]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <mach/mach_types.h> | |
29 | #include <kern/assert.h> | |
30 | #include <kern/clock.h> | |
31 | #include <kern/coalition.h> | |
32 | #include <kern/debug.h> | |
33 | #include <kern/startup.h> | |
34 | #include <kern/host.h> | |
35 | #include <kern/kern_types.h> | |
36 | #include <kern/machine.h> | |
37 | #include <kern/simple_lock.h> | |
38 | #include <kern/misc_protos.h> | |
39 | #include <kern/sched.h> | |
40 | #include <kern/sched_prim.h> | |
41 | #include <kern/sfi.h> | |
42 | #include <kern/timer_call.h> | |
43 | #include <kern/waitq.h> | |
44 | #include <kern/ledger.h> | |
45 | #include <kern/policy_internal.h> | |
46 | ||
47 | #include <machine/atomic.h> | |
48 | ||
49 | #include <pexpert/pexpert.h> | |
50 | ||
51 | #include <libkern/kernel_mach_header.h> | |
52 | ||
53 | #include <sys/kdebug.h> | |
54 | ||
55 | #if CONFIG_SCHED_SFI | |
56 | ||
57 | #define SFI_DEBUG 0 | |
58 | ||
59 | #if SFI_DEBUG | |
60 | #define dprintf(...) kprintf(__VA_ARGS__) | |
61 | #else | |
62 | #define dprintf(...) do { } while(0) | |
63 | #endif | |
64 | ||
65 | /* | |
66 | * SFI (Selective Forced Idle) operates by enabling a global | |
67 | * timer on the SFI window interval. When it fires, all processors | |
68 | * running a thread that should be SFI-ed are sent an AST. | |
69 | * As threads become runnable while in their "off phase", they | |
70 | * are placed on a deferred ready queue. When a per-class | |
71 | * "on timer" fires, the ready threads for that class are | |
72 | * re-enqueued for running. As an optimization to avoid spurious | |
73 | * wakeups, the timer may be lazily programmed. | |
74 | */ | |
75 | ||
76 | /* | |
77 | * The "sfi_lock" simple lock guards access to static configuration | |
78 | * parameters (as specified by userspace), dynamic state changes | |
79 | * (as updated by the timer event routine), and timer data structures. | |
80 | * Since it can be taken with interrupts disabled in some cases, all | |
81 | * uses should be taken with interrupts disabled at splsched(). The | |
82 | * "sfi_lock" also guards the "sfi_wait_class" field of thread_t, and | |
83 | * must only be accessed with it held. | |
84 | * | |
85 | * When an "on timer" fires, we must deterministically be able to drain | |
86 | * the wait queue, since if any threads are added to the queue afterwards, | |
87 | * they may never get woken out of SFI wait. So sfi_lock must be | |
88 | * taken before the wait queue's own spinlock. | |
89 | * | |
90 | * The wait queue will take the thread's scheduling lock. We may also take | |
91 | * the thread_lock directly to update the "sfi_class" field and determine | |
92 | * if the thread should block in the wait queue, but the lock will be | |
93 | * released before doing so. | |
94 | * | |
95 | * The pset lock may also be taken, but not while any other locks are held. | |
96 | * | |
97 | * The task and thread mutex may also be held while reevaluating sfi state. | |
98 | * | |
99 | * splsched ---> sfi_lock ---> waitq ---> thread_lock | |
100 | * \ \ \__ thread_lock (*) | |
101 | * \ \__ pset_lock | |
102 | * \ | |
103 | * \__ thread_lock | |
104 | */ | |
105 | ||
106 | decl_simple_lock_data(static, sfi_lock); | |
107 | static timer_call_data_t sfi_timer_call_entry; | |
108 | volatile boolean_t sfi_is_enabled; | |
109 | ||
110 | boolean_t sfi_window_is_set; | |
111 | uint64_t sfi_window_usecs; | |
112 | uint64_t sfi_window_interval; | |
113 | uint64_t sfi_next_off_deadline; | |
114 | ||
115 | typedef struct { | |
116 | sfi_class_id_t class_id; | |
117 | thread_continue_t class_continuation; | |
118 | const char * class_name; | |
119 | const char * class_ledger_name; | |
120 | } sfi_class_registration_t; | |
121 | ||
122 | /* | |
123 | * To add a new SFI class: | |
124 | * | |
125 | * 1) Raise MAX_SFI_CLASS_ID in mach/sfi_class.h | |
126 | * 2) Add a #define for it to mach/sfi_class.h. It need not be inserted in order of restrictiveness. | |
127 | * 3) Add a call to SFI_CLASS_REGISTER below | |
128 | * 4) Augment sfi_thread_classify to categorize threads as early as possible for as restrictive as possible. | |
129 | * 5) Modify thermald to use the SFI class | |
130 | */ | |
131 | ||
132 | static inline void _sfi_wait_cleanup(void); | |
133 | ||
134 | static void sfi_class_register(sfi_class_registration_t *); | |
135 | ||
136 | #define SFI_CLASS_REGISTER(clsid, ledger_name) \ | |
137 | \ | |
138 | static void __attribute__((noinline, noreturn)) \ | |
139 | SFI_ ## clsid ## _THREAD_IS_WAITING(void *arg __unused, wait_result_t wret __unused) \ | |
140 | { \ | |
141 | _sfi_wait_cleanup(); \ | |
142 | thread_exception_return(); \ | |
143 | } \ | |
144 | \ | |
145 | static_assert(SFI_CLASS_ ## clsid < MAX_SFI_CLASS_ID, "Invalid ID"); \ | |
146 | \ | |
147 | static __startup_data sfi_class_registration_t \ | |
148 | SFI_ ## clsid ## _registration = { \ | |
149 | .class_id = SFI_CLASS_ ## clsid, \ | |
150 | .class_continuation = SFI_ ## clsid ## _THREAD_IS_WAITING, \ | |
151 | .class_name = "SFI_CLASS_" # clsid, \ | |
152 | .class_ledger_name = "SFI_CLASS_" # ledger_name, \ | |
153 | }; \ | |
154 | STARTUP_ARG(TUNABLES, STARTUP_RANK_MIDDLE, \ | |
155 | sfi_class_register, &SFI_ ## clsid ## _registration) | |
156 | ||
157 | /* SFI_CLASS_UNSPECIFIED not included here */ | |
158 | SFI_CLASS_REGISTER(MAINTENANCE, MAINTENANCE); | |
159 | SFI_CLASS_REGISTER(DARWIN_BG, DARWIN_BG); | |
160 | SFI_CLASS_REGISTER(APP_NAP, APP_NAP); | |
161 | SFI_CLASS_REGISTER(MANAGED_FOCAL, MANAGED); | |
162 | SFI_CLASS_REGISTER(MANAGED_NONFOCAL, MANAGED); | |
163 | SFI_CLASS_REGISTER(UTILITY, UTILITY); | |
164 | SFI_CLASS_REGISTER(DEFAULT_FOCAL, DEFAULT); | |
165 | SFI_CLASS_REGISTER(DEFAULT_NONFOCAL, DEFAULT); | |
166 | SFI_CLASS_REGISTER(LEGACY_FOCAL, LEGACY); | |
167 | SFI_CLASS_REGISTER(LEGACY_NONFOCAL, LEGACY); | |
168 | SFI_CLASS_REGISTER(USER_INITIATED_FOCAL, USER_INITIATED); | |
169 | SFI_CLASS_REGISTER(USER_INITIATED_NONFOCAL, USER_INITIATED); | |
170 | SFI_CLASS_REGISTER(USER_INTERACTIVE_FOCAL, USER_INTERACTIVE); | |
171 | SFI_CLASS_REGISTER(USER_INTERACTIVE_NONFOCAL, USER_INTERACTIVE); | |
172 | SFI_CLASS_REGISTER(KERNEL, OPTED_OUT); | |
173 | SFI_CLASS_REGISTER(OPTED_OUT, OPTED_OUT); | |
174 | ||
175 | struct sfi_class_state { | |
176 | uint64_t off_time_usecs; | |
177 | uint64_t off_time_interval; | |
178 | ||
179 | timer_call_data_t on_timer; | |
180 | uint64_t on_timer_deadline; | |
181 | boolean_t on_timer_programmed; | |
182 | ||
183 | boolean_t class_sfi_is_enabled; | |
184 | volatile boolean_t class_in_on_phase; | |
185 | ||
186 | struct waitq waitq; /* threads in ready state */ | |
187 | thread_continue_t continuation; | |
188 | ||
189 | const char * class_name; | |
190 | const char * class_ledger_name; | |
191 | }; | |
192 | ||
193 | /* Static configuration performed in sfi_early_init() */ | |
194 | struct sfi_class_state sfi_classes[MAX_SFI_CLASS_ID]; | |
195 | ||
196 | int sfi_enabled_class_count; // protected by sfi_lock and used atomically | |
197 | ||
198 | static void sfi_timer_global_off( | |
199 | timer_call_param_t param0, | |
200 | timer_call_param_t param1); | |
201 | ||
202 | static void sfi_timer_per_class_on( | |
203 | timer_call_param_t param0, | |
204 | timer_call_param_t param1); | |
205 | ||
206 | /* Called early in boot, when kernel is single-threaded */ | |
207 | __startup_func | |
208 | static void | |
209 | sfi_class_register(sfi_class_registration_t *reg) | |
210 | { | |
211 | sfi_class_id_t class_id = reg->class_id; | |
212 | ||
213 | if (class_id >= MAX_SFI_CLASS_ID) { | |
214 | panic("Invalid SFI class 0x%x", class_id); | |
215 | } | |
216 | if (sfi_classes[class_id].continuation != NULL) { | |
217 | panic("Duplicate SFI registration for class 0x%x", class_id); | |
218 | } | |
219 | sfi_classes[class_id].class_sfi_is_enabled = FALSE; | |
220 | sfi_classes[class_id].class_in_on_phase = TRUE; | |
221 | sfi_classes[class_id].continuation = reg->class_continuation; | |
222 | sfi_classes[class_id].class_name = reg->class_name; | |
223 | sfi_classes[class_id].class_ledger_name = reg->class_ledger_name; | |
224 | } | |
225 | ||
226 | void | |
227 | sfi_init(void) | |
228 | { | |
229 | sfi_class_id_t i; | |
230 | kern_return_t kret; | |
231 | ||
232 | simple_lock_init(&sfi_lock, 0); | |
233 | timer_call_setup(&sfi_timer_call_entry, sfi_timer_global_off, NULL); | |
234 | sfi_window_is_set = FALSE; | |
235 | os_atomic_init(&sfi_enabled_class_count, 0); | |
236 | sfi_is_enabled = FALSE; | |
237 | ||
238 | for (i = 0; i < MAX_SFI_CLASS_ID; i++) { | |
239 | /* If the class was set up in sfi_early_init(), initialize remaining fields */ | |
240 | if (sfi_classes[i].continuation) { | |
241 | timer_call_setup(&sfi_classes[i].on_timer, sfi_timer_per_class_on, (void *)(uintptr_t)i); | |
242 | sfi_classes[i].on_timer_programmed = FALSE; | |
243 | ||
244 | kret = waitq_init(&sfi_classes[i].waitq, SYNC_POLICY_FIFO | SYNC_POLICY_DISABLE_IRQ); | |
245 | assert(kret == KERN_SUCCESS); | |
246 | } else { | |
247 | /* The only allowed gap is for SFI_CLASS_UNSPECIFIED */ | |
248 | if (i != SFI_CLASS_UNSPECIFIED) { | |
249 | panic("Gap in registered SFI classes"); | |
250 | } | |
251 | } | |
252 | } | |
253 | } | |
254 | ||
255 | /* Can be called before sfi_init() by task initialization, but after sfi_early_init() */ | |
256 | sfi_class_id_t | |
257 | sfi_get_ledger_alias_for_class(sfi_class_id_t class_id) | |
258 | { | |
259 | sfi_class_id_t i; | |
260 | const char *ledger_name = NULL; | |
261 | ||
262 | ledger_name = sfi_classes[class_id].class_ledger_name; | |
263 | ||
264 | /* Find the first class in the registration table with this ledger name */ | |
265 | if (ledger_name) { | |
266 | for (i = SFI_CLASS_UNSPECIFIED + 1; i < class_id; i++) { | |
267 | if (0 == strcmp(sfi_classes[i].class_ledger_name, ledger_name)) { | |
268 | dprintf("sfi_get_ledger_alias_for_class(0x%x) -> 0x%x\n", class_id, i); | |
269 | return i; | |
270 | } | |
271 | } | |
272 | ||
273 | /* This class is the primary one for the ledger, so there is no alias */ | |
274 | dprintf("sfi_get_ledger_alias_for_class(0x%x) -> 0x%x\n", class_id, SFI_CLASS_UNSPECIFIED); | |
275 | return SFI_CLASS_UNSPECIFIED; | |
276 | } | |
277 | ||
278 | /* We are permissive on SFI class lookup failures. In sfi_init(), we assert more */ | |
279 | return SFI_CLASS_UNSPECIFIED; | |
280 | } | |
281 | ||
282 | int | |
283 | sfi_ledger_entry_add(ledger_template_t template, sfi_class_id_t class_id) | |
284 | { | |
285 | const char *ledger_name = NULL; | |
286 | ||
287 | ledger_name = sfi_classes[class_id].class_ledger_name; | |
288 | ||
289 | dprintf("sfi_ledger_entry_add(%p, 0x%x) -> %s\n", template, class_id, ledger_name); | |
290 | return ledger_entry_add(template, ledger_name, "sfi", "MATUs"); | |
291 | } | |
292 | ||
293 | static void | |
294 | sfi_timer_global_off( | |
295 | timer_call_param_t param0 __unused, | |
296 | timer_call_param_t param1 __unused) | |
297 | { | |
298 | uint64_t now = mach_absolute_time(); | |
299 | sfi_class_id_t i; | |
300 | processor_set_t pset, nset; | |
301 | processor_t processor; | |
302 | uint32_t needs_cause_ast_mask = 0x0; | |
303 | spl_t s; | |
304 | ||
305 | s = splsched(); | |
306 | ||
307 | simple_lock(&sfi_lock, LCK_GRP_NULL); | |
308 | if (!sfi_is_enabled) { | |
309 | /* If SFI has been disabled, let all "on" timers drain naturally */ | |
310 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_OFF_TIMER) | DBG_FUNC_NONE, 1, 0, 0, 0, 0); | |
311 | ||
312 | simple_unlock(&sfi_lock); | |
313 | splx(s); | |
314 | return; | |
315 | } | |
316 | ||
317 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_OFF_TIMER) | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
318 | ||
319 | /* First set all configured classes into the off state, and program their "on" timer */ | |
320 | for (i = 0; i < MAX_SFI_CLASS_ID; i++) { | |
321 | if (sfi_classes[i].class_sfi_is_enabled) { | |
322 | uint64_t on_timer_deadline; | |
323 | ||
324 | sfi_classes[i].class_in_on_phase = FALSE; | |
325 | sfi_classes[i].on_timer_programmed = TRUE; | |
326 | ||
327 | /* Push out on-timer */ | |
328 | on_timer_deadline = now + sfi_classes[i].off_time_interval; | |
329 | sfi_classes[i].on_timer_deadline = on_timer_deadline; | |
330 | ||
331 | timer_call_enter1(&sfi_classes[i].on_timer, NULL, on_timer_deadline, TIMER_CALL_SYS_CRITICAL); | |
332 | } else { | |
333 | /* If this class no longer needs SFI, make sure the timer is cancelled */ | |
334 | sfi_classes[i].class_in_on_phase = TRUE; | |
335 | if (sfi_classes[i].on_timer_programmed) { | |
336 | sfi_classes[i].on_timer_programmed = FALSE; | |
337 | sfi_classes[i].on_timer_deadline = ~0ULL; | |
338 | timer_call_cancel(&sfi_classes[i].on_timer); | |
339 | } | |
340 | } | |
341 | } | |
342 | simple_unlock(&sfi_lock); | |
343 | ||
344 | /* Iterate over processors, call cause_ast_check() on ones running a thread that should be in an off phase */ | |
345 | processor = processor_list; | |
346 | pset = processor->processor_set; | |
347 | ||
348 | pset_lock(pset); | |
349 | ||
350 | do { | |
351 | nset = processor->processor_set; | |
352 | if (nset != pset) { | |
353 | pset_unlock(pset); | |
354 | pset = nset; | |
355 | pset_lock(pset); | |
356 | } | |
357 | ||
358 | /* "processor" and its pset are locked */ | |
359 | if (processor->state == PROCESSOR_RUNNING) { | |
360 | if (AST_NONE != sfi_processor_needs_ast(processor)) { | |
361 | needs_cause_ast_mask |= (1U << processor->cpu_id); | |
362 | } | |
363 | } | |
364 | } while ((processor = processor->processor_list) != NULL); | |
365 | ||
366 | pset_unlock(pset); | |
367 | ||
368 | for (int cpuid = lsb_first(needs_cause_ast_mask); cpuid >= 0; cpuid = lsb_next(needs_cause_ast_mask, cpuid)) { | |
369 | processor = processor_array[cpuid]; | |
370 | if (processor == current_processor()) { | |
371 | ast_on(AST_SFI); | |
372 | } else { | |
373 | cause_ast_check(processor); | |
374 | } | |
375 | } | |
376 | ||
377 | /* Re-arm timer if still enabled */ | |
378 | simple_lock(&sfi_lock, LCK_GRP_NULL); | |
379 | if (sfi_is_enabled) { | |
380 | clock_deadline_for_periodic_event(sfi_window_interval, | |
381 | now, | |
382 | &sfi_next_off_deadline); | |
383 | timer_call_enter1(&sfi_timer_call_entry, | |
384 | NULL, | |
385 | sfi_next_off_deadline, | |
386 | TIMER_CALL_SYS_CRITICAL); | |
387 | } | |
388 | ||
389 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_OFF_TIMER) | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
390 | ||
391 | simple_unlock(&sfi_lock); | |
392 | ||
393 | splx(s); | |
394 | } | |
395 | ||
396 | static void | |
397 | sfi_timer_per_class_on( | |
398 | timer_call_param_t param0, | |
399 | timer_call_param_t param1 __unused) | |
400 | { | |
401 | sfi_class_id_t sfi_class_id = (sfi_class_id_t)(uintptr_t)param0; | |
402 | struct sfi_class_state *sfi_class = &sfi_classes[sfi_class_id]; | |
403 | kern_return_t kret; | |
404 | spl_t s; | |
405 | ||
406 | s = splsched(); | |
407 | ||
408 | simple_lock(&sfi_lock, LCK_GRP_NULL); | |
409 | ||
410 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_ON_TIMER) | DBG_FUNC_START, sfi_class_id, 0, 0, 0, 0); | |
411 | ||
412 | /* | |
413 | * Any threads that may have accumulated in the ready queue for this class should get re-enqueued. | |
414 | * Since we have the sfi_lock held and have changed "class_in_on_phase", we expect | |
415 | * no new threads to be put on this wait queue until the global "off timer" has fired. | |
416 | */ | |
417 | ||
418 | sfi_class->class_in_on_phase = TRUE; | |
419 | sfi_class->on_timer_programmed = FALSE; | |
420 | ||
421 | kret = waitq_wakeup64_all(&sfi_class->waitq, | |
422 | CAST_EVENT64_T(sfi_class_id), | |
423 | THREAD_AWAKENED, WAITQ_ALL_PRIORITIES); | |
424 | assert(kret == KERN_SUCCESS || kret == KERN_NOT_WAITING); | |
425 | ||
426 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_ON_TIMER) | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
427 | ||
428 | simple_unlock(&sfi_lock); | |
429 | ||
430 | splx(s); | |
431 | } | |
432 | ||
433 | ||
434 | kern_return_t | |
435 | sfi_set_window(uint64_t window_usecs) | |
436 | { | |
437 | uint64_t interval, deadline; | |
438 | uint64_t now = mach_absolute_time(); | |
439 | sfi_class_id_t i; | |
440 | spl_t s; | |
441 | uint64_t largest_class_off_interval = 0; | |
442 | ||
443 | if (window_usecs < MIN_SFI_WINDOW_USEC) { | |
444 | window_usecs = MIN_SFI_WINDOW_USEC; | |
445 | } | |
446 | ||
447 | if (window_usecs > UINT32_MAX) { | |
448 | return KERN_INVALID_ARGUMENT; | |
449 | } | |
450 | ||
451 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_SET_WINDOW), window_usecs, 0, 0, 0, 0); | |
452 | ||
453 | clock_interval_to_absolutetime_interval((uint32_t)window_usecs, NSEC_PER_USEC, &interval); | |
454 | deadline = now + interval; | |
455 | ||
456 | s = splsched(); | |
457 | ||
458 | simple_lock(&sfi_lock, LCK_GRP_NULL); | |
459 | ||
460 | /* Check that we are not bringing in the SFI window smaller than any class */ | |
461 | for (i = 0; i < MAX_SFI_CLASS_ID; i++) { | |
462 | if (sfi_classes[i].class_sfi_is_enabled) { | |
463 | largest_class_off_interval = MAX(largest_class_off_interval, sfi_classes[i].off_time_interval); | |
464 | } | |
465 | } | |
466 | ||
467 | /* | |
468 | * Off window must be strictly greater than all enabled classes, | |
469 | * otherwise threads would build up on ready queue and never be able to run. | |
470 | */ | |
471 | if (interval <= largest_class_off_interval) { | |
472 | simple_unlock(&sfi_lock); | |
473 | splx(s); | |
474 | return KERN_INVALID_ARGUMENT; | |
475 | } | |
476 | ||
477 | /* | |
478 | * If the new "off" deadline is further out than the current programmed timer, | |
479 | * just let the current one expire (and the new cadence will be established thereafter). | |
480 | * If the new "off" deadline is nearer than the current one, bring it in, so we | |
481 | * can start the new behavior sooner. Note that this may cause the "off" timer to | |
482 | * fire before some of the class "on" timers have fired. | |
483 | */ | |
484 | sfi_window_usecs = window_usecs; | |
485 | sfi_window_interval = interval; | |
486 | sfi_window_is_set = TRUE; | |
487 | ||
488 | if (os_atomic_load(&sfi_enabled_class_count, relaxed) == 0) { | |
489 | /* Can't program timer yet */ | |
490 | } else if (!sfi_is_enabled) { | |
491 | sfi_is_enabled = TRUE; | |
492 | sfi_next_off_deadline = deadline; | |
493 | timer_call_enter1(&sfi_timer_call_entry, | |
494 | NULL, | |
495 | sfi_next_off_deadline, | |
496 | TIMER_CALL_SYS_CRITICAL); | |
497 | } else if (deadline >= sfi_next_off_deadline) { | |
498 | sfi_next_off_deadline = deadline; | |
499 | } else { | |
500 | sfi_next_off_deadline = deadline; | |
501 | timer_call_enter1(&sfi_timer_call_entry, | |
502 | NULL, | |
503 | sfi_next_off_deadline, | |
504 | TIMER_CALL_SYS_CRITICAL); | |
505 | } | |
506 | ||
507 | simple_unlock(&sfi_lock); | |
508 | splx(s); | |
509 | ||
510 | return KERN_SUCCESS; | |
511 | } | |
512 | ||
513 | kern_return_t | |
514 | sfi_window_cancel(void) | |
515 | { | |
516 | spl_t s; | |
517 | ||
518 | s = splsched(); | |
519 | ||
520 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_CANCEL_WINDOW), 0, 0, 0, 0, 0); | |
521 | ||
522 | /* Disable globals so that global "off-timer" is not re-armed */ | |
523 | simple_lock(&sfi_lock, LCK_GRP_NULL); | |
524 | sfi_window_is_set = FALSE; | |
525 | sfi_window_usecs = 0; | |
526 | sfi_window_interval = 0; | |
527 | sfi_next_off_deadline = 0; | |
528 | sfi_is_enabled = FALSE; | |
529 | simple_unlock(&sfi_lock); | |
530 | ||
531 | splx(s); | |
532 | ||
533 | return KERN_SUCCESS; | |
534 | } | |
535 | ||
536 | /* Defers SFI off and per-class on timers (if live) by the specified interval | |
537 | * in Mach Absolute Time Units. Currently invoked to align with the global | |
538 | * forced idle mechanism. Making some simplifying assumptions, the iterative GFI | |
539 | * induced SFI on+off deferrals form a geometric series that converges to yield | |
540 | * an effective SFI duty cycle that is scaled by the GFI duty cycle. Initial phase | |
541 | * alignment and congruency of the SFI/GFI periods can distort this to some extent. | |
542 | */ | |
543 | ||
544 | kern_return_t | |
545 | sfi_defer(uint64_t sfi_defer_matus) | |
546 | { | |
547 | spl_t s; | |
548 | kern_return_t kr = KERN_FAILURE; | |
549 | s = splsched(); | |
550 | ||
551 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_GLOBAL_DEFER), sfi_defer_matus, 0, 0, 0, 0); | |
552 | ||
553 | simple_lock(&sfi_lock, LCK_GRP_NULL); | |
554 | if (!sfi_is_enabled) { | |
555 | goto sfi_defer_done; | |
556 | } | |
557 | ||
558 | assert(sfi_next_off_deadline != 0); | |
559 | ||
560 | sfi_next_off_deadline += sfi_defer_matus; | |
561 | timer_call_enter1(&sfi_timer_call_entry, NULL, sfi_next_off_deadline, TIMER_CALL_SYS_CRITICAL); | |
562 | ||
563 | int i; | |
564 | for (i = 0; i < MAX_SFI_CLASS_ID; i++) { | |
565 | if (sfi_classes[i].class_sfi_is_enabled) { | |
566 | if (sfi_classes[i].on_timer_programmed) { | |
567 | uint64_t new_on_deadline = sfi_classes[i].on_timer_deadline + sfi_defer_matus; | |
568 | sfi_classes[i].on_timer_deadline = new_on_deadline; | |
569 | timer_call_enter1(&sfi_classes[i].on_timer, NULL, new_on_deadline, TIMER_CALL_SYS_CRITICAL); | |
570 | } | |
571 | } | |
572 | } | |
573 | ||
574 | kr = KERN_SUCCESS; | |
575 | sfi_defer_done: | |
576 | simple_unlock(&sfi_lock); | |
577 | ||
578 | splx(s); | |
579 | ||
580 | return kr; | |
581 | } | |
582 | ||
583 | ||
584 | kern_return_t | |
585 | sfi_get_window(uint64_t *window_usecs) | |
586 | { | |
587 | spl_t s; | |
588 | uint64_t off_window_us; | |
589 | ||
590 | s = splsched(); | |
591 | simple_lock(&sfi_lock, LCK_GRP_NULL); | |
592 | ||
593 | off_window_us = sfi_window_usecs; | |
594 | ||
595 | simple_unlock(&sfi_lock); | |
596 | splx(s); | |
597 | ||
598 | *window_usecs = off_window_us; | |
599 | ||
600 | return KERN_SUCCESS; | |
601 | } | |
602 | ||
603 | ||
604 | kern_return_t | |
605 | sfi_set_class_offtime(sfi_class_id_t class_id, uint64_t offtime_usecs) | |
606 | { | |
607 | uint64_t interval; | |
608 | spl_t s; | |
609 | uint64_t off_window_interval; | |
610 | ||
611 | if (offtime_usecs < MIN_SFI_WINDOW_USEC) { | |
612 | offtime_usecs = MIN_SFI_WINDOW_USEC; | |
613 | } | |
614 | ||
615 | if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) { | |
616 | return KERN_INVALID_ARGUMENT; | |
617 | } | |
618 | ||
619 | if (offtime_usecs > UINT32_MAX) { | |
620 | return KERN_INVALID_ARGUMENT; | |
621 | } | |
622 | ||
623 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_SET_CLASS_OFFTIME), offtime_usecs, class_id, 0, 0, 0); | |
624 | ||
625 | clock_interval_to_absolutetime_interval((uint32_t)offtime_usecs, NSEC_PER_USEC, &interval); | |
626 | ||
627 | s = splsched(); | |
628 | ||
629 | simple_lock(&sfi_lock, LCK_GRP_NULL); | |
630 | off_window_interval = sfi_window_interval; | |
631 | ||
632 | /* Check that we are not bringing in class off-time larger than the SFI window */ | |
633 | if (off_window_interval && (interval >= off_window_interval)) { | |
634 | simple_unlock(&sfi_lock); | |
635 | splx(s); | |
636 | return KERN_INVALID_ARGUMENT; | |
637 | } | |
638 | ||
639 | /* We never re-program the per-class on-timer, but rather just let it expire naturally */ | |
640 | if (!sfi_classes[class_id].class_sfi_is_enabled) { | |
641 | os_atomic_inc(&sfi_enabled_class_count, relaxed); | |
642 | } | |
643 | sfi_classes[class_id].off_time_usecs = offtime_usecs; | |
644 | sfi_classes[class_id].off_time_interval = interval; | |
645 | sfi_classes[class_id].class_sfi_is_enabled = TRUE; | |
646 | ||
647 | if (sfi_window_is_set && !sfi_is_enabled) { | |
648 | /* start global off timer */ | |
649 | sfi_is_enabled = TRUE; | |
650 | sfi_next_off_deadline = mach_absolute_time() + sfi_window_interval; | |
651 | timer_call_enter1(&sfi_timer_call_entry, | |
652 | NULL, | |
653 | sfi_next_off_deadline, | |
654 | TIMER_CALL_SYS_CRITICAL); | |
655 | } | |
656 | ||
657 | simple_unlock(&sfi_lock); | |
658 | ||
659 | splx(s); | |
660 | ||
661 | return KERN_SUCCESS; | |
662 | } | |
663 | ||
664 | kern_return_t | |
665 | sfi_class_offtime_cancel(sfi_class_id_t class_id) | |
666 | { | |
667 | spl_t s; | |
668 | ||
669 | if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) { | |
670 | return KERN_INVALID_ARGUMENT; | |
671 | } | |
672 | ||
673 | s = splsched(); | |
674 | ||
675 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_CANCEL_CLASS_OFFTIME), class_id, 0, 0, 0, 0); | |
676 | ||
677 | simple_lock(&sfi_lock, LCK_GRP_NULL); | |
678 | ||
679 | /* We never re-program the per-class on-timer, but rather just let it expire naturally */ | |
680 | if (sfi_classes[class_id].class_sfi_is_enabled) { | |
681 | os_atomic_dec(&sfi_enabled_class_count, relaxed); | |
682 | } | |
683 | sfi_classes[class_id].off_time_usecs = 0; | |
684 | sfi_classes[class_id].off_time_interval = 0; | |
685 | sfi_classes[class_id].class_sfi_is_enabled = FALSE; | |
686 | ||
687 | if (os_atomic_load(&sfi_enabled_class_count, relaxed) == 0) { | |
688 | sfi_is_enabled = FALSE; | |
689 | } | |
690 | ||
691 | simple_unlock(&sfi_lock); | |
692 | ||
693 | splx(s); | |
694 | ||
695 | return KERN_SUCCESS; | |
696 | } | |
697 | ||
698 | kern_return_t | |
699 | sfi_get_class_offtime(sfi_class_id_t class_id, uint64_t *offtime_usecs) | |
700 | { | |
701 | uint64_t off_time_us; | |
702 | spl_t s; | |
703 | ||
704 | if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) { | |
705 | return 0; | |
706 | } | |
707 | ||
708 | s = splsched(); | |
709 | ||
710 | simple_lock(&sfi_lock, LCK_GRP_NULL); | |
711 | off_time_us = sfi_classes[class_id].off_time_usecs; | |
712 | simple_unlock(&sfi_lock); | |
713 | ||
714 | splx(s); | |
715 | ||
716 | *offtime_usecs = off_time_us; | |
717 | ||
718 | return KERN_SUCCESS; | |
719 | } | |
720 | ||
721 | /* | |
722 | * sfi_thread_classify and sfi_processor_active_thread_classify perform the critical | |
723 | * role of quickly categorizing a thread into its SFI class so that an AST_SFI can be | |
724 | * set. As the thread is unwinding to userspace, sfi_ast() performs full locking | |
725 | * and determines whether the thread should enter an SFI wait state. Because of | |
726 | * the inherent races between the time the AST is set and when it is evaluated, | |
727 | * thread classification can be inaccurate (but should always be safe). This is | |
728 | * especially the case for sfi_processor_active_thread_classify, which must | |
729 | * classify the active thread on a remote processor without taking the thread lock. | |
730 | * When in doubt, classification should err on the side of *not* classifying a | |
731 | * thread at all, and wait for the thread itself to either hit a quantum expiration | |
732 | * or block inside the kernel. | |
733 | */ | |
734 | ||
735 | /* | |
736 | * Thread must be locked. Ultimately, the real decision to enter | |
737 | * SFI wait happens at the AST boundary. | |
738 | */ | |
739 | sfi_class_id_t | |
740 | sfi_thread_classify(thread_t thread) | |
741 | { | |
742 | task_t task = thread->task; | |
743 | boolean_t is_kernel_thread = (task == kernel_task); | |
744 | sched_mode_t thmode = thread->sched_mode; | |
745 | boolean_t focal = FALSE; | |
746 | ||
747 | /* kernel threads never reach the user AST boundary, and are in a separate world for SFI */ | |
748 | if (is_kernel_thread) { | |
749 | return SFI_CLASS_KERNEL; | |
750 | } | |
751 | ||
752 | /* no need to re-classify threads unless there is at least one enabled SFI class */ | |
753 | if (os_atomic_load(&sfi_enabled_class_count, relaxed) == 0) { | |
754 | return SFI_CLASS_OPTED_OUT; | |
755 | } | |
756 | ||
757 | int task_role = proc_get_effective_task_policy(task, TASK_POLICY_ROLE); | |
758 | int latency_qos = proc_get_effective_task_policy(task, TASK_POLICY_LATENCY_QOS); | |
759 | int managed_task = proc_get_effective_task_policy(task, TASK_POLICY_SFI_MANAGED); | |
760 | ||
761 | int thread_qos = proc_get_effective_thread_policy(thread, TASK_POLICY_QOS); | |
762 | int thread_bg = proc_get_effective_thread_policy(thread, TASK_POLICY_DARWIN_BG); | |
763 | ||
764 | if (thread_qos == THREAD_QOS_MAINTENANCE) { | |
765 | return SFI_CLASS_MAINTENANCE; | |
766 | } | |
767 | ||
768 | if (thread_bg || thread_qos == THREAD_QOS_BACKGROUND) { | |
769 | return SFI_CLASS_DARWIN_BG; | |
770 | } | |
771 | ||
772 | if (latency_qos != 0) { | |
773 | int latency_qos_wtf = latency_qos - 1; | |
774 | ||
775 | if ((latency_qos_wtf >= 4) && (latency_qos_wtf <= 5)) { | |
776 | return SFI_CLASS_APP_NAP; | |
777 | } | |
778 | } | |
779 | ||
780 | /* | |
781 | * Realtime and fixed priority threads express their duty cycle constraints | |
782 | * via other mechanisms, and are opted out of (most) forms of SFI | |
783 | */ | |
784 | if (thmode == TH_MODE_REALTIME || thmode == TH_MODE_FIXED || task_role == TASK_GRAPHICS_SERVER) { | |
785 | return SFI_CLASS_OPTED_OUT; | |
786 | } | |
787 | ||
788 | /* | |
789 | * Threads with unspecified, legacy, or user-initiated QOS class can be individually managed. | |
790 | */ | |
791 | switch (task_role) { | |
792 | case TASK_CONTROL_APPLICATION: | |
793 | case TASK_FOREGROUND_APPLICATION: | |
794 | focal = TRUE; | |
795 | break; | |
796 | case TASK_BACKGROUND_APPLICATION: | |
797 | case TASK_DEFAULT_APPLICATION: | |
798 | case TASK_UNSPECIFIED: | |
799 | /* Focal if the task is in a coalition with a FG/focal app */ | |
800 | if (task_coalition_focal_count(thread->task) > 0) { | |
801 | focal = TRUE; | |
802 | } | |
803 | break; | |
804 | case TASK_THROTTLE_APPLICATION: | |
805 | case TASK_DARWINBG_APPLICATION: | |
806 | case TASK_NONUI_APPLICATION: | |
807 | /* Definitely not focal */ | |
808 | default: | |
809 | break; | |
810 | } | |
811 | ||
812 | if (managed_task) { | |
813 | switch (thread_qos) { | |
814 | case THREAD_QOS_UNSPECIFIED: | |
815 | case THREAD_QOS_LEGACY: | |
816 | case THREAD_QOS_USER_INITIATED: | |
817 | if (focal) { | |
818 | return SFI_CLASS_MANAGED_FOCAL; | |
819 | } else { | |
820 | return SFI_CLASS_MANAGED_NONFOCAL; | |
821 | } | |
822 | default: | |
823 | break; | |
824 | } | |
825 | } | |
826 | ||
827 | if (thread_qos == THREAD_QOS_UTILITY) { | |
828 | return SFI_CLASS_UTILITY; | |
829 | } | |
830 | ||
831 | /* | |
832 | * Classify threads in non-managed tasks | |
833 | */ | |
834 | if (focal) { | |
835 | switch (thread_qos) { | |
836 | case THREAD_QOS_USER_INTERACTIVE: | |
837 | return SFI_CLASS_USER_INTERACTIVE_FOCAL; | |
838 | case THREAD_QOS_USER_INITIATED: | |
839 | return SFI_CLASS_USER_INITIATED_FOCAL; | |
840 | case THREAD_QOS_LEGACY: | |
841 | return SFI_CLASS_LEGACY_FOCAL; | |
842 | default: | |
843 | return SFI_CLASS_DEFAULT_FOCAL; | |
844 | } | |
845 | } else { | |
846 | switch (thread_qos) { | |
847 | case THREAD_QOS_USER_INTERACTIVE: | |
848 | return SFI_CLASS_USER_INTERACTIVE_NONFOCAL; | |
849 | case THREAD_QOS_USER_INITIATED: | |
850 | return SFI_CLASS_USER_INITIATED_NONFOCAL; | |
851 | case THREAD_QOS_LEGACY: | |
852 | return SFI_CLASS_LEGACY_NONFOCAL; | |
853 | default: | |
854 | return SFI_CLASS_DEFAULT_NONFOCAL; | |
855 | } | |
856 | } | |
857 | } | |
858 | ||
859 | /* | |
860 | * pset must be locked. | |
861 | */ | |
862 | sfi_class_id_t | |
863 | sfi_processor_active_thread_classify(processor_t processor) | |
864 | { | |
865 | return processor->current_sfi_class; | |
866 | } | |
867 | ||
868 | /* | |
869 | * thread must be locked. This is inherently racy, with the intent that | |
870 | * at the AST boundary, it will be fully evaluated whether we need to | |
871 | * perform an AST wait | |
872 | */ | |
873 | ast_t | |
874 | sfi_thread_needs_ast(thread_t thread, sfi_class_id_t *out_class) | |
875 | { | |
876 | sfi_class_id_t class_id; | |
877 | ||
878 | class_id = sfi_thread_classify(thread); | |
879 | ||
880 | if (out_class) { | |
881 | *out_class = class_id; | |
882 | } | |
883 | ||
884 | /* No lock taken, so a stale value may be used. */ | |
885 | if (!sfi_classes[class_id].class_in_on_phase) { | |
886 | return AST_SFI; | |
887 | } else { | |
888 | return AST_NONE; | |
889 | } | |
890 | } | |
891 | ||
892 | /* | |
893 | * pset must be locked. We take the SFI class for | |
894 | * the currently running thread which is cached on | |
895 | * the processor_t, and assume it is accurate. In the | |
896 | * worst case, the processor will get an IPI and be asked | |
897 | * to evaluate if the current running thread at that | |
898 | * later point in time should be in an SFI wait. | |
899 | */ | |
900 | ast_t | |
901 | sfi_processor_needs_ast(processor_t processor) | |
902 | { | |
903 | sfi_class_id_t class_id; | |
904 | ||
905 | class_id = sfi_processor_active_thread_classify(processor); | |
906 | ||
907 | /* No lock taken, so a stale value may be used. */ | |
908 | if (!sfi_classes[class_id].class_in_on_phase) { | |
909 | return AST_SFI; | |
910 | } else { | |
911 | return AST_NONE; | |
912 | } | |
913 | } | |
914 | ||
915 | static inline void | |
916 | _sfi_wait_cleanup(void) | |
917 | { | |
918 | thread_t self = current_thread(); | |
919 | ||
920 | spl_t s = splsched(); | |
921 | simple_lock(&sfi_lock, LCK_GRP_NULL); | |
922 | ||
923 | sfi_class_id_t current_sfi_wait_class = self->sfi_wait_class; | |
924 | ||
925 | assert((SFI_CLASS_UNSPECIFIED < current_sfi_wait_class) && | |
926 | (current_sfi_wait_class < MAX_SFI_CLASS_ID)); | |
927 | ||
928 | self->sfi_wait_class = SFI_CLASS_UNSPECIFIED; | |
929 | ||
930 | simple_unlock(&sfi_lock); | |
931 | splx(s); | |
932 | ||
933 | /* | |
934 | * It's possible for the thread to be woken up due to the SFI period | |
935 | * ending *before* it finishes blocking. In that case, | |
936 | * wait_sfi_begin_time won't be set. | |
937 | * | |
938 | * Derive the time sacrificed to SFI by looking at when this thread was | |
939 | * awoken by the on-timer, to avoid counting the time this thread spent | |
940 | * waiting to get scheduled. | |
941 | * | |
942 | * Note that last_made_runnable_time could be reset if this thread | |
943 | * gets preempted before we read the value. To fix that, we'd need to | |
944 | * track wait time in a thread timer, sample the timer before blocking, | |
945 | * pass the value through thread->parameter, and subtract that. | |
946 | */ | |
947 | ||
948 | if (self->wait_sfi_begin_time != 0) { | |
949 | uint64_t made_runnable = os_atomic_load(&self->last_made_runnable_time, relaxed); | |
950 | int64_t sfi_wait_time = made_runnable - self->wait_sfi_begin_time; | |
951 | assert(sfi_wait_time >= 0); | |
952 | ||
953 | ledger_credit(self->task->ledger, task_ledgers.sfi_wait_times[current_sfi_wait_class], | |
954 | sfi_wait_time); | |
955 | ||
956 | self->wait_sfi_begin_time = 0; | |
957 | } | |
958 | } | |
959 | ||
960 | /* | |
961 | * Called at AST context to fully evaluate if the current thread | |
962 | * (which is obviously running) should instead block in an SFI wait. | |
963 | * We must take the sfi_lock to check whether we are in the "off" period | |
964 | * for the class, and if so, block. | |
965 | */ | |
966 | void | |
967 | sfi_ast(thread_t thread) | |
968 | { | |
969 | sfi_class_id_t class_id; | |
970 | spl_t s; | |
971 | struct sfi_class_state *sfi_class; | |
972 | wait_result_t waitret; | |
973 | boolean_t did_wait = FALSE; | |
974 | thread_continue_t continuation; | |
975 | ||
976 | s = splsched(); | |
977 | ||
978 | simple_lock(&sfi_lock, LCK_GRP_NULL); | |
979 | ||
980 | if (!sfi_is_enabled) { | |
981 | /* | |
982 | * SFI is not enabled, or has recently been disabled. | |
983 | * There is no point putting this thread on a deferred ready | |
984 | * queue, even if it were classified as needing it, since | |
985 | * SFI will truly be off at the next global off timer | |
986 | */ | |
987 | simple_unlock(&sfi_lock); | |
988 | splx(s); | |
989 | ||
990 | return; | |
991 | } | |
992 | ||
993 | thread_lock(thread); | |
994 | thread->sfi_class = class_id = sfi_thread_classify(thread); | |
995 | thread_unlock(thread); | |
996 | ||
997 | /* | |
998 | * Once the sfi_lock is taken and the thread's ->sfi_class field is updated, we | |
999 | * are committed to transitioning to whatever state is indicated by "->class_in_on_phase". | |
1000 | * If another thread tries to call sfi_reevaluate() after this point, it will take the | |
1001 | * sfi_lock and see the thread in this wait state. If another thread calls | |
1002 | * sfi_reevaluate() before this point, it would see a runnable thread and at most | |
1003 | * attempt to send an AST to this processor, but we would have the most accurate | |
1004 | * classification. | |
1005 | */ | |
1006 | ||
1007 | sfi_class = &sfi_classes[class_id]; | |
1008 | if (!sfi_class->class_in_on_phase) { | |
1009 | /* Need to block thread in wait queue */ | |
1010 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_THREAD_DEFER), | |
1011 | thread_tid(thread), class_id, 0, 0, 0); | |
1012 | ||
1013 | waitret = waitq_assert_wait64(&sfi_class->waitq, | |
1014 | CAST_EVENT64_T(class_id), | |
1015 | THREAD_INTERRUPTIBLE | THREAD_WAIT_NOREPORT, 0); | |
1016 | if (waitret == THREAD_WAITING) { | |
1017 | thread->sfi_wait_class = class_id; | |
1018 | did_wait = TRUE; | |
1019 | continuation = sfi_class->continuation; | |
1020 | } else { | |
1021 | /* thread may be exiting already, all other errors are unexpected */ | |
1022 | assert(waitret == THREAD_INTERRUPTED); | |
1023 | } | |
1024 | } | |
1025 | simple_unlock(&sfi_lock); | |
1026 | ||
1027 | splx(s); | |
1028 | ||
1029 | if (did_wait) { | |
1030 | assert(thread->wait_sfi_begin_time == 0); | |
1031 | ||
1032 | thread_block_reason(continuation, NULL, AST_SFI); | |
1033 | } | |
1034 | } | |
1035 | ||
1036 | /* Thread must be unlocked */ | |
1037 | void | |
1038 | sfi_reevaluate(thread_t thread) | |
1039 | { | |
1040 | kern_return_t kret; | |
1041 | spl_t s; | |
1042 | sfi_class_id_t class_id, current_class_id; | |
1043 | ast_t sfi_ast; | |
1044 | ||
1045 | s = splsched(); | |
1046 | ||
1047 | simple_lock(&sfi_lock, LCK_GRP_NULL); | |
1048 | ||
1049 | thread_lock(thread); | |
1050 | sfi_ast = sfi_thread_needs_ast(thread, &class_id); | |
1051 | thread->sfi_class = class_id; | |
1052 | ||
1053 | /* | |
1054 | * This routine chiefly exists to boost threads out of an SFI wait | |
1055 | * if their classification changes before the "on" timer fires. | |
1056 | * | |
1057 | * If we calculate that a thread is in a different ->sfi_wait_class | |
1058 | * than we think it should be (including no-SFI-wait), we need to | |
1059 | * correct that: | |
1060 | * | |
1061 | * If the thread is in SFI wait and should not be (or should be waiting | |
1062 | * on a different class' "on" timer), we wake it up. If needed, the | |
1063 | * thread may immediately block again in the different SFI wait state. | |
1064 | * | |
1065 | * If the thread is not in an SFI wait state and it should be, we need | |
1066 | * to get that thread's attention, possibly by sending an AST to another | |
1067 | * processor. | |
1068 | */ | |
1069 | ||
1070 | if ((current_class_id = thread->sfi_wait_class) != SFI_CLASS_UNSPECIFIED) { | |
1071 | thread_unlock(thread); /* not needed anymore */ | |
1072 | ||
1073 | assert(current_class_id < MAX_SFI_CLASS_ID); | |
1074 | ||
1075 | if ((sfi_ast == AST_NONE) || (class_id != current_class_id)) { | |
1076 | struct sfi_class_state *sfi_class = &sfi_classes[current_class_id]; | |
1077 | ||
1078 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_WAIT_CANCELED), thread_tid(thread), current_class_id, class_id, 0, 0); | |
1079 | ||
1080 | kret = waitq_wakeup64_thread(&sfi_class->waitq, | |
1081 | CAST_EVENT64_T(current_class_id), | |
1082 | thread, | |
1083 | THREAD_AWAKENED); | |
1084 | assert(kret == KERN_SUCCESS || kret == KERN_NOT_WAITING); | |
1085 | } | |
1086 | } else { | |
1087 | /* | |
1088 | * Thread's current SFI wait class is not set, and because we | |
1089 | * have the sfi_lock, it won't get set. | |
1090 | */ | |
1091 | ||
1092 | if ((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN) { | |
1093 | if (sfi_ast != AST_NONE) { | |
1094 | if (thread == current_thread()) { | |
1095 | ast_on(sfi_ast); | |
1096 | } else { | |
1097 | processor_t processor = thread->last_processor; | |
1098 | ||
1099 | if (processor != PROCESSOR_NULL && | |
1100 | processor->state == PROCESSOR_RUNNING && | |
1101 | processor->active_thread == thread) { | |
1102 | cause_ast_check(processor); | |
1103 | } else { | |
1104 | /* | |
1105 | * Runnable thread that's not on a CPU currently. When a processor | |
1106 | * does context switch to it, the AST will get set based on whether | |
1107 | * the thread is in its "off time". | |
1108 | */ | |
1109 | } | |
1110 | } | |
1111 | } | |
1112 | } | |
1113 | ||
1114 | thread_unlock(thread); | |
1115 | } | |
1116 | ||
1117 | simple_unlock(&sfi_lock); | |
1118 | splx(s); | |
1119 | } | |
1120 | ||
1121 | #else /* !CONFIG_SCHED_SFI */ | |
1122 | ||
1123 | kern_return_t | |
1124 | sfi_set_window(uint64_t window_usecs __unused) | |
1125 | { | |
1126 | return KERN_NOT_SUPPORTED; | |
1127 | } | |
1128 | ||
1129 | kern_return_t | |
1130 | sfi_window_cancel(void) | |
1131 | { | |
1132 | return KERN_NOT_SUPPORTED; | |
1133 | } | |
1134 | ||
1135 | ||
1136 | kern_return_t | |
1137 | sfi_get_window(uint64_t *window_usecs __unused) | |
1138 | { | |
1139 | return KERN_NOT_SUPPORTED; | |
1140 | } | |
1141 | ||
1142 | ||
1143 | kern_return_t | |
1144 | sfi_set_class_offtime(sfi_class_id_t class_id __unused, uint64_t offtime_usecs __unused) | |
1145 | { | |
1146 | return KERN_NOT_SUPPORTED; | |
1147 | } | |
1148 | ||
1149 | kern_return_t | |
1150 | sfi_class_offtime_cancel(sfi_class_id_t class_id __unused) | |
1151 | { | |
1152 | return KERN_NOT_SUPPORTED; | |
1153 | } | |
1154 | ||
1155 | kern_return_t | |
1156 | sfi_get_class_offtime(sfi_class_id_t class_id __unused, uint64_t *offtime_usecs __unused) | |
1157 | { | |
1158 | return KERN_NOT_SUPPORTED; | |
1159 | } | |
1160 | ||
1161 | void | |
1162 | sfi_reevaluate(thread_t thread __unused) | |
1163 | { | |
1164 | return; | |
1165 | } | |
1166 | ||
1167 | sfi_class_id_t | |
1168 | sfi_thread_classify(thread_t thread) | |
1169 | { | |
1170 | task_t task = thread->task; | |
1171 | boolean_t is_kernel_thread = (task == kernel_task); | |
1172 | ||
1173 | if (is_kernel_thread) { | |
1174 | return SFI_CLASS_KERNEL; | |
1175 | } | |
1176 | ||
1177 | return SFI_CLASS_OPTED_OUT; | |
1178 | } | |
1179 | ||
1180 | #endif /* !CONFIG_SCHED_SFI */ |