]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <mach/mach_types.h> | |
30 | #include <mach/machine.h> | |
31 | ||
32 | #include <machine/machine_routines.h> | |
33 | #include <machine/sched_param.h> | |
34 | #include <machine/machine_cpu.h> | |
35 | ||
36 | #include <kern/kern_types.h> | |
37 | #include <kern/debug.h> | |
38 | #include <kern/mach_param.h> | |
39 | #include <kern/machine.h> | |
40 | #include <kern/misc_protos.h> | |
41 | #include <kern/processor.h> | |
42 | #include <kern/queue.h> | |
43 | #include <kern/sched.h> | |
44 | #include <kern/sched_prim.h> | |
45 | #include <kern/task.h> | |
46 | #include <kern/thread.h> | |
47 | ||
48 | #include <sys/kdebug.h> | |
49 | ||
50 | /* | |
51 | * Theory Statement | |
52 | * | |
53 | * How does the task scheduler work? | |
54 | * | |
55 | * It schedules threads across a few levels. | |
56 | * | |
57 | * RT threads are dealt with above us | |
58 | * Bound threads go into the per-processor runq | |
59 | * Non-bound threads are linked on their task's sched_group's runq | |
60 | * sched_groups' sched_entries are linked on the pset's runq | |
61 | * | |
62 | * TODO: make this explicit - bound threads should have a different enqueue fxn | |
63 | * | |
64 | * When we choose a new thread, we will decide whether to look at the bound runqueue, the global runqueue | |
65 | * or the current group's runqueue, then dequeue the next thread in that runqueue. | |
66 | * | |
67 | * We then manipulate the sched_entries to reflect the invariant that: | |
68 | * Each non-empty priority level in a group's runq is represented by one sched_entry enqueued in the global | |
69 | * runqueue. | |
70 | * | |
71 | * A sched_entry represents a chance at running - for each priority in each task, there is one chance of getting | |
72 | * to run. This reduces the excess contention bonus given to processes which have work spread among many threads | |
73 | * as compared to processes which do the same amount of work under fewer threads. | |
74 | * | |
75 | * NOTE: Currently, the multiq scheduler only supports one pset. | |
76 | * | |
77 | * NOTE ABOUT thread->sched_pri: | |
78 | * | |
79 | * It can change after enqueue - it's changed without pset lock but with thread lock if thread->runq is 0. | |
80 | * Therefore we can only depend on it not changing during the enqueue and remove path, not the dequeue. | |
81 | * | |
82 | * TODO: Future features: | |
83 | * | |
84 | * Decouple the task priority from the sched_entry priority, allowing for: | |
85 | * fast task priority change without having to iterate and re-dispatch all threads in the task. | |
86 | * i.e. task-wide priority, task-wide boosting | |
87 | * fancier group decay features | |
88 | * | |
89 | * Group (or task) decay: | |
90 | * Decay is used for a few different things: | |
91 | * Prioritizing latency-needing threads over throughput-needing threads for time-to-running | |
92 | * Balancing work between threads in a process | |
93 | * Balancing work done at the same priority between different processes | |
94 | * Recovering from priority inversions between two threads in the same process | |
95 | * Recovering from priority inversions between two threads in different processes | |
96 | * Simulating a proportional share scheduler by allowing lower priority threads | |
97 | * to run for a certain percentage of the time | |
98 | * | |
99 | * Task decay lets us separately address the 'same process' and 'different process' needs, | |
100 | * which will allow us to make smarter tradeoffs in different cases. | |
101 | * For example, we could resolve priority inversion in the same process by reordering threads without dropping the | |
102 | * process below low priority threads in other processes. | |
103 | * | |
104 | * One lock to rule them all (or at least all the runqueues) instead of the pset locks | |
105 | * | |
106 | * Shrink sched_entry size to the size of a queue_chain_t by inferring priority, group, and perhaps runq field. | |
107 | * The entries array is 5K currently so it'd be really great to reduce. | |
108 | * One way to get sched_group below 4K without a new runq structure would be to remove the extra queues above realtime. | |
109 | * | |
110 | * When preempting a processor, store a flag saying if the preemption | |
111 | * was from a thread in the same group or different group, | |
112 | * and tell choose_thread about it. | |
113 | * | |
114 | * When choosing a processor, bias towards those running in the same | |
115 | * group as I am running (at the same priority, or within a certain band?). | |
116 | * | |
117 | * Decide if we need to support psets. | |
118 | * Decide how to support psets - do we need duplicate entries for each pset, | |
119 | * or can we get away with putting the entry in either one or the other pset? | |
120 | * | |
121 | * Consider the right way to handle runq count - I don't want to iterate groups. | |
122 | * Perhaps keep a global counter. sched_run_count will not work. | |
123 | * Alternate option - remove it from choose_processor. It doesn't add much value | |
124 | * now that we have global runq. | |
125 | * | |
126 | * Need a better way of finding group to target instead of looking at current_task. | |
127 | * Perhaps choose_thread could pass in the current thread? | |
128 | * | |
129 | * Consider unifying runq copy-pastes. | |
130 | * | |
131 | * Thoughts on having a group central quantum bucket: | |
132 | * | |
133 | * I see two algorithms to decide quanta: | |
134 | * A) Hand off only when switching thread to thread in the same group | |
135 | * B) Allocate and return quanta to the group's pool | |
136 | * | |
137 | * Issues: | |
138 | * If a task blocks completely, should it come back with the leftover quanta | |
139 | * or brand new quanta? | |
140 | * | |
141 | * Should I put a flag saying zero out a quanta you grab when youre dispatched'? | |
142 | * | |
143 | * Resolution: | |
144 | * Handing off quanta between threads will help with jumping around in the current task | |
145 | * but will not help when a thread from a different task is involved. | |
146 | * Need an algorithm that works with round robin-ing between threads in different tasks | |
147 | * | |
148 | * But wait - round robining can only be triggered by quantum expire or blocking. | |
149 | * We need something that works with preemption or yielding - that's the more interesting idea. | |
150 | * | |
151 | * Existing algorithm - preemption doesn't re-set quantum, puts thread on head of runq. | |
152 | * Blocking or quantum expiration does re-set quantum, puts thread on tail of runq. | |
153 | * | |
154 | * New algorithm - | |
155 | * Hand off quanta when hopping between threads with same sched_group | |
156 | * Even if thread was blocked it uses last thread remaining quanta when it starts. | |
157 | * | |
158 | * If we use the only cycle entry at quantum algorithm, then the quantum pool starts getting | |
159 | * interesting. | |
160 | * | |
161 | * A thought - perhaps the handoff approach doesn't work so well in the presence of | |
162 | * non-handoff wakeups i.e. wake other thread then wait then block - doesn't mean that | |
163 | * woken thread will be what I switch to - other processor may have stolen it. | |
164 | * What do we do there? | |
165 | * | |
166 | * Conclusions: | |
167 | * We currently don't know of a scenario where quantum buckets on the task is beneficial. | |
168 | * We will instead handoff quantum between threads in the task, and keep quantum | |
169 | * on the preempted thread if it's preempted by something outside the task. | |
170 | * | |
171 | */ | |
172 | ||
173 | #if DEBUG || DEVELOPMENT | |
174 | #define MULTIQ_SANITY_CHECK | |
175 | #endif | |
176 | ||
177 | typedef struct sched_entry { | |
178 | queue_chain_t links; | |
179 | int16_t sched_pri; /* scheduled (current) priority */ | |
180 | int16_t runq; | |
181 | int32_t pad; | |
182 | } *sched_entry_t; | |
183 | ||
184 | typedef run_queue_t entry_queue_t; /* A run queue that holds sched_entries instead of threads */ | |
185 | typedef run_queue_t group_runq_t; /* A run queue that is part of a sched_group */ | |
186 | ||
187 | #define SCHED_ENTRY_NULL ((sched_entry_t) 0) | |
188 | #define MULTIQ_ERUNQ (-4) /* Indicates entry is on the main runq */ | |
189 | ||
190 | /* Each level in the run queue corresponds to one entry in the entries array */ | |
191 | struct sched_group { | |
192 | struct sched_entry entries[NRQS]; | |
193 | struct run_queue runq; | |
194 | queue_chain_t sched_groups; | |
195 | }; | |
196 | ||
197 | /* TODO: Turn this into an attribute in the sched dispatch struct */ | |
198 | boolean_t sched_groups_enabled = FALSE; | |
199 | ||
200 | /* | |
201 | * Keep entry on the head of the runqueue while dequeueing threads. | |
202 | * Only cycle it to the end of the runqueue when a thread in the task | |
203 | * hits its quantum. | |
204 | */ | |
205 | static boolean_t deep_drain = FALSE; | |
206 | ||
207 | /* | |
208 | * Don't favor the task when an urgent thread is present. | |
209 | */ | |
210 | static boolean_t drain_urgent_first = TRUE; | |
211 | ||
212 | /* Verify the consistency of the runq before touching it */ | |
213 | static boolean_t multiq_sanity_check = FALSE; | |
214 | ||
215 | /* | |
216 | * Draining threads from the current task is preferred | |
217 | * when they're less than X steps below the current | |
218 | * global highest priority | |
219 | */ | |
220 | #define DEFAULT_DRAIN_BAND_LIMIT MAXPRI | |
221 | static integer_t drain_band_limit; | |
222 | ||
223 | /* | |
224 | * Don't go below this priority level if there is something above it in another task | |
225 | */ | |
226 | #define DEFAULT_DRAIN_DEPTH_LIMIT MAXPRI_THROTTLE | |
227 | static integer_t drain_depth_limit; | |
228 | ||
229 | ||
230 | static struct zone *sched_group_zone; | |
231 | ||
232 | static uint64_t num_sched_groups = 0; | |
233 | static queue_head_t sched_groups; | |
234 | ||
235 | static lck_attr_t sched_groups_lock_attr; | |
236 | static lck_grp_t sched_groups_lock_grp; | |
237 | static lck_grp_attr_t sched_groups_lock_grp_attr; | |
238 | ||
239 | static lck_mtx_t sched_groups_lock; | |
240 | ||
241 | ||
242 | static void | |
243 | sched_multiq_init(void); | |
244 | ||
245 | static thread_t | |
246 | sched_multiq_steal_thread(processor_set_t pset); | |
247 | ||
248 | static void | |
249 | sched_multiq_thread_update_scan(void); | |
250 | ||
251 | static boolean_t | |
252 | sched_multiq_processor_enqueue(processor_t processor, thread_t thread, integer_t options); | |
253 | ||
254 | static boolean_t | |
255 | sched_multiq_processor_queue_remove(processor_t processor, thread_t thread); | |
256 | ||
257 | void | |
258 | sched_multiq_quantum_expire(thread_t thread); | |
259 | ||
260 | static ast_t | |
261 | sched_multiq_processor_csw_check(processor_t processor); | |
262 | ||
263 | static boolean_t | |
264 | sched_multiq_processor_queue_has_priority(processor_t processor, int priority, boolean_t gte); | |
265 | ||
266 | static int | |
267 | sched_multiq_runq_count(processor_t processor); | |
268 | ||
269 | static boolean_t | |
270 | sched_multiq_processor_queue_empty(processor_t processor); | |
271 | ||
272 | static uint64_t | |
273 | sched_multiq_runq_stats_count_sum(processor_t processor); | |
274 | ||
275 | static int | |
276 | sched_multiq_processor_bound_count(processor_t processor); | |
277 | ||
278 | static void | |
279 | sched_multiq_pset_init(processor_set_t pset); | |
280 | ||
281 | static void | |
282 | sched_multiq_processor_init(processor_t processor); | |
283 | ||
284 | static thread_t | |
285 | sched_multiq_choose_thread(processor_t processor, int priority, ast_t reason); | |
286 | ||
287 | static void | |
288 | sched_multiq_processor_queue_shutdown(processor_t processor); | |
289 | ||
290 | static sched_mode_t | |
291 | sched_multiq_initial_thread_sched_mode(task_t parent_task); | |
292 | ||
293 | static boolean_t | |
294 | sched_multiq_should_current_thread_rechoose_processor(processor_t processor); | |
295 | ||
296 | const struct sched_dispatch_table sched_multiq_dispatch = { | |
297 | .init = sched_multiq_init, | |
298 | .timebase_init = sched_traditional_timebase_init, | |
299 | .processor_init = sched_multiq_processor_init, | |
300 | .pset_init = sched_multiq_pset_init, | |
301 | .maintenance_continuation = sched_traditional_maintenance_continue, | |
302 | .choose_thread = sched_multiq_choose_thread, | |
303 | .steal_thread = sched_multiq_steal_thread, | |
304 | .compute_priority = compute_priority, | |
305 | .choose_processor = choose_processor, | |
306 | .processor_enqueue = sched_multiq_processor_enqueue, | |
307 | .processor_queue_shutdown = sched_multiq_processor_queue_shutdown, | |
308 | .processor_queue_remove = sched_multiq_processor_queue_remove, | |
309 | .processor_queue_empty = sched_multiq_processor_queue_empty, | |
310 | .priority_is_urgent = priority_is_urgent, | |
311 | .processor_csw_check = sched_multiq_processor_csw_check, | |
312 | .processor_queue_has_priority = sched_multiq_processor_queue_has_priority, | |
313 | .initial_quantum_size = sched_traditional_initial_quantum_size, | |
314 | .initial_thread_sched_mode = sched_multiq_initial_thread_sched_mode, | |
315 | .can_update_priority = can_update_priority, | |
316 | .update_priority = update_priority, | |
317 | .lightweight_update_priority = lightweight_update_priority, | |
318 | .quantum_expire = sched_multiq_quantum_expire, | |
319 | .should_current_thread_rechoose_processor = sched_multiq_should_current_thread_rechoose_processor, | |
320 | .processor_runq_count = sched_multiq_runq_count, | |
321 | .processor_runq_stats_count_sum = sched_multiq_runq_stats_count_sum, | |
322 | .fairshare_init = sched_traditional_fairshare_init, | |
323 | .fairshare_runq_count = sched_traditional_fairshare_runq_count, | |
324 | .fairshare_runq_stats_count_sum = sched_traditional_fairshare_runq_stats_count_sum, | |
325 | .fairshare_enqueue = sched_traditional_fairshare_enqueue, | |
326 | .fairshare_dequeue = sched_traditional_fairshare_dequeue, | |
327 | .fairshare_queue_remove = sched_traditional_fairshare_queue_remove, | |
328 | .processor_bound_count = sched_multiq_processor_bound_count, | |
329 | .thread_update_scan = sched_multiq_thread_update_scan, | |
330 | .direct_dispatch_to_idle_processors = FALSE, | |
331 | }; | |
332 | ||
333 | ||
334 | static void | |
335 | sched_multiq_init(void) | |
336 | { | |
337 | sched_groups_enabled = TRUE; | |
338 | ||
339 | #if defined(MULTIQ_SANITY_CHECK) | |
340 | PE_parse_boot_argn("-multiq-sanity-check", &multiq_sanity_check, sizeof(multiq_sanity_check)); | |
341 | #endif | |
342 | ||
343 | PE_parse_boot_argn("-multiq-deep-drain", &deep_drain, sizeof(deep_drain)); | |
344 | ||
345 | PE_parse_boot_argn("multiq_drain_urgent_first", &drain_urgent_first, sizeof(drain_urgent_first)); | |
346 | ||
347 | if (!PE_parse_boot_argn("multiq_drain_depth_limit", &drain_depth_limit, sizeof(drain_depth_limit))) { | |
348 | drain_depth_limit = DEFAULT_DRAIN_DEPTH_LIMIT; | |
349 | } | |
350 | ||
351 | if (!PE_parse_boot_argn("multiq_drain_band_limit", &drain_band_limit, sizeof(drain_band_limit))) { | |
352 | drain_band_limit = DEFAULT_DRAIN_BAND_LIMIT; | |
353 | } | |
354 | ||
355 | printf("multiq scheduler config: deep-drain %d, urgent first %d, depth limit %d, band limit %d, sanity check %d\n", | |
356 | deep_drain, drain_urgent_first, drain_depth_limit, drain_band_limit, multiq_sanity_check); | |
357 | ||
358 | sched_group_zone = zinit( | |
359 | sizeof(struct sched_group), | |
360 | task_max * sizeof(struct sched_group), | |
361 | PAGE_SIZE, | |
362 | "sched groups"); | |
363 | ||
364 | zone_change(sched_group_zone, Z_NOENCRYPT, TRUE); | |
365 | zone_change(sched_group_zone, Z_NOCALLOUT, TRUE); | |
366 | ||
367 | queue_init(&sched_groups); | |
368 | ||
369 | lck_grp_attr_setdefault(&sched_groups_lock_grp_attr); | |
370 | lck_grp_init(&sched_groups_lock_grp, "sched_groups", &sched_groups_lock_grp_attr); | |
371 | lck_attr_setdefault(&sched_groups_lock_attr); | |
372 | lck_mtx_init(&sched_groups_lock, &sched_groups_lock_grp, &sched_groups_lock_attr); | |
373 | ||
374 | sched_traditional_init(); | |
375 | } | |
376 | ||
377 | static void | |
378 | sched_multiq_processor_init(processor_t processor) | |
379 | { | |
380 | run_queue_init(&processor->runq); | |
381 | } | |
382 | ||
383 | static void | |
384 | sched_multiq_pset_init(processor_set_t pset) | |
385 | { | |
386 | run_queue_init(&pset->pset_runq); | |
387 | } | |
388 | ||
389 | static sched_mode_t | |
390 | sched_multiq_initial_thread_sched_mode(task_t parent_task) | |
391 | { | |
392 | if (parent_task == kernel_task) | |
393 | return TH_MODE_FIXED; | |
394 | else | |
395 | return TH_MODE_TIMESHARE; | |
396 | } | |
397 | ||
398 | sched_group_t | |
399 | sched_group_create(void) | |
400 | { | |
401 | sched_group_t sched_group; | |
402 | ||
403 | if (!sched_groups_enabled) | |
404 | return SCHED_GROUP_NULL; | |
405 | ||
406 | sched_group = (sched_group_t)zalloc(sched_group_zone); | |
407 | ||
408 | bzero(sched_group, sizeof(struct sched_group)); | |
409 | ||
410 | run_queue_init(&sched_group->runq); | |
411 | ||
412 | for (int i = 0; i < NRQS; i++) { | |
413 | sched_group->entries[i].runq = 0; | |
414 | sched_group->entries[i].sched_pri = i; | |
415 | } | |
416 | ||
417 | lck_mtx_lock(&sched_groups_lock); | |
418 | queue_enter(&sched_groups, sched_group, sched_group_t, sched_groups); | |
419 | num_sched_groups++; | |
420 | lck_mtx_unlock(&sched_groups_lock); | |
421 | ||
422 | return (sched_group); | |
423 | } | |
424 | ||
425 | void | |
426 | sched_group_destroy(sched_group_t sched_group) | |
427 | { | |
428 | if (!sched_groups_enabled) { | |
429 | assert(sched_group == SCHED_GROUP_NULL); | |
430 | return; | |
431 | } | |
432 | ||
433 | assert(sched_group != SCHED_GROUP_NULL); | |
434 | assert(sched_group->runq.count == 0); | |
435 | ||
436 | for (int i = 0; i < NRQS; i++) { | |
437 | assert(sched_group->entries[i].runq == 0); | |
438 | assert(sched_group->entries[i].sched_pri == i); | |
439 | } | |
440 | ||
441 | lck_mtx_lock(&sched_groups_lock); | |
442 | queue_remove(&sched_groups, sched_group, sched_group_t, sched_groups); | |
443 | num_sched_groups--; | |
444 | lck_mtx_unlock(&sched_groups_lock); | |
445 | ||
446 | zfree(sched_group_zone, sched_group); | |
447 | } | |
448 | ||
449 | __attribute__((always_inline)) | |
450 | static inline entry_queue_t | |
451 | multiq_main_entryq(processor_t processor) | |
452 | { | |
453 | return (entry_queue_t)&processor->processor_set->pset_runq; | |
454 | } | |
455 | ||
456 | __attribute__((always_inline)) | |
457 | static inline run_queue_t | |
458 | multiq_bound_runq(processor_t processor) | |
459 | { | |
460 | return &processor->runq; | |
461 | } | |
462 | ||
463 | __attribute__((always_inline)) | |
464 | static inline sched_entry_t | |
465 | group_entry_for_pri(sched_group_t group, integer_t pri) | |
466 | { | |
467 | return &group->entries[pri]; | |
468 | } | |
469 | ||
470 | __attribute__((always_inline)) | |
471 | static inline sched_group_t | |
472 | group_for_entry(sched_entry_t entry) | |
473 | { | |
474 | sched_group_t group = (sched_group_t)(entry - entry->sched_pri); | |
475 | return group; | |
476 | } | |
477 | ||
478 | /* Peek at the head of the runqueue */ | |
479 | static sched_entry_t | |
480 | entry_queue_first_entry(entry_queue_t rq) | |
481 | { | |
482 | assert(rq->count != 0); | |
483 | ||
484 | queue_t queue = rq->queues + rq->highq; | |
485 | ||
486 | sched_entry_t entry = (sched_entry_t)queue_first(queue); | |
487 | ||
488 | assert(entry->sched_pri == rq->highq); | |
489 | ||
490 | return entry; | |
491 | } | |
492 | ||
493 | #if defined(MULTIQ_SANITY_CHECK) | |
494 | ||
495 | __attribute__((always_inline)) | |
496 | static inline boolean_t | |
497 | queue_chain_linked(queue_chain_t* chain) | |
498 | { | |
499 | if (chain->next != NULL) { | |
500 | assert(chain->prev != NULL); | |
501 | return TRUE; | |
502 | } else { | |
503 | assert(chain->prev == NULL); | |
504 | return FALSE; | |
505 | } | |
506 | } | |
507 | ||
508 | static thread_t | |
509 | group_first_thread(sched_group_t group) | |
510 | { | |
511 | group_runq_t rq = &group->runq; | |
512 | ||
513 | assert(rq->count != 0); | |
514 | ||
515 | queue_t queue = rq->queues + rq->highq; | |
516 | ||
517 | thread_t thread = (thread_t)(void*)queue_first(queue); | |
518 | ||
519 | assert(thread != THREAD_NULL); | |
520 | ||
521 | assert(thread->sched_group == group); | |
522 | ||
523 | /* TODO: May not be safe */ | |
524 | assert(thread->sched_pri == rq->highq); | |
525 | ||
526 | return thread; | |
527 | } | |
528 | ||
529 | /* Asserts if entry is not in entry runq at pri */ | |
530 | static void | |
531 | entry_queue_check_entry(entry_queue_t runq, sched_entry_t entry, int expected_pri) | |
532 | { | |
533 | queue_t q; | |
534 | sched_entry_t elem; | |
535 | ||
536 | assert(queue_chain_linked(&entry->links)); | |
537 | assert(entry->runq == MULTIQ_ERUNQ); | |
538 | ||
539 | q = &runq->queues[expected_pri]; | |
540 | ||
541 | queue_iterate(q, elem, sched_entry_t, links) { | |
542 | if (elem == entry) | |
543 | return; | |
544 | } | |
545 | ||
546 | panic("runq %p doesn't contain entry %p at pri %d", runq, entry, expected_pri); | |
547 | } | |
548 | ||
549 | /* Asserts if thread is not in group at its priority */ | |
550 | static void | |
551 | sched_group_check_thread(sched_group_t group, thread_t thread) | |
552 | { | |
553 | queue_t q; | |
554 | thread_t elem; | |
555 | int pri = thread->sched_pri; | |
556 | ||
557 | assert(thread->runq != PROCESSOR_NULL); | |
558 | ||
559 | q = &group->runq.queues[pri]; | |
560 | ||
561 | queue_iterate(q, elem, thread_t, links) { | |
562 | if (elem == thread) | |
563 | return; | |
564 | } | |
565 | ||
566 | panic("group %p doesn't contain thread %p at pri %d", group, thread, pri); | |
567 | } | |
568 | ||
569 | static void | |
570 | global_check_entry_queue(entry_queue_t main_entryq) | |
571 | { | |
572 | if (main_entryq->count == 0) | |
573 | return; | |
574 | ||
575 | sched_entry_t entry = entry_queue_first_entry(main_entryq); | |
576 | ||
577 | assert(entry->runq == MULTIQ_ERUNQ); | |
578 | ||
579 | sched_group_t group = group_for_entry(entry); | |
580 | ||
581 | thread_t thread = group_first_thread(group); | |
582 | ||
583 | __assert_only sched_entry_t thread_entry = group_entry_for_pri(thread->sched_group, thread->sched_pri); | |
584 | ||
585 | assert(entry->sched_pri == group->runq.highq); | |
586 | ||
587 | assert(entry == thread_entry); | |
588 | assert(thread->runq != PROCESSOR_NULL); | |
589 | } | |
590 | ||
591 | static void | |
592 | group_check_run_queue(entry_queue_t main_entryq, sched_group_t group) | |
593 | { | |
594 | if (group->runq.count == 0) | |
595 | return; | |
596 | ||
597 | thread_t thread = group_first_thread(group); | |
598 | ||
599 | assert(thread->runq != PROCESSOR_NULL); | |
600 | ||
601 | sched_entry_t sched_entry = group_entry_for_pri(thread->sched_group, thread->sched_pri); | |
602 | ||
603 | entry_queue_check_entry(main_entryq, sched_entry, thread->sched_pri); | |
604 | ||
605 | assert(sched_entry->sched_pri == thread->sched_pri); | |
606 | assert(sched_entry->runq == MULTIQ_ERUNQ); | |
607 | } | |
608 | ||
609 | #endif /* defined(MULTIQ_SANITY_CHECK) */ | |
610 | ||
611 | /* | |
612 | * The run queue must not be empty. | |
613 | */ | |
614 | static sched_entry_t | |
615 | entry_queue_dequeue_entry(entry_queue_t rq) | |
616 | { | |
617 | sched_entry_t sched_entry; | |
618 | queue_t queue = rq->queues + rq->highq; | |
619 | ||
620 | assert(rq->count > 0); | |
621 | assert(!queue_empty(queue)); | |
622 | ||
623 | sched_entry = (sched_entry_t)dequeue_head(queue); | |
624 | ||
625 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
626 | rq->count--; | |
627 | if (SCHED(priority_is_urgent)(rq->highq)) { | |
628 | rq->urgency--; assert(rq->urgency >= 0); | |
629 | } | |
630 | if (queue_empty(queue)) { | |
631 | if (rq->highq != IDLEPRI) | |
632 | clrbit(MAXPRI - rq->highq, rq->bitmap); | |
633 | rq->highq = MAXPRI - ffsbit(rq->bitmap); | |
634 | } | |
635 | ||
636 | sched_entry->runq = 0; | |
637 | ||
638 | return (sched_entry); | |
639 | } | |
640 | ||
641 | /* | |
642 | * The run queue must not be empty. | |
643 | */ | |
644 | static boolean_t | |
645 | entry_queue_enqueue_entry( | |
646 | entry_queue_t rq, | |
647 | sched_entry_t entry, | |
648 | integer_t options) | |
649 | { | |
650 | int sched_pri = entry->sched_pri; | |
651 | queue_t queue = rq->queues + sched_pri; | |
652 | boolean_t result = FALSE; | |
653 | ||
654 | assert(entry->runq == 0); | |
655 | ||
656 | if (queue_empty(queue)) { | |
657 | enqueue_tail(queue, (queue_entry_t)entry); | |
658 | ||
659 | setbit(MAXPRI - sched_pri, rq->bitmap); | |
660 | if (sched_pri > rq->highq) { | |
661 | rq->highq = sched_pri; | |
662 | result = TRUE; | |
663 | } | |
664 | } else { | |
665 | if (options & SCHED_TAILQ) | |
666 | enqueue_tail(queue, (queue_entry_t)entry); | |
667 | else | |
668 | enqueue_head(queue, (queue_entry_t)entry); | |
669 | } | |
670 | if (SCHED(priority_is_urgent)(sched_pri)) | |
671 | rq->urgency++; | |
672 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
673 | rq->count++; | |
674 | ||
675 | entry->runq = MULTIQ_ERUNQ; | |
676 | ||
677 | return (result); | |
678 | } | |
679 | ||
680 | /* | |
681 | * The entry must be in this runqueue. | |
682 | */ | |
683 | static void | |
684 | entry_queue_remove_entry( | |
685 | entry_queue_t rq, | |
686 | sched_entry_t entry) | |
687 | { | |
688 | int sched_pri = entry->sched_pri; | |
689 | ||
690 | #if defined(MULTIQ_SANITY_CHECK) | |
691 | if (multiq_sanity_check) { | |
692 | entry_queue_check_entry(rq, entry, sched_pri); | |
693 | } | |
694 | #endif | |
695 | ||
696 | remqueue((queue_entry_t)entry); | |
697 | ||
698 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
699 | rq->count--; | |
700 | if (SCHED(priority_is_urgent)(sched_pri)) { | |
701 | rq->urgency--; assert(rq->urgency >= 0); | |
702 | } | |
703 | ||
704 | if (queue_empty(rq->queues + sched_pri)) { | |
705 | /* update run queue status */ | |
706 | if (sched_pri != IDLEPRI) | |
707 | clrbit(MAXPRI - sched_pri, rq->bitmap); | |
708 | rq->highq = MAXPRI - ffsbit(rq->bitmap); | |
709 | } | |
710 | ||
711 | entry->runq = 0; | |
712 | } | |
713 | ||
714 | /* | |
715 | * The run queue must not be empty. | |
716 | * | |
717 | * sets queue_empty to TRUE if queue is now empty at thread_pri | |
718 | */ | |
719 | static thread_t | |
720 | group_run_queue_dequeue_thread( | |
721 | group_runq_t rq, | |
722 | integer_t *thread_pri, | |
723 | boolean_t *queue_empty) | |
724 | { | |
725 | thread_t thread; | |
726 | queue_t queue = rq->queues + rq->highq; | |
727 | ||
728 | assert(rq->count > 0); | |
729 | assert(!queue_empty(queue)); | |
730 | ||
731 | *thread_pri = rq->highq; | |
732 | ||
733 | thread = (thread_t)(void*)dequeue_head(queue); | |
734 | ||
735 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
736 | rq->count--; | |
737 | if (SCHED(priority_is_urgent)(rq->highq)) { | |
738 | rq->urgency--; assert(rq->urgency >= 0); | |
739 | } | |
740 | if (queue_empty(queue)) { | |
741 | if (rq->highq != IDLEPRI) | |
742 | clrbit(MAXPRI - rq->highq, rq->bitmap); | |
743 | rq->highq = MAXPRI - ffsbit(rq->bitmap); | |
744 | *queue_empty = TRUE; | |
745 | } else { | |
746 | *queue_empty = FALSE; | |
747 | } | |
748 | ||
749 | return (thread); | |
750 | } | |
751 | ||
752 | /* | |
753 | * The run queue must not be empty. | |
754 | * returns TRUE if queue was empty at thread_pri | |
755 | */ | |
756 | static boolean_t | |
757 | group_run_queue_enqueue_thread( | |
758 | group_runq_t rq, | |
759 | thread_t thread, | |
760 | integer_t thread_pri, | |
761 | integer_t options) | |
762 | { | |
763 | queue_t queue = rq->queues + thread_pri; | |
764 | boolean_t result = FALSE; | |
765 | ||
766 | assert(thread->runq == PROCESSOR_NULL); | |
767 | ||
768 | if (queue_empty(queue)) { | |
769 | enqueue_tail(queue, (queue_entry_t)thread); | |
770 | ||
771 | setbit(MAXPRI - thread_pri, rq->bitmap); | |
772 | if (thread_pri > rq->highq) { | |
773 | rq->highq = thread_pri; | |
774 | } | |
775 | result = TRUE; | |
776 | } else { | |
777 | if (options & SCHED_TAILQ) | |
778 | enqueue_tail(queue, (queue_entry_t)thread); | |
779 | else | |
780 | enqueue_head(queue, (queue_entry_t)thread); | |
781 | } | |
782 | if (SCHED(priority_is_urgent)(thread_pri)) | |
783 | rq->urgency++; | |
784 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
785 | rq->count++; | |
786 | ||
787 | return (result); | |
788 | } | |
789 | ||
790 | /* | |
791 | * The thread must be in this runqueue. | |
792 | * returns TRUE if queue is now empty at thread_pri | |
793 | */ | |
794 | static boolean_t | |
795 | group_run_queue_remove_thread( | |
796 | group_runq_t rq, | |
797 | thread_t thread, | |
798 | integer_t thread_pri) | |
799 | { | |
800 | boolean_t result = FALSE; | |
801 | ||
802 | assert(thread->runq != PROCESSOR_NULL); | |
803 | ||
804 | remqueue((queue_entry_t)thread); | |
805 | ||
806 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
807 | rq->count--; | |
808 | if (SCHED(priority_is_urgent)(thread_pri)) { | |
809 | rq->urgency--; assert(rq->urgency >= 0); | |
810 | } | |
811 | ||
812 | if (queue_empty(rq->queues + thread_pri)) { | |
813 | /* update run queue status */ | |
814 | if (thread_pri != IDLEPRI) | |
815 | clrbit(MAXPRI - thread_pri, rq->bitmap); | |
816 | rq->highq = MAXPRI - ffsbit(rq->bitmap); | |
817 | result = TRUE; | |
818 | } | |
819 | ||
820 | thread->runq = PROCESSOR_NULL; | |
821 | ||
822 | return result; | |
823 | } | |
824 | ||
825 | /* | |
826 | * A thread's sched pri may change out from under us because | |
827 | * we're clearing thread->runq here without the thread locked. | |
828 | * Do not rely on it to be the same as when we enqueued. | |
829 | */ | |
830 | static thread_t | |
831 | sched_global_dequeue_thread(entry_queue_t main_entryq) | |
832 | { | |
833 | boolean_t pri_level_empty = FALSE; | |
834 | sched_entry_t entry; | |
835 | group_runq_t group_runq; | |
836 | thread_t thread; | |
837 | integer_t thread_pri; | |
838 | sched_group_t group; | |
839 | ||
840 | assert(main_entryq->count > 0); | |
841 | ||
842 | entry = entry_queue_dequeue_entry(main_entryq); | |
843 | ||
844 | group = group_for_entry(entry); | |
845 | group_runq = &group->runq; | |
846 | ||
847 | thread = group_run_queue_dequeue_thread(group_runq, &thread_pri, &pri_level_empty); | |
848 | ||
849 | thread->runq = PROCESSOR_NULL; | |
850 | ||
851 | if (!pri_level_empty) { | |
852 | entry_queue_enqueue_entry(main_entryq, entry, SCHED_TAILQ); | |
853 | } | |
854 | ||
855 | return thread; | |
856 | } | |
857 | ||
858 | /* Dequeue a thread from the global runq without moving the entry */ | |
859 | static thread_t | |
860 | sched_global_deep_drain_dequeue_thread(entry_queue_t main_entryq) | |
861 | { | |
862 | boolean_t pri_level_empty = FALSE; | |
863 | sched_entry_t entry; | |
864 | group_runq_t group_runq; | |
865 | thread_t thread; | |
866 | integer_t thread_pri; | |
867 | sched_group_t group; | |
868 | ||
869 | assert(main_entryq->count > 0); | |
870 | ||
871 | entry = entry_queue_first_entry(main_entryq); | |
872 | ||
873 | group = group_for_entry(entry); | |
874 | group_runq = &group->runq; | |
875 | ||
876 | thread = group_run_queue_dequeue_thread(group_runq, &thread_pri, &pri_level_empty); | |
877 | ||
878 | thread->runq = PROCESSOR_NULL; | |
879 | ||
880 | if (pri_level_empty) { | |
881 | entry_queue_remove_entry(main_entryq, entry); | |
882 | } | |
883 | ||
884 | return thread; | |
885 | } | |
886 | ||
887 | ||
888 | static thread_t | |
889 | sched_group_dequeue_thread( | |
890 | entry_queue_t main_entryq, | |
891 | sched_group_t group) | |
892 | { | |
893 | group_runq_t group_runq = &group->runq; | |
894 | boolean_t pri_level_empty = FALSE; | |
895 | thread_t thread; | |
896 | integer_t thread_pri; | |
897 | ||
898 | thread = group_run_queue_dequeue_thread(group_runq, &thread_pri, &pri_level_empty); | |
899 | ||
900 | thread->runq = PROCESSOR_NULL; | |
901 | ||
902 | if (pri_level_empty) { | |
903 | entry_queue_remove_entry(main_entryq, group_entry_for_pri(group, thread_pri)); | |
904 | } | |
905 | ||
906 | return thread; | |
907 | } | |
908 | ||
909 | static void | |
910 | sched_group_remove_thread( | |
911 | entry_queue_t main_entryq, | |
912 | sched_group_t group, | |
913 | thread_t thread) | |
914 | { | |
915 | integer_t thread_pri = thread->sched_pri; | |
916 | sched_entry_t sched_entry = group_entry_for_pri(group, thread_pri); | |
917 | ||
918 | #if defined(MULTIQ_SANITY_CHECK) | |
919 | if (multiq_sanity_check) { | |
920 | global_check_entry_queue(main_entryq); | |
921 | group_check_run_queue(main_entryq, group); | |
922 | ||
923 | sched_group_check_thread(group, thread); | |
924 | entry_queue_check_entry(main_entryq, sched_entry, thread_pri); | |
925 | } | |
926 | #endif | |
927 | ||
928 | boolean_t pri_level_empty = group_run_queue_remove_thread(&group->runq, thread, thread_pri); | |
929 | ||
930 | if (pri_level_empty) { | |
931 | entry_queue_remove_entry(main_entryq, sched_entry); | |
932 | } | |
933 | ||
934 | #if defined(MULTIQ_SANITY_CHECK) | |
935 | if (multiq_sanity_check) { | |
936 | global_check_entry_queue(main_entryq); | |
937 | group_check_run_queue(main_entryq, group); | |
938 | } | |
939 | #endif | |
940 | } | |
941 | ||
942 | static void | |
943 | sched_group_enqueue_thread( | |
944 | entry_queue_t main_entryq, | |
945 | sched_group_t group, | |
946 | thread_t thread, | |
947 | integer_t options) | |
948 | { | |
949 | #if defined(MULTIQ_SANITY_CHECK) | |
950 | if (multiq_sanity_check) { | |
951 | global_check_entry_queue(main_entryq); | |
952 | group_check_run_queue(main_entryq, group); | |
953 | } | |
954 | #endif | |
955 | ||
956 | int sched_pri = thread->sched_pri; | |
957 | ||
958 | boolean_t pri_level_was_empty = group_run_queue_enqueue_thread(&group->runq, thread, sched_pri, options); | |
959 | ||
960 | if (pri_level_was_empty) { | |
961 | /* | |
962 | * TODO: Need to figure out if passing options here is a good idea or not | |
963 | * What effects would it have? | |
964 | */ | |
965 | entry_queue_enqueue_entry(main_entryq, &group->entries[sched_pri], options); | |
966 | } | |
967 | } | |
968 | ||
969 | /* | |
970 | * Locate a thread to execute from the run queue and return it. | |
971 | * Only choose a thread with greater or equal priority. | |
972 | * | |
973 | * pset is locked, thread is not locked. | |
974 | * | |
975 | * Returns THREAD_NULL if it cannot find a valid thread. | |
976 | * | |
977 | * Note: we cannot rely on the value of thread->sched_pri in this path because | |
978 | * we don't have the thread locked. | |
979 | * | |
980 | * TODO: Remove tracepoints | |
981 | */ | |
982 | static thread_t | |
983 | sched_multiq_choose_thread( | |
984 | processor_t processor, | |
985 | int priority, | |
986 | ast_t reason) | |
987 | { | |
988 | entry_queue_t main_entryq = multiq_main_entryq(processor); | |
989 | run_queue_t bound_runq = multiq_bound_runq(processor); | |
990 | ||
991 | boolean_t choose_bound_runq = FALSE; | |
992 | ||
993 | if (bound_runq->highq < priority && | |
994 | main_entryq->highq < priority) | |
995 | return THREAD_NULL; | |
996 | ||
997 | if (bound_runq->count && main_entryq->count) { | |
998 | if (bound_runq->highq >= main_entryq->highq) { | |
999 | choose_bound_runq = TRUE; | |
1000 | } else { | |
1001 | /* Use main runq */ | |
1002 | } | |
1003 | } else if (bound_runq->count) { | |
1004 | choose_bound_runq = TRUE; | |
1005 | } else if (main_entryq->count) { | |
1006 | /* Use main runq */ | |
1007 | } else { | |
1008 | return (THREAD_NULL); | |
1009 | } | |
1010 | ||
1011 | if (choose_bound_runq) { | |
1012 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
1013 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_MULTIQ_DEQUEUE) | DBG_FUNC_NONE, | |
1014 | MACH_MULTIQ_BOUND, main_entryq->highq, bound_runq->highq, 0, 0); | |
1015 | ||
1016 | return run_queue_dequeue(bound_runq, SCHED_HEADQ); | |
1017 | } | |
1018 | ||
1019 | sched_group_t group = current_thread()->sched_group; | |
1020 | ||
1021 | #if defined(MULTIQ_SANITY_CHECK) | |
1022 | if (multiq_sanity_check) { | |
1023 | global_check_entry_queue(main_entryq); | |
1024 | group_check_run_queue(main_entryq, group); | |
1025 | } | |
1026 | #endif | |
1027 | ||
1028 | /* | |
1029 | * Determine if we should look at the group or the global queue | |
1030 | * | |
1031 | * TODO: | |
1032 | * Perhaps pass reason as a 'should look inside' argument to choose_thread | |
1033 | * Should YIELD AST override drain limit? | |
1034 | */ | |
1035 | if (group->runq.count != 0 && (reason & AST_PREEMPTION) == 0) { | |
1036 | boolean_t drain_limit_hit = FALSE; | |
1037 | ||
1038 | if (main_entryq->highq > group->runq.highq) { | |
1039 | /* | |
1040 | * If there's something elsewhere above the depth limit, | |
1041 | * don't pick a thread below the limit. | |
1042 | */ | |
1043 | if (main_entryq->highq > drain_depth_limit && | |
1044 | group->runq.highq <= drain_depth_limit) | |
1045 | drain_limit_hit = TRUE; | |
1046 | ||
1047 | /* | |
1048 | * Don't go more than X steps below the global highest | |
1049 | */ | |
1050 | if ((main_entryq->highq - group->runq.highq) >= drain_band_limit) | |
1051 | drain_limit_hit = TRUE; | |
1052 | ||
1053 | /* Don't favor the task when an urgent thread is present. */ | |
1054 | if (drain_urgent_first && main_entryq->urgency > 0) | |
1055 | drain_limit_hit = TRUE; | |
1056 | } | |
1057 | ||
1058 | if (!drain_limit_hit) { | |
1059 | /* Pull from local runq */ | |
1060 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
1061 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_MULTIQ_DEQUEUE) | DBG_FUNC_NONE, | |
1062 | MACH_MULTIQ_GROUP, main_entryq->highq, group->runq.highq, 0, 0); | |
1063 | ||
1064 | return sched_group_dequeue_thread(main_entryq, group); | |
1065 | } | |
1066 | } | |
1067 | ||
1068 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
1069 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_MULTIQ_DEQUEUE) | DBG_FUNC_NONE, | |
1070 | MACH_MULTIQ_GLOBAL, main_entryq->highq, group->runq.highq, 0, 0); | |
1071 | ||
1072 | /* Couldn't pull from local runq, pull from global runq instead */ | |
1073 | if (deep_drain) { | |
1074 | return sched_global_deep_drain_dequeue_thread(main_entryq); | |
1075 | } else { | |
1076 | return sched_global_dequeue_thread(main_entryq); | |
1077 | } | |
1078 | } | |
1079 | ||
1080 | ||
1081 | /* | |
1082 | * Thread must be locked, and not already be on a run queue. | |
1083 | * pset is locked. | |
1084 | */ | |
1085 | static boolean_t | |
1086 | sched_multiq_processor_enqueue( | |
1087 | processor_t processor, | |
1088 | thread_t thread, | |
1089 | integer_t options) | |
1090 | { | |
1091 | boolean_t result; | |
1092 | ||
1093 | assert(processor == thread->chosen_processor); | |
1094 | ||
1095 | if (thread->bound_processor != PROCESSOR_NULL) { | |
1096 | assert(thread->bound_processor == processor); | |
1097 | ||
1098 | result = run_queue_enqueue(multiq_bound_runq(processor), thread, options); | |
1099 | thread->runq = processor; | |
1100 | ||
1101 | return result; | |
1102 | } | |
1103 | ||
1104 | sched_group_enqueue_thread(multiq_main_entryq(processor), | |
1105 | thread->sched_group, | |
1106 | thread, options); | |
1107 | ||
1108 | thread->runq = processor; | |
1109 | ||
1110 | return (FALSE); | |
1111 | } | |
1112 | ||
1113 | /* | |
1114 | * Called in the context of thread with thread and pset unlocked, | |
1115 | * after updating thread priority but before propagating that priority | |
1116 | * to the processor | |
1117 | */ | |
1118 | void | |
1119 | sched_multiq_quantum_expire(thread_t thread) | |
1120 | { | |
1121 | if (deep_drain) { | |
1122 | /* | |
1123 | * Move the entry at this priority to the end of the queue, | |
1124 | * to allow the next task a shot at running. | |
1125 | */ | |
1126 | ||
1127 | processor_t processor = thread->last_processor; | |
1128 | processor_set_t pset = processor->processor_set; | |
1129 | entry_queue_t entryq = multiq_main_entryq(processor); | |
1130 | ||
1131 | pset_lock(pset); | |
1132 | ||
1133 | sched_entry_t entry = group_entry_for_pri(thread->sched_group, processor->current_pri); | |
1134 | ||
1135 | if (entry->runq == MULTIQ_ERUNQ) { | |
1136 | entry_queue_remove_entry(entryq, entry); | |
1137 | entry_queue_enqueue_entry(entryq, entry, SCHED_TAILQ); | |
1138 | } | |
1139 | ||
1140 | pset_unlock(pset); | |
1141 | } | |
1142 | } | |
1143 | ||
1144 | static boolean_t | |
1145 | sched_multiq_processor_queue_empty(processor_t processor) | |
1146 | { | |
1147 | return multiq_main_entryq(processor)->count == 0 && | |
1148 | multiq_bound_runq(processor)->count == 0; | |
1149 | } | |
1150 | ||
1151 | static ast_t | |
1152 | sched_multiq_processor_csw_check(processor_t processor) | |
1153 | { | |
1154 | boolean_t has_higher; | |
1155 | int pri; | |
1156 | ||
1157 | entry_queue_t main_entryq = multiq_main_entryq(processor); | |
1158 | run_queue_t bound_runq = multiq_bound_runq(processor); | |
1159 | ||
1160 | assert(processor->active_thread != NULL); | |
1161 | ||
1162 | pri = MAX(main_entryq->highq, bound_runq->highq); | |
1163 | ||
1164 | if (first_timeslice(processor)) { | |
1165 | has_higher = (pri > processor->current_pri); | |
1166 | } else { | |
1167 | has_higher = (pri >= processor->current_pri); | |
1168 | } | |
1169 | ||
1170 | if (has_higher) { | |
1171 | if (main_entryq->urgency > 0) | |
1172 | return (AST_PREEMPT | AST_URGENT); | |
1173 | ||
1174 | if (bound_runq->urgency > 0) | |
1175 | return (AST_PREEMPT | AST_URGENT); | |
1176 | ||
1177 | if (processor->active_thread && thread_eager_preemption(processor->active_thread)) | |
1178 | return (AST_PREEMPT | AST_URGENT); | |
1179 | ||
1180 | return AST_PREEMPT; | |
1181 | } | |
1182 | ||
1183 | return AST_NONE; | |
1184 | } | |
1185 | ||
1186 | static boolean_t | |
1187 | sched_multiq_processor_queue_has_priority( | |
1188 | processor_t processor, | |
1189 | int priority, | |
1190 | boolean_t gte) | |
1191 | { | |
1192 | int qpri = MAX(multiq_main_entryq(processor)->highq, multiq_bound_runq(processor)->highq); | |
1193 | ||
1194 | if (gte) | |
1195 | return qpri >= priority; | |
1196 | else | |
1197 | return qpri > priority; | |
1198 | } | |
1199 | ||
1200 | static boolean_t | |
1201 | sched_multiq_should_current_thread_rechoose_processor(processor_t processor) | |
1202 | { | |
1203 | return (processor->current_pri < BASEPRI_RTQUEUES && processor->processor_primary != processor); | |
1204 | } | |
1205 | ||
1206 | static int | |
1207 | sched_multiq_runq_count(processor_t processor) | |
1208 | { | |
1209 | /* | |
1210 | * TODO: Decide whether to keep a count of runnable threads in the pset | |
1211 | * or just return something less than the true count. | |
1212 | * | |
1213 | * This needs to be fast, so no iterating the whole runq. | |
1214 | * | |
1215 | * Another possible decision is to remove this - with global runq | |
1216 | * it doesn't make much sense. | |
1217 | */ | |
1218 | return multiq_main_entryq(processor)->count + multiq_bound_runq(processor)->count; | |
1219 | } | |
1220 | ||
1221 | static uint64_t | |
1222 | sched_multiq_runq_stats_count_sum(processor_t processor) | |
1223 | { | |
1224 | /* | |
1225 | * TODO: This one does need to go through all the runqueues, but it's only needed for | |
1226 | * the sched stats tool | |
1227 | */ | |
1228 | ||
1229 | uint64_t bound_sum = multiq_bound_runq(processor)->runq_stats.count_sum; | |
1230 | ||
1231 | if (processor->cpu_id == processor->processor_set->cpu_set_low) | |
1232 | return bound_sum + multiq_main_entryq(processor)->runq_stats.count_sum; | |
1233 | else | |
1234 | return bound_sum; | |
1235 | } | |
1236 | ||
1237 | static int | |
1238 | sched_multiq_processor_bound_count(processor_t processor) | |
1239 | { | |
1240 | return multiq_bound_runq(processor)->count; | |
1241 | } | |
1242 | ||
1243 | static void | |
1244 | sched_multiq_processor_queue_shutdown(processor_t processor) | |
1245 | { | |
1246 | processor_set_t pset = processor->processor_set; | |
1247 | entry_queue_t main_entryq = multiq_main_entryq(processor); | |
1248 | thread_t thread; | |
1249 | queue_head_t tqueue; | |
1250 | ||
1251 | /* We only need to migrate threads if this is the last active processor in the pset */ | |
1252 | if (pset->online_processor_count > 0) { | |
1253 | pset_unlock(pset); | |
1254 | return; | |
1255 | } | |
1256 | ||
1257 | queue_init(&tqueue); | |
1258 | ||
1259 | /* Note that we do not remove bound threads from the queues here */ | |
1260 | ||
1261 | while (main_entryq->count > 0) { | |
1262 | thread = sched_global_dequeue_thread(main_entryq); | |
1263 | enqueue_tail(&tqueue, (queue_entry_t)thread); | |
1264 | } | |
1265 | ||
1266 | pset_unlock(pset); | |
1267 | ||
1268 | while ((thread = (thread_t)(void*)dequeue_head(&tqueue)) != THREAD_NULL) { | |
1269 | thread_lock(thread); | |
1270 | ||
1271 | thread_setrun(thread, SCHED_TAILQ); | |
1272 | ||
1273 | thread_unlock(thread); | |
1274 | } | |
1275 | } | |
1276 | ||
1277 | /* | |
1278 | * Thread is locked | |
1279 | * | |
1280 | * This is why we can never read sched_pri unless we have the thread locked. | |
1281 | * Which we do in the enqueue and remove cases, but not the dequeue case. | |
1282 | */ | |
1283 | static boolean_t | |
1284 | sched_multiq_processor_queue_remove( | |
1285 | processor_t processor, | |
1286 | thread_t thread) | |
1287 | { | |
1288 | boolean_t removed = FALSE; | |
1289 | ||
1290 | processor_set_t pset = processor->processor_set; | |
1291 | ||
1292 | pset_lock(pset); | |
1293 | ||
1294 | if (thread->runq != PROCESSOR_NULL) { | |
1295 | /* | |
1296 | * Thread is on a run queue and we have a lock on | |
1297 | * that run queue. | |
1298 | */ | |
1299 | ||
1300 | assert(thread->runq == processor); | |
1301 | ||
1302 | if (thread->bound_processor != PROCESSOR_NULL) { | |
1303 | assert(processor == thread->bound_processor); | |
1304 | run_queue_remove(multiq_bound_runq(processor), thread); | |
1305 | thread->runq = PROCESSOR_NULL; | |
1306 | } else { | |
1307 | sched_group_remove_thread(multiq_main_entryq(processor), | |
1308 | thread->sched_group, | |
1309 | thread); | |
1310 | } | |
1311 | ||
1312 | removed = TRUE; | |
1313 | } | |
1314 | ||
1315 | pset_unlock(pset); | |
1316 | ||
1317 | return removed; | |
1318 | } | |
1319 | ||
1320 | /* pset is locked, returned unlocked */ | |
1321 | static thread_t | |
1322 | sched_multiq_steal_thread(processor_set_t pset) | |
1323 | { | |
1324 | pset_unlock(pset); | |
1325 | return (THREAD_NULL); | |
1326 | } | |
1327 | ||
1328 | /* | |
1329 | * Scan the global queue for candidate groups, and scan those groups for | |
1330 | * candidate threads. | |
1331 | * | |
1332 | * Returns TRUE if retry is needed. | |
1333 | */ | |
1334 | static boolean_t | |
1335 | group_scan(entry_queue_t runq) { | |
1336 | int count; | |
1337 | queue_t q; | |
1338 | sched_group_t group; | |
1339 | sched_entry_t entry; | |
1340 | ||
1341 | if ((count = runq->count) > 0) { | |
1342 | q = runq->queues + runq->highq; | |
1343 | while (count > 0) { | |
1344 | queue_iterate(q, entry, sched_entry_t, links) { | |
1345 | group = group_for_entry(entry); | |
1346 | if (group->runq.count > 0) { | |
1347 | if (runq_scan(&group->runq)) | |
1348 | return (TRUE); | |
1349 | } | |
1350 | count--; | |
1351 | } | |
1352 | q--; | |
1353 | } | |
1354 | } | |
1355 | ||
1356 | return (FALSE); | |
1357 | } | |
1358 | ||
1359 | static void | |
1360 | sched_multiq_thread_update_scan(void) | |
1361 | { | |
1362 | boolean_t restart_needed = FALSE; | |
1363 | processor_t processor = processor_list; | |
1364 | processor_set_t pset; | |
1365 | thread_t thread; | |
1366 | spl_t s; | |
1367 | ||
1368 | /* | |
1369 | * We update the threads associated with each processor (bound and idle threads) | |
1370 | * and then update the threads in each pset runqueue. | |
1371 | */ | |
1372 | ||
1373 | do { | |
1374 | do { | |
1375 | pset = processor->processor_set; | |
1376 | ||
1377 | s = splsched(); | |
1378 | pset_lock(pset); | |
1379 | ||
1380 | restart_needed = runq_scan(multiq_bound_runq(processor)); | |
1381 | ||
1382 | pset_unlock(pset); | |
1383 | splx(s); | |
1384 | ||
1385 | if (restart_needed) | |
1386 | break; | |
1387 | ||
1388 | thread = processor->idle_thread; | |
1389 | if (thread != THREAD_NULL && thread->sched_stamp != sched_tick) { | |
1390 | if (thread_update_add_thread(thread) == FALSE) { | |
1391 | restart_needed = TRUE; | |
1392 | break; | |
1393 | } | |
1394 | } | |
1395 | } while ((processor = processor->processor_list) != NULL); | |
1396 | ||
1397 | /* Ok, we now have a collection of candidates -- fix them. */ | |
1398 | thread_update_process_threads(); | |
1399 | ||
1400 | } while (restart_needed); | |
1401 | ||
1402 | pset = &pset0; | |
1403 | ||
1404 | do { | |
1405 | do { | |
1406 | s = splsched(); | |
1407 | pset_lock(pset); | |
1408 | ||
1409 | restart_needed = group_scan(&pset->pset_runq); | |
1410 | ||
1411 | pset_unlock(pset); | |
1412 | splx(s); | |
1413 | ||
1414 | if (restart_needed) | |
1415 | break; | |
1416 | } while ((pset = pset->pset_list) != NULL); | |
1417 | ||
1418 | /* Ok, we now have a collection of candidates -- fix them. */ | |
1419 | thread_update_process_threads(); | |
1420 | ||
1421 | } while (restart_needed); | |
1422 | } | |
1423 | ||
1424 |