]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * CDDL HEADER START | |
3 | * | |
4 | * The contents of this file are subject to the terms of the | |
5 | * Common Development and Distribution License, Version 1.0 only | |
6 | * (the "License"). You may not use this file except in compliance | |
7 | * with the License. | |
8 | * | |
9 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE | |
10 | * or http://www.opensolaris.org/os/licensing. | |
11 | * See the License for the specific language governing permissions | |
12 | * and limitations under the License. | |
13 | * | |
14 | * When distributing Covered Code, include this CDDL HEADER in each | |
15 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. | |
16 | * If applicable, add the following below this CDDL HEADER, with the | |
17 | * fields enclosed by brackets "[]" replaced with your own identifying | |
18 | * information: Portions Copyright [yyyy] [name of copyright owner] | |
19 | * | |
20 | * CDDL HEADER END | |
21 | */ | |
22 | /* | |
23 | * Copyright 2005 Sun Microsystems, Inc. All rights reserved. | |
24 | * Use is subject to license terms. | |
25 | */ | |
26 | ||
27 | #include <kern/thread.h> | |
28 | #include <mach/thread_status.h> | |
29 | #include <mach/vm_param.h> | |
30 | #include <mach-o/loader.h> | |
31 | #include <mach-o/nlist.h> | |
32 | #include <libkern/kernel_mach_header.h> | |
33 | #include <libkern/OSAtomic.h> | |
34 | ||
35 | #include <sys/param.h> | |
36 | #include <sys/systm.h> | |
37 | #include <sys/errno.h> | |
38 | #include <sys/stat.h> | |
39 | #include <sys/ioctl.h> | |
40 | #include <sys/conf.h> | |
41 | #include <sys/fcntl.h> | |
42 | #include <miscfs/devfs/devfs.h> | |
43 | ||
44 | #include <sys/dtrace.h> | |
45 | #include <sys/dtrace_impl.h> | |
46 | #include <sys/fbt.h> | |
47 | ||
48 | #include <sys/dtrace_glue.h> | |
49 | ||
50 | #include <san/kasan.h> | |
51 | #include <machine/trap.h> | |
52 | ||
53 | ||
54 | #define DTRACE_INVOP_NOP_SKIP 1 | |
55 | #define DTRACE_INVOP_MOVL_ESP_EBP 10 | |
56 | #define DTRACE_INVOP_MOVL_ESP_EBP_SKIP 2 | |
57 | #define DTRACE_INVOP_MOV_RSP_RBP 11 | |
58 | #define DTRACE_INVOP_MOV_RSP_RBP_SKIP 3 | |
59 | #define DTRACE_INVOP_POP_RBP 12 | |
60 | #define DTRACE_INVOP_POP_RBP_SKIP 1 | |
61 | #define DTRACE_INVOP_LEAVE_SKIP 1 | |
62 | ||
63 | #define FBT_PUSHL_EBP 0x55 | |
64 | #define FBT_MOVL_ESP_EBP0_V0 0x8b | |
65 | #define FBT_MOVL_ESP_EBP1_V0 0xec | |
66 | #define FBT_MOVL_ESP_EBP0_V1 0x89 | |
67 | #define FBT_MOVL_ESP_EBP1_V1 0xe5 | |
68 | ||
69 | #define FBT_PUSH_RBP 0x55 | |
70 | #define FBT_REX_RSP_RBP 0x48 | |
71 | #define FBT_MOV_RSP_RBP0 0x89 | |
72 | #define FBT_MOV_RSP_RBP1 0xe5 | |
73 | #define FBT_POP_RBP 0x5d | |
74 | ||
75 | #define FBT_POPL_EBP 0x5d | |
76 | #define FBT_RET 0xc3 | |
77 | #define FBT_RET_IMM16 0xc2 | |
78 | #define FBT_LEAVE 0xc9 | |
79 | #define FBT_JMP_SHORT_REL 0xeb /* Jump short, relative, displacement relative to next instr. */ | |
80 | #define FBT_JMP_NEAR_REL 0xe9 /* Jump near, relative, displacement relative to next instr. */ | |
81 | #define FBT_JMP_FAR_ABS 0xea /* Jump far, absolute, address given in operand */ | |
82 | #define FBT_RET_LEN 1 | |
83 | #define FBT_RET_IMM16_LEN 3 | |
84 | #define FBT_JMP_SHORT_REL_LEN 2 | |
85 | #define FBT_JMP_NEAR_REL_LEN 5 | |
86 | #define FBT_JMP_FAR_ABS_LEN 5 | |
87 | ||
88 | #define FBT_PATCHVAL 0xf0 | |
89 | #define FBT_AFRAMES_ENTRY 7 | |
90 | #define FBT_AFRAMES_RETURN 6 | |
91 | ||
92 | #define FBT_ENTRY "entry" | |
93 | #define FBT_RETURN "return" | |
94 | #define FBT_ADDR2NDX(addr) ((((uintptr_t)(addr)) >> 4) & fbt_probetab_mask) | |
95 | ||
96 | extern dtrace_provider_id_t fbt_id; | |
97 | extern fbt_probe_t **fbt_probetab; | |
98 | extern int fbt_probetab_mask; | |
99 | ||
100 | kern_return_t fbt_perfCallback(int, x86_saved_state_t *, uintptr_t *, __unused int); | |
101 | ||
102 | int | |
103 | fbt_invop(uintptr_t addr, uintptr_t *state, uintptr_t rval) | |
104 | { | |
105 | fbt_probe_t *fbt = fbt_probetab[FBT_ADDR2NDX(addr)]; | |
106 | ||
107 | for (; fbt != NULL; fbt = fbt->fbtp_hashnext) { | |
108 | if ((uintptr_t)fbt->fbtp_patchpoint == addr) { | |
109 | ||
110 | if (fbt->fbtp_roffset == 0) { | |
111 | x86_saved_state64_t *regs = (x86_saved_state64_t *)state; | |
112 | ||
113 | CPU->cpu_dtrace_caller = *(uintptr_t *)(((uintptr_t)(regs->isf.rsp))+sizeof(uint64_t)); // 8(%rsp) | |
114 | /* 64-bit ABI, arguments passed in registers. */ | |
115 | dtrace_probe(fbt->fbtp_id, regs->rdi, regs->rsi, regs->rdx, regs->rcx, regs->r8); | |
116 | CPU->cpu_dtrace_caller = 0; | |
117 | } else { | |
118 | ||
119 | dtrace_probe(fbt->fbtp_id, fbt->fbtp_roffset, rval, 0, 0, 0); | |
120 | CPU->cpu_dtrace_caller = 0; | |
121 | } | |
122 | ||
123 | return (fbt->fbtp_rval); | |
124 | } | |
125 | } | |
126 | ||
127 | return (0); | |
128 | } | |
129 | ||
130 | #define IS_USER_TRAP(regs) (regs && (((regs)->isf.cs & 3) != 0)) | |
131 | #define FBT_EXCEPTION_CODE T_INVALID_OPCODE | |
132 | ||
133 | kern_return_t | |
134 | fbt_perfCallback( | |
135 | int trapno, | |
136 | x86_saved_state_t *tagged_regs, | |
137 | uintptr_t *lo_spp, | |
138 | __unused int unused2) | |
139 | { | |
140 | kern_return_t retval = KERN_FAILURE; | |
141 | x86_saved_state64_t *saved_state = saved_state64(tagged_regs); | |
142 | ||
143 | if (FBT_EXCEPTION_CODE == trapno && !IS_USER_TRAP(saved_state)) { | |
144 | boolean_t oldlevel; | |
145 | uint64_t rsp_probe, fp, delta = 0; | |
146 | uintptr_t old_sp; | |
147 | uint32_t *pDst; | |
148 | int emul; | |
149 | ||
150 | ||
151 | oldlevel = ml_set_interrupts_enabled(FALSE); | |
152 | ||
153 | /* Calculate where the stack pointer was when the probe instruction "fired." */ | |
154 | rsp_probe = saved_state->isf.rsp; /* Easy, x86_64 establishes this value in idt64.s */ | |
155 | ||
156 | __asm__ volatile( | |
157 | "Ldtrace_invop_callsite_pre_label:\n" | |
158 | ".data\n" | |
159 | ".private_extern _dtrace_invop_callsite_pre\n" | |
160 | "_dtrace_invop_callsite_pre:\n" | |
161 | " .quad Ldtrace_invop_callsite_pre_label\n" | |
162 | ".text\n" | |
163 | ); | |
164 | ||
165 | emul = dtrace_invop( saved_state->isf.rip, (uintptr_t *)saved_state, saved_state->rax ); | |
166 | ||
167 | __asm__ volatile( | |
168 | "Ldtrace_invop_callsite_post_label:\n" | |
169 | ".data\n" | |
170 | ".private_extern _dtrace_invop_callsite_post\n" | |
171 | "_dtrace_invop_callsite_post:\n" | |
172 | " .quad Ldtrace_invop_callsite_post_label\n" | |
173 | ".text\n" | |
174 | ); | |
175 | ||
176 | switch (emul) { | |
177 | case DTRACE_INVOP_NOP: | |
178 | saved_state->isf.rip += DTRACE_INVOP_NOP_SKIP; /* Skip over the patched NOP (planted by sdt). */ | |
179 | retval = KERN_SUCCESS; | |
180 | break; | |
181 | ||
182 | case DTRACE_INVOP_MOV_RSP_RBP: | |
183 | saved_state->rbp = rsp_probe; /* Emulate patched mov %rsp,%rbp */ | |
184 | saved_state->isf.rip += DTRACE_INVOP_MOV_RSP_RBP_SKIP; /* Skip over the bytes of the patched mov %rsp,%rbp */ | |
185 | retval = KERN_SUCCESS; | |
186 | break; | |
187 | ||
188 | case DTRACE_INVOP_POP_RBP: | |
189 | case DTRACE_INVOP_LEAVE: | |
190 | /* | |
191 | * Emulate first micro-op of patched leave: mov %rbp,%rsp | |
192 | * fp points just below the return address slot for target's ret | |
193 | * and at the slot holding the frame pointer saved by the target's prologue. | |
194 | */ | |
195 | fp = saved_state->rbp; | |
196 | /* Emulate second micro-op of patched leave: patched pop %rbp | |
197 | * savearea rbp is set for the frame of the caller to target | |
198 | * The *live* %rsp will be adjusted below for pop increment(s) | |
199 | */ | |
200 | saved_state->rbp = *(uint64_t *)fp; | |
201 | /* Skip over the patched leave */ | |
202 | saved_state->isf.rip += DTRACE_INVOP_LEAVE_SKIP; | |
203 | /* | |
204 | * Lift the stack to account for the emulated leave | |
205 | * Account for words local in this frame | |
206 | * (in "case DTRACE_INVOP_POPL_EBP:" this is zero.) | |
207 | */ | |
208 | delta = ((uint32_t *)fp) - ((uint32_t *)rsp_probe); /* delta is a *word* increment */ | |
209 | /* Account for popping off the rbp (just accomplished by the emulation | |
210 | * above...) | |
211 | */ | |
212 | delta += 2; | |
213 | saved_state->isf.rsp += (delta << 2); | |
214 | /* Obtain the stack pointer recorded by the trampolines */ | |
215 | old_sp = *lo_spp; | |
216 | /* Shift contents of stack */ | |
217 | for (pDst = (uint32_t *)fp; | |
218 | pDst > (((uint32_t *)old_sp)); | |
219 | pDst--) | |
220 | *pDst = pDst[-delta]; | |
221 | ||
222 | #if KASAN | |
223 | /* | |
224 | * The above has moved stack objects so they are no longer in sync | |
225 | * with the shadow. | |
226 | */ | |
227 | uintptr_t base = (uintptr_t)((uint32_t *)old_sp - delta); | |
228 | uintptr_t size = (uintptr_t)fp - base; | |
229 | if (base >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) { | |
230 | kasan_unpoison_stack(base, size); | |
231 | } | |
232 | #endif | |
233 | ||
234 | /* Track the stack lift in "saved_state". */ | |
235 | saved_state = (x86_saved_state64_t *) (((uintptr_t)saved_state) + (delta << 2)); | |
236 | /* Adjust the stack pointer utilized by the trampolines */ | |
237 | *lo_spp = old_sp + (delta << 2); | |
238 | ||
239 | retval = KERN_SUCCESS; | |
240 | break; | |
241 | ||
242 | default: | |
243 | retval = KERN_FAILURE; | |
244 | break; | |
245 | } | |
246 | ||
247 | /* Trick trap_from_kernel into not attempting to handle pending AST_URGENT */ | |
248 | saved_state->isf.trapno = T_PREEMPT; | |
249 | ||
250 | ml_set_interrupts_enabled(oldlevel); | |
251 | } | |
252 | ||
253 | return retval; | |
254 | } | |
255 | ||
256 | void | |
257 | fbt_provide_probe(struct modctl *ctl, const char *modname, const char* symbolName, machine_inst_t* symbolStart, machine_inst_t* instrHigh) | |
258 | { | |
259 | unsigned int j; | |
260 | unsigned int doenable = 0; | |
261 | dtrace_id_t thisid; | |
262 | ||
263 | fbt_probe_t *newfbt, *retfbt, *entryfbt; | |
264 | machine_inst_t *instr, *limit, theInstr, i1, i2, i3; | |
265 | int size; | |
266 | ||
267 | /* | |
268 | * Guard against null symbols | |
269 | */ | |
270 | if (!symbolStart || !instrHigh || instrHigh < symbolStart) { | |
271 | kprintf("dtrace: %s has an invalid address\n", symbolName); | |
272 | return; | |
273 | } | |
274 | ||
275 | for (j = 0, instr = symbolStart, theInstr = 0; | |
276 | (j < 4) && (instrHigh > (instr + 2)); j++) { | |
277 | theInstr = instr[0]; | |
278 | if (theInstr == FBT_PUSH_RBP || theInstr == FBT_RET || theInstr == FBT_RET_IMM16) | |
279 | break; | |
280 | ||
281 | if ((size = dtrace_instr_size(instr)) <= 0) | |
282 | break; | |
283 | ||
284 | instr += size; | |
285 | } | |
286 | ||
287 | if (theInstr != FBT_PUSH_RBP) | |
288 | return; | |
289 | ||
290 | i1 = instr[1]; | |
291 | i2 = instr[2]; | |
292 | i3 = instr[3]; | |
293 | ||
294 | limit = (machine_inst_t *)instrHigh; | |
295 | ||
296 | if (i1 == FBT_REX_RSP_RBP && i2 == FBT_MOV_RSP_RBP0 && i3 == FBT_MOV_RSP_RBP1) { | |
297 | instr += 1; /* Advance to the mov %rsp,%rbp */ | |
298 | theInstr = i1; | |
299 | } else { | |
300 | return; | |
301 | } | |
302 | #if 0 | |
303 | else { | |
304 | /* | |
305 | * Sometimes, the compiler will schedule an intervening instruction | |
306 | * in the function prologue. Example: | |
307 | * | |
308 | * _mach_vm_read: | |
309 | * 000006d8 pushl %ebp | |
310 | * 000006d9 movl $0x00000004,%edx | |
311 | * 000006de movl %esp,%ebp | |
312 | * | |
313 | * Try the next instruction, to see if it is a movl %esp,%ebp | |
314 | */ | |
315 | ||
316 | instr += 1; /* Advance past the pushl %ebp */ | |
317 | if ((size = dtrace_instr_size(instr)) <= 0) | |
318 | return; | |
319 | ||
320 | instr += size; | |
321 | ||
322 | if ((instr + 1) >= limit) | |
323 | return; | |
324 | ||
325 | i1 = instr[0]; | |
326 | i2 = instr[1]; | |
327 | ||
328 | if (!(i1 == FBT_MOVL_ESP_EBP0_V0 && i2 == FBT_MOVL_ESP_EBP1_V0) && | |
329 | !(i1 == FBT_MOVL_ESP_EBP0_V1 && i2 == FBT_MOVL_ESP_EBP1_V1)) | |
330 | return; | |
331 | ||
332 | /* instr already points at the movl %esp,%ebp */ | |
333 | theInstr = i1; | |
334 | } | |
335 | #endif | |
336 | thisid = dtrace_probe_lookup(fbt_id, modname, symbolName, FBT_ENTRY); | |
337 | newfbt = kmem_zalloc(sizeof (fbt_probe_t), KM_SLEEP); | |
338 | strlcpy( (char *)&(newfbt->fbtp_name), symbolName, MAX_FBTP_NAME_CHARS ); | |
339 | ||
340 | if (thisid != 0) { | |
341 | /* | |
342 | * The dtrace_probe previously existed, so we have to hook | |
343 | * the newfbt entry onto the end of the existing fbt's chain. | |
344 | * If we find an fbt entry that was previously patched to | |
345 | * fire, (as indicated by the current patched value), then | |
346 | * we want to enable this newfbt on the spot. | |
347 | */ | |
348 | entryfbt = dtrace_probe_arg (fbt_id, thisid); | |
349 | ASSERT (entryfbt != NULL); | |
350 | for(; entryfbt != NULL; entryfbt = entryfbt->fbtp_next) { | |
351 | if (entryfbt->fbtp_currentval == entryfbt->fbtp_patchval) | |
352 | doenable++; | |
353 | ||
354 | if (entryfbt->fbtp_next == NULL) { | |
355 | entryfbt->fbtp_next = newfbt; | |
356 | newfbt->fbtp_id = entryfbt->fbtp_id; | |
357 | break; | |
358 | } | |
359 | } | |
360 | } | |
361 | else { | |
362 | /* | |
363 | * The dtrace_probe did not previously exist, so we | |
364 | * create it and hook in the newfbt. Since the probe is | |
365 | * new, we obviously do not need to enable it on the spot. | |
366 | */ | |
367 | newfbt->fbtp_id = dtrace_probe_create(fbt_id, modname, symbolName, FBT_ENTRY, FBT_AFRAMES_ENTRY, newfbt); | |
368 | doenable = 0; | |
369 | } | |
370 | ||
371 | newfbt->fbtp_patchpoint = instr; | |
372 | newfbt->fbtp_ctl = ctl; | |
373 | newfbt->fbtp_loadcnt = ctl->mod_loadcnt; | |
374 | newfbt->fbtp_rval = DTRACE_INVOP_MOV_RSP_RBP; | |
375 | newfbt->fbtp_savedval = theInstr; | |
376 | newfbt->fbtp_patchval = FBT_PATCHVAL; | |
377 | newfbt->fbtp_currentval = 0; | |
378 | newfbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(instr)]; | |
379 | fbt_probetab[FBT_ADDR2NDX(instr)] = newfbt; | |
380 | ||
381 | if (doenable) | |
382 | fbt_enable(NULL, newfbt->fbtp_id, newfbt); | |
383 | ||
384 | /* | |
385 | * The fbt entry chain is in place, one entry point per symbol. | |
386 | * The fbt return chain can have multiple return points per symbol. | |
387 | * Here we find the end of the fbt return chain. | |
388 | */ | |
389 | ||
390 | doenable=0; | |
391 | ||
392 | thisid = dtrace_probe_lookup(fbt_id, modname, symbolName, FBT_RETURN); | |
393 | if (thisid != 0) { | |
394 | /* The dtrace_probe previously existed, so we have to | |
395 | * find the end of the existing fbt chain. If we find | |
396 | * an fbt return that was previously patched to fire, | |
397 | * (as indicated by the currrent patched value), then | |
398 | * we want to enable any new fbts on the spot. | |
399 | */ | |
400 | retfbt = dtrace_probe_arg (fbt_id, thisid); | |
401 | ASSERT(retfbt != NULL); | |
402 | for (; retfbt != NULL; retfbt = retfbt->fbtp_next) { | |
403 | if (retfbt->fbtp_currentval == retfbt->fbtp_patchval) | |
404 | doenable++; | |
405 | if(retfbt->fbtp_next == NULL) | |
406 | break; | |
407 | } | |
408 | } | |
409 | else { | |
410 | doenable = 0; | |
411 | retfbt = NULL; | |
412 | } | |
413 | ||
414 | again: | |
415 | if (instr >= limit) | |
416 | return; | |
417 | ||
418 | /* | |
419 | * If this disassembly fails, then we've likely walked off into | |
420 | * a jump table or some other unsuitable area. Bail out of the | |
421 | * disassembly now. | |
422 | */ | |
423 | if ((size = dtrace_instr_size(instr)) <= 0) | |
424 | return; | |
425 | ||
426 | /* | |
427 | * We (desperately) want to avoid erroneously instrumenting a | |
428 | * jump table, especially given that our markers are pretty | |
429 | * short: two bytes on x86, and just one byte on amd64. To | |
430 | * determine if we're looking at a true instruction sequence | |
431 | * or an inline jump table that happens to contain the same | |
432 | * byte sequences, we resort to some heuristic sleeze: we | |
433 | * treat this instruction as being contained within a pointer, | |
434 | * and see if that pointer points to within the body of the | |
435 | * function. If it does, we refuse to instrument it. | |
436 | */ | |
437 | for (j = 0; j < sizeof (uintptr_t); j++) { | |
438 | uintptr_t check = (uintptr_t)instr - j; | |
439 | uint8_t *ptr; | |
440 | ||
441 | if (check < (uintptr_t)symbolStart) | |
442 | break; | |
443 | ||
444 | if (check + sizeof (uintptr_t) > (uintptr_t)limit) | |
445 | continue; | |
446 | ||
447 | ptr = *(uint8_t **)check; | |
448 | ||
449 | if (ptr >= (uint8_t *)symbolStart && ptr < limit) { | |
450 | instr += size; | |
451 | goto again; | |
452 | } | |
453 | } | |
454 | ||
455 | /* | |
456 | * OK, it's an instruction. | |
457 | */ | |
458 | theInstr = instr[0]; | |
459 | ||
460 | /* Walked onto the start of the next routine? If so, bail out of this function. */ | |
461 | if (theInstr == FBT_PUSH_RBP) | |
462 | return; | |
463 | ||
464 | if (!(size == 1 && (theInstr == FBT_POP_RBP || theInstr == FBT_LEAVE))) { | |
465 | instr += size; | |
466 | goto again; | |
467 | } | |
468 | ||
469 | /* | |
470 | * Found the pop %rbp; or leave. | |
471 | */ | |
472 | machine_inst_t *patch_instr = instr; | |
473 | ||
474 | /* | |
475 | * Scan forward for a "ret", or "jmp". | |
476 | */ | |
477 | instr += size; | |
478 | if (instr >= limit) | |
479 | return; | |
480 | ||
481 | size = dtrace_instr_size(instr); | |
482 | if (size <= 0) /* Failed instruction decode? */ | |
483 | return; | |
484 | ||
485 | theInstr = instr[0]; | |
486 | ||
487 | if (!(size == FBT_RET_LEN && (theInstr == FBT_RET)) && | |
488 | !(size == FBT_RET_IMM16_LEN && (theInstr == FBT_RET_IMM16)) && | |
489 | !(size == FBT_JMP_SHORT_REL_LEN && (theInstr == FBT_JMP_SHORT_REL)) && | |
490 | !(size == FBT_JMP_NEAR_REL_LEN && (theInstr == FBT_JMP_NEAR_REL)) && | |
491 | !(size == FBT_JMP_FAR_ABS_LEN && (theInstr == FBT_JMP_FAR_ABS))) | |
492 | return; | |
493 | ||
494 | /* | |
495 | * pop %rbp; ret; or leave; ret; or leave; jmp tailCalledFun; -- We have a winner! | |
496 | */ | |
497 | newfbt = kmem_zalloc(sizeof (fbt_probe_t), KM_SLEEP); | |
498 | strlcpy( (char *)&(newfbt->fbtp_name), symbolName, MAX_FBTP_NAME_CHARS ); | |
499 | ||
500 | if (retfbt == NULL) { | |
501 | newfbt->fbtp_id = dtrace_probe_create(fbt_id, modname, | |
502 | symbolName, FBT_RETURN, FBT_AFRAMES_RETURN, newfbt); | |
503 | } else { | |
504 | retfbt->fbtp_next = newfbt; | |
505 | newfbt->fbtp_id = retfbt->fbtp_id; | |
506 | } | |
507 | ||
508 | retfbt = newfbt; | |
509 | newfbt->fbtp_patchpoint = patch_instr; | |
510 | newfbt->fbtp_ctl = ctl; | |
511 | newfbt->fbtp_loadcnt = ctl->mod_loadcnt; | |
512 | ||
513 | if (*patch_instr == FBT_POP_RBP) { | |
514 | newfbt->fbtp_rval = DTRACE_INVOP_POP_RBP; | |
515 | } else { | |
516 | ASSERT(*patch_instr == FBT_LEAVE); | |
517 | newfbt->fbtp_rval = DTRACE_INVOP_LEAVE; | |
518 | } | |
519 | newfbt->fbtp_roffset = | |
520 | (uintptr_t)(patch_instr - (uint8_t *)symbolStart); | |
521 | ||
522 | newfbt->fbtp_savedval = *patch_instr; | |
523 | newfbt->fbtp_patchval = FBT_PATCHVAL; | |
524 | newfbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(patch_instr)]; | |
525 | fbt_probetab[FBT_ADDR2NDX(patch_instr)] = newfbt; | |
526 | ||
527 | if (doenable) | |
528 | fbt_enable(NULL, newfbt->fbtp_id, newfbt); | |
529 | ||
530 | instr += size; | |
531 | goto again; | |
532 | } | |
533 |