]> git.saurik.com Git - apple/xnu.git/blame_incremental - osfmk/kern/priority.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / kern / priority.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56/*
57 */
58/*
59 * File: priority.c
60 * Author: Avadis Tevanian, Jr.
61 * Date: 1986
62 *
63 * Priority related scheduler bits.
64 */
65
66#include <mach/boolean.h>
67#include <mach/kern_return.h>
68#include <mach/machine.h>
69#include <kern/host.h>
70#include <kern/mach_param.h>
71#include <kern/sched.h>
72#include <sys/kdebug.h>
73#include <kern/spl.h>
74#include <kern/thread.h>
75#include <kern/processor.h>
76#include <kern/ledger.h>
77#include <machine/machparam.h>
78#include <kern/machine.h>
79#include <kern/policy_internal.h>
80#include <kern/sched_clutch.h>
81
82#ifdef CONFIG_MACH_APPROXIMATE_TIME
83#include <machine/commpage.h> /* for commpage_update_mach_approximate_time */
84#endif
85
86#if MONOTONIC
87#include <kern/monotonic.h>
88#endif /* MONOTONIC */
89
90/*
91 * thread_quantum_expire:
92 *
93 * Recalculate the quantum and priority for a thread.
94 *
95 * Called at splsched.
96 */
97
98void
99thread_quantum_expire(
100 timer_call_param_t p0,
101 timer_call_param_t p1)
102{
103 processor_t processor = p0;
104 thread_t thread = p1;
105 ast_t preempt;
106 uint64_t ctime;
107
108 assert(processor == current_processor());
109 assert(thread == current_thread());
110
111 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_QUANTUM_EXPIRED) | DBG_FUNC_START, 0, 0, 0, 0, 0);
112
113 SCHED_STATS_INC(quantum_timer_expirations);
114
115 /*
116 * We bill CPU time to both the individual thread and its task.
117 *
118 * Because this balance adjustment could potentially attempt to wake this
119 * very thread, we must credit the ledger before taking the thread lock.
120 * The ledger pointers are only manipulated by the thread itself at the ast
121 * boundary.
122 *
123 * TODO: This fails to account for the time between when the timer was
124 * armed and when it fired. It should be based on the system_timer and
125 * running a timer_update operation here.
126 */
127 ledger_credit(thread->t_ledger, task_ledgers.cpu_time, thread->quantum_remaining);
128 ledger_credit(thread->t_threadledger, thread_ledgers.cpu_time, thread->quantum_remaining);
129 if (thread->t_bankledger) {
130 ledger_credit(thread->t_bankledger, bank_ledgers.cpu_time,
131 (thread->quantum_remaining - thread->t_deduct_bank_ledger_time));
132 }
133 thread->t_deduct_bank_ledger_time = 0;
134 ctime = mach_absolute_time();
135
136#ifdef CONFIG_MACH_APPROXIMATE_TIME
137 commpage_update_mach_approximate_time(ctime);
138#endif
139 sched_update_pset_avg_execution_time(processor->processor_set, thread->quantum_remaining, ctime, thread->th_sched_bucket);
140
141#if MONOTONIC
142 mt_sched_update(thread);
143#endif /* MONOTONIC */
144
145 thread_lock(thread);
146
147 /*
148 * We've run up until our quantum expiration, and will (potentially)
149 * continue without re-entering the scheduler, so update this now.
150 */
151 processor->last_dispatch = ctime;
152 thread->last_run_time = ctime;
153
154 /*
155 * Check for fail-safe trip.
156 */
157 if ((thread->sched_mode == TH_MODE_REALTIME || thread->sched_mode == TH_MODE_FIXED) &&
158 !(thread->sched_flags & TH_SFLAG_PROMOTED) &&
159 !(thread->kern_promotion_schedpri != 0) &&
160 !(thread->sched_flags & TH_SFLAG_PROMOTE_REASON_MASK) &&
161 !(thread->options & TH_OPT_SYSTEM_CRITICAL)) {
162 uint64_t new_computation;
163
164 new_computation = ctime - thread->computation_epoch;
165 new_computation += thread->computation_metered;
166 if (new_computation > max_unsafe_computation) {
167 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_FAILSAFE) | DBG_FUNC_NONE,
168 (uintptr_t)thread->sched_pri, (uintptr_t)thread->sched_mode, 0, 0, 0);
169
170 thread->safe_release = ctime + sched_safe_duration;
171
172 sched_thread_mode_demote(thread, TH_SFLAG_FAILSAFE);
173 }
174 }
175
176 /*
177 * Recompute scheduled priority if appropriate.
178 */
179 if (SCHED(can_update_priority)(thread)) {
180 SCHED(update_priority)(thread);
181 } else {
182 SCHED(lightweight_update_priority)(thread);
183 }
184
185 if (thread->sched_mode != TH_MODE_REALTIME) {
186 SCHED(quantum_expire)(thread);
187 }
188
189 /*
190 * This quantum is up, give this thread another.
191 */
192 processor->first_timeslice = FALSE;
193
194 thread_quantum_init(thread);
195
196 /* Reload precise timing global policy to thread-local policy */
197 thread->precise_user_kernel_time = use_precise_user_kernel_time(thread);
198
199 /*
200 * Since non-precise user/kernel time doesn't update the state/thread timer
201 * during privilege transitions, synthesize an event now.
202 */
203 if (!thread->precise_user_kernel_time) {
204 timer_update(processor->current_state, ctime);
205 timer_update(processor->thread_timer, ctime);
206 timer_update(&thread->runnable_timer, ctime);
207 }
208
209
210 processor->quantum_end = ctime + thread->quantum_remaining;
211
212 /*
213 * Context switch check
214 *
215 * non-urgent flags don't affect kernel threads, so upgrade to urgent
216 * to ensure that rebalancing and non-recommendation kick in quickly.
217 */
218
219 ast_t check_reason = AST_QUANTUM;
220 if (thread->task == kernel_task) {
221 check_reason |= AST_URGENT;
222 }
223
224 if ((preempt = csw_check(thread, processor, check_reason)) != AST_NONE) {
225 ast_on(preempt);
226 }
227
228 /*
229 * AST_KEVENT does not send an IPI when setting the AST,
230 * to avoid waiting for the next context switch to propagate the AST,
231 * the AST is propagated here at quantum expiration.
232 */
233 ast_propagate(thread);
234
235 thread_unlock(thread);
236 running_timer_enter(processor, RUNNING_TIMER_QUANTUM, thread,
237 processor->quantum_end, ctime);
238
239 /* Tell platform layer that we are still running this thread */
240 thread_urgency_t urgency = thread_get_urgency(thread, NULL, NULL);
241 machine_thread_going_on_core(thread, urgency, 0, 0, ctime);
242 machine_switch_perfcontrol_state_update(QUANTUM_EXPIRY, ctime,
243 0, thread);
244
245#if defined(CONFIG_SCHED_TIMESHARE_CORE)
246 sched_timeshare_consider_maintenance(ctime);
247#endif /* CONFIG_SCHED_TIMESHARE_CORE */
248
249#if __arm__ || __arm64__
250 if (thread->sched_mode == TH_MODE_REALTIME) {
251 sched_consider_recommended_cores(ctime, thread);
252 }
253#endif /* __arm__ || __arm64__ */
254
255 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_QUANTUM_EXPIRED) | DBG_FUNC_END, preempt, 0, 0, 0, 0);
256}
257
258/*
259 * sched_set_thread_base_priority:
260 *
261 * Set the base priority of the thread
262 * and reset its scheduled priority.
263 *
264 * This is the only path to change base_pri.
265 *
266 * Called with the thread locked.
267 */
268void
269sched_set_thread_base_priority(thread_t thread, int priority)
270{
271 assert(priority >= MINPRI);
272 uint64_t ctime = 0;
273
274 if (thread->sched_mode == TH_MODE_REALTIME) {
275 assert(priority <= BASEPRI_RTQUEUES);
276 } else {
277 assert(priority < BASEPRI_RTQUEUES);
278 }
279
280 int old_base_pri = thread->base_pri;
281 thread->req_base_pri = (int16_t)priority;
282 if (thread->sched_flags & TH_SFLAG_BASE_PRI_FROZEN) {
283 priority = MAX(priority, old_base_pri);
284 }
285 thread->base_pri = (int16_t)priority;
286
287 if ((thread->state & TH_RUN) == TH_RUN) {
288 assert(thread->last_made_runnable_time != THREAD_NOT_RUNNABLE);
289 ctime = mach_approximate_time();
290 thread->last_basepri_change_time = ctime;
291 } else {
292 assert(thread->last_basepri_change_time == THREAD_NOT_RUNNABLE);
293 assert(thread->last_made_runnable_time == THREAD_NOT_RUNNABLE);
294 }
295
296 /*
297 * Currently the perfcontrol_attr depends on the base pri of the
298 * thread. Therefore, we use this function as the hook for the
299 * perfcontrol callout.
300 */
301 if (thread == current_thread() && old_base_pri != priority) {
302 if (!ctime) {
303 ctime = mach_approximate_time();
304 }
305 machine_switch_perfcontrol_state_update(PERFCONTROL_ATTR_UPDATE,
306 ctime, PERFCONTROL_CALLOUT_WAKE_UNSAFE, thread);
307 }
308#if !CONFIG_SCHED_CLUTCH
309 /* For the clutch scheduler, this operation is done in set_sched_pri() */
310 SCHED(update_thread_bucket)(thread);
311#endif /* !CONFIG_SCHED_CLUTCH */
312
313 thread_recompute_sched_pri(thread, SETPRI_DEFAULT);
314}
315
316/*
317 * sched_set_kernel_thread_priority:
318 *
319 * Set the absolute base priority of the thread
320 * and reset its scheduled priority.
321 *
322 * Called with the thread unlocked.
323 */
324void
325sched_set_kernel_thread_priority(thread_t thread, int new_priority)
326{
327 spl_t s = splsched();
328
329 thread_lock(thread);
330
331 assert(thread->sched_mode != TH_MODE_REALTIME);
332 assert(thread->effective_policy.thep_qos == THREAD_QOS_UNSPECIFIED);
333
334 if (new_priority > thread->max_priority) {
335 new_priority = thread->max_priority;
336 }
337#if !defined(XNU_TARGET_OS_OSX)
338 if (new_priority < MAXPRI_THROTTLE) {
339 new_priority = MAXPRI_THROTTLE;
340 }
341#endif /* !defined(XNU_TARGET_OS_OSX) */
342
343 thread->importance = new_priority - thread->task_priority;
344
345 sched_set_thread_base_priority(thread, new_priority);
346
347 thread_unlock(thread);
348 splx(s);
349}
350
351/*
352 * thread_recompute_sched_pri:
353 *
354 * Reset the scheduled priority of the thread
355 * according to its base priority if the
356 * thread has not been promoted or depressed.
357 *
358 * This is the only way to push base_pri changes into sched_pri,
359 * or to recalculate the appropriate sched_pri after changing
360 * a promotion or depression.
361 *
362 * Called at splsched with the thread locked.
363 *
364 * TODO: Add an 'update urgency' flag to avoid urgency callouts on every rwlock operation
365 */
366void
367thread_recompute_sched_pri(thread_t thread, set_sched_pri_options_t options)
368{
369 uint32_t sched_flags = thread->sched_flags;
370 sched_mode_t sched_mode = thread->sched_mode;
371
372 int16_t priority = thread->base_pri;
373
374 if (sched_mode == TH_MODE_TIMESHARE) {
375 priority = (int16_t)SCHED(compute_timeshare_priority)(thread);
376 }
377
378 if (sched_flags & TH_SFLAG_DEPRESS) {
379 /* thread_yield_internal overrides kernel mutex promotion */
380 priority = DEPRESSPRI;
381 } else {
382 /* poll-depress is overridden by mutex promotion and promote-reasons */
383 if ((sched_flags & TH_SFLAG_POLLDEPRESS)) {
384 priority = DEPRESSPRI;
385 }
386
387 if (thread->kern_promotion_schedpri > 0) {
388 priority = MAX(priority, thread->kern_promotion_schedpri);
389
390 if (sched_mode != TH_MODE_REALTIME) {
391 priority = MIN(priority, MAXPRI_PROMOTE);
392 }
393 }
394
395 if (sched_flags & TH_SFLAG_PROMOTED) {
396 priority = MAX(priority, thread->promotion_priority);
397
398 if (sched_mode != TH_MODE_REALTIME) {
399 priority = MIN(priority, MAXPRI_PROMOTE);
400 }
401 }
402
403 if (sched_flags & TH_SFLAG_PROMOTE_REASON_MASK) {
404 if (sched_flags & TH_SFLAG_RW_PROMOTED) {
405 priority = MAX(priority, MINPRI_RWLOCK);
406 }
407
408 if (sched_flags & TH_SFLAG_WAITQ_PROMOTED) {
409 priority = MAX(priority, MINPRI_WAITQ);
410 }
411
412 if (sched_flags & TH_SFLAG_EXEC_PROMOTED) {
413 priority = MAX(priority, MINPRI_EXEC);
414 }
415 }
416 }
417
418 set_sched_pri(thread, priority, options);
419}
420
421void
422sched_default_quantum_expire(thread_t thread __unused)
423{
424 /*
425 * No special behavior when a timeshare, fixed, or realtime thread
426 * uses up its entire quantum
427 */
428}
429
430int smt_timeshare_enabled = 1;
431int smt_sched_bonus_16ths = 8;
432
433#if defined(CONFIG_SCHED_TIMESHARE_CORE)
434
435/*
436 * lightweight_update_priority:
437 *
438 * Update the scheduled priority for
439 * a timesharing thread.
440 *
441 * Only for use on the current thread.
442 *
443 * Called with the thread locked.
444 */
445void
446lightweight_update_priority(thread_t thread)
447{
448 assert(thread->runq == PROCESSOR_NULL);
449 assert(thread == current_thread());
450
451 if (thread->sched_mode == TH_MODE_TIMESHARE) {
452 int priority;
453 uint32_t delta;
454
455 thread_timer_delta(thread, delta);
456
457 /*
458 * Accumulate timesharing usage only
459 * during contention for processor
460 * resources.
461 */
462 if (thread->pri_shift < INT8_MAX) {
463 if (thread_no_smt(thread) && smt_timeshare_enabled) {
464 thread->sched_usage += (delta + ((delta * smt_sched_bonus_16ths) >> 4));
465 } else {
466 thread->sched_usage += delta;
467 }
468 }
469
470 thread->cpu_delta += delta;
471
472#if CONFIG_SCHED_CLUTCH
473 /*
474 * Update the CPU usage for the thread group to which the thread belongs.
475 * The implementation assumes that the thread ran for the entire delta
476 * as part of the same thread group.
477 */
478 sched_clutch_cpu_usage_update(thread, delta);
479#endif /* CONFIG_SCHED_CLUTCH */
480
481 priority = sched_compute_timeshare_priority(thread);
482
483 if (priority != thread->sched_pri) {
484 thread_recompute_sched_pri(thread, SETPRI_LAZY);
485 }
486 }
487}
488
489/*
490 * Define shifts for simulating (5/8) ** n
491 *
492 * Shift structures for holding update shifts. Actual computation
493 * is usage = (usage >> shift1) +/- (usage >> abs(shift2)) where the
494 * +/- is determined by the sign of shift 2.
495 */
496
497const struct shift_data sched_decay_shifts[SCHED_DECAY_TICKS] = {
498 { .shift1 = 1, .shift2 = 1 },
499 { .shift1 = 1, .shift2 = 3 },
500 { .shift1 = 1, .shift2 = -3 },
501 { .shift1 = 2, .shift2 = -7 },
502 { .shift1 = 3, .shift2 = 5 },
503 { .shift1 = 3, .shift2 = -5 },
504 { .shift1 = 4, .shift2 = -8 },
505 { .shift1 = 5, .shift2 = 7 },
506 { .shift1 = 5, .shift2 = -7 },
507 { .shift1 = 6, .shift2 = -10 },
508 { .shift1 = 7, .shift2 = 10 },
509 { .shift1 = 7, .shift2 = -9 },
510 { .shift1 = 8, .shift2 = -11 },
511 { .shift1 = 9, .shift2 = 12 },
512 { .shift1 = 9, .shift2 = -11 },
513 { .shift1 = 10, .shift2 = -13 },
514 { .shift1 = 11, .shift2 = 14 },
515 { .shift1 = 11, .shift2 = -13 },
516 { .shift1 = 12, .shift2 = -15 },
517 { .shift1 = 13, .shift2 = 17 },
518 { .shift1 = 13, .shift2 = -15 },
519 { .shift1 = 14, .shift2 = -17 },
520 { .shift1 = 15, .shift2 = 19 },
521 { .shift1 = 16, .shift2 = 18 },
522 { .shift1 = 16, .shift2 = -19 },
523 { .shift1 = 17, .shift2 = 22 },
524 { .shift1 = 18, .shift2 = 20 },
525 { .shift1 = 18, .shift2 = -20 },
526 { .shift1 = 19, .shift2 = 26 },
527 { .shift1 = 20, .shift2 = 22 },
528 { .shift1 = 20, .shift2 = -22 },
529 { .shift1 = 21, .shift2 = -27 }
530};
531
532/*
533 * sched_compute_timeshare_priority:
534 *
535 * Calculate the timesharing priority based upon usage and load.
536 */
537extern int sched_pri_decay_band_limit;
538
539
540/* Only use the decay floor logic on non-macOS and non-clutch schedulers */
541#if !defined(XNU_TARGET_OS_OSX) && !CONFIG_SCHED_CLUTCH
542
543int
544sched_compute_timeshare_priority(thread_t thread)
545{
546 int decay_amount;
547 int decay_limit = sched_pri_decay_band_limit;
548
549 if (thread->base_pri > BASEPRI_FOREGROUND) {
550 decay_limit += (thread->base_pri - BASEPRI_FOREGROUND);
551 }
552
553 if (thread->pri_shift == INT8_MAX) {
554 decay_amount = 0;
555 } else {
556 decay_amount = (thread->sched_usage >> thread->pri_shift);
557 }
558
559 if (decay_amount > decay_limit) {
560 decay_amount = decay_limit;
561 }
562
563 /* start with base priority */
564 int priority = thread->base_pri - decay_amount;
565
566 if (priority < MAXPRI_THROTTLE) {
567 if (thread->task->max_priority > MAXPRI_THROTTLE) {
568 priority = MAXPRI_THROTTLE;
569 } else if (priority < MINPRI_USER) {
570 priority = MINPRI_USER;
571 }
572 } else if (priority > MAXPRI_KERNEL) {
573 priority = MAXPRI_KERNEL;
574 }
575
576 return priority;
577}
578
579#else /* !defined(XNU_TARGET_OS_OSX) && !CONFIG_SCHED_CLUTCH */
580
581int
582sched_compute_timeshare_priority(thread_t thread)
583{
584 /* start with base priority */
585 int priority = thread->base_pri;
586
587 if (thread->pri_shift != INT8_MAX) {
588 priority -= (thread->sched_usage >> thread->pri_shift);
589 }
590
591 if (priority < MINPRI_USER) {
592 priority = MINPRI_USER;
593 } else if (priority > MAXPRI_KERNEL) {
594 priority = MAXPRI_KERNEL;
595 }
596
597 return priority;
598}
599
600#endif /* !defined(XNU_TARGET_OS_OSX) && !CONFIG_SCHED_CLUTCH */
601
602/*
603 * can_update_priority
604 *
605 * Make sure we don't do re-dispatches more frequently than a scheduler tick.
606 *
607 * Called with the thread locked.
608 */
609boolean_t
610can_update_priority(
611 thread_t thread)
612{
613 if (sched_tick == thread->sched_stamp) {
614 return FALSE;
615 } else {
616 return TRUE;
617 }
618}
619
620/*
621 * update_priority
622 *
623 * Perform housekeeping operations driven by scheduler tick.
624 *
625 * Called with the thread locked.
626 */
627void
628update_priority(
629 thread_t thread)
630{
631 uint32_t ticks, delta;
632
633 ticks = sched_tick - thread->sched_stamp;
634 assert(ticks != 0);
635
636 thread->sched_stamp += ticks;
637
638 /* If requested, accelerate aging of sched_usage */
639 if (sched_decay_usage_age_factor > 1) {
640 ticks *= sched_decay_usage_age_factor;
641 }
642
643 /*
644 * Gather cpu usage data.
645 */
646 thread_timer_delta(thread, delta);
647 if (ticks < SCHED_DECAY_TICKS) {
648 /*
649 * Accumulate timesharing usage only during contention for processor
650 * resources. Use the pri_shift from the previous tick window to
651 * determine if the system was in a contended state.
652 */
653 if (thread->pri_shift < INT8_MAX) {
654 if (thread_no_smt(thread) && smt_timeshare_enabled) {
655 thread->sched_usage += (delta + ((delta * smt_sched_bonus_16ths) >> 4));
656 } else {
657 thread->sched_usage += delta;
658 }
659 }
660
661 thread->cpu_usage += delta + thread->cpu_delta;
662 thread->cpu_delta = 0;
663
664#if CONFIG_SCHED_CLUTCH
665 /*
666 * Update the CPU usage for the thread group to which the thread belongs.
667 * The implementation assumes that the thread ran for the entire delta
668 * as part of the same thread group.
669 */
670 sched_clutch_cpu_usage_update(thread, delta);
671#endif /* CONFIG_SCHED_CLUTCH */
672
673 const struct shift_data *shiftp = &sched_decay_shifts[ticks];
674
675 if (shiftp->shift2 > 0) {
676 thread->cpu_usage = (thread->cpu_usage >> shiftp->shift1) +
677 (thread->cpu_usage >> shiftp->shift2);
678 thread->sched_usage = (thread->sched_usage >> shiftp->shift1) +
679 (thread->sched_usage >> shiftp->shift2);
680 } else {
681 thread->cpu_usage = (thread->cpu_usage >> shiftp->shift1) -
682 (thread->cpu_usage >> -(shiftp->shift2));
683 thread->sched_usage = (thread->sched_usage >> shiftp->shift1) -
684 (thread->sched_usage >> -(shiftp->shift2));
685 }
686 } else {
687 thread->cpu_usage = thread->cpu_delta = 0;
688 thread->sched_usage = 0;
689 }
690
691 /*
692 * Check for fail-safe release.
693 */
694 if ((thread->sched_flags & TH_SFLAG_FAILSAFE) &&
695 mach_absolute_time() >= thread->safe_release) {
696 sched_thread_mode_undemote(thread, TH_SFLAG_FAILSAFE);
697 }
698
699 /*
700 * Now that the thread's CPU usage has been accumulated and aged
701 * based on contention of the previous tick window, update the
702 * pri_shift of the thread to match the current global load/shift
703 * values. The updated pri_shift would be used to calculate the
704 * new priority of the thread.
705 */
706#if CONFIG_SCHED_CLUTCH
707 thread->pri_shift = sched_clutch_thread_pri_shift(thread, thread->th_sched_bucket);
708#else /* CONFIG_SCHED_CLUTCH */
709 thread->pri_shift = sched_pri_shifts[thread->th_sched_bucket];
710#endif /* CONFIG_SCHED_CLUTCH */
711
712 /* Recompute scheduled priority if appropriate. */
713 if (thread->sched_mode == TH_MODE_TIMESHARE) {
714 thread_recompute_sched_pri(thread, SETPRI_LAZY);
715 }
716}
717
718#endif /* CONFIG_SCHED_TIMESHARE_CORE */
719
720
721/*
722 * TH_BUCKET_RUN is a count of *all* runnable non-idle threads.
723 * Each other bucket is a count of the runnable non-idle threads
724 * with that property. All updates to these counts should be
725 * performed with os_atomic_* operations.
726 *
727 * For the clutch scheduler, this global bucket is used only for
728 * keeping the total global run count.
729 */
730uint32_t sched_run_buckets[TH_BUCKET_MAX];
731
732static void
733sched_incr_bucket(sched_bucket_t bucket)
734{
735 assert(bucket >= TH_BUCKET_FIXPRI &&
736 bucket <= TH_BUCKET_SHARE_BG);
737
738 os_atomic_inc(&sched_run_buckets[bucket], relaxed);
739}
740
741static void
742sched_decr_bucket(sched_bucket_t bucket)
743{
744 assert(bucket >= TH_BUCKET_FIXPRI &&
745 bucket <= TH_BUCKET_SHARE_BG);
746
747 assert(os_atomic_load(&sched_run_buckets[bucket], relaxed) > 0);
748
749 os_atomic_dec(&sched_run_buckets[bucket], relaxed);
750}
751
752static void
753sched_add_bucket(sched_bucket_t bucket, uint8_t run_weight)
754{
755 assert(bucket >= TH_BUCKET_FIXPRI &&
756 bucket <= TH_BUCKET_SHARE_BG);
757
758 os_atomic_add(&sched_run_buckets[bucket], run_weight, relaxed);
759}
760
761static void
762sched_sub_bucket(sched_bucket_t bucket, uint8_t run_weight)
763{
764 assert(bucket >= TH_BUCKET_FIXPRI &&
765 bucket <= TH_BUCKET_SHARE_BG);
766
767 assert(os_atomic_load(&sched_run_buckets[bucket], relaxed) > 0);
768
769 os_atomic_sub(&sched_run_buckets[bucket], run_weight, relaxed);
770}
771
772uint32_t
773sched_run_incr(thread_t thread)
774{
775 assert((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN);
776
777 uint32_t new_count = os_atomic_inc(&sched_run_buckets[TH_BUCKET_RUN], relaxed);
778
779 sched_incr_bucket(thread->th_sched_bucket);
780
781 return new_count;
782}
783
784uint32_t
785sched_run_decr(thread_t thread)
786{
787 assert((thread->state & (TH_RUN | TH_IDLE)) != TH_RUN);
788
789 sched_decr_bucket(thread->th_sched_bucket);
790
791 uint32_t new_count = os_atomic_dec(&sched_run_buckets[TH_BUCKET_RUN], relaxed);
792
793 return new_count;
794}
795
796uint32_t
797sched_smt_run_incr(thread_t thread)
798{
799 assert((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN);
800
801 uint8_t run_weight = (thread_no_smt(thread) && smt_timeshare_enabled) ? 2 : 1;
802 thread->sched_saved_run_weight = run_weight;
803
804 uint32_t new_count = os_atomic_add(&sched_run_buckets[TH_BUCKET_RUN], run_weight, relaxed);
805
806 sched_add_bucket(thread->th_sched_bucket, run_weight);
807
808 return new_count;
809}
810
811uint32_t
812sched_smt_run_decr(thread_t thread)
813{
814 assert((thread->state & (TH_RUN | TH_IDLE)) != TH_RUN);
815
816 uint8_t run_weight = thread->sched_saved_run_weight;
817
818 sched_sub_bucket(thread->th_sched_bucket, run_weight);
819
820 uint32_t new_count = os_atomic_sub(&sched_run_buckets[TH_BUCKET_RUN], run_weight, relaxed);
821
822 return new_count;
823}
824
825void
826sched_update_thread_bucket(thread_t thread)
827{
828 sched_bucket_t old_bucket = thread->th_sched_bucket;
829 sched_bucket_t new_bucket = TH_BUCKET_RUN;
830
831 switch (thread->sched_mode) {
832 case TH_MODE_FIXED:
833 case TH_MODE_REALTIME:
834 new_bucket = TH_BUCKET_FIXPRI;
835 break;
836
837 case TH_MODE_TIMESHARE:
838 if (thread->base_pri > BASEPRI_DEFAULT) {
839 new_bucket = TH_BUCKET_SHARE_FG;
840 } else if (thread->base_pri > BASEPRI_UTILITY) {
841 new_bucket = TH_BUCKET_SHARE_DF;
842 } else if (thread->base_pri > MAXPRI_THROTTLE) {
843 new_bucket = TH_BUCKET_SHARE_UT;
844 } else {
845 new_bucket = TH_BUCKET_SHARE_BG;
846 }
847 break;
848
849 default:
850 panic("unexpected mode: %d", thread->sched_mode);
851 break;
852 }
853
854 if (old_bucket != new_bucket) {
855 thread->th_sched_bucket = new_bucket;
856 thread->pri_shift = sched_pri_shifts[new_bucket];
857
858 if ((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN) {
859 sched_decr_bucket(old_bucket);
860 sched_incr_bucket(new_bucket);
861 }
862 }
863}
864
865void
866sched_smt_update_thread_bucket(thread_t thread)
867{
868 sched_bucket_t old_bucket = thread->th_sched_bucket;
869 sched_bucket_t new_bucket = TH_BUCKET_RUN;
870
871 switch (thread->sched_mode) {
872 case TH_MODE_FIXED:
873 case TH_MODE_REALTIME:
874 new_bucket = TH_BUCKET_FIXPRI;
875 break;
876
877 case TH_MODE_TIMESHARE:
878 if (thread->base_pri > BASEPRI_DEFAULT) {
879 new_bucket = TH_BUCKET_SHARE_FG;
880 } else if (thread->base_pri > BASEPRI_UTILITY) {
881 new_bucket = TH_BUCKET_SHARE_DF;
882 } else if (thread->base_pri > MAXPRI_THROTTLE) {
883 new_bucket = TH_BUCKET_SHARE_UT;
884 } else {
885 new_bucket = TH_BUCKET_SHARE_BG;
886 }
887 break;
888
889 default:
890 panic("unexpected mode: %d", thread->sched_mode);
891 break;
892 }
893
894 if (old_bucket != new_bucket) {
895 thread->th_sched_bucket = new_bucket;
896 thread->pri_shift = sched_pri_shifts[new_bucket];
897
898 if ((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN) {
899 sched_sub_bucket(old_bucket, thread->sched_saved_run_weight);
900 sched_add_bucket(new_bucket, thread->sched_saved_run_weight);
901 }
902 }
903}
904
905/*
906 * Set the thread's true scheduling mode
907 * Called with thread mutex and thread locked
908 * The thread has already been removed from the runqueue.
909 *
910 * (saved_mode is handled before this point)
911 */
912void
913sched_set_thread_mode(thread_t thread, sched_mode_t new_mode)
914{
915 assert(thread->runq == PROCESSOR_NULL);
916
917 switch (new_mode) {
918 case TH_MODE_FIXED:
919 case TH_MODE_REALTIME:
920 case TH_MODE_TIMESHARE:
921 break;
922
923 default:
924 panic("unexpected mode: %d", new_mode);
925 break;
926 }
927
928#if CONFIG_SCHED_AUTO_JOIN
929 /*
930 * Realtime threads might have auto-joined a work interval based on
931 * make runnable relationships. If such an RT thread is now being demoted
932 * to non-RT, unjoin the thread from the work interval.
933 */
934 if ((thread->sched_flags & TH_SFLAG_THREAD_GROUP_AUTO_JOIN) && (new_mode != TH_MODE_REALTIME)) {
935 assert((thread->sched_mode == TH_MODE_REALTIME) || (thread->th_work_interval_flags & TH_WORK_INTERVAL_FLAGS_AUTO_JOIN_LEAK));
936 work_interval_auto_join_demote(thread);
937 }
938#endif /* CONFIG_SCHED_AUTO_JOIN */
939
940 thread->sched_mode = new_mode;
941
942 SCHED(update_thread_bucket)(thread);
943}
944
945/*
946 * Demote the true scheduler mode to timeshare (called with the thread locked)
947 */
948void
949sched_thread_mode_demote(thread_t thread, uint32_t reason)
950{
951 assert(reason & TH_SFLAG_DEMOTED_MASK);
952 assert((thread->sched_flags & reason) != reason);
953
954 if (thread->policy_reset) {
955 return;
956 }
957
958 if (thread->sched_flags & TH_SFLAG_DEMOTED_MASK) {
959 /* Another demotion reason is already active */
960 thread->sched_flags |= reason;
961 return;
962 }
963
964 assert(thread->saved_mode == TH_MODE_NONE);
965
966 boolean_t removed = thread_run_queue_remove(thread);
967
968 thread->sched_flags |= reason;
969
970 thread->saved_mode = thread->sched_mode;
971
972 sched_set_thread_mode(thread, TH_MODE_TIMESHARE);
973
974 thread_recompute_priority(thread);
975
976 if (removed) {
977 thread_run_queue_reinsert(thread, SCHED_TAILQ);
978 }
979}
980
981/*
982 * Un-demote the true scheduler mode back to the saved mode (called with the thread locked)
983 */
984void
985sched_thread_mode_undemote(thread_t thread, uint32_t reason)
986{
987 assert(reason & TH_SFLAG_DEMOTED_MASK);
988 assert((thread->sched_flags & reason) == reason);
989 assert(thread->saved_mode != TH_MODE_NONE);
990 assert(thread->sched_mode == TH_MODE_TIMESHARE);
991 assert(thread->policy_reset == 0);
992
993 thread->sched_flags &= ~reason;
994
995 if (thread->sched_flags & TH_SFLAG_DEMOTED_MASK) {
996 /* Another demotion reason is still active */
997 return;
998 }
999
1000 boolean_t removed = thread_run_queue_remove(thread);
1001
1002 sched_set_thread_mode(thread, thread->saved_mode);
1003
1004 thread->saved_mode = TH_MODE_NONE;
1005
1006 thread_recompute_priority(thread);
1007
1008 if (removed) {
1009 thread_run_queue_reinsert(thread, SCHED_TAILQ);
1010 }
1011}
1012
1013/*
1014 * Promote thread to have a sched pri floor for a specific reason
1015 *
1016 * Promotion must not last past syscall boundary
1017 * Clients must always pair promote and demote 1:1,
1018 * Handling nesting of the same promote reason is the client's responsibility
1019 *
1020 * Called at splsched with thread locked
1021 */
1022void
1023sched_thread_promote_reason(thread_t thread,
1024 uint32_t reason,
1025 __kdebug_only uintptr_t trace_obj /* already unslid */)
1026{
1027 assert(reason & TH_SFLAG_PROMOTE_REASON_MASK);
1028 assert((thread->sched_flags & reason) != reason);
1029
1030 switch (reason) {
1031 case TH_SFLAG_RW_PROMOTED:
1032 KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_RW_PROMOTE),
1033 thread_tid(thread), thread->sched_pri,
1034 thread->base_pri, trace_obj);
1035 break;
1036 case TH_SFLAG_WAITQ_PROMOTED:
1037 KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAITQ_PROMOTE),
1038 thread_tid(thread), thread->sched_pri,
1039 thread->base_pri, trace_obj);
1040 break;
1041 case TH_SFLAG_EXEC_PROMOTED:
1042 KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_EXEC_PROMOTE),
1043 thread_tid(thread), thread->sched_pri,
1044 thread->base_pri, trace_obj);
1045 break;
1046 }
1047
1048 thread->sched_flags |= reason;
1049
1050 thread_recompute_sched_pri(thread, SETPRI_DEFAULT);
1051}
1052
1053/*
1054 * End a specific promotion reason
1055 * Demotes a thread back to its expected priority without the promotion in place
1056 *
1057 * Called at splsched with thread locked
1058 */
1059void
1060sched_thread_unpromote_reason(thread_t thread,
1061 uint32_t reason,
1062 __kdebug_only uintptr_t trace_obj /* already unslid */)
1063{
1064 assert(reason & TH_SFLAG_PROMOTE_REASON_MASK);
1065 assert((thread->sched_flags & reason) == reason);
1066
1067 switch (reason) {
1068 case TH_SFLAG_RW_PROMOTED:
1069 KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_RW_DEMOTE),
1070 thread_tid(thread), thread->sched_pri,
1071 thread->base_pri, trace_obj);
1072 break;
1073 case TH_SFLAG_WAITQ_PROMOTED:
1074 KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAITQ_DEMOTE),
1075 thread_tid(thread), thread->sched_pri,
1076 thread->base_pri, trace_obj);
1077 break;
1078 case TH_SFLAG_EXEC_PROMOTED:
1079 KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_EXEC_DEMOTE),
1080 thread_tid(thread), thread->sched_pri,
1081 thread->base_pri, trace_obj);
1082 break;
1083 }
1084
1085 thread->sched_flags &= ~reason;
1086
1087 thread_recompute_sched_pri(thread, SETPRI_DEFAULT);
1088}