQS we're unlinking, or to an invalid object: | |
4313 | * no need to invalidate it | |
4314 | */ | |
4315 | *wq_setid = left ? left->wql_setid.id : 0; | |
4316 | wql_invalidate(parent); | |
4317 | wqdbg_v("S1, R"); | |
4318 | return right ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID; | |
4319 | } | |
4320 | } | |
4321 | ||
4322 | /* | |
4323 | * the tree walk starts at the top-of-tree and moves down, | |
4324 | * so these are safe asserts. | |
4325 | */ | |
4326 | assert(left || right); /* one of them has to be valid at this point */ | |
4327 | ||
4328 | /* | |
4329 | * Scenario 2: | |
4330 | * -------------------------------------------------------------------- | |
4331 | * waitq->waitq_set_id == ... (OR parent) | |
4332 | * | |
4333 | * ... | |
4334 | * | | |
4335 | * parent | |
4336 | * / \ | |
4337 | * / \ | |
4338 | * L(LINK) R(LINK) | |
4339 | * /\ /\ | |
4340 | * / \ / \ | |
4341 | * / \ Rl(*) Rr(*) | |
4342 | * Ll(WQS) Lr(WQS) | |
4343 | * | |
4344 | * In this scenario, a leaf node of either the left or right side | |
4345 | * could be the wait queue set we're looking to unlink. We also handle | |
4346 | * the case where one of these links is invalid. If a leaf node is | |
4347 | * invalid or it's the set we're looking for, we can safely remove the | |
4348 | * middle link (left or right) and point the parent link directly to | |
4349 | * the remaining leaf node. | |
4350 | */ | |
4351 | if (left && wql_type(left) == WQL_LINK) { | |
4352 | uint64_t Ll, Lr; | |
4353 | struct waitq_link *linkLl, *linkLr; | |
4354 | assert(left->wql_setid.id != setid); | |
4355 | Ll = left->wql_link.left_setid; | |
4356 | Lr = left->wql_link.right_setid; | |
4357 | linkLl = wql_get_link(Ll); | |
4358 | linkLr = wql_get_link(Lr); | |
4359 | if (!linkLl && !linkLr) { | |
4360 | /* | |
4361 | * The left object points to two invalid objects! | |
4362 | * We can invalidate the left w/o touching the parent. | |
4363 | */ | |
4364 | wql_invalidate(left); | |
4365 | wqdbg_v("S2, Ll+Lr"); | |
4366 | return WQ_ITERATE_INVALID; | |
4367 | } else if (!linkLl || Ll == setid) { | |
4368 | /* Ll is invalid and/or the wait queue set we're looking for */ | |
4369 | parent->wql_link.left_setid = Lr; | |
4370 | wql_invalidate(left); | |
4371 | wql_put_link(linkLl); | |
4372 | wql_put_link(linkLr); | |
4373 | wqdbg_v("S2, Ll"); | |
4374 | return linkLl ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID; | |
4375 | } else if (!linkLr || Lr == setid) { | |
4376 | /* Lr is invalid and/or the wait queue set we're looking for */ | |
4377 | parent->wql_link.left_setid = Ll; | |
4378 | wql_invalidate(left); | |
4379 | wql_put_link(linkLr); | |
4380 | wql_put_link(linkLl); | |
4381 | wqdbg_v("S2, Lr"); | |
4382 | return linkLr ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID; | |
4383 | } | |
4384 | wql_put_link(linkLl); | |
4385 | wql_put_link(linkLr); | |
4386 | } | |
4387 | ||
4388 | if (right && wql_type(right) == WQL_LINK) { | |
4389 | uint64_t Rl, Rr; | |
4390 | struct waitq_link *linkRl, *linkRr; | |
4391 | assert(right->wql_setid.id != setid); | |
4392 | Rl = right->wql_link.left_setid; | |
4393 | Rr = right->wql_link.right_setid; | |
4394 | linkRl = wql_get_link(Rl); | |
4395 | linkRr = wql_get_link(Rr); | |
4396 | if (!linkRl && !linkRr) { | |
4397 | /* | |
4398 | * The right object points to two invalid objects! | |
4399 | * We can invalidate the right w/o touching the parent. | |
4400 | */ | |
4401 | wql_invalidate(right); | |
4402 | wqdbg_v("S2, Rl+Rr"); | |
4403 | return WQ_ITERATE_INVALID; | |
4404 | } else if (!linkRl || Rl == setid) { | |
4405 | /* Rl is invalid and/or the wait queue set we're looking for */ | |
4406 | parent->wql_link.right_setid = Rr; | |
4407 | wql_invalidate(right); | |
4408 | wql_put_link(linkRl); | |
4409 | wql_put_link(linkRr); | |
4410 | wqdbg_v("S2, Rl"); | |
4411 | return linkRl ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID; | |
4412 | } else if (!linkRr || Rr == setid) { | |
4413 | /* Rr is invalid and/or the wait queue set we're looking for */ | |
4414 | parent->wql_link.right_setid = Rl; | |
4415 | wql_invalidate(right); | |
4416 | wql_put_link(linkRl); | |
4417 | wql_put_link(linkRr); | |
4418 | wqdbg_v("S2, Rr"); | |
4419 | return linkRr ? WQ_ITERATE_UNLINKED : WQ_ITERATE_INVALID; | |
4420 | } | |
4421 | wql_put_link(linkRl); | |
4422 | wql_put_link(linkRr); | |
4423 | } | |
4424 | ||
4425 | return WQ_ITERATE_CONTINUE; | |
4426 | } | |
4427 | ||
4428 | /** | |
4429 | * link table walk callback that unlinks 'waitq' from 'ctx->setid' | |
4430 | * | |
4431 | * Conditions: | |
4432 | * called from walk_waitq_links | |
4433 | * 'waitq' is locked | |
4434 | * | |
4435 | * Notes: | |
4436 | * uses waitq_maybe_remove_link() to compress the linktable and | |
4437 | * perform the actual unlinking | |
4438 | */ | |
4439 | static int | |
4440 | waitq_unlink_cb(struct waitq *waitq, void *ctx, | |
4441 | struct waitq_link *link) | |
4442 | { | |
4443 | uint64_t setid = *((uint64_t *)ctx); | |
4444 | struct waitq_link *right, *left; | |
4445 | int ret = 0; | |
4446 | ||
4447 | if (wql_type(link) != WQL_LINK) { | |
4448 | return WQ_ITERATE_CONTINUE; | |
4449 | } | |
4450 | ||
4451 | do { | |
4452 | left = wql_get_link(link->wql_link.left_setid); | |
4453 | right = wql_get_link(link->wql_link.right_setid); | |
4454 | ||
4455 | ret = waitq_maybe_remove_link(waitq, setid, link, left, right); | |
4456 | ||
4457 | wql_put_link(left); | |
4458 | wql_put_link(right); | |
4459 | ||
4460 | if (!wql_is_valid(link)) { | |
4461 | return WQ_ITERATE_INVALID; | |
4462 | } | |
4463 | /* A ret value of UNLINKED will break us out of table walk */ | |
4464 | } while (ret == WQ_ITERATE_INVALID); | |
4465 | ||
4466 | return ret; | |
4467 | } | |
4468 | ||
4469 | ||
4470 | /** | |
4471 | * undo/remove a prepost from 'ctx' (waitq) to 'wqset' | |
4472 | * | |
4473 | * Conditions: | |
4474 | * Called from wq_prepost_foreach_locked OR wq_prepost_iterate | |
4475 | * 'wqset' may be NULL | |
4476 | * (ctx)->unlink_wqset is locked | |
4477 | */ | |
4478 | static int | |
4479 | waitq_unlink_prepost_cb(struct waitq_set __unused *wqset, void *ctx, | |
4480 | struct wq_prepost *wqp, struct waitq *waitq) | |
4481 | { | |
4482 | struct wq_unlink_ctx *ulctx = (struct wq_unlink_ctx *)ctx; | |
4483 | ||
4484 | if (waitq != ulctx->unlink_wq) { | |
4485 | return WQ_ITERATE_CONTINUE; | |
4486 | } | |
4487 | ||
4488 | if (wqp_type(wqp) == WQP_WQ && | |
4489 | wqp->wqp_prepostid.id == ulctx->unlink_wqset->wqset_prepost_id) { | |
4490 | /* this is the only prepost on this wait queue set */ | |
4491 | wqdbg_v("unlink wqp (WQ) 0x%llx", wqp->wqp_prepostid.id); | |
4492 | ulctx->unlink_wqset->wqset_prepost_id = 0; | |
4493 | return WQ_ITERATE_BREAK; | |
4494 | } | |
4495 | ||
4496 | assert(wqp_type(wqp) == WQP_POST); | |
4497 | ||
4498 | /* | |
4499 | * The prepost object 'wqp' points to a waitq which should no longer | |
4500 | * be preposted to 'ulctx->unlink_wqset'. We can remove the prepost | |
4501 | * object from the list and break out of the iteration. Using the | |
4502 | * context object in this way allows this same callback function to be | |
4503 | * used from both wq_prepost_foreach_locked and wq_prepost_iterate. | |
4504 | */ | |
4505 | wq_prepost_remove(ulctx->unlink_wqset, wqp); | |
4506 | return WQ_ITERATE_BREAK; | |
4507 | } | |
4508 | ||
4509 | /** | |
4510 | * unlink 'waitq' from 'wqset' | |
4511 | * | |
4512 | * Conditions: | |
4513 | * 'waitq' is locked | |
4514 | * 'wqset' is _not_ locked | |
4515 | * may (rarely) spin in prepost clear and drop/re-acquire 'waitq' lock | |
4516 | * (see waitq_clear_prepost_locked) | |
4517 | */ | |
4518 | static kern_return_t | |
4519 | waitq_unlink_locked(struct waitq *waitq, | |
4520 | struct waitq_set *wqset) | |
4521 | { | |
4522 | uint64_t setid; | |
4523 | kern_return_t kr; | |
4524 | ||
4525 | assert(!waitq_irq_safe(waitq)); | |
4526 | ||
4527 | if (waitq->waitq_set_id == 0) { | |
4528 | /* | |
4529 | * TODO: | |
4530 | * it doesn't belong to anyone, and it has a prepost object? | |
4531 | * This is an artifact of not cleaning up after kqueues when | |
4532 | * they prepost into select sets... | |
4533 | */ | |
4534 | if (waitq->waitq_prepost_id != 0) { | |
4535 | (void)waitq_clear_prepost_locked(waitq); | |
4536 | } | |
4537 | return KERN_NOT_IN_SET; | |
4538 | } | |
4539 | ||
4540 | if (!waitqs_is_linked(wqset)) { | |
4541 | /* | |
4542 | * No link has been allocated for the wqset, | |
4543 | * so no waitq could have been linked to it. | |
4544 | */ | |
4545 | return KERN_NOT_IN_SET; | |
4546 | } | |
4547 | ||
4548 | setid = wqset->wqset_id; | |
4549 | ||
4550 | if (waitq->waitq_set_id == setid) { | |
4551 | waitq->waitq_set_id = 0; | |
4552 | /* | |
4553 | * This was the only set to which the waitq belonged: we can | |
4554 | * safely release the waitq's prepost object. It doesn't | |
4555 | * matter if this function drops and re-acquires the lock | |
4556 | * because we're not manipulating waitq state any more. | |
4557 | */ | |
4558 | (void)waitq_clear_prepost_locked(waitq); | |
4559 | return KERN_SUCCESS; | |
4560 | } | |
4561 | ||
4562 | /* | |
4563 | * The waitq was a member of more that 1 set, so we need to | |
4564 | * handle potentially compressing the link table, and | |
4565 | * adjusting the waitq->waitq_set_id value. | |
4566 | * | |
4567 | * Note: we can't free the waitq's associated prepost object (if any) | |
4568 | * because it may be in use by the one or more _other_ sets to | |
4569 | * which this queue belongs. | |
4570 | * | |
4571 | * Note: This function only handles a single level of the queue linkage. | |
4572 | * Removing a waitq from a set to which it does not directly | |
4573 | * belong is undefined. For example, if a waitq belonged to set | |
4574 | * A, and set A belonged to set B. You can't remove the waitq | |
4575 | * from set B. | |
4576 | */ | |
4577 | kr = walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id, | |
4578 | WQL_LINK, (void *)&setid, waitq_unlink_cb); | |
4579 | ||
4580 | if (kr == WQ_ITERATE_UNLINKED) { | |
4581 | struct wq_unlink_ctx ulctx; | |
4582 | ||
4583 | kr = KERN_SUCCESS; /* found it and dis-associated it */ | |
4584 | ||
4585 | /* don't look for preposts if it's not prepost-enabled */ | |
4586 | if (!wqset->wqset_q.waitq_prepost) { | |
4587 | goto out; | |
4588 | } | |
4589 | ||
4590 | assert(!waitq_irq_safe(&wqset->wqset_q)); | |
4591 | ||
4592 | waitq_set_lock(wqset); | |
4593 | /* | |
4594 | * clear out any prepost from waitq into wqset | |
4595 | * TODO: this could be more efficient than a linear search of | |
4596 | * the waitq set's prepost list. | |
4597 | */ | |
4598 | ulctx.unlink_wq = waitq; | |
4599 | ulctx.unlink_wqset = wqset; | |
4600 | (void)wq_prepost_iterate(wqset->wqset_prepost_id, (void *)&ulctx, | |
4601 | waitq_unlink_prepost_cb); | |
4602 | waitq_set_unlock(wqset); | |
4603 | } else { | |
4604 | kr = KERN_NOT_IN_SET; /* waitq is _not_ associated with wqset */ | |
4605 | } | |
4606 | ||
4607 | out: | |
4608 | return kr; | |
4609 | } | |
4610 | ||
4611 | /** | |
4612 | * unlink 'waitq' from 'wqset' | |
4613 | * | |
4614 | * Conditions: | |
4615 | * neither 'waitq' nor 'wqset' is locked | |
4616 | * may disable and re-enable interrupts | |
4617 | * may (rarely) spin in prepost clear | |
4618 | * (see waitq_clear_prepost_locked) | |
4619 | */ | |
4620 | kern_return_t | |
4621 | waitq_unlink(struct waitq *waitq, struct waitq_set *wqset) | |
4622 | { | |
4623 | kern_return_t kr = KERN_SUCCESS; | |
4624 | ||
4625 | assert(waitqs_is_set(wqset)); | |
4626 | ||
4627 | /* | |
4628 | * we allow the waitq to be invalid because the caller may be trying | |
4629 | * to clear out old/dirty state | |
4630 | */ | |
4631 | if (!waitq_valid(waitq)) { | |
4632 | return KERN_INVALID_ARGUMENT; | |
4633 | } | |
4634 | ||
4635 | wqdbg_v("unlink waitq %p from set 0x%llx", | |
4636 | (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq), wqset->wqset_id); | |
4637 | ||
4638 | assert(!waitq_irq_safe(waitq)); | |
4639 | ||
4640 | waitq_lock(waitq); | |
4641 | ||
4642 | kr = waitq_unlink_locked(waitq, wqset); | |
4643 | ||
4644 | waitq_unlock(waitq); | |
4645 | return kr; | |
4646 | } | |
4647 | ||
4648 | /** | |
4649 | * unlink a waitq from a waitq set, but reference the waitq by its prepost ID | |
4650 | * | |
4651 | * Conditions: | |
4652 | * 'wqset' is unlocked | |
4653 | * wqp_id may be valid or invalid | |
4654 | */ | |
4655 | void | |
4656 | waitq_unlink_by_prepost_id(uint64_t wqp_id, struct waitq_set *wqset) | |
4657 | { | |
4658 | struct wq_prepost *wqp; | |
4659 | ||
4660 | disable_preemption(); | |
4661 | wqp = wq_prepost_get(wqp_id); | |
4662 | if (wqp) { | |
4663 | struct waitq *wq; | |
4664 | ||
4665 | wq = wqp->wqp_wq.wqp_wq_ptr; | |
4666 | ||
4667 | /* | |
4668 | * lock the waitq, then release our prepost ID reference, then | |
4669 | * unlink the waitq from the wqset: this ensures that we don't | |
4670 | * hold a prepost ID reference during the unlink, but we also | |
4671 | * complete the unlink operation atomically to avoid a race | |
4672 | * with waitq_unlink[_all]. | |
4673 | */ | |
4674 | assert(!waitq_irq_safe(wq)); | |
4675 | ||
4676 | waitq_lock(wq); | |
4677 | wq_prepost_put(wqp); | |
4678 | ||
4679 | if (!waitq_valid(wq)) { | |
4680 | /* someone already tore down this waitq! */ | |
4681 | waitq_unlock(wq); | |
4682 | enable_preemption(); | |
4683 | return; | |
4684 | } | |
4685 | ||
4686 | /* this _may_ drop the wq lock, but that's OK */ | |
4687 | waitq_unlink_locked(wq, wqset); | |
4688 | ||
4689 | waitq_unlock(wq); | |
4690 | } | |
4691 | enable_preemption(); | |
4692 | return; | |
4693 | } | |
4694 | ||
4695 | ||
4696 | /** | |
4697 | * reference and lock a waitq by its prepost ID | |
4698 | * | |
4699 | * Conditions: | |
4700 | * wqp_id may be valid or invalid | |
4701 | * | |
4702 | * Returns: | |
4703 | * a locked waitq if wqp_id was valid | |
4704 | * NULL on failure | |
4705 | */ | |
4706 | struct waitq * | |
4707 | waitq_lock_by_prepost_id(uint64_t wqp_id) | |
4708 | { | |
4709 | struct waitq *wq = NULL; | |
4710 | struct wq_prepost *wqp; | |
4711 | ||
4712 | disable_preemption(); | |
4713 | wqp = wq_prepost_get(wqp_id); | |
4714 | if (wqp) { | |
4715 | wq = wqp->wqp_wq.wqp_wq_ptr; | |
4716 | ||
4717 | assert(!waitq_irq_safe(wq)); | |
4718 | ||
4719 | waitq_lock(wq); | |
4720 | wq_prepost_put(wqp); | |
4721 | ||
4722 | if (!waitq_valid(wq)) { | |
4723 | /* someone already tore down this waitq! */ | |
4724 | waitq_unlock(wq); | |
4725 | enable_preemption(); | |
4726 | return NULL; | |
4727 | } | |
4728 | } | |
4729 | enable_preemption(); | |
4730 | return wq; | |
4731 | } | |
4732 | ||
4733 | ||
4734 | /** | |
4735 | * unlink 'waitq' from all sets to which it belongs | |
4736 | * | |
4737 | * Conditions: | |
4738 | * 'waitq' is locked on entry | |
4739 | * returns with waitq lock dropped | |
4740 | * | |
4741 | * Notes: | |
4742 | * may (rarely) spin (see waitq_clear_prepost_locked) | |
4743 | */ | |
4744 | kern_return_t | |
4745 | waitq_unlink_all_unlock(struct waitq *waitq) | |
4746 | { | |
4747 | uint64_t old_set_id = 0; | |
4748 | wqdbg_v("unlink waitq %p from all sets", | |
4749 | (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq)); | |
4750 | assert(!waitq_irq_safe(waitq)); | |
4751 | ||
4752 | /* it's not a member of any sets */ | |
4753 | if (waitq->waitq_set_id == 0) { | |
4754 | waitq_unlock(waitq); | |
4755 | return KERN_SUCCESS; | |
4756 | } | |
4757 | ||
4758 | old_set_id = waitq->waitq_set_id; | |
4759 | waitq->waitq_set_id = 0; | |
4760 | ||
4761 | /* | |
4762 | * invalidate the prepost entry for this waitq. | |
4763 | * This may drop and re-acquire the waitq lock, but that's OK because | |
4764 | * if it was added to another set and preposted to that set in the | |
4765 | * time we drop the lock, the state will remain consistent. | |
4766 | */ | |
4767 | (void)waitq_clear_prepost_locked(waitq); | |
4768 | ||
4769 | waitq_unlock(waitq); | |
4770 | ||
4771 | if (old_set_id) { | |
4772 | /* | |
4773 | * Walk the link table and invalidate each LINK object that | |
4774 | * used to connect this waitq to one or more sets: this works | |
4775 | * because WQL_LINK objects are private to each wait queue | |
4776 | */ | |
4777 | (void)walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, old_set_id, | |
4778 | WQL_LINK, NULL, waitq_unlink_all_cb); | |
4779 | } | |
4780 | ||
4781 | return KERN_SUCCESS; | |
4782 | } | |
4783 | ||
4784 | /** | |
4785 | * unlink 'waitq' from all sets to which it belongs | |
4786 | * | |
4787 | * Conditions: | |
4788 | * 'waitq' is not locked | |
4789 | * may disable and re-enable interrupts | |
4790 | * may (rarely) spin | |
4791 | * (see waitq_unlink_all_locked, waitq_clear_prepost_locked) | |
4792 | */ | |
4793 | kern_return_t | |
4794 | waitq_unlink_all(struct waitq *waitq) | |
4795 | { | |
4796 | kern_return_t kr = KERN_SUCCESS; | |
4797 | ||
4798 | if (!waitq_valid(waitq)) { | |
4799 | panic("Invalid waitq: %p", waitq); | |
4800 | } | |
4801 | ||
4802 | assert(!waitq_irq_safe(waitq)); | |
4803 | waitq_lock(waitq); | |
4804 | if (!waitq_valid(waitq)) { | |
4805 | waitq_unlock(waitq); | |
4806 | return KERN_SUCCESS; | |
4807 | } | |
4808 | ||
4809 | kr = waitq_unlink_all_unlock(waitq); | |
4810 | /* waitq unlocked and set links deallocated */ | |
4811 | ||
4812 | return kr; | |
4813 | } | |
4814 | ||
4815 | ||
4816 | /** | |
4817 | * unlink all waitqs from 'wqset' | |
4818 | * | |
4819 | * Conditions: | |
4820 | * 'wqset' is locked on entry | |
4821 | * 'wqset' is unlocked on exit and spl is restored | |
4822 | * | |
4823 | * Note: | |
4824 | * may (rarely) spin/block (see waitq_clear_prepost_locked) | |
4825 | */ | |
4826 | kern_return_t | |
4827 | waitq_set_unlink_all_unlock(struct waitq_set *wqset) | |
4828 | { | |
4829 | struct waitq_link *link; | |
4830 | uint64_t prepost_id; | |
4831 | ||
4832 | wqdbg_v("unlink all queues from set 0x%llx", wqset->wqset_id); | |
4833 | ||
4834 | /* | |
4835 | * This operation does not require interaction with any of the set's | |
4836 | * constituent wait queues. All we have to do is invalidate the SetID | |
4837 | */ | |
4838 | ||
4839 | if (waitqs_is_linked(wqset)) { | |
4840 | /* invalidate and re-alloc the link object first */ | |
4841 | link = wql_get_link(wqset->wqset_id); | |
4842 | ||
4843 | /* we may have raced with a waitq_set_deinit: handle this */ | |
4844 | if (!link) { | |
4845 | waitq_set_unlock(wqset); | |
4846 | return KERN_SUCCESS; | |
4847 | } | |
4848 | ||
4849 | wql_invalidate(link); | |
4850 | ||
4851 | /* re-alloc the object to get a new generation ID */ | |
4852 | wql_realloc_link(link, WQL_WQS); | |
4853 | link->wql_wqs.wql_set = wqset; | |
4854 | ||
4855 | wqset->wqset_id = link->wql_setid.id; | |
4856 | wql_mkvalid(link); | |
4857 | wql_put_link(link); | |
4858 | } | |
4859 | ||
4860 | /* clear any preposts attached to this set */ | |
4861 | prepost_id = 0; | |
4862 | if (wqset->wqset_q.waitq_prepost && wqset->wqset_prepost_id) { | |
4863 | prepost_id = wqset->wqset_prepost_id; | |
4864 | } | |
4865 | /* else { TODO: notify kqueue subsystem? } */ | |
4866 | wqset->wqset_prepost_id = 0; | |
4867 | ||
4868 | /* | |
4869 | * clear set linkage and prepost object associated with this set: | |
4870 | * waitq sets may prepost to other sets if, for example, they are | |
4871 | * associated with a kqueue which is in a select set. | |
4872 | * | |
4873 | * This releases all the set link objects | |
4874 | * (links to other sets to which this set was previously added) | |
4875 | */ | |
4876 | waitq_unlink_all_unlock(&wqset->wqset_q); | |
4877 | /* wqset->wqset_q unlocked */ | |
4878 | ||
4879 | /* drop / unlink all the prepost table objects */ | |
4880 | if (prepost_id) { | |
4881 | (void)wq_prepost_iterate(prepost_id, NULL, | |
4882 | wqset_clear_prepost_chain_cb); | |
4883 | } | |
4884 | ||
4885 | return KERN_SUCCESS; | |
4886 | } | |
4887 | ||
4888 | /** | |
4889 | * unlink all waitqs from 'wqset' | |
4890 | * | |
4891 | * Conditions: | |
4892 | * 'wqset' is not locked | |
4893 | * may (rarely) spin/block (see waitq_clear_prepost_locked) | |
4894 | */ | |
4895 | kern_return_t | |
4896 | waitq_set_unlink_all(struct waitq_set *wqset) | |
4897 | { | |
4898 | assert(waitqs_is_set(wqset)); | |
4899 | assert(!waitq_irq_safe(&wqset->wqset_q)); | |
4900 | ||
4901 | waitq_set_lock(wqset); | |
4902 | return waitq_set_unlink_all_unlock(wqset); | |
4903 | /* wqset unlocked and set links and preposts deallocated */ | |
4904 | } | |
4905 | ||
4906 | static int | |
4907 | waitq_prepost_reserve_cb(struct waitq *waitq, void *ctx, | |
4908 | struct waitq_link *link) | |
4909 | { | |
4910 | uint32_t *num = (uint32_t *)ctx; | |
4911 | (void)waitq; | |
4912 | ||
4913 | /* | |
4914 | * In the worst case, we'll have to allocate 2 prepost objects | |
4915 | * per waitq set (if the set was already preposted by another | |
4916 | * waitq). | |
4917 | */ | |
4918 | if (wql_type(link) == WQL_WQS) { | |
4919 | /* | |
4920 | * check to see if the associated waitq actually supports | |
4921 | * preposting | |
4922 | */ | |
4923 | if (waitq_set_can_prepost(link->wql_wqs.wql_set)) { | |
4924 | *num += 2; | |
4925 | } | |
4926 | } | |
4927 | return WQ_ITERATE_CONTINUE; | |
4928 | } | |
4929 | ||
4930 | static int | |
4931 | waitq_alloc_prepost_reservation(int nalloc, struct waitq *waitq, | |
4932 | int *did_unlock, struct wq_prepost **wqp) | |
4933 | { | |
4934 | struct wq_prepost *tmp; | |
4935 | struct wqp_cache *cache; | |
4936 | ||
4937 | *did_unlock = 0; | |
4938 | ||
4939 | /* | |
4940 | * Before we unlock the waitq, check the per-processor prepost object | |
4941 | * cache to see if there's enough there for us. If so, do the | |
4942 | * allocation, keep the lock and save an entire iteration over the set | |
4943 | * linkage! | |
4944 | */ | |
4945 | if (waitq) { | |
4946 | disable_preemption(); | |
4947 | cache = PERCPU_GET(wqp_cache); | |
4948 | if (nalloc <= (int)cache->avail) { | |
4949 | goto do_alloc; | |
4950 | } | |
4951 | enable_preemption(); | |
4952 | ||
4953 | /* unlock the waitq to perform the allocation */ | |
4954 | *did_unlock = 1; | |
4955 | waitq_unlock(waitq); | |
4956 | } | |
4957 | ||
4958 | do_alloc: | |
4959 | tmp = wq_prepost_alloc(LT_RESERVED, nalloc); | |
4960 | if (!tmp) { | |
4961 | panic("Couldn't reserve %d preposts for waitq @%p (wqp@%p)", | |
4962 | nalloc, waitq, *wqp); | |
4963 | } | |
4964 | if (*wqp) { | |
4965 | /* link the two lists */ | |
4966 | int __assert_only rc; | |
4967 | rc = wq_prepost_rlink(tmp, *wqp); | |
4968 | assert(rc == nalloc); | |
4969 | } | |
4970 | *wqp = tmp; | |
4971 | ||
4972 | /* | |
4973 | * If the caller can block, then enforce a minimum-free table element | |
4974 | * policy here. This helps ensure that we will have enough prepost | |
4975 | * objects for callers such as selwakeup() that can be called with | |
4976 | * spin locks held. | |
4977 | */ | |
4978 | if (get_preemption_level() == 0) { | |
4979 | wq_prepost_ensure_free_space(); | |
4980 | } | |
4981 | ||
4982 | if (waitq) { | |
4983 | if (*did_unlock == 0) { | |
4984 | /* decrement the preemption count if alloc from cache */ | |
4985 | enable_preemption(); | |
4986 | } else { | |
4987 | /* otherwise: re-lock the waitq */ | |
4988 | waitq_lock(waitq); | |
4989 | } | |
4990 | } | |
4991 | ||
4992 | return nalloc; | |
4993 | } | |
4994 | ||
4995 | static int | |
4996 | waitq_count_prepost_reservation(struct waitq *waitq, int extra, int keep_locked) | |
4997 | { | |
4998 | int npreposts = 0; | |
4999 | ||
5000 | /* | |
5001 | * If the waitq is not currently part of a set, and we're not asked to | |
5002 | * keep the waitq locked then we'll want to have 3 in reserve | |
5003 | * just-in-case it becomes part of a set while we unlock and reserve. | |
5004 | * We may need up to 1 object for the waitq, and 2 for the set. | |
5005 | */ | |
5006 | if (waitq->waitq_set_id == 0) { | |
5007 | npreposts = 3; | |
5008 | } else { | |
5009 | /* this queue has never been preposted before */ | |
5010 | if (waitq->waitq_prepost_id == 0) { | |
5011 | npreposts = 3; | |
5012 | } | |
5013 | ||
5014 | /* | |
5015 | * Walk the set of table linkages associated with this waitq | |
5016 | * and count the worst-case number of prepost objects that | |
5017 | * may be needed during a wakeup_all. We can walk this without | |
5018 | * locking each set along the way because the table-based IDs | |
5019 | * disconnect us from the set pointers themselves, and the | |
5020 | * table walking is careful to read the setid values only once. | |
5021 | * Locking each set up the chain also doesn't guarantee that | |
5022 | * their membership won't change between the time we unlock | |
5023 | * that set and when we actually go to prepost, so our | |
5024 | * situation is no worse than before and we've alleviated lock | |
5025 | * contention on any sets to which this waitq belongs. | |
5026 | */ | |
5027 | (void)walk_waitq_links(LINK_WALK_FULL_DAG_UNLOCKED, | |
5028 | waitq, waitq->waitq_set_id, | |
5029 | WQL_WQS, (void *)&npreposts, | |
5030 | waitq_prepost_reserve_cb); | |
5031 | } | |
5032 | ||
5033 | if (extra > 0) { | |
5034 | npreposts += extra; | |
5035 | } | |
5036 | ||
5037 | if (npreposts == 0 && !keep_locked) { | |
5038 | /* | |
5039 | * If we get here, we were asked to reserve some prepost | |
5040 | * objects for a waitq that's previously preposted, and is not | |
5041 | * currently a member of any sets. We have also been | |
5042 | * instructed to unlock the waitq when we're done. In this | |
5043 | * case, we pre-allocated enough reserved objects to handle | |
5044 | * the case where the waitq gets added to a single set when | |
5045 | * the lock is released. | |
5046 | */ | |
5047 | npreposts = 3; | |
5048 | } | |
5049 | ||
5050 | return npreposts; | |
5051 | } | |
5052 | ||
5053 | ||
5054 | /** | |
5055 | * pre-allocate prepost objects for 'waitq' | |
5056 | * | |
5057 | * Conditions: | |
5058 | * 'waitq' is not locked | |
5059 | * | |
5060 | * Returns: | |
5061 | * panic on error | |
5062 | * | |
5063 | * 0 on success, '*reserved' is set to the head of a singly-linked | |
5064 | * list of pre-allocated prepost objects. | |
5065 | * | |
5066 | * Notes: | |
5067 | * If 'lock_state' is WAITQ_KEEP_LOCKED, this function performs the pre-allocation | |
5068 | * atomically and returns 'waitq' locked. | |
5069 | * | |
5070 | * This function attempts to pre-allocate precisely enough prepost | |
5071 | * objects based on the current set membership of 'waitq'. If the | |
5072 | * operation is performed atomically, then the caller | |
5073 | * is guaranteed to have enough pre-allocated prepost object to avoid | |
5074 | * any (rare) blocking in the wakeup path. | |
5075 | */ | |
5076 | uint64_t | |
5077 | waitq_prepost_reserve(struct waitq *waitq, int extra, | |
5078 | waitq_lock_state_t lock_state) | |
5079 | { | |
5080 | uint64_t reserved = 0; | |
5081 | uint64_t prev_setid = 0, prev_prepostid = 0; | |
5082 | struct wq_prepost *wqp = NULL; | |
5083 | int nalloc = 0, npreposts = 0; | |
5084 | int keep_locked = (lock_state == WAITQ_KEEP_LOCKED); | |
5085 | int unlocked = 0; | |
5086 | ||
5087 | wqdbg_v("Attempting to reserve prepost linkages for waitq %p (extra:%d)", | |
5088 | (void *)VM_KERNEL_UNSLIDE_OR_PERM(waitq), extra); | |
5089 | ||
5090 | if (waitq == NULL && extra > 0) { | |
5091 | /* | |
5092 | * Simple prepost object allocation: | |
5093 | * we'll add 2 more because the waitq might need an object, | |
5094 | * and the set itself may need a new POST object in addition | |
5095 | * to the number of preposts requested by the caller | |
5096 | */ | |
5097 | nalloc = waitq_alloc_prepost_reservation(extra + 2, NULL, | |
5098 | &unlocked, &wqp); | |
5099 | assert(nalloc == extra + 2); | |
5100 | return wqp->wqp_prepostid.id; | |
5101 | } | |
5102 | ||
5103 | assert(lock_state == WAITQ_KEEP_LOCKED || lock_state == WAITQ_UNLOCK); | |
5104 | ||
5105 | assert(!waitq_irq_safe(waitq)); | |
5106 | ||
5107 | waitq_lock(waitq); | |
5108 | ||
5109 | /* remember the set ID that we started with */ | |
5110 | prev_setid = waitq->waitq_set_id; | |
5111 | prev_prepostid = waitq->waitq_prepost_id; | |
5112 | ||
5113 | /* | |
5114 | * If the waitq is not part of a set, and we're asked to | |
5115 | * keep the set locked, then we don't have to reserve | |
5116 | * anything! | |
5117 | */ | |
5118 | if (prev_setid == 0 && keep_locked) { | |
5119 | goto out; | |
5120 | } | |
5121 | ||
5122 | npreposts = waitq_count_prepost_reservation(waitq, extra, keep_locked); | |
5123 | ||
5124 | /* nothing for us to do! */ | |
5125 | if (npreposts == 0) { | |
5126 | if (keep_locked) { | |
5127 | goto out; | |
5128 | } | |
5129 | goto out_unlock; | |
5130 | } | |
5131 | ||
5132 | try_alloc: | |
5133 | /* this _may_ unlock and relock the waitq! */ | |
5134 | nalloc = waitq_alloc_prepost_reservation(npreposts, waitq, | |
5135 | &unlocked, &wqp); | |
5136 | ||
5137 | if (!unlocked) { | |
5138 | /* allocation held the waitq lock: we'd done! */ | |
5139 | if (keep_locked) { | |
5140 | goto out; | |
5141 | } | |
5142 | goto out_unlock; | |
5143 | } | |
5144 | ||
5145 | /* | |
5146 | * Before we return, if the allocation had to unlock the waitq, we | |
5147 | * must check one more time to see if we have enough. If not, we'll | |
5148 | * try to allocate the difference. If the caller requests it, we'll | |
5149 | * also leave the waitq locked so that the use of the pre-allocated | |
5150 | * prepost objects can be guaranteed to be enough if a wakeup_all is | |
5151 | * performed before unlocking the waitq. | |
5152 | */ | |
5153 | ||
5154 | /* | |
5155 | * If the waitq is no longer associated with a set, or if the waitq's | |
5156 | * set/prepostid has not changed since we first walked its linkage, | |
5157 | * we're done. | |
5158 | */ | |
5159 | if ((waitq->waitq_set_id == 0) || | |
5160 | (waitq->waitq_set_id == prev_setid && | |
5161 | waitq->waitq_prepost_id == prev_prepostid)) { | |
5162 | if (keep_locked) { | |
5163 | goto out; | |
5164 | } | |
5165 | goto out_unlock; | |
5166 | } | |
5167 | ||
5168 | npreposts = waitq_count_prepost_reservation(waitq, extra, keep_locked); | |
5169 | ||
5170 | if (npreposts > nalloc) { | |
5171 | prev_setid = waitq->waitq_set_id; | |
5172 | prev_prepostid = waitq->waitq_prepost_id; | |
5173 | npreposts = npreposts - nalloc; /* only allocate the diff */ | |
5174 | goto try_alloc; | |
5175 | } | |
5176 | ||
5177 | if (keep_locked) { | |
5178 | goto out; | |
5179 | } | |
5180 | ||
5181 | out_unlock: | |
5182 | waitq_unlock(waitq); | |
5183 | out: | |
5184 | if (wqp) { | |
5185 | reserved = wqp->wqp_prepostid.id; | |
5186 | } | |
5187 | ||
5188 | return reserved; | |
5189 | } | |
5190 | ||
5191 | /** | |
5192 | * release a linked list of prepost objects allocated via _prepost_reserve | |
5193 | * | |
5194 | * Conditions: | |
5195 | * may (rarely) spin waiting for prepost table growth memcpy | |
5196 | */ | |
5197 | void | |
5198 | waitq_prepost_release_reserve(uint64_t id) | |
5199 | { | |
5200 | struct wq_prepost *wqp; | |
5201 | ||
5202 | wqdbg_v("releasing reserved preposts starting at: 0x%llx", id); | |
5203 | ||
5204 | wqp = wq_prepost_rfirst(id); | |
5205 | if (!wqp) { | |
5206 | return; | |
5207 | } | |
5208 | ||
5209 | wq_prepost_release_rlist(wqp); | |
5210 | } | |
5211 | ||
5212 | ||
5213 | /** | |
5214 | * clear all preposts from 'wqset' | |
5215 | * | |
5216 | * Conditions: | |
5217 | * 'wqset' is not locked | |
5218 | */ | |
5219 | void | |
5220 | waitq_set_clear_preposts(struct waitq_set *wqset) | |
5221 | { | |
5222 | uint64_t prepost_id; | |
5223 | spl_t spl; | |
5224 | ||
5225 | assert(waitqs_is_set(wqset)); | |
5226 | ||
5227 | if (!wqset->wqset_q.waitq_prepost || !wqset->wqset_prepost_id) { | |
5228 | return; | |
5229 | } | |
5230 | ||
5231 | wqdbg_v("Clearing all preposted queues on waitq_set: 0x%llx", | |
5232 | wqset->wqset_id); | |
5233 | ||
5234 | if (waitq_irq_safe(&wqset->wqset_q)) { | |
5235 | spl = splsched(); | |
5236 | } | |
5237 | waitq_set_lock(wqset); | |
5238 | prepost_id = wqset->wqset_prepost_id; | |
5239 | wqset->wqset_prepost_id = 0; | |
5240 | waitq_set_unlock(wqset); | |
5241 | if (waitq_irq_safe(&wqset->wqset_q)) { | |
5242 | splx(spl); | |
5243 | } | |
5244 | ||
5245 | /* drop / unlink all the prepost table objects */ | |
5246 | if (prepost_id) { | |
5247 | (void)wq_prepost_iterate(prepost_id, NULL, | |
5248 | wqset_clear_prepost_chain_cb); | |
5249 | } | |
5250 | } | |
5251 | ||
5252 | ||
5253 | /* ---------------------------------------------------------------------- | |
5254 | * | |
5255 | * Iteration: waitq -> sets / waitq_set -> preposts | |
5256 | * | |
5257 | * ---------------------------------------------------------------------- */ | |
5258 | ||
5259 | struct wq_it_ctx { | |
5260 | void *input; | |
5261 | void *ctx; | |
5262 | waitq_iterator_t it; | |
5263 | }; | |
5264 | ||
5265 | static int | |
5266 | waitq_iterate_sets_cb(struct waitq *waitq, void *ctx, | |
5267 | struct waitq_link *link) | |
5268 | { | |
5269 | struct wq_it_ctx *wctx = (struct wq_it_ctx *)(ctx); | |
5270 | struct waitq_set *wqset; | |
5271 | int ret; | |
5272 | ||
5273 | (void)waitq; | |
5274 | assert(!waitq_irq_safe(waitq)); | |
5275 | assert(wql_type(link) == WQL_WQS); | |
5276 | ||
5277 | /* | |
5278 | * the waitq is locked, so we can just take the set lock | |
5279 | * and call the iterator function | |
5280 | */ | |
5281 | wqset = link->wql_wqs.wql_set; | |
5282 | assert(wqset != NULL); | |
5283 | assert(!waitq_irq_safe(&wqset->wqset_q)); | |
5284 | waitq_set_lock(wqset); | |
5285 | ||
5286 | ret = wctx->it(wctx->ctx, (struct waitq *)wctx->input, wqset); | |
5287 | ||
5288 | waitq_set_unlock(wqset); | |
5289 | return ret; | |
5290 | } | |
5291 | ||
5292 | /** | |
5293 | * call external iterator function for each prepost object in wqset | |
5294 | * | |
5295 | * Conditions: | |
5296 | * Called from wq_prepost_foreach_locked | |
5297 | * (wqset locked, waitq _not_ locked) | |
5298 | */ | |
5299 | static int | |
5300 | wqset_iterate_prepost_cb(struct waitq_set *wqset, void *ctx, | |
5301 | struct wq_prepost *wqp, struct waitq *waitq) | |
5302 | { | |
5303 | struct wq_it_ctx *wctx = (struct wq_it_ctx *)(ctx); | |
5304 | uint64_t wqp_id; | |
5305 | int ret; | |
5306 | ||
5307 | (void)wqp; | |
5308 | ||
5309 | /* | |
5310 | * This is a bit tricky. The 'wqset' is locked, but the 'waitq' is not. | |
5311 | * Taking the 'waitq' lock is a lock order violation, so we need to be | |
5312 | * careful. We also must realize that we may have taken a reference to | |
5313 | * the 'wqp' just as the associated waitq was being torn down (or | |
5314 | * clearing all its preposts) - see waitq_clear_prepost_locked(). If | |
5315 | * the 'wqp' is valid and we can get the waitq lock, then we are good | |
5316 | * to go. If not, we need to back off, check that the 'wqp' hasn't | |
5317 | * been invalidated, and try to re-take the locks. | |
5318 | */ | |
5319 | assert(!waitq_irq_safe(waitq)); | |
5320 | ||
5321 | if (waitq_lock_try(waitq)) { | |
5322 | goto call_iterator; | |
5323 | } | |
5324 | ||
5325 | if (!wqp_is_valid(wqp)) { | |
5326 | return WQ_ITERATE_RESTART; | |
5327 | } | |
5328 | ||
5329 | /* We are passed a prepost object with a reference on it. If neither | |
5330 | * the waitq set nor the waitq require interrupts disabled, then we | |
5331 | * may block on the delay(1) call below. We can't hold a prepost | |
5332 | * object reference while blocking, so we have to give that up as well | |
5333 | * and re-acquire it when we come back. | |
5334 | */ | |
5335 | wqp_id = wqp->wqp_prepostid.id; | |
5336 | wq_prepost_put(wqp); | |
5337 | waitq_set_unlock(wqset); | |
5338 | wqdbg_v("dropped set:%p lock waiting for wqp:%p (0x%llx -> wq:%p)", | |
5339 | wqset, wqp, wqp->wqp_prepostid.id, waitq); | |
5340 | delay(1); | |
5341 | waitq_set_lock(wqset); | |
5342 | wqp = wq_prepost_get(wqp_id); | |
5343 | if (!wqp) { | |
5344 | /* someone cleared preposts while we slept! */ | |
5345 | return WQ_ITERATE_DROPPED; | |
5346 | } | |
5347 | ||
5348 | /* | |
5349 | * TODO: | |
5350 | * This differs slightly from the logic in ipc_mqueue.c: | |
5351 | * ipc_mqueue_receive_on_thread(). There, if the waitq lock | |
5352 | * can't be obtained, the prepost link is placed on the back of | |
5353 | * the chain, and the iteration starts from the beginning. Here, | |
5354 | * we just restart from the beginning. | |
5355 | */ | |
5356 | return WQ_ITERATE_RESTART; | |
5357 | ||
5358 | call_iterator: | |
5359 | if (!wqp_is_valid(wqp)) { | |
5360 | ret = WQ_ITERATE_RESTART; | |
5361 | goto out_unlock; | |
5362 | } | |
5363 | ||
5364 | /* call the external callback */ | |
5365 | ret = wctx->it(wctx->ctx, waitq, wqset); | |
5366 | ||
5367 | if (ret == WQ_ITERATE_BREAK_KEEP_LOCKED) { | |
5368 | ret = WQ_ITERATE_BREAK; | |
5369 | goto out; | |
5370 | } | |
5371 | ||
5372 | out_unlock: | |
5373 | waitq_unlock(waitq); | |
5374 | out: | |
5375 | return ret; | |
5376 | } | |
5377 | ||
5378 | /** | |
5379 | * iterator over all sets to which the given waitq has been linked | |
5380 | * | |
5381 | * Conditions: | |
5382 | * 'waitq' is locked | |
5383 | */ | |
5384 | int | |
5385 | waitq_iterate_sets(struct waitq *waitq, void *ctx, waitq_iterator_t it) | |
5386 | { | |
5387 | int ret; | |
5388 | struct wq_it_ctx wctx = { | |
5389 | .input = (void *)waitq, | |
5390 | .ctx = ctx, | |
5391 | .it = it, | |
5392 | }; | |
5393 | if (!it || !waitq) { | |
5394 | return KERN_INVALID_ARGUMENT; | |
5395 | } | |
5396 | ||
5397 | ret = walk_waitq_links(LINK_WALK_ONE_LEVEL, waitq, waitq->waitq_set_id, | |
5398 | WQL_WQS, (void *)&wctx, waitq_iterate_sets_cb); | |
5399 | if (ret == WQ_ITERATE_CONTINUE) { | |
5400 | ret = WQ_ITERATE_SUCCESS; | |
5401 | } | |
5402 | return ret; | |
5403 | } | |
5404 | ||
5405 | /** | |
5406 | * iterator over all preposts in the given wqset | |
5407 | * | |
5408 | * Conditions: | |
5409 | * 'wqset' is locked | |
5410 | */ | |
5411 | int | |
5412 | waitq_set_iterate_preposts(struct waitq_set *wqset, | |
5413 | void *ctx, waitq_iterator_t it) | |
5414 | { | |
5415 | struct wq_it_ctx wctx = { | |
5416 | .input = (void *)wqset, | |
5417 | .ctx = ctx, | |
5418 | .it = it, | |
5419 | }; | |
5420 | if (!it || !wqset) { | |
5421 | return WQ_ITERATE_INVALID; | |
5422 | } | |
5423 | ||
5424 | assert(waitq_held(&wqset->wqset_q)); | |
5425 | ||
5426 | return wq_prepost_foreach_locked(wqset, (void *)&wctx, | |
5427 | wqset_iterate_prepost_cb); | |
5428 | } | |
5429 | ||
5430 | ||
5431 | /* ---------------------------------------------------------------------- | |
5432 | * | |
5433 | * Higher-level APIs | |
5434 | * | |
5435 | * ---------------------------------------------------------------------- */ | |
5436 | ||
5437 | ||
5438 | /** | |
5439 | * declare a thread's intent to wait on 'waitq' for 'wait_event' | |
5440 | * | |
5441 | * Conditions: | |
5442 | * 'waitq' is not locked | |
5443 | */ | |
5444 | wait_result_t | |
5445 | waitq_assert_wait64(struct waitq *waitq, | |
5446 | event64_t wait_event, | |
5447 | wait_interrupt_t interruptible, | |
5448 | uint64_t deadline) | |
5449 | { | |
5450 | thread_t thread = current_thread(); | |
5451 | wait_result_t ret; | |
5452 | spl_t s; | |
5453 | ||
5454 | if (!waitq_valid(waitq)) { | |
5455 | panic("Invalid waitq: %p", waitq); | |
5456 | } | |
5457 | ||
5458 | if (waitq_irq_safe(waitq)) { | |
5459 | s = splsched(); | |
5460 | } | |
5461 | ||
5462 | waitq_lock(waitq); | |
5463 | ret = waitq_assert_wait64_locked(waitq, wait_event, interruptible, | |
5464 | TIMEOUT_URGENCY_SYS_NORMAL, | |
5465 | deadline, TIMEOUT_NO_LEEWAY, thread); | |
5466 | waitq_unlock(waitq); | |
5467 | ||
5468 | if (waitq_irq_safe(waitq)) { | |
5469 | splx(s); | |
5470 | } | |
5471 | ||
5472 | return ret; | |
5473 | } | |
5474 | ||
5475 | /** | |
5476 | * declare a thread's intent to wait on 'waitq' for 'wait_event' | |
5477 | * | |
5478 | * Conditions: | |
5479 | * 'waitq' is not locked | |
5480 | * will disable and re-enable interrupts while locking current_thread() | |
5481 | */ | |
5482 | wait_result_t | |
5483 | waitq_assert_wait64_leeway(struct waitq *waitq, | |
5484 | event64_t wait_event, | |
5485 | wait_interrupt_t interruptible, | |
5486 | wait_timeout_urgency_t urgency, | |
5487 | uint64_t deadline, | |
5488 | uint64_t leeway) | |
5489 | { | |
5490 | wait_result_t ret; | |
5491 | thread_t thread = current_thread(); | |
5492 | spl_t s; | |
5493 | ||
5494 | if (!waitq_valid(waitq)) { | |
5495 | panic("Invalid waitq: %p", waitq); | |
5496 | } | |
5497 | ||
5498 | if (waitq_irq_safe(waitq)) { | |
5499 | s = splsched(); | |
5500 | } | |
5501 | ||
5502 | waitq_lock(waitq); | |
5503 | ret = waitq_assert_wait64_locked(waitq, wait_event, interruptible, | |
5504 | urgency, deadline, leeway, thread); | |
5505 | waitq_unlock(waitq); | |
5506 | ||
5507 | if (waitq_irq_safe(waitq)) { | |
5508 | splx(s); | |
5509 | } | |
5510 | ||
5511 | return ret; | |
5512 | } | |
5513 | ||
5514 | /** | |
5515 | * wakeup a single thread from a waitq that's waiting for a given event | |
5516 | * | |
5517 | * Conditions: | |
5518 | * 'waitq' is not locked | |
5519 | * may (rarely) block if 'waitq' is non-global and a member of 1 or more sets | |
5520 | * may disable and re-enable interrupts | |
5521 | * | |
5522 | * Notes: | |
5523 | * will _not_ block if waitq is global (or not a member of any set) | |
5524 | */ | |
5525 | kern_return_t | |
5526 | waitq_wakeup64_one(struct waitq *waitq, event64_t wake_event, | |
5527 | wait_result_t result, int priority) | |
5528 | { | |
5529 | kern_return_t kr; | |
5530 | uint64_t reserved_preposts = 0; | |
5531 | spl_t spl; | |
5532 | ||
5533 | if (!waitq_valid(waitq)) { | |
5534 | panic("Invalid waitq: %p", waitq); | |
5535 | } | |
5536 | ||
5537 | if (!waitq_irq_safe(waitq)) { | |
5538 | /* reserve preposts in addition to locking the waitq */ | |
5539 | reserved_preposts = waitq_prepost_reserve(waitq, 0, WAITQ_KEEP_LOCKED); | |
5540 | } else { | |
5541 | spl = splsched(); | |
5542 | waitq_lock(waitq); | |
5543 | } | |
5544 | ||
5545 | /* waitq is locked upon return */ | |
5546 | kr = waitq_wakeup64_one_locked(waitq, wake_event, result, | |
5547 | &reserved_preposts, priority, WAITQ_UNLOCK, WQ_OPTION_NONE); | |
5548 | ||
5549 | if (waitq_irq_safe(waitq)) { | |
5550 | splx(spl); | |
5551 | } | |
5552 | ||
5553 | /* release any left-over prepost object (won't block/lock anything) */ | |
5554 | waitq_prepost_release_reserve(reserved_preposts); | |
5555 | ||
5556 | return kr; | |
5557 | } | |
5558 | ||
5559 | /** | |
5560 | * wakeup all threads from a waitq that are waiting for a given event | |
5561 | * | |
5562 | * Conditions: | |
5563 | * 'waitq' is not locked | |
5564 | * may (rarely) block if 'waitq' is non-global and a member of 1 or more sets | |
5565 | * may disable and re-enable interrupts | |
5566 | * | |
5567 | * Notes: | |
5568 | * will _not_ block if waitq is global (or not a member of any set) | |
5569 | */ | |
5570 | kern_return_t | |
5571 | waitq_wakeup64_all(struct waitq *waitq, | |
5572 | event64_t wake_event, | |
5573 | wait_result_t result, | |
5574 | int priority) | |
5575 | { | |
5576 | kern_return_t ret; | |
5577 | uint64_t reserved_preposts = 0; | |
5578 | spl_t s; | |
5579 | ||
5580 | if (!waitq_valid(waitq)) { | |
5581 | panic("Invalid waitq: %p", waitq); | |
5582 | } | |
5583 | ||
5584 | if (!waitq_irq_safe(waitq)) { | |
5585 | /* reserve preposts in addition to locking waitq */ | |
5586 | reserved_preposts = waitq_prepost_reserve(waitq, 0, | |
5587 | WAITQ_KEEP_LOCKED); | |
5588 | } else { | |
5589 | s = splsched(); | |
5590 | waitq_lock(waitq); | |
5591 | } | |
5592 | ||
5593 | ret = waitq_wakeup64_all_locked(waitq, wake_event, result, | |
5594 | &reserved_preposts, priority, | |
5595 | WAITQ_UNLOCK); | |
5596 | ||
5597 | if (waitq_irq_safe(waitq)) { | |
5598 | splx(s); | |
5599 | } | |
5600 | ||
5601 | waitq_prepost_release_reserve(reserved_preposts); | |
5602 | ||
5603 | return ret; | |
5604 | } | |
5605 | ||
5606 | /** | |
5607 | * wakeup a specific thread iff it's waiting on 'waitq' for 'wake_event' | |
5608 | * | |
5609 | * Conditions: | |
5610 | * 'waitq' is not locked | |
5611 | * | |
5612 | * Notes: | |
5613 | * May temporarily disable and re-enable interrupts | |
5614 | */ | |
5615 | kern_return_t | |
5616 | waitq_wakeup64_thread(struct waitq *waitq, | |
5617 | event64_t wake_event, | |
5618 | thread_t thread, | |
5619 | wait_result_t result) | |
5620 | { | |
5621 | kern_return_t ret; | |
5622 | spl_t s, th_spl; | |
5623 | ||
5624 | if (!waitq_valid(waitq)) { | |
5625 | panic("Invalid waitq: %p", waitq); | |
5626 | } | |
5627 | ||
5628 | if (waitq_irq_safe(waitq)) { | |
5629 | s = splsched(); | |
5630 | } | |
5631 | waitq_lock(waitq); | |
5632 | ||
5633 | ret = waitq_select_thread_locked(waitq, wake_event, thread, &th_spl); | |
5634 | /* on success, returns 'thread' locked */ | |
5635 | ||
5636 | waitq_unlock(waitq); | |
5637 | ||
5638 | if (ret == KERN_SUCCESS) { | |
5639 | ret = thread_go(thread, result, WQ_OPTION_NONE); | |
5640 | assert(ret == KERN_SUCCESS); | |
5641 | thread_unlock(thread); | |
5642 | splx(th_spl); | |
5643 | waitq_stats_count_wakeup(waitq); | |
5644 | } else { | |
5645 | ret = KERN_NOT_WAITING; | |
5646 | waitq_stats_count_fail(waitq); | |
5647 | } | |
5648 | ||
5649 | if (waitq_irq_safe(waitq)) { | |
5650 | splx(s); | |
5651 | } | |
5652 | ||
5653 | return ret; | |
5654 | } | |
5655 | ||
5656 | /** | |
5657 | * wakeup a single thread from a waitq that's waiting for a given event | |
5658 | * and return a reference to that thread | |
5659 | * returns THREAD_NULL if no thread was waiting | |
5660 | * | |
5661 | * Conditions: | |
5662 | * 'waitq' is not locked | |
5663 | * may (rarely) block if 'waitq' is non-global and a member of 1 or more sets | |
5664 | * may disable and re-enable interrupts | |
5665 | * | |
5666 | * Notes: | |
5667 | * will _not_ block if waitq is global (or not a member of any set) | |
5668 | */ | |
5669 | thread_t | |
5670 | waitq_wakeup64_identify(struct waitq *waitq, | |
5671 | event64_t wake_event, | |
5672 | wait_result_t result, | |
5673 | int priority) | |
5674 | { | |
5675 | uint64_t reserved_preposts = 0; | |
5676 | spl_t thread_spl = 0; | |
5677 | thread_t thread; | |
5678 | spl_t spl; | |
5679 | ||
5680 | if (!waitq_valid(waitq)) { | |
5681 | panic("Invalid waitq: %p", waitq); | |
5682 | } | |
5683 | ||
5684 | if (!waitq_irq_safe(waitq)) { | |
5685 | /* reserve preposts in addition to locking waitq */ | |
5686 | reserved_preposts = waitq_prepost_reserve(waitq, 0, WAITQ_KEEP_LOCKED); | |
5687 | } else { | |
5688 | spl = splsched(); | |
5689 | waitq_lock(waitq); | |
5690 | } | |
5691 | ||
5692 | thread = waitq_wakeup64_identify_locked(waitq, wake_event, result, | |
5693 | &thread_spl, &reserved_preposts, | |
5694 | priority, WAITQ_UNLOCK); | |
5695 | /* waitq is unlocked, thread is locked */ | |
5696 | ||
5697 | if (thread != THREAD_NULL) { | |
5698 | thread_reference(thread); | |
5699 | thread_unlock(thread); | |
5700 | splx(thread_spl); | |
5701 | } | |
5702 | ||
5703 | if (waitq_irq_safe(waitq)) { | |
5704 | splx(spl); | |
5705 | } | |
5706 | ||
5707 | /* release any left-over prepost object (won't block/lock anything) */ | |
5708 | waitq_prepost_release_reserve(reserved_preposts); | |
5709 | ||
5710 | /* returns +1 ref to running thread or THREAD_NULL */ | |
5711 | return thread; | |
5712 | } |