]>
Commit | Line | Data |
---|---|---|
1 | typedef struct _IODataQueueEntry { | |
2 | uint32_t size; | |
3 | uint8_t data[0]; | |
4 | } IODataQueueEntry; | |
5 | ||
6 | #define DATA_QUEUE_ENTRY_HEADER_SIZE sizeof(IODataQueueEntry) | |
7 | ||
8 | typedef struct _IODataQueueMemory { | |
9 | volatile uint32_t head; | |
10 | volatile uint32_t tail; | |
11 | volatile uint8_t needServicedCallback; | |
12 | volatile uint8_t _resv[31]; | |
13 | IODataQueueEntry queue[0]; | |
14 | } IODataQueueMemory; | |
15 | ||
16 | struct IODataQueueDispatchSource_IVars { | |
17 | IODataQueueMemory * dataQueue; | |
18 | IODataQueueDispatchSource * source; | |
19 | // IODispatchQueue * queue; | |
20 | IOMemoryDescriptor * memory; | |
21 | OSAction * dataAvailableAction; | |
22 | OSAction * dataServicedAction; | |
23 | uint64_t options; | |
24 | uint32_t queueByteCount; | |
25 | ||
26 | #if !KERNEL | |
27 | bool enable; | |
28 | bool canceled; | |
29 | #endif | |
30 | }; | |
31 | ||
32 | bool | |
33 | IODataQueueDispatchSource::init() | |
34 | { | |
35 | if (!super::init()) { | |
36 | return false; | |
37 | } | |
38 | ||
39 | ivars = IONewZero(IODataQueueDispatchSource_IVars, 1); | |
40 | ivars->source = this; | |
41 | ||
42 | #if !KERNEL | |
43 | kern_return_t ret; | |
44 | ||
45 | ret = CopyMemory(&ivars->memory); | |
46 | assert(kIOReturnSuccess == ret); | |
47 | ||
48 | uint64_t address; | |
49 | uint64_t length; | |
50 | ||
51 | ret = ivars->memory->Map(0, 0, 0, 0, &address, &length); | |
52 | assert(kIOReturnSuccess == ret); | |
53 | ivars->dataQueue = (typeof(ivars->dataQueue))(uintptr_t) address; | |
54 | ivars->queueByteCount = length; | |
55 | #endif | |
56 | ||
57 | return true; | |
58 | } | |
59 | ||
60 | kern_return_t | |
61 | IODataQueueDispatchSource::CheckForWork_Impl( | |
62 | const IORPC rpc, | |
63 | bool synchronous) | |
64 | { | |
65 | IOReturn ret = kIOReturnNotReady; | |
66 | ||
67 | return ret; | |
68 | } | |
69 | ||
70 | #if KERNEL | |
71 | ||
72 | kern_return_t | |
73 | IODataQueueDispatchSource::Create_Impl( | |
74 | uint64_t queueByteCount, | |
75 | IODispatchQueue * queue, | |
76 | IODataQueueDispatchSource ** source) | |
77 | { | |
78 | IODataQueueDispatchSource * inst; | |
79 | IOBufferMemoryDescriptor * bmd; | |
80 | ||
81 | if (3 & queueByteCount) { | |
82 | return kIOReturnBadArgument; | |
83 | } | |
84 | if (queueByteCount > UINT_MAX) { | |
85 | return kIOReturnBadArgument; | |
86 | } | |
87 | inst = OSTypeAlloc(IODataQueueDispatchSource); | |
88 | if (!inst) { | |
89 | return kIOReturnNoMemory; | |
90 | } | |
91 | if (!inst->init()) { | |
92 | inst->release(); | |
93 | return kIOReturnError; | |
94 | } | |
95 | ||
96 | bmd = IOBufferMemoryDescriptor::withOptions( | |
97 | kIODirectionOutIn | kIOMemoryKernelUserShared, | |
98 | queueByteCount, page_size); | |
99 | if (!bmd) { | |
100 | inst->release(); | |
101 | return kIOReturnNoMemory; | |
102 | } | |
103 | inst->ivars->memory = bmd; | |
104 | inst->ivars->queueByteCount = ((uint32_t) queueByteCount); | |
105 | inst->ivars->options = 0; | |
106 | inst->ivars->dataQueue = (typeof(inst->ivars->dataQueue))bmd->getBytesNoCopy(); | |
107 | ||
108 | *source = inst; | |
109 | ||
110 | return kIOReturnSuccess; | |
111 | } | |
112 | ||
113 | kern_return_t | |
114 | IODataQueueDispatchSource::CopyMemory_Impl( | |
115 | IOMemoryDescriptor ** memory) | |
116 | { | |
117 | kern_return_t ret; | |
118 | IOMemoryDescriptor * result; | |
119 | ||
120 | result = ivars->memory; | |
121 | if (result) { | |
122 | result->retain(); | |
123 | ret = kIOReturnSuccess; | |
124 | } else { | |
125 | ret = kIOReturnNotReady; | |
126 | } | |
127 | *memory = result; | |
128 | ||
129 | return ret; | |
130 | } | |
131 | ||
132 | kern_return_t | |
133 | IODataQueueDispatchSource::CopyDataAvailableHandler_Impl( | |
134 | OSAction ** action) | |
135 | { | |
136 | kern_return_t ret; | |
137 | OSAction * result; | |
138 | ||
139 | result = ivars->dataAvailableAction; | |
140 | if (result) { | |
141 | result->retain(); | |
142 | ret = kIOReturnSuccess; | |
143 | } else { | |
144 | ret = kIOReturnNotReady; | |
145 | } | |
146 | *action = result; | |
147 | ||
148 | return ret; | |
149 | } | |
150 | ||
151 | kern_return_t | |
152 | IODataQueueDispatchSource::CopyDataServicedHandler_Impl( | |
153 | OSAction ** action) | |
154 | { | |
155 | kern_return_t ret; | |
156 | OSAction * result; | |
157 | ||
158 | result = ivars->dataServicedAction; | |
159 | if (result) { | |
160 | result->retain(); | |
161 | ret = kIOReturnSuccess; | |
162 | } else { | |
163 | ret = kIOReturnNotReady; | |
164 | } | |
165 | *action = result; | |
166 | return ret; | |
167 | } | |
168 | ||
169 | kern_return_t | |
170 | IODataQueueDispatchSource::SetDataAvailableHandler_Impl( | |
171 | OSAction * action) | |
172 | { | |
173 | IOReturn ret; | |
174 | OSAction * oldAction; | |
175 | ||
176 | oldAction = ivars->dataAvailableAction; | |
177 | if (oldAction && OSCompareAndSwapPtr(oldAction, NULL, &ivars->dataAvailableAction)) { | |
178 | oldAction->release(); | |
179 | } | |
180 | if (action) { | |
181 | action->retain(); | |
182 | ivars->dataAvailableAction = action; | |
183 | if (IsDataAvailable()) { | |
184 | DataAvailable(ivars->dataAvailableAction); | |
185 | } | |
186 | } | |
187 | ret = kIOReturnSuccess; | |
188 | ||
189 | return ret; | |
190 | } | |
191 | ||
192 | kern_return_t | |
193 | IODataQueueDispatchSource::SetDataServicedHandler_Impl( | |
194 | OSAction * action) | |
195 | { | |
196 | IOReturn ret; | |
197 | OSAction * oldAction; | |
198 | ||
199 | oldAction = ivars->dataServicedAction; | |
200 | if (oldAction && OSCompareAndSwapPtr(oldAction, NULL, &ivars->dataServicedAction)) { | |
201 | oldAction->release(); | |
202 | } | |
203 | if (action) { | |
204 | action->retain(); | |
205 | ivars->dataServicedAction = action; | |
206 | } | |
207 | ret = kIOReturnSuccess; | |
208 | ||
209 | return ret; | |
210 | } | |
211 | ||
212 | #endif /* KERNEL */ | |
213 | ||
214 | void | |
215 | IODataQueueDispatchSource::SendDataAvailable(void) | |
216 | { | |
217 | IOReturn ret; | |
218 | ||
219 | if (!ivars->dataAvailableAction) { | |
220 | ret = CopyDataAvailableHandler(&ivars->dataAvailableAction); | |
221 | if (kIOReturnSuccess != ret) { | |
222 | ivars->dataAvailableAction = NULL; | |
223 | } | |
224 | } | |
225 | if (ivars->dataAvailableAction) { | |
226 | DataAvailable(ivars->dataAvailableAction); | |
227 | } | |
228 | } | |
229 | ||
230 | void | |
231 | IODataQueueDispatchSource::SendDataServiced(void) | |
232 | { | |
233 | IOReturn ret; | |
234 | ||
235 | if (!ivars->dataServicedAction) { | |
236 | ret = CopyDataServicedHandler(&ivars->dataServicedAction); | |
237 | if (kIOReturnSuccess != ret) { | |
238 | ivars->dataServicedAction = NULL; | |
239 | } | |
240 | } | |
241 | if (ivars->dataServicedAction) { | |
242 | ivars->dataQueue->needServicedCallback = false; | |
243 | DataServiced(ivars->dataServicedAction); | |
244 | } | |
245 | } | |
246 | ||
247 | kern_return_t | |
248 | IODataQueueDispatchSource::SetEnableWithCompletion_Impl( | |
249 | bool enable, | |
250 | IODispatchSourceCancelHandler handler) | |
251 | { | |
252 | IOReturn ret; | |
253 | ||
254 | #if !KERNEL | |
255 | ivars->enable = enable; | |
256 | #endif | |
257 | ||
258 | ret = kIOReturnSuccess; | |
259 | return ret; | |
260 | } | |
261 | ||
262 | void | |
263 | IODataQueueDispatchSource::free() | |
264 | { | |
265 | OSSafeReleaseNULL(ivars->memory); | |
266 | OSSafeReleaseNULL(ivars->dataAvailableAction); | |
267 | OSSafeReleaseNULL(ivars->dataServicedAction); | |
268 | IOSafeDeleteNULL(ivars, IODataQueueDispatchSource_IVars, 1); | |
269 | super::free(); | |
270 | } | |
271 | ||
272 | kern_return_t | |
273 | IODataQueueDispatchSource::Cancel_Impl( | |
274 | IODispatchSourceCancelHandler handler) | |
275 | { | |
276 | return kIOReturnSuccess; | |
277 | } | |
278 | ||
279 | bool | |
280 | IODataQueueDispatchSource::IsDataAvailable(void) | |
281 | { | |
282 | IODataQueueMemory *dataQueue = ivars->dataQueue; | |
283 | ||
284 | return dataQueue && (dataQueue->head != dataQueue->tail); | |
285 | } | |
286 | ||
287 | kern_return_t | |
288 | IODataQueueDispatchSource::Peek(IODataQueueClientDequeueEntryBlock callback) | |
289 | { | |
290 | IODataQueueEntry * entry = NULL; | |
291 | IODataQueueMemory * dataQueue; | |
292 | uint32_t callerDataSize; | |
293 | uint32_t dataSize; | |
294 | uint32_t headOffset; | |
295 | uint32_t tailOffset; | |
296 | ||
297 | dataQueue = ivars->dataQueue; | |
298 | if (!dataQueue) { | |
299 | return kIOReturnNoMemory; | |
300 | } | |
301 | ||
302 | // Read head and tail with acquire barrier | |
303 | headOffset = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->head, __ATOMIC_RELAXED); | |
304 | tailOffset = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->tail, __ATOMIC_ACQUIRE); | |
305 | ||
306 | if (headOffset != tailOffset) { | |
307 | IODataQueueEntry * head = NULL; | |
308 | uint32_t headSize = 0; | |
309 | uint32_t queueSize = ivars->queueByteCount; | |
310 | ||
311 | if (headOffset > queueSize) { | |
312 | return kIOReturnError; | |
313 | } | |
314 | ||
315 | head = (IODataQueueEntry *)((uintptr_t)dataQueue->queue + headOffset); | |
316 | callerDataSize = head->size; | |
317 | if (os_add_overflow(3, callerDataSize, &headSize)) { | |
318 | return kIOReturnError; | |
319 | } | |
320 | headSize &= ~3U; | |
321 | ||
322 | // Check if there's enough room before the end of the queue for a header. | |
323 | // If there is room, check if there's enough room to hold the header and | |
324 | // the data. | |
325 | ||
326 | if ((headOffset > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || | |
327 | (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize) || | |
328 | (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > UINT32_MAX - headSize) || | |
329 | (headOffset + headSize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { | |
330 | // No room for the header or the data, wrap to the beginning of the queue. | |
331 | // Note: wrapping even with the UINT32_MAX checks, as we have to support | |
332 | // queueSize of UINT32_MAX | |
333 | entry = dataQueue->queue; | |
334 | callerDataSize = entry->size; | |
335 | dataSize = entry->size; | |
336 | if (os_add_overflow(3, callerDataSize, &dataSize)) { | |
337 | return kIOReturnError; | |
338 | } | |
339 | dataSize &= ~3U; | |
340 | ||
341 | if ((dataSize > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || | |
342 | (dataSize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { | |
343 | return kIOReturnError; | |
344 | } | |
345 | ||
346 | callback(&entry->data, callerDataSize); | |
347 | return kIOReturnSuccess; | |
348 | } else { | |
349 | callback(&head->data, callerDataSize); | |
350 | return kIOReturnSuccess; | |
351 | } | |
352 | } | |
353 | ||
354 | return kIOReturnUnderrun; | |
355 | } | |
356 | ||
357 | kern_return_t | |
358 | IODataQueueDispatchSource::Dequeue(IODataQueueClientDequeueEntryBlock callback) | |
359 | { | |
360 | kern_return_t ret; | |
361 | bool sendDataServiced; | |
362 | ||
363 | sendDataServiced = false; | |
364 | ret = DequeueWithCoalesce(&sendDataServiced, callback); | |
365 | if (sendDataServiced) { | |
366 | SendDataServiced(); | |
367 | } | |
368 | return ret; | |
369 | } | |
370 | ||
371 | kern_return_t | |
372 | IODataQueueDispatchSource::DequeueWithCoalesce(bool * sendDataServiced, | |
373 | IODataQueueClientDequeueEntryBlock callback) | |
374 | { | |
375 | IOReturn retVal = kIOReturnSuccess; | |
376 | IODataQueueEntry * entry = NULL; | |
377 | IODataQueueMemory * dataQueue; | |
378 | uint32_t callerDataSize; | |
379 | uint32_t dataSize = 0; | |
380 | uint32_t headOffset = 0; | |
381 | uint32_t tailOffset = 0; | |
382 | uint32_t newHeadOffset = 0; | |
383 | ||
384 | dataQueue = ivars->dataQueue; | |
385 | if (!dataQueue) { | |
386 | return kIOReturnNoMemory; | |
387 | } | |
388 | ||
389 | // Read head and tail with acquire barrier | |
390 | headOffset = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->head, __ATOMIC_RELAXED); | |
391 | tailOffset = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->tail, __ATOMIC_ACQUIRE); | |
392 | ||
393 | if (headOffset != tailOffset) { | |
394 | IODataQueueEntry * head = NULL; | |
395 | uint32_t headSize = 0; | |
396 | uint32_t queueSize = ivars->queueByteCount; | |
397 | ||
398 | if (headOffset > queueSize) { | |
399 | return kIOReturnError; | |
400 | } | |
401 | ||
402 | head = (IODataQueueEntry *)((uintptr_t)dataQueue->queue + headOffset); | |
403 | callerDataSize = head->size; | |
404 | if (os_add_overflow(3, callerDataSize, &headSize)) { | |
405 | return kIOReturnError; | |
406 | } | |
407 | headSize &= ~3U; | |
408 | ||
409 | // we wrapped around to beginning, so read from there | |
410 | // either there was not even room for the header | |
411 | if ((headOffset > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || | |
412 | (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize) || | |
413 | // or there was room for the header, but not for the data | |
414 | (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > UINT32_MAX - headSize) || | |
415 | (headOffset + headSize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { | |
416 | // Note: we have to wrap to the beginning even with the UINT32_MAX checks | |
417 | // because we have to support a queueSize of UINT32_MAX. | |
418 | entry = dataQueue->queue; | |
419 | callerDataSize = entry->size; | |
420 | ||
421 | if (os_add_overflow(callerDataSize, 3, &dataSize)) { | |
422 | return kIOReturnError; | |
423 | } | |
424 | dataSize &= ~3U; | |
425 | if ((dataSize > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || | |
426 | (dataSize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { | |
427 | return kIOReturnError; | |
428 | } | |
429 | newHeadOffset = dataSize + DATA_QUEUE_ENTRY_HEADER_SIZE; | |
430 | // else it is at the end | |
431 | } else { | |
432 | entry = head; | |
433 | ||
434 | if ((headSize > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || | |
435 | (headSize + DATA_QUEUE_ENTRY_HEADER_SIZE > UINT32_MAX - headOffset) || | |
436 | (headSize + DATA_QUEUE_ENTRY_HEADER_SIZE + headOffset > queueSize)) { | |
437 | return kIOReturnError; | |
438 | } | |
439 | newHeadOffset = headOffset + headSize + DATA_QUEUE_ENTRY_HEADER_SIZE; | |
440 | } | |
441 | } else { | |
442 | // empty queue | |
443 | if (dataQueue->needServicedCallback) { | |
444 | *sendDataServiced = true; | |
445 | } | |
446 | return kIOReturnUnderrun; | |
447 | } | |
448 | ||
449 | callback(&entry->data, callerDataSize); | |
450 | if (dataQueue->needServicedCallback) { | |
451 | *sendDataServiced = true; | |
452 | } | |
453 | ||
454 | __c11_atomic_store((_Atomic uint32_t *)&dataQueue->head, newHeadOffset, __ATOMIC_RELEASE); | |
455 | ||
456 | if (newHeadOffset == tailOffset) { | |
457 | // | |
458 | // If we are making the queue empty, then we need to make sure | |
459 | // that either the enqueuer notices, or we notice the enqueue | |
460 | // that raced with our making of the queue empty. | |
461 | // | |
462 | __c11_atomic_thread_fence(__ATOMIC_SEQ_CST); | |
463 | } | |
464 | ||
465 | return retVal; | |
466 | } | |
467 | ||
468 | kern_return_t | |
469 | IODataQueueDispatchSource::Enqueue(uint32_t callerDataSize, | |
470 | IODataQueueClientEnqueueEntryBlock callback) | |
471 | { | |
472 | kern_return_t ret; | |
473 | bool sendDataAvailable; | |
474 | ||
475 | sendDataAvailable = false; | |
476 | ret = EnqueueWithCoalesce(callerDataSize, &sendDataAvailable, callback); | |
477 | if (sendDataAvailable) { | |
478 | SendDataAvailable(); | |
479 | } | |
480 | return ret; | |
481 | } | |
482 | ||
483 | kern_return_t | |
484 | IODataQueueDispatchSource::EnqueueWithCoalesce(uint32_t callerDataSize, | |
485 | bool * sendDataAvailable, | |
486 | IODataQueueClientEnqueueEntryBlock callback) | |
487 | { | |
488 | IODataQueueMemory * dataQueue; | |
489 | IODataQueueEntry * entry; | |
490 | uint32_t head; | |
491 | uint32_t tail; | |
492 | uint32_t newTail; | |
493 | uint32_t dataSize; | |
494 | uint32_t queueSize; | |
495 | uint32_t entrySize; | |
496 | IOReturn retVal = kIOReturnSuccess; | |
497 | ||
498 | dataQueue = ivars->dataQueue; | |
499 | if (!dataQueue) { | |
500 | return kIOReturnNoMemory; | |
501 | } | |
502 | queueSize = ivars->queueByteCount; | |
503 | ||
504 | // Force a single read of head and tail | |
505 | tail = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->tail, __ATOMIC_RELAXED); | |
506 | head = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->head, __ATOMIC_ACQUIRE); | |
507 | ||
508 | if (os_add_overflow(callerDataSize, 3, &dataSize)) { | |
509 | return kIOReturnOverrun; | |
510 | } | |
511 | dataSize &= ~3U; | |
512 | ||
513 | // Check for overflow of entrySize | |
514 | if (os_add_overflow(DATA_QUEUE_ENTRY_HEADER_SIZE, dataSize, &entrySize)) { | |
515 | return kIOReturnOverrun; | |
516 | } | |
517 | ||
518 | // Check for underflow of (getQueueSize() - tail) | |
519 | if (queueSize < tail || queueSize < head) { | |
520 | return kIOReturnUnderrun; | |
521 | } | |
522 | ||
523 | newTail = tail; | |
524 | if (tail >= head) { | |
525 | // Is there enough room at the end for the entry? | |
526 | if ((entrySize <= (UINT32_MAX - tail)) && | |
527 | ((tail + entrySize) <= queueSize)) { | |
528 | entry = (IODataQueueEntry *)((uintptr_t)dataQueue->queue + tail); | |
529 | ||
530 | callback(&entry->data, callerDataSize); | |
531 | ||
532 | entry->size = callerDataSize; | |
533 | ||
534 | // The tail can be out of bound when the size of the new entry | |
535 | // exactly matches the available space at the end of the queue. | |
536 | // The tail can range from 0 to queueSize inclusive. | |
537 | ||
538 | newTail = tail + entrySize; | |
539 | } else if (head > entrySize) { // Is there enough room at the beginning? | |
540 | entry = (IODataQueueEntry *)((uintptr_t)dataQueue->queue); | |
541 | ||
542 | callback(&entry->data, callerDataSize); | |
543 | ||
544 | // Wrap around to the beginning, but do not allow the tail to catch | |
545 | // up to the head. | |
546 | ||
547 | entry->size = callerDataSize; | |
548 | ||
549 | // We need to make sure that there is enough room to set the size before | |
550 | // doing this. The user client checks for this and will look for the size | |
551 | // at the beginning if there isn't room for it at the end. | |
552 | ||
553 | if ((queueSize - tail) >= DATA_QUEUE_ENTRY_HEADER_SIZE) { | |
554 | ((IODataQueueEntry *)((uintptr_t)dataQueue->queue + tail))->size = dataSize; | |
555 | } | |
556 | ||
557 | newTail = entrySize; | |
558 | } else { | |
559 | retVal = kIOReturnOverrun; // queue is full | |
560 | } | |
561 | } else { | |
562 | // Do not allow the tail to catch up to the head when the queue is full. | |
563 | // That's why the comparison uses a '>' rather than '>='. | |
564 | ||
565 | if ((head - tail) > entrySize) { | |
566 | entry = (IODataQueueEntry *)((uintptr_t)dataQueue->queue + tail); | |
567 | ||
568 | callback(&entry->data, callerDataSize); | |
569 | ||
570 | entry->size = callerDataSize; | |
571 | ||
572 | newTail = tail + entrySize; | |
573 | } else { | |
574 | retVal = kIOReturnOverrun; // queue is full | |
575 | } | |
576 | } | |
577 | ||
578 | // Send notification (via mach message) that data is available. | |
579 | ||
580 | if (retVal == kIOReturnSuccess) { | |
581 | // Publish the data we just enqueued | |
582 | __c11_atomic_store((_Atomic uint32_t *)&dataQueue->tail, newTail, __ATOMIC_RELEASE); | |
583 | ||
584 | if (tail != head) { | |
585 | // | |
586 | // The memory barrier below pairs with the one in dequeue | |
587 | // so that either our store to the tail cannot be missed by | |
588 | // the next dequeue attempt, or we will observe the dequeuer | |
589 | // making the queue empty. | |
590 | // | |
591 | // Of course, if we already think the queue is empty, | |
592 | // there's no point paying this extra cost. | |
593 | // | |
594 | __c11_atomic_thread_fence(__ATOMIC_SEQ_CST); | |
595 | head = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->head, __ATOMIC_RELAXED); | |
596 | } | |
597 | ||
598 | if (tail == head) { | |
599 | // Send notification that data is now available. | |
600 | *sendDataAvailable = true; | |
601 | retVal = kIOReturnSuccess; | |
602 | } | |
603 | } else if (retVal == kIOReturnOverrun) { | |
604 | // ask to be notified of Dequeue() | |
605 | dataQueue->needServicedCallback = true; | |
606 | *sendDataAvailable = true; | |
607 | } | |
608 | ||
609 | return retVal; | |
610 | } |