]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2016-2020 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <kern/cpu_data.h> | |
29 | #include <kern/kern_types.h> | |
30 | #include <kern/clock.h> | |
31 | #include <kern/locks.h> | |
32 | #include <kern/ltable.h> | |
33 | #include <kern/zalloc.h> | |
34 | #include <libkern/OSAtomic.h> | |
35 | #include <pexpert/pexpert.h> | |
36 | #include <vm/vm_kern.h> | |
37 | ||
38 | ||
39 | #define P2ROUNDUP(x, align) (-(-((uintptr_t)(x)) & -((uintptr_t)align))) | |
40 | #define ROUNDDOWN(x, y) (((x)/(y))*(y)) | |
41 | ||
42 | /* ---------------------------------------------------------------------- | |
43 | * | |
44 | * Lockless Link Table Interface | |
45 | * | |
46 | * ---------------------------------------------------------------------- */ | |
47 | ||
48 | /* default VA space for link tables (zone allocated) */ | |
49 | #define DEFAULT_MAX_TABLE_SIZE P2ROUNDUP(8 * 1024 * 1024, PAGE_SIZE) | |
50 | ||
51 | TUNABLE(vm_size_t, g_lt_max_tbl_size, "lt_tbl_size", 0); | |
52 | LCK_GRP_DECLARE(g_lt_lck_grp, "link_table_locks"); | |
53 | ||
54 | #if DEVELOPMENT || DEBUG | |
55 | /* global for lldb macros */ | |
56 | uint64_t g_lt_idx_max = LT_IDX_MAX; | |
57 | #endif | |
58 | ||
59 | __startup_func | |
60 | static void | |
61 | ltable_startup_tunables_init(void) | |
62 | { | |
63 | // make sure that if a boot-arg was passed, g_lt_max_tbl_size | |
64 | // is a PAGE_SIZE multiple. | |
65 | // | |
66 | // Also set the default for platforms where PAGE_SIZE | |
67 | // isn't a compile time constant. | |
68 | if (g_lt_max_tbl_size == 0) { | |
69 | g_lt_max_tbl_size = (typeof(g_lt_max_tbl_size))DEFAULT_MAX_TABLE_SIZE; | |
70 | } else { | |
71 | g_lt_max_tbl_size = round_page(g_lt_max_tbl_size); | |
72 | } | |
73 | } | |
74 | STARTUP(TUNABLES, STARTUP_RANK_MIDDLE, ltable_startup_tunables_init); | |
75 | ||
76 | ||
77 | /* construct a link table element from an offset and mask into a slab */ | |
78 | #define lt_elem_ofst_slab(slab, slab_msk, ofst) \ | |
79 | /* cast through 'void *' to avoid compiler alignment warning messages */ \ | |
80 | ((struct lt_elem *)((void *)((uintptr_t)(slab) + ((ofst) & (slab_msk))))) | |
81 | ||
82 | #if CONFIG_LTABLE_STATS | |
83 | /* version that makes no assumption on waste within a slab */ | |
84 | static inline struct lt_elem * | |
85 | lt_elem_idx(struct link_table *table, uint32_t idx) | |
86 | { | |
87 | int slab_idx = idx / table->slab_elem; | |
88 | struct lt_elem *slab = table->table[slab_idx]; | |
89 | if (!slab) { | |
90 | panic("Invalid index:%d slab:%d (NULL) for table:%p\n", | |
91 | idx, slab_idx, table); | |
92 | } | |
93 | assert(slab->lt_id.idx <= idx && (slab->lt_id.idx + table->slab_elem) > idx); | |
94 | return lt_elem_ofst_slab(slab, table->slab_msk, (idx - slab->lt_id.idx) * table->elem_sz); | |
95 | } | |
96 | #else /* !CONFIG_LTABLE_STATS */ | |
97 | /* verion that assumes 100% ultilization of slabs (no waste) */ | |
98 | static inline struct lt_elem * | |
99 | lt_elem_idx(struct link_table *table, uint32_t idx) | |
100 | { | |
101 | uint32_t ofst = idx * table->elem_sz; | |
102 | struct lt_elem *slab = table->table[ofst >> table->slab_shift]; | |
103 | if (!slab) { | |
104 | panic("Invalid index:%d slab:%d (NULL) for table:%p\n", | |
105 | idx, (ofst >> table->slab_shift), table); | |
106 | } | |
107 | assert(slab->lt_id.idx <= idx && (slab->lt_id.idx + table->slab_elem) > idx); | |
108 | return lt_elem_ofst_slab(slab, table->slab_msk, ofst); | |
109 | } | |
110 | #endif /* CONFIG_LTABLE_STATS */ | |
111 | ||
112 | static int __assert_only | |
113 | lt_elem_in_range(struct lt_elem *elem, struct link_table *table) | |
114 | { | |
115 | struct lt_elem **base = table->table; | |
116 | uintptr_t e = (uintptr_t)elem; | |
117 | assert(base != NULL); | |
118 | while (*base != NULL) { | |
119 | uintptr_t b = (uintptr_t)(*base); | |
120 | if (e >= b && e < b + table->slab_sz) { | |
121 | return 1; | |
122 | } | |
123 | base++; | |
124 | if ((uintptr_t)base >= (uintptr_t)table->table + PAGE_SIZE) { | |
125 | return 0; | |
126 | } | |
127 | } | |
128 | return 0; | |
129 | } | |
130 | ||
131 | ||
132 | /** | |
133 | * lt_elem_invalidate: mark 'elem' as invalid | |
134 | * | |
135 | * NOTE: this does _not_ get or put a reference on 'elem' | |
136 | */ | |
137 | void | |
138 | lt_elem_invalidate(struct lt_elem *elem) | |
139 | { | |
140 | uint32_t __assert_only old = OSBitAndAtomic(~LT_BITS_VALID, &elem->lt_bits); | |
141 | OSMemoryBarrier(); | |
142 | assert(((lt_bits_type(old) != LT_RESERVED) && (old & LT_BITS_VALID)) || | |
143 | ((lt_bits_type(old) == LT_RESERVED) && !(old & LT_BITS_VALID))); | |
144 | } | |
145 | ||
146 | /** | |
147 | * lt_elem_mkvalid: mark 'elem' as valid | |
148 | * | |
149 | * NOTE: this does _not_ get or put a reference on 'elem' | |
150 | */ | |
151 | void | |
152 | lt_elem_mkvalid(struct lt_elem *elem) | |
153 | { | |
154 | uint32_t __assert_only old = OSBitOrAtomic(LT_BITS_VALID, &elem->lt_bits); | |
155 | OSMemoryBarrier(); | |
156 | assert(!(old & LT_BITS_VALID)); | |
157 | } | |
158 | ||
159 | static void | |
160 | lt_elem_set_type(struct lt_elem *elem, int type) | |
161 | { | |
162 | uint32_t old_bits, new_bits; | |
163 | do { | |
164 | old_bits = elem->lt_bits; | |
165 | new_bits = (old_bits & ~LT_BITS_TYPE) | | |
166 | ((type & LT_BITS_TYPE_MASK) << LT_BITS_TYPE_SHIFT); | |
167 | } while (OSCompareAndSwap(old_bits, new_bits, &elem->lt_bits) == FALSE); | |
168 | OSMemoryBarrier(); | |
169 | } | |
170 | ||
171 | ||
172 | /** | |
173 | * ltable_init: initialize a link table with given parameters | |
174 | * | |
175 | */ | |
176 | void | |
177 | ltable_init(struct link_table *table, const char *name, | |
178 | uint32_t max_tbl_elem, uint32_t elem_sz, | |
179 | ltable_poison_func poison) | |
180 | { | |
181 | kern_return_t kr; | |
182 | uint32_t slab_sz, slab_shift, slab_msk, slab_elem; | |
183 | zone_t slab_zone; | |
184 | size_t max_tbl_sz; | |
185 | struct lt_elem *e, **base; | |
186 | ||
187 | #ifndef CONFIG_LTABLE_STATS | |
188 | /* the element size _must_ be a power of two! */ | |
189 | if ((elem_sz & (elem_sz - 1)) != 0) { | |
190 | panic("elem_sz:%d for table:'%s' must be a power of two!", | |
191 | elem_sz, name); | |
192 | } | |
193 | #endif | |
194 | ||
195 | /* | |
196 | * First, allocate a single page of memory to act as the base | |
197 | * for the table's element slabs | |
198 | */ | |
199 | kr = kernel_memory_allocate(kernel_map, (vm_offset_t *)&base, | |
200 | PAGE_SIZE, 0, KMA_NOPAGEWAIT, VM_KERN_MEMORY_LTABLE); | |
201 | if (kr != KERN_SUCCESS) { | |
202 | panic("Cannot initialize %s table: " | |
203 | "kernel_memory_allocate failed:%d\n", name, kr); | |
204 | } | |
205 | memset(base, 0, PAGE_SIZE); | |
206 | ||
207 | /* | |
208 | * Based on the maximum table size, calculate the slab size: | |
209 | * we allocate 1 page of slab pointers for the table, and we need to | |
210 | * index elements of 'elem_sz', this gives us the slab size based on | |
211 | * the maximum size the table should grow. | |
212 | */ | |
213 | max_tbl_sz = (max_tbl_elem * elem_sz); | |
214 | max_tbl_sz = P2ROUNDUP(max_tbl_sz, PAGE_SIZE); | |
215 | ||
216 | /* system maximum table size divided by number of slots in a page */ | |
217 | slab_sz = (uint32_t)(max_tbl_sz / (PAGE_SIZE / (sizeof(void *)))); | |
218 | if (slab_sz < PAGE_SIZE) { | |
219 | slab_sz = PAGE_SIZE; | |
220 | } | |
221 | ||
222 | /* make sure the slab size is a power of two */ | |
223 | slab_shift = 0; | |
224 | slab_msk = ~0; | |
225 | for (uint32_t i = 0; i < 31; i++) { | |
226 | uint32_t bit = (1 << i); | |
227 | if ((slab_sz & bit) == slab_sz) { | |
228 | slab_shift = i; | |
229 | slab_msk = 0; | |
230 | for (uint32_t j = 0; j < i; j++) { | |
231 | slab_msk |= (1 << j); | |
232 | } | |
233 | break; | |
234 | } | |
235 | slab_sz &= ~bit; | |
236 | } | |
237 | slab_elem = slab_sz / elem_sz; | |
238 | ||
239 | /* initialize the table's slab zone (for table growth) */ | |
240 | ltdbg("Initializing %s zone: slab:%d (%d,0x%x) max:%ld", | |
241 | name, slab_sz, slab_shift, slab_msk, max_tbl_sz); | |
242 | slab_zone = zone_create(name, slab_sz, ZC_NONE); | |
243 | assert(slab_zone != ZONE_NULL); | |
244 | ||
245 | /* allocate the first slab and populate it */ | |
246 | base[0] = (struct lt_elem *)zalloc(slab_zone); | |
247 | if (base[0] == NULL) { | |
248 | panic("Can't allocate a %s table slab from zone:%p", | |
249 | name, slab_zone); | |
250 | } | |
251 | ||
252 | memset(base[0], 0, slab_sz); | |
253 | ||
254 | /* setup the initial freelist */ | |
255 | ltdbg("initializing %d links (%d bytes each)...", slab_elem, elem_sz); | |
256 | for (unsigned l = 0; l < slab_elem; l++) { | |
257 | e = lt_elem_ofst_slab(base[0], slab_msk, l * elem_sz); | |
258 | e->lt_id.idx = l; | |
259 | /* | |
260 | * setting generation to 0 ensures that a setid of 0 is | |
261 | * invalid because the generation will be incremented before | |
262 | * each element's allocation. | |
263 | */ | |
264 | e->lt_id.generation = 0; | |
265 | e->lt_next_idx = l + 1; | |
266 | } | |
267 | ||
268 | /* make sure the last free element points to a never-valid idx */ | |
269 | e = lt_elem_ofst_slab(base[0], slab_msk, (slab_elem - 1) * elem_sz); | |
270 | e->lt_next_idx = LT_IDX_MAX; | |
271 | ||
272 | lck_mtx_init(&table->lock, &g_lt_lck_grp, LCK_ATTR_NULL); | |
273 | ||
274 | table->slab_sz = slab_sz; | |
275 | table->slab_shift = slab_shift; | |
276 | table->slab_msk = slab_msk; | |
277 | table->slab_elem = slab_elem; | |
278 | table->slab_zone = slab_zone; | |
279 | ||
280 | table->elem_sz = elem_sz; | |
281 | table->nelem = slab_elem; | |
282 | table->used_elem = 0; | |
283 | table->elem_sz = elem_sz; | |
284 | table->poison = poison; | |
285 | ||
286 | table->table = base; | |
287 | table->next_free_slab = &base[1]; | |
288 | table->free_list.id = base[0]->lt_id.id; | |
289 | ||
290 | #if CONFIG_LTABLE_STATS | |
291 | table->nslabs = 1; | |
292 | table->nallocs = 0; | |
293 | table->nreallocs = 0; | |
294 | table->npreposts = 0; | |
295 | table->nreservations = 0; | |
296 | table->nreserved_releases = 0; | |
297 | ||
298 | table->max_used = 0; | |
299 | table->avg_used = 0; | |
300 | table->max_reservations = 0; | |
301 | table->avg_reservations = 0; | |
302 | #endif | |
303 | } | |
304 | ||
305 | ||
306 | /** | |
307 | * ltable_grow: grow a link table by adding another 'slab' of table elements | |
308 | * | |
309 | * Conditions: | |
310 | * table mutex is unlocked | |
311 | * calling thread can block | |
312 | */ | |
313 | void | |
314 | ltable_grow(struct link_table *table, uint32_t min_free) | |
315 | { | |
316 | struct lt_elem *slab, **slot; | |
317 | struct lt_elem *e = NULL, *first_new_elem, *last_new_elem; | |
318 | struct ltable_id free_id; | |
319 | uint32_t free_elem; | |
320 | ||
321 | assert(get_preemption_level() == 0); | |
322 | assert(table && table->slab_zone); | |
323 | ||
324 | lck_mtx_lock(&table->lock); | |
325 | ||
326 | free_elem = table->nelem - table->used_elem; | |
327 | ||
328 | /* | |
329 | * If the caller just wanted to ensure a minimum number of elements, | |
330 | * do that (and don't just blindly grow the table). Also, don't grow | |
331 | * the table unnecessarily - we could have been beaten by a higher | |
332 | * priority thread who acquired the lock and grew the table before we | |
333 | * got here. | |
334 | */ | |
335 | if (free_elem > min_free) { | |
336 | lck_mtx_unlock(&table->lock); | |
337 | return; | |
338 | } | |
339 | ||
340 | /* we are now committed to table growth */ | |
341 | ltdbg_v("BEGIN"); | |
342 | ||
343 | if (table->next_free_slab == NULL) { | |
344 | /* | |
345 | * before we panic, check one more time to see if any other | |
346 | * threads have free'd from space in the table. | |
347 | */ | |
348 | if ((table->nelem - table->used_elem) > 0) { | |
349 | /* there's at least 1 free element: don't panic yet */ | |
350 | lck_mtx_unlock(&table->lock); | |
351 | return; | |
352 | } | |
353 | panic("No more room to grow table: %p (nelem: %d, used: %d)", | |
354 | table, table->nelem, table->used_elem); | |
355 | } | |
356 | slot = table->next_free_slab; | |
357 | table->next_free_slab++; | |
358 | if ((uintptr_t)table->next_free_slab >= (uintptr_t)table->table + PAGE_SIZE) { | |
359 | table->next_free_slab = NULL; | |
360 | } | |
361 | ||
362 | assert(*slot == NULL); | |
363 | ||
364 | /* allocate another slab */ | |
365 | slab = (struct lt_elem *)zalloc(table->slab_zone); | |
366 | if (slab == NULL) { | |
367 | panic("Can't allocate a %s%s table (%p) slab from zone:%p", | |
368 | zone_heap_name(table->slab_zone), zone_name(table->slab_zone), | |
369 | table, table->slab_zone); | |
370 | } | |
371 | ||
372 | memset(slab, 0, table->slab_sz); | |
373 | ||
374 | /* put the new elements into a freelist */ | |
375 | ltdbg_v(" init %d new links...", table->slab_elem); | |
376 | for (unsigned l = 0; l < table->slab_elem; l++) { | |
377 | uint32_t idx = l + table->nelem; | |
378 | if (idx >= (LT_IDX_MAX - 1)) { | |
379 | break; /* the last element of the last slab */ | |
380 | } | |
381 | e = lt_elem_ofst_slab(slab, table->slab_msk, l * table->elem_sz); | |
382 | e->lt_id.idx = idx; | |
383 | e->lt_next_idx = idx + 1; | |
384 | } | |
385 | last_new_elem = e; | |
386 | assert(last_new_elem != NULL); | |
387 | ||
388 | first_new_elem = lt_elem_ofst_slab(slab, table->slab_msk, 0); | |
389 | ||
390 | /* update table book keeping, and atomically swap the freelist head */ | |
391 | *slot = slab; | |
392 | if (table->nelem + table->slab_elem >= LT_IDX_MAX) { | |
393 | table->nelem = LT_IDX_MAX - 1; | |
394 | } else { | |
395 | table->nelem += table->slab_elem; | |
396 | } | |
397 | ||
398 | #if CONFIG_LTABLE_STATS | |
399 | table->nslabs += 1; | |
400 | #endif | |
401 | ||
402 | /* | |
403 | * The atomic swap of the free list head marks the end of table | |
404 | * growth. Incoming requests may now use the newly allocated slab | |
405 | * of table elements | |
406 | */ | |
407 | free_id = table->free_list; | |
408 | /* connect the existing free list to the end of the new free list */ | |
409 | last_new_elem->lt_next_idx = free_id.idx; | |
410 | while (OSCompareAndSwap64(free_id.id, first_new_elem->lt_id.id, | |
411 | &table->free_list.id) == FALSE) { | |
412 | OSMemoryBarrier(); | |
413 | free_id = table->free_list; | |
414 | last_new_elem->lt_next_idx = free_id.idx; | |
415 | } | |
416 | OSMemoryBarrier(); | |
417 | ||
418 | lck_mtx_unlock(&table->lock); | |
419 | ||
420 | return; | |
421 | } | |
422 | ||
423 | #if DEVELOPMENT || DEBUG | |
424 | ||
425 | int | |
426 | ltable_nelem(struct link_table *table) | |
427 | { | |
428 | int nelem = 0; | |
429 | ||
430 | lck_mtx_lock(&table->lock); | |
431 | ||
432 | nelem = table->used_elem; | |
433 | ||
434 | lck_mtx_unlock(&table->lock); | |
435 | ||
436 | return nelem; | |
437 | } | |
438 | #endif | |
439 | ||
440 | /** | |
441 | * ltable_alloc_elem: allocate one or more elements from a given table | |
442 | * | |
443 | * The returned element(s) will be of type 'type', but will remain invalid. | |
444 | * | |
445 | * If the caller has disabled preemption, then this function may (rarely) spin | |
446 | * waiting either for another thread to either release 'nelem' table elements, | |
447 | * or grow the table. | |
448 | * | |
449 | * If the caller can block, then this function may (rarely) block while | |
450 | * the table grows to meet the demand for 'nelem' element(s). | |
451 | */ | |
452 | __attribute__((noinline)) | |
453 | struct lt_elem * | |
454 | ltable_alloc_elem(struct link_table *table, int type, | |
455 | int nelem, int nattempts) | |
456 | { | |
457 | int nspins = 0, ntries = 0, nalloc = 0; | |
458 | uint32_t table_size; | |
459 | struct lt_elem *elem = NULL; | |
460 | struct ltable_id free_id, next_id; | |
461 | ||
462 | static const int max_retries = 500; | |
463 | ||
464 | if (type != LT_ELEM && type != LT_LINK && type != LT_RESERVED) { | |
465 | panic("link_table_aloc of invalid elem type:%d from table @%p", | |
466 | type, table); | |
467 | } | |
468 | ||
469 | assert(nelem > 0); | |
470 | ||
471 | /* | |
472 | * If the callers only wants to try a certain number of times, make it | |
473 | * look like we've already made (MAX - nattempts) tries at allocation | |
474 | */ | |
475 | if (nattempts > 0 && nattempts <= max_retries) { | |
476 | ntries = max_retries - nattempts; | |
477 | } | |
478 | ||
479 | try_again: | |
480 | elem = NULL; | |
481 | if (ntries++ > max_retries) { | |
482 | struct lt_elem *tmp; | |
483 | if (nattempts > 0) { | |
484 | /* | |
485 | * The caller specified a particular number of | |
486 | * attempts before failure, so it's expected that | |
487 | * they're prepared to handle a NULL return. | |
488 | */ | |
489 | return NULL; | |
490 | } | |
491 | ||
492 | if (table->used_elem + nelem >= table_size) { | |
493 | panic("No more room to grow table: 0x%p size:%d, used:%d, requested elem:%d", | |
494 | table, table_size, table->used_elem, nelem); | |
495 | } | |
496 | if (nelem == 1) { | |
497 | panic("Too many alloc retries: %d, table:%p, type:%d, nelem:%d", | |
498 | ntries, table, type, nelem); | |
499 | } | |
500 | /* don't panic: try allocating one-at-a-time */ | |
501 | while (nelem > 0) { | |
502 | tmp = ltable_alloc_elem(table, type, 1, nattempts); | |
503 | if (elem) { | |
504 | lt_elem_list_link(table, tmp, elem); | |
505 | } | |
506 | elem = tmp; | |
507 | --nelem; | |
508 | } | |
509 | assert(elem != NULL); | |
510 | return elem; | |
511 | } | |
512 | ||
513 | nalloc = 0; | |
514 | table_size = table->nelem; | |
515 | ||
516 | if (table->used_elem + nelem >= table_size) { | |
517 | if (get_preemption_level() != 0) { | |
518 | #if CONFIG_LTABLE_STATS | |
519 | table->nspins += 1; | |
520 | #endif | |
521 | /* | |
522 | * We may have just raced with table growth: check | |
523 | * again to make sure there really isn't any space. | |
524 | */ | |
525 | if (++nspins > 4) { | |
526 | panic("Can't grow table %p with preemption" | |
527 | " disabled!", table); | |
528 | } | |
529 | delay(1); | |
530 | goto try_again; | |
531 | } | |
532 | ltable_grow(table, nelem); | |
533 | goto try_again; | |
534 | } | |
535 | ||
536 | /* read this value only once before the CAS */ | |
537 | free_id = table->free_list; | |
538 | if (free_id.idx >= table_size) { | |
539 | goto try_again; | |
540 | } | |
541 | ||
542 | /* | |
543 | * Find the item on the free list which will become the new free list | |
544 | * head, but be careful not to modify any memory (read only)! Other | |
545 | * threads can alter table state at any time up until the CAS. We | |
546 | * don't modify any memory until we've successfully swapped out the | |
547 | * free list head with the one we've investigated. | |
548 | */ | |
549 | for (struct lt_elem *next_elem = lt_elem_idx(table, free_id.idx); | |
550 | nalloc < nelem; | |
551 | nalloc++) { | |
552 | elem = next_elem; | |
553 | next_id.generation = 0; | |
554 | next_id.idx = next_elem->lt_next_idx; | |
555 | if (next_id.idx < table->nelem) { | |
556 | next_elem = lt_elem_idx(table, next_id.idx); | |
557 | next_id.id = next_elem->lt_id.id; | |
558 | } else { | |
559 | goto try_again; | |
560 | } | |
561 | } | |
562 | /* 'elem' points to the last element being allocated */ | |
563 | ||
564 | if (OSCompareAndSwap64(free_id.id, next_id.id, | |
565 | &table->free_list.id) == FALSE) { | |
566 | goto try_again; | |
567 | } | |
568 | ||
569 | /* load barrier */ | |
570 | OSMemoryBarrier(); | |
571 | ||
572 | /* | |
573 | * After the CAS, we know that we own free_id, and it points to a | |
574 | * valid table entry (checked above). Grab the table pointer and | |
575 | * reset some values. | |
576 | */ | |
577 | OSAddAtomic(nelem, &table->used_elem); | |
578 | ||
579 | /* end the list of allocated elements */ | |
580 | elem->lt_next_idx = LT_IDX_MAX; | |
581 | /* reset 'elem' to point to the first allocated element */ | |
582 | elem = lt_elem_idx(table, free_id.idx); | |
583 | ||
584 | /* | |
585 | * Update the generation count, and return the element(s) | |
586 | * with a single reference (and no valid bit). If the | |
587 | * caller immediately calls _put() on any element, then | |
588 | * it will be released back to the free list. If the caller | |
589 | * subsequently marks the element as valid, then the put | |
590 | * will simply drop the reference. | |
591 | */ | |
592 | for (struct lt_elem *tmp = elem;;) { | |
593 | assert(!lt_bits_valid(tmp->lt_bits) && | |
594 | (lt_bits_refcnt(tmp->lt_bits) == 0)); | |
595 | --nalloc; | |
596 | tmp->lt_id.generation += 1; | |
597 | tmp->lt_bits = 1; | |
598 | lt_elem_set_type(tmp, type); | |
599 | if (tmp->lt_next_idx == LT_IDX_MAX) { | |
600 | break; | |
601 | } | |
602 | assert(tmp->lt_next_idx != LT_IDX_MAX); | |
603 | tmp = lt_elem_idx(table, tmp->lt_next_idx); | |
604 | } | |
605 | assert(nalloc == 0); | |
606 | ||
607 | #if CONFIG_LTABLE_STATS | |
608 | uint64_t nreservations; | |
609 | table->nallocs += nelem; | |
610 | if (type == LT_RESERVED) { | |
611 | OSIncrementAtomic64(&table->nreservations); | |
612 | } | |
613 | nreservations = table->nreservations; | |
614 | if (table->used_elem > table->max_used) { | |
615 | table->max_used = table->used_elem; | |
616 | } | |
617 | if (nreservations > table->max_reservations) { | |
618 | table->max_reservations = nreservations; | |
619 | } | |
620 | table->avg_used = (table->avg_used + table->used_elem) / 2; | |
621 | table->avg_reservations = (table->avg_reservations + nreservations) / 2; | |
622 | #endif | |
623 | ||
624 | return elem; | |
625 | } | |
626 | ||
627 | ||
628 | /** | |
629 | * ltable_realloc_elem: convert a reserved element to a particular type | |
630 | * | |
631 | * This funciton is used to convert reserved elements (not yet marked valid) | |
632 | * to the given 'type'. The generation of 'elem' is incremented, the element | |
633 | * is disconnected from any list to which it belongs, and its type is set to | |
634 | * 'type'. | |
635 | */ | |
636 | void | |
637 | ltable_realloc_elem(struct link_table *table, struct lt_elem *elem, int type) | |
638 | { | |
639 | (void)table; | |
640 | assert(lt_elem_in_range(elem, table) && | |
641 | !lt_bits_valid(elem->lt_bits)); | |
642 | ||
643 | #if CONFIG_LTABLE_STATS | |
644 | table->nreallocs += 1; | |
645 | if (lt_bits_type(elem->lt_bits) == LT_RESERVED && type != LT_RESERVED) { | |
646 | /* | |
647 | * This isn't under any lock, so we'll clamp it. | |
648 | * the stats are meant to be informative, not perfectly | |
649 | * accurate | |
650 | */ | |
651 | OSDecrementAtomic64(&table->nreservations); | |
652 | } | |
653 | table->avg_reservations = (table->avg_reservations + table->nreservations) / 2; | |
654 | #endif | |
655 | ||
656 | /* | |
657 | * Return the same element with a new generation count, and a | |
658 | * (potentially) new type. Don't touch the refcount: the caller | |
659 | * is responsible for getting that (and the valid bit) correct. | |
660 | */ | |
661 | elem->lt_id.generation += 1; | |
662 | elem->lt_next_idx = LT_IDX_MAX; | |
663 | lt_elem_set_type(elem, type); | |
664 | ||
665 | return; | |
666 | } | |
667 | ||
668 | ||
669 | /** | |
670 | * ltable_free_elem: release an element back to a link table | |
671 | * | |
672 | * Do not call this function directly: use ltable_[get|put]_elem! | |
673 | * | |
674 | * Conditions: | |
675 | * 'elem' was originally allocated from 'table' | |
676 | * 'elem' is _not_ marked valid | |
677 | * 'elem' has a reference count of 0 | |
678 | */ | |
679 | static void | |
680 | ltable_free_elem(struct link_table *table, struct lt_elem *elem) | |
681 | { | |
682 | struct ltable_id next_id; | |
683 | ||
684 | assert(lt_elem_in_range(elem, table) && | |
685 | !lt_bits_valid(elem->lt_bits) && | |
686 | (lt_bits_refcnt(elem->lt_bits) == 0)); | |
687 | ||
688 | OSDecrementAtomic(&table->used_elem); | |
689 | ||
690 | #if CONFIG_LTABLE_STATS | |
691 | table->avg_used = (table->avg_used + table->used_elem) / 2; | |
692 | if (lt_bits_type(elem->lt_bits) == LT_RESERVED) { | |
693 | OSDecrementAtomic64(&table->nreservations); | |
694 | } | |
695 | table->avg_reservations = (table->avg_reservations + table->nreservations) / 2; | |
696 | #endif | |
697 | ||
698 | elem->lt_bits = 0; | |
699 | ||
700 | if (table->poison) { | |
701 | (table->poison)(table, elem); | |
702 | } | |
703 | ||
704 | again: | |
705 | next_id = table->free_list; | |
706 | if (next_id.idx >= table->nelem) { | |
707 | elem->lt_next_idx = LT_IDX_MAX; | |
708 | } else { | |
709 | elem->lt_next_idx = next_id.idx; | |
710 | } | |
711 | ||
712 | /* store barrier */ | |
713 | OSMemoryBarrier(); | |
714 | if (OSCompareAndSwap64(next_id.id, elem->lt_id.id, | |
715 | &table->free_list.id) == FALSE) { | |
716 | goto again; | |
717 | } | |
718 | } | |
719 | ||
720 | ||
721 | /** | |
722 | * ltable_get_elem: get a reference to a table element identified by 'id' | |
723 | * | |
724 | * Returns a reference to the table element associated with the given 'id', or | |
725 | * NULL if the 'id' was invalid or does not exist in 'table'. The caller is | |
726 | * responsible to release the reference using ltable_put_elem(). | |
727 | * | |
728 | * NOTE: if the table element pointed to by 'id' is marked as invalid, | |
729 | * this function will return NULL. | |
730 | */ | |
731 | struct lt_elem * | |
732 | ltable_get_elem(struct link_table *table, uint64_t id) | |
733 | { | |
734 | struct lt_elem *elem; | |
735 | uint32_t idx, bits, new_bits; | |
736 | ||
737 | /* | |
738 | * Here we have a reference to the table which is guaranteed to remain | |
739 | * valid until we drop the reference | |
740 | */ | |
741 | ||
742 | idx = ((struct ltable_id *)&id)->idx; | |
743 | ||
744 | if (idx >= table->nelem) { | |
745 | panic("id:0x%llx : idx:%d > %d", id, idx, table->nelem); | |
746 | } | |
747 | ||
748 | elem = lt_elem_idx(table, idx); | |
749 | ||
750 | /* verify the validity by taking a reference on the table object */ | |
751 | bits = elem->lt_bits; | |
752 | if (!lt_bits_valid(bits)) { | |
753 | return NULL; | |
754 | } | |
755 | ||
756 | /* | |
757 | * do a pre-verify on the element ID to potentially | |
758 | * avoid 2 compare-and-swaps | |
759 | */ | |
760 | if (elem->lt_id.id != id) { | |
761 | return NULL; | |
762 | } | |
763 | ||
764 | new_bits = bits + 1; | |
765 | ||
766 | /* check for overflow */ | |
767 | assert(lt_bits_refcnt(new_bits) > 0); | |
768 | ||
769 | while (OSCompareAndSwap(bits, new_bits, &elem->lt_bits) == FALSE) { | |
770 | /* | |
771 | * either the element became invalid, | |
772 | * or someone else grabbed/removed a reference. | |
773 | */ | |
774 | bits = elem->lt_bits; | |
775 | if (!lt_bits_valid(bits)) { | |
776 | /* don't return invalid elements */ | |
777 | return NULL; | |
778 | } | |
779 | new_bits = bits + 1; | |
780 | assert(lt_bits_refcnt(new_bits) > 0); | |
781 | } | |
782 | ||
783 | /* load barrier */ | |
784 | OSMemoryBarrier(); | |
785 | ||
786 | /* check to see that our reference is to the same generation! */ | |
787 | if (elem->lt_id.id != id) { | |
788 | /* | |
789 | * ltdbg("ID:0x%llx table generation (%d) != %d", | |
790 | * id, elem->lt_id.generation, | |
791 | * ((struct ltable_id *)&id)->generation); | |
792 | */ | |
793 | ltable_put_elem(table, elem); | |
794 | return NULL; | |
795 | } | |
796 | ||
797 | /* We now have a reference on a valid object */ | |
798 | return elem; | |
799 | } | |
800 | ||
801 | /** | |
802 | * ltable_put_elem: release a reference to table element | |
803 | * | |
804 | * This function releases a reference taken on a table element via | |
805 | * ltable_get_elem(). This function will release the element back to 'table' | |
806 | * when the reference count goes to 0 AND the element has been marked as | |
807 | * invalid. | |
808 | */ | |
809 | void | |
810 | ltable_put_elem(struct link_table *table, struct lt_elem *elem) | |
811 | { | |
812 | uint32_t bits, new_bits; | |
813 | ||
814 | assert(lt_elem_in_range(elem, table)); | |
815 | ||
816 | bits = elem->lt_bits; | |
817 | new_bits = bits - 1; | |
818 | ||
819 | /* check for underflow */ | |
820 | assert(lt_bits_refcnt(new_bits) < LT_BITS_REFCNT_MASK); | |
821 | ||
822 | while (OSCompareAndSwap(bits, new_bits, &elem->lt_bits) == FALSE) { | |
823 | bits = elem->lt_bits; | |
824 | new_bits = bits - 1; | |
825 | /* catch underflow */ | |
826 | assert(lt_bits_refcnt(new_bits) < LT_BITS_REFCNT_MASK); | |
827 | } | |
828 | ||
829 | /* load barrier */ | |
830 | OSMemoryBarrier(); | |
831 | ||
832 | /* | |
833 | * if this was the last reference, and it was marked as invalid, | |
834 | * then we can add this link object back to the free list | |
835 | */ | |
836 | if (!lt_bits_valid(new_bits) && (lt_bits_refcnt(new_bits) == 0)) { | |
837 | ltable_free_elem(table, elem); | |
838 | } | |
839 | ||
840 | return; | |
841 | } | |
842 | ||
843 | ||
844 | /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
845 | * | |
846 | * API: lt_elem_list_... | |
847 | * | |
848 | * Reuse the free list linkage member, 'lt_next_idx' of a table element | |
849 | * in a slightly more generic singly-linked list. All members of this | |
850 | * list have been allocated from a table, but have not been made valid. | |
851 | * | |
852 | * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*/ | |
853 | ||
854 | /** | |
855 | * lt_elem_list_link: link a child onto a parent | |
856 | * | |
857 | * Note that if 'parent' is the head of a list, this function will follow that | |
858 | * list and attach 'child' to the end of it. In the simplest case, this | |
859 | * results in: parent->child | |
860 | * however this could also result in: parent->...->child | |
861 | */ | |
862 | int | |
863 | lt_elem_list_link(struct link_table *table, struct lt_elem *parent, struct lt_elem *child) | |
864 | { | |
865 | int nelem = 1; | |
866 | ||
867 | assert(lt_elem_in_range(parent, table)); | |
868 | ||
869 | /* find the end of the parent's list */ | |
870 | while (parent->lt_next_idx != LT_IDX_MAX) { | |
871 | assert(parent->lt_next_idx < table->nelem); | |
872 | parent = lt_elem_idx(table, parent->lt_next_idx); | |
873 | nelem++; | |
874 | } | |
875 | ||
876 | if (child) { | |
877 | assert(lt_elem_in_range(child, table)); | |
878 | parent->lt_next_idx = child->lt_id.idx; | |
879 | } | |
880 | ||
881 | return nelem; | |
882 | } | |
883 | ||
884 | ||
885 | /** | |
886 | * lt_elem_list_first: obtain a pointer to the first element of a list. | |
887 | * | |
888 | * This function converts the head of a singly-linked list, 'id', into a real | |
889 | * lt_elem object and returns a pointer to the object. | |
890 | * | |
891 | * It does _not_ take an extra reference on the object: the list implicitly | |
892 | * holds that reference. | |
893 | */ | |
894 | struct lt_elem * | |
895 | lt_elem_list_first(struct link_table *table, uint64_t id) | |
896 | { | |
897 | uint32_t idx; | |
898 | struct lt_elem *elem = NULL; | |
899 | ||
900 | if (id == 0) { | |
901 | return NULL; | |
902 | } | |
903 | ||
904 | idx = ((struct ltable_id *)&id)->idx; | |
905 | ||
906 | if (idx > table->nelem) { | |
907 | panic("Invalid element for id:0x%llx", id); | |
908 | } | |
909 | elem = lt_elem_idx(table, idx); | |
910 | ||
911 | /* invalid element: reserved ID was probably already reallocated */ | |
912 | if (elem->lt_id.id != id) { | |
913 | return NULL; | |
914 | } | |
915 | ||
916 | /* the returned element should _not_ be marked valid! */ | |
917 | if (lt_bits_valid(elem->lt_bits) || | |
918 | lt_bits_type(elem->lt_bits) != LT_RESERVED || | |
919 | lt_bits_refcnt(elem->lt_bits) != 1) { | |
920 | panic("Valid/unreserved element %p (0x%x) in reserved list", | |
921 | elem, elem->lt_bits); | |
922 | } | |
923 | ||
924 | return elem; | |
925 | } | |
926 | ||
927 | ||
928 | /** | |
929 | * lt_elem_list_next: return the item subsequent to 'elem' in a list | |
930 | * | |
931 | * Note that this will return NULL if 'elem' is actually the end of the list. | |
932 | */ | |
933 | struct lt_elem * | |
934 | lt_elem_list_next(struct link_table *table, struct lt_elem *head) | |
935 | { | |
936 | struct lt_elem *elem; | |
937 | ||
938 | if (!head) { | |
939 | return NULL; | |
940 | } | |
941 | if (head->lt_next_idx >= table->nelem) { | |
942 | return NULL; | |
943 | } | |
944 | ||
945 | elem = lt_elem_idx(table, head->lt_next_idx); | |
946 | assert(lt_elem_in_range(elem, table)); | |
947 | ||
948 | return elem; | |
949 | } | |
950 | ||
951 | ||
952 | /** | |
953 | * lt_elem_list_break: break a list in two around 'elem' | |
954 | * | |
955 | * This function will reset the next_idx field of 'elem' (making it the end of | |
956 | * the list), and return the element subsequent to 'elem' in the list | |
957 | * (which could be NULL) | |
958 | */ | |
959 | struct lt_elem * | |
960 | lt_elem_list_break(struct link_table *table, struct lt_elem *elem) | |
961 | { | |
962 | struct lt_elem *next; | |
963 | ||
964 | if (!elem) { | |
965 | return NULL; | |
966 | } | |
967 | next = lt_elem_list_next(table, elem); | |
968 | elem->lt_next_idx = LT_IDX_MAX; | |
969 | ||
970 | return next; | |
971 | } | |
972 | ||
973 | ||
974 | /** | |
975 | * lt_elem_list_pop: pop an item off the head of a list | |
976 | * | |
977 | * The list head is pointed to by '*id', the element corresponding to '*id' is | |
978 | * returned by this function, and the new list head is returned in the in/out | |
979 | * parameter, '*id'. The caller is responsible for the reference on the | |
980 | * returned object. A realloc is done to reset the type of the object, but it | |
981 | * is still left invalid. | |
982 | */ | |
983 | struct lt_elem * | |
984 | lt_elem_list_pop(struct link_table *table, uint64_t *id, int type) | |
985 | { | |
986 | struct lt_elem *first, *next; | |
987 | ||
988 | if (!id || *id == 0) { | |
989 | return NULL; | |
990 | } | |
991 | ||
992 | /* pop an item off the reserved stack */ | |
993 | ||
994 | first = lt_elem_list_first(table, *id); | |
995 | if (!first) { | |
996 | *id = 0; | |
997 | return NULL; | |
998 | } | |
999 | ||
1000 | next = lt_elem_list_next(table, first); | |
1001 | if (next) { | |
1002 | *id = next->lt_id.id; | |
1003 | } else { | |
1004 | *id = 0; | |
1005 | } | |
1006 | ||
1007 | ltable_realloc_elem(table, first, type); | |
1008 | ||
1009 | return first; | |
1010 | } | |
1011 | ||
1012 | /** | |
1013 | * lt_elem_list_release: free an entire list of reserved elements | |
1014 | * | |
1015 | * All elements in the list whose first member is 'head' will be released back | |
1016 | * to 'table' as free elements. The 'type' parameter is used in development | |
1017 | * kernels to assert that all elements on the list are of the given type. | |
1018 | */ | |
1019 | int | |
1020 | lt_elem_list_release(struct link_table *table, struct lt_elem *head, | |
1021 | int __assert_only type) | |
1022 | { | |
1023 | struct lt_elem *elem; | |
1024 | struct ltable_id free_id; | |
1025 | int nelem = 0; | |
1026 | ||
1027 | if (!head) { | |
1028 | return 0; | |
1029 | } | |
1030 | ||
1031 | for (elem = head;;) { | |
1032 | assert(lt_elem_in_range(elem, table)); | |
1033 | assert(!lt_bits_valid(elem->lt_bits) && (lt_bits_refcnt(elem->lt_bits) == 1)); | |
1034 | assert(lt_bits_type(elem->lt_bits) == type); | |
1035 | ||
1036 | nelem++; | |
1037 | elem->lt_bits = 0; | |
1038 | if (table->poison) { | |
1039 | (table->poison)(table, elem); | |
1040 | } | |
1041 | ||
1042 | if (elem->lt_next_idx == LT_IDX_MAX) { | |
1043 | break; | |
1044 | } | |
1045 | assert(elem->lt_next_idx < table->nelem); | |
1046 | elem = lt_elem_idx(table, elem->lt_next_idx); | |
1047 | } | |
1048 | ||
1049 | /* | |
1050 | * 'elem' now points to the end of our list, and 'head' points to the | |
1051 | * beginning. We want to atomically swap the free list pointer with | |
1052 | * the 'head' and ensure that 'elem' points to the previous free list | |
1053 | * head. | |
1054 | */ | |
1055 | ||
1056 | again: | |
1057 | free_id = table->free_list; | |
1058 | if (free_id.idx >= table->nelem) { | |
1059 | elem->lt_next_idx = LT_IDX_MAX; | |
1060 | } else { | |
1061 | elem->lt_next_idx = free_id.idx; | |
1062 | } | |
1063 | ||
1064 | /* store barrier */ | |
1065 | OSMemoryBarrier(); | |
1066 | if (OSCompareAndSwap64(free_id.id, head->lt_id.id, | |
1067 | &table->free_list.id) == FALSE) { | |
1068 | goto again; | |
1069 | } | |
1070 | ||
1071 | OSAddAtomic(-nelem, &table->used_elem); | |
1072 | return nelem; | |
1073 | } |