]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2020 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <kern/policy_internal.h> | |
30 | #include <mach/task_policy.h> | |
31 | ||
32 | #include <mach/mach_types.h> | |
33 | #include <mach/task_server.h> | |
34 | ||
35 | #include <kern/host.h> /* host_priv_self() */ | |
36 | #include <mach/host_priv.h> /* host_get_special_port() */ | |
37 | #include <mach/host_special_ports.h> /* RESOURCE_NOTIFY_PORT */ | |
38 | #include <kern/sched.h> | |
39 | #include <kern/task.h> | |
40 | #include <mach/thread_policy.h> | |
41 | #include <sys/errno.h> | |
42 | #include <sys/resource.h> | |
43 | #include <machine/limits.h> | |
44 | #include <kern/ledger.h> | |
45 | #include <kern/thread_call.h> | |
46 | #include <kern/sfi.h> | |
47 | #include <kern/coalition.h> | |
48 | #if CONFIG_TELEMETRY | |
49 | #include <kern/telemetry.h> | |
50 | #endif | |
51 | #if !defined(XNU_TARGET_OS_OSX) | |
52 | #include <kern/kalloc.h> | |
53 | #include <sys/errno.h> | |
54 | #endif /* !defined(XNU_TARGET_OS_OSX) */ | |
55 | ||
56 | #if IMPORTANCE_INHERITANCE | |
57 | #include <ipc/ipc_importance.h> | |
58 | #if IMPORTANCE_TRACE | |
59 | #include <mach/machine/sdt.h> | |
60 | #endif /* IMPORTANCE_TRACE */ | |
61 | #endif /* IMPORTANCE_INHERITACE */ | |
62 | ||
63 | #include <sys/kdebug.h> | |
64 | ||
65 | /* | |
66 | * Task Policy | |
67 | * | |
68 | * This subsystem manages task and thread IO priority and backgrounding, | |
69 | * as well as importance inheritance, process suppression, task QoS, and apptype. | |
70 | * These properties have a suprising number of complex interactions, so they are | |
71 | * centralized here in one state machine to simplify the implementation of those interactions. | |
72 | * | |
73 | * Architecture: | |
74 | * Threads and tasks have two policy fields: requested, effective. | |
75 | * Requested represents the wishes of each interface that influences task policy. | |
76 | * Effective represents the distillation of that policy into a set of behaviors. | |
77 | * | |
78 | * Each thread making a modification in the policy system passes a 'pending' struct, | |
79 | * which tracks updates that will be applied after dropping the policy engine lock. | |
80 | * | |
81 | * Each interface that has an input into the task policy state machine controls a field in requested. | |
82 | * If the interface has a getter, it returns what is in the field in requested, but that is | |
83 | * not necessarily what is actually in effect. | |
84 | * | |
85 | * All kernel subsystems that behave differently based on task policy call into | |
86 | * the proc_get_effective_(task|thread)_policy functions, which return the decision of the task policy state machine | |
87 | * for that subsystem by querying only the 'effective' field. | |
88 | * | |
89 | * Policy change operations: | |
90 | * Here are the steps to change a policy on a task or thread: | |
91 | * 1) Lock task | |
92 | * 2) Change requested field for the relevant policy | |
93 | * 3) Run a task policy update, which recalculates effective based on requested, | |
94 | * then takes a diff between the old and new versions of requested and calls the relevant | |
95 | * other subsystems to apply these changes, and updates the pending field. | |
96 | * 4) Unlock task | |
97 | * 5) Run task policy update complete, which looks at the pending field to update | |
98 | * subsystems which cannot be touched while holding the task lock. | |
99 | * | |
100 | * To add a new requested policy, add the field in the requested struct, the flavor in task.h, | |
101 | * the setter and getter in proc_(set|get)_task_policy*, | |
102 | * then set up the effects of that behavior in task_policy_update*. If the policy manifests | |
103 | * itself as a distinct effective policy, add it to the effective struct and add it to the | |
104 | * proc_get_effective_task_policy accessor. | |
105 | * | |
106 | * Most policies are set via proc_set_task_policy, but policies that don't fit that interface | |
107 | * roll their own lock/set/update/unlock/complete code inside this file. | |
108 | * | |
109 | * | |
110 | * Suppression policy | |
111 | * | |
112 | * These are a set of behaviors that can be requested for a task. They currently have specific | |
113 | * implied actions when they're enabled, but they may be made customizable in the future. | |
114 | * | |
115 | * When the affected task is boosted, we temporarily disable the suppression behaviors | |
116 | * so that the affected process has a chance to run so it can call the API to permanently | |
117 | * disable the suppression behaviors. | |
118 | * | |
119 | * Locking | |
120 | * | |
121 | * Changing task policy on a task takes the task lock. | |
122 | * Changing task policy on a thread takes the thread mutex. | |
123 | * Task policy changes that affect threads will take each thread's mutex to update it if necessary. | |
124 | * | |
125 | * Querying the effective policy does not take a lock, because callers | |
126 | * may run in interrupt context or other place where locks are not OK. | |
127 | * | |
128 | * This means that any notification of state change needs to be externally synchronized. | |
129 | * We do this by idempotent callouts after the state has changed to ask | |
130 | * other subsystems to update their view of the world. | |
131 | * | |
132 | * TODO: Move all cpu/wakes/io monitor code into a separate file | |
133 | * TODO: Move all importance code over to importance subsystem | |
134 | * TODO: Move all taskwatch code into a separate file | |
135 | * TODO: Move all VM importance code into a separate file | |
136 | */ | |
137 | ||
138 | /* Task policy related helper functions */ | |
139 | static void proc_set_task_policy_locked(task_t task, int category, int flavor, int value, int value2); | |
140 | ||
141 | static void task_policy_update_locked(task_t task, task_pend_token_t pend_token); | |
142 | static void task_policy_update_internal_locked(task_t task, bool in_create, task_pend_token_t pend_token); | |
143 | ||
144 | /* For attributes that have two scalars as input/output */ | |
145 | static void proc_set_task_policy2(task_t task, int category, int flavor, int value1, int value2); | |
146 | static void proc_get_task_policy2(task_t task, int category, int flavor, int *value1, int *value2); | |
147 | ||
148 | static boolean_t task_policy_update_coalition_focal_tasks(task_t task, int prev_role, int next_role, task_pend_token_t pend_token); | |
149 | ||
150 | static uint64_t task_requested_bitfield(task_t task); | |
151 | static uint64_t task_effective_bitfield(task_t task); | |
152 | ||
153 | /* Convenience functions for munging a policy bitfield into a tracepoint */ | |
154 | static uintptr_t trequested_0(task_t task); | |
155 | static uintptr_t trequested_1(task_t task); | |
156 | static uintptr_t teffective_0(task_t task); | |
157 | static uintptr_t teffective_1(task_t task); | |
158 | ||
159 | /* CPU limits helper functions */ | |
160 | static int task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int entitled); | |
161 | static int task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope); | |
162 | static int task_enable_cpumon_locked(task_t task); | |
163 | static int task_disable_cpumon(task_t task); | |
164 | static int task_clear_cpuusage_locked(task_t task, int cpumon_entitled); | |
165 | static int task_apply_resource_actions(task_t task, int type); | |
166 | static void task_action_cpuusage(thread_call_param_t param0, thread_call_param_t param1); | |
167 | ||
168 | #ifdef MACH_BSD | |
169 | typedef struct proc * proc_t; | |
170 | int proc_pid(struct proc *proc); | |
171 | extern int proc_selfpid(void); | |
172 | extern char * proc_name_address(void *p); | |
173 | extern char * proc_best_name(proc_t proc); | |
174 | ||
175 | extern int proc_pidpathinfo_internal(proc_t p, uint64_t arg, | |
176 | char *buffer, uint32_t buffersize, | |
177 | int32_t *retval); | |
178 | #endif /* MACH_BSD */ | |
179 | ||
180 | ||
181 | #if CONFIG_TASKWATCH | |
182 | /* Taskwatch related helper functions */ | |
183 | static void set_thread_appbg(thread_t thread, int setbg, int importance); | |
184 | static void add_taskwatch_locked(task_t task, task_watch_t * twp); | |
185 | static void remove_taskwatch_locked(task_t task, task_watch_t * twp); | |
186 | static void task_watch_lock(void); | |
187 | static void task_watch_unlock(void); | |
188 | static void apply_appstate_watchers(task_t task); | |
189 | ||
190 | typedef struct task_watcher { | |
191 | queue_chain_t tw_links; /* queueing of threads */ | |
192 | task_t tw_task; /* task that is being watched */ | |
193 | thread_t tw_thread; /* thread that is watching the watch_task */ | |
194 | int tw_state; /* the current app state of the thread */ | |
195 | int tw_importance; /* importance prior to backgrounding */ | |
196 | } task_watch_t; | |
197 | ||
198 | typedef struct thread_watchlist { | |
199 | thread_t thread; /* thread being worked on for taskwatch action */ | |
200 | int importance; /* importance to be restored if thread is being made active */ | |
201 | } thread_watchlist_t; | |
202 | ||
203 | #endif /* CONFIG_TASKWATCH */ | |
204 | ||
205 | extern int memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap); | |
206 | ||
207 | /* Importance Inheritance related helper functions */ | |
208 | ||
209 | #if IMPORTANCE_INHERITANCE | |
210 | ||
211 | static void task_importance_mark_live_donor(task_t task, boolean_t donating); | |
212 | static void task_importance_mark_receiver(task_t task, boolean_t receiving); | |
213 | static void task_importance_mark_denap_receiver(task_t task, boolean_t denap); | |
214 | ||
215 | static boolean_t task_is_marked_live_importance_donor(task_t task); | |
216 | static boolean_t task_is_importance_receiver(task_t task); | |
217 | static boolean_t task_is_importance_denap_receiver(task_t task); | |
218 | ||
219 | static int task_importance_hold_internal_assertion(task_t target_task, uint32_t count); | |
220 | ||
221 | static void task_add_importance_watchport(task_t task, mach_port_t port, int *boostp); | |
222 | static void task_importance_update_live_donor(task_t target_task); | |
223 | ||
224 | static void task_set_boost_locked(task_t task, boolean_t boost_active); | |
225 | ||
226 | #endif /* IMPORTANCE_INHERITANCE */ | |
227 | ||
228 | #if IMPORTANCE_TRACE | |
229 | #define __imptrace_only | |
230 | #else /* IMPORTANCE_TRACE */ | |
231 | #define __imptrace_only __unused | |
232 | #endif /* !IMPORTANCE_TRACE */ | |
233 | ||
234 | #if IMPORTANCE_INHERITANCE | |
235 | #define __imp_only | |
236 | #else | |
237 | #define __imp_only __unused | |
238 | #endif | |
239 | ||
240 | /* | |
241 | * Default parameters for certain policies | |
242 | */ | |
243 | ||
244 | int proc_standard_daemon_tier = THROTTLE_LEVEL_TIER1; | |
245 | int proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER1; | |
246 | int proc_tal_disk_tier = THROTTLE_LEVEL_TIER1; | |
247 | ||
248 | int proc_graphics_timer_qos = (LATENCY_QOS_TIER_0 & 0xFF); | |
249 | ||
250 | const int proc_default_bg_iotier = THROTTLE_LEVEL_TIER2; | |
251 | ||
252 | /* Latency/throughput QoS fields remain zeroed, i.e. TIER_UNSPECIFIED at creation */ | |
253 | const struct task_requested_policy default_task_requested_policy = { | |
254 | .trp_bg_iotier = proc_default_bg_iotier | |
255 | }; | |
256 | const struct task_effective_policy default_task_effective_policy = {}; | |
257 | ||
258 | /* | |
259 | * Default parameters for CPU usage monitor. | |
260 | * | |
261 | * Default setting is 50% over 3 minutes. | |
262 | */ | |
263 | #define DEFAULT_CPUMON_PERCENTAGE 50 | |
264 | #define DEFAULT_CPUMON_INTERVAL (3 * 60) | |
265 | ||
266 | uint8_t proc_max_cpumon_percentage; | |
267 | uint64_t proc_max_cpumon_interval; | |
268 | ||
269 | ||
270 | kern_return_t | |
271 | qos_latency_policy_validate(task_latency_qos_t ltier) | |
272 | { | |
273 | if ((ltier != LATENCY_QOS_TIER_UNSPECIFIED) && | |
274 | ((ltier > LATENCY_QOS_TIER_5) || (ltier < LATENCY_QOS_TIER_0))) { | |
275 | return KERN_INVALID_ARGUMENT; | |
276 | } | |
277 | ||
278 | return KERN_SUCCESS; | |
279 | } | |
280 | ||
281 | kern_return_t | |
282 | qos_throughput_policy_validate(task_throughput_qos_t ttier) | |
283 | { | |
284 | if ((ttier != THROUGHPUT_QOS_TIER_UNSPECIFIED) && | |
285 | ((ttier > THROUGHPUT_QOS_TIER_5) || (ttier < THROUGHPUT_QOS_TIER_0))) { | |
286 | return KERN_INVALID_ARGUMENT; | |
287 | } | |
288 | ||
289 | return KERN_SUCCESS; | |
290 | } | |
291 | ||
292 | static kern_return_t | |
293 | task_qos_policy_validate(task_qos_policy_t qosinfo, mach_msg_type_number_t count) | |
294 | { | |
295 | if (count < TASK_QOS_POLICY_COUNT) { | |
296 | return KERN_INVALID_ARGUMENT; | |
297 | } | |
298 | ||
299 | task_latency_qos_t ltier = qosinfo->task_latency_qos_tier; | |
300 | task_throughput_qos_t ttier = qosinfo->task_throughput_qos_tier; | |
301 | ||
302 | kern_return_t kr = qos_latency_policy_validate(ltier); | |
303 | ||
304 | if (kr != KERN_SUCCESS) { | |
305 | return kr; | |
306 | } | |
307 | ||
308 | kr = qos_throughput_policy_validate(ttier); | |
309 | ||
310 | return kr; | |
311 | } | |
312 | ||
313 | uint32_t | |
314 | qos_extract(uint32_t qv) | |
315 | { | |
316 | return qv & 0xFF; | |
317 | } | |
318 | ||
319 | uint32_t | |
320 | qos_latency_policy_package(uint32_t qv) | |
321 | { | |
322 | return (qv == LATENCY_QOS_TIER_UNSPECIFIED) ? LATENCY_QOS_TIER_UNSPECIFIED : ((0xFF << 16) | qv); | |
323 | } | |
324 | ||
325 | uint32_t | |
326 | qos_throughput_policy_package(uint32_t qv) | |
327 | { | |
328 | return (qv == THROUGHPUT_QOS_TIER_UNSPECIFIED) ? THROUGHPUT_QOS_TIER_UNSPECIFIED : ((0xFE << 16) | qv); | |
329 | } | |
330 | ||
331 | #define TASK_POLICY_SUPPRESSION_DISABLE 0x1 | |
332 | #define TASK_POLICY_SUPPRESSION_IOTIER2 0x2 | |
333 | #define TASK_POLICY_SUPPRESSION_NONDONOR 0x4 | |
334 | /* TEMPORARY boot-arg controlling task_policy suppression (App Nap) */ | |
335 | static boolean_t task_policy_suppression_flags = TASK_POLICY_SUPPRESSION_IOTIER2 | | |
336 | TASK_POLICY_SUPPRESSION_NONDONOR; | |
337 | ||
338 | kern_return_t | |
339 | task_policy_set( | |
340 | task_t task, | |
341 | task_policy_flavor_t flavor, | |
342 | task_policy_t policy_info, | |
343 | mach_msg_type_number_t count) | |
344 | { | |
345 | kern_return_t result = KERN_SUCCESS; | |
346 | ||
347 | if (task == TASK_NULL || task == kernel_task) { | |
348 | return KERN_INVALID_ARGUMENT; | |
349 | } | |
350 | ||
351 | switch (flavor) { | |
352 | case TASK_CATEGORY_POLICY: { | |
353 | task_category_policy_t info = (task_category_policy_t)policy_info; | |
354 | ||
355 | if (count < TASK_CATEGORY_POLICY_COUNT) { | |
356 | return KERN_INVALID_ARGUMENT; | |
357 | } | |
358 | ||
359 | #if !defined(XNU_TARGET_OS_OSX) | |
360 | /* On embedded, you can't modify your own role. */ | |
361 | if (current_task() == task) { | |
362 | return KERN_INVALID_ARGUMENT; | |
363 | } | |
364 | #endif | |
365 | ||
366 | switch (info->role) { | |
367 | case TASK_FOREGROUND_APPLICATION: | |
368 | case TASK_BACKGROUND_APPLICATION: | |
369 | case TASK_DEFAULT_APPLICATION: | |
370 | proc_set_task_policy(task, | |
371 | TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE, | |
372 | info->role); | |
373 | break; | |
374 | ||
375 | case TASK_CONTROL_APPLICATION: | |
376 | if (task != current_task() || task->sec_token.val[0] != 0) { | |
377 | result = KERN_INVALID_ARGUMENT; | |
378 | } else { | |
379 | proc_set_task_policy(task, | |
380 | TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE, | |
381 | info->role); | |
382 | } | |
383 | break; | |
384 | ||
385 | case TASK_GRAPHICS_SERVER: | |
386 | /* TODO: Restrict this role to FCFS <rdar://problem/12552788> */ | |
387 | if (task != current_task() || task->sec_token.val[0] != 0) { | |
388 | result = KERN_INVALID_ARGUMENT; | |
389 | } else { | |
390 | proc_set_task_policy(task, | |
391 | TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE, | |
392 | info->role); | |
393 | } | |
394 | break; | |
395 | default: | |
396 | result = KERN_INVALID_ARGUMENT; | |
397 | break; | |
398 | } /* switch (info->role) */ | |
399 | ||
400 | break; | |
401 | } | |
402 | ||
403 | /* Desired energy-efficiency/performance "quality-of-service" */ | |
404 | case TASK_BASE_QOS_POLICY: | |
405 | case TASK_OVERRIDE_QOS_POLICY: | |
406 | { | |
407 | task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info; | |
408 | kern_return_t kr = task_qos_policy_validate(qosinfo, count); | |
409 | ||
410 | if (kr != KERN_SUCCESS) { | |
411 | return kr; | |
412 | } | |
413 | ||
414 | ||
415 | uint32_t lqos = qos_extract(qosinfo->task_latency_qos_tier); | |
416 | uint32_t tqos = qos_extract(qosinfo->task_throughput_qos_tier); | |
417 | ||
418 | proc_set_task_policy2(task, TASK_POLICY_ATTRIBUTE, | |
419 | flavor == TASK_BASE_QOS_POLICY ? TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS : TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS, | |
420 | lqos, tqos); | |
421 | } | |
422 | break; | |
423 | ||
424 | case TASK_BASE_LATENCY_QOS_POLICY: | |
425 | { | |
426 | task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info; | |
427 | kern_return_t kr = task_qos_policy_validate(qosinfo, count); | |
428 | ||
429 | if (kr != KERN_SUCCESS) { | |
430 | return kr; | |
431 | } | |
432 | ||
433 | uint32_t lqos = qos_extract(qosinfo->task_latency_qos_tier); | |
434 | ||
435 | proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_BASE_LATENCY_QOS_POLICY, lqos); | |
436 | } | |
437 | break; | |
438 | ||
439 | case TASK_BASE_THROUGHPUT_QOS_POLICY: | |
440 | { | |
441 | task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info; | |
442 | kern_return_t kr = task_qos_policy_validate(qosinfo, count); | |
443 | ||
444 | if (kr != KERN_SUCCESS) { | |
445 | return kr; | |
446 | } | |
447 | ||
448 | uint32_t tqos = qos_extract(qosinfo->task_throughput_qos_tier); | |
449 | ||
450 | proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_BASE_THROUGHPUT_QOS_POLICY, tqos); | |
451 | } | |
452 | break; | |
453 | ||
454 | case TASK_SUPPRESSION_POLICY: | |
455 | { | |
456 | #if !defined(XNU_TARGET_OS_OSX) | |
457 | /* | |
458 | * Suppression policy is not enabled for embedded | |
459 | * because apps aren't marked as denap receivers | |
460 | */ | |
461 | result = KERN_INVALID_ARGUMENT; | |
462 | break; | |
463 | #else /* !defined(XNU_TARGET_OS_OSX) */ | |
464 | ||
465 | task_suppression_policy_t info = (task_suppression_policy_t)policy_info; | |
466 | ||
467 | if (count < TASK_SUPPRESSION_POLICY_COUNT) { | |
468 | return KERN_INVALID_ARGUMENT; | |
469 | } | |
470 | ||
471 | struct task_qos_policy qosinfo; | |
472 | ||
473 | qosinfo.task_latency_qos_tier = info->timer_throttle; | |
474 | qosinfo.task_throughput_qos_tier = info->throughput_qos; | |
475 | ||
476 | kern_return_t kr = task_qos_policy_validate(&qosinfo, TASK_QOS_POLICY_COUNT); | |
477 | ||
478 | if (kr != KERN_SUCCESS) { | |
479 | return kr; | |
480 | } | |
481 | ||
482 | /* TEMPORARY disablement of task suppression */ | |
483 | if (info->active && | |
484 | (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_DISABLE)) { | |
485 | return KERN_SUCCESS; | |
486 | } | |
487 | ||
488 | struct task_pend_token pend_token = {}; | |
489 | ||
490 | task_lock(task); | |
491 | ||
492 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
493 | (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_START, | |
494 | proc_selfpid(), task_pid(task), trequested_0(task), | |
495 | trequested_1(task), 0); | |
496 | ||
497 | task->requested_policy.trp_sup_active = (info->active) ? 1 : 0; | |
498 | task->requested_policy.trp_sup_lowpri_cpu = (info->lowpri_cpu) ? 1 : 0; | |
499 | task->requested_policy.trp_sup_timer = qos_extract(info->timer_throttle); | |
500 | task->requested_policy.trp_sup_disk = (info->disk_throttle) ? 1 : 0; | |
501 | task->requested_policy.trp_sup_throughput = qos_extract(info->throughput_qos); | |
502 | task->requested_policy.trp_sup_cpu = (info->suppressed_cpu) ? 1 : 0; | |
503 | task->requested_policy.trp_sup_bg_sockets = (info->background_sockets) ? 1 : 0; | |
504 | ||
505 | task_policy_update_locked(task, &pend_token); | |
506 | ||
507 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
508 | (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_END, | |
509 | proc_selfpid(), task_pid(task), trequested_0(task), | |
510 | trequested_1(task), 0); | |
511 | ||
512 | task_unlock(task); | |
513 | ||
514 | task_policy_update_complete_unlocked(task, &pend_token); | |
515 | ||
516 | break; | |
517 | ||
518 | #endif /* !defined(XNU_TARGET_OS_OSX) */ | |
519 | } | |
520 | ||
521 | default: | |
522 | result = KERN_INVALID_ARGUMENT; | |
523 | break; | |
524 | } | |
525 | ||
526 | return result; | |
527 | } | |
528 | ||
529 | /* Sets BSD 'nice' value on the task */ | |
530 | kern_return_t | |
531 | task_importance( | |
532 | task_t task, | |
533 | integer_t importance) | |
534 | { | |
535 | if (task == TASK_NULL || task == kernel_task) { | |
536 | return KERN_INVALID_ARGUMENT; | |
537 | } | |
538 | ||
539 | task_lock(task); | |
540 | ||
541 | if (!task->active) { | |
542 | task_unlock(task); | |
543 | ||
544 | return KERN_TERMINATED; | |
545 | } | |
546 | ||
547 | if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) >= TASK_CONTROL_APPLICATION) { | |
548 | task_unlock(task); | |
549 | ||
550 | return KERN_INVALID_ARGUMENT; | |
551 | } | |
552 | ||
553 | task->importance = importance; | |
554 | ||
555 | struct task_pend_token pend_token = {}; | |
556 | ||
557 | task_policy_update_locked(task, &pend_token); | |
558 | ||
559 | task_unlock(task); | |
560 | ||
561 | task_policy_update_complete_unlocked(task, &pend_token); | |
562 | ||
563 | return KERN_SUCCESS; | |
564 | } | |
565 | ||
566 | kern_return_t | |
567 | task_policy_get( | |
568 | task_t task, | |
569 | task_policy_flavor_t flavor, | |
570 | task_policy_t policy_info, | |
571 | mach_msg_type_number_t *count, | |
572 | boolean_t *get_default) | |
573 | { | |
574 | if (task == TASK_NULL || task == kernel_task) { | |
575 | return KERN_INVALID_ARGUMENT; | |
576 | } | |
577 | ||
578 | switch (flavor) { | |
579 | case TASK_CATEGORY_POLICY: | |
580 | { | |
581 | task_category_policy_t info = (task_category_policy_t)policy_info; | |
582 | ||
583 | if (*count < TASK_CATEGORY_POLICY_COUNT) { | |
584 | return KERN_INVALID_ARGUMENT; | |
585 | } | |
586 | ||
587 | if (*get_default) { | |
588 | info->role = TASK_UNSPECIFIED; | |
589 | } else { | |
590 | info->role = proc_get_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE); | |
591 | } | |
592 | break; | |
593 | } | |
594 | ||
595 | case TASK_BASE_QOS_POLICY: /* FALLTHRU */ | |
596 | case TASK_OVERRIDE_QOS_POLICY: | |
597 | { | |
598 | task_qos_policy_t info = (task_qos_policy_t)policy_info; | |
599 | ||
600 | if (*count < TASK_QOS_POLICY_COUNT) { | |
601 | return KERN_INVALID_ARGUMENT; | |
602 | } | |
603 | ||
604 | if (*get_default) { | |
605 | info->task_latency_qos_tier = LATENCY_QOS_TIER_UNSPECIFIED; | |
606 | info->task_throughput_qos_tier = THROUGHPUT_QOS_TIER_UNSPECIFIED; | |
607 | } else if (flavor == TASK_BASE_QOS_POLICY) { | |
608 | int value1, value2; | |
609 | ||
610 | proc_get_task_policy2(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS, &value1, &value2); | |
611 | ||
612 | info->task_latency_qos_tier = qos_latency_policy_package(value1); | |
613 | info->task_throughput_qos_tier = qos_throughput_policy_package(value2); | |
614 | } else if (flavor == TASK_OVERRIDE_QOS_POLICY) { | |
615 | int value1, value2; | |
616 | ||
617 | proc_get_task_policy2(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS, &value1, &value2); | |
618 | ||
619 | info->task_latency_qos_tier = qos_latency_policy_package(value1); | |
620 | info->task_throughput_qos_tier = qos_throughput_policy_package(value2); | |
621 | } | |
622 | ||
623 | break; | |
624 | } | |
625 | ||
626 | case TASK_POLICY_STATE: | |
627 | { | |
628 | task_policy_state_t info = (task_policy_state_t)policy_info; | |
629 | ||
630 | if (*count < TASK_POLICY_STATE_COUNT) { | |
631 | return KERN_INVALID_ARGUMENT; | |
632 | } | |
633 | ||
634 | /* Only root can get this info */ | |
635 | if (current_task()->sec_token.val[0] != 0) { | |
636 | return KERN_PROTECTION_FAILURE; | |
637 | } | |
638 | ||
639 | if (*get_default) { | |
640 | info->requested = 0; | |
641 | info->effective = 0; | |
642 | info->pending = 0; | |
643 | info->imp_assertcnt = 0; | |
644 | info->imp_externcnt = 0; | |
645 | info->flags = 0; | |
646 | info->imp_transitions = 0; | |
647 | } else { | |
648 | task_lock(task); | |
649 | ||
650 | info->requested = task_requested_bitfield(task); | |
651 | info->effective = task_effective_bitfield(task); | |
652 | info->pending = 0; | |
653 | ||
654 | info->tps_requested_policy = *(uint64_t*)(&task->requested_policy); | |
655 | info->tps_effective_policy = *(uint64_t*)(&task->effective_policy); | |
656 | ||
657 | info->flags = 0; | |
658 | if (task->task_imp_base != NULL) { | |
659 | info->imp_assertcnt = task->task_imp_base->iit_assertcnt; | |
660 | info->imp_externcnt = IIT_EXTERN(task->task_imp_base); | |
661 | info->flags |= (task_is_marked_importance_receiver(task) ? TASK_IMP_RECEIVER : 0); | |
662 | info->flags |= (task_is_marked_importance_denap_receiver(task) ? TASK_DENAP_RECEIVER : 0); | |
663 | info->flags |= (task_is_marked_importance_donor(task) ? TASK_IMP_DONOR : 0); | |
664 | info->flags |= (task_is_marked_live_importance_donor(task) ? TASK_IMP_LIVE_DONOR : 0); | |
665 | info->flags |= (get_task_pidsuspended(task) ? TASK_IS_PIDSUSPENDED : 0); | |
666 | info->imp_transitions = task->task_imp_base->iit_transitions; | |
667 | } else { | |
668 | info->imp_assertcnt = 0; | |
669 | info->imp_externcnt = 0; | |
670 | info->imp_transitions = 0; | |
671 | } | |
672 | task_unlock(task); | |
673 | } | |
674 | ||
675 | break; | |
676 | } | |
677 | ||
678 | case TASK_SUPPRESSION_POLICY: | |
679 | { | |
680 | task_suppression_policy_t info = (task_suppression_policy_t)policy_info; | |
681 | ||
682 | if (*count < TASK_SUPPRESSION_POLICY_COUNT) { | |
683 | return KERN_INVALID_ARGUMENT; | |
684 | } | |
685 | ||
686 | task_lock(task); | |
687 | ||
688 | if (*get_default) { | |
689 | info->active = 0; | |
690 | info->lowpri_cpu = 0; | |
691 | info->timer_throttle = LATENCY_QOS_TIER_UNSPECIFIED; | |
692 | info->disk_throttle = 0; | |
693 | info->cpu_limit = 0; | |
694 | info->suspend = 0; | |
695 | info->throughput_qos = 0; | |
696 | info->suppressed_cpu = 0; | |
697 | } else { | |
698 | info->active = task->requested_policy.trp_sup_active; | |
699 | info->lowpri_cpu = task->requested_policy.trp_sup_lowpri_cpu; | |
700 | info->timer_throttle = qos_latency_policy_package(task->requested_policy.trp_sup_timer); | |
701 | info->disk_throttle = task->requested_policy.trp_sup_disk; | |
702 | info->cpu_limit = 0; | |
703 | info->suspend = 0; | |
704 | info->throughput_qos = qos_throughput_policy_package(task->requested_policy.trp_sup_throughput); | |
705 | info->suppressed_cpu = task->requested_policy.trp_sup_cpu; | |
706 | info->background_sockets = task->requested_policy.trp_sup_bg_sockets; | |
707 | } | |
708 | ||
709 | task_unlock(task); | |
710 | break; | |
711 | } | |
712 | ||
713 | default: | |
714 | return KERN_INVALID_ARGUMENT; | |
715 | } | |
716 | ||
717 | return KERN_SUCCESS; | |
718 | } | |
719 | ||
720 | /* | |
721 | * Called at task creation | |
722 | * We calculate the correct effective but don't apply it to anything yet. | |
723 | * The threads, etc will inherit from the task as they get created. | |
724 | */ | |
725 | void | |
726 | task_policy_create(task_t task, task_t parent_task) | |
727 | { | |
728 | task->requested_policy.trp_apptype = parent_task->requested_policy.trp_apptype; | |
729 | ||
730 | task->requested_policy.trp_int_darwinbg = parent_task->requested_policy.trp_int_darwinbg; | |
731 | task->requested_policy.trp_ext_darwinbg = parent_task->requested_policy.trp_ext_darwinbg; | |
732 | task->requested_policy.trp_int_iotier = parent_task->requested_policy.trp_int_iotier; | |
733 | task->requested_policy.trp_ext_iotier = parent_task->requested_policy.trp_ext_iotier; | |
734 | task->requested_policy.trp_int_iopassive = parent_task->requested_policy.trp_int_iopassive; | |
735 | task->requested_policy.trp_ext_iopassive = parent_task->requested_policy.trp_ext_iopassive; | |
736 | task->requested_policy.trp_bg_iotier = parent_task->requested_policy.trp_bg_iotier; | |
737 | task->requested_policy.trp_terminated = parent_task->requested_policy.trp_terminated; | |
738 | task->requested_policy.trp_qos_clamp = parent_task->requested_policy.trp_qos_clamp; | |
739 | ||
740 | if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE && !task_is_exec_copy(task)) { | |
741 | /* Do not update the apptype for exec copy task */ | |
742 | if (parent_task->requested_policy.trp_boosted) { | |
743 | task->requested_policy.trp_apptype = TASK_APPTYPE_DAEMON_INTERACTIVE; | |
744 | task_importance_mark_donor(task, TRUE); | |
745 | } else { | |
746 | task->requested_policy.trp_apptype = TASK_APPTYPE_DAEMON_BACKGROUND; | |
747 | task_importance_mark_receiver(task, FALSE); | |
748 | } | |
749 | } | |
750 | ||
751 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
752 | (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_START, | |
753 | task_pid(task), teffective_0(task), | |
754 | teffective_1(task), task->priority, 0); | |
755 | ||
756 | task_policy_update_internal_locked(task, true, NULL); | |
757 | ||
758 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
759 | (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_END, | |
760 | task_pid(task), teffective_0(task), | |
761 | teffective_1(task), task->priority, 0); | |
762 | ||
763 | task_importance_update_live_donor(task); | |
764 | } | |
765 | ||
766 | ||
767 | static void | |
768 | task_policy_update_locked(task_t task, task_pend_token_t pend_token) | |
769 | { | |
770 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
771 | (IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_TASK) | DBG_FUNC_START), | |
772 | task_pid(task), teffective_0(task), | |
773 | teffective_1(task), task->priority, 0); | |
774 | ||
775 | task_policy_update_internal_locked(task, false, pend_token); | |
776 | ||
777 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
778 | (IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_TASK)) | DBG_FUNC_END, | |
779 | task_pid(task), teffective_0(task), | |
780 | teffective_1(task), task->priority, 0); | |
781 | } | |
782 | ||
783 | /* | |
784 | * One state update function TO RULE THEM ALL | |
785 | * | |
786 | * This function updates the task or thread effective policy fields | |
787 | * and pushes the results to the relevant subsystems. | |
788 | * | |
789 | * Must call update_complete after unlocking the task, | |
790 | * as some subsystems cannot be updated while holding the task lock. | |
791 | * | |
792 | * Called with task locked, not thread | |
793 | */ | |
794 | ||
795 | static void | |
796 | task_policy_update_internal_locked(task_t task, bool in_create, task_pend_token_t pend_token) | |
797 | { | |
798 | /* | |
799 | * Step 1: | |
800 | * Gather requested policy | |
801 | */ | |
802 | ||
803 | struct task_requested_policy requested = task->requested_policy; | |
804 | ||
805 | /* | |
806 | * Step 2: | |
807 | * Calculate new effective policies from requested policy and task state | |
808 | * Rules: | |
809 | * Don't change requested, it won't take effect | |
810 | */ | |
811 | ||
812 | struct task_effective_policy next = {}; | |
813 | ||
814 | /* Update task role */ | |
815 | next.tep_role = requested.trp_role; | |
816 | ||
817 | /* Set task qos clamp and ceiling */ | |
818 | next.tep_qos_clamp = requested.trp_qos_clamp; | |
819 | ||
820 | if (requested.trp_apptype == TASK_APPTYPE_APP_DEFAULT) { | |
821 | switch (next.tep_role) { | |
822 | case TASK_FOREGROUND_APPLICATION: | |
823 | /* Foreground apps get urgent scheduler priority */ | |
824 | next.tep_qos_ui_is_urgent = 1; | |
825 | next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED; | |
826 | break; | |
827 | ||
828 | case TASK_BACKGROUND_APPLICATION: | |
829 | /* This is really 'non-focal but on-screen' */ | |
830 | next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED; | |
831 | break; | |
832 | ||
833 | case TASK_DEFAULT_APPLICATION: | |
834 | /* This is 'may render UI but we don't know if it's focal/nonfocal' */ | |
835 | next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED; | |
836 | break; | |
837 | ||
838 | case TASK_NONUI_APPLICATION: | |
839 | /* i.e. 'off-screen' */ | |
840 | next.tep_qos_ceiling = THREAD_QOS_LEGACY; | |
841 | break; | |
842 | ||
843 | case TASK_CONTROL_APPLICATION: | |
844 | case TASK_GRAPHICS_SERVER: | |
845 | next.tep_qos_ui_is_urgent = 1; | |
846 | next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED; | |
847 | break; | |
848 | ||
849 | case TASK_THROTTLE_APPLICATION: | |
850 | /* i.e. 'TAL launch' */ | |
851 | next.tep_qos_ceiling = THREAD_QOS_UTILITY; | |
852 | break; | |
853 | ||
854 | case TASK_DARWINBG_APPLICATION: | |
855 | /* i.e. 'DARWIN_BG throttled background application' */ | |
856 | next.tep_qos_ceiling = THREAD_QOS_BACKGROUND; | |
857 | break; | |
858 | ||
859 | case TASK_UNSPECIFIED: | |
860 | default: | |
861 | /* Apps that don't have an application role get | |
862 | * USER_INTERACTIVE and USER_INITIATED squashed to LEGACY */ | |
863 | next.tep_qos_ceiling = THREAD_QOS_LEGACY; | |
864 | break; | |
865 | } | |
866 | } else { | |
867 | /* Daemons and dext get USER_INTERACTIVE squashed to USER_INITIATED */ | |
868 | next.tep_qos_ceiling = THREAD_QOS_USER_INITIATED; | |
869 | } | |
870 | ||
871 | /* Calculate DARWIN_BG */ | |
872 | bool wants_darwinbg = false; | |
873 | bool wants_all_sockets_bg = false; /* Do I want my existing sockets to be bg */ | |
874 | bool wants_watchersbg = false; /* Do I want my pidbound threads to be bg */ | |
875 | bool adaptive_bg_only = false; /* This task is BG only because it's adaptive unboosted */ | |
876 | ||
877 | /* Adaptive daemons are DARWIN_BG unless boosted, and don't get network throttled. */ | |
878 | if (requested.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE && | |
879 | requested.trp_boosted == 0) { | |
880 | wants_darwinbg = true; | |
881 | adaptive_bg_only = true; | |
882 | } | |
883 | ||
884 | /* | |
885 | * If DARWIN_BG has been requested at either level, it's engaged. | |
886 | * Only true DARWIN_BG changes cause watchers to transition. | |
887 | * | |
888 | * Backgrounding due to apptype does. | |
889 | */ | |
890 | if (requested.trp_int_darwinbg || requested.trp_ext_darwinbg || | |
891 | next.tep_role == TASK_DARWINBG_APPLICATION) { | |
892 | wants_watchersbg = wants_all_sockets_bg = wants_darwinbg = true; | |
893 | adaptive_bg_only = false; | |
894 | } | |
895 | ||
896 | /* Application launching in special Transparent App Lifecycle throttle mode */ | |
897 | if (requested.trp_apptype == TASK_APPTYPE_APP_DEFAULT && | |
898 | requested.trp_role == TASK_THROTTLE_APPLICATION) { | |
899 | next.tep_tal_engaged = 1; | |
900 | } | |
901 | ||
902 | /* Background daemons are always DARWIN_BG, no exceptions, and don't get network throttled. */ | |
903 | if (requested.trp_apptype == TASK_APPTYPE_DAEMON_BACKGROUND) { | |
904 | wants_darwinbg = true; | |
905 | adaptive_bg_only = false; | |
906 | } | |
907 | ||
908 | if (next.tep_qos_clamp == THREAD_QOS_BACKGROUND || | |
909 | next.tep_qos_clamp == THREAD_QOS_MAINTENANCE) { | |
910 | wants_darwinbg = true; | |
911 | adaptive_bg_only = false; | |
912 | } | |
913 | ||
914 | /* Calculate side effects of DARWIN_BG */ | |
915 | ||
916 | if (wants_darwinbg) { | |
917 | next.tep_darwinbg = 1; | |
918 | /* darwinbg tasks always create bg sockets, but we don't always loop over all sockets */ | |
919 | next.tep_new_sockets_bg = 1; | |
920 | next.tep_lowpri_cpu = 1; | |
921 | } | |
922 | ||
923 | if (wants_all_sockets_bg) { | |
924 | next.tep_all_sockets_bg = 1; | |
925 | } | |
926 | ||
927 | if (wants_watchersbg) { | |
928 | next.tep_watchers_bg = 1; | |
929 | } | |
930 | ||
931 | next.tep_adaptive_bg = adaptive_bg_only; | |
932 | ||
933 | /* Calculate low CPU priority */ | |
934 | ||
935 | boolean_t wants_lowpri_cpu = false; | |
936 | ||
937 | if (wants_darwinbg) { | |
938 | wants_lowpri_cpu = true; | |
939 | } | |
940 | ||
941 | if (next.tep_tal_engaged) { | |
942 | wants_lowpri_cpu = true; | |
943 | } | |
944 | ||
945 | if (requested.trp_sup_lowpri_cpu && requested.trp_boosted == 0) { | |
946 | wants_lowpri_cpu = true; | |
947 | } | |
948 | ||
949 | if (wants_lowpri_cpu) { | |
950 | next.tep_lowpri_cpu = 1; | |
951 | } | |
952 | ||
953 | /* Calculate IO policy */ | |
954 | ||
955 | /* Update BG IO policy (so we can see if it has changed) */ | |
956 | next.tep_bg_iotier = requested.trp_bg_iotier; | |
957 | ||
958 | int iopol = THROTTLE_LEVEL_TIER0; | |
959 | ||
960 | if (wants_darwinbg) { | |
961 | iopol = MAX(iopol, requested.trp_bg_iotier); | |
962 | } | |
963 | ||
964 | if (requested.trp_apptype == TASK_APPTYPE_DAEMON_STANDARD) { | |
965 | iopol = MAX(iopol, proc_standard_daemon_tier); | |
966 | } | |
967 | ||
968 | if (requested.trp_sup_disk && requested.trp_boosted == 0) { | |
969 | iopol = MAX(iopol, proc_suppressed_disk_tier); | |
970 | } | |
971 | ||
972 | if (next.tep_tal_engaged) { | |
973 | iopol = MAX(iopol, proc_tal_disk_tier); | |
974 | } | |
975 | ||
976 | if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) { | |
977 | iopol = MAX(iopol, thread_qos_policy_params.qos_iotier[next.tep_qos_clamp]); | |
978 | } | |
979 | ||
980 | iopol = MAX(iopol, requested.trp_int_iotier); | |
981 | iopol = MAX(iopol, requested.trp_ext_iotier); | |
982 | ||
983 | next.tep_io_tier = iopol; | |
984 | ||
985 | /* Calculate Passive IO policy */ | |
986 | ||
987 | if (requested.trp_ext_iopassive || requested.trp_int_iopassive) { | |
988 | next.tep_io_passive = 1; | |
989 | } | |
990 | ||
991 | /* Calculate suppression-active flag */ | |
992 | boolean_t appnap_transition = false; | |
993 | ||
994 | if (requested.trp_sup_active && requested.trp_boosted == 0) { | |
995 | next.tep_sup_active = 1; | |
996 | } | |
997 | ||
998 | if (task->effective_policy.tep_sup_active != next.tep_sup_active) { | |
999 | appnap_transition = true; | |
1000 | } | |
1001 | ||
1002 | /* Calculate timer QOS */ | |
1003 | int latency_qos = requested.trp_base_latency_qos; | |
1004 | ||
1005 | if (requested.trp_sup_timer && requested.trp_boosted == 0) { | |
1006 | latency_qos = requested.trp_sup_timer; | |
1007 | } | |
1008 | ||
1009 | if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) { | |
1010 | latency_qos = MAX(latency_qos, (int)thread_qos_policy_params.qos_latency_qos[next.tep_qos_clamp]); | |
1011 | } | |
1012 | ||
1013 | if (requested.trp_over_latency_qos != 0) { | |
1014 | latency_qos = requested.trp_over_latency_qos; | |
1015 | } | |
1016 | ||
1017 | /* Treat the windowserver special */ | |
1018 | if (requested.trp_role == TASK_GRAPHICS_SERVER) { | |
1019 | latency_qos = proc_graphics_timer_qos; | |
1020 | } | |
1021 | ||
1022 | next.tep_latency_qos = latency_qos; | |
1023 | ||
1024 | /* Calculate throughput QOS */ | |
1025 | int through_qos = requested.trp_base_through_qos; | |
1026 | ||
1027 | if (requested.trp_sup_throughput && requested.trp_boosted == 0) { | |
1028 | through_qos = requested.trp_sup_throughput; | |
1029 | } | |
1030 | ||
1031 | if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) { | |
1032 | through_qos = MAX(through_qos, (int)thread_qos_policy_params.qos_through_qos[next.tep_qos_clamp]); | |
1033 | } | |
1034 | ||
1035 | if (requested.trp_over_through_qos != 0) { | |
1036 | through_qos = requested.trp_over_through_qos; | |
1037 | } | |
1038 | ||
1039 | next.tep_through_qos = through_qos; | |
1040 | ||
1041 | /* Calculate suppressed CPU priority */ | |
1042 | if (requested.trp_sup_cpu && requested.trp_boosted == 0) { | |
1043 | next.tep_suppressed_cpu = 1; | |
1044 | } | |
1045 | ||
1046 | /* | |
1047 | * Calculate background sockets | |
1048 | * Don't take into account boosting to limit transition frequency. | |
1049 | */ | |
1050 | if (requested.trp_sup_bg_sockets) { | |
1051 | next.tep_all_sockets_bg = 1; | |
1052 | next.tep_new_sockets_bg = 1; | |
1053 | } | |
1054 | ||
1055 | /* Apply SFI Managed class bit */ | |
1056 | next.tep_sfi_managed = requested.trp_sfi_managed; | |
1057 | ||
1058 | /* Calculate 'live donor' status for live importance */ | |
1059 | switch (requested.trp_apptype) { | |
1060 | case TASK_APPTYPE_APP_TAL: | |
1061 | case TASK_APPTYPE_APP_DEFAULT: | |
1062 | if (requested.trp_ext_darwinbg == 1 || | |
1063 | (next.tep_sup_active == 1 && | |
1064 | (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_NONDONOR)) || | |
1065 | next.tep_role == TASK_DARWINBG_APPLICATION) { | |
1066 | next.tep_live_donor = 0; | |
1067 | } else { | |
1068 | next.tep_live_donor = 1; | |
1069 | } | |
1070 | break; | |
1071 | ||
1072 | case TASK_APPTYPE_DAEMON_INTERACTIVE: | |
1073 | case TASK_APPTYPE_DAEMON_STANDARD: | |
1074 | case TASK_APPTYPE_DAEMON_ADAPTIVE: | |
1075 | case TASK_APPTYPE_DAEMON_BACKGROUND: | |
1076 | case TASK_APPTYPE_DRIVER: | |
1077 | default: | |
1078 | next.tep_live_donor = 0; | |
1079 | break; | |
1080 | } | |
1081 | ||
1082 | if (requested.trp_terminated) { | |
1083 | /* | |
1084 | * Shoot down the throttles that slow down exit or response to SIGTERM | |
1085 | * We don't need to shoot down: | |
1086 | * passive (don't want to cause others to throttle) | |
1087 | * all_sockets_bg (don't need to iterate FDs on every exit) | |
1088 | * new_sockets_bg (doesn't matter for exiting process) | |
1089 | * pidsuspend (jetsam-ed BG process shouldn't run again) | |
1090 | * watchers_bg (watcher threads don't need to be unthrottled) | |
1091 | * latency_qos (affects userspace timers only) | |
1092 | */ | |
1093 | ||
1094 | next.tep_terminated = 1; | |
1095 | next.tep_darwinbg = 0; | |
1096 | next.tep_lowpri_cpu = 0; | |
1097 | next.tep_io_tier = THROTTLE_LEVEL_TIER0; | |
1098 | next.tep_tal_engaged = 0; | |
1099 | next.tep_role = TASK_UNSPECIFIED; | |
1100 | next.tep_suppressed_cpu = 0; | |
1101 | } | |
1102 | ||
1103 | /* | |
1104 | * Step 3: | |
1105 | * Swap out old policy for new policy | |
1106 | */ | |
1107 | ||
1108 | struct task_effective_policy prev = task->effective_policy; | |
1109 | ||
1110 | /* This is the point where the new values become visible to other threads */ | |
1111 | task->effective_policy = next; | |
1112 | ||
1113 | /* Don't do anything further to a half-formed task */ | |
1114 | if (in_create) { | |
1115 | return; | |
1116 | } | |
1117 | ||
1118 | if (task == kernel_task) { | |
1119 | panic("Attempting to set task policy on kernel_task"); | |
1120 | } | |
1121 | ||
1122 | /* | |
1123 | * Step 4: | |
1124 | * Pend updates that can't be done while holding the task lock | |
1125 | */ | |
1126 | ||
1127 | if (prev.tep_all_sockets_bg != next.tep_all_sockets_bg) { | |
1128 | pend_token->tpt_update_sockets = 1; | |
1129 | } | |
1130 | ||
1131 | /* Only re-scan the timer list if the qos level is getting less strong */ | |
1132 | if (prev.tep_latency_qos > next.tep_latency_qos) { | |
1133 | pend_token->tpt_update_timers = 1; | |
1134 | } | |
1135 | ||
1136 | #if CONFIG_TASKWATCH | |
1137 | if (prev.tep_watchers_bg != next.tep_watchers_bg) { | |
1138 | pend_token->tpt_update_watchers = 1; | |
1139 | } | |
1140 | #endif /* CONFIG_TASKWATCH */ | |
1141 | ||
1142 | if (prev.tep_live_donor != next.tep_live_donor) { | |
1143 | pend_token->tpt_update_live_donor = 1; | |
1144 | } | |
1145 | ||
1146 | /* | |
1147 | * Step 5: | |
1148 | * Update other subsystems as necessary if something has changed | |
1149 | */ | |
1150 | ||
1151 | bool update_threads = false, update_sfi = false; | |
1152 | ||
1153 | /* | |
1154 | * Check for the attributes that thread_policy_update_internal_locked() consults, | |
1155 | * and trigger thread policy re-evaluation. | |
1156 | */ | |
1157 | if (prev.tep_io_tier != next.tep_io_tier || | |
1158 | prev.tep_bg_iotier != next.tep_bg_iotier || | |
1159 | prev.tep_io_passive != next.tep_io_passive || | |
1160 | prev.tep_darwinbg != next.tep_darwinbg || | |
1161 | prev.tep_qos_clamp != next.tep_qos_clamp || | |
1162 | prev.tep_qos_ceiling != next.tep_qos_ceiling || | |
1163 | prev.tep_qos_ui_is_urgent != next.tep_qos_ui_is_urgent || | |
1164 | prev.tep_latency_qos != next.tep_latency_qos || | |
1165 | prev.tep_through_qos != next.tep_through_qos || | |
1166 | prev.tep_lowpri_cpu != next.tep_lowpri_cpu || | |
1167 | prev.tep_new_sockets_bg != next.tep_new_sockets_bg || | |
1168 | prev.tep_terminated != next.tep_terminated || | |
1169 | prev.tep_adaptive_bg != next.tep_adaptive_bg) { | |
1170 | update_threads = true; | |
1171 | } | |
1172 | ||
1173 | /* | |
1174 | * Check for the attributes that sfi_thread_classify() consults, | |
1175 | * and trigger SFI re-evaluation. | |
1176 | */ | |
1177 | if (prev.tep_latency_qos != next.tep_latency_qos || | |
1178 | prev.tep_role != next.tep_role || | |
1179 | prev.tep_sfi_managed != next.tep_sfi_managed) { | |
1180 | update_sfi = true; | |
1181 | } | |
1182 | ||
1183 | /* Reflect task role transitions into the coalition role counters */ | |
1184 | if (prev.tep_role != next.tep_role) { | |
1185 | if (task_policy_update_coalition_focal_tasks(task, prev.tep_role, next.tep_role, pend_token)) { | |
1186 | update_sfi = true; | |
1187 | } | |
1188 | } | |
1189 | ||
1190 | bool update_priority = false; | |
1191 | ||
1192 | int16_t priority = BASEPRI_DEFAULT; | |
1193 | int16_t max_priority = MAXPRI_USER; | |
1194 | ||
1195 | if (next.tep_lowpri_cpu) { | |
1196 | priority = MAXPRI_THROTTLE; | |
1197 | max_priority = MAXPRI_THROTTLE; | |
1198 | } else if (next.tep_suppressed_cpu) { | |
1199 | priority = MAXPRI_SUPPRESSED; | |
1200 | max_priority = MAXPRI_SUPPRESSED; | |
1201 | } else { | |
1202 | switch (next.tep_role) { | |
1203 | case TASK_CONTROL_APPLICATION: | |
1204 | priority = BASEPRI_CONTROL; | |
1205 | break; | |
1206 | case TASK_GRAPHICS_SERVER: | |
1207 | priority = BASEPRI_GRAPHICS; | |
1208 | max_priority = MAXPRI_RESERVED; | |
1209 | break; | |
1210 | default: | |
1211 | break; | |
1212 | } | |
1213 | ||
1214 | /* factor in 'nice' value */ | |
1215 | priority += task->importance; | |
1216 | ||
1217 | if (task->effective_policy.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) { | |
1218 | int16_t qos_clamp_priority = thread_qos_policy_params.qos_pri[task->effective_policy.tep_qos_clamp]; | |
1219 | ||
1220 | priority = MIN(priority, qos_clamp_priority); | |
1221 | max_priority = MIN(max_priority, qos_clamp_priority); | |
1222 | } | |
1223 | ||
1224 | if (priority > max_priority) { | |
1225 | priority = max_priority; | |
1226 | } else if (priority < MINPRI) { | |
1227 | priority = MINPRI; | |
1228 | } | |
1229 | } | |
1230 | ||
1231 | assert(priority <= max_priority); | |
1232 | ||
1233 | /* avoid extra work if priority isn't changing */ | |
1234 | if (priority != task->priority || | |
1235 | max_priority != task->max_priority) { | |
1236 | /* update the scheduling priority for the task */ | |
1237 | task->max_priority = max_priority; | |
1238 | task->priority = priority; | |
1239 | update_priority = true; | |
1240 | } | |
1241 | ||
1242 | /* Loop over the threads in the task: | |
1243 | * only once | |
1244 | * only if necessary | |
1245 | * with one thread mutex hold per thread | |
1246 | */ | |
1247 | if (update_threads || update_priority || update_sfi) { | |
1248 | thread_t thread; | |
1249 | ||
1250 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
1251 | struct task_pend_token thread_pend_token = {}; | |
1252 | ||
1253 | if (update_sfi) { | |
1254 | thread_pend_token.tpt_update_thread_sfi = 1; | |
1255 | } | |
1256 | ||
1257 | if (update_priority || update_threads) { | |
1258 | thread_policy_update_tasklocked(thread, | |
1259 | task->priority, task->max_priority, | |
1260 | &thread_pend_token); | |
1261 | } | |
1262 | ||
1263 | assert(!thread_pend_token.tpt_update_sockets); | |
1264 | ||
1265 | // Slightly risky, as we still hold the task lock... | |
1266 | thread_policy_update_complete_unlocked(thread, &thread_pend_token); | |
1267 | } | |
1268 | } | |
1269 | ||
1270 | /* | |
1271 | * Use the app-nap transitions to influence the | |
1272 | * transition of the process within the jetsam band | |
1273 | * [and optionally its live-donor status] | |
1274 | * On macOS only. | |
1275 | */ | |
1276 | if (appnap_transition) { | |
1277 | if (task->effective_policy.tep_sup_active == 1) { | |
1278 | memorystatus_update_priority_for_appnap(((proc_t) task->bsd_info), TRUE); | |
1279 | } else { | |
1280 | memorystatus_update_priority_for_appnap(((proc_t) task->bsd_info), FALSE); | |
1281 | } | |
1282 | } | |
1283 | } | |
1284 | ||
1285 | ||
1286 | /* | |
1287 | * Yet another layering violation. We reach out and bang on the coalition directly. | |
1288 | */ | |
1289 | static boolean_t | |
1290 | task_policy_update_coalition_focal_tasks(task_t task, | |
1291 | int prev_role, | |
1292 | int next_role, | |
1293 | task_pend_token_t pend_token) | |
1294 | { | |
1295 | boolean_t sfi_transition = FALSE; | |
1296 | uint32_t new_count = 0; | |
1297 | ||
1298 | /* task moving into/out-of the foreground */ | |
1299 | if (prev_role != TASK_FOREGROUND_APPLICATION && next_role == TASK_FOREGROUND_APPLICATION) { | |
1300 | if (task_coalition_adjust_focal_count(task, 1, &new_count) && (new_count == 1)) { | |
1301 | sfi_transition = TRUE; | |
1302 | pend_token->tpt_update_tg_ui_flag = TRUE; | |
1303 | } | |
1304 | } else if (prev_role == TASK_FOREGROUND_APPLICATION && next_role != TASK_FOREGROUND_APPLICATION) { | |
1305 | if (task_coalition_adjust_focal_count(task, -1, &new_count) && (new_count == 0)) { | |
1306 | sfi_transition = TRUE; | |
1307 | pend_token->tpt_update_tg_ui_flag = TRUE; | |
1308 | } | |
1309 | } | |
1310 | ||
1311 | /* task moving into/out-of background */ | |
1312 | if (prev_role != TASK_BACKGROUND_APPLICATION && next_role == TASK_BACKGROUND_APPLICATION) { | |
1313 | if (task_coalition_adjust_nonfocal_count(task, 1, &new_count) && (new_count == 1)) { | |
1314 | sfi_transition = TRUE; | |
1315 | } | |
1316 | } else if (prev_role == TASK_BACKGROUND_APPLICATION && next_role != TASK_BACKGROUND_APPLICATION) { | |
1317 | if (task_coalition_adjust_nonfocal_count(task, -1, &new_count) && (new_count == 0)) { | |
1318 | sfi_transition = TRUE; | |
1319 | } | |
1320 | } | |
1321 | ||
1322 | if (sfi_transition) { | |
1323 | pend_token->tpt_update_coal_sfi = 1; | |
1324 | } | |
1325 | return sfi_transition; | |
1326 | } | |
1327 | ||
1328 | #if CONFIG_SCHED_SFI | |
1329 | ||
1330 | /* coalition object is locked */ | |
1331 | static void | |
1332 | task_sfi_reevaluate_cb(coalition_t coal, void *ctx, task_t task) | |
1333 | { | |
1334 | thread_t thread; | |
1335 | ||
1336 | /* unused for now */ | |
1337 | (void)coal; | |
1338 | ||
1339 | /* skip the task we're re-evaluating on behalf of: it's already updated */ | |
1340 | if (task == (task_t)ctx) { | |
1341 | return; | |
1342 | } | |
1343 | ||
1344 | task_lock(task); | |
1345 | ||
1346 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
1347 | sfi_reevaluate(thread); | |
1348 | } | |
1349 | ||
1350 | task_unlock(task); | |
1351 | } | |
1352 | #endif /* CONFIG_SCHED_SFI */ | |
1353 | ||
1354 | /* | |
1355 | * Called with task unlocked to do things that can't be done while holding the task lock | |
1356 | */ | |
1357 | void | |
1358 | task_policy_update_complete_unlocked(task_t task, task_pend_token_t pend_token) | |
1359 | { | |
1360 | #ifdef MACH_BSD | |
1361 | if (pend_token->tpt_update_sockets) { | |
1362 | proc_apply_task_networkbg(task->bsd_info, THREAD_NULL); | |
1363 | } | |
1364 | #endif /* MACH_BSD */ | |
1365 | ||
1366 | /* The timer throttle has been removed or reduced, we need to look for expired timers and fire them */ | |
1367 | if (pend_token->tpt_update_timers) { | |
1368 | ml_timer_evaluate(); | |
1369 | } | |
1370 | ||
1371 | #if CONFIG_TASKWATCH | |
1372 | if (pend_token->tpt_update_watchers) { | |
1373 | apply_appstate_watchers(task); | |
1374 | } | |
1375 | #endif /* CONFIG_TASKWATCH */ | |
1376 | ||
1377 | if (pend_token->tpt_update_live_donor) { | |
1378 | task_importance_update_live_donor(task); | |
1379 | } | |
1380 | ||
1381 | #if CONFIG_SCHED_SFI | |
1382 | /* use the resource coalition for SFI re-evaluation */ | |
1383 | if (pend_token->tpt_update_coal_sfi) { | |
1384 | coalition_for_each_task(task->coalition[COALITION_TYPE_RESOURCE], | |
1385 | (void *)task, task_sfi_reevaluate_cb); | |
1386 | } | |
1387 | #endif /* CONFIG_SCHED_SFI */ | |
1388 | ||
1389 | #if CONFIG_THREAD_GROUPS | |
1390 | if (pend_token->tpt_update_tg_ui_flag) { | |
1391 | task_coalition_thread_group_focal_update(task); | |
1392 | } | |
1393 | #endif /* CONFIG_THREAD_GROUPS */ | |
1394 | } | |
1395 | ||
1396 | /* | |
1397 | * Initiate a task policy state transition | |
1398 | * | |
1399 | * Everything that modifies requested except functions that need to hold the task lock | |
1400 | * should use this function | |
1401 | * | |
1402 | * Argument validation should be performed before reaching this point. | |
1403 | * | |
1404 | * TODO: Do we need to check task->active? | |
1405 | */ | |
1406 | void | |
1407 | proc_set_task_policy(task_t task, | |
1408 | int category, | |
1409 | int flavor, | |
1410 | int value) | |
1411 | { | |
1412 | struct task_pend_token pend_token = {}; | |
1413 | ||
1414 | task_lock(task); | |
1415 | ||
1416 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
1417 | (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_START, | |
1418 | task_pid(task), trequested_0(task), | |
1419 | trequested_1(task), value, 0); | |
1420 | ||
1421 | proc_set_task_policy_locked(task, category, flavor, value, 0); | |
1422 | ||
1423 | task_policy_update_locked(task, &pend_token); | |
1424 | ||
1425 | ||
1426 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
1427 | (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_END, | |
1428 | task_pid(task), trequested_0(task), | |
1429 | trequested_1(task), tpending(&pend_token), 0); | |
1430 | ||
1431 | task_unlock(task); | |
1432 | ||
1433 | task_policy_update_complete_unlocked(task, &pend_token); | |
1434 | } | |
1435 | ||
1436 | /* | |
1437 | * Variant of proc_set_task_policy() that sets two scalars in the requested policy structure. | |
1438 | * Same locking rules apply. | |
1439 | */ | |
1440 | void | |
1441 | proc_set_task_policy2(task_t task, | |
1442 | int category, | |
1443 | int flavor, | |
1444 | int value, | |
1445 | int value2) | |
1446 | { | |
1447 | struct task_pend_token pend_token = {}; | |
1448 | ||
1449 | task_lock(task); | |
1450 | ||
1451 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
1452 | (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_START, | |
1453 | task_pid(task), trequested_0(task), | |
1454 | trequested_1(task), value, 0); | |
1455 | ||
1456 | proc_set_task_policy_locked(task, category, flavor, value, value2); | |
1457 | ||
1458 | task_policy_update_locked(task, &pend_token); | |
1459 | ||
1460 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
1461 | (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_END, | |
1462 | task_pid(task), trequested_0(task), | |
1463 | trequested_1(task), tpending(&pend_token), 0); | |
1464 | ||
1465 | task_unlock(task); | |
1466 | ||
1467 | task_policy_update_complete_unlocked(task, &pend_token); | |
1468 | } | |
1469 | ||
1470 | /* | |
1471 | * Set the requested state for a specific flavor to a specific value. | |
1472 | * | |
1473 | * TODO: | |
1474 | * Verify that arguments to non iopol things are 1 or 0 | |
1475 | */ | |
1476 | static void | |
1477 | proc_set_task_policy_locked(task_t task, | |
1478 | int category, | |
1479 | int flavor, | |
1480 | int value, | |
1481 | int value2) | |
1482 | { | |
1483 | int tier, passive; | |
1484 | ||
1485 | struct task_requested_policy requested = task->requested_policy; | |
1486 | ||
1487 | switch (flavor) { | |
1488 | /* Category: EXTERNAL and INTERNAL */ | |
1489 | ||
1490 | case TASK_POLICY_DARWIN_BG: | |
1491 | if (category == TASK_POLICY_EXTERNAL) { | |
1492 | requested.trp_ext_darwinbg = value; | |
1493 | } else { | |
1494 | requested.trp_int_darwinbg = value; | |
1495 | } | |
1496 | break; | |
1497 | ||
1498 | case TASK_POLICY_IOPOL: | |
1499 | proc_iopol_to_tier(value, &tier, &passive); | |
1500 | if (category == TASK_POLICY_EXTERNAL) { | |
1501 | requested.trp_ext_iotier = tier; | |
1502 | requested.trp_ext_iopassive = passive; | |
1503 | } else { | |
1504 | requested.trp_int_iotier = tier; | |
1505 | requested.trp_int_iopassive = passive; | |
1506 | } | |
1507 | break; | |
1508 | ||
1509 | case TASK_POLICY_IO: | |
1510 | if (category == TASK_POLICY_EXTERNAL) { | |
1511 | requested.trp_ext_iotier = value; | |
1512 | } else { | |
1513 | requested.trp_int_iotier = value; | |
1514 | } | |
1515 | break; | |
1516 | ||
1517 | case TASK_POLICY_PASSIVE_IO: | |
1518 | if (category == TASK_POLICY_EXTERNAL) { | |
1519 | requested.trp_ext_iopassive = value; | |
1520 | } else { | |
1521 | requested.trp_int_iopassive = value; | |
1522 | } | |
1523 | break; | |
1524 | ||
1525 | /* Category: INTERNAL */ | |
1526 | ||
1527 | case TASK_POLICY_DARWIN_BG_IOPOL: | |
1528 | assert(category == TASK_POLICY_INTERNAL); | |
1529 | proc_iopol_to_tier(value, &tier, &passive); | |
1530 | requested.trp_bg_iotier = tier; | |
1531 | break; | |
1532 | ||
1533 | /* Category: ATTRIBUTE */ | |
1534 | ||
1535 | case TASK_POLICY_BOOST: | |
1536 | assert(category == TASK_POLICY_ATTRIBUTE); | |
1537 | requested.trp_boosted = value; | |
1538 | break; | |
1539 | ||
1540 | case TASK_POLICY_ROLE: | |
1541 | assert(category == TASK_POLICY_ATTRIBUTE); | |
1542 | requested.trp_role = value; | |
1543 | break; | |
1544 | ||
1545 | case TASK_POLICY_TERMINATED: | |
1546 | assert(category == TASK_POLICY_ATTRIBUTE); | |
1547 | requested.trp_terminated = value; | |
1548 | break; | |
1549 | ||
1550 | case TASK_BASE_LATENCY_QOS_POLICY: | |
1551 | assert(category == TASK_POLICY_ATTRIBUTE); | |
1552 | requested.trp_base_latency_qos = value; | |
1553 | break; | |
1554 | ||
1555 | case TASK_BASE_THROUGHPUT_QOS_POLICY: | |
1556 | assert(category == TASK_POLICY_ATTRIBUTE); | |
1557 | requested.trp_base_through_qos = value; | |
1558 | break; | |
1559 | ||
1560 | case TASK_POLICY_SFI_MANAGED: | |
1561 | assert(category == TASK_POLICY_ATTRIBUTE); | |
1562 | requested.trp_sfi_managed = value; | |
1563 | break; | |
1564 | ||
1565 | case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS: | |
1566 | assert(category == TASK_POLICY_ATTRIBUTE); | |
1567 | requested.trp_base_latency_qos = value; | |
1568 | requested.trp_base_through_qos = value2; | |
1569 | break; | |
1570 | ||
1571 | case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS: | |
1572 | assert(category == TASK_POLICY_ATTRIBUTE); | |
1573 | requested.trp_over_latency_qos = value; | |
1574 | requested.trp_over_through_qos = value2; | |
1575 | break; | |
1576 | ||
1577 | default: | |
1578 | panic("unknown task policy: %d %d %d %d", category, flavor, value, value2); | |
1579 | break; | |
1580 | } | |
1581 | ||
1582 | task->requested_policy = requested; | |
1583 | } | |
1584 | ||
1585 | /* | |
1586 | * Gets what you set. Effective values may be different. | |
1587 | */ | |
1588 | int | |
1589 | proc_get_task_policy(task_t task, | |
1590 | int category, | |
1591 | int flavor) | |
1592 | { | |
1593 | int value = 0; | |
1594 | ||
1595 | task_lock(task); | |
1596 | ||
1597 | struct task_requested_policy requested = task->requested_policy; | |
1598 | ||
1599 | switch (flavor) { | |
1600 | case TASK_POLICY_DARWIN_BG: | |
1601 | if (category == TASK_POLICY_EXTERNAL) { | |
1602 | value = requested.trp_ext_darwinbg; | |
1603 | } else { | |
1604 | value = requested.trp_int_darwinbg; | |
1605 | } | |
1606 | break; | |
1607 | case TASK_POLICY_IOPOL: | |
1608 | if (category == TASK_POLICY_EXTERNAL) { | |
1609 | value = proc_tier_to_iopol(requested.trp_ext_iotier, | |
1610 | requested.trp_ext_iopassive); | |
1611 | } else { | |
1612 | value = proc_tier_to_iopol(requested.trp_int_iotier, | |
1613 | requested.trp_int_iopassive); | |
1614 | } | |
1615 | break; | |
1616 | case TASK_POLICY_IO: | |
1617 | if (category == TASK_POLICY_EXTERNAL) { | |
1618 | value = requested.trp_ext_iotier; | |
1619 | } else { | |
1620 | value = requested.trp_int_iotier; | |
1621 | } | |
1622 | break; | |
1623 | case TASK_POLICY_PASSIVE_IO: | |
1624 | if (category == TASK_POLICY_EXTERNAL) { | |
1625 | value = requested.trp_ext_iopassive; | |
1626 | } else { | |
1627 | value = requested.trp_int_iopassive; | |
1628 | } | |
1629 | break; | |
1630 | case TASK_POLICY_DARWIN_BG_IOPOL: | |
1631 | assert(category == TASK_POLICY_INTERNAL); | |
1632 | value = proc_tier_to_iopol(requested.trp_bg_iotier, 0); | |
1633 | break; | |
1634 | case TASK_POLICY_ROLE: | |
1635 | assert(category == TASK_POLICY_ATTRIBUTE); | |
1636 | value = requested.trp_role; | |
1637 | break; | |
1638 | case TASK_POLICY_SFI_MANAGED: | |
1639 | assert(category == TASK_POLICY_ATTRIBUTE); | |
1640 | value = requested.trp_sfi_managed; | |
1641 | break; | |
1642 | default: | |
1643 | panic("unknown policy_flavor %d", flavor); | |
1644 | break; | |
1645 | } | |
1646 | ||
1647 | task_unlock(task); | |
1648 | ||
1649 | return value; | |
1650 | } | |
1651 | ||
1652 | /* | |
1653 | * Variant of proc_get_task_policy() that returns two scalar outputs. | |
1654 | */ | |
1655 | void | |
1656 | proc_get_task_policy2(task_t task, | |
1657 | __assert_only int category, | |
1658 | int flavor, | |
1659 | int *value1, | |
1660 | int *value2) | |
1661 | { | |
1662 | task_lock(task); | |
1663 | ||
1664 | struct task_requested_policy requested = task->requested_policy; | |
1665 | ||
1666 | switch (flavor) { | |
1667 | case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS: | |
1668 | assert(category == TASK_POLICY_ATTRIBUTE); | |
1669 | *value1 = requested.trp_base_latency_qos; | |
1670 | *value2 = requested.trp_base_through_qos; | |
1671 | break; | |
1672 | ||
1673 | case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS: | |
1674 | assert(category == TASK_POLICY_ATTRIBUTE); | |
1675 | *value1 = requested.trp_over_latency_qos; | |
1676 | *value2 = requested.trp_over_through_qos; | |
1677 | break; | |
1678 | ||
1679 | default: | |
1680 | panic("unknown policy_flavor %d", flavor); | |
1681 | break; | |
1682 | } | |
1683 | ||
1684 | task_unlock(task); | |
1685 | } | |
1686 | ||
1687 | /* | |
1688 | * Function for querying effective state for relevant subsystems | |
1689 | * Gets what is actually in effect, for subsystems which pull policy instead of receive updates. | |
1690 | * | |
1691 | * ONLY the relevant subsystem should query this. | |
1692 | * NEVER take a value from the 'effective' function and stuff it into a setter. | |
1693 | * | |
1694 | * NOTE: This accessor does not take the task lock. | |
1695 | * Notifications of state updates need to be externally synchronized with state queries. | |
1696 | * This routine *MUST* remain interrupt safe, as it is potentially invoked | |
1697 | * within the context of a timer interrupt. It is also called in KDP context for stackshot. | |
1698 | */ | |
1699 | int | |
1700 | proc_get_effective_task_policy(task_t task, | |
1701 | int flavor) | |
1702 | { | |
1703 | int value = 0; | |
1704 | ||
1705 | switch (flavor) { | |
1706 | case TASK_POLICY_DARWIN_BG: | |
1707 | /* | |
1708 | * This backs the KPI call proc_pidbackgrounded to find | |
1709 | * out if a pid is backgrounded. | |
1710 | * It is used to communicate state to the VM system, as well as | |
1711 | * prioritizing requests to the graphics system. | |
1712 | * Returns 1 for background mode, 0 for normal mode | |
1713 | */ | |
1714 | value = task->effective_policy.tep_darwinbg; | |
1715 | break; | |
1716 | case TASK_POLICY_ALL_SOCKETS_BG: | |
1717 | /* | |
1718 | * do_background_socket() calls this to determine what it should do to the proc's sockets | |
1719 | * Returns 1 for background mode, 0 for normal mode | |
1720 | * | |
1721 | * This consults both thread and task so un-DBGing a thread while the task is BG | |
1722 | * doesn't get you out of the network throttle. | |
1723 | */ | |
1724 | value = task->effective_policy.tep_all_sockets_bg; | |
1725 | break; | |
1726 | case TASK_POLICY_SUP_ACTIVE: | |
1727 | /* | |
1728 | * Is the task in AppNap? This is used to determine the urgency | |
1729 | * that's passed to the performance management subsystem for threads | |
1730 | * that are running at a priority <= MAXPRI_THROTTLE. | |
1731 | */ | |
1732 | value = task->effective_policy.tep_sup_active; | |
1733 | break; | |
1734 | case TASK_POLICY_LATENCY_QOS: | |
1735 | /* | |
1736 | * timer arming calls into here to find out the timer coalescing level | |
1737 | * Returns a QoS tier (0-6) | |
1738 | */ | |
1739 | value = task->effective_policy.tep_latency_qos; | |
1740 | break; | |
1741 | case TASK_POLICY_THROUGH_QOS: | |
1742 | /* | |
1743 | * This value is passed into the urgency callout from the scheduler | |
1744 | * to the performance management subsystem. | |
1745 | * Returns a QoS tier (0-6) | |
1746 | */ | |
1747 | value = task->effective_policy.tep_through_qos; | |
1748 | break; | |
1749 | case TASK_POLICY_ROLE: | |
1750 | /* | |
1751 | * This controls various things that ask whether a process is foreground, | |
1752 | * like SFI, VM, access to GPU, etc | |
1753 | */ | |
1754 | value = task->effective_policy.tep_role; | |
1755 | break; | |
1756 | case TASK_POLICY_WATCHERS_BG: | |
1757 | /* | |
1758 | * This controls whether or not a thread watching this process should be BG. | |
1759 | */ | |
1760 | value = task->effective_policy.tep_watchers_bg; | |
1761 | break; | |
1762 | case TASK_POLICY_SFI_MANAGED: | |
1763 | /* | |
1764 | * This controls whether or not a process is targeted for specific control by thermald. | |
1765 | */ | |
1766 | value = task->effective_policy.tep_sfi_managed; | |
1767 | break; | |
1768 | default: | |
1769 | panic("unknown policy_flavor %d", flavor); | |
1770 | break; | |
1771 | } | |
1772 | ||
1773 | return value; | |
1774 | } | |
1775 | ||
1776 | /* | |
1777 | * Convert from IOPOL_* values to throttle tiers. | |
1778 | * | |
1779 | * TODO: Can this be made more compact, like an array lookup | |
1780 | * Note that it is possible to support e.g. IOPOL_PASSIVE_STANDARD in the future | |
1781 | */ | |
1782 | ||
1783 | void | |
1784 | proc_iopol_to_tier(int iopolicy, int *tier, int *passive) | |
1785 | { | |
1786 | *passive = 0; | |
1787 | *tier = 0; | |
1788 | switch (iopolicy) { | |
1789 | case IOPOL_IMPORTANT: | |
1790 | *tier = THROTTLE_LEVEL_TIER0; | |
1791 | break; | |
1792 | case IOPOL_PASSIVE: | |
1793 | *tier = THROTTLE_LEVEL_TIER0; | |
1794 | *passive = 1; | |
1795 | break; | |
1796 | case IOPOL_STANDARD: | |
1797 | *tier = THROTTLE_LEVEL_TIER1; | |
1798 | break; | |
1799 | case IOPOL_UTILITY: | |
1800 | *tier = THROTTLE_LEVEL_TIER2; | |
1801 | break; | |
1802 | case IOPOL_THROTTLE: | |
1803 | *tier = THROTTLE_LEVEL_TIER3; | |
1804 | break; | |
1805 | default: | |
1806 | panic("unknown I/O policy %d", iopolicy); | |
1807 | break; | |
1808 | } | |
1809 | } | |
1810 | ||
1811 | int | |
1812 | proc_tier_to_iopol(int tier, int passive) | |
1813 | { | |
1814 | if (passive == 1) { | |
1815 | switch (tier) { | |
1816 | case THROTTLE_LEVEL_TIER0: | |
1817 | return IOPOL_PASSIVE; | |
1818 | default: | |
1819 | panic("unknown passive tier %d", tier); | |
1820 | return IOPOL_DEFAULT; | |
1821 | } | |
1822 | } else { | |
1823 | switch (tier) { | |
1824 | case THROTTLE_LEVEL_NONE: | |
1825 | case THROTTLE_LEVEL_TIER0: | |
1826 | return IOPOL_DEFAULT; | |
1827 | case THROTTLE_LEVEL_TIER1: | |
1828 | return IOPOL_STANDARD; | |
1829 | case THROTTLE_LEVEL_TIER2: | |
1830 | return IOPOL_UTILITY; | |
1831 | case THROTTLE_LEVEL_TIER3: | |
1832 | return IOPOL_THROTTLE; | |
1833 | default: | |
1834 | panic("unknown tier %d", tier); | |
1835 | return IOPOL_DEFAULT; | |
1836 | } | |
1837 | } | |
1838 | } | |
1839 | ||
1840 | int | |
1841 | proc_darwin_role_to_task_role(int darwin_role, task_role_t* task_role) | |
1842 | { | |
1843 | integer_t role = TASK_UNSPECIFIED; | |
1844 | ||
1845 | switch (darwin_role) { | |
1846 | case PRIO_DARWIN_ROLE_DEFAULT: | |
1847 | role = TASK_UNSPECIFIED; | |
1848 | break; | |
1849 | case PRIO_DARWIN_ROLE_UI_FOCAL: | |
1850 | role = TASK_FOREGROUND_APPLICATION; | |
1851 | break; | |
1852 | case PRIO_DARWIN_ROLE_UI: | |
1853 | role = TASK_DEFAULT_APPLICATION; | |
1854 | break; | |
1855 | case PRIO_DARWIN_ROLE_NON_UI: | |
1856 | role = TASK_NONUI_APPLICATION; | |
1857 | break; | |
1858 | case PRIO_DARWIN_ROLE_UI_NON_FOCAL: | |
1859 | role = TASK_BACKGROUND_APPLICATION; | |
1860 | break; | |
1861 | case PRIO_DARWIN_ROLE_TAL_LAUNCH: | |
1862 | role = TASK_THROTTLE_APPLICATION; | |
1863 | break; | |
1864 | case PRIO_DARWIN_ROLE_DARWIN_BG: | |
1865 | role = TASK_DARWINBG_APPLICATION; | |
1866 | break; | |
1867 | default: | |
1868 | return EINVAL; | |
1869 | } | |
1870 | ||
1871 | *task_role = role; | |
1872 | ||
1873 | return 0; | |
1874 | } | |
1875 | ||
1876 | int | |
1877 | proc_task_role_to_darwin_role(task_role_t task_role) | |
1878 | { | |
1879 | switch (task_role) { | |
1880 | case TASK_FOREGROUND_APPLICATION: | |
1881 | return PRIO_DARWIN_ROLE_UI_FOCAL; | |
1882 | case TASK_BACKGROUND_APPLICATION: | |
1883 | return PRIO_DARWIN_ROLE_UI_NON_FOCAL; | |
1884 | case TASK_NONUI_APPLICATION: | |
1885 | return PRIO_DARWIN_ROLE_NON_UI; | |
1886 | case TASK_DEFAULT_APPLICATION: | |
1887 | return PRIO_DARWIN_ROLE_UI; | |
1888 | case TASK_THROTTLE_APPLICATION: | |
1889 | return PRIO_DARWIN_ROLE_TAL_LAUNCH; | |
1890 | case TASK_DARWINBG_APPLICATION: | |
1891 | return PRIO_DARWIN_ROLE_DARWIN_BG; | |
1892 | case TASK_UNSPECIFIED: | |
1893 | default: | |
1894 | return PRIO_DARWIN_ROLE_DEFAULT; | |
1895 | } | |
1896 | } | |
1897 | ||
1898 | ||
1899 | /* TODO: remove this variable when interactive daemon audit period is over */ | |
1900 | static TUNABLE(bool, ipc_importance_interactive_receiver, | |
1901 | "imp_interactive_receiver", false); | |
1902 | ||
1903 | /* | |
1904 | * Called at process exec to initialize the apptype, qos clamp, and qos seed of a process | |
1905 | * | |
1906 | * TODO: Make this function more table-driven instead of ad-hoc | |
1907 | */ | |
1908 | void | |
1909 | proc_set_task_spawnpolicy(task_t task, thread_t thread, int apptype, int qos_clamp, task_role_t role, | |
1910 | ipc_port_t * portwatch_ports, uint32_t portwatch_count) | |
1911 | { | |
1912 | struct task_pend_token pend_token = {}; | |
1913 | ||
1914 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
1915 | (IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_START, | |
1916 | task_pid(task), trequested_0(task), trequested_1(task), | |
1917 | apptype, 0); | |
1918 | ||
1919 | switch (apptype) { | |
1920 | case TASK_APPTYPE_APP_DEFAULT: | |
1921 | /* Apps become donors via the 'live-donor' flag instead of the static donor flag */ | |
1922 | task_importance_mark_donor(task, FALSE); | |
1923 | task_importance_mark_live_donor(task, TRUE); | |
1924 | task_importance_mark_receiver(task, FALSE); | |
1925 | #if !defined(XNU_TARGET_OS_OSX) | |
1926 | task_importance_mark_denap_receiver(task, FALSE); | |
1927 | #else | |
1928 | /* Apps are de-nap recievers on macOS for suppression behaviors */ | |
1929 | task_importance_mark_denap_receiver(task, TRUE); | |
1930 | #endif /* !defined(XNU_TARGET_OS_OSX) */ | |
1931 | break; | |
1932 | ||
1933 | case TASK_APPTYPE_DAEMON_INTERACTIVE: | |
1934 | task_importance_mark_donor(task, TRUE); | |
1935 | task_importance_mark_live_donor(task, FALSE); | |
1936 | ||
1937 | /* | |
1938 | * A boot arg controls whether interactive daemons are importance receivers. | |
1939 | * Normally, they are not. But for testing their behavior as an adaptive | |
1940 | * daemon, the boot-arg can be set. | |
1941 | * | |
1942 | * TODO: remove this when the interactive daemon audit period is over. | |
1943 | */ | |
1944 | task_importance_mark_receiver(task, /* FALSE */ ipc_importance_interactive_receiver); | |
1945 | task_importance_mark_denap_receiver(task, FALSE); | |
1946 | break; | |
1947 | ||
1948 | case TASK_APPTYPE_DAEMON_STANDARD: | |
1949 | task_importance_mark_donor(task, TRUE); | |
1950 | task_importance_mark_live_donor(task, FALSE); | |
1951 | task_importance_mark_receiver(task, FALSE); | |
1952 | task_importance_mark_denap_receiver(task, FALSE); | |
1953 | break; | |
1954 | ||
1955 | case TASK_APPTYPE_DAEMON_ADAPTIVE: | |
1956 | task_importance_mark_donor(task, FALSE); | |
1957 | task_importance_mark_live_donor(task, FALSE); | |
1958 | task_importance_mark_receiver(task, TRUE); | |
1959 | task_importance_mark_denap_receiver(task, FALSE); | |
1960 | break; | |
1961 | ||
1962 | case TASK_APPTYPE_DAEMON_BACKGROUND: | |
1963 | task_importance_mark_donor(task, FALSE); | |
1964 | task_importance_mark_live_donor(task, FALSE); | |
1965 | task_importance_mark_receiver(task, FALSE); | |
1966 | task_importance_mark_denap_receiver(task, FALSE); | |
1967 | break; | |
1968 | ||
1969 | case TASK_APPTYPE_DRIVER: | |
1970 | task_importance_mark_donor(task, FALSE); | |
1971 | task_importance_mark_live_donor(task, FALSE); | |
1972 | task_importance_mark_receiver(task, FALSE); | |
1973 | task_importance_mark_denap_receiver(task, FALSE); | |
1974 | break; | |
1975 | ||
1976 | case TASK_APPTYPE_NONE: | |
1977 | break; | |
1978 | } | |
1979 | ||
1980 | if (portwatch_ports != NULL && apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) { | |
1981 | int portwatch_boosts = 0; | |
1982 | ||
1983 | for (uint32_t i = 0; i < portwatch_count; i++) { | |
1984 | ipc_port_t port = NULL; | |
1985 | ||
1986 | if (IP_VALID(port = portwatch_ports[i])) { | |
1987 | int boost = 0; | |
1988 | task_add_importance_watchport(task, port, &boost); | |
1989 | portwatch_boosts += boost; | |
1990 | } | |
1991 | } | |
1992 | ||
1993 | if (portwatch_boosts > 0) { | |
1994 | task_importance_hold_internal_assertion(task, portwatch_boosts); | |
1995 | } | |
1996 | } | |
1997 | ||
1998 | /* Redirect the turnstile push of watchports to task */ | |
1999 | if (portwatch_count && portwatch_ports != NULL) { | |
2000 | task_add_turnstile_watchports(task, thread, portwatch_ports, portwatch_count); | |
2001 | } | |
2002 | ||
2003 | task_lock(task); | |
2004 | ||
2005 | if (apptype != TASK_APPTYPE_NONE) { | |
2006 | task->requested_policy.trp_apptype = apptype; | |
2007 | } | |
2008 | ||
2009 | #if !defined(XNU_TARGET_OS_OSX) | |
2010 | /* Remove this after launchd starts setting it properly */ | |
2011 | if (apptype == TASK_APPTYPE_APP_DEFAULT && role == TASK_UNSPECIFIED) { | |
2012 | task->requested_policy.trp_role = TASK_FOREGROUND_APPLICATION; | |
2013 | } else | |
2014 | #endif | |
2015 | if (role != TASK_UNSPECIFIED) { | |
2016 | task->requested_policy.trp_role = (uint32_t)role; | |
2017 | } | |
2018 | ||
2019 | if (qos_clamp != THREAD_QOS_UNSPECIFIED) { | |
2020 | task->requested_policy.trp_qos_clamp = qos_clamp; | |
2021 | } | |
2022 | ||
2023 | task_policy_update_locked(task, &pend_token); | |
2024 | ||
2025 | task_unlock(task); | |
2026 | ||
2027 | /* Ensure the donor bit is updated to be in sync with the new live donor status */ | |
2028 | pend_token.tpt_update_live_donor = 1; | |
2029 | ||
2030 | task_policy_update_complete_unlocked(task, &pend_token); | |
2031 | ||
2032 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
2033 | (IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_END, | |
2034 | task_pid(task), trequested_0(task), trequested_1(task), | |
2035 | task_is_importance_receiver(task), 0); | |
2036 | } | |
2037 | ||
2038 | /* | |
2039 | * Inherit task role across exec | |
2040 | */ | |
2041 | void | |
2042 | proc_inherit_task_role(task_t new_task, | |
2043 | task_t old_task) | |
2044 | { | |
2045 | int role; | |
2046 | ||
2047 | /* inherit the role from old task to new task */ | |
2048 | role = proc_get_task_policy(old_task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE); | |
2049 | proc_set_task_policy(new_task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE, role); | |
2050 | } | |
2051 | ||
2052 | extern void * XNU_PTRAUTH_SIGNED_PTR("initproc") initproc; | |
2053 | ||
2054 | /* | |
2055 | * Compute the default main thread qos for a task | |
2056 | */ | |
2057 | thread_qos_t | |
2058 | task_compute_main_thread_qos(task_t task) | |
2059 | { | |
2060 | thread_qos_t primordial_qos = THREAD_QOS_UNSPECIFIED; | |
2061 | ||
2062 | thread_qos_t qos_clamp = task->requested_policy.trp_qos_clamp; | |
2063 | ||
2064 | switch (task->requested_policy.trp_apptype) { | |
2065 | case TASK_APPTYPE_APP_TAL: | |
2066 | case TASK_APPTYPE_APP_DEFAULT: | |
2067 | primordial_qos = THREAD_QOS_USER_INTERACTIVE; | |
2068 | break; | |
2069 | ||
2070 | case TASK_APPTYPE_DAEMON_INTERACTIVE: | |
2071 | case TASK_APPTYPE_DAEMON_STANDARD: | |
2072 | case TASK_APPTYPE_DAEMON_ADAPTIVE: | |
2073 | case TASK_APPTYPE_DRIVER: | |
2074 | primordial_qos = THREAD_QOS_LEGACY; | |
2075 | break; | |
2076 | ||
2077 | case TASK_APPTYPE_DAEMON_BACKGROUND: | |
2078 | primordial_qos = THREAD_QOS_BACKGROUND; | |
2079 | break; | |
2080 | } | |
2081 | ||
2082 | if (task->bsd_info == initproc) { | |
2083 | /* PID 1 gets a special case */ | |
2084 | primordial_qos = MAX(primordial_qos, THREAD_QOS_USER_INITIATED); | |
2085 | } | |
2086 | ||
2087 | if (qos_clamp != THREAD_QOS_UNSPECIFIED) { | |
2088 | if (primordial_qos != THREAD_QOS_UNSPECIFIED) { | |
2089 | primordial_qos = MIN(qos_clamp, primordial_qos); | |
2090 | } else { | |
2091 | primordial_qos = qos_clamp; | |
2092 | } | |
2093 | } | |
2094 | ||
2095 | return primordial_qos; | |
2096 | } | |
2097 | ||
2098 | ||
2099 | /* for process_policy to check before attempting to set */ | |
2100 | boolean_t | |
2101 | proc_task_is_tal(task_t task) | |
2102 | { | |
2103 | return (task->requested_policy.trp_apptype == TASK_APPTYPE_APP_TAL) ? TRUE : FALSE; | |
2104 | } | |
2105 | ||
2106 | int | |
2107 | task_get_apptype(task_t task) | |
2108 | { | |
2109 | return task->requested_policy.trp_apptype; | |
2110 | } | |
2111 | ||
2112 | boolean_t | |
2113 | task_is_daemon(task_t task) | |
2114 | { | |
2115 | switch (task->requested_policy.trp_apptype) { | |
2116 | case TASK_APPTYPE_DAEMON_INTERACTIVE: | |
2117 | case TASK_APPTYPE_DAEMON_STANDARD: | |
2118 | case TASK_APPTYPE_DAEMON_ADAPTIVE: | |
2119 | case TASK_APPTYPE_DAEMON_BACKGROUND: | |
2120 | return TRUE; | |
2121 | default: | |
2122 | return FALSE; | |
2123 | } | |
2124 | } | |
2125 | ||
2126 | bool | |
2127 | task_is_driver(task_t task) | |
2128 | { | |
2129 | if (!task) { | |
2130 | return FALSE; | |
2131 | } | |
2132 | return task->requested_policy.trp_apptype == TASK_APPTYPE_DRIVER; | |
2133 | } | |
2134 | ||
2135 | boolean_t | |
2136 | task_is_app(task_t task) | |
2137 | { | |
2138 | switch (task->requested_policy.trp_apptype) { | |
2139 | case TASK_APPTYPE_APP_DEFAULT: | |
2140 | case TASK_APPTYPE_APP_TAL: | |
2141 | return TRUE; | |
2142 | default: | |
2143 | return FALSE; | |
2144 | } | |
2145 | } | |
2146 | ||
2147 | /* for telemetry */ | |
2148 | integer_t | |
2149 | task_grab_latency_qos(task_t task) | |
2150 | { | |
2151 | return qos_latency_policy_package(proc_get_effective_task_policy(task, TASK_POLICY_LATENCY_QOS)); | |
2152 | } | |
2153 | ||
2154 | /* update the darwin background action state in the flags field for libproc */ | |
2155 | int | |
2156 | proc_get_darwinbgstate(task_t task, uint32_t * flagsp) | |
2157 | { | |
2158 | if (task->requested_policy.trp_ext_darwinbg) { | |
2159 | *flagsp |= PROC_FLAG_EXT_DARWINBG; | |
2160 | } | |
2161 | ||
2162 | if (task->requested_policy.trp_int_darwinbg) { | |
2163 | *flagsp |= PROC_FLAG_DARWINBG; | |
2164 | } | |
2165 | ||
2166 | #if !defined(XNU_TARGET_OS_OSX) | |
2167 | if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_BACKGROUND) { | |
2168 | *flagsp |= PROC_FLAG_IOS_APPLEDAEMON; | |
2169 | } | |
2170 | ||
2171 | if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) { | |
2172 | *flagsp |= PROC_FLAG_IOS_IMPPROMOTION; | |
2173 | } | |
2174 | #endif /* !defined(XNU_TARGET_OS_OSX) */ | |
2175 | ||
2176 | if (task->requested_policy.trp_apptype == TASK_APPTYPE_APP_DEFAULT || | |
2177 | task->requested_policy.trp_apptype == TASK_APPTYPE_APP_TAL) { | |
2178 | *flagsp |= PROC_FLAG_APPLICATION; | |
2179 | } | |
2180 | ||
2181 | if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) { | |
2182 | *flagsp |= PROC_FLAG_ADAPTIVE; | |
2183 | } | |
2184 | ||
2185 | if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE && | |
2186 | task->requested_policy.trp_boosted == 1) { | |
2187 | *flagsp |= PROC_FLAG_ADAPTIVE_IMPORTANT; | |
2188 | } | |
2189 | ||
2190 | if (task_is_importance_donor(task)) { | |
2191 | *flagsp |= PROC_FLAG_IMPORTANCE_DONOR; | |
2192 | } | |
2193 | ||
2194 | if (task->effective_policy.tep_sup_active) { | |
2195 | *flagsp |= PROC_FLAG_SUPPRESSED; | |
2196 | } | |
2197 | ||
2198 | return 0; | |
2199 | } | |
2200 | ||
2201 | /* | |
2202 | * Tracepoint data... Reading the tracepoint data can be somewhat complicated. | |
2203 | * The current scheme packs as much data into a single tracepoint as it can. | |
2204 | * | |
2205 | * Each task/thread requested/effective structure is 64 bits in size. Any | |
2206 | * given tracepoint will emit either requested or effective data, but not both. | |
2207 | * | |
2208 | * A tracepoint may emit any of task, thread, or task & thread data. | |
2209 | * | |
2210 | * The type of data emitted varies with pointer size. Where possible, both | |
2211 | * task and thread data are emitted. In LP32 systems, the first and second | |
2212 | * halves of either the task or thread data is emitted. | |
2213 | * | |
2214 | * The code uses uintptr_t array indexes instead of high/low to avoid | |
2215 | * confusion WRT big vs little endian. | |
2216 | * | |
2217 | * The truth table for the tracepoint data functions is below, and has the | |
2218 | * following invariants: | |
2219 | * | |
2220 | * 1) task and thread are uintptr_t* | |
2221 | * 2) task may never be NULL | |
2222 | * | |
2223 | * | |
2224 | * LP32 LP64 | |
2225 | * trequested_0(task, NULL) task[0] task[0] | |
2226 | * trequested_1(task, NULL) task[1] NULL | |
2227 | * trequested_0(task, thread) thread[0] task[0] | |
2228 | * trequested_1(task, thread) thread[1] thread[0] | |
2229 | * | |
2230 | * Basically, you get a full task or thread on LP32, and both on LP64. | |
2231 | * | |
2232 | * The uintptr_t munging here is squicky enough to deserve a comment. | |
2233 | * | |
2234 | * The variables we are accessing are laid out in memory like this: | |
2235 | * | |
2236 | * [ LP64 uintptr_t 0 ] | |
2237 | * [ LP32 uintptr_t 0 ] [ LP32 uintptr_t 1 ] | |
2238 | * | |
2239 | * 1 2 3 4 5 6 7 8 | |
2240 | * | |
2241 | */ | |
2242 | ||
2243 | static uintptr_t | |
2244 | trequested_0(task_t task) | |
2245 | { | |
2246 | static_assert(sizeof(struct task_requested_policy) == sizeof(uint64_t), "size invariant violated"); | |
2247 | ||
2248 | uintptr_t* raw = (uintptr_t*)&task->requested_policy; | |
2249 | ||
2250 | return raw[0]; | |
2251 | } | |
2252 | ||
2253 | static uintptr_t | |
2254 | trequested_1(task_t task) | |
2255 | { | |
2256 | #if defined __LP64__ | |
2257 | (void)task; | |
2258 | return 0; | |
2259 | #else | |
2260 | uintptr_t* raw = (uintptr_t*)(&task->requested_policy); | |
2261 | return raw[1]; | |
2262 | #endif | |
2263 | } | |
2264 | ||
2265 | static uintptr_t | |
2266 | teffective_0(task_t task) | |
2267 | { | |
2268 | uintptr_t* raw = (uintptr_t*)&task->effective_policy; | |
2269 | ||
2270 | return raw[0]; | |
2271 | } | |
2272 | ||
2273 | static uintptr_t | |
2274 | teffective_1(task_t task) | |
2275 | { | |
2276 | #if defined __LP64__ | |
2277 | (void)task; | |
2278 | return 0; | |
2279 | #else | |
2280 | uintptr_t* raw = (uintptr_t*)(&task->effective_policy); | |
2281 | return raw[1]; | |
2282 | #endif | |
2283 | } | |
2284 | ||
2285 | /* dump pending for tracepoint */ | |
2286 | uint32_t | |
2287 | tpending(task_pend_token_t pend_token) | |
2288 | { | |
2289 | return *(uint32_t*)(void*)(pend_token); | |
2290 | } | |
2291 | ||
2292 | uint64_t | |
2293 | task_requested_bitfield(task_t task) | |
2294 | { | |
2295 | uint64_t bits = 0; | |
2296 | struct task_requested_policy requested = task->requested_policy; | |
2297 | ||
2298 | bits |= (requested.trp_int_darwinbg ? POLICY_REQ_INT_DARWIN_BG : 0); | |
2299 | bits |= (requested.trp_ext_darwinbg ? POLICY_REQ_EXT_DARWIN_BG : 0); | |
2300 | bits |= (requested.trp_int_iotier ? (((uint64_t)requested.trp_int_iotier) << POLICY_REQ_INT_IO_TIER_SHIFT) : 0); | |
2301 | bits |= (requested.trp_ext_iotier ? (((uint64_t)requested.trp_ext_iotier) << POLICY_REQ_EXT_IO_TIER_SHIFT) : 0); | |
2302 | bits |= (requested.trp_int_iopassive ? POLICY_REQ_INT_PASSIVE_IO : 0); | |
2303 | bits |= (requested.trp_ext_iopassive ? POLICY_REQ_EXT_PASSIVE_IO : 0); | |
2304 | bits |= (requested.trp_bg_iotier ? (((uint64_t)requested.trp_bg_iotier) << POLICY_REQ_BG_IOTIER_SHIFT) : 0); | |
2305 | bits |= (requested.trp_terminated ? POLICY_REQ_TERMINATED : 0); | |
2306 | ||
2307 | bits |= (requested.trp_boosted ? POLICY_REQ_BOOSTED : 0); | |
2308 | bits |= (requested.trp_tal_enabled ? POLICY_REQ_TAL_ENABLED : 0); | |
2309 | bits |= (requested.trp_apptype ? (((uint64_t)requested.trp_apptype) << POLICY_REQ_APPTYPE_SHIFT) : 0); | |
2310 | bits |= (requested.trp_role ? (((uint64_t)requested.trp_role) << POLICY_REQ_ROLE_SHIFT) : 0); | |
2311 | ||
2312 | bits |= (requested.trp_sup_active ? POLICY_REQ_SUP_ACTIVE : 0); | |
2313 | bits |= (requested.trp_sup_lowpri_cpu ? POLICY_REQ_SUP_LOWPRI_CPU : 0); | |
2314 | bits |= (requested.trp_sup_cpu ? POLICY_REQ_SUP_CPU : 0); | |
2315 | bits |= (requested.trp_sup_timer ? (((uint64_t)requested.trp_sup_timer) << POLICY_REQ_SUP_TIMER_THROTTLE_SHIFT) : 0); | |
2316 | bits |= (requested.trp_sup_throughput ? (((uint64_t)requested.trp_sup_throughput) << POLICY_REQ_SUP_THROUGHPUT_SHIFT) : 0); | |
2317 | bits |= (requested.trp_sup_disk ? POLICY_REQ_SUP_DISK_THROTTLE : 0); | |
2318 | bits |= (requested.trp_sup_bg_sockets ? POLICY_REQ_SUP_BG_SOCKETS : 0); | |
2319 | ||
2320 | bits |= (requested.trp_base_latency_qos ? (((uint64_t)requested.trp_base_latency_qos) << POLICY_REQ_BASE_LATENCY_QOS_SHIFT) : 0); | |
2321 | bits |= (requested.trp_over_latency_qos ? (((uint64_t)requested.trp_over_latency_qos) << POLICY_REQ_OVER_LATENCY_QOS_SHIFT) : 0); | |
2322 | bits |= (requested.trp_base_through_qos ? (((uint64_t)requested.trp_base_through_qos) << POLICY_REQ_BASE_THROUGH_QOS_SHIFT) : 0); | |
2323 | bits |= (requested.trp_over_through_qos ? (((uint64_t)requested.trp_over_through_qos) << POLICY_REQ_OVER_THROUGH_QOS_SHIFT) : 0); | |
2324 | bits |= (requested.trp_sfi_managed ? POLICY_REQ_SFI_MANAGED : 0); | |
2325 | bits |= (requested.trp_qos_clamp ? (((uint64_t)requested.trp_qos_clamp) << POLICY_REQ_QOS_CLAMP_SHIFT) : 0); | |
2326 | ||
2327 | return bits; | |
2328 | } | |
2329 | ||
2330 | uint64_t | |
2331 | task_effective_bitfield(task_t task) | |
2332 | { | |
2333 | uint64_t bits = 0; | |
2334 | struct task_effective_policy effective = task->effective_policy; | |
2335 | ||
2336 | bits |= (effective.tep_io_tier ? (((uint64_t)effective.tep_io_tier) << POLICY_EFF_IO_TIER_SHIFT) : 0); | |
2337 | bits |= (effective.tep_io_passive ? POLICY_EFF_IO_PASSIVE : 0); | |
2338 | bits |= (effective.tep_darwinbg ? POLICY_EFF_DARWIN_BG : 0); | |
2339 | bits |= (effective.tep_lowpri_cpu ? POLICY_EFF_LOWPRI_CPU : 0); | |
2340 | bits |= (effective.tep_terminated ? POLICY_EFF_TERMINATED : 0); | |
2341 | bits |= (effective.tep_all_sockets_bg ? POLICY_EFF_ALL_SOCKETS_BG : 0); | |
2342 | bits |= (effective.tep_new_sockets_bg ? POLICY_EFF_NEW_SOCKETS_BG : 0); | |
2343 | bits |= (effective.tep_bg_iotier ? (((uint64_t)effective.tep_bg_iotier) << POLICY_EFF_BG_IOTIER_SHIFT) : 0); | |
2344 | bits |= (effective.tep_qos_ui_is_urgent ? POLICY_EFF_QOS_UI_IS_URGENT : 0); | |
2345 | ||
2346 | bits |= (effective.tep_tal_engaged ? POLICY_EFF_TAL_ENGAGED : 0); | |
2347 | bits |= (effective.tep_watchers_bg ? POLICY_EFF_WATCHERS_BG : 0); | |
2348 | bits |= (effective.tep_sup_active ? POLICY_EFF_SUP_ACTIVE : 0); | |
2349 | bits |= (effective.tep_suppressed_cpu ? POLICY_EFF_SUP_CPU : 0); | |
2350 | bits |= (effective.tep_role ? (((uint64_t)effective.tep_role) << POLICY_EFF_ROLE_SHIFT) : 0); | |
2351 | bits |= (effective.tep_latency_qos ? (((uint64_t)effective.tep_latency_qos) << POLICY_EFF_LATENCY_QOS_SHIFT) : 0); | |
2352 | bits |= (effective.tep_through_qos ? (((uint64_t)effective.tep_through_qos) << POLICY_EFF_THROUGH_QOS_SHIFT) : 0); | |
2353 | bits |= (effective.tep_sfi_managed ? POLICY_EFF_SFI_MANAGED : 0); | |
2354 | bits |= (effective.tep_qos_ceiling ? (((uint64_t)effective.tep_qos_ceiling) << POLICY_EFF_QOS_CEILING_SHIFT) : 0); | |
2355 | ||
2356 | return bits; | |
2357 | } | |
2358 | ||
2359 | ||
2360 | /* | |
2361 | * Resource usage and CPU related routines | |
2362 | */ | |
2363 | ||
2364 | int | |
2365 | proc_get_task_ruse_cpu(task_t task, uint32_t *policyp, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep) | |
2366 | { | |
2367 | int error = 0; | |
2368 | int scope; | |
2369 | ||
2370 | task_lock(task); | |
2371 | ||
2372 | ||
2373 | error = task_get_cpuusage(task, percentagep, intervalp, deadlinep, &scope); | |
2374 | task_unlock(task); | |
2375 | ||
2376 | /* | |
2377 | * Reverse-map from CPU resource limit scopes back to policies (see comment below). | |
2378 | */ | |
2379 | if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) { | |
2380 | *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC; | |
2381 | } else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) { | |
2382 | *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE; | |
2383 | } else if (scope == TASK_RUSECPU_FLAGS_DEADLINE) { | |
2384 | *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE; | |
2385 | } | |
2386 | ||
2387 | return error; | |
2388 | } | |
2389 | ||
2390 | /* | |
2391 | * Configure the default CPU usage monitor parameters. | |
2392 | * | |
2393 | * For tasks which have this mechanism activated: if any thread in the | |
2394 | * process consumes more CPU than this, an EXC_RESOURCE exception will be generated. | |
2395 | */ | |
2396 | void | |
2397 | proc_init_cpumon_params(void) | |
2398 | { | |
2399 | /* | |
2400 | * The max CPU percentage can be configured via the boot-args and | |
2401 | * a key in the device tree. The boot-args are honored first, then the | |
2402 | * device tree. | |
2403 | */ | |
2404 | if (!PE_parse_boot_argn("max_cpumon_percentage", &proc_max_cpumon_percentage, | |
2405 | sizeof(proc_max_cpumon_percentage))) { | |
2406 | uint64_t max_percentage = 0ULL; | |
2407 | ||
2408 | if (!PE_get_default("kern.max_cpumon_percentage", &max_percentage, | |
2409 | sizeof(max_percentage))) { | |
2410 | max_percentage = DEFAULT_CPUMON_PERCENTAGE; | |
2411 | } | |
2412 | ||
2413 | assert(max_percentage <= UINT8_MAX); | |
2414 | proc_max_cpumon_percentage = (uint8_t) max_percentage; | |
2415 | } | |
2416 | ||
2417 | if (proc_max_cpumon_percentage > 100) { | |
2418 | proc_max_cpumon_percentage = 100; | |
2419 | } | |
2420 | ||
2421 | /* | |
2422 | * The interval should be specified in seconds. | |
2423 | * | |
2424 | * Like the max CPU percentage, the max CPU interval can be configured | |
2425 | * via boot-args and the device tree. | |
2426 | */ | |
2427 | if (!PE_parse_boot_argn("max_cpumon_interval", &proc_max_cpumon_interval, | |
2428 | sizeof(proc_max_cpumon_interval))) { | |
2429 | if (!PE_get_default("kern.max_cpumon_interval", &proc_max_cpumon_interval, | |
2430 | sizeof(proc_max_cpumon_interval))) { | |
2431 | proc_max_cpumon_interval = DEFAULT_CPUMON_INTERVAL; | |
2432 | } | |
2433 | } | |
2434 | ||
2435 | proc_max_cpumon_interval *= NSEC_PER_SEC; | |
2436 | ||
2437 | /* TEMPORARY boot arg to control App suppression */ | |
2438 | PE_parse_boot_argn("task_policy_suppression_flags", | |
2439 | &task_policy_suppression_flags, | |
2440 | sizeof(task_policy_suppression_flags)); | |
2441 | ||
2442 | /* adjust suppression disk policy if called for in boot arg */ | |
2443 | if (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_IOTIER2) { | |
2444 | proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER2; | |
2445 | } | |
2446 | } | |
2447 | ||
2448 | /* | |
2449 | * Currently supported configurations for CPU limits. | |
2450 | * | |
2451 | * Policy | Deadline-based CPU limit | Percentage-based CPU limit | |
2452 | * -------------------------------------+--------------------------+------------------------------ | |
2453 | * PROC_POLICY_RSRCACT_THROTTLE | ENOTSUP | Task-wide scope only | |
2454 | * PROC_POLICY_RSRCACT_SUSPEND | Task-wide scope only | ENOTSUP | |
2455 | * PROC_POLICY_RSRCACT_TERMINATE | Task-wide scope only | ENOTSUP | |
2456 | * PROC_POLICY_RSRCACT_NOTIFY_KQ | Task-wide scope only | ENOTSUP | |
2457 | * PROC_POLICY_RSRCACT_NOTIFY_EXC | ENOTSUP | Per-thread scope only | |
2458 | * | |
2459 | * A deadline-based CPU limit is actually a simple wallclock timer - the requested action is performed | |
2460 | * after the specified amount of wallclock time has elapsed. | |
2461 | * | |
2462 | * A percentage-based CPU limit performs the requested action after the specified amount of actual CPU time | |
2463 | * has been consumed -- regardless of how much wallclock time has elapsed -- by either the task as an | |
2464 | * aggregate entity (so-called "Task-wide" or "Proc-wide" scope, whereby the CPU time consumed by all threads | |
2465 | * in the task are added together), or by any one thread in the task (so-called "per-thread" scope). | |
2466 | * | |
2467 | * We support either deadline != 0 OR percentage != 0, but not both. The original intention in having them | |
2468 | * share an API was to use actual CPU time as the basis of the deadline-based limit (as in: perform an action | |
2469 | * after I have used some amount of CPU time; this is different than the recurring percentage/interval model) | |
2470 | * but the potential consumer of the API at the time was insisting on wallclock time instead. | |
2471 | * | |
2472 | * Currently, requesting notification via an exception is the only way to get per-thread scope for a | |
2473 | * CPU limit. All other types of notifications force task-wide scope for the limit. | |
2474 | */ | |
2475 | int | |
2476 | proc_set_task_ruse_cpu(task_t task, uint16_t policy, uint8_t percentage, uint64_t interval, uint64_t deadline, | |
2477 | int cpumon_entitled) | |
2478 | { | |
2479 | int error = 0; | |
2480 | int scope; | |
2481 | ||
2482 | /* | |
2483 | * Enforce the matrix of supported configurations for policy, percentage, and deadline. | |
2484 | */ | |
2485 | switch (policy) { | |
2486 | // If no policy is explicitly given, the default is to throttle. | |
2487 | case TASK_POLICY_RESOURCE_ATTRIBUTE_NONE: | |
2488 | case TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE: | |
2489 | if (deadline != 0) { | |
2490 | return ENOTSUP; | |
2491 | } | |
2492 | scope = TASK_RUSECPU_FLAGS_PROC_LIMIT; | |
2493 | break; | |
2494 | case TASK_POLICY_RESOURCE_ATTRIBUTE_SUSPEND: | |
2495 | case TASK_POLICY_RESOURCE_ATTRIBUTE_TERMINATE: | |
2496 | case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_KQ: | |
2497 | if (percentage != 0) { | |
2498 | return ENOTSUP; | |
2499 | } | |
2500 | scope = TASK_RUSECPU_FLAGS_DEADLINE; | |
2501 | break; | |
2502 | case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC: | |
2503 | if (deadline != 0) { | |
2504 | return ENOTSUP; | |
2505 | } | |
2506 | scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT; | |
2507 | #ifdef CONFIG_NOMONITORS | |
2508 | return error; | |
2509 | #endif /* CONFIG_NOMONITORS */ | |
2510 | break; | |
2511 | default: | |
2512 | return EINVAL; | |
2513 | } | |
2514 | ||
2515 | task_lock(task); | |
2516 | if (task != current_task()) { | |
2517 | task->policy_ru_cpu_ext = policy; | |
2518 | } else { | |
2519 | task->policy_ru_cpu = policy; | |
2520 | } | |
2521 | error = task_set_cpuusage(task, percentage, interval, deadline, scope, cpumon_entitled); | |
2522 | task_unlock(task); | |
2523 | return error; | |
2524 | } | |
2525 | ||
2526 | /* TODO: get rid of these */ | |
2527 | #define TASK_POLICY_CPU_RESOURCE_USAGE 0 | |
2528 | #define TASK_POLICY_WIREDMEM_RESOURCE_USAGE 1 | |
2529 | #define TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE 2 | |
2530 | #define TASK_POLICY_DISK_RESOURCE_USAGE 3 | |
2531 | #define TASK_POLICY_NETWORK_RESOURCE_USAGE 4 | |
2532 | #define TASK_POLICY_POWER_RESOURCE_USAGE 5 | |
2533 | ||
2534 | #define TASK_POLICY_RESOURCE_USAGE_COUNT 6 | |
2535 | ||
2536 | int | |
2537 | proc_clear_task_ruse_cpu(task_t task, int cpumon_entitled) | |
2538 | { | |
2539 | int error = 0; | |
2540 | int action; | |
2541 | void * bsdinfo = NULL; | |
2542 | ||
2543 | task_lock(task); | |
2544 | if (task != current_task()) { | |
2545 | task->policy_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT; | |
2546 | } else { | |
2547 | task->policy_ru_cpu = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT; | |
2548 | } | |
2549 | ||
2550 | error = task_clear_cpuusage_locked(task, cpumon_entitled); | |
2551 | if (error != 0) { | |
2552 | goto out; | |
2553 | } | |
2554 | ||
2555 | action = task->applied_ru_cpu; | |
2556 | if (task->applied_ru_cpu_ext != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) { | |
2557 | /* reset action */ | |
2558 | task->applied_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE; | |
2559 | } | |
2560 | if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) { | |
2561 | bsdinfo = task->bsd_info; | |
2562 | task_unlock(task); | |
2563 | proc_restore_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action); | |
2564 | goto out1; | |
2565 | } | |
2566 | ||
2567 | out: | |
2568 | task_unlock(task); | |
2569 | out1: | |
2570 | return error; | |
2571 | } | |
2572 | ||
2573 | /* used to apply resource limit related actions */ | |
2574 | static int | |
2575 | task_apply_resource_actions(task_t task, int type) | |
2576 | { | |
2577 | int action = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE; | |
2578 | void * bsdinfo = NULL; | |
2579 | ||
2580 | switch (type) { | |
2581 | case TASK_POLICY_CPU_RESOURCE_USAGE: | |
2582 | break; | |
2583 | case TASK_POLICY_WIREDMEM_RESOURCE_USAGE: | |
2584 | case TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE: | |
2585 | case TASK_POLICY_DISK_RESOURCE_USAGE: | |
2586 | case TASK_POLICY_NETWORK_RESOURCE_USAGE: | |
2587 | case TASK_POLICY_POWER_RESOURCE_USAGE: | |
2588 | return 0; | |
2589 | ||
2590 | default: | |
2591 | return 1; | |
2592 | } | |
2593 | ; | |
2594 | ||
2595 | /* only cpu actions for now */ | |
2596 | task_lock(task); | |
2597 | ||
2598 | if (task->applied_ru_cpu_ext == TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) { | |
2599 | /* apply action */ | |
2600 | task->applied_ru_cpu_ext = task->policy_ru_cpu_ext; | |
2601 | action = task->applied_ru_cpu_ext; | |
2602 | } else { | |
2603 | action = task->applied_ru_cpu_ext; | |
2604 | } | |
2605 | ||
2606 | if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) { | |
2607 | bsdinfo = task->bsd_info; | |
2608 | task_unlock(task); | |
2609 | proc_apply_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action); | |
2610 | } else { | |
2611 | task_unlock(task); | |
2612 | } | |
2613 | ||
2614 | return 0; | |
2615 | } | |
2616 | ||
2617 | /* | |
2618 | * XXX This API is somewhat broken; we support multiple simultaneous CPU limits, but the get/set API | |
2619 | * only allows for one at a time. This means that if there is a per-thread limit active, the other | |
2620 | * "scopes" will not be accessible via this API. We could change it to pass in the scope of interest | |
2621 | * to the caller, and prefer that, but there's no need for that at the moment. | |
2622 | */ | |
2623 | static int | |
2624 | task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope) | |
2625 | { | |
2626 | *percentagep = 0; | |
2627 | *intervalp = 0; | |
2628 | *deadlinep = 0; | |
2629 | ||
2630 | if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) != 0) { | |
2631 | *scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT; | |
2632 | *percentagep = task->rusage_cpu_perthr_percentage; | |
2633 | *intervalp = task->rusage_cpu_perthr_interval; | |
2634 | } else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) != 0) { | |
2635 | *scope = TASK_RUSECPU_FLAGS_PROC_LIMIT; | |
2636 | *percentagep = task->rusage_cpu_percentage; | |
2637 | *intervalp = task->rusage_cpu_interval; | |
2638 | } else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) != 0) { | |
2639 | *scope = TASK_RUSECPU_FLAGS_DEADLINE; | |
2640 | *deadlinep = task->rusage_cpu_deadline; | |
2641 | } else { | |
2642 | *scope = 0; | |
2643 | } | |
2644 | ||
2645 | return 0; | |
2646 | } | |
2647 | ||
2648 | /* | |
2649 | * Suspend the CPU usage monitor for the task. Return value indicates | |
2650 | * if the mechanism was actually enabled. | |
2651 | */ | |
2652 | int | |
2653 | task_suspend_cpumon(task_t task) | |
2654 | { | |
2655 | thread_t thread; | |
2656 | ||
2657 | task_lock_assert_owned(task); | |
2658 | ||
2659 | if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) == 0) { | |
2660 | return KERN_INVALID_ARGUMENT; | |
2661 | } | |
2662 | ||
2663 | #if CONFIG_TELEMETRY | |
2664 | /* | |
2665 | * Disable task-wide telemetry if it was ever enabled by the CPU usage | |
2666 | * monitor's warning zone. | |
2667 | */ | |
2668 | telemetry_task_ctl_locked(task, TF_CPUMON_WARNING, 0); | |
2669 | #endif | |
2670 | ||
2671 | /* | |
2672 | * Suspend monitoring for the task, and propagate that change to each thread. | |
2673 | */ | |
2674 | task->rusage_cpu_flags &= ~(TASK_RUSECPU_FLAGS_PERTHR_LIMIT | TASK_RUSECPU_FLAGS_FATAL_CPUMON); | |
2675 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
2676 | act_set_astledger(thread); | |
2677 | } | |
2678 | ||
2679 | return KERN_SUCCESS; | |
2680 | } | |
2681 | ||
2682 | /* | |
2683 | * Remove all traces of the CPU monitor. | |
2684 | */ | |
2685 | int | |
2686 | task_disable_cpumon(task_t task) | |
2687 | { | |
2688 | int kret; | |
2689 | ||
2690 | task_lock_assert_owned(task); | |
2691 | ||
2692 | kret = task_suspend_cpumon(task); | |
2693 | if (kret) { | |
2694 | return kret; | |
2695 | } | |
2696 | ||
2697 | /* Once we clear these values, the monitor can't be resumed */ | |
2698 | task->rusage_cpu_perthr_percentage = 0; | |
2699 | task->rusage_cpu_perthr_interval = 0; | |
2700 | ||
2701 | return KERN_SUCCESS; | |
2702 | } | |
2703 | ||
2704 | ||
2705 | static int | |
2706 | task_enable_cpumon_locked(task_t task) | |
2707 | { | |
2708 | thread_t thread; | |
2709 | task_lock_assert_owned(task); | |
2710 | ||
2711 | if (task->rusage_cpu_perthr_percentage == 0 || | |
2712 | task->rusage_cpu_perthr_interval == 0) { | |
2713 | return KERN_INVALID_ARGUMENT; | |
2714 | } | |
2715 | ||
2716 | task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PERTHR_LIMIT; | |
2717 | queue_iterate(&task->threads, thread, thread_t, task_threads) { | |
2718 | act_set_astledger(thread); | |
2719 | } | |
2720 | ||
2721 | return KERN_SUCCESS; | |
2722 | } | |
2723 | ||
2724 | int | |
2725 | task_resume_cpumon(task_t task) | |
2726 | { | |
2727 | kern_return_t kret; | |
2728 | ||
2729 | if (!task) { | |
2730 | return EINVAL; | |
2731 | } | |
2732 | ||
2733 | task_lock(task); | |
2734 | kret = task_enable_cpumon_locked(task); | |
2735 | task_unlock(task); | |
2736 | ||
2737 | return kret; | |
2738 | } | |
2739 | ||
2740 | ||
2741 | /* duplicate values from bsd/sys/process_policy.h */ | |
2742 | #define PROC_POLICY_CPUMON_DISABLE 0xFF | |
2743 | #define PROC_POLICY_CPUMON_DEFAULTS 0xFE | |
2744 | ||
2745 | static int | |
2746 | task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int cpumon_entitled) | |
2747 | { | |
2748 | uint64_t abstime = 0; | |
2749 | uint64_t limittime = 0; | |
2750 | ||
2751 | lck_mtx_assert(&task->lock, LCK_MTX_ASSERT_OWNED); | |
2752 | ||
2753 | /* By default, refill once per second */ | |
2754 | if (interval == 0) { | |
2755 | interval = NSEC_PER_SEC; | |
2756 | } | |
2757 | ||
2758 | if (percentage != 0) { | |
2759 | if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) { | |
2760 | boolean_t warn = FALSE; | |
2761 | ||
2762 | /* | |
2763 | * A per-thread CPU limit on a task generates an exception | |
2764 | * (LEDGER_ACTION_EXCEPTION) if any one thread in the task | |
2765 | * exceeds the limit. | |
2766 | */ | |
2767 | ||
2768 | if (percentage == PROC_POLICY_CPUMON_DISABLE) { | |
2769 | if (cpumon_entitled) { | |
2770 | /* 25095698 - task_disable_cpumon() should be reliable */ | |
2771 | task_disable_cpumon(task); | |
2772 | return 0; | |
2773 | } | |
2774 | ||
2775 | /* | |
2776 | * This task wishes to disable the CPU usage monitor, but it's | |
2777 | * missing the required entitlement: | |
2778 | * com.apple.private.kernel.override-cpumon | |
2779 | * | |
2780 | * Instead, treat this as a request to reset its params | |
2781 | * back to the defaults. | |
2782 | */ | |
2783 | warn = TRUE; | |
2784 | percentage = PROC_POLICY_CPUMON_DEFAULTS; | |
2785 | } | |
2786 | ||
2787 | if (percentage == PROC_POLICY_CPUMON_DEFAULTS) { | |
2788 | percentage = proc_max_cpumon_percentage; | |
2789 | interval = proc_max_cpumon_interval; | |
2790 | } | |
2791 | ||
2792 | if (percentage > 100) { | |
2793 | percentage = 100; | |
2794 | } | |
2795 | ||
2796 | /* | |
2797 | * Passing in an interval of -1 means either: | |
2798 | * - Leave the interval as-is, if there's already a per-thread | |
2799 | * limit configured | |
2800 | * - Use the system default. | |
2801 | */ | |
2802 | if (interval == -1ULL) { | |
2803 | if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) { | |
2804 | interval = task->rusage_cpu_perthr_interval; | |
2805 | } else { | |
2806 | interval = proc_max_cpumon_interval; | |
2807 | } | |
2808 | } | |
2809 | ||
2810 | /* | |
2811 | * Enforce global caps on CPU usage monitor here if the process is not | |
2812 | * entitled to escape the global caps. | |
2813 | */ | |
2814 | if ((percentage > proc_max_cpumon_percentage) && (cpumon_entitled == 0)) { | |
2815 | warn = TRUE; | |
2816 | percentage = proc_max_cpumon_percentage; | |
2817 | } | |
2818 | ||
2819 | if ((interval > proc_max_cpumon_interval) && (cpumon_entitled == 0)) { | |
2820 | warn = TRUE; | |
2821 | interval = proc_max_cpumon_interval; | |
2822 | } | |
2823 | ||
2824 | if (warn) { | |
2825 | int pid = 0; | |
2826 | const char *procname = "unknown"; | |
2827 | ||
2828 | #ifdef MACH_BSD | |
2829 | pid = proc_selfpid(); | |
2830 | if (current_task()->bsd_info != NULL) { | |
2831 | procname = proc_name_address(current_task()->bsd_info); | |
2832 | } | |
2833 | #endif | |
2834 | ||
2835 | printf("process %s[%d] denied attempt to escape CPU monitor" | |
2836 | " (missing required entitlement).\n", procname, pid); | |
2837 | } | |
2838 | ||
2839 | /* configure the limit values */ | |
2840 | task->rusage_cpu_perthr_percentage = percentage; | |
2841 | task->rusage_cpu_perthr_interval = interval; | |
2842 | ||
2843 | /* and enable the CPU monitor */ | |
2844 | (void)task_enable_cpumon_locked(task); | |
2845 | } else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) { | |
2846 | /* | |
2847 | * Currently, a proc-wide CPU limit always blocks if the limit is | |
2848 | * exceeded (LEDGER_ACTION_BLOCK). | |
2849 | */ | |
2850 | task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PROC_LIMIT; | |
2851 | task->rusage_cpu_percentage = percentage; | |
2852 | task->rusage_cpu_interval = interval; | |
2853 | ||
2854 | limittime = (interval * percentage) / 100; | |
2855 | nanoseconds_to_absolutetime(limittime, &abstime); | |
2856 | ||
2857 | ledger_set_limit(task->ledger, task_ledgers.cpu_time, abstime, 0); | |
2858 | ledger_set_period(task->ledger, task_ledgers.cpu_time, interval); | |
2859 | ledger_set_action(task->ledger, task_ledgers.cpu_time, LEDGER_ACTION_BLOCK); | |
2860 | } | |
2861 | } | |
2862 | ||
2863 | if (deadline != 0) { | |
2864 | assert(scope == TASK_RUSECPU_FLAGS_DEADLINE); | |
2865 | ||
2866 | /* if already in use, cancel and wait for it to cleanout */ | |
2867 | if (task->rusage_cpu_callt != NULL) { | |
2868 | task_unlock(task); | |
2869 | thread_call_cancel_wait(task->rusage_cpu_callt); | |
2870 | task_lock(task); | |
2871 | } | |
2872 | if (task->rusage_cpu_callt == NULL) { | |
2873 | task->rusage_cpu_callt = thread_call_allocate_with_priority(task_action_cpuusage, (thread_call_param_t)task, THREAD_CALL_PRIORITY_KERNEL); | |
2874 | } | |
2875 | /* setup callout */ | |
2876 | if (task->rusage_cpu_callt != 0) { | |
2877 | uint64_t save_abstime = 0; | |
2878 | ||
2879 | task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_DEADLINE; | |
2880 | task->rusage_cpu_deadline = deadline; | |
2881 | ||
2882 | nanoseconds_to_absolutetime(deadline, &abstime); | |
2883 | save_abstime = abstime; | |
2884 | clock_absolutetime_interval_to_deadline(save_abstime, &abstime); | |
2885 | thread_call_enter_delayed(task->rusage_cpu_callt, abstime); | |
2886 | } | |
2887 | } | |
2888 | ||
2889 | return 0; | |
2890 | } | |
2891 | ||
2892 | int | |
2893 | task_clear_cpuusage(task_t task, int cpumon_entitled) | |
2894 | { | |
2895 | int retval = 0; | |
2896 | ||
2897 | task_lock(task); | |
2898 | retval = task_clear_cpuusage_locked(task, cpumon_entitled); | |
2899 | task_unlock(task); | |
2900 | ||
2901 | return retval; | |
2902 | } | |
2903 | ||
2904 | static int | |
2905 | task_clear_cpuusage_locked(task_t task, int cpumon_entitled) | |
2906 | { | |
2907 | thread_call_t savecallt; | |
2908 | ||
2909 | /* cancel percentage handling if set */ | |
2910 | if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) { | |
2911 | task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_PROC_LIMIT; | |
2912 | ledger_set_limit(task->ledger, task_ledgers.cpu_time, LEDGER_LIMIT_INFINITY, 0); | |
2913 | task->rusage_cpu_percentage = 0; | |
2914 | task->rusage_cpu_interval = 0; | |
2915 | } | |
2916 | ||
2917 | /* | |
2918 | * Disable the CPU usage monitor. | |
2919 | */ | |
2920 | if (cpumon_entitled) { | |
2921 | task_disable_cpumon(task); | |
2922 | } | |
2923 | ||
2924 | /* cancel deadline handling if set */ | |
2925 | if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) { | |
2926 | task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_DEADLINE; | |
2927 | if (task->rusage_cpu_callt != 0) { | |
2928 | savecallt = task->rusage_cpu_callt; | |
2929 | task->rusage_cpu_callt = NULL; | |
2930 | task->rusage_cpu_deadline = 0; | |
2931 | task_unlock(task); | |
2932 | thread_call_cancel_wait(savecallt); | |
2933 | thread_call_free(savecallt); | |
2934 | task_lock(task); | |
2935 | } | |
2936 | } | |
2937 | return 0; | |
2938 | } | |
2939 | ||
2940 | /* called by ledger unit to enforce action due to resource usage criteria being met */ | |
2941 | static void | |
2942 | task_action_cpuusage(thread_call_param_t param0, __unused thread_call_param_t param1) | |
2943 | { | |
2944 | task_t task = (task_t)param0; | |
2945 | (void)task_apply_resource_actions(task, TASK_POLICY_CPU_RESOURCE_USAGE); | |
2946 | return; | |
2947 | } | |
2948 | ||
2949 | ||
2950 | /* | |
2951 | * Routines for taskwatch and pidbind | |
2952 | */ | |
2953 | ||
2954 | #if CONFIG_TASKWATCH | |
2955 | ||
2956 | LCK_MTX_DECLARE_ATTR(task_watch_mtx, &task_lck_grp, &task_lck_attr); | |
2957 | ||
2958 | static void | |
2959 | task_watch_lock(void) | |
2960 | { | |
2961 | lck_mtx_lock(&task_watch_mtx); | |
2962 | } | |
2963 | ||
2964 | static void | |
2965 | task_watch_unlock(void) | |
2966 | { | |
2967 | lck_mtx_unlock(&task_watch_mtx); | |
2968 | } | |
2969 | ||
2970 | static void | |
2971 | add_taskwatch_locked(task_t task, task_watch_t * twp) | |
2972 | { | |
2973 | queue_enter(&task->task_watchers, twp, task_watch_t *, tw_links); | |
2974 | task->num_taskwatchers++; | |
2975 | } | |
2976 | ||
2977 | static void | |
2978 | remove_taskwatch_locked(task_t task, task_watch_t * twp) | |
2979 | { | |
2980 | queue_remove(&task->task_watchers, twp, task_watch_t *, tw_links); | |
2981 | task->num_taskwatchers--; | |
2982 | } | |
2983 | ||
2984 | ||
2985 | int | |
2986 | proc_lf_pidbind(task_t curtask, uint64_t tid, task_t target_task, int bind) | |
2987 | { | |
2988 | thread_t target_thread = NULL; | |
2989 | int ret = 0, setbg = 0; | |
2990 | task_watch_t *twp = NULL; | |
2991 | task_t task = TASK_NULL; | |
2992 | ||
2993 | target_thread = task_findtid(curtask, tid); | |
2994 | if (target_thread == NULL) { | |
2995 | return ESRCH; | |
2996 | } | |
2997 | /* holds thread reference */ | |
2998 | ||
2999 | if (bind != 0) { | |
3000 | /* task is still active ? */ | |
3001 | task_lock(target_task); | |
3002 | if (target_task->active == 0) { | |
3003 | task_unlock(target_task); | |
3004 | ret = ESRCH; | |
3005 | goto out; | |
3006 | } | |
3007 | task_unlock(target_task); | |
3008 | ||
3009 | twp = (task_watch_t *)kalloc(sizeof(task_watch_t)); | |
3010 | if (twp == NULL) { | |
3011 | task_watch_unlock(); | |
3012 | ret = ENOMEM; | |
3013 | goto out; | |
3014 | } | |
3015 | ||
3016 | bzero(twp, sizeof(task_watch_t)); | |
3017 | ||
3018 | task_watch_lock(); | |
3019 | ||
3020 | if (target_thread->taskwatch != NULL) { | |
3021 | /* already bound to another task */ | |
3022 | task_watch_unlock(); | |
3023 | ||
3024 | kfree(twp, sizeof(task_watch_t)); | |
3025 | ret = EBUSY; | |
3026 | goto out; | |
3027 | } | |
3028 | ||
3029 | task_reference(target_task); | |
3030 | ||
3031 | setbg = proc_get_effective_task_policy(target_task, TASK_POLICY_WATCHERS_BG); | |
3032 | ||
3033 | twp->tw_task = target_task; /* holds the task reference */ | |
3034 | twp->tw_thread = target_thread; /* holds the thread reference */ | |
3035 | twp->tw_state = setbg; | |
3036 | twp->tw_importance = target_thread->importance; | |
3037 | ||
3038 | add_taskwatch_locked(target_task, twp); | |
3039 | ||
3040 | target_thread->taskwatch = twp; | |
3041 | ||
3042 | task_watch_unlock(); | |
3043 | ||
3044 | if (setbg) { | |
3045 | set_thread_appbg(target_thread, setbg, INT_MIN); | |
3046 | } | |
3047 | ||
3048 | /* retain the thread reference as it is in twp */ | |
3049 | target_thread = NULL; | |
3050 | } else { | |
3051 | /* unbind */ | |
3052 | task_watch_lock(); | |
3053 | if ((twp = target_thread->taskwatch) != NULL) { | |
3054 | task = twp->tw_task; | |
3055 | target_thread->taskwatch = NULL; | |
3056 | remove_taskwatch_locked(task, twp); | |
3057 | ||
3058 | task_watch_unlock(); | |
3059 | ||
3060 | task_deallocate(task); /* drop task ref in twp */ | |
3061 | set_thread_appbg(target_thread, 0, twp->tw_importance); | |
3062 | thread_deallocate(target_thread); /* drop thread ref in twp */ | |
3063 | kfree(twp, sizeof(task_watch_t)); | |
3064 | } else { | |
3065 | task_watch_unlock(); | |
3066 | ret = 0; /* return success if it not alredy bound */ | |
3067 | goto out; | |
3068 | } | |
3069 | } | |
3070 | out: | |
3071 | thread_deallocate(target_thread); /* drop thread ref acquired in this routine */ | |
3072 | return ret; | |
3073 | } | |
3074 | ||
3075 | static void | |
3076 | set_thread_appbg(thread_t thread, int setbg, __unused int importance) | |
3077 | { | |
3078 | int enable = (setbg ? TASK_POLICY_ENABLE : TASK_POLICY_DISABLE); | |
3079 | ||
3080 | proc_set_thread_policy(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_PIDBIND_BG, enable); | |
3081 | } | |
3082 | ||
3083 | static void | |
3084 | apply_appstate_watchers(task_t task) | |
3085 | { | |
3086 | int numwatchers = 0, i, j, setbg; | |
3087 | thread_watchlist_t * threadlist; | |
3088 | task_watch_t * twp; | |
3089 | ||
3090 | retry: | |
3091 | /* if no watchers on the list return */ | |
3092 | if ((numwatchers = task->num_taskwatchers) == 0) { | |
3093 | return; | |
3094 | } | |
3095 | ||
3096 | threadlist = kheap_alloc(KHEAP_TEMP, | |
3097 | numwatchers * sizeof(thread_watchlist_t), Z_WAITOK | Z_ZERO); | |
3098 | if (threadlist == NULL) { | |
3099 | return; | |
3100 | } | |
3101 | ||
3102 | task_watch_lock(); | |
3103 | /*serialize application of app state changes */ | |
3104 | ||
3105 | if (task->watchapplying != 0) { | |
3106 | lck_mtx_sleep(&task_watch_mtx, LCK_SLEEP_DEFAULT, &task->watchapplying, THREAD_UNINT); | |
3107 | task_watch_unlock(); | |
3108 | kheap_free(KHEAP_TEMP, threadlist, numwatchers * sizeof(thread_watchlist_t)); | |
3109 | goto retry; | |
3110 | } | |
3111 | ||
3112 | if (numwatchers != task->num_taskwatchers) { | |
3113 | task_watch_unlock(); | |
3114 | kheap_free(KHEAP_TEMP, threadlist, numwatchers * sizeof(thread_watchlist_t)); | |
3115 | goto retry; | |
3116 | } | |
3117 | ||
3118 | setbg = proc_get_effective_task_policy(task, TASK_POLICY_WATCHERS_BG); | |
3119 | ||
3120 | task->watchapplying = 1; | |
3121 | i = 0; | |
3122 | queue_iterate(&task->task_watchers, twp, task_watch_t *, tw_links) { | |
3123 | threadlist[i].thread = twp->tw_thread; | |
3124 | thread_reference(threadlist[i].thread); | |
3125 | if (setbg != 0) { | |
3126 | twp->tw_importance = twp->tw_thread->importance; | |
3127 | threadlist[i].importance = INT_MIN; | |
3128 | } else { | |
3129 | threadlist[i].importance = twp->tw_importance; | |
3130 | } | |
3131 | i++; | |
3132 | if (i > numwatchers) { | |
3133 | break; | |
3134 | } | |
3135 | } | |
3136 | ||
3137 | task_watch_unlock(); | |
3138 | ||
3139 | for (j = 0; j < i; j++) { | |
3140 | set_thread_appbg(threadlist[j].thread, setbg, threadlist[j].importance); | |
3141 | thread_deallocate(threadlist[j].thread); | |
3142 | } | |
3143 | kheap_free(KHEAP_TEMP, threadlist, numwatchers * sizeof(thread_watchlist_t)); | |
3144 | ||
3145 | ||
3146 | task_watch_lock(); | |
3147 | task->watchapplying = 0; | |
3148 | thread_wakeup_one(&task->watchapplying); | |
3149 | task_watch_unlock(); | |
3150 | } | |
3151 | ||
3152 | void | |
3153 | thead_remove_taskwatch(thread_t thread) | |
3154 | { | |
3155 | task_watch_t * twp; | |
3156 | int importance = 0; | |
3157 | ||
3158 | task_watch_lock(); | |
3159 | if ((twp = thread->taskwatch) != NULL) { | |
3160 | thread->taskwatch = NULL; | |
3161 | remove_taskwatch_locked(twp->tw_task, twp); | |
3162 | } | |
3163 | task_watch_unlock(); | |
3164 | if (twp != NULL) { | |
3165 | thread_deallocate(twp->tw_thread); | |
3166 | task_deallocate(twp->tw_task); | |
3167 | importance = twp->tw_importance; | |
3168 | kfree(twp, sizeof(task_watch_t)); | |
3169 | /* remove the thread and networkbg */ | |
3170 | set_thread_appbg(thread, 0, importance); | |
3171 | } | |
3172 | } | |
3173 | ||
3174 | void | |
3175 | task_removewatchers(task_t task) | |
3176 | { | |
3177 | queue_head_t queue; | |
3178 | task_watch_t *twp; | |
3179 | ||
3180 | task_watch_lock(); | |
3181 | queue_new_head(&task->task_watchers, &queue, task_watch_t *, tw_links); | |
3182 | queue_init(&task->task_watchers); | |
3183 | ||
3184 | queue_iterate(&queue, twp, task_watch_t *, tw_links) { | |
3185 | /* | |
3186 | * Since the linkage is removed and thead state cleanup is already set up, | |
3187 | * remove the refernce from the thread. | |
3188 | */ | |
3189 | twp->tw_thread->taskwatch = NULL; /* removed linkage, clear thread holding ref */ | |
3190 | } | |
3191 | ||
3192 | task->num_taskwatchers = 0; | |
3193 | task_watch_unlock(); | |
3194 | ||
3195 | while (!queue_empty(&queue)) { | |
3196 | queue_remove_first(&queue, twp, task_watch_t *, tw_links); | |
3197 | /* remove thread and network bg */ | |
3198 | set_thread_appbg(twp->tw_thread, 0, twp->tw_importance); | |
3199 | thread_deallocate(twp->tw_thread); | |
3200 | task_deallocate(twp->tw_task); | |
3201 | kfree(twp, sizeof(task_watch_t)); | |
3202 | } | |
3203 | } | |
3204 | #endif /* CONFIG_TASKWATCH */ | |
3205 | ||
3206 | /* | |
3207 | * Routines for importance donation/inheritance/boosting | |
3208 | */ | |
3209 | ||
3210 | static void | |
3211 | task_importance_update_live_donor(task_t target_task) | |
3212 | { | |
3213 | #if IMPORTANCE_INHERITANCE | |
3214 | ||
3215 | ipc_importance_task_t task_imp; | |
3216 | ||
3217 | task_imp = ipc_importance_for_task(target_task, FALSE); | |
3218 | if (IIT_NULL != task_imp) { | |
3219 | ipc_importance_task_update_live_donor(task_imp); | |
3220 | ipc_importance_task_release(task_imp); | |
3221 | } | |
3222 | #endif /* IMPORTANCE_INHERITANCE */ | |
3223 | } | |
3224 | ||
3225 | void | |
3226 | task_importance_mark_donor(task_t task, boolean_t donating) | |
3227 | { | |
3228 | #if IMPORTANCE_INHERITANCE | |
3229 | ipc_importance_task_t task_imp; | |
3230 | ||
3231 | task_imp = ipc_importance_for_task(task, FALSE); | |
3232 | if (IIT_NULL != task_imp) { | |
3233 | ipc_importance_task_mark_donor(task_imp, donating); | |
3234 | ipc_importance_task_release(task_imp); | |
3235 | } | |
3236 | #endif /* IMPORTANCE_INHERITANCE */ | |
3237 | } | |
3238 | ||
3239 | void | |
3240 | task_importance_mark_live_donor(task_t task, boolean_t live_donating) | |
3241 | { | |
3242 | #if IMPORTANCE_INHERITANCE | |
3243 | ipc_importance_task_t task_imp; | |
3244 | ||
3245 | task_imp = ipc_importance_for_task(task, FALSE); | |
3246 | if (IIT_NULL != task_imp) { | |
3247 | ipc_importance_task_mark_live_donor(task_imp, live_donating); | |
3248 | ipc_importance_task_release(task_imp); | |
3249 | } | |
3250 | #endif /* IMPORTANCE_INHERITANCE */ | |
3251 | } | |
3252 | ||
3253 | void | |
3254 | task_importance_mark_receiver(task_t task, boolean_t receiving) | |
3255 | { | |
3256 | #if IMPORTANCE_INHERITANCE | |
3257 | ipc_importance_task_t task_imp; | |
3258 | ||
3259 | task_imp = ipc_importance_for_task(task, FALSE); | |
3260 | if (IIT_NULL != task_imp) { | |
3261 | ipc_importance_task_mark_receiver(task_imp, receiving); | |
3262 | ipc_importance_task_release(task_imp); | |
3263 | } | |
3264 | #endif /* IMPORTANCE_INHERITANCE */ | |
3265 | } | |
3266 | ||
3267 | void | |
3268 | task_importance_mark_denap_receiver(task_t task, boolean_t denap) | |
3269 | { | |
3270 | #if IMPORTANCE_INHERITANCE | |
3271 | ipc_importance_task_t task_imp; | |
3272 | ||
3273 | task_imp = ipc_importance_for_task(task, FALSE); | |
3274 | if (IIT_NULL != task_imp) { | |
3275 | ipc_importance_task_mark_denap_receiver(task_imp, denap); | |
3276 | ipc_importance_task_release(task_imp); | |
3277 | } | |
3278 | #endif /* IMPORTANCE_INHERITANCE */ | |
3279 | } | |
3280 | ||
3281 | void | |
3282 | task_importance_reset(__imp_only task_t task) | |
3283 | { | |
3284 | #if IMPORTANCE_INHERITANCE | |
3285 | ipc_importance_task_t task_imp; | |
3286 | ||
3287 | /* TODO: Lower importance downstream before disconnect */ | |
3288 | task_imp = task->task_imp_base; | |
3289 | ipc_importance_reset(task_imp, FALSE); | |
3290 | task_importance_update_live_donor(task); | |
3291 | #endif /* IMPORTANCE_INHERITANCE */ | |
3292 | } | |
3293 | ||
3294 | void | |
3295 | task_importance_init_from_parent(__imp_only task_t new_task, __imp_only task_t parent_task) | |
3296 | { | |
3297 | #if IMPORTANCE_INHERITANCE | |
3298 | ipc_importance_task_t new_task_imp = IIT_NULL; | |
3299 | ||
3300 | new_task->task_imp_base = NULL; | |
3301 | if (!parent_task) { | |
3302 | return; | |
3303 | } | |
3304 | ||
3305 | if (task_is_marked_importance_donor(parent_task)) { | |
3306 | new_task_imp = ipc_importance_for_task(new_task, FALSE); | |
3307 | assert(IIT_NULL != new_task_imp); | |
3308 | ipc_importance_task_mark_donor(new_task_imp, TRUE); | |
3309 | } | |
3310 | if (task_is_marked_live_importance_donor(parent_task)) { | |
3311 | if (IIT_NULL == new_task_imp) { | |
3312 | new_task_imp = ipc_importance_for_task(new_task, FALSE); | |
3313 | } | |
3314 | assert(IIT_NULL != new_task_imp); | |
3315 | ipc_importance_task_mark_live_donor(new_task_imp, TRUE); | |
3316 | } | |
3317 | /* Do not inherit 'receiver' on fork, vfexec or true spawn */ | |
3318 | if (task_is_exec_copy(new_task) && | |
3319 | task_is_marked_importance_receiver(parent_task)) { | |
3320 | if (IIT_NULL == new_task_imp) { | |
3321 | new_task_imp = ipc_importance_for_task(new_task, FALSE); | |
3322 | } | |
3323 | assert(IIT_NULL != new_task_imp); | |
3324 | ipc_importance_task_mark_receiver(new_task_imp, TRUE); | |
3325 | } | |
3326 | if (task_is_marked_importance_denap_receiver(parent_task)) { | |
3327 | if (IIT_NULL == new_task_imp) { | |
3328 | new_task_imp = ipc_importance_for_task(new_task, FALSE); | |
3329 | } | |
3330 | assert(IIT_NULL != new_task_imp); | |
3331 | ipc_importance_task_mark_denap_receiver(new_task_imp, TRUE); | |
3332 | } | |
3333 | if (IIT_NULL != new_task_imp) { | |
3334 | assert(new_task->task_imp_base == new_task_imp); | |
3335 | ipc_importance_task_release(new_task_imp); | |
3336 | } | |
3337 | #endif /* IMPORTANCE_INHERITANCE */ | |
3338 | } | |
3339 | ||
3340 | #if IMPORTANCE_INHERITANCE | |
3341 | /* | |
3342 | * Sets the task boost bit to the provided value. Does NOT run the update function. | |
3343 | * | |
3344 | * Task lock must be held. | |
3345 | */ | |
3346 | static void | |
3347 | task_set_boost_locked(task_t task, boolean_t boost_active) | |
3348 | { | |
3349 | #if IMPORTANCE_TRACE | |
3350 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_START), | |
3351 | proc_selfpid(), task_pid(task), trequested_0(task), trequested_1(task), 0); | |
3352 | #endif /* IMPORTANCE_TRACE */ | |
3353 | ||
3354 | task->requested_policy.trp_boosted = boost_active; | |
3355 | ||
3356 | #if IMPORTANCE_TRACE | |
3357 | if (boost_active == TRUE) { | |
3358 | DTRACE_BOOST2(boost, task_t, task, int, task_pid(task)); | |
3359 | } else { | |
3360 | DTRACE_BOOST2(unboost, task_t, task, int, task_pid(task)); | |
3361 | } | |
3362 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_END), | |
3363 | proc_selfpid(), task_pid(task), | |
3364 | trequested_0(task), trequested_1(task), 0); | |
3365 | #endif /* IMPORTANCE_TRACE */ | |
3366 | } | |
3367 | ||
3368 | /* | |
3369 | * Sets the task boost bit to the provided value and applies the update. | |
3370 | * | |
3371 | * Task lock must be held. Must call update complete after unlocking the task. | |
3372 | */ | |
3373 | void | |
3374 | task_update_boost_locked(task_t task, boolean_t boost_active, task_pend_token_t pend_token) | |
3375 | { | |
3376 | task_set_boost_locked(task, boost_active); | |
3377 | ||
3378 | task_policy_update_locked(task, pend_token); | |
3379 | } | |
3380 | ||
3381 | /* | |
3382 | * Check if this task should donate importance. | |
3383 | * | |
3384 | * May be called without taking the task lock. In that case, donor status can change | |
3385 | * so you must check only once for each donation event. | |
3386 | */ | |
3387 | boolean_t | |
3388 | task_is_importance_donor(task_t task) | |
3389 | { | |
3390 | if (task->task_imp_base == IIT_NULL) { | |
3391 | return FALSE; | |
3392 | } | |
3393 | return ipc_importance_task_is_donor(task->task_imp_base); | |
3394 | } | |
3395 | ||
3396 | /* | |
3397 | * Query the status of the task's donor mark. | |
3398 | */ | |
3399 | boolean_t | |
3400 | task_is_marked_importance_donor(task_t task) | |
3401 | { | |
3402 | if (task->task_imp_base == IIT_NULL) { | |
3403 | return FALSE; | |
3404 | } | |
3405 | return ipc_importance_task_is_marked_donor(task->task_imp_base); | |
3406 | } | |
3407 | ||
3408 | /* | |
3409 | * Query the status of the task's live donor and donor mark. | |
3410 | */ | |
3411 | boolean_t | |
3412 | task_is_marked_live_importance_donor(task_t task) | |
3413 | { | |
3414 | if (task->task_imp_base == IIT_NULL) { | |
3415 | return FALSE; | |
3416 | } | |
3417 | return ipc_importance_task_is_marked_live_donor(task->task_imp_base); | |
3418 | } | |
3419 | ||
3420 | ||
3421 | /* | |
3422 | * This routine may be called without holding task lock | |
3423 | * since the value of imp_receiver can never be unset. | |
3424 | */ | |
3425 | boolean_t | |
3426 | task_is_importance_receiver(task_t task) | |
3427 | { | |
3428 | if (task->task_imp_base == IIT_NULL) { | |
3429 | return FALSE; | |
3430 | } | |
3431 | return ipc_importance_task_is_marked_receiver(task->task_imp_base); | |
3432 | } | |
3433 | ||
3434 | /* | |
3435 | * Query the task's receiver mark. | |
3436 | */ | |
3437 | boolean_t | |
3438 | task_is_marked_importance_receiver(task_t task) | |
3439 | { | |
3440 | if (task->task_imp_base == IIT_NULL) { | |
3441 | return FALSE; | |
3442 | } | |
3443 | return ipc_importance_task_is_marked_receiver(task->task_imp_base); | |
3444 | } | |
3445 | ||
3446 | /* | |
3447 | * This routine may be called without holding task lock | |
3448 | * since the value of de-nap receiver can never be unset. | |
3449 | */ | |
3450 | boolean_t | |
3451 | task_is_importance_denap_receiver(task_t task) | |
3452 | { | |
3453 | if (task->task_imp_base == IIT_NULL) { | |
3454 | return FALSE; | |
3455 | } | |
3456 | return ipc_importance_task_is_denap_receiver(task->task_imp_base); | |
3457 | } | |
3458 | ||
3459 | /* | |
3460 | * Query the task's de-nap receiver mark. | |
3461 | */ | |
3462 | boolean_t | |
3463 | task_is_marked_importance_denap_receiver(task_t task) | |
3464 | { | |
3465 | if (task->task_imp_base == IIT_NULL) { | |
3466 | return FALSE; | |
3467 | } | |
3468 | return ipc_importance_task_is_marked_denap_receiver(task->task_imp_base); | |
3469 | } | |
3470 | ||
3471 | /* | |
3472 | * This routine may be called without holding task lock | |
3473 | * since the value of imp_receiver can never be unset. | |
3474 | */ | |
3475 | boolean_t | |
3476 | task_is_importance_receiver_type(task_t task) | |
3477 | { | |
3478 | if (task->task_imp_base == IIT_NULL) { | |
3479 | return FALSE; | |
3480 | } | |
3481 | return task_is_importance_receiver(task) || | |
3482 | task_is_importance_denap_receiver(task); | |
3483 | } | |
3484 | ||
3485 | /* | |
3486 | * External importance assertions are managed by the process in userspace | |
3487 | * Internal importance assertions are the responsibility of the kernel | |
3488 | * Assertions are changed from internal to external via task_importance_externalize_assertion | |
3489 | */ | |
3490 | ||
3491 | int | |
3492 | task_importance_hold_internal_assertion(task_t target_task, uint32_t count) | |
3493 | { | |
3494 | ipc_importance_task_t task_imp; | |
3495 | kern_return_t ret; | |
3496 | ||
3497 | /* may be first time, so allow for possible importance setup */ | |
3498 | task_imp = ipc_importance_for_task(target_task, FALSE); | |
3499 | if (IIT_NULL == task_imp) { | |
3500 | return EOVERFLOW; | |
3501 | } | |
3502 | ret = ipc_importance_task_hold_internal_assertion(task_imp, count); | |
3503 | ipc_importance_task_release(task_imp); | |
3504 | ||
3505 | return (KERN_SUCCESS != ret) ? ENOTSUP : 0; | |
3506 | } | |
3507 | ||
3508 | int | |
3509 | task_importance_hold_file_lock_assertion(task_t target_task, uint32_t count) | |
3510 | { | |
3511 | ipc_importance_task_t task_imp; | |
3512 | kern_return_t ret; | |
3513 | ||
3514 | /* may be first time, so allow for possible importance setup */ | |
3515 | task_imp = ipc_importance_for_task(target_task, FALSE); | |
3516 | if (IIT_NULL == task_imp) { | |
3517 | return EOVERFLOW; | |
3518 | } | |
3519 | ret = ipc_importance_task_hold_file_lock_assertion(task_imp, count); | |
3520 | ipc_importance_task_release(task_imp); | |
3521 | ||
3522 | return (KERN_SUCCESS != ret) ? ENOTSUP : 0; | |
3523 | } | |
3524 | ||
3525 | int | |
3526 | task_importance_hold_legacy_external_assertion(task_t target_task, uint32_t count) | |
3527 | { | |
3528 | ipc_importance_task_t task_imp; | |
3529 | kern_return_t ret; | |
3530 | ||
3531 | /* must already have set up an importance */ | |
3532 | task_imp = target_task->task_imp_base; | |
3533 | if (IIT_NULL == task_imp) { | |
3534 | return EOVERFLOW; | |
3535 | } | |
3536 | ret = ipc_importance_task_hold_legacy_external_assertion(task_imp, count); | |
3537 | return (KERN_SUCCESS != ret) ? ENOTSUP : 0; | |
3538 | } | |
3539 | ||
3540 | int | |
3541 | task_importance_drop_file_lock_assertion(task_t target_task, uint32_t count) | |
3542 | { | |
3543 | ipc_importance_task_t task_imp; | |
3544 | kern_return_t ret; | |
3545 | ||
3546 | /* must already have set up an importance */ | |
3547 | task_imp = target_task->task_imp_base; | |
3548 | if (IIT_NULL == task_imp) { | |
3549 | return EOVERFLOW; | |
3550 | } | |
3551 | ret = ipc_importance_task_drop_file_lock_assertion(target_task->task_imp_base, count); | |
3552 | return (KERN_SUCCESS != ret) ? EOVERFLOW : 0; | |
3553 | } | |
3554 | ||
3555 | int | |
3556 | task_importance_drop_legacy_external_assertion(task_t target_task, uint32_t count) | |
3557 | { | |
3558 | ipc_importance_task_t task_imp; | |
3559 | kern_return_t ret; | |
3560 | ||
3561 | /* must already have set up an importance */ | |
3562 | task_imp = target_task->task_imp_base; | |
3563 | if (IIT_NULL == task_imp) { | |
3564 | return EOVERFLOW; | |
3565 | } | |
3566 | ret = ipc_importance_task_drop_legacy_external_assertion(task_imp, count); | |
3567 | return (KERN_SUCCESS != ret) ? EOVERFLOW : 0; | |
3568 | } | |
3569 | ||
3570 | static void | |
3571 | task_add_importance_watchport(task_t task, mach_port_t port, int *boostp) | |
3572 | { | |
3573 | int boost = 0; | |
3574 | ||
3575 | __imptrace_only int released_pid = 0; | |
3576 | __imptrace_only int pid = task_pid(task); | |
3577 | ||
3578 | ipc_importance_task_t release_imp_task = IIT_NULL; | |
3579 | ||
3580 | if (IP_VALID(port) != 0) { | |
3581 | ipc_importance_task_t new_imp_task = ipc_importance_for_task(task, FALSE); | |
3582 | ||
3583 | ip_lock(port); | |
3584 | ||
3585 | /* | |
3586 | * The port must have been marked tempowner already. | |
3587 | * This also filters out ports whose receive rights | |
3588 | * are already enqueued in a message, as you can't | |
3589 | * change the right's destination once it's already | |
3590 | * on its way. | |
3591 | */ | |
3592 | if (port->ip_tempowner != 0) { | |
3593 | assert(port->ip_impdonation != 0); | |
3594 | ||
3595 | boost = port->ip_impcount; | |
3596 | if (IIT_NULL != port->ip_imp_task) { | |
3597 | /* | |
3598 | * if this port is already bound to a task, | |
3599 | * release the task reference and drop any | |
3600 | * watchport-forwarded boosts | |
3601 | */ | |
3602 | release_imp_task = port->ip_imp_task; | |
3603 | port->ip_imp_task = IIT_NULL; | |
3604 | } | |
3605 | ||
3606 | /* mark the port is watching another task (reference held in port->ip_imp_task) */ | |
3607 | if (ipc_importance_task_is_marked_receiver(new_imp_task)) { | |
3608 | port->ip_imp_task = new_imp_task; | |
3609 | new_imp_task = IIT_NULL; | |
3610 | } | |
3611 | } | |
3612 | ip_unlock(port); | |
3613 | ||
3614 | if (IIT_NULL != new_imp_task) { | |
3615 | ipc_importance_task_release(new_imp_task); | |
3616 | } | |
3617 | ||
3618 | if (IIT_NULL != release_imp_task) { | |
3619 | if (boost > 0) { | |
3620 | ipc_importance_task_drop_internal_assertion(release_imp_task, boost); | |
3621 | } | |
3622 | ||
3623 | // released_pid = task_pid(release_imp_task); /* TODO: Need ref-safe way to get pid */ | |
3624 | ipc_importance_task_release(release_imp_task); | |
3625 | } | |
3626 | #if IMPORTANCE_TRACE | |
3627 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_WATCHPORT, 0)) | DBG_FUNC_NONE, | |
3628 | proc_selfpid(), pid, boost, released_pid, 0); | |
3629 | #endif /* IMPORTANCE_TRACE */ | |
3630 | } | |
3631 | ||
3632 | *boostp = boost; | |
3633 | return; | |
3634 | } | |
3635 | ||
3636 | #endif /* IMPORTANCE_INHERITANCE */ | |
3637 | ||
3638 | /* | |
3639 | * Routines for VM to query task importance | |
3640 | */ | |
3641 | ||
3642 | ||
3643 | /* | |
3644 | * Order to be considered while estimating importance | |
3645 | * for low memory notification and purging purgeable memory. | |
3646 | */ | |
3647 | #define TASK_IMPORTANCE_FOREGROUND 4 | |
3648 | #define TASK_IMPORTANCE_NOTDARWINBG 1 | |
3649 | ||
3650 | ||
3651 | /* | |
3652 | * (Un)Mark the task as a privileged listener for memory notifications. | |
3653 | * if marked, this task will be among the first to be notified amongst | |
3654 | * the bulk of all other tasks when the system enters a pressure level | |
3655 | * of interest to this task. | |
3656 | */ | |
3657 | int | |
3658 | task_low_mem_privileged_listener(task_t task, boolean_t new_value, boolean_t *old_value) | |
3659 | { | |
3660 | if (old_value != NULL) { | |
3661 | *old_value = (boolean_t)task->low_mem_privileged_listener; | |
3662 | } else { | |
3663 | task_lock(task); | |
3664 | task->low_mem_privileged_listener = (uint32_t)new_value; | |
3665 | task_unlock(task); | |
3666 | } | |
3667 | ||
3668 | return 0; | |
3669 | } | |
3670 | ||
3671 | /* | |
3672 | * Checks if the task is already notified. | |
3673 | * | |
3674 | * Condition: task lock should be held while calling this function. | |
3675 | */ | |
3676 | boolean_t | |
3677 | task_has_been_notified(task_t task, int pressurelevel) | |
3678 | { | |
3679 | if (task == NULL) { | |
3680 | return FALSE; | |
3681 | } | |
3682 | ||
3683 | if (pressurelevel == kVMPressureWarning) { | |
3684 | return task->low_mem_notified_warn ? TRUE : FALSE; | |
3685 | } else if (pressurelevel == kVMPressureCritical) { | |
3686 | return task->low_mem_notified_critical ? TRUE : FALSE; | |
3687 | } else { | |
3688 | return TRUE; | |
3689 | } | |
3690 | } | |
3691 | ||
3692 | ||
3693 | /* | |
3694 | * Checks if the task is used for purging. | |
3695 | * | |
3696 | * Condition: task lock should be held while calling this function. | |
3697 | */ | |
3698 | boolean_t | |
3699 | task_used_for_purging(task_t task, int pressurelevel) | |
3700 | { | |
3701 | if (task == NULL) { | |
3702 | return FALSE; | |
3703 | } | |
3704 | ||
3705 | if (pressurelevel == kVMPressureWarning) { | |
3706 | return task->purged_memory_warn ? TRUE : FALSE; | |
3707 | } else if (pressurelevel == kVMPressureCritical) { | |
3708 | return task->purged_memory_critical ? TRUE : FALSE; | |
3709 | } else { | |
3710 | return TRUE; | |
3711 | } | |
3712 | } | |
3713 | ||
3714 | ||
3715 | /* | |
3716 | * Mark the task as notified with memory notification. | |
3717 | * | |
3718 | * Condition: task lock should be held while calling this function. | |
3719 | */ | |
3720 | void | |
3721 | task_mark_has_been_notified(task_t task, int pressurelevel) | |
3722 | { | |
3723 | if (task == NULL) { | |
3724 | return; | |
3725 | } | |
3726 | ||
3727 | if (pressurelevel == kVMPressureWarning) { | |
3728 | task->low_mem_notified_warn = 1; | |
3729 | } else if (pressurelevel == kVMPressureCritical) { | |
3730 | task->low_mem_notified_critical = 1; | |
3731 | } | |
3732 | } | |
3733 | ||
3734 | ||
3735 | /* | |
3736 | * Mark the task as purged. | |
3737 | * | |
3738 | * Condition: task lock should be held while calling this function. | |
3739 | */ | |
3740 | void | |
3741 | task_mark_used_for_purging(task_t task, int pressurelevel) | |
3742 | { | |
3743 | if (task == NULL) { | |
3744 | return; | |
3745 | } | |
3746 | ||
3747 | if (pressurelevel == kVMPressureWarning) { | |
3748 | task->purged_memory_warn = 1; | |
3749 | } else if (pressurelevel == kVMPressureCritical) { | |
3750 | task->purged_memory_critical = 1; | |
3751 | } | |
3752 | } | |
3753 | ||
3754 | ||
3755 | /* | |
3756 | * Mark the task eligible for low memory notification. | |
3757 | * | |
3758 | * Condition: task lock should be held while calling this function. | |
3759 | */ | |
3760 | void | |
3761 | task_clear_has_been_notified(task_t task, int pressurelevel) | |
3762 | { | |
3763 | if (task == NULL) { | |
3764 | return; | |
3765 | } | |
3766 | ||
3767 | if (pressurelevel == kVMPressureWarning) { | |
3768 | task->low_mem_notified_warn = 0; | |
3769 | } else if (pressurelevel == kVMPressureCritical) { | |
3770 | task->low_mem_notified_critical = 0; | |
3771 | } | |
3772 | } | |
3773 | ||
3774 | ||
3775 | /* | |
3776 | * Mark the task eligible for purging its purgeable memory. | |
3777 | * | |
3778 | * Condition: task lock should be held while calling this function. | |
3779 | */ | |
3780 | void | |
3781 | task_clear_used_for_purging(task_t task) | |
3782 | { | |
3783 | if (task == NULL) { | |
3784 | return; | |
3785 | } | |
3786 | ||
3787 | task->purged_memory_warn = 0; | |
3788 | task->purged_memory_critical = 0; | |
3789 | } | |
3790 | ||
3791 | ||
3792 | /* | |
3793 | * Estimate task importance for purging its purgeable memory | |
3794 | * and low memory notification. | |
3795 | * | |
3796 | * Importance is calculated in the following order of criteria: | |
3797 | * -Task role : Background vs Foreground | |
3798 | * -Boost status: Not boosted vs Boosted | |
3799 | * -Darwin BG status. | |
3800 | * | |
3801 | * Returns: Estimated task importance. Less important task will have lower | |
3802 | * estimated importance. | |
3803 | */ | |
3804 | int | |
3805 | task_importance_estimate(task_t task) | |
3806 | { | |
3807 | int task_importance = 0; | |
3808 | ||
3809 | if (task == NULL) { | |
3810 | return 0; | |
3811 | } | |
3812 | ||
3813 | if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION) { | |
3814 | task_importance += TASK_IMPORTANCE_FOREGROUND; | |
3815 | } | |
3816 | ||
3817 | if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG) == 0) { | |
3818 | task_importance += TASK_IMPORTANCE_NOTDARWINBG; | |
3819 | } | |
3820 | ||
3821 | return task_importance; | |
3822 | } | |
3823 | ||
3824 | boolean_t | |
3825 | task_has_assertions(task_t task) | |
3826 | { | |
3827 | return task->task_imp_base->iit_assertcnt? TRUE : FALSE; | |
3828 | } | |
3829 | ||
3830 | ||
3831 | kern_return_t | |
3832 | send_resource_violation(typeof(send_cpu_usage_violation) sendfunc, | |
3833 | task_t violator, | |
3834 | struct ledger_entry_info *linfo, | |
3835 | resource_notify_flags_t flags) | |
3836 | { | |
3837 | #ifndef MACH_BSD | |
3838 | return KERN_NOT_SUPPORTED; | |
3839 | #else | |
3840 | kern_return_t kr = KERN_SUCCESS; | |
3841 | proc_t proc = NULL; | |
3842 | posix_path_t proc_path = ""; | |
3843 | proc_name_t procname = "<unknown>"; | |
3844 | int pid = -1; | |
3845 | clock_sec_t secs; | |
3846 | clock_nsec_t nsecs; | |
3847 | mach_timespec_t timestamp; | |
3848 | thread_t curthread = current_thread(); | |
3849 | ipc_port_t dstport = MACH_PORT_NULL; | |
3850 | ||
3851 | if (!violator) { | |
3852 | kr = KERN_INVALID_ARGUMENT; goto finish; | |
3853 | } | |
3854 | ||
3855 | /* extract violator information */ | |
3856 | task_lock(violator); | |
3857 | if (!(proc = get_bsdtask_info(violator))) { | |
3858 | task_unlock(violator); | |
3859 | kr = KERN_INVALID_ARGUMENT; goto finish; | |
3860 | } | |
3861 | (void)mig_strncpy(procname, proc_best_name(proc), sizeof(procname)); | |
3862 | pid = task_pid(violator); | |
3863 | if (flags & kRNFatalLimitFlag) { | |
3864 | kr = proc_pidpathinfo_internal(proc, 0, proc_path, | |
3865 | sizeof(proc_path), NULL); | |
3866 | } | |
3867 | task_unlock(violator); | |
3868 | if (kr) { | |
3869 | goto finish; | |
3870 | } | |
3871 | ||
3872 | /* violation time ~ now */ | |
3873 | clock_get_calendar_nanotime(&secs, &nsecs); | |
3874 | timestamp.tv_sec = (int32_t)secs; | |
3875 | timestamp.tv_nsec = (int32_t)nsecs; | |
3876 | /* 25567702 tracks widening mach_timespec_t */ | |
3877 | ||
3878 | /* send message */ | |
3879 | kr = host_get_special_port(host_priv_self(), HOST_LOCAL_NODE, | |
3880 | HOST_RESOURCE_NOTIFY_PORT, &dstport); | |
3881 | if (kr) { | |
3882 | goto finish; | |
3883 | } | |
3884 | ||
3885 | thread_set_honor_qlimit(curthread); | |
3886 | kr = sendfunc(dstport, | |
3887 | procname, pid, proc_path, timestamp, | |
3888 | linfo->lei_balance, linfo->lei_last_refill, | |
3889 | linfo->lei_limit, linfo->lei_refill_period, | |
3890 | flags); | |
3891 | thread_clear_honor_qlimit(curthread); | |
3892 | ||
3893 | ipc_port_release_send(dstport); | |
3894 | ||
3895 | finish: | |
3896 | return kr; | |
3897 | #endif /* MACH_BSD */ | |
3898 | } | |
3899 | ||
3900 | ||
3901 | /* | |
3902 | * Resource violations trace four 64-bit integers. For K32, two additional | |
3903 | * codes are allocated, the first with the low nibble doubled. So if the K64 | |
3904 | * code is 0x042, the K32 codes would be 0x044 and 0x45. | |
3905 | */ | |
3906 | #ifdef __LP64__ | |
3907 | void | |
3908 | trace_resource_violation(uint16_t code, | |
3909 | struct ledger_entry_info *linfo) | |
3910 | { | |
3911 | KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, code), | |
3912 | linfo->lei_balance, linfo->lei_last_refill, | |
3913 | linfo->lei_limit, linfo->lei_refill_period); | |
3914 | } | |
3915 | #else /* K32 */ | |
3916 | /* TODO: create/find a trace_two_LLs() for K32 systems */ | |
3917 | #define MASK32 0xffffffff | |
3918 | void | |
3919 | trace_resource_violation(uint16_t code, | |
3920 | struct ledger_entry_info *linfo) | |
3921 | { | |
3922 | int8_t lownibble = (code & 0x3) * 2; | |
3923 | int16_t codeA = (code & 0xffc) | lownibble; | |
3924 | int16_t codeB = codeA + 1; | |
3925 | ||
3926 | int32_t balance_high = (linfo->lei_balance >> 32) & MASK32; | |
3927 | int32_t balance_low = linfo->lei_balance & MASK32; | |
3928 | int32_t last_refill_high = (linfo->lei_last_refill >> 32) & MASK32; | |
3929 | int32_t last_refill_low = linfo->lei_last_refill & MASK32; | |
3930 | ||
3931 | int32_t limit_high = (linfo->lei_limit >> 32) & MASK32; | |
3932 | int32_t limit_low = linfo->lei_limit & MASK32; | |
3933 | int32_t refill_period_high = (linfo->lei_refill_period >> 32) & MASK32; | |
3934 | int32_t refill_period_low = linfo->lei_refill_period & MASK32; | |
3935 | ||
3936 | KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, codeA), | |
3937 | balance_high, balance_low, | |
3938 | last_refill_high, last_refill_low); | |
3939 | KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, codeB), | |
3940 | limit_high, limit_low, | |
3941 | refill_period_high, refill_period_low); | |
3942 | } | |
3943 | #endif /* K64/K32 */ |