]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2004-2011 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | /* | |
30 | * CPU-specific power management support. | |
31 | * | |
32 | * Implements the "wrappers" to the KEXT. | |
33 | */ | |
34 | #include <i386/asm.h> | |
35 | #include <i386/machine_cpu.h> | |
36 | #include <i386/mp.h> | |
37 | #include <i386/machine_routines.h> | |
38 | #include <i386/proc_reg.h> | |
39 | #include <i386/pmap.h> | |
40 | #include <i386/misc_protos.h> | |
41 | #include <kern/machine.h> | |
42 | #include <kern/pms.h> | |
43 | #include <kern/processor.h> | |
44 | #include <kern/timer_queue.h> | |
45 | #include <i386/cpu_threads.h> | |
46 | #include <i386/pmCPU.h> | |
47 | #include <i386/cpuid.h> | |
48 | #include <i386/rtclock_protos.h> | |
49 | #include <kern/sched_prim.h> | |
50 | #include <i386/lapic.h> | |
51 | #include <i386/pal_routines.h> | |
52 | #include <sys/kdebug.h> | |
53 | #include <i386/tsc.h> | |
54 | ||
55 | extern int disableConsoleOutput; | |
56 | ||
57 | #define DELAY_UNSET 0xFFFFFFFFFFFFFFFFULL | |
58 | ||
59 | uint64_t cpu_itime_bins[CPU_ITIME_BINS] = {16* NSEC_PER_USEC, 32* NSEC_PER_USEC, 64* NSEC_PER_USEC, 128* NSEC_PER_USEC, 256* NSEC_PER_USEC, 512* NSEC_PER_USEC, 1024* NSEC_PER_USEC, 2048* NSEC_PER_USEC, 4096* NSEC_PER_USEC, 8192* NSEC_PER_USEC, 16384* NSEC_PER_USEC, 32768* NSEC_PER_USEC}; | |
60 | uint64_t *cpu_rtime_bins = &cpu_itime_bins[0]; | |
61 | ||
62 | /* | |
63 | * The following is set when the KEXT loads and initializes. | |
64 | */ | |
65 | pmDispatch_t *pmDispatch = NULL; | |
66 | ||
67 | uint32_t pmInitDone = 0; | |
68 | static boolean_t earlyTopology = FALSE; | |
69 | static uint64_t earlyMaxBusDelay = DELAY_UNSET; | |
70 | static uint64_t earlyMaxIntDelay = DELAY_UNSET; | |
71 | ||
72 | /* | |
73 | * Initialize the Cstate change code. | |
74 | */ | |
75 | void | |
76 | power_management_init(void) | |
77 | { | |
78 | if (pmDispatch != NULL && pmDispatch->cstateInit != NULL) | |
79 | (*pmDispatch->cstateInit)(); | |
80 | } | |
81 | ||
82 | static inline void machine_classify_interval(uint64_t interval, uint64_t *bins, uint64_t *binvals, uint32_t nbins) { | |
83 | uint32_t i; | |
84 | for (i = 0; i < nbins; i++) { | |
85 | if (interval < binvals[i]) { | |
86 | bins[i]++; | |
87 | break; | |
88 | } | |
89 | } | |
90 | } | |
91 | ||
92 | uint64_t idle_pending_timers_processed; | |
93 | uint32_t idle_entry_timer_processing_hdeadline_threshold = 5000000; | |
94 | ||
95 | /* | |
96 | * Called when the CPU is idle. It calls into the power management kext | |
97 | * to determine the best way to idle the CPU. | |
98 | */ | |
99 | void | |
100 | machine_idle(void) | |
101 | { | |
102 | cpu_data_t *my_cpu = current_cpu_datap(); | |
103 | __unused uint32_t cnum = my_cpu->cpu_number; | |
104 | uint64_t ctime, rtime, itime; | |
105 | #if CST_DEMOTION_DEBUG | |
106 | processor_t cproc = my_cpu->cpu_processor; | |
107 | uint64_t cwakeups = PROCESSOR_DATA(cproc, wakeups_issued_total); | |
108 | #endif /* CST_DEMOTION_DEBUG */ | |
109 | uint64_t esdeadline, ehdeadline; | |
110 | boolean_t do_process_pending_timers = FALSE; | |
111 | ||
112 | ctime = mach_absolute_time(); | |
113 | esdeadline = my_cpu->rtclock_timer.queue.earliest_soft_deadline; | |
114 | ehdeadline = my_cpu->rtclock_timer.deadline; | |
115 | /* Determine if pending timers exist */ | |
116 | if ((ctime >= esdeadline) && (ctime < ehdeadline) && | |
117 | ((ehdeadline - ctime) < idle_entry_timer_processing_hdeadline_threshold)) { | |
118 | idle_pending_timers_processed++; | |
119 | do_process_pending_timers = TRUE; | |
120 | goto machine_idle_exit; | |
121 | } else { | |
122 | TCOAL_DEBUG(0xCCCC0000, ctime, my_cpu->rtclock_timer.queue.earliest_soft_deadline, my_cpu->rtclock_timer.deadline, idle_pending_timers_processed, 0); | |
123 | } | |
124 | ||
125 | my_cpu->lcpu.state = LCPU_IDLE; | |
126 | DBGLOG(cpu_handle, cpu_number(), MP_IDLE); | |
127 | MARK_CPU_IDLE(cnum); | |
128 | ||
129 | rtime = ctime - my_cpu->cpu_ixtime; | |
130 | ||
131 | my_cpu->cpu_rtime_total += rtime; | |
132 | machine_classify_interval(rtime, &my_cpu->cpu_rtimes[0], &cpu_rtime_bins[0], CPU_RTIME_BINS); | |
133 | #if CST_DEMOTION_DEBUG | |
134 | uint32_t cl = 0, ch = 0; | |
135 | uint64_t c3res, c6res, c7res; | |
136 | rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch); | |
137 | c3res = ((uint64_t)ch << 32) | cl; | |
138 | rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch); | |
139 | c6res = ((uint64_t)ch << 32) | cl; | |
140 | rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch); | |
141 | c7res = ((uint64_t)ch << 32) | cl; | |
142 | #endif | |
143 | ||
144 | if (pmInitDone) { | |
145 | /* | |
146 | * Handle case where ml_set_maxbusdelay() or ml_set_maxintdelay() | |
147 | * were called prior to the CPU PM kext being registered. We do | |
148 | * this here since we know at this point the values will be first | |
149 | * used since idle is where the decisions using these values is made. | |
150 | */ | |
151 | if (earlyMaxBusDelay != DELAY_UNSET) | |
152 | ml_set_maxbusdelay((uint32_t)(earlyMaxBusDelay & 0xFFFFFFFF)); | |
153 | if (earlyMaxIntDelay != DELAY_UNSET) | |
154 | ml_set_maxintdelay(earlyMaxIntDelay); | |
155 | } | |
156 | ||
157 | if (pmInitDone | |
158 | && pmDispatch != NULL | |
159 | && pmDispatch->MachineIdle != NULL) | |
160 | (*pmDispatch->MachineIdle)(0x7FFFFFFFFFFFFFFFULL); | |
161 | else { | |
162 | /* | |
163 | * If no power management, re-enable interrupts and halt. | |
164 | * This will keep the CPU from spinning through the scheduler | |
165 | * and will allow at least some minimal power savings (but it | |
166 | * cause problems in some MP configurations w.r.t. the APIC | |
167 | * stopping during a GV3 transition). | |
168 | */ | |
169 | pal_hlt(); | |
170 | /* Once woken, re-disable interrupts. */ | |
171 | pal_cli(); | |
172 | } | |
173 | ||
174 | /* | |
175 | * Mark the CPU as running again. | |
176 | */ | |
177 | MARK_CPU_ACTIVE(cnum); | |
178 | DBGLOG(cpu_handle, cnum, MP_UNIDLE); | |
179 | my_cpu->lcpu.state = LCPU_RUN; | |
180 | uint64_t ixtime = my_cpu->cpu_ixtime = mach_absolute_time(); | |
181 | itime = ixtime - ctime; | |
182 | my_cpu->cpu_idle_exits++; | |
183 | my_cpu->cpu_itime_total += itime; | |
184 | machine_classify_interval(itime, &my_cpu->cpu_itimes[0], &cpu_itime_bins[0], CPU_ITIME_BINS); | |
185 | #if CST_DEMOTION_DEBUG | |
186 | cl = ch = 0; | |
187 | rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch); | |
188 | c3res = (((uint64_t)ch << 32) | cl) - c3res; | |
189 | rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch); | |
190 | c6res = (((uint64_t)ch << 32) | cl) - c6res; | |
191 | rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch); | |
192 | c7res = (((uint64_t)ch << 32) | cl) - c7res; | |
193 | ||
194 | uint64_t ndelta = itime - tmrCvt(c3res + c6res + c7res, tscFCvtt2n); | |
195 | KERNEL_DEBUG_CONSTANT(0xcead0000, ndelta, itime, c7res, c6res, c3res); | |
196 | if ((itime > 1000000) && (ndelta > 250000)) | |
197 | KERNEL_DEBUG_CONSTANT(0xceae0000, ndelta, itime, c7res, c6res, c3res); | |
198 | #endif | |
199 | ||
200 | machine_idle_exit: | |
201 | /* | |
202 | * Re-enable interrupts. | |
203 | */ | |
204 | ||
205 | pal_sti(); | |
206 | ||
207 | if (do_process_pending_timers) { | |
208 | TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, idle_pending_timers_processed, 0); | |
209 | ||
210 | /* Adjust to reflect that this isn't truly a package idle exit */ | |
211 | __sync_fetch_and_sub(&my_cpu->lcpu.package->num_idle, 1); | |
212 | lapic_timer_swi(); /* Trigger software timer interrupt */ | |
213 | __sync_fetch_and_add(&my_cpu->lcpu.package->num_idle, 1); | |
214 | ||
215 | TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_END, ctime, esdeadline, idle_pending_timers_processed, 0, 0); | |
216 | } | |
217 | #if CST_DEMOTION_DEBUG | |
218 | uint64_t nwakeups = PROCESSOR_DATA(cproc, wakeups_issued_total); | |
219 | ||
220 | if ((nwakeups == cwakeups) && (topoParms.nLThreadsPerPackage == my_cpu->lcpu.package->num_idle)) { | |
221 | KERNEL_DEBUG_CONSTANT(0xceaa0000, cwakeups, 0, 0, 0, 0); | |
222 | } | |
223 | #endif | |
224 | } | |
225 | ||
226 | /* | |
227 | * Called when the CPU is to be halted. It will choose the best C-State | |
228 | * to be in. | |
229 | */ | |
230 | void | |
231 | pmCPUHalt(uint32_t reason) | |
232 | { | |
233 | cpu_data_t *cpup = current_cpu_datap(); | |
234 | ||
235 | switch (reason) { | |
236 | case PM_HALT_DEBUG: | |
237 | cpup->lcpu.state = LCPU_PAUSE; | |
238 | pal_stop_cpu(FALSE); | |
239 | break; | |
240 | ||
241 | case PM_HALT_PANIC: | |
242 | cpup->lcpu.state = LCPU_PAUSE; | |
243 | pal_stop_cpu(TRUE); | |
244 | break; | |
245 | ||
246 | case PM_HALT_NORMAL: | |
247 | case PM_HALT_SLEEP: | |
248 | default: | |
249 | pal_cli(); | |
250 | ||
251 | if (pmInitDone | |
252 | && pmDispatch != NULL | |
253 | && pmDispatch->pmCPUHalt != NULL) { | |
254 | /* | |
255 | * Halt the CPU (and put it in a low power state. | |
256 | */ | |
257 | (*pmDispatch->pmCPUHalt)(); | |
258 | ||
259 | /* | |
260 | * We've exited halt, so get the CPU schedulable again. | |
261 | * - by calling the fast init routine for a slave, or | |
262 | * - by returning if we're the master processor. | |
263 | */ | |
264 | if (cpup->cpu_number != master_cpu) { | |
265 | i386_init_slave_fast(); | |
266 | panic("init_slave_fast returned"); | |
267 | } | |
268 | } else | |
269 | { | |
270 | /* | |
271 | * If no power managment and a processor is taken off-line, | |
272 | * then invalidate the cache and halt it (it will not be able | |
273 | * to be brought back on-line without resetting the CPU). | |
274 | */ | |
275 | __asm__ volatile ("wbinvd"); | |
276 | cpup->lcpu.state = LCPU_HALT; | |
277 | pal_stop_cpu(FALSE); | |
278 | ||
279 | panic("back from Halt"); | |
280 | } | |
281 | ||
282 | break; | |
283 | } | |
284 | } | |
285 | ||
286 | void | |
287 | pmMarkAllCPUsOff(void) | |
288 | { | |
289 | if (pmInitDone | |
290 | && pmDispatch != NULL | |
291 | && pmDispatch->markAllCPUsOff != NULL) | |
292 | (*pmDispatch->markAllCPUsOff)(); | |
293 | } | |
294 | ||
295 | static void | |
296 | pmInitComplete(void) | |
297 | { | |
298 | if (earlyTopology | |
299 | && pmDispatch != NULL | |
300 | && pmDispatch->pmCPUStateInit != NULL) { | |
301 | (*pmDispatch->pmCPUStateInit)(); | |
302 | earlyTopology = FALSE; | |
303 | } | |
304 | pmInitDone = 1; | |
305 | } | |
306 | ||
307 | x86_lcpu_t * | |
308 | pmGetLogicalCPU(int cpu) | |
309 | { | |
310 | return(cpu_to_lcpu(cpu)); | |
311 | } | |
312 | ||
313 | x86_lcpu_t * | |
314 | pmGetMyLogicalCPU(void) | |
315 | { | |
316 | cpu_data_t *cpup = current_cpu_datap(); | |
317 | ||
318 | return(&cpup->lcpu); | |
319 | } | |
320 | ||
321 | static x86_core_t * | |
322 | pmGetCore(int cpu) | |
323 | { | |
324 | return(cpu_to_core(cpu)); | |
325 | } | |
326 | ||
327 | static x86_core_t * | |
328 | pmGetMyCore(void) | |
329 | { | |
330 | cpu_data_t *cpup = current_cpu_datap(); | |
331 | ||
332 | return(cpup->lcpu.core); | |
333 | } | |
334 | ||
335 | static x86_die_t * | |
336 | pmGetDie(int cpu) | |
337 | { | |
338 | return(cpu_to_die(cpu)); | |
339 | } | |
340 | ||
341 | static x86_die_t * | |
342 | pmGetMyDie(void) | |
343 | { | |
344 | cpu_data_t *cpup = current_cpu_datap(); | |
345 | ||
346 | return(cpup->lcpu.die); | |
347 | } | |
348 | ||
349 | static x86_pkg_t * | |
350 | pmGetPackage(int cpu) | |
351 | { | |
352 | return(cpu_to_package(cpu)); | |
353 | } | |
354 | ||
355 | static x86_pkg_t * | |
356 | pmGetMyPackage(void) | |
357 | { | |
358 | cpu_data_t *cpup = current_cpu_datap(); | |
359 | ||
360 | return(cpup->lcpu.package); | |
361 | } | |
362 | ||
363 | static void | |
364 | pmLockCPUTopology(int lock) | |
365 | { | |
366 | if (lock) { | |
367 | simple_lock(&x86_topo_lock); | |
368 | } else { | |
369 | simple_unlock(&x86_topo_lock); | |
370 | } | |
371 | } | |
372 | ||
373 | /* | |
374 | * Called to get the next deadline that has been set by the | |
375 | * power management code. | |
376 | * Note: a return of 0 from AICPM and this routine signifies | |
377 | * that no deadline is set. | |
378 | */ | |
379 | uint64_t | |
380 | pmCPUGetDeadline(cpu_data_t *cpu) | |
381 | { | |
382 | uint64_t deadline = 0; | |
383 | ||
384 | if (pmInitDone | |
385 | && pmDispatch != NULL | |
386 | && pmDispatch->GetDeadline != NULL) | |
387 | deadline = (*pmDispatch->GetDeadline)(&cpu->lcpu); | |
388 | ||
389 | return(deadline); | |
390 | } | |
391 | ||
392 | /* | |
393 | * Called to determine if the supplied deadline or the power management | |
394 | * deadline is sooner. Returns which ever one is first. | |
395 | */ | |
396 | ||
397 | uint64_t | |
398 | pmCPUSetDeadline(cpu_data_t *cpu, uint64_t deadline) | |
399 | { | |
400 | if (pmInitDone | |
401 | && pmDispatch != NULL | |
402 | && pmDispatch->SetDeadline != NULL) | |
403 | deadline = (*pmDispatch->SetDeadline)(&cpu->lcpu, deadline); | |
404 | ||
405 | return(deadline); | |
406 | } | |
407 | ||
408 | /* | |
409 | * Called when a power management deadline expires. | |
410 | */ | |
411 | void | |
412 | pmCPUDeadline(cpu_data_t *cpu) | |
413 | { | |
414 | if (pmInitDone | |
415 | && pmDispatch != NULL | |
416 | && pmDispatch->Deadline != NULL) | |
417 | (*pmDispatch->Deadline)(&cpu->lcpu); | |
418 | } | |
419 | ||
420 | /* | |
421 | * Called to get a CPU out of idle. | |
422 | */ | |
423 | boolean_t | |
424 | pmCPUExitIdle(cpu_data_t *cpu) | |
425 | { | |
426 | boolean_t do_ipi; | |
427 | ||
428 | if (pmInitDone | |
429 | && pmDispatch != NULL | |
430 | && pmDispatch->exitIdle != NULL) | |
431 | do_ipi = (*pmDispatch->exitIdle)(&cpu->lcpu); | |
432 | else | |
433 | do_ipi = TRUE; | |
434 | ||
435 | return(do_ipi); | |
436 | } | |
437 | ||
438 | kern_return_t | |
439 | pmCPUExitHalt(int cpu) | |
440 | { | |
441 | kern_return_t rc = KERN_INVALID_ARGUMENT; | |
442 | ||
443 | if (pmInitDone | |
444 | && pmDispatch != NULL | |
445 | && pmDispatch->exitHalt != NULL) | |
446 | rc = pmDispatch->exitHalt(cpu_to_lcpu(cpu)); | |
447 | ||
448 | return(rc); | |
449 | } | |
450 | ||
451 | kern_return_t | |
452 | pmCPUExitHaltToOff(int cpu) | |
453 | { | |
454 | kern_return_t rc = KERN_SUCCESS; | |
455 | ||
456 | if (pmInitDone | |
457 | && pmDispatch != NULL | |
458 | && pmDispatch->exitHaltToOff != NULL) | |
459 | rc = pmDispatch->exitHaltToOff(cpu_to_lcpu(cpu)); | |
460 | ||
461 | return(rc); | |
462 | } | |
463 | ||
464 | /* | |
465 | * Called to initialize the power management structures for the CPUs. | |
466 | */ | |
467 | void | |
468 | pmCPUStateInit(void) | |
469 | { | |
470 | if (pmDispatch != NULL && pmDispatch->pmCPUStateInit != NULL) | |
471 | (*pmDispatch->pmCPUStateInit)(); | |
472 | else | |
473 | earlyTopology = TRUE; | |
474 | } | |
475 | ||
476 | /* | |
477 | * Called when a CPU is being restarted after being powered off (as in S3). | |
478 | */ | |
479 | void | |
480 | pmCPUMarkRunning(cpu_data_t *cpu) | |
481 | { | |
482 | cpu_data_t *cpup = current_cpu_datap(); | |
483 | ||
484 | if (pmInitDone | |
485 | && pmDispatch != NULL | |
486 | && pmDispatch->markCPURunning != NULL) | |
487 | (*pmDispatch->markCPURunning)(&cpu->lcpu); | |
488 | else | |
489 | cpup->lcpu.state = LCPU_RUN; | |
490 | } | |
491 | ||
492 | /* | |
493 | * Called to get/set CPU power management state. | |
494 | */ | |
495 | int | |
496 | pmCPUControl(uint32_t cmd, void *datap) | |
497 | { | |
498 | int rc = -1; | |
499 | ||
500 | if (pmDispatch != NULL | |
501 | && pmDispatch->pmCPUControl != NULL) | |
502 | rc = (*pmDispatch->pmCPUControl)(cmd, datap); | |
503 | ||
504 | return(rc); | |
505 | } | |
506 | ||
507 | /* | |
508 | * Called to save the timer state used by power management prior | |
509 | * to "sleeping". | |
510 | */ | |
511 | void | |
512 | pmTimerSave(void) | |
513 | { | |
514 | if (pmDispatch != NULL | |
515 | && pmDispatch->pmTimerStateSave != NULL) | |
516 | (*pmDispatch->pmTimerStateSave)(); | |
517 | } | |
518 | ||
519 | /* | |
520 | * Called to restore the timer state used by power management after | |
521 | * waking from "sleep". | |
522 | */ | |
523 | void | |
524 | pmTimerRestore(void) | |
525 | { | |
526 | if (pmDispatch != NULL | |
527 | && pmDispatch->pmTimerStateRestore != NULL) | |
528 | (*pmDispatch->pmTimerStateRestore)(); | |
529 | } | |
530 | ||
531 | /* | |
532 | * Set the worst-case time for the C4 to C2 transition. | |
533 | * No longer does anything. | |
534 | */ | |
535 | void | |
536 | ml_set_maxsnoop(__unused uint32_t maxdelay) | |
537 | { | |
538 | } | |
539 | ||
540 | ||
541 | /* | |
542 | * Get the worst-case time for the C4 to C2 transition. Returns nanoseconds. | |
543 | */ | |
544 | unsigned | |
545 | ml_get_maxsnoop(void) | |
546 | { | |
547 | uint64_t max_snoop = 0; | |
548 | ||
549 | if (pmInitDone | |
550 | && pmDispatch != NULL | |
551 | && pmDispatch->getMaxSnoop != NULL) | |
552 | max_snoop = pmDispatch->getMaxSnoop(); | |
553 | ||
554 | return((unsigned)(max_snoop & 0xffffffff)); | |
555 | } | |
556 | ||
557 | ||
558 | uint32_t | |
559 | ml_get_maxbusdelay(void) | |
560 | { | |
561 | uint64_t max_delay = 0; | |
562 | ||
563 | if (pmInitDone | |
564 | && pmDispatch != NULL | |
565 | && pmDispatch->getMaxBusDelay != NULL) | |
566 | max_delay = pmDispatch->getMaxBusDelay(); | |
567 | ||
568 | return((uint32_t)(max_delay & 0xffffffff)); | |
569 | } | |
570 | ||
571 | /* | |
572 | * Advertise a memory access latency tolerance of "mdelay" ns | |
573 | */ | |
574 | void | |
575 | ml_set_maxbusdelay(uint32_t mdelay) | |
576 | { | |
577 | uint64_t maxdelay = mdelay; | |
578 | ||
579 | if (pmDispatch != NULL | |
580 | && pmDispatch->setMaxBusDelay != NULL) { | |
581 | earlyMaxBusDelay = DELAY_UNSET; | |
582 | pmDispatch->setMaxBusDelay(maxdelay); | |
583 | } else | |
584 | earlyMaxBusDelay = maxdelay; | |
585 | } | |
586 | ||
587 | uint64_t | |
588 | ml_get_maxintdelay(void) | |
589 | { | |
590 | uint64_t max_delay = 0; | |
591 | ||
592 | if (pmDispatch != NULL | |
593 | && pmDispatch->getMaxIntDelay != NULL) | |
594 | max_delay = pmDispatch->getMaxIntDelay(); | |
595 | ||
596 | return(max_delay); | |
597 | } | |
598 | ||
599 | /* | |
600 | * Set the maximum delay allowed for an interrupt. | |
601 | */ | |
602 | void | |
603 | ml_set_maxintdelay(uint64_t mdelay) | |
604 | { | |
605 | if (pmDispatch != NULL | |
606 | && pmDispatch->setMaxIntDelay != NULL) { | |
607 | earlyMaxIntDelay = DELAY_UNSET; | |
608 | pmDispatch->setMaxIntDelay(mdelay); | |
609 | } else | |
610 | earlyMaxIntDelay = mdelay; | |
611 | } | |
612 | ||
613 | boolean_t | |
614 | ml_get_interrupt_prewake_applicable() | |
615 | { | |
616 | boolean_t applicable = FALSE; | |
617 | ||
618 | if (pmInitDone | |
619 | && pmDispatch != NULL | |
620 | && pmDispatch->pmInterruptPrewakeApplicable != NULL) | |
621 | applicable = pmDispatch->pmInterruptPrewakeApplicable(); | |
622 | ||
623 | return applicable; | |
624 | } | |
625 | ||
626 | /* | |
627 | * Put a CPU into "safe" mode with respect to power. | |
628 | * | |
629 | * Some systems cannot operate at a continuous "normal" speed without | |
630 | * exceeding the thermal design. This is called per-CPU to place the | |
631 | * CPUs into a "safe" operating mode. | |
632 | */ | |
633 | void | |
634 | pmSafeMode(x86_lcpu_t *lcpu, uint32_t flags) | |
635 | { | |
636 | if (pmDispatch != NULL | |
637 | && pmDispatch->pmCPUSafeMode != NULL) | |
638 | pmDispatch->pmCPUSafeMode(lcpu, flags); | |
639 | else { | |
640 | /* | |
641 | * Do something reasonable if the KEXT isn't present. | |
642 | * | |
643 | * We only look at the PAUSE and RESUME flags. The other flag(s) | |
644 | * will not make any sense without the KEXT, so just ignore them. | |
645 | * | |
646 | * We set the CPU's state to indicate that it's halted. If this | |
647 | * is the CPU we're currently running on, then spin until the | |
648 | * state becomes non-halted. | |
649 | */ | |
650 | if (flags & PM_SAFE_FL_PAUSE) { | |
651 | lcpu->state = LCPU_PAUSE; | |
652 | if (lcpu == x86_lcpu()) { | |
653 | while (lcpu->state == LCPU_PAUSE) | |
654 | cpu_pause(); | |
655 | } | |
656 | } | |
657 | ||
658 | /* | |
659 | * Clear the halted flag for the specified CPU, that will | |
660 | * get it out of it's spin loop. | |
661 | */ | |
662 | if (flags & PM_SAFE_FL_RESUME) { | |
663 | lcpu->state = LCPU_RUN; | |
664 | } | |
665 | } | |
666 | } | |
667 | ||
668 | static uint32_t saved_run_count = 0; | |
669 | ||
670 | void | |
671 | machine_run_count(uint32_t count) | |
672 | { | |
673 | if (pmDispatch != NULL | |
674 | && pmDispatch->pmSetRunCount != NULL) | |
675 | pmDispatch->pmSetRunCount(count); | |
676 | else | |
677 | saved_run_count = count; | |
678 | } | |
679 | ||
680 | processor_t | |
681 | machine_choose_processor(processor_set_t pset, | |
682 | processor_t preferred) | |
683 | { | |
684 | int startCPU; | |
685 | int endCPU; | |
686 | int preferredCPU; | |
687 | int chosenCPU; | |
688 | ||
689 | if (!pmInitDone) | |
690 | return(preferred); | |
691 | ||
692 | if (pset == NULL) { | |
693 | startCPU = -1; | |
694 | endCPU = -1; | |
695 | } else { | |
696 | startCPU = pset->cpu_set_low; | |
697 | endCPU = pset->cpu_set_hi; | |
698 | } | |
699 | ||
700 | if (preferred == NULL) | |
701 | preferredCPU = -1; | |
702 | else | |
703 | preferredCPU = preferred->cpu_id; | |
704 | ||
705 | if (pmDispatch != NULL | |
706 | && pmDispatch->pmChooseCPU != NULL) { | |
707 | chosenCPU = pmDispatch->pmChooseCPU(startCPU, endCPU, preferredCPU); | |
708 | ||
709 | if (chosenCPU == -1) | |
710 | return(NULL); | |
711 | return(cpu_datap(chosenCPU)->cpu_processor); | |
712 | } | |
713 | ||
714 | return(preferred); | |
715 | } | |
716 | ||
717 | static int | |
718 | pmThreadGetUrgency(uint64_t *rt_period, uint64_t *rt_deadline) | |
719 | { | |
720 | int urgency; | |
721 | uint64_t arg1, arg2; | |
722 | ||
723 | urgency = thread_get_urgency(current_processor()->next_thread, &arg1, &arg2); | |
724 | ||
725 | if (urgency == THREAD_URGENCY_REAL_TIME) { | |
726 | if (rt_period != NULL) | |
727 | *rt_period = arg1; | |
728 | ||
729 | if (rt_deadline != NULL) | |
730 | *rt_deadline = arg2; | |
731 | } | |
732 | ||
733 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_GET_URGENCY), urgency, arg1, arg2, 0, 0); | |
734 | ||
735 | return(urgency); | |
736 | } | |
737 | ||
738 | #if DEBUG | |
739 | uint32_t urgency_stats[64][THREAD_URGENCY_MAX]; | |
740 | #endif | |
741 | ||
742 | #define URGENCY_NOTIFICATION_ASSERT_NS (5 * 1000 * 1000) | |
743 | uint64_t urgency_notification_assert_abstime_threshold, urgency_notification_max_recorded; | |
744 | ||
745 | void | |
746 | thread_tell_urgency(int urgency, | |
747 | uint64_t rt_period, | |
748 | uint64_t rt_deadline, | |
749 | thread_t nthread) | |
750 | { | |
751 | uint64_t urgency_notification_time_start, delta; | |
752 | boolean_t urgency_assert = (urgency_notification_assert_abstime_threshold != 0); | |
753 | assert(get_preemption_level() > 0 || ml_get_interrupts_enabled() == FALSE); | |
754 | #if DEBUG | |
755 | urgency_stats[cpu_number() % 64][urgency]++; | |
756 | #endif | |
757 | if (!pmInitDone | |
758 | || pmDispatch == NULL | |
759 | || pmDispatch->pmThreadTellUrgency == NULL) | |
760 | return; | |
761 | ||
762 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_URGENCY) | DBG_FUNC_START, urgency, rt_period, rt_deadline, 0, 0); | |
763 | ||
764 | if (__improbable((urgency_assert == TRUE))) | |
765 | urgency_notification_time_start = mach_absolute_time(); | |
766 | ||
767 | current_cpu_datap()->cpu_nthread = nthread; | |
768 | pmDispatch->pmThreadTellUrgency(urgency, rt_period, rt_deadline); | |
769 | ||
770 | if (__improbable((urgency_assert == TRUE))) { | |
771 | delta = mach_absolute_time() - urgency_notification_time_start; | |
772 | ||
773 | if (__improbable(delta > urgency_notification_max_recorded)) { | |
774 | /* This is not synchronized, but it doesn't matter | |
775 | * if we (rarely) miss an event, as it is statistically | |
776 | * unlikely that it will never recur. | |
777 | */ | |
778 | urgency_notification_max_recorded = delta; | |
779 | ||
780 | if (__improbable((delta > urgency_notification_assert_abstime_threshold) && !machine_timeout_suspended())) | |
781 | panic("Urgency notification callout %p exceeded threshold, 0x%llx abstime units", pmDispatch->pmThreadTellUrgency, delta); | |
782 | } | |
783 | } | |
784 | ||
785 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_URGENCY) | DBG_FUNC_END, urgency, rt_period, rt_deadline, 0, 0); | |
786 | } | |
787 | ||
788 | void | |
789 | active_rt_threads(boolean_t active) | |
790 | { | |
791 | if (!pmInitDone | |
792 | || pmDispatch == NULL | |
793 | || pmDispatch->pmActiveRTThreads == NULL) | |
794 | return; | |
795 | ||
796 | pmDispatch->pmActiveRTThreads(active); | |
797 | } | |
798 | ||
799 | static uint32_t | |
800 | pmGetSavedRunCount(void) | |
801 | { | |
802 | return(saved_run_count); | |
803 | } | |
804 | ||
805 | /* | |
806 | * Returns the root of the package tree. | |
807 | */ | |
808 | x86_pkg_t * | |
809 | pmGetPkgRoot(void) | |
810 | { | |
811 | return(x86_pkgs); | |
812 | } | |
813 | ||
814 | static boolean_t | |
815 | pmCPUGetHibernate(int cpu) | |
816 | { | |
817 | return(cpu_datap(cpu)->cpu_hibernate); | |
818 | } | |
819 | ||
820 | processor_t | |
821 | pmLCPUtoProcessor(int lcpu) | |
822 | { | |
823 | return(cpu_datap(lcpu)->cpu_processor); | |
824 | } | |
825 | ||
826 | static void | |
827 | pmReSyncDeadlines(int cpu) | |
828 | { | |
829 | static boolean_t registered = FALSE; | |
830 | ||
831 | if (!registered) { | |
832 | PM_interrupt_register(&timer_resync_deadlines); | |
833 | registered = TRUE; | |
834 | } | |
835 | ||
836 | if ((uint32_t)cpu == current_cpu_datap()->lcpu.cpu_num) | |
837 | timer_resync_deadlines(); | |
838 | else | |
839 | cpu_PM_interrupt(cpu); | |
840 | } | |
841 | ||
842 | static void | |
843 | pmSendIPI(int cpu) | |
844 | { | |
845 | lapic_send_ipi(cpu, LAPIC_PM_INTERRUPT); | |
846 | } | |
847 | ||
848 | static void | |
849 | pmGetNanotimeInfo(pm_rtc_nanotime_t *rtc_nanotime) | |
850 | { | |
851 | /* | |
852 | * Make sure that nanotime didn't change while we were reading it. | |
853 | */ | |
854 | do { | |
855 | rtc_nanotime->generation = pal_rtc_nanotime_info.generation; /* must be first */ | |
856 | rtc_nanotime->tsc_base = pal_rtc_nanotime_info.tsc_base; | |
857 | rtc_nanotime->ns_base = pal_rtc_nanotime_info.ns_base; | |
858 | rtc_nanotime->scale = pal_rtc_nanotime_info.scale; | |
859 | rtc_nanotime->shift = pal_rtc_nanotime_info.shift; | |
860 | } while(pal_rtc_nanotime_info.generation != 0 | |
861 | && rtc_nanotime->generation != pal_rtc_nanotime_info.generation); | |
862 | } | |
863 | ||
864 | uint32_t | |
865 | pmTimerQueueMigrate(int target_cpu) | |
866 | { | |
867 | /* Call the etimer code to do this. */ | |
868 | return (target_cpu != cpu_number()) | |
869 | ? timer_queue_migrate_cpu(target_cpu) | |
870 | : 0; | |
871 | } | |
872 | ||
873 | ||
874 | /* | |
875 | * Called by the power management kext to register itself and to get the | |
876 | * callbacks it might need into other kernel functions. This interface | |
877 | * is versioned to allow for slight mis-matches between the kext and the | |
878 | * kernel. | |
879 | */ | |
880 | void | |
881 | pmKextRegister(uint32_t version, pmDispatch_t *cpuFuncs, | |
882 | pmCallBacks_t *callbacks) | |
883 | { | |
884 | if (callbacks != NULL && version == PM_DISPATCH_VERSION) { | |
885 | callbacks->setRTCPop = setPop; | |
886 | callbacks->resyncDeadlines = pmReSyncDeadlines; | |
887 | callbacks->initComplete = pmInitComplete; | |
888 | callbacks->GetLCPU = pmGetLogicalCPU; | |
889 | callbacks->GetCore = pmGetCore; | |
890 | callbacks->GetDie = pmGetDie; | |
891 | callbacks->GetPackage = pmGetPackage; | |
892 | callbacks->GetMyLCPU = pmGetMyLogicalCPU; | |
893 | callbacks->GetMyCore = pmGetMyCore; | |
894 | callbacks->GetMyDie = pmGetMyDie; | |
895 | callbacks->GetMyPackage = pmGetMyPackage; | |
896 | callbacks->GetPkgRoot = pmGetPkgRoot; | |
897 | callbacks->LockCPUTopology = pmLockCPUTopology; | |
898 | callbacks->GetHibernate = pmCPUGetHibernate; | |
899 | callbacks->LCPUtoProcessor = pmLCPUtoProcessor; | |
900 | callbacks->ThreadBind = thread_bind; | |
901 | callbacks->GetSavedRunCount = pmGetSavedRunCount; | |
902 | callbacks->GetNanotimeInfo = pmGetNanotimeInfo; | |
903 | callbacks->ThreadGetUrgency = pmThreadGetUrgency; | |
904 | callbacks->RTCClockAdjust = rtc_clock_adjust; | |
905 | callbacks->timerQueueMigrate = pmTimerQueueMigrate; | |
906 | callbacks->topoParms = &topoParms; | |
907 | callbacks->pmSendIPI = pmSendIPI; | |
908 | callbacks->InterruptPending = lapic_is_interrupt_pending; | |
909 | callbacks->IsInterrupting = lapic_is_interrupting; | |
910 | callbacks->InterruptStats = lapic_interrupt_counts; | |
911 | callbacks->DisableApicTimer = lapic_disable_timer; | |
912 | } else { | |
913 | panic("Version mis-match between Kernel and CPU PM"); | |
914 | } | |
915 | ||
916 | if (cpuFuncs != NULL) { | |
917 | if (pmDispatch) { | |
918 | panic("Attempt to re-register power management interface--AICPM present in xcpm mode? %p->%p", pmDispatch, cpuFuncs); | |
919 | } | |
920 | ||
921 | pmDispatch = cpuFuncs; | |
922 | ||
923 | if (earlyTopology | |
924 | && pmDispatch->pmCPUStateInit != NULL) { | |
925 | (*pmDispatch->pmCPUStateInit)(); | |
926 | earlyTopology = FALSE; | |
927 | } | |
928 | ||
929 | if (pmDispatch->pmIPIHandler != NULL) { | |
930 | lapic_set_pm_func((i386_intr_func_t)pmDispatch->pmIPIHandler); | |
931 | } | |
932 | } | |
933 | } | |
934 | ||
935 | /* | |
936 | * Unregisters the power management functions from the kext. | |
937 | */ | |
938 | void | |
939 | pmUnRegister(pmDispatch_t *cpuFuncs) | |
940 | { | |
941 | if (cpuFuncs != NULL && pmDispatch == cpuFuncs) { | |
942 | pmDispatch = NULL; | |
943 | } | |
944 | } | |
945 | ||
946 | void machine_track_platform_idle(boolean_t entry) { | |
947 | cpu_data_t *my_cpu = current_cpu_datap(); | |
948 | ||
949 | if (entry) { | |
950 | (void)__sync_fetch_and_add(&my_cpu->lcpu.package->num_idle, 1); | |
951 | } | |
952 | else { | |
953 | uint32_t nidle = __sync_fetch_and_sub(&my_cpu->lcpu.package->num_idle, 1); | |
954 | if (nidle == topoParms.nLThreadsPerPackage) { | |
955 | my_cpu->lcpu.package->package_idle_exits++; | |
956 | } | |
957 | } | |
958 | } |