]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2007-2018 Apple Inc. All rights reserved. | |
3 | */ | |
4 | /* | |
5 | * CDDL HEADER START | |
6 | * | |
7 | * The contents of this file are subject to the terms of the | |
8 | * Common Development and Distribution License, Version 1.0 only | |
9 | * (the "License"). You may not use this file except in compliance | |
10 | * with the License. | |
11 | * | |
12 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE | |
13 | * or http://www.opensolaris.org/os/licensing. | |
14 | * See the License for the specific language governing permissions | |
15 | * and limitations under the License. | |
16 | * | |
17 | * When distributing Covered Code, include this CDDL HEADER in each | |
18 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. | |
19 | * If applicable, add the following below this CDDL HEADER, with the | |
20 | * fields enclosed by brackets "[]" replaced with your own identifying | |
21 | * information: Portions Copyright [yyyy] [name of copyright owner] | |
22 | * | |
23 | * CDDL HEADER END | |
24 | */ | |
25 | /* | |
26 | * Copyright 2005 Sun Microsystems, Inc. All rights reserved. | |
27 | * Use is subject to license terms. | |
28 | */ | |
29 | ||
30 | #include <sys/fasttrap_isa.h> | |
31 | #include <sys/fasttrap_impl.h> | |
32 | #include <sys/dtrace.h> | |
33 | #include <sys/dtrace_impl.h> | |
34 | #include <kern/task.h> | |
35 | #include <arm/thread.h> | |
36 | ||
37 | #include <sys/dtrace_ptss.h> | |
38 | ||
39 | #if __has_include(<ptrauth.h>) | |
40 | #include <ptrauth.h> | |
41 | #endif | |
42 | ||
43 | extern dtrace_id_t dtrace_probeid_error; | |
44 | ||
45 | /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */ | |
46 | #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */ | |
47 | ||
48 | extern uint8_t dtrace_decode_arm64(uint32_t instr); | |
49 | ||
50 | #define IS_ARM64_NOP(x) ((x) == 0xD503201F) | |
51 | /* Marker for is-enabled probes */ | |
52 | #define IS_ARM64_IS_ENABLED(x) ((x) == 0xD2800000) | |
53 | ||
54 | int | |
55 | fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, | |
56 | user_addr_t pc, fasttrap_probe_type_t type) | |
57 | { | |
58 | #pragma unused(type) | |
59 | uint32_t instr = 0; | |
60 | ||
61 | /* | |
62 | * Read the instruction at the given address out of the process's | |
63 | * address space. We don't have to worry about a debugger | |
64 | * changing this instruction before we overwrite it with our trap | |
65 | * instruction since P_PR_LOCK is set. Since instructions can span | |
66 | * pages, we potentially read the instruction in two parts. If the | |
67 | * second part fails, we just zero out that part of the instruction. | |
68 | */ | |
69 | /* | |
70 | * APPLE NOTE: Of course, we do not have a P_PR_LOCK, so this is racey... | |
71 | */ | |
72 | ||
73 | if (uread(p, &instr, 4, pc) != 0) { | |
74 | return -1; | |
75 | } | |
76 | ||
77 | tp->ftt_instr = instr; | |
78 | ||
79 | if (tp->ftt_fntype != FASTTRAP_FN_DONE_INIT) { | |
80 | switch (tp->ftt_fntype) { | |
81 | case FASTTRAP_FN_UNKNOWN: | |
82 | case FASTTRAP_FN_ARM64: | |
83 | case FASTTRAP_FN_ARM64_32: | |
84 | /* | |
85 | * On arm64 there is no distinction between | |
86 | * arm vs. thumb mode instruction types. | |
87 | */ | |
88 | tp->ftt_fntype = FASTTRAP_FN_DONE_INIT; | |
89 | break; | |
90 | ||
91 | case FASTTRAP_FN_USDT: | |
92 | if (IS_ARM64_NOP(instr) || IS_ARM64_IS_ENABLED(instr)) { | |
93 | tp->ftt_fntype = FASTTRAP_FN_DONE_INIT; | |
94 | } else { | |
95 | /* | |
96 | * Shouldn't reach here - this means we don't | |
97 | * recognize the instruction at one of the | |
98 | * USDT probe locations | |
99 | */ | |
100 | return -1; | |
101 | } | |
102 | ||
103 | break; | |
104 | ||
105 | case FASTTRAP_FN_ARM: | |
106 | case FASTTRAP_FN_THUMB: | |
107 | default: | |
108 | /* | |
109 | * If we get an arm or thumb mode type | |
110 | * then we are clearly in the wrong path. | |
111 | */ | |
112 | return -1; | |
113 | } | |
114 | } | |
115 | ||
116 | tp->ftt_type = dtrace_decode_arm64(instr); | |
117 | ||
118 | if (tp->ftt_type == FASTTRAP_T_ARM64_EXCLUSIVE_MEM) { | |
119 | kprintf("Detected attempt to place DTrace probe on exclusive memory instruction (pc = 0x%llx); refusing to trace (or exclusive operation could never succeed).\n", pc); | |
120 | tp->ftt_type = FASTTRAP_T_INV; | |
121 | return -1; | |
122 | } | |
123 | ||
124 | if (tp->ftt_type == FASTTRAP_T_INV) { | |
125 | /* This is an instruction we either don't recognize or can't instrument */ | |
126 | printf("dtrace: fasttrap init64: Unrecognized instruction: %08x at %08llx\n", instr, pc); | |
127 | return -1; | |
128 | } | |
129 | ||
130 | return 0; | |
131 | } | |
132 | ||
133 | int | |
134 | fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp) | |
135 | { | |
136 | uint32_t instr; | |
137 | int size; | |
138 | ||
139 | if (proc_is64bit_data(p)) { | |
140 | size = 4; | |
141 | instr = FASTTRAP_ARM64_INSTR; | |
142 | } else { | |
143 | return -1; | |
144 | } | |
145 | ||
146 | if (uwrite(p, &instr, size, tp->ftt_pc) != 0) { | |
147 | return -1; | |
148 | } | |
149 | ||
150 | tp->ftt_installed = 1; | |
151 | ||
152 | return 0; | |
153 | } | |
154 | ||
155 | int | |
156 | fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp) | |
157 | { | |
158 | uint32_t instr; | |
159 | int size = 4; | |
160 | ||
161 | if (proc_is64bit_data(p)) { | |
162 | /* | |
163 | * Distinguish between read or write failures and a changed | |
164 | * instruction. | |
165 | */ | |
166 | if (uread(p, &instr, size, tp->ftt_pc) != 0) { | |
167 | goto end; | |
168 | } | |
169 | ||
170 | if (instr != FASTTRAP_ARM64_INSTR) { | |
171 | goto end; | |
172 | } | |
173 | } else { | |
174 | return -1; | |
175 | } | |
176 | ||
177 | if (uwrite(p, &tp->ftt_instr, size, tp->ftt_pc) != 0) { | |
178 | return -1; | |
179 | } | |
180 | ||
181 | end: | |
182 | tp->ftt_installed = 0; | |
183 | ||
184 | return 0; | |
185 | } | |
186 | ||
187 | static void | |
188 | fasttrap_return_common(proc_t *p, arm_saved_state_t *regs, user_addr_t pc, user_addr_t new_pc) | |
189 | { | |
190 | pid_t pid = p->p_pid; | |
191 | fasttrap_tracepoint_t *tp; | |
192 | fasttrap_bucket_t *bucket; | |
193 | fasttrap_id_t *id; | |
194 | lck_mtx_t *pid_mtx; | |
195 | int retire_tp = 1; | |
196 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; | |
197 | lck_mtx_lock(pid_mtx); | |
198 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; | |
199 | ||
200 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { | |
201 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && | |
202 | tp->ftt_proc->ftpc_acount != 0) { | |
203 | break; | |
204 | } | |
205 | } | |
206 | ||
207 | /* | |
208 | * Don't sweat it if we can't find the tracepoint again; unlike | |
209 | * when we're in fasttrap_pid_probe(), finding the tracepoint here | |
210 | * is not essential to the correct execution of the process. | |
211 | */ | |
212 | if (tp == NULL) { | |
213 | lck_mtx_unlock(pid_mtx); | |
214 | return; | |
215 | } | |
216 | ||
217 | for (id = tp->ftt_retids; id != NULL; id = id->fti_next) { | |
218 | fasttrap_probe_t *probe = id->fti_probe; | |
219 | /* ARM64_TODO - check for FASTTRAP_T_RET */ | |
220 | if ((tp->ftt_type != FASTTRAP_T_ARM64_RET || tp->ftt_type != FASTTRAP_T_ARM64_RETAB) && | |
221 | new_pc - probe->ftp_faddr < probe->ftp_fsize) { | |
222 | continue; | |
223 | } | |
224 | if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) { | |
225 | if (os_atomic_xchg(&probe->ftp_triggered, 1, relaxed)) { | |
226 | /* already triggered */ | |
227 | continue; | |
228 | } | |
229 | } | |
230 | /* | |
231 | * If we have at least one probe associated that | |
232 | * is not a oneshot probe, don't remove the | |
233 | * tracepoint | |
234 | */ | |
235 | else { | |
236 | retire_tp = 0; | |
237 | } | |
238 | ||
239 | #if defined(XNU_TARGET_OS_OSX) | |
240 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { | |
241 | dtrace_probe(dtrace_probeid_error, 0 /* state */, id->fti_probe->ftp_id, | |
242 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); | |
243 | #else | |
244 | if (FALSE) { | |
245 | #endif /* defined(XNU_TARGET_OS_OSX) */ | |
246 | } else { | |
247 | dtrace_probe(probe->ftp_id, | |
248 | pc - id->fti_probe->ftp_faddr, | |
249 | saved_state64(regs)->x[0], 0, 0, 0); | |
250 | } | |
251 | } | |
252 | if (retire_tp) { | |
253 | fasttrap_tracepoint_retire(p, tp); | |
254 | } | |
255 | ||
256 | lck_mtx_unlock(pid_mtx); | |
257 | } | |
258 | ||
259 | #if DEBUG | |
260 | __dead2 | |
261 | #endif | |
262 | static void | |
263 | fasttrap_sigsegv(proc_t *p, uthread_t t, user_addr_t addr, arm_saved_state_t *regs) | |
264 | { | |
265 | /* TODO: This function isn't implemented yet. In debug mode, panic the system to | |
266 | * find out why we're hitting this point. In other modes, kill the process. | |
267 | */ | |
268 | #if DEBUG | |
269 | #pragma unused(p,t,addr,arm_saved_state) | |
270 | panic("fasttrap: sigsegv not yet implemented"); | |
271 | #else | |
272 | #pragma unused(p,t,addr) | |
273 | /* Kill the process */ | |
274 | set_saved_state_pc(regs, 0); | |
275 | #endif | |
276 | ||
277 | #if 0 | |
278 | proc_lock(p); | |
279 | ||
280 | /* Set fault address and mark signal */ | |
281 | t->uu_code = addr; | |
282 | t->uu_siglist |= sigmask(SIGSEGV); | |
283 | ||
284 | /* | |
285 | * XXX These two line may be redundant; if not, then we need | |
286 | * XXX to potentially set the data address in the machine | |
287 | * XXX specific thread state structure to indicate the address. | |
288 | */ | |
289 | t->uu_exception = KERN_INVALID_ADDRESS; /* SIGSEGV */ | |
290 | t->uu_subcode = 0; /* XXX pad */ | |
291 | ||
292 | proc_unlock(p); | |
293 | ||
294 | /* raise signal */ | |
295 | signal_setast(t->uu_context.vc_thread); | |
296 | #endif | |
297 | } | |
298 | ||
299 | static void | |
300 | fasttrap_usdt_args64(fasttrap_probe_t *probe, arm_saved_state64_t *regs64, int argc, | |
301 | uint64_t *argv) | |
302 | { | |
303 | int i, x, cap = MIN(argc, probe->ftp_nargs); | |
304 | ||
305 | for (i = 0; i < cap; i++) { | |
306 | x = probe->ftp_argmap[i]; | |
307 | ||
308 | /* Up to 8 args are passed in registers on arm64 */ | |
309 | if (x < 8) { | |
310 | argv[i] = regs64->x[x]; | |
311 | } else { | |
312 | fasttrap_fuword64_noerr(regs64->sp + (x - 8) * sizeof(uint64_t), &argv[i]); | |
313 | } | |
314 | } | |
315 | ||
316 | for (; i < argc; i++) { | |
317 | argv[i] = 0; | |
318 | } | |
319 | } | |
320 | ||
321 | static int | |
322 | condition_true(int cond, int cpsr) | |
323 | { | |
324 | int taken = 0; | |
325 | int zf = (cpsr & PSR_ZF) ? 1 : 0, | |
326 | nf = (cpsr & PSR_NF) ? 1 : 0, | |
327 | cf = (cpsr & PSR_CF) ? 1 : 0, | |
328 | vf = (cpsr & PSR_VF) ? 1 : 0; | |
329 | ||
330 | switch (cond) { | |
331 | case 0: taken = zf; break; | |
332 | case 1: taken = !zf; break; | |
333 | case 2: taken = cf; break; | |
334 | case 3: taken = !cf; break; | |
335 | case 4: taken = nf; break; | |
336 | case 5: taken = !nf; break; | |
337 | case 6: taken = vf; break; | |
338 | case 7: taken = !vf; break; | |
339 | case 8: taken = (cf && !zf); break; | |
340 | case 9: taken = (!cf || zf); break; | |
341 | case 10: taken = (nf == vf); break; | |
342 | case 11: taken = (nf != vf); break; | |
343 | case 12: taken = (!zf && (nf == vf)); break; | |
344 | case 13: taken = (zf || (nf != vf)); break; | |
345 | case 14: taken = 1; break; | |
346 | case 15: taken = 1; break; /* always "true" for ARM, unpredictable for THUMB. */ | |
347 | } | |
348 | ||
349 | return taken; | |
350 | } | |
351 | ||
352 | /* | |
353 | * Copy out an instruction for execution in userland. | |
354 | * Trap back to kernel to handle return to original flow of execution, because | |
355 | * direct branches don't have sufficient range (+/- 128MB) and we | |
356 | * cannot clobber a GPR. Note that we have to specially handle PC-rel loads/stores | |
357 | * as well, which have range +/- 1MB (convert to an indirect load). Instruction buffer | |
358 | * layout: | |
359 | * | |
360 | * [ Thunked instruction sequence ] | |
361 | * [ Trap for return to original code and return probe handling ] | |
362 | * | |
363 | * This *does* make it impossible for an ldxr/stxr pair to succeed if we trace on or between | |
364 | * them... may need to get fancy at some point. | |
365 | */ | |
366 | static void | |
367 | fasttrap_pid_probe_thunk_instr64(arm_saved_state_t *state, fasttrap_tracepoint_t *tp, proc_t *p, uthread_t uthread, | |
368 | const uint32_t *instructions, uint32_t num_instrs, user_addr_t *pc_out) | |
369 | { | |
370 | uint32_t local_scratch[8]; | |
371 | user_addr_t pc = get_saved_state_pc(state); | |
372 | user_addr_t user_scratch_area; | |
373 | ||
374 | assert(num_instrs < 8); | |
375 | ||
376 | bcopy(instructions, local_scratch, num_instrs * sizeof(uint32_t)); | |
377 | local_scratch[num_instrs] = FASTTRAP_ARM64_RET_INSTR; | |
378 | ||
379 | uthread->t_dtrace_astpc = uthread->t_dtrace_scrpc = uthread->t_dtrace_scratch->addr; | |
380 | user_scratch_area = uthread->t_dtrace_scratch->write_addr; | |
381 | ||
382 | if (user_scratch_area == (user_addr_t)0) { | |
383 | fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc | |
384 | *pc_out = pc; | |
385 | return; | |
386 | } | |
387 | ||
388 | if (uwrite(p, local_scratch, (num_instrs + 1) * sizeof(uint32_t), user_scratch_area) != KERN_SUCCESS) { | |
389 | fasttrap_sigtrap(p, uthread, pc); | |
390 | *pc_out = pc; | |
391 | return; | |
392 | } | |
393 | ||
394 | /* We're stepping (come back to kernel to adjust PC for return to regular code). */ | |
395 | uthread->t_dtrace_step = 1; | |
396 | ||
397 | /* We may or may not be about to run a return probe (but we wouldn't thunk ret lr)*/ | |
398 | uthread->t_dtrace_ret = (tp->ftt_retids != NULL); | |
399 | assert(tp->ftt_type != FASTTRAP_T_ARM64_RET); | |
400 | assert(tp->ftt_type != FASTTRAP_T_ARM64_RETAB); | |
401 | ||
402 | /* Set address of instruction we've patched */ | |
403 | uthread->t_dtrace_pc = pc; | |
404 | ||
405 | /* Any branch would be emulated, next instruction should be one ahead */ | |
406 | uthread->t_dtrace_npc = pc + 4; | |
407 | ||
408 | /* We are certainly handling a probe */ | |
409 | uthread->t_dtrace_on = 1; | |
410 | ||
411 | /* Let's jump to the scratch area */ | |
412 | *pc_out = uthread->t_dtrace_scratch->addr; | |
413 | } | |
414 | ||
415 | /* | |
416 | * Sign-extend bit "sign_bit_index" out to bit 64. | |
417 | */ | |
418 | static int64_t | |
419 | sign_extend(int64_t input, uint32_t sign_bit_index) | |
420 | { | |
421 | assert(sign_bit_index < 63); | |
422 | if (input & (1ULL << sign_bit_index)) { | |
423 | /* All 1's & ~[1's from 0 to sign bit] */ | |
424 | input |= ((~0ULL) & ~((1ULL << (sign_bit_index + 1)) - 1ULL)); | |
425 | } | |
426 | ||
427 | return input; | |
428 | } | |
429 | ||
430 | /* | |
431 | * Handle xzr vs. sp, fp, lr, etc. Will *not* read the SP. | |
432 | */ | |
433 | static uint64_t | |
434 | get_saved_state64_regno(arm_saved_state64_t *regs64, uint32_t regno, int use_xzr) | |
435 | { | |
436 | /* Set PC to register value */ | |
437 | switch (regno) { | |
438 | case 29: | |
439 | return regs64->fp; | |
440 | case 30: | |
441 | return regs64->lr; | |
442 | case 31: | |
443 | /* xzr */ | |
444 | if (use_xzr) { | |
445 | return 0; | |
446 | } else { | |
447 | return regs64->sp; | |
448 | } | |
449 | default: | |
450 | return regs64->x[regno]; | |
451 | } | |
452 | } | |
453 | ||
454 | static void | |
455 | set_saved_state64_regno(arm_saved_state64_t *regs64, uint32_t regno, int use_xzr, register_t value) | |
456 | { | |
457 | /* Set PC to register value */ | |
458 | switch (regno) { | |
459 | case 29: | |
460 | regs64->fp = value; | |
461 | break; | |
462 | case 30: | |
463 | regs64->lr = value; | |
464 | break; | |
465 | case 31: | |
466 | if (!use_xzr) { | |
467 | regs64->sp = value; | |
468 | } | |
469 | break; | |
470 | default: | |
471 | regs64->x[regno] = value; | |
472 | break; | |
473 | } | |
474 | } | |
475 | ||
476 | /* | |
477 | * Common operation: extract sign-extended PC offset from instruction | |
478 | * Left-shifts result by two bits. | |
479 | */ | |
480 | static uint64_t | |
481 | extract_address_literal_sign_extended(uint32_t instr, uint32_t base, uint32_t numbits) | |
482 | { | |
483 | uint64_t offset; | |
484 | ||
485 | offset = (instr >> base) & ((1 << numbits) - 1); | |
486 | offset = sign_extend(offset, numbits - 1); | |
487 | offset = offset << 2; | |
488 | ||
489 | return offset; | |
490 | } | |
491 | ||
492 | static void | |
493 | do_cbz_cnbz(arm_saved_state64_t *regs64, uint32_t regwidth, uint32_t instr, int is_cbz, user_addr_t *pc_out) | |
494 | { | |
495 | uint32_t regno; | |
496 | uint64_t regval; | |
497 | uint64_t offset; | |
498 | ||
499 | /* Extract register */ | |
500 | regno = (instr & 0x1f); | |
501 | assert(regno <= 31); | |
502 | regval = get_saved_state64_regno(regs64, regno, 1); | |
503 | ||
504 | /* Control for size */ | |
505 | if (regwidth == 32) { | |
506 | regval &= 0xFFFFFFFFULL; | |
507 | } | |
508 | ||
509 | /* Extract offset */ | |
510 | offset = extract_address_literal_sign_extended(instr, 5, 19); | |
511 | ||
512 | /* Do test */ | |
513 | if ((is_cbz && regval == 0) || ((!is_cbz) && regval != 0)) { | |
514 | /* Set PC from label */ | |
515 | *pc_out = regs64->pc + offset; | |
516 | } else { | |
517 | /* Advance PC */ | |
518 | *pc_out = regs64->pc + 4; | |
519 | } | |
520 | } | |
521 | ||
522 | static void | |
523 | do_tbz_tbnz(arm_saved_state64_t *regs64, uint32_t instr, int is_tbz, user_addr_t *pc_out) | |
524 | { | |
525 | uint64_t offset, regval; | |
526 | uint32_t bit_index, b5, b40, regno, bit_set; | |
527 | ||
528 | /* Compute offset */ | |
529 | offset = extract_address_literal_sign_extended(instr, 5, 14); | |
530 | ||
531 | /* Extract bit index */ | |
532 | b5 = (instr >> 31); | |
533 | b40 = ((instr >> 19) & 0x1f); | |
534 | bit_index = (b5 << 5) | b40; | |
535 | assert(bit_index <= 63); | |
536 | ||
537 | /* Extract register */ | |
538 | regno = (instr & 0x1f); | |
539 | assert(regno <= 31); | |
540 | regval = get_saved_state64_regno(regs64, regno, 1); | |
541 | ||
542 | /* Test bit */ | |
543 | bit_set = ((regval & (1 << bit_index)) != 0); | |
544 | ||
545 | if ((is_tbz && (!bit_set)) || ((!is_tbz) && bit_set)) { | |
546 | /* Branch: unsigned addition so overflow defined */ | |
547 | *pc_out = regs64->pc + offset; | |
548 | } else { | |
549 | /* Advance PC */ | |
550 | *pc_out = regs64->pc + 4; | |
551 | } | |
552 | } | |
553 | ||
554 | ||
555 | static void | |
556 | fasttrap_pid_probe_handle_patched_instr64(arm_saved_state_t *state, fasttrap_tracepoint_t *tp __unused, uthread_t uthread, | |
557 | proc_t *p, uint_t is_enabled, int *was_simulated) | |
558 | { | |
559 | int res1, res2; | |
560 | arm_saved_state64_t *regs64 = saved_state64(state); | |
561 | uint32_t instr = tp->ftt_instr; | |
562 | user_addr_t new_pc = 0; | |
563 | ||
564 | /* Neon state should be threaded throw, but hack it until we have better arm/arm64 integration */ | |
565 | arm_neon_saved_state64_t *ns64 = &(get_user_neon_regs(uthread->uu_thread)->ns_64); | |
566 | ||
567 | /* is-enabled probe: set x0 to 1 and step forwards */ | |
568 | if (is_enabled) { | |
569 | regs64->x[0] = 1; | |
570 | set_saved_state_pc(state, regs64->pc + 4); | |
571 | return; | |
572 | } | |
573 | ||
574 | /* For USDT probes, bypass all the emulation logic for the nop instruction */ | |
575 | if (IS_ARM64_NOP(tp->ftt_instr)) { | |
576 | set_saved_state_pc(state, regs64->pc + 4); | |
577 | return; | |
578 | } | |
579 | ||
580 | ||
581 | /* Only one of many cases in the switch doesn't simulate */ | |
582 | switch (tp->ftt_type) { | |
583 | /* | |
584 | * Function entry: emulate for speed. | |
585 | * stp fp, lr, [sp, #-16]! | |
586 | */ | |
587 | case FASTTRAP_T_ARM64_STANDARD_FUNCTION_ENTRY: | |
588 | { | |
589 | /* Store values to stack */ | |
590 | res1 = fasttrap_suword64(regs64->sp - 16, regs64->fp); | |
591 | res2 = fasttrap_suword64(regs64->sp - 8, regs64->lr); | |
592 | if (res1 != 0 || res2 != 0) { | |
593 | fasttrap_sigsegv(p, uthread, regs64->sp - (res1 ? 16 : 8), state); | |
594 | #ifndef DEBUG | |
595 | new_pc = regs64->pc; /* Bit of a hack */ | |
596 | break; | |
597 | #endif | |
598 | } | |
599 | ||
600 | /* Move stack pointer */ | |
601 | regs64->sp -= 16; | |
602 | ||
603 | /* Move PC forward */ | |
604 | new_pc = regs64->pc + 4; | |
605 | *was_simulated = 1; | |
606 | break; | |
607 | } | |
608 | ||
609 | /* | |
610 | * PC-relative loads/stores: emulate for correctness. | |
611 | * All loads are 32bits or greater (no need to handle byte or halfword accesses). | |
612 | * LDR Wt, addr | |
613 | * LDR Xt, addr | |
614 | * LDRSW Xt, addr | |
615 | * | |
616 | * LDR St, addr | |
617 | * LDR Dt, addr | |
618 | * LDR Qt, addr | |
619 | * PRFM label -> becomes a NOP | |
620 | */ | |
621 | case FASTTRAP_T_ARM64_LDR_S_PC_REL: | |
622 | case FASTTRAP_T_ARM64_LDR_W_PC_REL: | |
623 | case FASTTRAP_T_ARM64_LDR_D_PC_REL: | |
624 | case FASTTRAP_T_ARM64_LDR_X_PC_REL: | |
625 | case FASTTRAP_T_ARM64_LDR_Q_PC_REL: | |
626 | case FASTTRAP_T_ARM64_LDRSW_PC_REL: | |
627 | { | |
628 | uint64_t offset; | |
629 | uint32_t valsize, regno; | |
630 | user_addr_t address; | |
631 | union { | |
632 | uint32_t val32; | |
633 | uint64_t val64; | |
634 | uint128_t val128; | |
635 | } value; | |
636 | ||
637 | /* Extract 19-bit offset, add to pc */ | |
638 | offset = extract_address_literal_sign_extended(instr, 5, 19); | |
639 | address = regs64->pc + offset; | |
640 | ||
641 | /* Extract destination register */ | |
642 | regno = (instr & 0x1f); | |
643 | assert(regno <= 31); | |
644 | ||
645 | /* Read value of desired size from memory */ | |
646 | switch (tp->ftt_type) { | |
647 | case FASTTRAP_T_ARM64_LDR_S_PC_REL: | |
648 | case FASTTRAP_T_ARM64_LDR_W_PC_REL: | |
649 | case FASTTRAP_T_ARM64_LDRSW_PC_REL: | |
650 | valsize = 4; | |
651 | break; | |
652 | case FASTTRAP_T_ARM64_LDR_D_PC_REL: | |
653 | case FASTTRAP_T_ARM64_LDR_X_PC_REL: | |
654 | valsize = 8; | |
655 | break; | |
656 | case FASTTRAP_T_ARM64_LDR_Q_PC_REL: | |
657 | valsize = 16; | |
658 | break; | |
659 | default: | |
660 | panic("Should never get here!"); | |
661 | valsize = -1; | |
662 | break; | |
663 | } | |
664 | ||
665 | if (copyin(address, &value, valsize) != 0) { | |
666 | fasttrap_sigsegv(p, uthread, address, state); | |
667 | #ifndef DEBUG | |
668 | new_pc = regs64->pc; /* Bit of a hack, we know about update in fasttrap_sigsegv() */ | |
669 | break; | |
670 | #endif | |
671 | } | |
672 | ||
673 | /* Stash in correct register slot */ | |
674 | switch (tp->ftt_type) { | |
675 | case FASTTRAP_T_ARM64_LDR_W_PC_REL: | |
676 | set_saved_state64_regno(regs64, regno, 1, value.val32); | |
677 | break; | |
678 | case FASTTRAP_T_ARM64_LDRSW_PC_REL: | |
679 | set_saved_state64_regno(regs64, regno, 1, sign_extend(value.val32, 31)); | |
680 | break; | |
681 | case FASTTRAP_T_ARM64_LDR_X_PC_REL: | |
682 | set_saved_state64_regno(regs64, regno, 1, value.val64); | |
683 | break; | |
684 | case FASTTRAP_T_ARM64_LDR_S_PC_REL: | |
685 | ns64->v.s[regno][0] = value.val32; | |
686 | break; | |
687 | case FASTTRAP_T_ARM64_LDR_D_PC_REL: | |
688 | ns64->v.d[regno][0] = value.val64; | |
689 | break; | |
690 | case FASTTRAP_T_ARM64_LDR_Q_PC_REL: | |
691 | ns64->v.q[regno] = value.val128; | |
692 | break; | |
693 | default: | |
694 | panic("Should never get here!"); | |
695 | } | |
696 | ||
697 | ||
698 | /* Move PC forward */ | |
699 | new_pc = regs64->pc + 4; | |
700 | *was_simulated = 1; | |
701 | break; | |
702 | } | |
703 | ||
704 | case FASTTRAP_T_ARM64_PRFM: | |
705 | { | |
706 | /* Becomes a NOP (architecturally permitted). Just move PC forward */ | |
707 | new_pc = regs64->pc + 4; | |
708 | *was_simulated = 1; | |
709 | break; | |
710 | } | |
711 | ||
712 | /* | |
713 | * End explicit memory accesses. | |
714 | */ | |
715 | ||
716 | /* | |
717 | * Branches: parse condition codes if needed, emulate for correctness and | |
718 | * in the case of the indirect branches, convenience | |
719 | * B.cond | |
720 | * CBNZ Wn, label | |
721 | * CBNZ Xn, label | |
722 | * CBZ Wn, label | |
723 | * CBZ Xn, label | |
724 | * TBNZ, Xn|Wn, #uimm16, label | |
725 | * TBZ, Xn|Wn, #uimm16, label | |
726 | * | |
727 | * B label | |
728 | * BL label | |
729 | * | |
730 | * BLR Xm | |
731 | * BR Xm | |
732 | * RET Xm | |
733 | */ | |
734 | case FASTTRAP_T_ARM64_B_COND: | |
735 | { | |
736 | int cond; | |
737 | ||
738 | /* Extract condition code */ | |
739 | cond = (instr & 0xf); | |
740 | ||
741 | /* Determine if it passes */ | |
742 | if (condition_true(cond, regs64->cpsr)) { | |
743 | uint64_t offset; | |
744 | ||
745 | /* Extract 19-bit target offset, add to PC */ | |
746 | offset = extract_address_literal_sign_extended(instr, 5, 19); | |
747 | new_pc = regs64->pc + offset; | |
748 | } else { | |
749 | /* Move forwards */ | |
750 | new_pc = regs64->pc + 4; | |
751 | } | |
752 | ||
753 | *was_simulated = 1; | |
754 | break; | |
755 | } | |
756 | ||
757 | case FASTTRAP_T_ARM64_CBNZ_W: | |
758 | { | |
759 | do_cbz_cnbz(regs64, 32, instr, 0, &new_pc); | |
760 | *was_simulated = 1; | |
761 | break; | |
762 | } | |
763 | case FASTTRAP_T_ARM64_CBNZ_X: | |
764 | { | |
765 | do_cbz_cnbz(regs64, 64, instr, 0, &new_pc); | |
766 | *was_simulated = 1; | |
767 | break; | |
768 | } | |
769 | case FASTTRAP_T_ARM64_CBZ_W: | |
770 | { | |
771 | do_cbz_cnbz(regs64, 32, instr, 1, &new_pc); | |
772 | *was_simulated = 1; | |
773 | break; | |
774 | } | |
775 | case FASTTRAP_T_ARM64_CBZ_X: | |
776 | { | |
777 | do_cbz_cnbz(regs64, 64, instr, 1, &new_pc); | |
778 | *was_simulated = 1; | |
779 | break; | |
780 | } | |
781 | ||
782 | case FASTTRAP_T_ARM64_TBNZ: | |
783 | { | |
784 | do_tbz_tbnz(regs64, instr, 0, &new_pc); | |
785 | *was_simulated = 1; | |
786 | break; | |
787 | } | |
788 | case FASTTRAP_T_ARM64_TBZ: | |
789 | { | |
790 | do_tbz_tbnz(regs64, instr, 1, &new_pc); | |
791 | *was_simulated = 1; | |
792 | break; | |
793 | } | |
794 | case FASTTRAP_T_ARM64_B: | |
795 | case FASTTRAP_T_ARM64_BL: | |
796 | { | |
797 | uint64_t offset; | |
798 | ||
799 | /* Extract offset from instruction */ | |
800 | offset = extract_address_literal_sign_extended(instr, 0, 26); | |
801 | ||
802 | /* Update LR if appropriate */ | |
803 | if (tp->ftt_type == FASTTRAP_T_ARM64_BL) { | |
804 | regs64->lr = regs64->pc + 4; | |
805 | } | |
806 | ||
807 | /* Compute PC (unsigned addition for defined overflow) */ | |
808 | new_pc = regs64->pc + offset; | |
809 | *was_simulated = 1; | |
810 | break; | |
811 | } | |
812 | ||
813 | case FASTTRAP_T_ARM64_BLR: | |
814 | case FASTTRAP_T_ARM64_BR: | |
815 | { | |
816 | uint32_t regno; | |
817 | ||
818 | /* Extract register from instruction */ | |
819 | regno = ((instr >> 5) & 0x1f); | |
820 | assert(regno <= 31); | |
821 | ||
822 | /* Update LR if appropriate */ | |
823 | if (tp->ftt_type == FASTTRAP_T_ARM64_BLR) { | |
824 | regs64->lr = regs64->pc + 4; | |
825 | } | |
826 | ||
827 | /* Update PC in saved state */ | |
828 | new_pc = get_saved_state64_regno(regs64, regno, 1); | |
829 | *was_simulated = 1; | |
830 | break; | |
831 | } | |
832 | ||
833 | case FASTTRAP_T_ARM64_RET: | |
834 | { | |
835 | /* Extract register */ | |
836 | unsigned regno = ((instr >> 5) & 0x1f); | |
837 | assert(regno <= 31); | |
838 | ||
839 | /* Set PC to register value (xzr, not sp) */ | |
840 | new_pc = get_saved_state64_regno(regs64, regno, 1); | |
841 | ||
842 | *was_simulated = 1; | |
843 | break; | |
844 | } | |
845 | case FASTTRAP_T_ARM64_RETAB: | |
846 | { | |
847 | /* Set PC to register value (xzr, not sp) */ | |
848 | new_pc = get_saved_state64_regno(regs64, 30, 1); | |
849 | #if __has_feature(ptrauth_calls) | |
850 | new_pc = (user_addr_t) ptrauth_strip((void *)new_pc, ptrauth_key_return_address); | |
851 | #endif | |
852 | ||
853 | *was_simulated = 1; | |
854 | break; | |
855 | } | |
856 | /* | |
857 | * End branches. | |
858 | */ | |
859 | ||
860 | /* | |
861 | * Address calculations: emulate for correctness. | |
862 | * | |
863 | * ADRP Xd, label | |
864 | * ADR Xd, label | |
865 | */ | |
866 | case FASTTRAP_T_ARM64_ADRP: | |
867 | case FASTTRAP_T_ARM64_ADR: | |
868 | { | |
869 | uint64_t immhi, immlo, offset, result; | |
870 | uint32_t regno; | |
871 | ||
872 | /* Extract destination register */ | |
873 | regno = (instr & 0x1f); | |
874 | assert(regno <= 31); | |
875 | ||
876 | /* Extract offset */ | |
877 | immhi = ((instr & 0x00ffffe0) >> 5); /* bits [23,5]: 19 bits */ | |
878 | immlo = ((instr & 0x60000000) >> 29); /* bits [30,29]: 2 bits */ | |
879 | ||
880 | /* Add to PC. Use unsigned addition so that overflow wraps (rather than being undefined). */ | |
881 | if (tp->ftt_type == FASTTRAP_T_ARM64_ADRP) { | |
882 | offset = (immhi << 14) | (immlo << 12); /* Concatenate bits into [32,12]*/ | |
883 | offset = sign_extend(offset, 32); /* Sign extend from bit 32 */ | |
884 | result = (regs64->pc & ~0xfffULL) + offset; /* And add to page of current pc */ | |
885 | } else { | |
886 | assert(tp->ftt_type == FASTTRAP_T_ARM64_ADR); | |
887 | offset = (immhi << 2) | immlo; /* Concatenate bits into [20,0] */ | |
888 | offset = sign_extend(offset, 20); /* Sign-extend */ | |
889 | result = regs64->pc + offset; /* And add to page of current pc */ | |
890 | } | |
891 | ||
892 | /* xzr, not sp */ | |
893 | set_saved_state64_regno(regs64, regno, 1, result); | |
894 | ||
895 | /* Move PC forward */ | |
896 | new_pc = regs64->pc + 4; | |
897 | *was_simulated = 1; | |
898 | break; | |
899 | } | |
900 | ||
901 | /* | |
902 | * End address calculations. | |
903 | */ | |
904 | ||
905 | /* | |
906 | * Everything else: thunk to userland | |
907 | */ | |
908 | case FASTTRAP_T_COMMON: | |
909 | { | |
910 | fasttrap_pid_probe_thunk_instr64(state, tp, p, uthread, &tp->ftt_instr, 1, &new_pc); | |
911 | *was_simulated = 0; | |
912 | break; | |
913 | } | |
914 | default: | |
915 | { | |
916 | panic("An instruction DTrace doesn't expect: %d\n", tp->ftt_type); | |
917 | break; | |
918 | } | |
919 | } | |
920 | ||
921 | set_saved_state_pc(state, new_pc); | |
922 | return; | |
923 | } | |
924 | ||
925 | int | |
926 | fasttrap_pid_probe(arm_saved_state_t *state) | |
927 | { | |
928 | proc_t *p = current_proc(); | |
929 | fasttrap_bucket_t *bucket; | |
930 | lck_mtx_t *pid_mtx; | |
931 | fasttrap_tracepoint_t *tp, tp_local; | |
932 | pid_t pid; | |
933 | dtrace_icookie_t cookie; | |
934 | uint_t is_enabled = 0; | |
935 | int was_simulated, retire_tp = 1; | |
936 | ||
937 | uint64_t pc = get_saved_state_pc(state); | |
938 | ||
939 | assert(is_saved_state64(state)); | |
940 | ||
941 | uthread_t uthread = (uthread_t) get_bsdthread_info(current_thread()); | |
942 | ||
943 | /* | |
944 | * It's possible that a user (in a veritable orgy of bad planning) | |
945 | * could redirect this thread's flow of control before it reached the | |
946 | * return probe fasttrap. In this case we need to kill the process | |
947 | * since it's in a unrecoverable state. | |
948 | */ | |
949 | if (uthread->t_dtrace_step) { | |
950 | ASSERT(uthread->t_dtrace_on); | |
951 | fasttrap_sigtrap(p, uthread, (user_addr_t)pc); | |
952 | return 0; | |
953 | } | |
954 | ||
955 | /* | |
956 | * Clear all user tracing flags. | |
957 | */ | |
958 | uthread->t_dtrace_ft = 0; | |
959 | uthread->t_dtrace_pc = 0; | |
960 | uthread->t_dtrace_npc = 0; | |
961 | uthread->t_dtrace_scrpc = 0; | |
962 | uthread->t_dtrace_astpc = 0; | |
963 | uthread->t_dtrace_reg = 0; | |
964 | ||
965 | /* | |
966 | * Treat a child created by a call to vfork(2) as if it were its | |
967 | * parent. We know that there's only one thread of control in such a | |
968 | * process: this one. | |
969 | */ | |
970 | if (p->p_lflag & P_LINVFORK) { | |
971 | proc_list_lock(); | |
972 | while (p->p_lflag & P_LINVFORK) { | |
973 | p = p->p_pptr; | |
974 | } | |
975 | proc_list_unlock(); | |
976 | } | |
977 | ||
978 | pid = p->p_pid; | |
979 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; | |
980 | lck_mtx_lock(pid_mtx); | |
981 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; | |
982 | ||
983 | /* | |
984 | * Lookup the tracepoint that the process just hit. | |
985 | */ | |
986 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { | |
987 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && | |
988 | tp->ftt_proc->ftpc_acount != 0) { | |
989 | break; | |
990 | } | |
991 | } | |
992 | ||
993 | /* | |
994 | * If we couldn't find a matching tracepoint, either a tracepoint has | |
995 | * been inserted without using the pid<pid> ioctl interface (see | |
996 | * fasttrap_ioctl), or somehow we have mislaid this tracepoint. | |
997 | */ | |
998 | if (tp == NULL) { | |
999 | lck_mtx_unlock(pid_mtx); | |
1000 | return -1; | |
1001 | } | |
1002 | ||
1003 | /* Execute the actual probe */ | |
1004 | if (tp->ftt_ids != NULL) { | |
1005 | fasttrap_id_t *id; | |
1006 | uint64_t arg4; | |
1007 | ||
1008 | if (is_saved_state64(state)) { | |
1009 | arg4 = get_saved_state_reg(state, 4); | |
1010 | } else { | |
1011 | return -1; | |
1012 | } | |
1013 | ||
1014 | ||
1015 | /* First four parameters are passed in registers */ | |
1016 | ||
1017 | for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { | |
1018 | fasttrap_probe_t *probe = id->fti_probe; | |
1019 | ||
1020 | #if defined(XNU_TARGET_OS_OSX) | |
1021 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { | |
1022 | dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id, | |
1023 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); | |
1024 | #else | |
1025 | if (FALSE) { | |
1026 | #endif /* defined(XNU_TARGET_OS_OSX) */ | |
1027 | } else { | |
1028 | if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) { | |
1029 | if (os_atomic_xchg(&probe->ftp_triggered, 1, relaxed)) { | |
1030 | /* already triggered */ | |
1031 | continue; | |
1032 | } | |
1033 | } | |
1034 | /* | |
1035 | * If we have at least one probe associated that | |
1036 | * is not a oneshot probe, don't remove the | |
1037 | * tracepoint | |
1038 | */ | |
1039 | else { | |
1040 | retire_tp = 0; | |
1041 | } | |
1042 | if (id->fti_ptype == DTFTP_ENTRY) { | |
1043 | /* | |
1044 | * We note that this was an entry | |
1045 | * probe to help ustack() find the | |
1046 | * first caller. | |
1047 | */ | |
1048 | cookie = dtrace_interrupt_disable(); | |
1049 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); | |
1050 | dtrace_probe(probe->ftp_id, | |
1051 | get_saved_state_reg(state, 0), | |
1052 | get_saved_state_reg(state, 1), | |
1053 | get_saved_state_reg(state, 2), | |
1054 | get_saved_state_reg(state, 3), | |
1055 | arg4); | |
1056 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); | |
1057 | dtrace_interrupt_enable(cookie); | |
1058 | } else if (id->fti_ptype == DTFTP_IS_ENABLED) { | |
1059 | /* | |
1060 | * Note that in this case, we don't | |
1061 | * call dtrace_probe() since it's only | |
1062 | * an artificial probe meant to change | |
1063 | * the flow of control so that it | |
1064 | * encounters the true probe. | |
1065 | */ | |
1066 | is_enabled = 1; | |
1067 | } else if (probe->ftp_argmap == NULL) { | |
1068 | dtrace_probe(probe->ftp_id, | |
1069 | get_saved_state_reg(state, 0), | |
1070 | get_saved_state_reg(state, 1), | |
1071 | get_saved_state_reg(state, 2), | |
1072 | get_saved_state_reg(state, 3), | |
1073 | arg4); | |
1074 | } else { | |
1075 | uint64_t t[5]; | |
1076 | ||
1077 | fasttrap_usdt_args64(probe, saved_state64(state), 5, t); | |
1078 | dtrace_probe(probe->ftp_id, t[0], t[1], t[2], t[3], t[4]); | |
1079 | } | |
1080 | } | |
1081 | } | |
1082 | if (retire_tp) { | |
1083 | fasttrap_tracepoint_retire(p, tp); | |
1084 | } | |
1085 | } | |
1086 | /* | |
1087 | * We're about to do a bunch of work so we cache a local copy of | |
1088 | * the tracepoint to emulate the instruction, and then find the | |
1089 | * tracepoint again later if we need to light up any return probes. | |
1090 | */ | |
1091 | tp_local = *tp; | |
1092 | lck_mtx_unlock(pid_mtx); | |
1093 | tp = &tp_local; | |
1094 | ||
1095 | /* | |
1096 | * APPLE NOTE: | |
1097 | * | |
1098 | * Subroutines should update PC. | |
1099 | * We're setting this earlier than Solaris does, to get a "correct" | |
1100 | * ustack() output. In the Sun code, a() -> b() -> c() -> d() is | |
1101 | * reported at: d, b, a. The new way gives c, b, a, which is closer | |
1102 | * to correct, as the return instruction has already exectued. | |
1103 | */ | |
1104 | fasttrap_pid_probe_handle_patched_instr64(state, tp, uthread, p, is_enabled, &was_simulated); | |
1105 | ||
1106 | /* | |
1107 | * If there were no return probes when we first found the tracepoint, | |
1108 | * we should feel no obligation to honor any return probes that were | |
1109 | * subsequently enabled -- they'll just have to wait until the next | |
1110 | * time around. | |
1111 | */ | |
1112 | if (tp->ftt_retids != NULL) { | |
1113 | /* | |
1114 | * We need to wait until the results of the instruction are | |
1115 | * apparent before invoking any return probes. If this | |
1116 | * instruction was emulated we can just call | |
1117 | * fasttrap_return_common(); if it needs to be executed, we | |
1118 | * need to wait until the user thread returns to the kernel. | |
1119 | */ | |
1120 | /* | |
1121 | * It used to be that only common instructions were simulated. | |
1122 | * For performance reasons, we now simulate some instructions | |
1123 | * when safe and go back to userland otherwise. The was_simulated | |
1124 | * flag means we don't need to go back to userland. | |
1125 | */ | |
1126 | if (was_simulated) { | |
1127 | fasttrap_return_common(p, state, (user_addr_t)pc, (user_addr_t)get_saved_state_pc(state)); | |
1128 | } else { | |
1129 | ASSERT(uthread->t_dtrace_ret != 0); | |
1130 | ASSERT(uthread->t_dtrace_pc == pc); | |
1131 | ASSERT(uthread->t_dtrace_scrpc != 0); | |
1132 | ASSERT(((user_addr_t)get_saved_state_pc(state)) == uthread->t_dtrace_astpc); | |
1133 | } | |
1134 | } | |
1135 | ||
1136 | return 0; | |
1137 | } | |
1138 | ||
1139 | int | |
1140 | fasttrap_return_probe(arm_saved_state_t *regs) | |
1141 | { | |
1142 | proc_t *p = current_proc(); | |
1143 | uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread()); | |
1144 | user_addr_t pc = uthread->t_dtrace_pc; | |
1145 | user_addr_t npc = uthread->t_dtrace_npc; | |
1146 | ||
1147 | uthread->t_dtrace_pc = 0; | |
1148 | uthread->t_dtrace_npc = 0; | |
1149 | uthread->t_dtrace_scrpc = 0; | |
1150 | uthread->t_dtrace_astpc = 0; | |
1151 | ||
1152 | /* | |
1153 | * Treat a child created by a call to vfork(2) as if it were its | |
1154 | * parent. We know that there's only one thread of control in such a | |
1155 | * process: this one. | |
1156 | */ | |
1157 | if (p->p_lflag & P_LINVFORK) { | |
1158 | proc_list_lock(); | |
1159 | while (p->p_lflag & P_LINVFORK) { | |
1160 | p = p->p_pptr; | |
1161 | } | |
1162 | proc_list_unlock(); | |
1163 | } | |
1164 | ||
1165 | /* | |
1166 | * We set rp->r_pc to the address of the traced instruction so | |
1167 | * that it appears to dtrace_probe() that we're on the original | |
1168 | * instruction, and so that the user can't easily detect our | |
1169 | * complex web of lies. dtrace_return_probe() (our caller) | |
1170 | * will correctly set %pc after we return. | |
1171 | */ | |
1172 | set_saved_state_pc(regs, pc); | |
1173 | ||
1174 | fasttrap_return_common(p, regs, pc, npc); | |
1175 | ||
1176 | return 0; | |
1177 | } | |
1178 | ||
1179 | uint64_t | |
1180 | fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno, | |
1181 | int aframes) | |
1182 | { | |
1183 | #pragma unused(arg, id, parg, aframes) | |
1184 | arm_saved_state_t* regs = find_user_regs(current_thread()); | |
1185 | ||
1186 | /* First eight arguments are in registers */ | |
1187 | if (argno < 8) { | |
1188 | return saved_state64(regs)->x[argno]; | |
1189 | } | |
1190 | ||
1191 | /* Look on the stack for the rest */ | |
1192 | uint64_t value; | |
1193 | uint64_t* sp = (uint64_t*) saved_state64(regs)->sp; | |
1194 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1195 | value = dtrace_fuword64((user_addr_t) (sp + argno - 8)); | |
1196 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); | |
1197 | ||
1198 | return value; | |
1199 | } | |
1200 | ||
1201 | uint64_t | |
1202 | fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno, int aframes) | |
1203 | { | |
1204 | #pragma unused(arg, id, parg, argno, aframes) | |
1205 | return 0; | |
1206 | } |