]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2019 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | ||
57 | /* | |
58 | */ | |
59 | ||
60 | #include <kern/cpu_number.h> | |
61 | #include <kern/cpu_data.h> | |
62 | #include <kern/percpu.h> | |
63 | #include <mach/mach_types.h> | |
64 | #include <mach/machine.h> | |
65 | #include <mach/vm_map.h> | |
66 | #include <mach/machine/vm_param.h> | |
67 | #include <vm/vm_kern.h> | |
68 | #include <vm/vm_map.h> | |
69 | ||
70 | #include <i386/bit_routines.h> | |
71 | #include <i386/mp_desc.h> | |
72 | #include <i386/misc_protos.h> | |
73 | #include <i386/mp.h> | |
74 | #include <i386/pmap.h> | |
75 | #include <i386/postcode.h> | |
76 | #include <i386/pmap_internal.h> | |
77 | #if CONFIG_MCA | |
78 | #include <i386/machine_check.h> | |
79 | #endif | |
80 | ||
81 | #include <kern/misc_protos.h> | |
82 | ||
83 | #if MONOTONIC | |
84 | #include <kern/monotonic.h> | |
85 | #endif /* MONOTONIC */ | |
86 | #include <san/kasan.h> | |
87 | ||
88 | #define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE) | |
89 | #define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE) | |
90 | ||
91 | // Declare macros that will declare the externs | |
92 | #define TRAP(n, name) extern void *name ; | |
93 | #define TRAP_ERR(n, name) extern void *name ; | |
94 | #define TRAP_SPC(n, name) extern void *name ; | |
95 | #define TRAP_IST1(n, name) extern void *name ; | |
96 | #define TRAP_IST2(n, name) extern void *name ; | |
97 | #define INTERRUPT(n) extern void *_intr_ ## n ; | |
98 | #define USER_TRAP(n, name) extern void *name ; | |
99 | #define USER_TRAP_SPC(n, name) extern void *name ; | |
100 | ||
101 | // Include the table to declare the externs | |
102 | #include "../x86_64/idt_table.h" | |
103 | ||
104 | // Undef the macros, then redefine them so we can declare the table | |
105 | #undef TRAP | |
106 | #undef TRAP_ERR | |
107 | #undef TRAP_SPC | |
108 | #undef TRAP_IST1 | |
109 | #undef TRAP_IST2 | |
110 | #undef INTERRUPT | |
111 | #undef USER_TRAP | |
112 | #undef USER_TRAP_SPC | |
113 | ||
114 | #define TRAP(n, name) \ | |
115 | [n] = { \ | |
116 | (uintptr_t)&name, \ | |
117 | KERNEL64_CS, \ | |
118 | 0, \ | |
119 | K_INTR_GATE, \ | |
120 | 0 \ | |
121 | }, | |
122 | ||
123 | #define TRAP_ERR TRAP | |
124 | #define TRAP_SPC TRAP | |
125 | ||
126 | #define TRAP_IST1(n, name) \ | |
127 | [n] = { \ | |
128 | (uintptr_t)&name, \ | |
129 | KERNEL64_CS, \ | |
130 | 1, \ | |
131 | K_INTR_GATE, \ | |
132 | 0 \ | |
133 | }, | |
134 | ||
135 | #define TRAP_IST2(n, name) \ | |
136 | [n] = { \ | |
137 | (uintptr_t)&name, \ | |
138 | KERNEL64_CS, \ | |
139 | 2, \ | |
140 | K_INTR_GATE, \ | |
141 | 0 \ | |
142 | }, | |
143 | ||
144 | #define INTERRUPT(n) \ | |
145 | [n] = { \ | |
146 | (uintptr_t)&_intr_ ## n,\ | |
147 | KERNEL64_CS, \ | |
148 | 0, \ | |
149 | K_INTR_GATE, \ | |
150 | 0 \ | |
151 | }, | |
152 | ||
153 | #define USER_TRAP(n, name) \ | |
154 | [n] = { \ | |
155 | (uintptr_t)&name, \ | |
156 | KERNEL64_CS, \ | |
157 | 0, \ | |
158 | U_INTR_GATE, \ | |
159 | 0 \ | |
160 | }, | |
161 | ||
162 | #define USER_TRAP_SPC USER_TRAP | |
163 | ||
164 | // Declare the table using the macros we just set up | |
165 | struct fake_descriptor64 master_idt64[IDTSZ] | |
166 | __attribute__ ((section("__HIB,__desc"))) | |
167 | __attribute__ ((aligned(PAGE_SIZE))) = { | |
168 | #include "../x86_64/idt_table.h" | |
169 | }; | |
170 | ||
171 | /* | |
172 | * First cpu`s interrupt stack. | |
173 | */ | |
174 | extern uint32_t low_intstack[]; /* bottom */ | |
175 | extern uint32_t low_eintstack[]; /* top */ | |
176 | ||
177 | /* | |
178 | * Per-cpu data area pointers. | |
179 | */ | |
180 | cpu_data_t cpshadows[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc"))); | |
181 | cpu_data_t scdatas[MAX_CPUS] __attribute__((aligned(64))) = { | |
182 | [0].cpu_this = &scdatas[0], | |
183 | [0].cpu_nanotime = &pal_rtc_nanotime_info, | |
184 | [0].cpu_int_stack_top = (vm_offset_t) low_eintstack, | |
185 | [0].cd_shadow = &cpshadows[0] | |
186 | }; | |
187 | cpu_data_t *cpu_data_master = &scdatas[0]; | |
188 | ||
189 | cpu_data_t *cpu_data_ptr[MAX_CPUS] = {[0] = &scdatas[0] }; | |
190 | ||
191 | SECURITY_READ_ONLY_LATE(struct percpu_base) percpu_base; | |
192 | ||
193 | decl_simple_lock_data(, ncpus_lock); /* protects real_ncpus */ | |
194 | unsigned int real_ncpus = 1; | |
195 | unsigned int max_ncpus = MAX_CPUS; | |
196 | unsigned int max_cpus_from_firmware = 0; | |
197 | ||
198 | extern void hi64_sysenter(void); | |
199 | extern void hi64_syscall(void); | |
200 | ||
201 | typedef struct { | |
202 | struct real_descriptor pcldts[LDTSZ]; | |
203 | } cldt_t; | |
204 | ||
205 | cpu_desc_table64_t scdtables[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc"))); | |
206 | cpu_fault_stack_t scfstks[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc"))); | |
207 | ||
208 | cldt_t *dyn_ldts; | |
209 | ||
210 | /* | |
211 | * Multiprocessor i386/i486 systems use a separate copy of the | |
212 | * GDT, IDT, LDT, and kernel TSS per processor. The first three | |
213 | * are separate to avoid lock contention: the i386 uses locked | |
214 | * memory cycles to access the descriptor tables. The TSS is | |
215 | * separate since each processor needs its own kernel stack, | |
216 | * and since using a TSS marks it busy. | |
217 | */ | |
218 | ||
219 | /* | |
220 | * Allocate and initialize the per-processor descriptor tables. | |
221 | */ | |
222 | ||
223 | /* | |
224 | * This is the expanded, 64-bit variant of the kernel LDT descriptor. | |
225 | * When switching to 64-bit mode this replaces KERNEL_LDT entry | |
226 | * and the following empty slot. This enables the LDT to be referenced | |
227 | * in the uber-space remapping window on the kernel. | |
228 | */ | |
229 | struct fake_descriptor64 kernel_ldt_desc64 = { | |
230 | .offset64 = 0, | |
231 | .lim_or_seg = LDTSZ_MIN * sizeof(struct fake_descriptor) - 1, | |
232 | .size_or_IST = 0, | |
233 | .access = ACC_P | ACC_PL_K | ACC_LDT, | |
234 | .reserved = 0 | |
235 | }; | |
236 | ||
237 | /* | |
238 | * This is the expanded, 64-bit variant of the kernel TSS descriptor. | |
239 | * It is follows pattern of the KERNEL_LDT. | |
240 | */ | |
241 | struct fake_descriptor64 kernel_tss_desc64 = { | |
242 | .offset64 = 0, | |
243 | .lim_or_seg = sizeof(struct x86_64_tss) - 1, | |
244 | .size_or_IST = 0, | |
245 | .access = ACC_P | ACC_PL_K | ACC_TSS, | |
246 | .reserved = 0 | |
247 | }; | |
248 | ||
249 | /* | |
250 | * Convert a descriptor from fake to real format. | |
251 | * | |
252 | * Fake descriptor format: | |
253 | * bytes 0..3 base 31..0 | |
254 | * bytes 4..5 limit 15..0 | |
255 | * byte 6 access byte 2 | limit 19..16 | |
256 | * byte 7 access byte 1 | |
257 | * | |
258 | * Real descriptor format: | |
259 | * bytes 0..1 limit 15..0 | |
260 | * bytes 2..3 base 15..0 | |
261 | * byte 4 base 23..16 | |
262 | * byte 5 access byte 1 | |
263 | * byte 6 access byte 2 | limit 19..16 | |
264 | * byte 7 base 31..24 | |
265 | * | |
266 | * Fake gate format: | |
267 | * bytes 0..3 offset | |
268 | * bytes 4..5 selector | |
269 | * byte 6 word count << 4 (to match fake descriptor) | |
270 | * byte 7 access byte 1 | |
271 | * | |
272 | * Real gate format: | |
273 | * bytes 0..1 offset 15..0 | |
274 | * bytes 2..3 selector | |
275 | * byte 4 word count | |
276 | * byte 5 access byte 1 | |
277 | * bytes 6..7 offset 31..16 | |
278 | */ | |
279 | void | |
280 | fix_desc(void *d, int num_desc) | |
281 | { | |
282 | uint8_t *desc = (uint8_t*) d; | |
283 | ||
284 | do { | |
285 | if ((desc[7] & 0x14) == 0x04) { /* gate */ | |
286 | uint32_t offset; | |
287 | uint16_t selector; | |
288 | uint8_t wordcount; | |
289 | uint8_t acc; | |
290 | ||
291 | offset = *((uint32_t*)(desc)); | |
292 | selector = *((uint32_t*)(desc + 4)); | |
293 | wordcount = desc[6] >> 4; | |
294 | acc = desc[7]; | |
295 | ||
296 | *((uint16_t*)desc) = offset & 0xFFFF; | |
297 | *((uint16_t*)(desc + 2)) = selector; | |
298 | desc[4] = wordcount; | |
299 | desc[5] = acc; | |
300 | *((uint16_t*)(desc + 6)) = offset >> 16; | |
301 | } else { /* descriptor */ | |
302 | uint32_t base; | |
303 | uint16_t limit; | |
304 | uint8_t acc1, acc2; | |
305 | ||
306 | base = *((uint32_t*)(desc)); | |
307 | limit = *((uint16_t*)(desc + 4)); | |
308 | acc2 = desc[6]; | |
309 | acc1 = desc[7]; | |
310 | ||
311 | *((uint16_t*)(desc)) = limit; | |
312 | *((uint16_t*)(desc + 2)) = base & 0xFFFF; | |
313 | desc[4] = (base >> 16) & 0xFF; | |
314 | desc[5] = acc1; | |
315 | desc[6] = acc2; | |
316 | desc[7] = base >> 24; | |
317 | } | |
318 | desc += 8; | |
319 | } while (--num_desc); | |
320 | } | |
321 | ||
322 | void | |
323 | fix_desc64(void *descp, int count) | |
324 | { | |
325 | struct fake_descriptor64 *fakep; | |
326 | union { | |
327 | struct real_gate64 gate; | |
328 | struct real_descriptor64 desc; | |
329 | } real; | |
330 | int i; | |
331 | ||
332 | fakep = (struct fake_descriptor64 *) descp; | |
333 | ||
334 | for (i = 0; i < count; i++, fakep++) { | |
335 | /* | |
336 | * Construct the real decriptor locally. | |
337 | */ | |
338 | ||
339 | bzero((void *) &real, sizeof(real)); | |
340 | ||
341 | switch (fakep->access & ACC_TYPE) { | |
342 | case 0: | |
343 | break; | |
344 | case ACC_CALL_GATE: | |
345 | case ACC_INTR_GATE: | |
346 | case ACC_TRAP_GATE: | |
347 | real.gate.offset_low16 = (uint16_t)(fakep->offset64 & 0xFFFF); | |
348 | real.gate.selector16 = fakep->lim_or_seg & 0xFFFF; | |
349 | real.gate.IST = fakep->size_or_IST & 0x7; | |
350 | real.gate.access8 = fakep->access; | |
351 | real.gate.offset_high16 = (uint16_t)((fakep->offset64 >> 16) & 0xFFFF); | |
352 | real.gate.offset_top32 = (uint32_t)(fakep->offset64 >> 32); | |
353 | break; | |
354 | default: /* Otherwise */ | |
355 | real.desc.limit_low16 = fakep->lim_or_seg & 0xFFFF; | |
356 | real.desc.base_low16 = (uint16_t)(fakep->offset64 & 0xFFFF); | |
357 | real.desc.base_med8 = (uint8_t)((fakep->offset64 >> 16) & 0xFF); | |
358 | real.desc.access8 = fakep->access; | |
359 | real.desc.limit_high4 = (fakep->lim_or_seg >> 16) & 0xFF; | |
360 | real.desc.granularity4 = fakep->size_or_IST; | |
361 | real.desc.base_high8 = (uint8_t)((fakep->offset64 >> 24) & 0xFF); | |
362 | real.desc.base_top32 = (uint32_t)(fakep->offset64 >> 32); | |
363 | } | |
364 | ||
365 | /* | |
366 | * Now copy back over the fake structure. | |
367 | */ | |
368 | bcopy((void *) &real, (void *) fakep, sizeof(real)); | |
369 | } | |
370 | } | |
371 | ||
372 | extern unsigned mldtsz; | |
373 | void | |
374 | cpu_desc_init(cpu_data_t *cdp) | |
375 | { | |
376 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; | |
377 | ||
378 | if (cdp == cpu_data_master) { | |
379 | /* | |
380 | * Populate the double-mapped 'u' and base 'b' fields in the | |
381 | * KTSS with I/G/LDT and sysenter stack data. | |
382 | */ | |
383 | cdi->cdi_ktssu = (void *)DBLMAP(&master_ktss64); | |
384 | cdi->cdi_ktssb = (void *)&master_ktss64; | |
385 | cdi->cdi_sstku = (vm_offset_t) DBLMAP(&master_sstk.top); | |
386 | cdi->cdi_sstkb = (vm_offset_t) &master_sstk.top; | |
387 | ||
388 | cdi->cdi_gdtu.ptr = (void *)DBLMAP((uintptr_t) &master_gdt); | |
389 | cdi->cdi_gdtb.ptr = (void *)&master_gdt; | |
390 | cdi->cdi_idtu.ptr = (void *)DBLMAP((uintptr_t) &master_idt64); | |
391 | cdi->cdi_idtb.ptr = (void *)((uintptr_t) &master_idt64); | |
392 | cdi->cdi_ldtu = (struct real_descriptor *)DBLMAP((uintptr_t)&master_ldt[0]); | |
393 | cdi->cdi_ldtb = &master_ldt[0]; | |
394 | ||
395 | /* Replace the expanded LDTs and TSS slots in the GDT */ | |
396 | kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu; | |
397 | *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] = | |
398 | kernel_ldt_desc64; | |
399 | *(struct fake_descriptor64 *) &master_gdt[sel_idx(USER_LDT)] = | |
400 | kernel_ldt_desc64; | |
401 | kernel_tss_desc64.offset64 = (uintptr_t) DBLMAP(&master_ktss64); | |
402 | *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] = | |
403 | kernel_tss_desc64; | |
404 | ||
405 | /* Fix up the expanded descriptors for 64-bit. */ | |
406 | fix_desc64((void *) &master_idt64, IDTSZ); | |
407 | fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1); | |
408 | fix_desc64((void *) &master_gdt[sel_idx(USER_LDT)], 1); | |
409 | fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1); | |
410 | ||
411 | /* | |
412 | * Set the NMI/fault stacks as IST2/IST1 in the 64-bit TSS | |
413 | */ | |
414 | master_ktss64.ist2 = (uintptr_t) low_eintstack; | |
415 | master_ktss64.ist1 = (uintptr_t) low_eintstack - sizeof(x86_64_intr_stack_frame_t); | |
416 | } else if (cdi->cdi_ktssu == NULL) { /* Skipping re-init on wake */ | |
417 | cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep; | |
418 | ||
419 | cdi->cdi_idtu.ptr = (void *)DBLMAP((uintptr_t) &master_idt64); | |
420 | ||
421 | cdi->cdi_ktssu = (void *)DBLMAP(&cdt->ktss); | |
422 | cdi->cdi_ktssb = (void *)(&cdt->ktss); | |
423 | cdi->cdi_sstku = (vm_offset_t)DBLMAP(&cdt->sstk.top); | |
424 | cdi->cdi_sstkb = (vm_offset_t)(&cdt->sstk.top); | |
425 | cdi->cdi_ldtu = (void *)LDTALIAS(cdp->cpu_ldtp); | |
426 | cdi->cdi_ldtb = (void *)(cdp->cpu_ldtp); | |
427 | ||
428 | /* | |
429 | * Copy the tables | |
430 | */ | |
431 | bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt)); | |
432 | bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, mldtsz); | |
433 | bcopy((char *)&master_ktss64, (char *)&cdt->ktss, sizeof(struct x86_64_tss)); | |
434 | cdi->cdi_gdtu.ptr = (void *)DBLMAP(cdt->gdt); | |
435 | cdi->cdi_gdtb.ptr = (void *)(cdt->gdt); | |
436 | /* | |
437 | * Fix up the entries in the GDT to point to | |
438 | * this LDT and this TSS. | |
439 | * Note reuse of global 'kernel_ldt_desc64, which is not | |
440 | * concurrency-safe. Higher level synchronization is expected | |
441 | */ | |
442 | kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu; | |
443 | *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] = | |
444 | kernel_ldt_desc64; | |
445 | fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1); | |
446 | ||
447 | kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu; | |
448 | *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] = | |
449 | kernel_ldt_desc64; | |
450 | fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1); | |
451 | ||
452 | kernel_tss_desc64.offset64 = (uintptr_t) cdi->cdi_ktssu; | |
453 | *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] = | |
454 | kernel_tss_desc64; | |
455 | fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1); | |
456 | ||
457 | /* Set (zeroed) fault stack as IST1, NMI intr stack IST2 */ | |
458 | uint8_t *cfstk = &scfstks[cdp->cpu_number].fstk[0]; | |
459 | cdt->fstkp = cfstk; | |
460 | bzero((void *) cfstk, FSTK_SZ); | |
461 | cdt->ktss.ist2 = DBLMAP((uint64_t)cdt->fstkp + FSTK_SZ); | |
462 | cdt->ktss.ist1 = cdt->ktss.ist2 - sizeof(x86_64_intr_stack_frame_t); | |
463 | } | |
464 | ||
465 | /* Require that the top of the sysenter stack is 16-byte aligned */ | |
466 | if ((cdi->cdi_sstku % 16) != 0) { | |
467 | panic("cpu_desc_init() sysenter stack not 16-byte aligned"); | |
468 | } | |
469 | } | |
470 | void | |
471 | cpu_desc_load(cpu_data_t *cdp) | |
472 | { | |
473 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; | |
474 | ||
475 | postcode(CPU_DESC_LOAD_ENTRY); | |
476 | ||
477 | /* Stuff the kernel per-cpu data area address into the MSRs */ | |
478 | postcode(CPU_DESC_LOAD_GS_BASE); | |
479 | wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp); | |
480 | postcode(CPU_DESC_LOAD_KERNEL_GS_BASE); | |
481 | wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp); | |
482 | ||
483 | /* | |
484 | * Ensure the TSS segment's busy bit is clear. This is required | |
485 | * for the case of reloading descriptors at wake to avoid | |
486 | * their complete re-initialization. | |
487 | */ | |
488 | gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY; | |
489 | ||
490 | /* Load the GDT, LDT, IDT and TSS */ | |
491 | cdi->cdi_gdtb.size = sizeof(struct real_descriptor) * GDTSZ - 1; | |
492 | cdi->cdi_gdtu.size = cdi->cdi_gdtb.size; | |
493 | cdi->cdi_idtb.size = 0x1000 + cdp->cpu_number; | |
494 | cdi->cdi_idtu.size = cdi->cdi_idtb.size; | |
495 | ||
496 | postcode(CPU_DESC_LOAD_GDT); | |
497 | lgdt((uintptr_t *) &cdi->cdi_gdtu); | |
498 | postcode(CPU_DESC_LOAD_IDT); | |
499 | lidt((uintptr_t *) &cdi->cdi_idtu); | |
500 | postcode(CPU_DESC_LOAD_LDT); | |
501 | lldt(KERNEL_LDT); | |
502 | postcode(CPU_DESC_LOAD_TSS); | |
503 | set_tr(KERNEL_TSS); | |
504 | ||
505 | postcode(CPU_DESC_LOAD_EXIT); | |
506 | } | |
507 | ||
508 | /* | |
509 | * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit. | |
510 | */ | |
511 | void | |
512 | cpu_syscall_init(cpu_data_t *cdp) | |
513 | { | |
514 | #pragma unused(cdp) | |
515 | ||
516 | wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS); | |
517 | wrmsr64(MSR_IA32_SYSENTER_EIP, DBLMAP((uintptr_t) hi64_sysenter)); | |
518 | wrmsr64(MSR_IA32_SYSENTER_ESP, current_cpu_datap()->cpu_desc_index.cdi_sstku); | |
519 | /* Enable syscall/sysret */ | |
520 | wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE); | |
521 | ||
522 | /* | |
523 | * MSRs for 64-bit syscall/sysret | |
524 | * Note USER_CS because sysret uses this + 16 when returning to | |
525 | * 64-bit code. | |
526 | */ | |
527 | wrmsr64(MSR_IA32_LSTAR, DBLMAP((uintptr_t) hi64_syscall)); | |
528 | wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) | (((uint64_t)KERNEL64_CS) << 32)); | |
529 | /* | |
530 | * Emulate eflags cleared by sysenter but note that | |
531 | * we also clear the trace trap to avoid the complications | |
532 | * of single-stepping into a syscall. The nested task bit | |
533 | * is also cleared to avoid a spurious "task switch" | |
534 | * should we choose to return via an IRET. | |
535 | */ | |
536 | wrmsr64(MSR_IA32_FMASK, EFL_DF | EFL_IF | EFL_TF | EFL_NT); | |
537 | } | |
538 | extern vm_offset_t dyn_dblmap(vm_offset_t, vm_offset_t); | |
539 | uint64_t ldt_alias_offset; | |
540 | ||
541 | __startup_func | |
542 | static void | |
543 | cpu_data_startup_init(void) | |
544 | { | |
545 | int flags = KMA_GUARD_FIRST | KMA_GUARD_LAST | KMA_PERMANENT | | |
546 | KMA_ZERO | KMA_KOBJECT; | |
547 | uint32_t cpus = max_cpus_from_firmware; | |
548 | vm_size_t size = percpu_section_size() * cpus; | |
549 | kern_return_t kr; | |
550 | ||
551 | percpu_base.size = percpu_section_size(); | |
552 | if (cpus == 0) { | |
553 | panic("percpu: max_cpus_from_firmware not yet initialized"); | |
554 | } | |
555 | if (cpus == 1) { | |
556 | percpu_base.start = VM_MAX_KERNEL_ADDRESS; | |
557 | return; | |
558 | } | |
559 | ||
560 | kr = kmem_alloc_flags(kernel_map, &percpu_base.start, | |
561 | round_page(size) + 2 * PAGE_SIZE, VM_KERN_MEMORY_CPU, flags); | |
562 | if (kr != KERN_SUCCESS) { | |
563 | panic("percpu: kmem_alloc failed (%d)", kr); | |
564 | } | |
565 | ||
566 | percpu_base.start += PAGE_SIZE - percpu_section_start(); | |
567 | percpu_base.end = percpu_base.start + size - 1; | |
568 | } | |
569 | STARTUP(PERCPU, STARTUP_RANK_FIRST, cpu_data_startup_init); | |
570 | ||
571 | cpu_data_t * | |
572 | cpu_data_alloc(boolean_t is_boot_cpu) | |
573 | { | |
574 | int ret; | |
575 | cpu_data_t *cdp; | |
576 | ||
577 | if (is_boot_cpu) { | |
578 | assert(real_ncpus == 1); | |
579 | cdp = cpu_datap(0); | |
580 | if (cdp->cpu_processor == NULL) { | |
581 | simple_lock_init(&ncpus_lock, 0); | |
582 | cdp->cpu_processor = PERCPU_GET_MASTER(processor); | |
583 | } | |
584 | return cdp; | |
585 | } | |
586 | ||
587 | boolean_t do_ldt_alloc = FALSE; | |
588 | simple_lock(&ncpus_lock, LCK_GRP_NULL); | |
589 | int cnum = real_ncpus; | |
590 | real_ncpus++; | |
591 | if (dyn_ldts == NULL) { | |
592 | do_ldt_alloc = TRUE; | |
593 | } | |
594 | simple_unlock(&ncpus_lock); | |
595 | ||
596 | /* | |
597 | * Allocate per-cpu data: | |
598 | */ | |
599 | ||
600 | cdp = &scdatas[cnum]; | |
601 | bzero((void*) cdp, sizeof(cpu_data_t)); | |
602 | cdp->cpu_this = cdp; | |
603 | cdp->cpu_number = cnum; | |
604 | cdp->cd_shadow = &cpshadows[cnum]; | |
605 | cdp->cpu_pcpu_base = percpu_base.start + (cnum - 1) * percpu_section_size(); | |
606 | cdp->cpu_processor = PERCPU_GET_WITH_BASE(cdp->cpu_pcpu_base, processor); | |
607 | ||
608 | /* | |
609 | * Allocate interrupt stack: | |
610 | */ | |
611 | ret = kmem_alloc(kernel_map, | |
612 | (vm_offset_t *) &cdp->cpu_int_stack_top, | |
613 | INTSTACK_SIZE, VM_KERN_MEMORY_CPU); | |
614 | if (ret != KERN_SUCCESS) { | |
615 | panic("cpu_data_alloc() int stack failed, ret=%d\n", ret); | |
616 | } | |
617 | bzero((void*) cdp->cpu_int_stack_top, INTSTACK_SIZE); | |
618 | cdp->cpu_int_stack_top += INTSTACK_SIZE; | |
619 | ||
620 | /* | |
621 | * Allocate descriptor table: | |
622 | */ | |
623 | ||
624 | cdp->cpu_desc_tablep = (struct cpu_desc_table *) &scdtables[cnum]; | |
625 | /* | |
626 | * Allocate LDT | |
627 | */ | |
628 | if (do_ldt_alloc) { | |
629 | boolean_t do_ldt_free = FALSE; | |
630 | vm_offset_t sldtoffset = 0; | |
631 | /* | |
632 | * Allocate LDT | |
633 | */ | |
634 | vm_offset_t ldtalloc = 0, ldtallocsz = round_page_64(MAX_CPUS * sizeof(struct real_descriptor) * LDTSZ); | |
635 | ret = kmem_alloc(kernel_map, (vm_offset_t *) &ldtalloc, ldtallocsz, VM_KERN_MEMORY_CPU); | |
636 | if (ret != KERN_SUCCESS) { | |
637 | panic("cpu_data_alloc() ldt failed, kmem_alloc=%d\n", ret); | |
638 | } | |
639 | ||
640 | simple_lock(&ncpus_lock, LCK_GRP_NULL); | |
641 | if (dyn_ldts == NULL) { | |
642 | dyn_ldts = (cldt_t *)ldtalloc; | |
643 | } else { | |
644 | do_ldt_free = TRUE; | |
645 | } | |
646 | simple_unlock(&ncpus_lock); | |
647 | ||
648 | if (do_ldt_free) { | |
649 | kmem_free(kernel_map, ldtalloc, ldtallocsz); | |
650 | } else { | |
651 | /* CPU registration and startup are expected to execute | |
652 | * serially, as invoked by the platform driver. | |
653 | * Create trampoline alias of LDT region. | |
654 | */ | |
655 | sldtoffset = dyn_dblmap(ldtalloc, ldtallocsz); | |
656 | ldt_alias_offset = sldtoffset; | |
657 | } | |
658 | } | |
659 | cdp->cpu_ldtp = &dyn_ldts[cnum].pcldts[0]; | |
660 | ||
661 | #if CONFIG_MCA | |
662 | /* Machine-check shadow register allocation. */ | |
663 | mca_cpu_alloc(cdp); | |
664 | #endif | |
665 | ||
666 | /* | |
667 | * Before this cpu has been assigned a real thread context, | |
668 | * we give it a fake, unique, non-zero thread id which the locking | |
669 | * primitives use as their lock value. | |
670 | * Note that this does not apply to the boot processor, cpu 0, which | |
671 | * transitions to a thread context well before other processors are | |
672 | * started. | |
673 | */ | |
674 | cdp->cpu_active_thread = (thread_t) (uintptr_t) cdp->cpu_number; | |
675 | cdp->cpu_NMI_acknowledged = TRUE; | |
676 | cdp->cpu_nanotime = &pal_rtc_nanotime_info; | |
677 | ||
678 | kprintf("cpu_data_alloc(%d) %p desc_table: %p " | |
679 | "ldt: %p " | |
680 | "int_stack: 0x%lx-0x%lx\n", | |
681 | cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp, | |
682 | (long)(cdp->cpu_int_stack_top - INTSTACK_SIZE), (long)(cdp->cpu_int_stack_top)); | |
683 | cpu_data_ptr[cnum] = cdp; | |
684 | ||
685 | return cdp; | |
686 | } | |
687 | ||
688 | boolean_t | |
689 | valid_user_data_selector(uint16_t selector) | |
690 | { | |
691 | sel_t sel = selector_to_sel(selector); | |
692 | ||
693 | if (selector == 0) { | |
694 | return TRUE; | |
695 | } | |
696 | ||
697 | if (sel.ti == SEL_LDT) { | |
698 | return TRUE; | |
699 | } else if (sel.index < GDTSZ) { | |
700 | if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) { | |
701 | return TRUE; | |
702 | } | |
703 | } | |
704 | return FALSE; | |
705 | } | |
706 | ||
707 | boolean_t | |
708 | valid_user_code_selector(uint16_t selector) | |
709 | { | |
710 | sel_t sel = selector_to_sel(selector); | |
711 | ||
712 | if (selector == 0) { | |
713 | return FALSE; | |
714 | } | |
715 | ||
716 | if (sel.ti == SEL_LDT) { | |
717 | if (sel.rpl == USER_PRIV) { | |
718 | return TRUE; | |
719 | } | |
720 | } else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) { | |
721 | if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) { | |
722 | return TRUE; | |
723 | } | |
724 | /* Explicitly validate the system code selectors | |
725 | * even if not instantaneously privileged, | |
726 | * since they are dynamically re-privileged | |
727 | * at context switch | |
728 | */ | |
729 | if ((selector == USER_CS) || (selector == USER64_CS)) { | |
730 | return TRUE; | |
731 | } | |
732 | } | |
733 | ||
734 | return FALSE; | |
735 | } | |
736 | ||
737 | boolean_t | |
738 | valid_user_stack_selector(uint16_t selector) | |
739 | { | |
740 | sel_t sel = selector_to_sel(selector); | |
741 | ||
742 | if (selector == 0) { | |
743 | return FALSE; | |
744 | } | |
745 | ||
746 | if (sel.ti == SEL_LDT) { | |
747 | if (sel.rpl == USER_PRIV) { | |
748 | return TRUE; | |
749 | } | |
750 | } else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) { | |
751 | if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) { | |
752 | return TRUE; | |
753 | } | |
754 | } | |
755 | ||
756 | return FALSE; | |
757 | } | |
758 | ||
759 | boolean_t | |
760 | valid_user_segment_selectors(uint16_t cs, | |
761 | uint16_t ss, | |
762 | uint16_t ds, | |
763 | uint16_t es, | |
764 | uint16_t fs, | |
765 | uint16_t gs) | |
766 | { | |
767 | return valid_user_code_selector(cs) && | |
768 | valid_user_stack_selector(ss) && | |
769 | valid_user_data_selector(ds) && | |
770 | valid_user_data_selector(es) && | |
771 | valid_user_data_selector(fs) && | |
772 | valid_user_data_selector(gs); | |
773 | } | |
774 | ||
775 | /* | |
776 | * Allocate a new interrupt stack for the boot processor from the | |
777 | * heap rather than continue to use the statically allocated space. | |
778 | * Also switch to a dynamically allocated cpu data area. | |
779 | */ | |
780 | void | |
781 | cpu_data_realloc(void) | |
782 | { | |
783 | int ret; | |
784 | vm_offset_t istk; | |
785 | cpu_data_t *cdp; | |
786 | boolean_t istate; | |
787 | ||
788 | ret = kmem_alloc(kernel_map, &istk, INTSTACK_SIZE, VM_KERN_MEMORY_CPU); | |
789 | if (ret != KERN_SUCCESS) { | |
790 | panic("cpu_data_realloc() stack alloc, ret=%d\n", ret); | |
791 | } | |
792 | bzero((void*) istk, INTSTACK_SIZE); | |
793 | istk += INTSTACK_SIZE; | |
794 | ||
795 | cdp = &scdatas[0]; | |
796 | ||
797 | /* Copy old contents into new area and make fix-ups */ | |
798 | assert(cpu_number() == 0); | |
799 | bcopy((void *) cpu_data_ptr[0], (void*) cdp, sizeof(cpu_data_t)); | |
800 | cdp->cpu_this = cdp; | |
801 | cdp->cpu_int_stack_top = istk; | |
802 | timer_call_queue_init(&cdp->rtclock_timer.queue); | |
803 | cdp->cpu_desc_tablep = (struct cpu_desc_table *) &scdtables[0]; | |
804 | cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep; | |
805 | ||
806 | uint8_t *cfstk = &scfstks[cdp->cpu_number].fstk[0]; | |
807 | cdt->fstkp = cfstk; | |
808 | cfstk += FSTK_SZ; | |
809 | ||
810 | /* | |
811 | * With interrupts disabled commmit the new areas. | |
812 | */ | |
813 | istate = ml_set_interrupts_enabled(FALSE); | |
814 | cpu_data_ptr[0] = cdp; | |
815 | master_ktss64.ist2 = DBLMAP((uintptr_t) cfstk); | |
816 | master_ktss64.ist1 = DBLMAP((uintptr_t) cfstk - sizeof(x86_64_intr_stack_frame_t)); | |
817 | wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp); | |
818 | wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp); | |
819 | (void) ml_set_interrupts_enabled(istate); | |
820 | ||
821 | kprintf("Reallocated master cpu data: %p," | |
822 | " interrupt stack: %p, fault stack: %p\n", | |
823 | (void *) cdp, (void *) istk, (void *) cfstk); | |
824 | } |