]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2003-2019 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | ||
57 | ||
58 | #include <mach/i386/vm_param.h> | |
59 | ||
60 | #include <string.h> | |
61 | #include <stdint.h> | |
62 | #include <mach/vm_param.h> | |
63 | #include <mach/vm_prot.h> | |
64 | #include <mach/machine.h> | |
65 | #include <mach/time_value.h> | |
66 | #include <kern/spl.h> | |
67 | #include <kern/assert.h> | |
68 | #include <kern/debug.h> | |
69 | #include <kern/misc_protos.h> | |
70 | #include <kern/startup.h> | |
71 | #include <kern/clock.h> | |
72 | #include <kern/pms.h> | |
73 | #include <kern/cpu_data.h> | |
74 | #include <kern/processor.h> | |
75 | #include <sys/kdebug.h> | |
76 | #include <console/serial_protos.h> | |
77 | #include <vm/vm_page.h> | |
78 | #include <vm/pmap.h> | |
79 | #include <vm/vm_kern.h> | |
80 | #include <machine/pal_routines.h> | |
81 | #include <i386/fpu.h> | |
82 | #include <i386/pmap.h> | |
83 | #include <i386/misc_protos.h> | |
84 | #include <i386/cpu_threads.h> | |
85 | #include <i386/cpuid.h> | |
86 | #include <i386/lapic.h> | |
87 | #include <i386/mp.h> | |
88 | #include <i386/mp_desc.h> | |
89 | #if CONFIG_MTRR | |
90 | #include <i386/mtrr.h> | |
91 | #endif | |
92 | #include <i386/machine_routines.h> | |
93 | #if CONFIG_MCA | |
94 | #include <i386/machine_check.h> | |
95 | #endif | |
96 | #include <i386/ucode.h> | |
97 | #include <i386/postcode.h> | |
98 | #include <i386/Diagnostics.h> | |
99 | #include <i386/pmCPU.h> | |
100 | #include <i386/tsc.h> | |
101 | #include <i386/locks.h> /* LcksOpts */ | |
102 | #include <i386/acpi.h> | |
103 | #if DEBUG | |
104 | #include <machine/pal_routines.h> | |
105 | #endif | |
106 | extern void xcpm_bootstrap(void); | |
107 | #if DEVELOPMENT || DEBUG | |
108 | #include <i386/trap.h> | |
109 | #endif | |
110 | ||
111 | #if MONOTONIC | |
112 | #include <kern/monotonic.h> | |
113 | #endif /* MONOTONIC */ | |
114 | ||
115 | #include <san/kasan.h> | |
116 | ||
117 | #if DEBUG || DEVELOPMENT | |
118 | #define DBG(x, ...) kprintf(x, ##__VA_ARGS__) | |
119 | #define dyldLogFunc(x, ...) kprintf(x, ##__VA_ARGS__) | |
120 | #else | |
121 | #define DBG(x ...) | |
122 | #endif | |
123 | ||
124 | #include <libkern/kernel_mach_header.h> | |
125 | #include <mach/dyld_kernel_fixups.h> | |
126 | ||
127 | ||
128 | int debug_task; | |
129 | ||
130 | int early_boot = 1; | |
131 | ||
132 | bool serial_console_enabled = false; | |
133 | ||
134 | static boot_args *kernelBootArgs; | |
135 | ||
136 | extern int disableConsoleOutput; | |
137 | extern const char version[]; | |
138 | extern const char version_variant[]; | |
139 | extern int nx_enabled; | |
140 | ||
141 | /* | |
142 | * Set initial values so that ml_phys_* routines can use the booter's ID mapping | |
143 | * to touch physical space before the kernel's physical aperture exists. | |
144 | */ | |
145 | uint64_t physmap_base = 0; | |
146 | uint64_t physmap_max = 4 * GB; | |
147 | ||
148 | pd_entry_t *KPTphys; | |
149 | pd_entry_t *IdlePTD; | |
150 | pdpt_entry_t *IdlePDPT; | |
151 | pml4_entry_t *IdlePML4; | |
152 | ||
153 | int kernPhysPML4Index; | |
154 | int kernPhysPML4EntryCount; | |
155 | ||
156 | /* | |
157 | * These are 4K mapping page table pages from KPTphys[] that we wound | |
158 | * up not using. They get ml_static_mfree()'d once the VM is initialized. | |
159 | */ | |
160 | ppnum_t released_PT_ppn = 0; | |
161 | uint32_t released_PT_cnt = 0; | |
162 | ||
163 | #if DEVELOPMENT || DEBUG | |
164 | int panic_on_cacheline_mismatch = -1; | |
165 | char panic_on_trap_procname[64]; | |
166 | uint32_t panic_on_trap_mask; | |
167 | #endif | |
168 | bool last_branch_support_enabled; | |
169 | int insn_copyin_count; | |
170 | #if DEVELOPMENT || DEBUG | |
171 | #define DEFAULT_INSN_COPYIN_COUNT x86_INSTRUCTION_STATE_MAX_INSN_BYTES | |
172 | #else | |
173 | #define DEFAULT_INSN_COPYIN_COUNT 192 | |
174 | #endif | |
175 | ||
176 | char *physfree; | |
177 | void idt64_remap(void); | |
178 | ||
179 | /* | |
180 | * Note: ALLOCPAGES() can only be used safely within Idle_PTs_init() | |
181 | * due to the mutation of physfree. | |
182 | */ | |
183 | static void * | |
184 | ALLOCPAGES(int npages) | |
185 | { | |
186 | uintptr_t tmp = (uintptr_t)physfree; | |
187 | bzero(physfree, npages * PAGE_SIZE); | |
188 | physfree += npages * PAGE_SIZE; | |
189 | tmp += VM_MIN_KERNEL_ADDRESS & ~LOW_4GB_MASK; | |
190 | return (void *)tmp; | |
191 | } | |
192 | ||
193 | static void | |
194 | fillkpt(pt_entry_t *base, int prot, uintptr_t src, int index, int count) | |
195 | { | |
196 | int i; | |
197 | for (i = 0; i < count; i++) { | |
198 | base[index] = src | prot | INTEL_PTE_VALID; | |
199 | src += PAGE_SIZE; | |
200 | index++; | |
201 | } | |
202 | } | |
203 | ||
204 | extern pmap_paddr_t first_avail; | |
205 | ||
206 | int break_kprintf = 0; | |
207 | ||
208 | uint64_t | |
209 | x86_64_pre_sleep(void) | |
210 | { | |
211 | IdlePML4[0] = IdlePML4[KERNEL_PML4_INDEX]; | |
212 | uint64_t oldcr3 = get_cr3_raw(); | |
213 | set_cr3_raw((uint32_t) (uintptr_t)ID_MAP_VTOP(IdlePML4)); | |
214 | return oldcr3; | |
215 | } | |
216 | ||
217 | void | |
218 | x86_64_post_sleep(uint64_t new_cr3) | |
219 | { | |
220 | IdlePML4[0] = 0; | |
221 | set_cr3_raw((uint32_t) new_cr3); | |
222 | } | |
223 | ||
224 | ||
225 | ||
226 | ||
227 | // Set up the physical mapping - NPHYSMAP GB of memory mapped at a high address | |
228 | // NPHYSMAP is determined by the maximum supported RAM size plus 4GB to account | |
229 | // the PCI hole (which is less 4GB but not more). | |
230 | ||
231 | static int | |
232 | physmap_init_L2(uint64_t *physStart, pt_entry_t **l2ptep) | |
233 | { | |
234 | unsigned i; | |
235 | pt_entry_t *physmapL2 = ALLOCPAGES(1); | |
236 | ||
237 | if (physmapL2 == NULL) { | |
238 | DBG("physmap_init_L2 page alloc failed when initting L2 for physAddr 0x%llx.\n", *physStart); | |
239 | *l2ptep = NULL; | |
240 | return -1; | |
241 | } | |
242 | ||
243 | for (i = 0; i < NPDPG; i++) { | |
244 | physmapL2[i] = *physStart | |
245 | | INTEL_PTE_PS | |
246 | | INTEL_PTE_VALID | |
247 | | INTEL_PTE_NX | |
248 | | INTEL_PTE_WRITE; | |
249 | ||
250 | *physStart += NBPD; | |
251 | } | |
252 | *l2ptep = physmapL2; | |
253 | return 0; | |
254 | } | |
255 | ||
256 | static int | |
257 | physmap_init_L3(int startIndex, uint64_t highest_phys, uint64_t *physStart, pt_entry_t **l3ptep) | |
258 | { | |
259 | unsigned i; | |
260 | int ret; | |
261 | pt_entry_t *l2pte; | |
262 | pt_entry_t *physmapL3 = ALLOCPAGES(1); /* ALLOCPAGES bzeroes the memory */ | |
263 | ||
264 | if (physmapL3 == NULL) { | |
265 | DBG("physmap_init_L3 page alloc failed when initting L3 for physAddr 0x%llx.\n", *physStart); | |
266 | *l3ptep = NULL; | |
267 | return -1; | |
268 | } | |
269 | ||
270 | for (i = startIndex; i < NPDPTPG && *physStart < highest_phys; i++) { | |
271 | if ((ret = physmap_init_L2(physStart, &l2pte)) < 0) { | |
272 | return ret; | |
273 | } | |
274 | ||
275 | physmapL3[i] = ((uintptr_t)ID_MAP_VTOP(l2pte)) | |
276 | | INTEL_PTE_VALID | |
277 | | INTEL_PTE_NX | |
278 | | INTEL_PTE_WRITE; | |
279 | } | |
280 | ||
281 | *l3ptep = physmapL3; | |
282 | ||
283 | return 0; | |
284 | } | |
285 | ||
286 | static void | |
287 | physmap_init(uint8_t phys_random_L3, uint64_t *new_physmap_base, uint64_t *new_physmap_max) | |
288 | { | |
289 | pt_entry_t *l3pte; | |
290 | int pml4_index, i; | |
291 | int L3_start_index; | |
292 | uint64_t physAddr = 0; | |
293 | uint64_t highest_physaddr; | |
294 | unsigned pdpte_count; | |
295 | ||
296 | #if DEVELOPMENT || DEBUG | |
297 | if (kernelBootArgs->PhysicalMemorySize > K64_MAXMEM) { | |
298 | panic("Installed physical memory exceeds configured maximum."); | |
299 | } | |
300 | #endif | |
301 | ||
302 | /* | |
303 | * Add 4GB to the loader-provided physical memory size to account for MMIO space | |
304 | * XXX in a perfect world, we'd scan PCI buses and count the max memory requested in BARs by | |
305 | * XXX all enumerated device, then add more for hot-pluggable devices. | |
306 | */ | |
307 | highest_physaddr = kernelBootArgs->PhysicalMemorySize + 4 * GB; | |
308 | ||
309 | /* | |
310 | * Calculate the number of PML4 entries we'll need. The total number of entries is | |
311 | * pdpte_count = (((highest_physaddr) >> PDPT_SHIFT) + entropy_value + | |
312 | * ((highest_physaddr & PDPT_MASK) == 0 ? 0 : 1)) | |
313 | * pml4e_count = pdpte_count >> (PML4_SHIFT - PDPT_SHIFT) | |
314 | */ | |
315 | assert(highest_physaddr < (UINT64_MAX - PDPTMASK)); | |
316 | pdpte_count = (unsigned) (((highest_physaddr + PDPTMASK) >> PDPTSHIFT) + phys_random_L3); | |
317 | kernPhysPML4EntryCount = (pdpte_count + ((1U << (PML4SHIFT - PDPTSHIFT)) - 1)) >> (PML4SHIFT - PDPTSHIFT); | |
318 | if (kernPhysPML4EntryCount == 0) { | |
319 | kernPhysPML4EntryCount = 1; | |
320 | } | |
321 | if (kernPhysPML4EntryCount > KERNEL_PHYSMAP_PML4_COUNT_MAX) { | |
322 | #if DEVELOPMENT || DEBUG | |
323 | panic("physmap too large"); | |
324 | #else | |
325 | kprintf("[pmap] Limiting physmap to %d PML4s (was %d)\n", KERNEL_PHYSMAP_PML4_COUNT_MAX, | |
326 | kernPhysPML4EntryCount); | |
327 | kernPhysPML4EntryCount = KERNEL_PHYSMAP_PML4_COUNT_MAX; | |
328 | #endif | |
329 | } | |
330 | ||
331 | kernPhysPML4Index = KERNEL_KEXTS_INDEX - kernPhysPML4EntryCount; /* utb: KERNEL_PHYSMAP_PML4_INDEX */ | |
332 | ||
333 | /* | |
334 | * XXX: Make sure that the addresses returned for physmapL3 and physmapL2 plus their extents | |
335 | * are in the system-available memory range | |
336 | */ | |
337 | ||
338 | ||
339 | /* We assume NX support. Mark all levels of the PHYSMAP NX | |
340 | * to avoid granting executability via a single bit flip. | |
341 | */ | |
342 | #if DEVELOPMENT || DEBUG | |
343 | uint32_t reg[4]; | |
344 | do_cpuid(0x80000000, reg); | |
345 | if (reg[eax] >= 0x80000001) { | |
346 | do_cpuid(0x80000001, reg); | |
347 | assert(reg[edx] & CPUID_EXTFEATURE_XD); | |
348 | } | |
349 | #endif /* DEVELOPMENT || DEBUG */ | |
350 | ||
351 | L3_start_index = phys_random_L3; | |
352 | ||
353 | for (pml4_index = kernPhysPML4Index; | |
354 | pml4_index < (kernPhysPML4Index + kernPhysPML4EntryCount) && physAddr < highest_physaddr; | |
355 | pml4_index++) { | |
356 | if (physmap_init_L3(L3_start_index, highest_physaddr, &physAddr, &l3pte) < 0) { | |
357 | panic("Physmap page table initialization failed"); | |
358 | /* NOTREACHED */ | |
359 | } | |
360 | ||
361 | L3_start_index = 0; | |
362 | ||
363 | IdlePML4[pml4_index] = ((uintptr_t)ID_MAP_VTOP(l3pte)) | |
364 | | INTEL_PTE_VALID | |
365 | | INTEL_PTE_NX | |
366 | | INTEL_PTE_WRITE; | |
367 | } | |
368 | ||
369 | *new_physmap_base = KVADDR(kernPhysPML4Index, phys_random_L3, 0, 0); | |
370 | /* | |
371 | * physAddr contains the last-mapped physical address, so that's what we | |
372 | * add to physmap_base to derive the ending VA for the physmap. | |
373 | */ | |
374 | *new_physmap_max = *new_physmap_base + physAddr; | |
375 | ||
376 | DBG("Physical address map base: 0x%qx\n", *new_physmap_base); | |
377 | for (i = kernPhysPML4Index; i < (kernPhysPML4Index + kernPhysPML4EntryCount); i++) { | |
378 | DBG("Physical map idlepml4[%d]: 0x%llx\n", i, IdlePML4[i]); | |
379 | } | |
380 | } | |
381 | ||
382 | void doublemap_init(uint8_t); | |
383 | ||
384 | static void | |
385 | Idle_PTs_init(void) | |
386 | { | |
387 | uint64_t rand64; | |
388 | uint64_t new_physmap_base, new_physmap_max; | |
389 | ||
390 | /* Allocate the "idle" kernel page tables: */ | |
391 | KPTphys = ALLOCPAGES(NKPT); /* level 1 */ | |
392 | IdlePTD = ALLOCPAGES(NPGPTD); /* level 2 */ | |
393 | IdlePDPT = ALLOCPAGES(1); /* level 3 */ | |
394 | IdlePML4 = ALLOCPAGES(1); /* level 4 */ | |
395 | ||
396 | // Fill the lowest level with everything up to physfree | |
397 | fillkpt(KPTphys, | |
398 | INTEL_PTE_WRITE, 0, 0, (int)(((uintptr_t)physfree) >> PAGE_SHIFT)); | |
399 | ||
400 | /* IdlePTD */ | |
401 | fillkpt(IdlePTD, | |
402 | INTEL_PTE_WRITE, (uintptr_t)ID_MAP_VTOP(KPTphys), 0, NKPT); | |
403 | ||
404 | // IdlePDPT entries | |
405 | fillkpt(IdlePDPT, | |
406 | INTEL_PTE_WRITE, (uintptr_t)ID_MAP_VTOP(IdlePTD), 0, NPGPTD); | |
407 | ||
408 | // IdlePML4 single entry for kernel space. | |
409 | fillkpt(IdlePML4 + KERNEL_PML4_INDEX, | |
410 | INTEL_PTE_WRITE, (uintptr_t)ID_MAP_VTOP(IdlePDPT), 0, 1); | |
411 | ||
412 | postcode(VSTART_PHYSMAP_INIT); | |
413 | ||
414 | /* | |
415 | * early_random() cannot be called more than one time before the cpu's | |
416 | * gsbase is initialized, so use the full 64-bit value to extract the | |
417 | * two 8-bit entropy values needed for address randomization. | |
418 | */ | |
419 | rand64 = early_random(); | |
420 | physmap_init(rand64 & 0xFF, &new_physmap_base, &new_physmap_max); | |
421 | doublemap_init((rand64 >> 8) & 0xFF); | |
422 | idt64_remap(); | |
423 | ||
424 | postcode(VSTART_SET_CR3); | |
425 | ||
426 | /* | |
427 | * Switch to the page tables. We set physmap_base and physmap_max just | |
428 | * before switching to the new page tables to avoid someone calling | |
429 | * kprintf() or otherwise using physical memory in between. | |
430 | * This is needed because kprintf() writes to physical memory using | |
431 | * ml_phys_read_data and PHYSMAP_PTOV, which requires physmap_base to be | |
432 | * set correctly. | |
433 | */ | |
434 | physmap_base = new_physmap_base; | |
435 | physmap_max = new_physmap_max; | |
436 | set_cr3_raw((uintptr_t)ID_MAP_VTOP(IdlePML4)); | |
437 | } | |
438 | ||
439 | /* | |
440 | * Release any still unused, preallocated boot kernel page tables. | |
441 | * start..end is the VA range currently unused. | |
442 | */ | |
443 | void | |
444 | Idle_PTs_release(vm_offset_t start, vm_offset_t end) | |
445 | { | |
446 | uint32_t i; | |
447 | uint32_t index_start; | |
448 | uint32_t index_limit; | |
449 | ppnum_t pn_first; | |
450 | ppnum_t pn; | |
451 | uint32_t cnt; | |
452 | ||
453 | /* | |
454 | * Align start to the next large page boundary | |
455 | */ | |
456 | start = ((start + I386_LPGMASK) & ~I386_LPGMASK); | |
457 | ||
458 | /* | |
459 | * convert start into an index in KPTphys[] | |
460 | */ | |
461 | index_start = (uint32_t)((start - KERNEL_BASE) >> PAGE_SHIFT); | |
462 | ||
463 | /* | |
464 | * Find the ending index in KPTphys[] | |
465 | */ | |
466 | index_limit = (uint32_t)((end - KERNEL_BASE) >> PAGE_SHIFT); | |
467 | ||
468 | if (index_limit > NKPT * PTE_PER_PAGE) { | |
469 | index_limit = NKPT * PTE_PER_PAGE; | |
470 | } | |
471 | ||
472 | /* | |
473 | * Make sure all the 4K page tables are empty. | |
474 | * If not, panic a development/debug kernel. | |
475 | * On a production kernel, since this would stop us from booting, | |
476 | * just abort the operation. | |
477 | */ | |
478 | for (i = index_start; i < index_limit; ++i) { | |
479 | assert(KPTphys[i] == 0); | |
480 | if (KPTphys[i] != 0) { | |
481 | return; | |
482 | } | |
483 | } | |
484 | ||
485 | /* | |
486 | * Now figure out the indices into the 2nd level page tables, IdlePTD[]. | |
487 | */ | |
488 | index_start >>= PTPGSHIFT; | |
489 | index_limit >>= PTPGSHIFT; | |
490 | if (index_limit > NPGPTD * PTE_PER_PAGE) { | |
491 | index_limit = NPGPTD * PTE_PER_PAGE; | |
492 | } | |
493 | ||
494 | if (index_limit <= index_start) { | |
495 | return; | |
496 | } | |
497 | ||
498 | ||
499 | /* | |
500 | * Now check the pages referenced from Level 2 tables. | |
501 | * They should be contiguous, assert fail if not on development/debug. | |
502 | * In production, just fail the removal to allow the system to boot. | |
503 | */ | |
504 | pn_first = 0; | |
505 | cnt = 0; | |
506 | for (i = index_start; i < index_limit; ++i) { | |
507 | assert(IdlePTD[i] != 0); | |
508 | if (IdlePTD[i] == 0) { | |
509 | return; | |
510 | } | |
511 | ||
512 | pn = (ppnum_t)((PG_FRAME & IdlePTD[i]) >> PTSHIFT); | |
513 | if (cnt == 0) { | |
514 | pn_first = pn; | |
515 | } else { | |
516 | assert(pn == pn_first + cnt); | |
517 | if (pn != pn_first + cnt) { | |
518 | return; | |
519 | } | |
520 | } | |
521 | ++cnt; | |
522 | } | |
523 | ||
524 | /* | |
525 | * Good to go, clear the level 2 entries and invalidate the TLB | |
526 | */ | |
527 | for (i = index_start; i < index_limit; ++i) { | |
528 | IdlePTD[i] = 0; | |
529 | } | |
530 | set_cr3_raw(get_cr3_raw()); | |
531 | ||
532 | /* | |
533 | * Remember these PFNs to be released later in pmap_lowmem_finalize() | |
534 | */ | |
535 | released_PT_ppn = pn_first; | |
536 | released_PT_cnt = cnt; | |
537 | #if DEVELOPMENT || DEBUG | |
538 | printf("Idle_PTs_release %d pages from PFN 0x%x\n", released_PT_cnt, released_PT_ppn); | |
539 | #endif | |
540 | } | |
541 | ||
542 | extern void vstart_trap_handler; | |
543 | ||
544 | #define BOOT_TRAP_VECTOR(t) \ | |
545 | [t] = { \ | |
546 | (uintptr_t) &vstart_trap_handler, \ | |
547 | KERNEL64_CS, \ | |
548 | 0, \ | |
549 | ACC_P|ACC_PL_K|ACC_INTR_GATE, \ | |
550 | 0 \ | |
551 | }, | |
552 | ||
553 | /* Recursive macro to iterate 0..31 */ | |
554 | #define L0(x, n) x(n) | |
555 | #define L1(x, n) L0(x,n-1) L0(x,n) | |
556 | #define L2(x, n) L1(x,n-2) L1(x,n) | |
557 | #define L3(x, n) L2(x,n-4) L2(x,n) | |
558 | #define L4(x, n) L3(x,n-8) L3(x,n) | |
559 | #define L5(x, n) L4(x,n-16) L4(x,n) | |
560 | #define FOR_0_TO_31(x) L5(x,31) | |
561 | ||
562 | /* | |
563 | * Bootstrap IDT. Active only during early startup. | |
564 | * Only the trap vectors are defined since interrupts are masked. | |
565 | * All traps point to a common handler. | |
566 | */ | |
567 | struct fake_descriptor64 master_boot_idt64[IDTSZ] | |
568 | __attribute__((section("__HIB,__desc"))) | |
569 | __attribute__((aligned(PAGE_SIZE))) = { | |
570 | FOR_0_TO_31(BOOT_TRAP_VECTOR) | |
571 | }; | |
572 | ||
573 | static void | |
574 | vstart_idt_init(boolean_t master) | |
575 | { | |
576 | x86_64_desc_register_t vstart_idt = { | |
577 | sizeof(master_boot_idt64), | |
578 | master_boot_idt64 | |
579 | }; | |
580 | ||
581 | if (master) { | |
582 | fix_desc64(master_boot_idt64, 32); | |
583 | } | |
584 | lidt((void *)&vstart_idt); | |
585 | } | |
586 | ||
587 | extern void *collection_base_pointers[KCNumKinds]; | |
588 | ||
589 | kern_return_t | |
590 | i386_slide_individual_kext(kernel_mach_header_t *mh, uintptr_t slide) | |
591 | { | |
592 | int ret = kernel_collection_slide(mh, (const void **) (void *)collection_base_pointers); | |
593 | if (ret != 0) { | |
594 | printf("Sliding pageable kc was stopped\n"); | |
595 | return KERN_FAILURE; | |
596 | } | |
597 | ||
598 | kernel_collection_adjust_fileset_entry_addrs(mh, slide); | |
599 | return KERN_SUCCESS; | |
600 | } | |
601 | ||
602 | kern_return_t | |
603 | i386_slide_kext_collection_mh_addrs(kernel_mach_header_t *mh, uintptr_t slide, bool adjust_mach_headers) | |
604 | { | |
605 | int ret = kernel_collection_slide(mh, (const void **) (void *)collection_base_pointers); | |
606 | if (ret != KERN_SUCCESS) { | |
607 | printf("Kernel Collection slide was stopped with value %d\n", ret); | |
608 | return KERN_FAILURE; | |
609 | } | |
610 | ||
611 | kernel_collection_adjust_mh_addrs(mh, slide, adjust_mach_headers, | |
612 | NULL, NULL, NULL, NULL, NULL, NULL, NULL); | |
613 | ||
614 | return KERN_SUCCESS; | |
615 | } | |
616 | ||
617 | static void | |
618 | i386_slide_and_rebase_image(uintptr_t kstart_addr) | |
619 | { | |
620 | extern uintptr_t kc_highest_nonlinkedit_vmaddr; | |
621 | kernel_mach_header_t *k_mh, *kc_mh = NULL; | |
622 | kernel_segment_command_t *seg; | |
623 | uintptr_t slide; | |
624 | ||
625 | k_mh = &_mh_execute_header; | |
626 | /* | |
627 | * If we're not booting, an MH_FILESET, we don't need to slide | |
628 | * anything because EFI has done that for us. When booting an | |
629 | * MH_FILESET, EFI will slide the kernel proper, but not the kexts. | |
630 | * Below, we infer the slide by comparing the slid address of the | |
631 | * kernel's mach-o header and the unslid vmaddr of the first segment | |
632 | * of the mach-o (which is assumed to always point to the mach-o | |
633 | * header). | |
634 | */ | |
635 | if (!kernel_mach_header_is_in_fileset(k_mh)) { | |
636 | DBG("[MH] kcgen-style KC\n"); | |
637 | return; | |
638 | } | |
639 | ||
640 | /* | |
641 | * The kernel is part of a MH_FILESET kernel collection: determine slide | |
642 | * based on first segment's mach-o vmaddr. | |
643 | */ | |
644 | seg = (kernel_segment_command_t *)((uintptr_t)k_mh + sizeof(*k_mh)); | |
645 | assert(seg->cmd == LC_SEGMENT_KERNEL); | |
646 | slide = (uintptr_t)k_mh - seg->vmaddr; | |
647 | DBG("[MH] Sliding new-style KC: %llu\n", (unsigned long long)slide); | |
648 | ||
649 | /* | |
650 | * The kernel collection mach-o header should be the start address | |
651 | * passed to us by EFI. | |
652 | */ | |
653 | kc_mh = (kernel_mach_header_t *)(kstart_addr); | |
654 | assert(kc_mh->filetype == MH_FILESET); | |
655 | ||
656 | PE_set_kc_header(KCKindPrimary, kc_mh, slide); | |
657 | ||
658 | /* | |
659 | * rebase/slide all the kexts in the collection | |
660 | * (EFI should have already rebased the kernel) | |
661 | */ | |
662 | kernel_collection_slide(kc_mh, (const void **) (void *)collection_base_pointers); | |
663 | ||
664 | ||
665 | /* | |
666 | * Now adjust the vmaddr fields of all mach-o headers | |
667 | * and symbols in this MH_FILESET | |
668 | */ | |
669 | kernel_collection_adjust_mh_addrs(kc_mh, slide, false, | |
670 | NULL, NULL, NULL, NULL, NULL, NULL, &kc_highest_nonlinkedit_vmaddr); | |
671 | } | |
672 | ||
673 | /* | |
674 | * vstart() is called in the natural mode (64bit for K64, 32 for K32) | |
675 | * on a set of bootstrap pagetables which use large, 2MB pages to map | |
676 | * all of physical memory in both. See idle_pt.c for details. | |
677 | * | |
678 | * In K64 this identity mapping is mirrored the top and bottom 512GB | |
679 | * slots of PML4. | |
680 | * | |
681 | * The bootstrap processor called with argument boot_args_start pointing to | |
682 | * the boot-args block. The kernel's (4K page) page tables are allocated and | |
683 | * initialized before switching to these. | |
684 | * | |
685 | * Non-bootstrap processors are called with argument boot_args_start NULL. | |
686 | * These processors switch immediately to the existing kernel page tables. | |
687 | */ | |
688 | __attribute__((noreturn)) | |
689 | void | |
690 | vstart(vm_offset_t boot_args_start) | |
691 | { | |
692 | boolean_t is_boot_cpu = !(boot_args_start == 0); | |
693 | int cpu = 0; | |
694 | uint32_t lphysfree; | |
695 | #if DEBUG | |
696 | uint64_t gsbase; | |
697 | #endif | |
698 | ||
699 | ||
700 | postcode(VSTART_ENTRY); | |
701 | ||
702 | /* | |
703 | * Set-up temporary trap handlers during page-table set-up. | |
704 | */ | |
705 | ||
706 | if (is_boot_cpu) { | |
707 | vstart_idt_init(TRUE); | |
708 | postcode(VSTART_IDT_INIT); | |
709 | ||
710 | /* | |
711 | * Ensure that any %gs-relative access results in an immediate fault | |
712 | * until gsbase is properly initialized below | |
713 | */ | |
714 | wrmsr64(MSR_IA32_GS_BASE, EARLY_GSBASE_MAGIC); | |
715 | ||
716 | /* | |
717 | * Get startup parameters. | |
718 | */ | |
719 | kernelBootArgs = (boot_args *)boot_args_start; | |
720 | lphysfree = kernelBootArgs->kaddr + kernelBootArgs->ksize; | |
721 | physfree = (void *)(uintptr_t)((lphysfree + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)); | |
722 | ||
723 | pal_serial_init(); | |
724 | ||
725 | DBG("revision 0x%x\n", kernelBootArgs->Revision); | |
726 | DBG("version 0x%x\n", kernelBootArgs->Version); | |
727 | DBG("command line %s\n", kernelBootArgs->CommandLine); | |
728 | DBG("memory map 0x%x\n", kernelBootArgs->MemoryMap); | |
729 | DBG("memory map sz 0x%x\n", kernelBootArgs->MemoryMapSize); | |
730 | DBG("kaddr 0x%x\n", kernelBootArgs->kaddr); | |
731 | DBG("ksize 0x%x\n", kernelBootArgs->ksize); | |
732 | DBG("physfree %p\n", physfree); | |
733 | DBG("bootargs: %p, &ksize: %p &kaddr: %p\n", | |
734 | kernelBootArgs, | |
735 | &kernelBootArgs->ksize, | |
736 | &kernelBootArgs->kaddr); | |
737 | DBG("SMBIOS mem sz 0x%llx\n", kernelBootArgs->PhysicalMemorySize); | |
738 | DBG("KC_hdrs_vaddr %p\n", (void *)kernelBootArgs->KC_hdrs_vaddr); | |
739 | ||
740 | if (kernelBootArgs->Version >= 2 && kernelBootArgs->Revision >= 1 && | |
741 | kernelBootArgs->KC_hdrs_vaddr != 0) { | |
742 | /* | |
743 | * slide the header addresses in all mach-o segments and sections, and | |
744 | * perform any new-style chained-fixup sliding for kexts, as necessary. | |
745 | * Note that efiboot has already loaded the kernel and all LC_SEGMENT_64s | |
746 | * that correspond to the kexts present in the primary KC, into slid addresses. | |
747 | */ | |
748 | i386_slide_and_rebase_image((uintptr_t)ml_static_ptovirt(kernelBootArgs->KC_hdrs_vaddr)); | |
749 | } | |
750 | ||
751 | /* | |
752 | * Setup boot args given the physical start address. | |
753 | * Note: PE_init_platform needs to be called before Idle_PTs_init | |
754 | * because access to the DeviceTree is required to read the | |
755 | * random seed before generating a random physical map slide. | |
756 | */ | |
757 | kernelBootArgs = (boot_args *) | |
758 | ml_static_ptovirt(boot_args_start); | |
759 | DBG("i386_init(0x%lx) kernelBootArgs=%p\n", | |
760 | (unsigned long)boot_args_start, kernelBootArgs); | |
761 | ||
762 | #if KASAN | |
763 | kasan_reserve_memory(kernelBootArgs); | |
764 | #endif | |
765 | ||
766 | PE_init_platform(FALSE, kernelBootArgs); | |
767 | postcode(PE_INIT_PLATFORM_D); | |
768 | ||
769 | Idle_PTs_init(); | |
770 | postcode(VSTART_IDLE_PTS_INIT); | |
771 | ||
772 | #if KASAN | |
773 | /* Init kasan and map whatever was stolen from physfree */ | |
774 | kasan_init(); | |
775 | kasan_notify_stolen((uintptr_t)ml_static_ptovirt((vm_offset_t)physfree)); | |
776 | #endif | |
777 | ||
778 | #if MONOTONIC | |
779 | mt_early_init(); | |
780 | #endif /* MONOTONIC */ | |
781 | ||
782 | first_avail = (vm_offset_t)ID_MAP_VTOP(physfree); | |
783 | ||
784 | cpu_data_alloc(TRUE); | |
785 | ||
786 | cpu_desc_init(cpu_datap(0)); | |
787 | postcode(VSTART_CPU_DESC_INIT); | |
788 | cpu_desc_load(cpu_datap(0)); | |
789 | ||
790 | postcode(VSTART_CPU_MODE_INIT); | |
791 | cpu_syscall_init(cpu_datap(0)); /* cpu_syscall_init() will be | |
792 | * invoked on the APs | |
793 | * via i386_init_slave() | |
794 | */ | |
795 | } else { | |
796 | /* Slave CPUs should use the basic IDT until i386_init_slave() */ | |
797 | vstart_idt_init(FALSE); | |
798 | ||
799 | /* Switch to kernel's page tables (from the Boot PTs) */ | |
800 | set_cr3_raw((uintptr_t)ID_MAP_VTOP(IdlePML4)); | |
801 | ||
802 | /* Find our logical cpu number */ | |
803 | cpu = lapic_to_cpu[lapic_safe_apicid()]; | |
804 | #if DEBUG | |
805 | gsbase = rdmsr64(MSR_IA32_GS_BASE); | |
806 | #endif | |
807 | cpu_desc_load(cpu_datap(cpu)); | |
808 | #if DEBUG | |
809 | DBG("CPU: %d, GSBASE initial value: 0x%llx\n", cpu, (unsigned long long)gsbase); | |
810 | #endif | |
811 | ||
812 | /* | |
813 | * Before we can discover our local APIC ID, we need to potentially | |
814 | * initialize X2APIC, if it's enabled and firmware started us with | |
815 | * the APIC in legacy mode. | |
816 | */ | |
817 | lapic_init_slave(); | |
818 | } | |
819 | ||
820 | early_boot = 0; | |
821 | postcode(VSTART_EXIT); | |
822 | x86_init_wrapper(is_boot_cpu ? (uintptr_t) i386_init | |
823 | : (uintptr_t) i386_init_slave, | |
824 | cpu_datap(cpu)->cpu_int_stack_top); | |
825 | } | |
826 | ||
827 | void | |
828 | pstate_trace(void) | |
829 | { | |
830 | } | |
831 | ||
832 | /* | |
833 | * Cpu initialization. Running virtual, but without MACH VM | |
834 | * set up. | |
835 | */ | |
836 | void | |
837 | i386_init(void) | |
838 | { | |
839 | unsigned int maxmem; | |
840 | uint64_t maxmemtouse; | |
841 | unsigned int cpus = 0; | |
842 | boolean_t fidn; | |
843 | boolean_t IA32e = TRUE; | |
844 | ||
845 | postcode(I386_INIT_ENTRY); | |
846 | ||
847 | pal_i386_init(); | |
848 | tsc_init(); | |
849 | rtclock_early_init(); /* mach_absolute_time() now functional */ | |
850 | ||
851 | kernel_debug_string_early("i386_init"); | |
852 | pstate_trace(); | |
853 | ||
854 | #if CONFIG_MCA | |
855 | /* Initialize machine-check handling */ | |
856 | mca_cpu_init(); | |
857 | #endif | |
858 | ||
859 | master_cpu = 0; | |
860 | ||
861 | kernel_debug_string_early("kernel_startup_bootstrap"); | |
862 | kernel_startup_bootstrap(); | |
863 | ||
864 | /* | |
865 | * Initialize the timer callout world | |
866 | */ | |
867 | timer_call_init(); | |
868 | ||
869 | cpu_init(); | |
870 | ||
871 | postcode(CPU_INIT_D); | |
872 | ||
873 | /* setup debugging output if one has been chosen */ | |
874 | kernel_startup_initialize_upto(STARTUP_SUB_KPRINTF); | |
875 | kprintf("kprintf initialized\n"); | |
876 | ||
877 | if (!PE_parse_boot_argn("diag", &dgWork.dgFlags, sizeof(dgWork.dgFlags))) { | |
878 | dgWork.dgFlags = 0; | |
879 | } | |
880 | ||
881 | if (PE_parse_boot_argn("insn_capcnt", &insn_copyin_count, sizeof(insn_copyin_count))) { | |
882 | /* | |
883 | * Enforce max and min values (allowing 0 to disable copying completely) | |
884 | * for the instruction copyin count | |
885 | */ | |
886 | if (insn_copyin_count > x86_INSTRUCTION_STATE_MAX_INSN_BYTES || | |
887 | (insn_copyin_count != 0 && insn_copyin_count < 64)) { | |
888 | insn_copyin_count = DEFAULT_INSN_COPYIN_COUNT; | |
889 | } | |
890 | } else { | |
891 | insn_copyin_count = DEFAULT_INSN_COPYIN_COUNT; | |
892 | } | |
893 | ||
894 | #if DEVELOPMENT || DEBUG | |
895 | if (!PE_parse_boot_argn("panic_clmismatch", &panic_on_cacheline_mismatch, | |
896 | sizeof(panic_on_cacheline_mismatch))) { | |
897 | panic_on_cacheline_mismatch = 0; | |
898 | } | |
899 | ||
900 | if (!PE_parse_boot_argn("panic_on_trap_procname", &panic_on_trap_procname[0], | |
901 | sizeof(panic_on_trap_procname))) { | |
902 | panic_on_trap_procname[0] = 0; | |
903 | } | |
904 | ||
905 | if (!PE_parse_boot_argn("panic_on_trap_mask", &panic_on_trap_mask, | |
906 | sizeof(panic_on_trap_mask))) { | |
907 | if (panic_on_trap_procname[0] != 0) { | |
908 | panic_on_trap_mask = DEFAULT_PANIC_ON_TRAP_MASK; | |
909 | } else { | |
910 | panic_on_trap_mask = 0; | |
911 | } | |
912 | } | |
913 | #endif | |
914 | /* But allow that to be overridden via boot-arg: */ | |
915 | if (!PE_parse_boot_argn("lbr_support", &last_branch_support_enabled, | |
916 | sizeof(last_branch_support_enabled))) { | |
917 | /* Disable LBR support by default due to its high context switch overhead */ | |
918 | last_branch_support_enabled = false; | |
919 | } | |
920 | ||
921 | serialmode = 0; | |
922 | if (PE_parse_boot_argn("serial", &serialmode, sizeof(serialmode))) { | |
923 | /* We want a serial keyboard and/or console */ | |
924 | kprintf("Serial mode specified: %08X\n", serialmode); | |
925 | int force_sync = serialmode & SERIALMODE_SYNCDRAIN; | |
926 | if (force_sync || PE_parse_boot_argn("drain_uart_sync", &force_sync, sizeof(force_sync))) { | |
927 | if (force_sync) { | |
928 | serialmode |= SERIALMODE_SYNCDRAIN; | |
929 | kprintf( | |
930 | "WARNING: Forcing uart driver to output synchronously." | |
931 | "printf()s/IOLogs will impact kernel performance.\n" | |
932 | "You are advised to avoid using 'drain_uart_sync' boot-arg.\n"); | |
933 | } | |
934 | } | |
935 | } | |
936 | if (serialmode & SERIALMODE_OUTPUT) { | |
937 | serial_console_enabled = true; | |
938 | (void)switch_to_serial_console(); | |
939 | disableConsoleOutput = FALSE; /* Allow printfs to happen */ | |
940 | } | |
941 | ||
942 | /* setup console output */ | |
943 | kernel_debug_string_early("PE_init_printf"); | |
944 | PE_init_printf(FALSE); | |
945 | ||
946 | kprintf("version_variant = %s\n", version_variant); | |
947 | kprintf("version = %s\n", version); | |
948 | ||
949 | if (!PE_parse_boot_argn("maxmem", &maxmem, sizeof(maxmem))) { | |
950 | maxmemtouse = 0; | |
951 | } else { | |
952 | maxmemtouse = ((uint64_t)maxmem) * MB; | |
953 | } | |
954 | ||
955 | max_cpus_from_firmware = acpi_count_enabled_logical_processors(); | |
956 | ||
957 | if (PE_parse_boot_argn("cpus", &cpus, sizeof(cpus))) { | |
958 | if ((0 < cpus) && (cpus < max_ncpus)) { | |
959 | max_ncpus = cpus; | |
960 | } | |
961 | } | |
962 | ||
963 | /* | |
964 | * debug support for > 4G systems | |
965 | */ | |
966 | PE_parse_boot_argn("himemory_mode", &vm_himemory_mode, sizeof(vm_himemory_mode)); | |
967 | if (!vm_himemory_mode) { | |
968 | kprintf("himemory_mode disabled\n"); | |
969 | } | |
970 | ||
971 | if (!PE_parse_boot_argn("immediate_NMI", &fidn, sizeof(fidn))) { | |
972 | force_immediate_debugger_NMI = FALSE; | |
973 | } else { | |
974 | force_immediate_debugger_NMI = fidn; | |
975 | } | |
976 | ||
977 | #if DEBUG | |
978 | nanoseconds_to_absolutetime(URGENCY_NOTIFICATION_ASSERT_NS, &urgency_notification_assert_abstime_threshold); | |
979 | #endif | |
980 | PE_parse_boot_argn("urgency_notification_abstime", | |
981 | &urgency_notification_assert_abstime_threshold, | |
982 | sizeof(urgency_notification_assert_abstime_threshold)); | |
983 | ||
984 | if (!(cpuid_extfeatures() & CPUID_EXTFEATURE_XD)) { | |
985 | nx_enabled = 0; | |
986 | } | |
987 | ||
988 | /* | |
989 | * VM initialization, after this we're using page tables... | |
990 | * Thn maximum number of cpus must be set beforehand. | |
991 | */ | |
992 | kernel_debug_string_early("i386_vm_init"); | |
993 | i386_vm_init(maxmemtouse, IA32e, kernelBootArgs); | |
994 | ||
995 | /* create the console for verbose or pretty mode */ | |
996 | /* Note: doing this prior to tsc_init() allows for graceful panic! */ | |
997 | PE_init_platform(TRUE, kernelBootArgs); | |
998 | PE_create_console(); | |
999 | ||
1000 | kernel_debug_string_early("power_management_init"); | |
1001 | power_management_init(); | |
1002 | xcpm_bootstrap(); | |
1003 | ||
1004 | #if MONOTONIC | |
1005 | mt_cpu_up(cpu_datap(0)); | |
1006 | #endif /* MONOTONIC */ | |
1007 | ||
1008 | processor_bootstrap(); | |
1009 | thread_t thread = thread_bootstrap(); | |
1010 | machine_set_current_thread(thread); | |
1011 | ||
1012 | pstate_trace(); | |
1013 | kernel_debug_string_early("machine_startup"); | |
1014 | machine_startup(); | |
1015 | pstate_trace(); | |
1016 | } | |
1017 | ||
1018 | static void __dead2 | |
1019 | do_init_slave(boolean_t fast_restart) | |
1020 | { | |
1021 | void *init_param = FULL_SLAVE_INIT; | |
1022 | ||
1023 | postcode(I386_INIT_SLAVE); | |
1024 | ||
1025 | if (!fast_restart) { | |
1026 | /* Ensure that caching and write-through are enabled */ | |
1027 | set_cr0(get_cr0() & ~(CR0_NW | CR0_CD)); | |
1028 | ||
1029 | DBG("i386_init_slave() CPU%d: phys (%d) active.\n", | |
1030 | get_cpu_number(), get_cpu_phys_number()); | |
1031 | ||
1032 | assert(!ml_get_interrupts_enabled()); | |
1033 | ||
1034 | cpu_syscall_init(current_cpu_datap()); | |
1035 | pmap_cpu_init(); | |
1036 | ||
1037 | #if CONFIG_MCA | |
1038 | mca_cpu_init(); | |
1039 | #endif | |
1040 | ||
1041 | LAPIC_INIT(); | |
1042 | /* | |
1043 | * Note that the true argument here does not necessarily mean we're | |
1044 | * here from a resume (this code path is also executed on boot). | |
1045 | * The implementation of lapic_configure checks to see if the | |
1046 | * state variable has been initialized, as it would be before | |
1047 | * sleep. If it has not been, it's construed as an indicator of | |
1048 | * first boot. | |
1049 | */ | |
1050 | lapic_configure(true); | |
1051 | LAPIC_DUMP(); | |
1052 | LAPIC_CPU_MAP_DUMP(); | |
1053 | ||
1054 | init_fpu(); | |
1055 | ||
1056 | #if CONFIG_MTRR | |
1057 | mtrr_update_cpu(); | |
1058 | #endif | |
1059 | /* update CPU microcode and apply CPU workarounds */ | |
1060 | ucode_update_wake_and_apply_cpu_was(); | |
1061 | ||
1062 | /* Enable LBRs on non-boot CPUs */ | |
1063 | i386_lbr_init(cpuid_info(), false); | |
1064 | } else { | |
1065 | init_param = FAST_SLAVE_INIT; | |
1066 | } | |
1067 | ||
1068 | #if CONFIG_VMX | |
1069 | /* resume VT operation */ | |
1070 | vmx_resume(FALSE); | |
1071 | #endif | |
1072 | ||
1073 | #if CONFIG_MTRR | |
1074 | if (!fast_restart) { | |
1075 | pat_init(); | |
1076 | } | |
1077 | #endif | |
1078 | ||
1079 | cpu_thread_init(); /* not strictly necessary */ | |
1080 | ||
1081 | cpu_init(); /* Sets cpu_running which starter cpu waits for */ | |
1082 | ||
1083 | ||
1084 | #if MONOTONIC | |
1085 | mt_cpu_up(current_cpu_datap()); | |
1086 | #endif /* MONOTONIC */ | |
1087 | ||
1088 | slave_main(init_param); | |
1089 | ||
1090 | panic("do_init_slave() returned from slave_main()"); | |
1091 | } | |
1092 | ||
1093 | /* | |
1094 | * i386_init_slave() is called from pstart. | |
1095 | * We're in the cpu's interrupt stack with interrupts disabled. | |
1096 | * At this point we are in legacy mode. We need to switch on IA32e | |
1097 | * if the mode is set to 64-bits. | |
1098 | */ | |
1099 | void | |
1100 | i386_init_slave(void) | |
1101 | { | |
1102 | do_init_slave(FALSE); | |
1103 | } | |
1104 | ||
1105 | /* | |
1106 | * i386_init_slave_fast() is called from pmCPUHalt. | |
1107 | * We're running on the idle thread and need to fix up | |
1108 | * some accounting and get it so that the scheduler sees this | |
1109 | * CPU again. | |
1110 | */ | |
1111 | void | |
1112 | i386_init_slave_fast(void) | |
1113 | { | |
1114 | do_init_slave(TRUE); | |
1115 | } | |
1116 | ||
1117 | ||
1118 | /* TODO: Evaluate global PTEs for the double-mapped translations */ | |
1119 | ||
1120 | uint64_t dblmap_base, dblmap_max; | |
1121 | kernel_segment_command_t *hdescseg; | |
1122 | ||
1123 | pt_entry_t *dblmapL3; | |
1124 | unsigned int dblallocs; | |
1125 | uint64_t dblmap_dist; | |
1126 | extern uint64_t idt64_hndl_table0[]; | |
1127 | ||
1128 | ||
1129 | void | |
1130 | doublemap_init(uint8_t randL3) | |
1131 | { | |
1132 | dblmapL3 = ALLOCPAGES(1); // for 512 1GiB entries | |
1133 | dblallocs++; | |
1134 | ||
1135 | struct { | |
1136 | pt_entry_t entries[PTE_PER_PAGE]; | |
1137 | } * dblmapL2 = ALLOCPAGES(1); // for 512 2MiB entries | |
1138 | dblallocs++; | |
1139 | ||
1140 | dblmapL3[randL3] = ((uintptr_t)ID_MAP_VTOP(&dblmapL2[0])) | |
1141 | | INTEL_PTE_VALID | |
1142 | | INTEL_PTE_WRITE; | |
1143 | ||
1144 | hdescseg = getsegbynamefromheader(&_mh_execute_header, "__HIB"); | |
1145 | ||
1146 | vm_offset_t hdescb = hdescseg->vmaddr; | |
1147 | unsigned long hdescsz = hdescseg->vmsize; | |
1148 | unsigned long hdescszr = round_page_64(hdescsz); | |
1149 | vm_offset_t hdescc = hdescb, hdesce = hdescb + hdescszr; | |
1150 | ||
1151 | kernel_section_t *thdescsect = getsectbynamefromheader(&_mh_execute_header, "__HIB", "__text"); | |
1152 | vm_offset_t thdescb = thdescsect->addr; | |
1153 | unsigned long thdescsz = thdescsect->size; | |
1154 | unsigned long thdescszr = round_page_64(thdescsz); | |
1155 | vm_offset_t thdesce = thdescb + thdescszr; | |
1156 | ||
1157 | assert((hdescb & 0xFFF) == 0); | |
1158 | /* Mirror HIB translations into the double-mapped pagetable subtree*/ | |
1159 | for (int i = 0; hdescc < hdesce; i++) { | |
1160 | struct { | |
1161 | pt_entry_t entries[PTE_PER_PAGE]; | |
1162 | } * dblmapL1 = ALLOCPAGES(1); | |
1163 | dblallocs++; | |
1164 | dblmapL2[0].entries[i] = ((uintptr_t)ID_MAP_VTOP(&dblmapL1[0])) | INTEL_PTE_VALID | INTEL_PTE_WRITE | INTEL_PTE_REF; | |
1165 | int hdescn = (int) ((hdesce - hdescc) / PAGE_SIZE); | |
1166 | for (int j = 0; j < MIN(PTE_PER_PAGE, hdescn); j++) { | |
1167 | uint64_t template = INTEL_PTE_VALID; | |
1168 | if ((hdescc >= thdescb) && (hdescc < thdesce)) { | |
1169 | /* executable */ | |
1170 | } else { | |
1171 | template |= INTEL_PTE_WRITE | INTEL_PTE_NX; /* Writeable, NX */ | |
1172 | } | |
1173 | dblmapL1[0].entries[j] = ((uintptr_t)ID_MAP_VTOP(hdescc)) | template; | |
1174 | hdescc += PAGE_SIZE; | |
1175 | } | |
1176 | } | |
1177 | ||
1178 | IdlePML4[KERNEL_DBLMAP_PML4_INDEX] = ((uintptr_t)ID_MAP_VTOP(dblmapL3)) | INTEL_PTE_VALID | INTEL_PTE_WRITE | INTEL_PTE_REF; | |
1179 | ||
1180 | dblmap_base = KVADDR(KERNEL_DBLMAP_PML4_INDEX, randL3, 0, 0); | |
1181 | dblmap_max = dblmap_base + hdescszr; | |
1182 | /* Calculate the double-map distance, which accounts for the current | |
1183 | * KASLR slide | |
1184 | */ | |
1185 | ||
1186 | dblmap_dist = dblmap_base - hdescb; | |
1187 | idt64_hndl_table0[1] = DBLMAP(idt64_hndl_table0[1]); /* 64-bit exit trampoline */ | |
1188 | idt64_hndl_table0[3] = DBLMAP(idt64_hndl_table0[3]); /* 32-bit exit trampoline */ | |
1189 | idt64_hndl_table0[6] = (uint64_t)(uintptr_t)&kernel_stack_mask; | |
1190 | ||
1191 | extern cpu_data_t cpshadows[], scdatas[]; | |
1192 | uintptr_t cd1 = (uintptr_t) &cpshadows[0]; | |
1193 | uintptr_t cd2 = (uintptr_t) &scdatas[0]; | |
1194 | /* Record the displacement from the kernel's per-CPU data pointer, eventually | |
1195 | * programmed into GSBASE, to the "shadows" in the doublemapped | |
1196 | * region. These are not aliases, but separate physical allocations | |
1197 | * containing data required in the doublemapped trampolines. | |
1198 | */ | |
1199 | idt64_hndl_table0[2] = dblmap_dist + cd1 - cd2; | |
1200 | ||
1201 | DBG("Double map base: 0x%qx\n", dblmap_base); | |
1202 | DBG("double map idlepml4[%d]: 0x%llx\n", KERNEL_DBLMAP_PML4_INDEX, IdlePML4[KERNEL_DBLMAP_PML4_INDEX]); | |
1203 | assert(LDTSZ > LDTSZ_MIN); | |
1204 | } | |
1205 | ||
1206 | vm_offset_t dyn_dblmap(vm_offset_t, vm_offset_t); | |
1207 | ||
1208 | #include <i386/pmap_internal.h> | |
1209 | ||
1210 | /* Use of this routine is expected to be synchronized by callers | |
1211 | * Creates non-executable aliases. | |
1212 | */ | |
1213 | vm_offset_t | |
1214 | dyn_dblmap(vm_offset_t cva, vm_offset_t sz) | |
1215 | { | |
1216 | vm_offset_t ava = dblmap_max; | |
1217 | ||
1218 | assert((sz & PAGE_MASK) == 0); | |
1219 | assert(cva != 0); | |
1220 | ||
1221 | pmap_alias(ava, cva, cva + sz, VM_PROT_READ | VM_PROT_WRITE, PMAP_EXPAND_OPTIONS_ALIASMAP); | |
1222 | dblmap_max += sz; | |
1223 | return ava - cva; | |
1224 | } | |
1225 | /* Adjust offsets interior to the bootstrap interrupt descriptor table to redirect | |
1226 | * control to the double-mapped interrupt vectors. The IDTR proper will be | |
1227 | * programmed via cpu_desc_load() | |
1228 | */ | |
1229 | void | |
1230 | idt64_remap(void) | |
1231 | { | |
1232 | for (int i = 0; i < IDTSZ; i++) { | |
1233 | master_idt64[i].offset64 = DBLMAP(master_idt64[i].offset64); | |
1234 | } | |
1235 | } |