]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <mach/mach_types.h> | |
30 | #include <mach/vm_param.h> | |
31 | #include <mach/mach_vm.h> | |
32 | #include <mach/clock_types.h> | |
33 | #include <sys/errno.h> | |
34 | #include <sys/stackshot.h> | |
35 | #ifdef IMPORTANCE_INHERITANCE | |
36 | #include <ipc/ipc_importance.h> | |
37 | #endif | |
38 | #include <sys/appleapiopts.h> | |
39 | #include <kern/debug.h> | |
40 | #include <uuid/uuid.h> | |
41 | ||
42 | #include <kdp/kdp_dyld.h> | |
43 | #include <kdp/kdp_en_debugger.h> | |
44 | ||
45 | #include <libsa/types.h> | |
46 | #include <libkern/version.h> | |
47 | ||
48 | #include <string.h> /* bcopy */ | |
49 | ||
50 | #include <kern/processor.h> | |
51 | #include <kern/thread.h> | |
52 | #include <kern/task.h> | |
53 | #include <kern/telemetry.h> | |
54 | #include <kern/clock.h> | |
55 | #include <kern/policy_internal.h> | |
56 | #include <vm/vm_map.h> | |
57 | #include <vm/vm_kern.h> | |
58 | #include <vm/vm_pageout.h> | |
59 | #include <vm/vm_fault.h> | |
60 | #include <vm/vm_shared_region.h> | |
61 | #include <libkern/OSKextLibPrivate.h> | |
62 | ||
63 | #if (defined(__arm64__) || defined(NAND_PANIC_DEVICE)) && !defined(LEGACY_PANIC_LOGS) | |
64 | #include <pexpert/pexpert.h> /* For gPanicBase/gPanicBase */ | |
65 | #endif | |
66 | ||
67 | extern unsigned int not_in_kdp; | |
68 | ||
69 | ||
70 | extern addr64_t kdp_vtophys(pmap_t pmap, addr64_t va); | |
71 | extern void * proc_get_uthread_uu_threadlist(void * uthread_v); | |
72 | ||
73 | int kdp_snapshot = 0; | |
74 | static kern_return_t stack_snapshot_ret = 0; | |
75 | static uint32_t stack_snapshot_bytes_traced = 0; | |
76 | ||
77 | static kcdata_descriptor_t stackshot_kcdata_p = NULL; | |
78 | static void *stack_snapshot_buf; | |
79 | static uint32_t stack_snapshot_bufsize; | |
80 | int stack_snapshot_pid; | |
81 | static uint32_t stack_snapshot_flags; | |
82 | static uint64_t stack_snapshot_delta_since_timestamp; | |
83 | static boolean_t panic_stackshot; | |
84 | ||
85 | static boolean_t stack_enable_faulting = FALSE; | |
86 | static struct stackshot_fault_stats fault_stats; | |
87 | ||
88 | static uint64_t * stackshot_duration_outer; | |
89 | static uint64_t stackshot_microsecs; | |
90 | ||
91 | void * kernel_stackshot_buf = NULL; /* Pointer to buffer for stackshots triggered from the kernel and retrieved later */ | |
92 | int kernel_stackshot_buf_size = 0; | |
93 | ||
94 | void * stackshot_snapbuf = NULL; /* Used by stack_snapshot2 (to be removed) */ | |
95 | ||
96 | __private_extern__ void stackshot_init( void ); | |
97 | static boolean_t memory_iszero(void *addr, size_t size); | |
98 | #if CONFIG_TELEMETRY | |
99 | kern_return_t stack_microstackshot(user_addr_t tracebuf, uint32_t tracebuf_size, uint32_t flags, int32_t *retval); | |
100 | #endif | |
101 | uint32_t get_stackshot_estsize(uint32_t prev_size_hint); | |
102 | kern_return_t kern_stack_snapshot_internal(int stackshot_config_version, void *stackshot_config, | |
103 | size_t stackshot_config_size, boolean_t stackshot_from_user); | |
104 | kern_return_t do_stackshot(void *); | |
105 | void kdp_snapshot_preflight(int pid, void * tracebuf, uint32_t tracebuf_size, uint32_t flags, kcdata_descriptor_t data_p, uint64_t since_timestamp); | |
106 | boolean_t stackshot_thread_is_idle_worker_unsafe(thread_t thread); | |
107 | static int kdp_stackshot_kcdata_format(int pid, uint32_t trace_flags, uint32_t *pBytesTraced); | |
108 | kern_return_t kdp_stack_snapshot_geterror(void); | |
109 | uint32_t kdp_stack_snapshot_bytes_traced(void); | |
110 | static int pid_from_task(task_t task); | |
111 | static void kdp_mem_and_io_snapshot(struct mem_and_io_snapshot *memio_snap); | |
112 | static boolean_t kdp_copyin(vm_map_t map, uint64_t uaddr, void *dest, size_t size, boolean_t try_fault, uint32_t *kdp_fault_result); | |
113 | static boolean_t kdp_copyin_word(task_t task, uint64_t addr, uint64_t *result, boolean_t try_fault, uint32_t *kdp_fault_results); | |
114 | static uint64_t proc_was_throttled_from_task(task_t task); | |
115 | ||
116 | extern uint32_t workqueue_get_pwq_state_kdp(void *proc); | |
117 | ||
118 | extern int proc_pid(void *p); | |
119 | extern uint64_t proc_uniqueid(void *p); | |
120 | extern uint64_t proc_was_throttled(void *p); | |
121 | extern uint64_t proc_did_throttle(void *p); | |
122 | static uint64_t proc_did_throttle_from_task(task_t task); | |
123 | extern void proc_name_kdp(task_t task, char * buf, int size); | |
124 | extern int proc_threadname_kdp(void * uth, char * buf, size_t size); | |
125 | extern void proc_starttime_kdp(void * p, uint64_t * tv_sec, uint64_t * tv_usec, uint64_t * abstime); | |
126 | extern int memorystatus_get_pressure_status_kdp(void); | |
127 | extern boolean_t memorystatus_proc_is_dirty_unsafe(void * v); | |
128 | ||
129 | extern int count_busy_buffers(void); /* must track with declaration in bsd/sys/buf_internal.h */ | |
130 | extern void bcopy_phys(addr64_t, addr64_t, vm_size_t); | |
131 | ||
132 | #if CONFIG_TELEMETRY | |
133 | extern kern_return_t stack_microstackshot(user_addr_t tracebuf, uint32_t tracebuf_size, uint32_t flags, int32_t *retval); | |
134 | #endif /* CONFIG_TELEMETRY */ | |
135 | ||
136 | extern kern_return_t kern_stack_snapshot_with_reason(char* reason); | |
137 | extern kern_return_t kern_stack_snapshot_internal(int stackshot_config_version, void *stackshot_config, size_t stackshot_config_size, boolean_t stackshot_from_user); | |
138 | ||
139 | /* | |
140 | * Validates that the given address is both a valid page and has | |
141 | * default caching attributes for the current map. Returns | |
142 | * 0 if the address is invalid, and a kernel virtual address for | |
143 | * the given address if it is valid. | |
144 | */ | |
145 | vm_offset_t machine_trace_thread_get_kva(vm_offset_t cur_target_addr, vm_map_t map, uint32_t *thread_trace_flags); | |
146 | ||
147 | #define KDP_FAULT_RESULT_PAGED_OUT 0x1 /* some data was unable to be retrieved */ | |
148 | #define KDP_FAULT_RESULT_TRIED_FAULT 0x2 /* tried to fault in data */ | |
149 | #define KDP_FAULT_RESULT_FAULTED_IN 0x4 /* successfully faulted in data */ | |
150 | ||
151 | /* | |
152 | * Looks up the physical translation for the given address in the target map, attempting | |
153 | * to fault data in if requested and it is not resident. Populates thread_trace_flags if requested | |
154 | * as well. | |
155 | */ | |
156 | vm_offset_t kdp_find_phys(vm_map_t map, vm_offset_t target_addr, boolean_t try_fault, uint32_t *kdp_fault_results); | |
157 | ||
158 | static size_t stackshot_strlcpy(char *dst, const char *src, size_t maxlen); | |
159 | static void stackshot_memcpy(void *dst, const void *src, size_t len); | |
160 | ||
161 | /* Clears caching information used by the above validation routine | |
162 | * (in case the current map has been changed or cleared). | |
163 | */ | |
164 | void machine_trace_thread_clear_validation_cache(void); | |
165 | ||
166 | #define MAX_FRAMES 1000 | |
167 | #define MAX_LOADINFOS 500 | |
168 | #define TASK_IMP_WALK_LIMIT 20 | |
169 | ||
170 | typedef struct thread_snapshot *thread_snapshot_t; | |
171 | typedef struct task_snapshot *task_snapshot_t; | |
172 | ||
173 | #if CONFIG_KDP_INTERACTIVE_DEBUGGING | |
174 | extern kdp_send_t kdp_en_send_pkt; | |
175 | #endif | |
176 | ||
177 | /* | |
178 | * Globals to support machine_trace_thread_get_kva. | |
179 | */ | |
180 | static vm_offset_t prev_target_page = 0; | |
181 | static vm_offset_t prev_target_kva = 0; | |
182 | static boolean_t validate_next_addr = TRUE; | |
183 | ||
184 | /* | |
185 | * Stackshot locking and other defines. | |
186 | */ | |
187 | static lck_grp_t *stackshot_subsys_lck_grp; | |
188 | static lck_grp_attr_t *stackshot_subsys_lck_grp_attr; | |
189 | static lck_attr_t *stackshot_subsys_lck_attr; | |
190 | static lck_mtx_t stackshot_subsys_mutex; | |
191 | ||
192 | #define STACKSHOT_SUBSYS_LOCK() lck_mtx_lock(&stackshot_subsys_mutex) | |
193 | #define STACKSHOT_SUBSYS_TRY_LOCK() lck_mtx_try_lock(&stackshot_subsys_mutex) | |
194 | #define STACKSHOT_SUBSYS_UNLOCK() lck_mtx_unlock(&stackshot_subsys_mutex) | |
195 | ||
196 | #define SANE_BOOTPROFILE_TRACEBUF_SIZE (64 * 1024 * 1024) | |
197 | #define SANE_TRACEBUF_SIZE (8 * 1024 * 1024) | |
198 | ||
199 | /* | |
200 | * We currently set a ceiling of 3 milliseconds spent in the kdp fault path | |
201 | * for non-panic stackshots where faulting is requested. | |
202 | */ | |
203 | #define KDP_FAULT_PATH_MAX_TIME_PER_STACKSHOT_NSECS (3 * NSEC_PER_MSEC) | |
204 | ||
205 | #define STACKSHOT_SUPP_SIZE (16 * 1024) /* Minimum stackshot size */ | |
206 | #define TASK_UUID_AVG_SIZE (16 * sizeof(uuid_t)) /* Average space consumed by UUIDs/task */ | |
207 | ||
208 | /* | |
209 | * Initialize the mutex governing access to the stack snapshot subsystem | |
210 | * and other stackshot related bits. | |
211 | */ | |
212 | __private_extern__ void | |
213 | stackshot_init( void ) | |
214 | { | |
215 | mach_timebase_info_data_t timebase; | |
216 | ||
217 | stackshot_subsys_lck_grp_attr = lck_grp_attr_alloc_init(); | |
218 | ||
219 | stackshot_subsys_lck_grp = lck_grp_alloc_init("stackshot_subsys_lock", stackshot_subsys_lck_grp_attr); | |
220 | ||
221 | stackshot_subsys_lck_attr = lck_attr_alloc_init(); | |
222 | ||
223 | lck_mtx_init(&stackshot_subsys_mutex, stackshot_subsys_lck_grp, stackshot_subsys_lck_attr); | |
224 | ||
225 | clock_timebase_info(&timebase); | |
226 | fault_stats.sfs_system_max_fault_time = ((KDP_FAULT_PATH_MAX_TIME_PER_STACKSHOT_NSECS * timebase.denom)/ timebase.numer); | |
227 | } | |
228 | ||
229 | /* | |
230 | * Method for grabbing timer values safely, in the sense that no infinite loop will occur | |
231 | * Certain flavors of the timer_grab function, which would seem to be the thing to use, | |
232 | * can loop infinitely if called while the timer is in the process of being updated. | |
233 | * Unfortunately, it is (rarely) possible to get inconsistent top and bottom halves of | |
234 | * the timer using this method. This seems insoluble, since stackshot runs in a context | |
235 | * where the timer might be half-updated, and has no way of yielding control just long | |
236 | * enough to finish the update. | |
237 | */ | |
238 | ||
239 | static uint64_t safe_grab_timer_value(struct timer *t) | |
240 | { | |
241 | #if defined(__LP64__) | |
242 | return t->all_bits; | |
243 | #else | |
244 | uint64_t time = t->high_bits; /* endian independent grab */ | |
245 | time = (time << 32) | t->low_bits; | |
246 | return time; | |
247 | #endif | |
248 | } | |
249 | ||
250 | kern_return_t | |
251 | stack_snapshot_from_kernel(int pid, void *buf, uint32_t size, uint32_t flags, uint64_t delta_since_timestamp, unsigned *bytes_traced) | |
252 | { | |
253 | kern_return_t error = KERN_SUCCESS; | |
254 | boolean_t istate; | |
255 | ||
256 | if ((buf == NULL) || (size <= 0) || (bytes_traced == NULL)) { | |
257 | return KERN_INVALID_ARGUMENT; | |
258 | } | |
259 | ||
260 | /* cap in individual stackshot to SANE_TRACEBUF_SIZE */ | |
261 | if (size > SANE_TRACEBUF_SIZE) { | |
262 | size = SANE_TRACEBUF_SIZE; | |
263 | } | |
264 | ||
265 | /* Serialize tracing */ | |
266 | if (flags & STACKSHOT_TRYLOCK) { | |
267 | if (!STACKSHOT_SUBSYS_TRY_LOCK()) { | |
268 | return KERN_LOCK_OWNED; | |
269 | } | |
270 | } else { | |
271 | STACKSHOT_SUBSYS_LOCK(); | |
272 | } | |
273 | ||
274 | istate = ml_set_interrupts_enabled(FALSE); | |
275 | ||
276 | struct kcdata_descriptor kcdata; | |
277 | uint32_t hdr_tag = (flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) ? | |
278 | KCDATA_BUFFER_BEGIN_DELTA_STACKSHOT : KCDATA_BUFFER_BEGIN_STACKSHOT; | |
279 | ||
280 | error = kcdata_memory_static_init(&kcdata, (mach_vm_address_t)buf, hdr_tag, size, | |
281 | KCFLAG_USE_MEMCOPY | KCFLAG_NO_AUTO_ENDBUFFER); | |
282 | if (error) { | |
283 | goto out; | |
284 | } | |
285 | ||
286 | /* Preload trace parameters*/ | |
287 | kdp_snapshot_preflight(pid, buf, size, flags, &kcdata, delta_since_timestamp); | |
288 | ||
289 | /* Trap to the debugger to obtain a coherent stack snapshot; this populates | |
290 | * the trace buffer | |
291 | */ | |
292 | stack_snapshot_ret = DebuggerWithCallback(do_stackshot, NULL, FALSE); | |
293 | ||
294 | ml_set_interrupts_enabled(istate); | |
295 | ||
296 | *bytes_traced = kdp_stack_snapshot_bytes_traced(); | |
297 | ||
298 | error = kdp_stack_snapshot_geterror(); | |
299 | ||
300 | out: | |
301 | STACKSHOT_SUBSYS_UNLOCK(); | |
302 | return error; | |
303 | } | |
304 | ||
305 | #if CONFIG_TELEMETRY | |
306 | kern_return_t | |
307 | stack_microstackshot(user_addr_t tracebuf, uint32_t tracebuf_size, uint32_t flags, int32_t *retval) | |
308 | { | |
309 | int error = KERN_SUCCESS; | |
310 | uint32_t bytes_traced = 0; | |
311 | ||
312 | *retval = -1; | |
313 | ||
314 | /* | |
315 | * Control related operations | |
316 | */ | |
317 | if (flags & STACKSHOT_GLOBAL_MICROSTACKSHOT_ENABLE) { | |
318 | telemetry_global_ctl(1); | |
319 | *retval = 0; | |
320 | goto exit; | |
321 | } else if (flags & STACKSHOT_GLOBAL_MICROSTACKSHOT_DISABLE) { | |
322 | telemetry_global_ctl(0); | |
323 | *retval = 0; | |
324 | goto exit; | |
325 | } | |
326 | ||
327 | /* | |
328 | * Data related operations | |
329 | */ | |
330 | *retval = -1; | |
331 | ||
332 | if ((((void*)tracebuf) == NULL) || (tracebuf_size == 0)) { | |
333 | error = KERN_INVALID_ARGUMENT; | |
334 | goto exit; | |
335 | } | |
336 | ||
337 | STACKSHOT_SUBSYS_LOCK(); | |
338 | ||
339 | if (flags & STACKSHOT_GET_MICROSTACKSHOT) { | |
340 | if (tracebuf_size > SANE_TRACEBUF_SIZE) { | |
341 | error = KERN_INVALID_ARGUMENT; | |
342 | goto unlock_exit; | |
343 | } | |
344 | ||
345 | bytes_traced = tracebuf_size; | |
346 | error = telemetry_gather(tracebuf, &bytes_traced, | |
347 | (flags & STACKSHOT_SET_MICROSTACKSHOT_MARK) ? TRUE : FALSE); | |
348 | *retval = (int)bytes_traced; | |
349 | goto unlock_exit; | |
350 | } | |
351 | ||
352 | if (flags & STACKSHOT_GET_BOOT_PROFILE) { | |
353 | ||
354 | if (tracebuf_size > SANE_BOOTPROFILE_TRACEBUF_SIZE) { | |
355 | error = KERN_INVALID_ARGUMENT; | |
356 | goto unlock_exit; | |
357 | } | |
358 | ||
359 | bytes_traced = tracebuf_size; | |
360 | error = bootprofile_gather(tracebuf, &bytes_traced); | |
361 | *retval = (int)bytes_traced; | |
362 | } | |
363 | ||
364 | unlock_exit: | |
365 | STACKSHOT_SUBSYS_UNLOCK(); | |
366 | exit: | |
367 | return error; | |
368 | } | |
369 | #endif /* CONFIG_TELEMETRY */ | |
370 | ||
371 | /* | |
372 | * Return the estimated size of a stackshot based on the | |
373 | * number of currently running threads and tasks. | |
374 | */ | |
375 | uint32_t | |
376 | get_stackshot_estsize(uint32_t prev_size_hint) | |
377 | { | |
378 | vm_size_t thread_total; | |
379 | vm_size_t task_total; | |
380 | uint32_t estimated_size; | |
381 | ||
382 | thread_total = (threads_count * sizeof(struct thread_snapshot)); | |
383 | task_total = (tasks_count * (sizeof(struct task_snapshot) + TASK_UUID_AVG_SIZE)); | |
384 | ||
385 | estimated_size = (uint32_t) VM_MAP_ROUND_PAGE((thread_total + task_total + STACKSHOT_SUPP_SIZE), PAGE_MASK); | |
386 | if (estimated_size < prev_size_hint) { | |
387 | estimated_size = (uint32_t) VM_MAP_ROUND_PAGE(prev_size_hint, PAGE_MASK); | |
388 | } | |
389 | ||
390 | return estimated_size; | |
391 | } | |
392 | ||
393 | /* | |
394 | * stackshot_remap_buffer: Utility function to remap bytes_traced bytes starting at stackshotbuf | |
395 | * into the current task's user space and subsequently copy out the address | |
396 | * at which the buffer has been mapped in user space to out_buffer_addr. | |
397 | * | |
398 | * Inputs: stackshotbuf - pointer to the original buffer in the kernel's address space | |
399 | * bytes_traced - length of the buffer to remap starting from stackshotbuf | |
400 | * out_buffer_addr - pointer to placeholder where newly mapped buffer will be mapped. | |
401 | * out_size_addr - pointer to be filled in with the size of the buffer | |
402 | * | |
403 | * Outputs: ENOSPC if there is not enough free space in the task's address space to remap the buffer | |
404 | * EINVAL for all other errors returned by task_remap_buffer/mach_vm_remap | |
405 | * an error from copyout | |
406 | */ | |
407 | static kern_return_t | |
408 | stackshot_remap_buffer(void *stackshotbuf, uint32_t bytes_traced, uint64_t out_buffer_addr, uint64_t out_size_addr) | |
409 | { | |
410 | int error = 0; | |
411 | mach_vm_offset_t stackshotbuf_user_addr = (mach_vm_offset_t)NULL; | |
412 | vm_prot_t cur_prot, max_prot; | |
413 | ||
414 | error = mach_vm_remap(get_task_map(current_task()), &stackshotbuf_user_addr, bytes_traced, 0, | |
415 | VM_FLAGS_ANYWHERE, kernel_map, (mach_vm_offset_t)stackshotbuf, FALSE, &cur_prot, &max_prot, VM_INHERIT_DEFAULT); | |
416 | /* | |
417 | * If the call to mach_vm_remap fails, we return the appropriate converted error | |
418 | */ | |
419 | if (error == KERN_SUCCESS) { | |
420 | /* | |
421 | * If we fail to copy out the address or size of the new buffer, we remove the buffer mapping that | |
422 | * we just made in the task's user space. | |
423 | */ | |
424 | error = copyout(CAST_DOWN(void *, &stackshotbuf_user_addr), (user_addr_t)out_buffer_addr, sizeof(stackshotbuf_user_addr)); | |
425 | if (error != KERN_SUCCESS) { | |
426 | mach_vm_deallocate(get_task_map(current_task()), stackshotbuf_user_addr, (mach_vm_size_t)bytes_traced); | |
427 | return error; | |
428 | } | |
429 | error = copyout(&bytes_traced, (user_addr_t)out_size_addr, sizeof(bytes_traced)); | |
430 | if (error != KERN_SUCCESS) { | |
431 | mach_vm_deallocate(get_task_map(current_task()), stackshotbuf_user_addr, (mach_vm_size_t)bytes_traced); | |
432 | return error; | |
433 | } | |
434 | } | |
435 | return error; | |
436 | } | |
437 | ||
438 | kern_return_t | |
439 | kern_stack_snapshot_internal(int stackshot_config_version, void *stackshot_config, size_t stackshot_config_size, boolean_t stackshot_from_user) | |
440 | { | |
441 | int error = 0; | |
442 | boolean_t prev_interrupt_state; | |
443 | uint32_t bytes_traced = 0; | |
444 | uint32_t stackshotbuf_size = 0; | |
445 | void * stackshotbuf = NULL; | |
446 | kcdata_descriptor_t kcdata_p = NULL; | |
447 | ||
448 | void * buf_to_free = NULL; | |
449 | int size_to_free = 0; | |
450 | ||
451 | /* Parsed arguments */ | |
452 | uint64_t out_buffer_addr; | |
453 | uint64_t out_size_addr; | |
454 | int pid = -1; | |
455 | uint32_t flags; | |
456 | uint64_t since_timestamp; | |
457 | uint32_t size_hint = 0; | |
458 | ||
459 | if(stackshot_config == NULL) { | |
460 | return KERN_INVALID_ARGUMENT; | |
461 | } | |
462 | ||
463 | switch (stackshot_config_version) { | |
464 | case STACKSHOT_CONFIG_TYPE: | |
465 | if (stackshot_config_size != sizeof(stackshot_config_t)) { | |
466 | return KERN_INVALID_ARGUMENT; | |
467 | } | |
468 | stackshot_config_t *config = (stackshot_config_t *) stackshot_config; | |
469 | out_buffer_addr = config->sc_out_buffer_addr; | |
470 | out_size_addr = config->sc_out_size_addr; | |
471 | pid = config->sc_pid; | |
472 | flags = config->sc_flags; | |
473 | since_timestamp = config->sc_delta_timestamp; | |
474 | if (config->sc_size <= SANE_TRACEBUF_SIZE) { | |
475 | size_hint = config->sc_size; | |
476 | } | |
477 | break; | |
478 | default: | |
479 | return KERN_NOT_SUPPORTED; | |
480 | } | |
481 | ||
482 | /* | |
483 | * Currently saving a kernel buffer and trylock are only supported from the | |
484 | * internal/KEXT API. | |
485 | */ | |
486 | if (stackshot_from_user) { | |
487 | if (flags & (STACKSHOT_TRYLOCK | STACKSHOT_SAVE_IN_KERNEL_BUFFER | STACKSHOT_FROM_PANIC)) { | |
488 | return KERN_NO_ACCESS; | |
489 | } | |
490 | } else { | |
491 | if (!(flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER)) { | |
492 | return KERN_NOT_SUPPORTED; | |
493 | } | |
494 | } | |
495 | ||
496 | if (!((flags & STACKSHOT_KCDATA_FORMAT) || (flags & STACKSHOT_RETRIEVE_EXISTING_BUFFER))) { | |
497 | return KERN_NOT_SUPPORTED; | |
498 | } | |
499 | ||
500 | /* | |
501 | * If we're not saving the buffer in the kernel pointer, we need a place to copy into. | |
502 | */ | |
503 | if ((!out_buffer_addr || !out_size_addr) && !(flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER)) { | |
504 | return KERN_INVALID_ARGUMENT; | |
505 | } | |
506 | ||
507 | if (since_timestamp != 0 && ((flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) == 0)) { | |
508 | return KERN_INVALID_ARGUMENT; | |
509 | } | |
510 | ||
511 | STACKSHOT_SUBSYS_LOCK(); | |
512 | ||
513 | if (flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER) { | |
514 | /* | |
515 | * Don't overwrite an existing stackshot | |
516 | */ | |
517 | if (kernel_stackshot_buf != NULL) { | |
518 | error = KERN_MEMORY_PRESENT; | |
519 | goto error_exit; | |
520 | } | |
521 | } else if (flags & STACKSHOT_RETRIEVE_EXISTING_BUFFER) { | |
522 | if ((kernel_stackshot_buf == NULL) || (kernel_stackshot_buf_size <= 0)) { | |
523 | error = KERN_NOT_IN_SET; | |
524 | goto error_exit; | |
525 | } | |
526 | error = stackshot_remap_buffer(kernel_stackshot_buf, kernel_stackshot_buf_size, | |
527 | out_buffer_addr, out_size_addr); | |
528 | /* | |
529 | * If we successfully remapped the buffer into the user's address space, we | |
530 | * set buf_to_free and size_to_free so the prior kernel mapping will be removed | |
531 | * and then clear the kernel stackshot pointer and associated size. | |
532 | */ | |
533 | if (error == KERN_SUCCESS) { | |
534 | buf_to_free = kernel_stackshot_buf; | |
535 | size_to_free = (int) VM_MAP_ROUND_PAGE(kernel_stackshot_buf_size, PAGE_MASK); | |
536 | kernel_stackshot_buf = NULL; | |
537 | kernel_stackshot_buf_size = 0; | |
538 | } | |
539 | ||
540 | goto error_exit; | |
541 | } | |
542 | ||
543 | if (flags & STACKSHOT_GET_BOOT_PROFILE) { | |
544 | void *bootprofile = NULL; | |
545 | uint32_t len = 0; | |
546 | #if CONFIG_TELEMETRY | |
547 | bootprofile_get(&bootprofile, &len); | |
548 | #endif | |
549 | if (!bootprofile || !len) { | |
550 | error = KERN_NOT_IN_SET; | |
551 | goto error_exit; | |
552 | } | |
553 | error = stackshot_remap_buffer(bootprofile, len, out_buffer_addr, out_size_addr); | |
554 | goto error_exit; | |
555 | } | |
556 | ||
557 | stackshotbuf_size = get_stackshot_estsize(size_hint); | |
558 | ||
559 | for (; stackshotbuf_size <= SANE_TRACEBUF_SIZE; stackshotbuf_size <<= 1) { | |
560 | if (kmem_alloc(kernel_map, (vm_offset_t *)&stackshotbuf, stackshotbuf_size, VM_KERN_MEMORY_DIAG) != KERN_SUCCESS) { | |
561 | error = KERN_RESOURCE_SHORTAGE; | |
562 | goto error_exit; | |
563 | } | |
564 | ||
565 | /* | |
566 | * If someone has panicked, don't try and enter the debugger | |
567 | */ | |
568 | if (panic_active()) { | |
569 | error = KERN_RESOURCE_SHORTAGE; | |
570 | goto error_exit; | |
571 | } | |
572 | ||
573 | uint32_t hdr_tag = (flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) ? KCDATA_BUFFER_BEGIN_DELTA_STACKSHOT : KCDATA_BUFFER_BEGIN_STACKSHOT; | |
574 | kcdata_p = kcdata_memory_alloc_init((mach_vm_address_t)stackshotbuf, hdr_tag, stackshotbuf_size, | |
575 | KCFLAG_USE_MEMCOPY | KCFLAG_NO_AUTO_ENDBUFFER); | |
576 | ||
577 | stackshot_duration_outer = NULL; | |
578 | uint64_t time_start = mach_absolute_time(); | |
579 | ||
580 | /* | |
581 | * Disable interrupts and save the current interrupt state. | |
582 | */ | |
583 | prev_interrupt_state = ml_set_interrupts_enabled(FALSE); | |
584 | ||
585 | /* | |
586 | * Load stackshot parameters. | |
587 | */ | |
588 | kdp_snapshot_preflight(pid, stackshotbuf, stackshotbuf_size, flags, kcdata_p, since_timestamp); | |
589 | ||
590 | /* | |
591 | * Trap to the debugger to obtain a stackshot (this will populate the buffer). | |
592 | */ | |
593 | stack_snapshot_ret = DebuggerWithCallback(do_stackshot, NULL, FALSE); | |
594 | ||
595 | ml_set_interrupts_enabled(prev_interrupt_state); | |
596 | ||
597 | /* record the duration that interupts were disabled */ | |
598 | ||
599 | uint64_t time_end = mach_absolute_time(); | |
600 | if (stackshot_duration_outer) { | |
601 | *stackshot_duration_outer = time_end - time_start; | |
602 | } | |
603 | ||
604 | error = kdp_stack_snapshot_geterror(); | |
605 | if (error != KERN_SUCCESS) { | |
606 | if (kcdata_p != NULL) { | |
607 | kcdata_memory_destroy(kcdata_p); | |
608 | kcdata_p = NULL; | |
609 | stackshot_kcdata_p = NULL; | |
610 | } | |
611 | kmem_free(kernel_map, (vm_offset_t)stackshotbuf, stackshotbuf_size); | |
612 | stackshotbuf = NULL; | |
613 | if (error == KERN_INSUFFICIENT_BUFFER_SIZE) { | |
614 | /* | |
615 | * If we didn't allocate a big enough buffer, deallocate and try again. | |
616 | */ | |
617 | continue; | |
618 | } else { | |
619 | goto error_exit; | |
620 | } | |
621 | } | |
622 | ||
623 | bytes_traced = kdp_stack_snapshot_bytes_traced(); | |
624 | ||
625 | if (bytes_traced <= 0) { | |
626 | error = KERN_ABORTED; | |
627 | goto error_exit; | |
628 | } | |
629 | ||
630 | assert(bytes_traced <= stackshotbuf_size); | |
631 | if (!(flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER)) { | |
632 | error = stackshot_remap_buffer(stackshotbuf, bytes_traced, out_buffer_addr, out_size_addr); | |
633 | goto error_exit; | |
634 | } | |
635 | ||
636 | /* | |
637 | * Save the stackshot in the kernel buffer. | |
638 | */ | |
639 | kernel_stackshot_buf = stackshotbuf; | |
640 | kernel_stackshot_buf_size = bytes_traced; | |
641 | /* | |
642 | * Figure out if we didn't use all the pages in the buffer. If so, we set buf_to_free to the beginning of | |
643 | * the next page after the end of the stackshot in the buffer so that the kmem_free clips the buffer and | |
644 | * update size_to_free for kmem_free accordingly. | |
645 | */ | |
646 | size_to_free = stackshotbuf_size - (int) VM_MAP_ROUND_PAGE(bytes_traced, PAGE_MASK); | |
647 | ||
648 | assert(size_to_free >= 0); | |
649 | ||
650 | if (size_to_free != 0) { | |
651 | buf_to_free = (void *)((uint64_t)stackshotbuf + stackshotbuf_size - size_to_free); | |
652 | } | |
653 | ||
654 | stackshotbuf = NULL; | |
655 | stackshotbuf_size = 0; | |
656 | goto error_exit; | |
657 | } | |
658 | ||
659 | if (stackshotbuf_size > SANE_TRACEBUF_SIZE) { | |
660 | error = KERN_RESOURCE_SHORTAGE; | |
661 | } | |
662 | ||
663 | error_exit: | |
664 | if (kcdata_p != NULL) { | |
665 | kcdata_memory_destroy(kcdata_p); | |
666 | kcdata_p = NULL; | |
667 | stackshot_kcdata_p = NULL; | |
668 | } | |
669 | ||
670 | if (stackshotbuf != NULL) { | |
671 | kmem_free(kernel_map, (vm_offset_t)stackshotbuf, stackshotbuf_size); | |
672 | } | |
673 | if (buf_to_free != NULL) { | |
674 | kmem_free(kernel_map, (vm_offset_t)buf_to_free, size_to_free); | |
675 | } | |
676 | STACKSHOT_SUBSYS_UNLOCK(); | |
677 | return error; | |
678 | } | |
679 | ||
680 | /* Cache stack snapshot parameters in preparation for a trace */ | |
681 | void | |
682 | kdp_snapshot_preflight(int pid, void * tracebuf, uint32_t tracebuf_size, uint32_t flags, | |
683 | kcdata_descriptor_t data_p, uint64_t since_timestamp) | |
684 | { | |
685 | uint64_t microsecs = 0, secs = 0; | |
686 | clock_get_calendar_microtime((clock_sec_t *)&secs, (clock_usec_t *)µsecs); | |
687 | ||
688 | stackshot_microsecs = microsecs + (secs * USEC_PER_SEC); | |
689 | stack_snapshot_pid = pid; | |
690 | stack_snapshot_buf = tracebuf; | |
691 | stack_snapshot_bufsize = tracebuf_size; | |
692 | stack_snapshot_flags = flags; | |
693 | stack_snapshot_delta_since_timestamp = since_timestamp; | |
694 | ||
695 | panic_stackshot = ((flags & STACKSHOT_FROM_PANIC) != 0); | |
696 | ||
697 | if (data_p != NULL) { | |
698 | stackshot_kcdata_p = data_p; | |
699 | } | |
700 | } | |
701 | ||
702 | kern_return_t | |
703 | kdp_stack_snapshot_geterror(void) | |
704 | { | |
705 | return stack_snapshot_ret; | |
706 | } | |
707 | ||
708 | uint32_t | |
709 | kdp_stack_snapshot_bytes_traced(void) | |
710 | { | |
711 | return stack_snapshot_bytes_traced; | |
712 | } | |
713 | ||
714 | static boolean_t memory_iszero(void *addr, size_t size) | |
715 | { | |
716 | char *data = (char *)addr; | |
717 | for (size_t i = 0; i < size; i++){ | |
718 | if (data[i] != 0) | |
719 | return FALSE; | |
720 | } | |
721 | return TRUE; | |
722 | } | |
723 | ||
724 | #define kcd_end_address(kcd) ((void *)((uint64_t)((kcd)->kcd_addr_begin) + kcdata_memory_get_used_bytes((kcd)))) | |
725 | #define kcd_max_address(kcd) ((void *)((kcd)->kcd_addr_begin + (kcd)->kcd_length)) | |
726 | /* | |
727 | * Use of the kcd_exit_on_error(action) macro requires a local | |
728 | * 'kern_return_t error' variable and 'error_exit' label. | |
729 | */ | |
730 | #define kcd_exit_on_error(action) \ | |
731 | do { \ | |
732 | if (KERN_SUCCESS != (error = (action))) { \ | |
733 | if (error == KERN_RESOURCE_SHORTAGE) { \ | |
734 | error = KERN_INSUFFICIENT_BUFFER_SIZE; \ | |
735 | } \ | |
736 | goto error_exit; \ | |
737 | } \ | |
738 | } while (0); /* end kcd_exit_on_error */ | |
739 | ||
740 | static uint64_t | |
741 | kcdata_get_task_ss_flags(task_t task) | |
742 | { | |
743 | uint64_t ss_flags = 0; | |
744 | boolean_t task64 = task_has_64BitAddr(task); | |
745 | ||
746 | if (task64) | |
747 | ss_flags |= kUser64_p; | |
748 | if (!task->active || task_is_a_corpse(task)) | |
749 | ss_flags |= kTerminatedSnapshot; | |
750 | if (task->pidsuspended) | |
751 | ss_flags |= kPidSuspended; | |
752 | if (task->frozen) | |
753 | ss_flags |= kFrozen; | |
754 | if (task->effective_policy.tep_darwinbg == 1) | |
755 | ss_flags |= kTaskDarwinBG; | |
756 | if (task->requested_policy.trp_role == TASK_FOREGROUND_APPLICATION) | |
757 | ss_flags |= kTaskIsForeground; | |
758 | if (task->requested_policy.trp_boosted == 1) | |
759 | ss_flags |= kTaskIsBoosted; | |
760 | if (task->effective_policy.tep_sup_active == 1) | |
761 | ss_flags |= kTaskIsSuppressed; | |
762 | #if CONFIG_MEMORYSTATUS | |
763 | if (memorystatus_proc_is_dirty_unsafe(task->bsd_info)) | |
764 | ss_flags |= kTaskIsDirty; | |
765 | #endif | |
766 | ||
767 | ss_flags |= (0x7 & workqueue_get_pwq_state_kdp(task->bsd_info)) << 17; | |
768 | ||
769 | #if IMPORTANCE_INHERITANCE | |
770 | if (task->task_imp_base) { | |
771 | if (task->task_imp_base->iit_donor) | |
772 | ss_flags |= kTaskIsImpDonor; | |
773 | if (task->task_imp_base->iit_live_donor) | |
774 | ss_flags |= kTaskIsLiveImpDonor; | |
775 | } | |
776 | #endif | |
777 | ||
778 | return ss_flags; | |
779 | } | |
780 | ||
781 | static kern_return_t | |
782 | kcdata_record_shared_cache_info(kcdata_descriptor_t kcd, task_t task, struct dyld_uuid_info_64_v2 *sys_shared_cache_loadinfo, uint32_t trace_flags, uint64_t *task_snap_ss_flags) | |
783 | { | |
784 | kern_return_t error = KERN_SUCCESS; | |
785 | mach_vm_address_t out_addr = 0; | |
786 | ||
787 | uint8_t shared_cache_identifier[16]; | |
788 | uint64_t shared_cache_slide = 0; | |
789 | uint64_t shared_cache_base_address = 0; | |
790 | int task_pid = pid_from_task(task); | |
791 | boolean_t should_fault = (trace_flags & STACKSHOT_ENABLE_UUID_FAULTING); | |
792 | uint32_t kdp_fault_results = 0; | |
793 | ||
794 | assert(task_snap_ss_flags != NULL); | |
795 | ||
796 | if (task->shared_region && ml_validate_nofault((vm_offset_t)task->shared_region, sizeof(struct vm_shared_region))) { | |
797 | struct vm_shared_region *sr = task->shared_region; | |
798 | shared_cache_base_address = sr->sr_base_address + sr->sr_first_mapping; | |
799 | } else { | |
800 | *task_snap_ss_flags |= kTaskSharedRegionInfoUnavailable; | |
801 | } | |
802 | ||
803 | if (!shared_cache_base_address || | |
804 | !kdp_copyin(task->map, shared_cache_base_address + offsetof(struct _dyld_cache_header, uuid), | |
805 | shared_cache_identifier, sizeof(shared_cache_identifier), should_fault, &kdp_fault_results)) { | |
806 | goto error_exit; | |
807 | } | |
808 | ||
809 | if (task->shared_region) { | |
810 | /* | |
811 | * No refcounting here, but we are in debugger | |
812 | * context, so that should be safe. | |
813 | */ | |
814 | shared_cache_slide = task->shared_region->sr_slide_info.slide; | |
815 | } else { | |
816 | shared_cache_slide = 0; | |
817 | } | |
818 | ||
819 | if (sys_shared_cache_loadinfo) { | |
820 | if (task_pid == 1) { | |
821 | /* save launchd's shared cache info as system level */ | |
822 | stackshot_memcpy(sys_shared_cache_loadinfo->imageUUID, shared_cache_identifier, sizeof(sys_shared_cache_loadinfo->imageUUID)); | |
823 | sys_shared_cache_loadinfo->imageLoadAddress = shared_cache_slide; | |
824 | sys_shared_cache_loadinfo->imageSlidBaseAddress = shared_cache_slide + task->shared_region->sr_base_address; | |
825 | ||
826 | goto error_exit; | |
827 | } else { | |
828 | if (shared_cache_slide == sys_shared_cache_loadinfo->imageLoadAddress && | |
829 | 0 == memcmp(shared_cache_identifier, sys_shared_cache_loadinfo->imageUUID, | |
830 | sizeof(sys_shared_cache_loadinfo->imageUUID))) { | |
831 | /* skip adding shared cache info. its same as system level one */ | |
832 | goto error_exit; | |
833 | } | |
834 | } | |
835 | } | |
836 | ||
837 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_SHAREDCACHE_LOADINFO, sizeof(struct dyld_uuid_info_64_v2), &out_addr)); | |
838 | struct dyld_uuid_info_64_v2 *shared_cache_data = (struct dyld_uuid_info_64_v2 *)out_addr; | |
839 | shared_cache_data->imageLoadAddress = shared_cache_slide; | |
840 | stackshot_memcpy(shared_cache_data->imageUUID, shared_cache_identifier, sizeof(shared_cache_data->imageUUID)); | |
841 | shared_cache_data->imageSlidBaseAddress = shared_cache_base_address; | |
842 | ||
843 | error_exit: | |
844 | if (kdp_fault_results & KDP_FAULT_RESULT_PAGED_OUT) { | |
845 | *task_snap_ss_flags |= kTaskUUIDInfoMissing; | |
846 | } | |
847 | ||
848 | if (kdp_fault_results & KDP_FAULT_RESULT_TRIED_FAULT) { | |
849 | *task_snap_ss_flags |= kTaskUUIDInfoTriedFault; | |
850 | } | |
851 | ||
852 | if (kdp_fault_results & KDP_FAULT_RESULT_FAULTED_IN) { | |
853 | *task_snap_ss_flags |= kTaskUUIDInfoFaultedIn; | |
854 | } | |
855 | ||
856 | return error; | |
857 | } | |
858 | ||
859 | static kern_return_t | |
860 | kcdata_record_uuid_info(kcdata_descriptor_t kcd, task_t task, uint32_t trace_flags, boolean_t have_pmap, uint64_t *task_snap_ss_flags) | |
861 | { | |
862 | boolean_t save_loadinfo_p = ((trace_flags & STACKSHOT_SAVE_LOADINFO) != 0); | |
863 | boolean_t save_kextloadinfo_p = ((trace_flags & STACKSHOT_SAVE_KEXT_LOADINFO) != 0); | |
864 | boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); | |
865 | boolean_t minimize_uuids = collect_delta_stackshot && ((trace_flags & STACKSHOT_TAILSPIN) != 0); | |
866 | boolean_t should_fault = (trace_flags & STACKSHOT_ENABLE_UUID_FAULTING); | |
867 | ||
868 | kern_return_t error = KERN_SUCCESS; | |
869 | mach_vm_address_t out_addr = 0; | |
870 | ||
871 | uint32_t uuid_info_count = 0; | |
872 | mach_vm_address_t uuid_info_addr = 0; | |
873 | uint64_t uuid_info_timestamp = 0; | |
874 | uint32_t kdp_fault_results = 0; | |
875 | ||
876 | assert(task_snap_ss_flags != NULL); | |
877 | ||
878 | int task_pid = pid_from_task(task); | |
879 | boolean_t task64 = task_has_64BitAddr(task); | |
880 | ||
881 | if (save_loadinfo_p && have_pmap && task->active && task_pid > 0) { | |
882 | /* Read the dyld_all_image_infos struct from the task memory to get UUID array count and location */ | |
883 | if (task64) { | |
884 | struct user64_dyld_all_image_infos task_image_infos; | |
885 | if (kdp_copyin(task->map, task->all_image_info_addr, &task_image_infos, | |
886 | sizeof(struct user64_dyld_all_image_infos), should_fault, &kdp_fault_results)) { | |
887 | uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount; | |
888 | uuid_info_addr = task_image_infos.uuidArray; | |
889 | if (task_image_infos.version >= 15) { | |
890 | uuid_info_timestamp = task_image_infos.timestamp; | |
891 | } | |
892 | } | |
893 | } else { | |
894 | struct user32_dyld_all_image_infos task_image_infos; | |
895 | if (kdp_copyin(task->map, task->all_image_info_addr, &task_image_infos, | |
896 | sizeof(struct user32_dyld_all_image_infos), should_fault, &kdp_fault_results)) { | |
897 | uuid_info_count = task_image_infos.uuidArrayCount; | |
898 | uuid_info_addr = task_image_infos.uuidArray; | |
899 | if (task_image_infos.version >= 15) { | |
900 | uuid_info_timestamp = task_image_infos.timestamp; | |
901 | } | |
902 | } | |
903 | } | |
904 | ||
905 | /* | |
906 | * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating | |
907 | * this data structure), we zero the uuid_info_count so that we won't even try to save load info | |
908 | * for this task. | |
909 | */ | |
910 | if (!uuid_info_addr) { | |
911 | uuid_info_count = 0; | |
912 | } | |
913 | } | |
914 | ||
915 | if (have_pmap && task_pid == 0) { | |
916 | if (save_kextloadinfo_p && ml_validate_nofault((vm_offset_t)(gLoadedKextSummaries), sizeof(OSKextLoadedKextSummaryHeader))) { | |
917 | uuid_info_count = gLoadedKextSummaries->numSummaries + 1; /* include main kernel UUID */ | |
918 | } else { | |
919 | uuid_info_count = 1; /* include kernelcache UUID (embedded) or kernel UUID (desktop) */ | |
920 | } | |
921 | } | |
922 | ||
923 | if (task_pid > 0 && uuid_info_count > 0 && uuid_info_count < MAX_LOADINFOS) { | |
924 | if (minimize_uuids && uuid_info_timestamp != 0 && uuid_info_timestamp < stack_snapshot_delta_since_timestamp) | |
925 | goto error_exit; | |
926 | ||
927 | uint32_t uuid_info_size = (uint32_t)(task64 ? sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info)); | |
928 | uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size; | |
929 | ||
930 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, (task64 ? KCDATA_TYPE_LIBRARY_LOADINFO64 : KCDATA_TYPE_LIBRARY_LOADINFO), | |
931 | uuid_info_size, uuid_info_count, &out_addr)); | |
932 | ||
933 | /* Copy in the UUID info array | |
934 | * It may be nonresident, in which case just fix up nloadinfos to 0 in the task_snap | |
935 | */ | |
936 | if (have_pmap && !kdp_copyin(task->map, uuid_info_addr, (void *)out_addr, uuid_info_array_size, should_fault, &kdp_fault_results)) { | |
937 | bzero((void *)out_addr, uuid_info_array_size); | |
938 | } | |
939 | ||
940 | } else if (task_pid == 0 && uuid_info_count > 0 && uuid_info_count < MAX_LOADINFOS) { | |
941 | if (minimize_uuids && gLoadedKextSummaries != 0 && gLoadedKextSummariesTimestamp < stack_snapshot_delta_since_timestamp) | |
942 | goto error_exit; | |
943 | ||
944 | uintptr_t image_load_address; | |
945 | ||
946 | do { | |
947 | ||
948 | ||
949 | if (!kernel_uuid || !ml_validate_nofault((vm_offset_t)kernel_uuid, sizeof(uuid_t))) { | |
950 | /* Kernel UUID not found or inaccessible */ | |
951 | break; | |
952 | } | |
953 | ||
954 | kcd_exit_on_error(kcdata_get_memory_addr_for_array( | |
955 | kcd, (sizeof(kernel_uuid_info) == sizeof(struct user64_dyld_uuid_info)) ? KCDATA_TYPE_LIBRARY_LOADINFO64 | |
956 | : KCDATA_TYPE_LIBRARY_LOADINFO, | |
957 | sizeof(kernel_uuid_info), uuid_info_count, &out_addr)); | |
958 | kernel_uuid_info *uuid_info_array = (kernel_uuid_info *)out_addr; | |
959 | image_load_address = (uintptr_t)VM_KERNEL_UNSLIDE(vm_kernel_stext); | |
960 | uuid_info_array[0].imageLoadAddress = image_load_address; | |
961 | stackshot_memcpy(&uuid_info_array[0].imageUUID, kernel_uuid, sizeof(uuid_t)); | |
962 | ||
963 | if (save_kextloadinfo_p && | |
964 | ml_validate_nofault((vm_offset_t)(gLoadedKextSummaries), sizeof(OSKextLoadedKextSummaryHeader)) && | |
965 | ml_validate_nofault((vm_offset_t)(&gLoadedKextSummaries->summaries[0]), | |
966 | gLoadedKextSummaries->entry_size * gLoadedKextSummaries->numSummaries)) { | |
967 | uint32_t kexti; | |
968 | for (kexti=0 ; kexti < gLoadedKextSummaries->numSummaries; kexti++) { | |
969 | image_load_address = (uintptr_t)VM_KERNEL_UNSLIDE(gLoadedKextSummaries->summaries[kexti].address); | |
970 | uuid_info_array[kexti + 1].imageLoadAddress = image_load_address; | |
971 | stackshot_memcpy(&uuid_info_array[kexti + 1].imageUUID, &gLoadedKextSummaries->summaries[kexti].uuid, sizeof(uuid_t)); | |
972 | } | |
973 | } | |
974 | } while(0); | |
975 | } | |
976 | ||
977 | error_exit: | |
978 | if (kdp_fault_results & KDP_FAULT_RESULT_PAGED_OUT) { | |
979 | *task_snap_ss_flags |= kTaskUUIDInfoMissing; | |
980 | } | |
981 | ||
982 | if (kdp_fault_results & KDP_FAULT_RESULT_TRIED_FAULT) { | |
983 | *task_snap_ss_flags |= kTaskUUIDInfoTriedFault; | |
984 | } | |
985 | ||
986 | if (kdp_fault_results & KDP_FAULT_RESULT_FAULTED_IN) { | |
987 | *task_snap_ss_flags |= kTaskUUIDInfoFaultedIn; | |
988 | } | |
989 | ||
990 | return error; | |
991 | } | |
992 | ||
993 | static kern_return_t | |
994 | kcdata_record_task_iostats(kcdata_descriptor_t kcd, task_t task) | |
995 | { | |
996 | kern_return_t error = KERN_SUCCESS; | |
997 | mach_vm_address_t out_addr = 0; | |
998 | ||
999 | /* I/O Statistics if any counters are non zero */ | |
1000 | assert(IO_NUM_PRIORITIES == STACKSHOT_IO_NUM_PRIORITIES); | |
1001 | if (task->task_io_stats && !memory_iszero(task->task_io_stats, sizeof(struct io_stat_info))) { | |
1002 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_IOSTATS, sizeof(struct io_stats_snapshot), &out_addr)); | |
1003 | struct io_stats_snapshot *_iostat = (struct io_stats_snapshot *)out_addr; | |
1004 | _iostat->ss_disk_reads_count = task->task_io_stats->disk_reads.count; | |
1005 | _iostat->ss_disk_reads_size = task->task_io_stats->disk_reads.size; | |
1006 | _iostat->ss_disk_writes_count = (task->task_io_stats->total_io.count - task->task_io_stats->disk_reads.count); | |
1007 | _iostat->ss_disk_writes_size = (task->task_io_stats->total_io.size - task->task_io_stats->disk_reads.size); | |
1008 | _iostat->ss_paging_count = task->task_io_stats->paging.count; | |
1009 | _iostat->ss_paging_size = task->task_io_stats->paging.size; | |
1010 | _iostat->ss_non_paging_count = (task->task_io_stats->total_io.count - task->task_io_stats->paging.count); | |
1011 | _iostat->ss_non_paging_size = (task->task_io_stats->total_io.size - task->task_io_stats->paging.size); | |
1012 | _iostat->ss_metadata_count = task->task_io_stats->metadata.count; | |
1013 | _iostat->ss_metadata_size = task->task_io_stats->metadata.size; | |
1014 | _iostat->ss_data_count = (task->task_io_stats->total_io.count - task->task_io_stats->metadata.count); | |
1015 | _iostat->ss_data_size = (task->task_io_stats->total_io.size - task->task_io_stats->metadata.size); | |
1016 | for(int i = 0; i < IO_NUM_PRIORITIES; i++) { | |
1017 | _iostat->ss_io_priority_count[i] = task->task_io_stats->io_priority[i].count; | |
1018 | _iostat->ss_io_priority_size[i] = task->task_io_stats->io_priority[i].size; | |
1019 | } | |
1020 | } | |
1021 | ||
1022 | error_exit: | |
1023 | return error; | |
1024 | } | |
1025 | ||
1026 | static kern_return_t | |
1027 | kcdata_record_task_snapshot(kcdata_descriptor_t kcd, task_t task, uint32_t trace_flags, boolean_t have_pmap, uint64_t **task_snap_ss_flags) | |
1028 | { | |
1029 | boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); | |
1030 | boolean_t collect_iostats = !collect_delta_stackshot && !(trace_flags & STACKSHOT_TAILSPIN) && !(trace_flags & STACKSHOT_NO_IO_STATS); | |
1031 | ||
1032 | kern_return_t error = KERN_SUCCESS; | |
1033 | mach_vm_address_t out_addr = 0; | |
1034 | struct task_snapshot_v2 * cur_tsnap = NULL; | |
1035 | ||
1036 | assert(task_snap_ss_flags != NULL); | |
1037 | ||
1038 | int task_pid = pid_from_task(task); | |
1039 | uint64_t task_uniqueid = get_task_uniqueid(task); | |
1040 | ||
1041 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_TASK_SNAPSHOT, sizeof(struct task_snapshot_v2), &out_addr)); | |
1042 | ||
1043 | cur_tsnap = (struct task_snapshot_v2 *)out_addr; | |
1044 | ||
1045 | cur_tsnap->ts_unique_pid = task_uniqueid; | |
1046 | cur_tsnap->ts_ss_flags = kcdata_get_task_ss_flags(task); | |
1047 | *task_snap_ss_flags = &cur_tsnap->ts_ss_flags; | |
1048 | cur_tsnap->ts_user_time_in_terminated_threads = task->total_user_time; | |
1049 | cur_tsnap->ts_system_time_in_terminated_threads = task->total_system_time; | |
1050 | ||
1051 | cur_tsnap->ts_p_start_sec = 0; | |
1052 | proc_starttime_kdp(task->bsd_info, &cur_tsnap->ts_p_start_sec, NULL, NULL); | |
1053 | ||
1054 | cur_tsnap->ts_task_size = have_pmap ? (pmap_resident_count(task->map->pmap) * PAGE_SIZE) : 0; | |
1055 | cur_tsnap->ts_max_resident_size = get_task_resident_max(task); | |
1056 | cur_tsnap->ts_suspend_count = task->suspend_count; | |
1057 | cur_tsnap->ts_faults = task->faults; | |
1058 | cur_tsnap->ts_pageins = task->pageins; | |
1059 | cur_tsnap->ts_cow_faults = task->cow_faults; | |
1060 | cur_tsnap->ts_was_throttled = (uint32_t) proc_was_throttled_from_task(task); | |
1061 | cur_tsnap->ts_did_throttle = (uint32_t) proc_did_throttle_from_task(task); | |
1062 | cur_tsnap->ts_latency_qos = (task->effective_policy.tep_latency_qos == LATENCY_QOS_TIER_UNSPECIFIED) ? | |
1063 | LATENCY_QOS_TIER_UNSPECIFIED : ((0xFF << 16) | task->effective_policy.tep_latency_qos); | |
1064 | cur_tsnap->ts_pid = task_pid; | |
1065 | ||
1066 | /* Add the BSD process identifiers */ | |
1067 | if (task_pid != -1 && task->bsd_info != NULL) | |
1068 | proc_name_kdp(task, cur_tsnap->ts_p_comm, sizeof(cur_tsnap->ts_p_comm)); | |
1069 | else { | |
1070 | cur_tsnap->ts_p_comm[0] = '\0'; | |
1071 | #if IMPORTANCE_INHERITANCE && (DEVELOPMENT || DEBUG) | |
1072 | if (task->task_imp_base != NULL) { | |
1073 | stackshot_strlcpy(cur_tsnap->ts_p_comm, &task->task_imp_base->iit_procname[0], | |
1074 | MIN((int)sizeof(task->task_imp_base->iit_procname), (int)sizeof(cur_tsnap->ts_p_comm))); | |
1075 | } | |
1076 | #endif | |
1077 | } | |
1078 | ||
1079 | if (collect_iostats) { | |
1080 | kcd_exit_on_error(kcdata_record_task_iostats(kcd, task)); | |
1081 | } | |
1082 | ||
1083 | error_exit: | |
1084 | return error; | |
1085 | } | |
1086 | ||
1087 | static kern_return_t | |
1088 | kcdata_record_task_delta_snapshot(kcdata_descriptor_t kcd, task_t task, boolean_t have_pmap, uint64_t **task_snap_ss_flags) | |
1089 | { | |
1090 | kern_return_t error = KERN_SUCCESS; | |
1091 | struct task_delta_snapshot_v2 * cur_tsnap = NULL; | |
1092 | mach_vm_address_t out_addr = 0; | |
1093 | ||
1094 | uint64_t task_uniqueid = get_task_uniqueid(task); | |
1095 | assert(task_snap_ss_flags != NULL); | |
1096 | ||
1097 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_TASK_DELTA_SNAPSHOT, sizeof(struct task_delta_snapshot_v2), &out_addr)); | |
1098 | ||
1099 | cur_tsnap = (struct task_delta_snapshot_v2 *)out_addr; | |
1100 | ||
1101 | cur_tsnap->tds_unique_pid = task_uniqueid; | |
1102 | cur_tsnap->tds_ss_flags = kcdata_get_task_ss_flags(task); | |
1103 | *task_snap_ss_flags = &cur_tsnap->tds_ss_flags; | |
1104 | ||
1105 | cur_tsnap->tds_user_time_in_terminated_threads = task->total_user_time; | |
1106 | cur_tsnap->tds_system_time_in_terminated_threads = task->total_system_time; | |
1107 | ||
1108 | cur_tsnap->tds_task_size = have_pmap ? (pmap_resident_count(task->map->pmap) * PAGE_SIZE) : 0; | |
1109 | ||
1110 | cur_tsnap->tds_max_resident_size = get_task_resident_max(task); | |
1111 | cur_tsnap->tds_suspend_count = task->suspend_count; | |
1112 | cur_tsnap->tds_faults = task->faults; | |
1113 | cur_tsnap->tds_pageins = task->pageins; | |
1114 | cur_tsnap->tds_cow_faults = task->cow_faults; | |
1115 | cur_tsnap->tds_was_throttled = (uint32_t)proc_was_throttled_from_task(task); | |
1116 | cur_tsnap->tds_did_throttle = (uint32_t)proc_did_throttle_from_task(task); | |
1117 | cur_tsnap->tds_latency_qos = (task-> effective_policy.tep_latency_qos == LATENCY_QOS_TIER_UNSPECIFIED) | |
1118 | ? LATENCY_QOS_TIER_UNSPECIFIED | |
1119 | : ((0xFF << 16) | task-> effective_policy.tep_latency_qos); | |
1120 | ||
1121 | error_exit: | |
1122 | return error; | |
1123 | } | |
1124 | ||
1125 | static kern_return_t | |
1126 | kcdata_record_thread_iostats(kcdata_descriptor_t kcd, thread_t thread) | |
1127 | { | |
1128 | kern_return_t error = KERN_SUCCESS; | |
1129 | mach_vm_address_t out_addr = 0; | |
1130 | ||
1131 | /* I/O Statistics */ | |
1132 | assert(IO_NUM_PRIORITIES == STACKSHOT_IO_NUM_PRIORITIES); | |
1133 | if (thread->thread_io_stats && !memory_iszero(thread->thread_io_stats, sizeof(struct io_stat_info))) { | |
1134 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_IOSTATS, sizeof(struct io_stats_snapshot), &out_addr)); | |
1135 | struct io_stats_snapshot *_iostat = (struct io_stats_snapshot *)out_addr; | |
1136 | _iostat->ss_disk_reads_count = thread->thread_io_stats->disk_reads.count; | |
1137 | _iostat->ss_disk_reads_size = thread->thread_io_stats->disk_reads.size; | |
1138 | _iostat->ss_disk_writes_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->disk_reads.count); | |
1139 | _iostat->ss_disk_writes_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->disk_reads.size); | |
1140 | _iostat->ss_paging_count = thread->thread_io_stats->paging.count; | |
1141 | _iostat->ss_paging_size = thread->thread_io_stats->paging.size; | |
1142 | _iostat->ss_non_paging_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->paging.count); | |
1143 | _iostat->ss_non_paging_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->paging.size); | |
1144 | _iostat->ss_metadata_count = thread->thread_io_stats->metadata.count; | |
1145 | _iostat->ss_metadata_size = thread->thread_io_stats->metadata.size; | |
1146 | _iostat->ss_data_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->metadata.count); | |
1147 | _iostat->ss_data_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->metadata.size); | |
1148 | for(int i = 0; i < IO_NUM_PRIORITIES; i++) { | |
1149 | _iostat->ss_io_priority_count[i] = thread->thread_io_stats->io_priority[i].count; | |
1150 | _iostat->ss_io_priority_size[i] = thread->thread_io_stats->io_priority[i].size; | |
1151 | } | |
1152 | } | |
1153 | ||
1154 | error_exit: | |
1155 | return error; | |
1156 | } | |
1157 | ||
1158 | static kern_return_t | |
1159 | kcdata_record_thread_snapshot( | |
1160 | kcdata_descriptor_t kcd, thread_t thread, task_t task, uint32_t trace_flags, boolean_t have_pmap, boolean_t thread_on_core) | |
1161 | { | |
1162 | boolean_t dispatch_p = ((trace_flags & STACKSHOT_GET_DQ) != 0); | |
1163 | boolean_t active_kthreads_only_p = ((trace_flags & STACKSHOT_ACTIVE_KERNEL_THREADS_ONLY) != 0); | |
1164 | boolean_t trace_fp_p = ((trace_flags & STACKSHOT_TAILSPIN) == 0); | |
1165 | boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); | |
1166 | boolean_t collect_iostats = !collect_delta_stackshot && !(trace_flags & STACKSHOT_TAILSPIN) && !(trace_flags & STACKSHOT_NO_IO_STATS); | |
1167 | ||
1168 | kern_return_t error = KERN_SUCCESS; | |
1169 | mach_vm_address_t out_addr = 0; | |
1170 | int saved_count = 0; | |
1171 | ||
1172 | struct thread_snapshot_v3 * cur_thread_snap = NULL; | |
1173 | char cur_thread_name[STACKSHOT_MAX_THREAD_NAME_SIZE]; | |
1174 | uint64_t tval = 0; | |
1175 | boolean_t task64 = task_has_64BitAddr(task); | |
1176 | ||
1177 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_THREAD_SNAPSHOT, sizeof(struct thread_snapshot_v3), &out_addr)); | |
1178 | cur_thread_snap = (struct thread_snapshot_v3 *)out_addr; | |
1179 | ||
1180 | /* Populate the thread snapshot header */ | |
1181 | cur_thread_snap->ths_thread_id = thread_tid(thread); | |
1182 | cur_thread_snap->ths_wait_event = VM_KERNEL_UNSLIDE_OR_PERM(thread->wait_event); | |
1183 | cur_thread_snap->ths_continuation = VM_KERNEL_UNSLIDE(thread->continuation); | |
1184 | cur_thread_snap->ths_total_syscalls = thread->syscalls_mach + thread->syscalls_unix; | |
1185 | ||
1186 | if (IPC_VOUCHER_NULL != thread->ith_voucher) | |
1187 | cur_thread_snap->ths_voucher_identifier = VM_KERNEL_ADDRPERM(thread->ith_voucher); | |
1188 | else | |
1189 | cur_thread_snap->ths_voucher_identifier = 0; | |
1190 | ||
1191 | cur_thread_snap->ths_dqserialnum = 0; | |
1192 | if (dispatch_p && (task != kernel_task) && (task->active) && have_pmap) { | |
1193 | uint64_t dqkeyaddr = thread_dispatchqaddr(thread); | |
1194 | if (dqkeyaddr != 0) { | |
1195 | uint64_t dqaddr = 0; | |
1196 | boolean_t copyin_ok = kdp_copyin_word(task, dqkeyaddr, &dqaddr, FALSE, NULL); | |
1197 | if (copyin_ok && dqaddr != 0) { | |
1198 | uint64_t dqserialnumaddr = dqaddr + get_task_dispatchqueue_serialno_offset(task); | |
1199 | uint64_t dqserialnum = 0; | |
1200 | copyin_ok = kdp_copyin_word(task, dqserialnumaddr, &dqserialnum, FALSE, NULL); | |
1201 | if (copyin_ok) { | |
1202 | cur_thread_snap->ths_ss_flags |= kHasDispatchSerial; | |
1203 | cur_thread_snap->ths_dqserialnum = dqserialnum; | |
1204 | } | |
1205 | } | |
1206 | } | |
1207 | } | |
1208 | ||
1209 | tval = safe_grab_timer_value(&thread->user_timer); | |
1210 | cur_thread_snap->ths_user_time = tval; | |
1211 | tval = safe_grab_timer_value(&thread->system_timer); | |
1212 | ||
1213 | if (thread->precise_user_kernel_time) { | |
1214 | cur_thread_snap->ths_sys_time = tval; | |
1215 | } else { | |
1216 | cur_thread_snap->ths_user_time += tval; | |
1217 | cur_thread_snap->ths_sys_time = 0; | |
1218 | } | |
1219 | ||
1220 | cur_thread_snap->ths_ss_flags = 0; | |
1221 | if (thread->effective_policy.thep_darwinbg) | |
1222 | cur_thread_snap->ths_ss_flags |= kThreadDarwinBG; | |
1223 | if (proc_get_effective_thread_policy(thread, TASK_POLICY_PASSIVE_IO)) | |
1224 | cur_thread_snap->ths_ss_flags |= kThreadIOPassive; | |
1225 | if (thread->suspend_count > 0) | |
1226 | cur_thread_snap->ths_ss_flags |= kThreadSuspended; | |
1227 | if (thread->options & TH_OPT_GLOBAL_FORCED_IDLE) | |
1228 | cur_thread_snap->ths_ss_flags |= kGlobalForcedIdle; | |
1229 | if (thread_on_core) | |
1230 | cur_thread_snap->ths_ss_flags |= kThreadOnCore; | |
1231 | if (stackshot_thread_is_idle_worker_unsafe(thread)) | |
1232 | cur_thread_snap->ths_ss_flags |= kThreadIdleWorker; | |
1233 | ||
1234 | /* make sure state flags defined in kcdata.h still match internal flags */ | |
1235 | static_assert(SS_TH_WAIT == TH_WAIT); | |
1236 | static_assert(SS_TH_SUSP == TH_SUSP); | |
1237 | static_assert(SS_TH_RUN == TH_RUN); | |
1238 | static_assert(SS_TH_UNINT == TH_UNINT); | |
1239 | static_assert(SS_TH_TERMINATE == TH_TERMINATE); | |
1240 | static_assert(SS_TH_TERMINATE2 == TH_TERMINATE2); | |
1241 | static_assert(SS_TH_IDLE == TH_IDLE); | |
1242 | ||
1243 | cur_thread_snap->ths_last_run_time = thread->last_run_time; | |
1244 | cur_thread_snap->ths_last_made_runnable_time = thread->last_made_runnable_time; | |
1245 | cur_thread_snap->ths_state = thread->state; | |
1246 | cur_thread_snap->ths_sched_flags = thread->sched_flags; | |
1247 | cur_thread_snap->ths_base_priority = thread->base_pri; | |
1248 | cur_thread_snap->ths_sched_priority = thread->sched_pri; | |
1249 | cur_thread_snap->ths_eqos = thread->effective_policy.thep_qos; | |
1250 | cur_thread_snap->ths_rqos = thread->requested_policy.thrp_qos; | |
1251 | cur_thread_snap->ths_rqos_override = thread->requested_policy.thrp_qos_override; | |
1252 | cur_thread_snap->ths_io_tier = proc_get_effective_thread_policy(thread, TASK_POLICY_IO); | |
1253 | cur_thread_snap->ths_thread_t = VM_KERNEL_ADDRPERM(thread); | |
1254 | ||
1255 | /* if there is thread name then add to buffer */ | |
1256 | cur_thread_name[0] = '\0'; | |
1257 | proc_threadname_kdp(thread->uthread, cur_thread_name, STACKSHOT_MAX_THREAD_NAME_SIZE); | |
1258 | if (strnlen(cur_thread_name, STACKSHOT_MAX_THREAD_NAME_SIZE) > 0) { | |
1259 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_THREAD_NAME, sizeof(cur_thread_name), &out_addr)); | |
1260 | stackshot_memcpy((void *)out_addr, (void *)cur_thread_name, sizeof(cur_thread_name)); | |
1261 | } | |
1262 | ||
1263 | /* record system and user cpu times */ | |
1264 | time_value_t user_time; | |
1265 | time_value_t system_time; | |
1266 | thread_read_times(thread, &user_time, &system_time); | |
1267 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_CPU_TIMES, sizeof(struct stackshot_cpu_times), &out_addr)); | |
1268 | struct stackshot_cpu_times * stackshot_cpu_times = (struct stackshot_cpu_times *)out_addr; | |
1269 | stackshot_cpu_times->user_usec = ((uint64_t)user_time.seconds) * USEC_PER_SEC + user_time.microseconds; | |
1270 | stackshot_cpu_times->system_usec = ((uint64_t)system_time.seconds) * USEC_PER_SEC + system_time.microseconds; | |
1271 | ||
1272 | /* Trace user stack, if any */ | |
1273 | if (!active_kthreads_only_p && task->active && thread->task->map != kernel_map) { | |
1274 | uint32_t thread_snapshot_flags = 0; | |
1275 | /* 64-bit task? */ | |
1276 | if (task64) { | |
1277 | out_addr = (mach_vm_address_t)kcd_end_address(kcd); | |
1278 | saved_count = machine_trace_thread64(thread, (char *)out_addr, (char *)kcd_max_address(kcd), MAX_FRAMES, TRUE, | |
1279 | trace_fp_p, &thread_snapshot_flags); | |
1280 | if (saved_count > 0) { | |
1281 | int frame_size = trace_fp_p ? sizeof(struct stack_snapshot_frame64) : sizeof(uint64_t); | |
1282 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, trace_fp_p ? STACKSHOT_KCTYPE_USER_STACKFRAME64 | |
1283 | : STACKSHOT_KCTYPE_USER_STACKLR64, | |
1284 | frame_size, saved_count / frame_size, &out_addr)); | |
1285 | cur_thread_snap->ths_ss_flags |= kUser64_p; | |
1286 | } | |
1287 | } else { | |
1288 | out_addr = (mach_vm_address_t)kcd_end_address(kcd); | |
1289 | saved_count = machine_trace_thread(thread, (char *)out_addr, (char *)kcd_max_address(kcd), MAX_FRAMES, TRUE, trace_fp_p, | |
1290 | &thread_snapshot_flags); | |
1291 | if (saved_count > 0) { | |
1292 | int frame_size = trace_fp_p ? sizeof(struct stack_snapshot_frame32) : sizeof(uint32_t); | |
1293 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, trace_fp_p ? STACKSHOT_KCTYPE_USER_STACKFRAME | |
1294 | : STACKSHOT_KCTYPE_USER_STACKLR, | |
1295 | frame_size, saved_count / frame_size, &out_addr)); | |
1296 | } | |
1297 | } | |
1298 | ||
1299 | if (thread_snapshot_flags != 0) { | |
1300 | cur_thread_snap->ths_ss_flags |= thread_snapshot_flags; | |
1301 | } | |
1302 | } | |
1303 | ||
1304 | /* Call through to the machine specific trace routines | |
1305 | * Frames are added past the snapshot header. | |
1306 | */ | |
1307 | if (thread->kernel_stack != 0) { | |
1308 | uint32_t thread_snapshot_flags = 0; | |
1309 | #if defined(__LP64__) | |
1310 | out_addr = (mach_vm_address_t)kcd_end_address(kcd); | |
1311 | saved_count = machine_trace_thread64(thread, (char *)out_addr, (char *)kcd_max_address(kcd), MAX_FRAMES, FALSE, trace_fp_p, | |
1312 | &thread_snapshot_flags); | |
1313 | if (saved_count > 0) { | |
1314 | int frame_size = trace_fp_p ? sizeof(struct stack_snapshot_frame64) : sizeof(uint64_t); | |
1315 | cur_thread_snap->ths_ss_flags |= kKernel64_p; | |
1316 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, trace_fp_p ? STACKSHOT_KCTYPE_KERN_STACKFRAME64 | |
1317 | : STACKSHOT_KCTYPE_KERN_STACKLR64, | |
1318 | frame_size, saved_count / frame_size, &out_addr)); | |
1319 | } | |
1320 | #else | |
1321 | out_addr = (mach_vm_address_t)kcd_end_address(kcd); | |
1322 | saved_count = machine_trace_thread(thread, (char *)out_addr, (char *)kcd_max_address(kcd), MAX_FRAMES, FALSE, trace_fp_p, | |
1323 | &thread_snapshot_flags); | |
1324 | if (saved_count > 0) { | |
1325 | int frame_size = trace_fp_p ? sizeof(struct stack_snapshot_frame32) : sizeof(uint32_t); | |
1326 | kcd_exit_on_error( | |
1327 | kcdata_get_memory_addr_for_array(kcd, trace_fp_p ? STACKSHOT_KCTYPE_KERN_STACKFRAME : STACKSHOT_KCTYPE_KERN_STACKLR, | |
1328 | frame_size, saved_count / frame_size, &out_addr)); | |
1329 | } | |
1330 | #endif | |
1331 | if (thread_snapshot_flags != 0) { | |
1332 | cur_thread_snap->ths_ss_flags |= thread_snapshot_flags; | |
1333 | } | |
1334 | } | |
1335 | ||
1336 | if (collect_iostats) { | |
1337 | kcd_exit_on_error(kcdata_record_thread_iostats(kcd, thread)); | |
1338 | } | |
1339 | ||
1340 | error_exit: | |
1341 | return error; | |
1342 | } | |
1343 | ||
1344 | static int | |
1345 | kcdata_record_thread_delta_snapshot(struct thread_delta_snapshot_v2 * cur_thread_snap, thread_t thread, boolean_t thread_on_core) | |
1346 | { | |
1347 | cur_thread_snap->tds_thread_id = thread_tid(thread); | |
1348 | if (IPC_VOUCHER_NULL != thread->ith_voucher) | |
1349 | cur_thread_snap->tds_voucher_identifier = VM_KERNEL_ADDRPERM(thread->ith_voucher); | |
1350 | else | |
1351 | cur_thread_snap->tds_voucher_identifier = 0; | |
1352 | ||
1353 | cur_thread_snap->tds_ss_flags = 0; | |
1354 | if (thread->effective_policy.thep_darwinbg) | |
1355 | cur_thread_snap->tds_ss_flags |= kThreadDarwinBG; | |
1356 | if (proc_get_effective_thread_policy(thread, TASK_POLICY_PASSIVE_IO)) | |
1357 | cur_thread_snap->tds_ss_flags |= kThreadIOPassive; | |
1358 | if (thread->suspend_count > 0) | |
1359 | cur_thread_snap->tds_ss_flags |= kThreadSuspended; | |
1360 | if (thread->options & TH_OPT_GLOBAL_FORCED_IDLE) | |
1361 | cur_thread_snap->tds_ss_flags |= kGlobalForcedIdle; | |
1362 | if (thread_on_core) | |
1363 | cur_thread_snap->tds_ss_flags |= kThreadOnCore; | |
1364 | if (stackshot_thread_is_idle_worker_unsafe(thread)) | |
1365 | cur_thread_snap->tds_ss_flags |= kThreadIdleWorker; | |
1366 | ||
1367 | cur_thread_snap->tds_last_made_runnable_time = thread->last_made_runnable_time; | |
1368 | cur_thread_snap->tds_state = thread->state; | |
1369 | cur_thread_snap->tds_sched_flags = thread->sched_flags; | |
1370 | cur_thread_snap->tds_base_priority = thread->base_pri; | |
1371 | cur_thread_snap->tds_sched_priority = thread->sched_pri; | |
1372 | cur_thread_snap->tds_eqos = thread->effective_policy.thep_qos; | |
1373 | cur_thread_snap->tds_rqos = thread->requested_policy.thrp_qos; | |
1374 | cur_thread_snap->tds_rqos_override = thread->requested_policy.thrp_qos_override; | |
1375 | cur_thread_snap->tds_io_tier = proc_get_effective_thread_policy(thread, TASK_POLICY_IO); | |
1376 | ||
1377 | return 0; | |
1378 | } | |
1379 | ||
1380 | /* | |
1381 | * Why 12? 12 strikes a decent balance between allocating a large array on | |
1382 | * the stack and having large kcdata item overheads for recording nonrunable | |
1383 | * tasks. | |
1384 | */ | |
1385 | #define UNIQUEIDSPERFLUSH 12 | |
1386 | ||
1387 | struct saved_uniqueids { | |
1388 | uint64_t ids[UNIQUEIDSPERFLUSH]; | |
1389 | unsigned count; | |
1390 | }; | |
1391 | ||
1392 | static kern_return_t | |
1393 | flush_nonrunnable_tasks(struct saved_uniqueids * ids) | |
1394 | { | |
1395 | if (ids->count == 0) | |
1396 | return KERN_SUCCESS; | |
1397 | mach_vm_address_t out_addr = 0; | |
1398 | kern_return_t ret = kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_NONRUNNABLE_TASKS, sizeof(uint64_t), | |
1399 | ids->count, &out_addr); | |
1400 | if (ret != KERN_SUCCESS) { | |
1401 | return ret; | |
1402 | } | |
1403 | stackshot_memcpy((void *)out_addr, ids->ids, sizeof(uint64_t) * ids->count); | |
1404 | ids->count = 0; | |
1405 | return ret; | |
1406 | } | |
1407 | ||
1408 | static kern_return_t | |
1409 | handle_nonrunnable_task(struct saved_uniqueids * ids, uint64_t pid) | |
1410 | { | |
1411 | kern_return_t ret = KERN_SUCCESS; | |
1412 | ids->ids[ids->count] = pid; | |
1413 | ids->count++; | |
1414 | assert(ids->count <= UNIQUEIDSPERFLUSH); | |
1415 | if (ids->count == UNIQUEIDSPERFLUSH) | |
1416 | ret = flush_nonrunnable_tasks(ids); | |
1417 | return ret; | |
1418 | } | |
1419 | ||
1420 | enum thread_classification { | |
1421 | tc_full_snapshot, /* take a full snapshot */ | |
1422 | tc_delta_snapshot, /* take a delta snapshot */ | |
1423 | tc_nonrunnable, /* only report id */ | |
1424 | }; | |
1425 | ||
1426 | static enum thread_classification | |
1427 | classify_thread(thread_t thread, boolean_t * thread_on_core_p, uint32_t trace_flags) | |
1428 | { | |
1429 | boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); | |
1430 | boolean_t minimize_nonrunnables = ((trace_flags & STACKSHOT_TAILSPIN) != 0); | |
1431 | ||
1432 | processor_t last_processor = thread->last_processor; | |
1433 | ||
1434 | boolean_t thread_on_core = | |
1435 | (last_processor != PROCESSOR_NULL && last_processor->state == PROCESSOR_RUNNING && last_processor->active_thread == thread); | |
1436 | ||
1437 | *thread_on_core_p = thread_on_core; | |
1438 | ||
1439 | /* Capture the full thread snapshot if this is not a delta stackshot or if the thread has run subsequent to the | |
1440 | * previous full stackshot */ | |
1441 | if (!collect_delta_stackshot || thread_on_core || (thread->last_run_time > stack_snapshot_delta_since_timestamp)) { | |
1442 | return tc_full_snapshot; | |
1443 | } else { | |
1444 | if (minimize_nonrunnables && !(thread->state & TH_RUN)) { | |
1445 | return tc_nonrunnable; | |
1446 | } else { | |
1447 | return tc_delta_snapshot; | |
1448 | } | |
1449 | } | |
1450 | } | |
1451 | ||
1452 | static kern_return_t | |
1453 | kdp_stackshot_kcdata_format(int pid, uint32_t trace_flags, uint32_t * pBytesTraced) | |
1454 | { | |
1455 | kern_return_t error = KERN_SUCCESS; | |
1456 | mach_vm_address_t out_addr = 0; | |
1457 | uint64_t abs_time = 0, abs_time_end = 0; | |
1458 | uint64_t *abs_time_addr = NULL; | |
1459 | uint64_t system_state_flags = 0; | |
1460 | int saved_count = 0; | |
1461 | task_t task = TASK_NULL; | |
1462 | thread_t thread = THREAD_NULL; | |
1463 | mach_timebase_info_data_t timebase = {0, 0}; | |
1464 | uint32_t length_to_copy = 0, tmp32 = 0; | |
1465 | ||
1466 | abs_time = mach_absolute_time(); | |
1467 | ||
1468 | /* process the flags */ | |
1469 | boolean_t active_kthreads_only_p = ((trace_flags & STACKSHOT_ACTIVE_KERNEL_THREADS_ONLY) != 0); | |
1470 | boolean_t save_donating_pids_p = ((trace_flags & STACKSHOT_SAVE_IMP_DONATION_PIDS) != 0); | |
1471 | boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); | |
1472 | boolean_t minimize_nonrunnables = ((trace_flags & STACKSHOT_TAILSPIN) != 0); | |
1473 | boolean_t use_fault_path = ((trace_flags & (STACKSHOT_ENABLE_UUID_FAULTING | STACKSHOT_ENABLE_BT_FAULTING)) != 0); | |
1474 | ||
1475 | stack_enable_faulting = (trace_flags & (STACKSHOT_ENABLE_BT_FAULTING)); | |
1476 | ||
1477 | ||
1478 | struct saved_uniqueids saved_uniqueids = {.count = 0}; | |
1479 | ||
1480 | if (use_fault_path) { | |
1481 | fault_stats.sfs_pages_faulted_in = 0; | |
1482 | fault_stats.sfs_time_spent_faulting = 0; | |
1483 | fault_stats.sfs_stopped_faulting = (uint8_t) FALSE; | |
1484 | } | |
1485 | ||
1486 | if (sizeof(void *) == 8) | |
1487 | system_state_flags |= kKernel64_p; | |
1488 | ||
1489 | if (stackshot_kcdata_p == NULL || pBytesTraced == NULL) { | |
1490 | error = KERN_INVALID_ARGUMENT; | |
1491 | goto error_exit; | |
1492 | } | |
1493 | ||
1494 | /* setup mach_absolute_time and timebase info -- copy out in some cases and needed to convert since_timestamp to seconds for proc start time */ | |
1495 | clock_timebase_info(&timebase); | |
1496 | ||
1497 | /* begin saving data into the buffer */ | |
1498 | *pBytesTraced = 0; | |
1499 | kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p, trace_flags, "stackshot_in_flags")); | |
1500 | kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p, (uint32_t)pid, "stackshot_in_pid")); | |
1501 | kcd_exit_on_error(kcdata_add_uint64_with_description(stackshot_kcdata_p, system_state_flags, "system_state_flags")); | |
1502 | ||
1503 | #if CONFIG_JETSAM | |
1504 | tmp32 = memorystatus_get_pressure_status_kdp(); | |
1505 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_JETSAM_LEVEL, sizeof(uint32_t), &out_addr)); | |
1506 | stackshot_memcpy((void *)out_addr, &tmp32, sizeof(tmp32)); | |
1507 | #endif | |
1508 | ||
1509 | if (!collect_delta_stackshot) { | |
1510 | tmp32 = PAGE_SIZE; | |
1511 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_KERN_PAGE_SIZE, sizeof(uint32_t), &out_addr)); | |
1512 | stackshot_memcpy((void *)out_addr, &tmp32, sizeof(tmp32)); | |
1513 | ||
1514 | /* save boot-args and osversion string */ | |
1515 | length_to_copy = MIN((uint32_t)(strlen(version) + 1), OSVERSIZE); | |
1516 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_OSVERSION, length_to_copy, &out_addr)); | |
1517 | stackshot_strlcpy((char*)out_addr, &version[0], length_to_copy); | |
1518 | ||
1519 | length_to_copy = MIN((uint32_t)(strlen(PE_boot_args()) + 1), OSVERSIZE); | |
1520 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_BOOTARGS, length_to_copy, &out_addr)); | |
1521 | stackshot_strlcpy((char*)out_addr, PE_boot_args(), length_to_copy); | |
1522 | ||
1523 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, KCDATA_TYPE_TIMEBASE, sizeof(timebase), &out_addr)); | |
1524 | stackshot_memcpy((void *)out_addr, &timebase, sizeof(timebase)); | |
1525 | } else { | |
1526 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_DELTA_SINCE_TIMESTAMP, sizeof(uint64_t), &out_addr)); | |
1527 | stackshot_memcpy((void*)out_addr, &stack_snapshot_delta_since_timestamp, sizeof(stack_snapshot_delta_since_timestamp)); | |
1528 | } | |
1529 | ||
1530 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, KCDATA_TYPE_MACH_ABSOLUTE_TIME, sizeof(uint64_t), &out_addr)); | |
1531 | abs_time_addr = (uint64_t *)out_addr; | |
1532 | stackshot_memcpy((void *)abs_time_addr, &abs_time, sizeof(uint64_t)); | |
1533 | ||
1534 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, KCDATA_TYPE_USECS_SINCE_EPOCH, sizeof(uint64_t), &out_addr)); | |
1535 | stackshot_memcpy((void *)out_addr, &stackshot_microsecs, sizeof(uint64_t)); | |
1536 | ||
1537 | /* reserve space of system level shared cache load info */ | |
1538 | struct dyld_uuid_info_64_v2 * sys_shared_cache_loadinfo = NULL; | |
1539 | if (!collect_delta_stackshot) { | |
1540 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_SHAREDCACHE_LOADINFO, | |
1541 | sizeof(struct dyld_uuid_info_64_v2), &out_addr)); | |
1542 | sys_shared_cache_loadinfo = (struct dyld_uuid_info_64_v2 *)out_addr; | |
1543 | bzero((void *)sys_shared_cache_loadinfo, sizeof(struct dyld_uuid_info_64_v2)); | |
1544 | } | |
1545 | ||
1546 | /* Add requested information first */ | |
1547 | if (trace_flags & STACKSHOT_GET_GLOBAL_MEM_STATS) { | |
1548 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_GLOBAL_MEM_STATS, sizeof(struct mem_and_io_snapshot), &out_addr)); | |
1549 | kdp_mem_and_io_snapshot((struct mem_and_io_snapshot *)out_addr); | |
1550 | } | |
1551 | ||
1552 | /* Iterate over tasks */ | |
1553 | queue_head_t *task_list = &tasks; | |
1554 | queue_iterate(task_list, task, task_t, tasks) { | |
1555 | int task_pid = 0; | |
1556 | uint64_t task_uniqueid = 0; | |
1557 | int num_delta_thread_snapshots = 0; | |
1558 | int num_nonrunnable_threads = 0; | |
1559 | uint64_t task_start_abstime = 0; | |
1560 | boolean_t task_delta_stackshot = FALSE; | |
1561 | boolean_t task64 = FALSE, have_map = FALSE, have_pmap = FALSE; | |
1562 | boolean_t some_thread_ran = FALSE; | |
1563 | uint64_t *task_snap_ss_flags = NULL; | |
1564 | ||
1565 | if ((task == NULL) || !ml_validate_nofault((vm_offset_t)task, sizeof(struct task))) { | |
1566 | error = KERN_FAILURE; | |
1567 | goto error_exit; | |
1568 | } | |
1569 | ||
1570 | have_map = (task->map != NULL) && (ml_validate_nofault((vm_offset_t)(task->map), sizeof(struct _vm_map))); | |
1571 | have_pmap = have_map && (task->map->pmap != NULL) && (ml_validate_nofault((vm_offset_t)(task->map->pmap), sizeof(struct pmap))); | |
1572 | ||
1573 | task_pid = pid_from_task(task); | |
1574 | task_uniqueid = get_task_uniqueid(task); | |
1575 | task64 = task_has_64BitAddr(task); | |
1576 | ||
1577 | if (!task->active || task_is_a_corpse(task)) { | |
1578 | /* | |
1579 | * Not interested in terminated tasks without threads, and | |
1580 | * at the moment, stackshot can't handle a task without a name. | |
1581 | */ | |
1582 | if (queue_empty(&task->threads) || task_pid == -1) { | |
1583 | continue; | |
1584 | } | |
1585 | } | |
1586 | ||
1587 | if (collect_delta_stackshot) { | |
1588 | proc_starttime_kdp(task->bsd_info, NULL, NULL, &task_start_abstime); | |
1589 | } | |
1590 | ||
1591 | /* Trace everything, unless a process was specified */ | |
1592 | if ((pid == -1) || (pid == task_pid)) { | |
1593 | #if DEBUG || DEVELOPMENT | |
1594 | /* we might want to call kcdata_undo_add_container_begin(), which is | |
1595 | * only safe if we call it after kcdata_add_container_marker() but | |
1596 | * before adding any other kcdata items. In development kernels, | |
1597 | * we'll remember where the buffer end was and confirm after calling | |
1598 | * kcdata_undo_add_container_begin() that it's in exactly the same | |
1599 | * place.*/ | |
1600 | mach_vm_address_t revert_addr = stackshot_kcdata_p->kcd_addr_end; | |
1601 | #endif | |
1602 | ||
1603 | /* add task snapshot marker */ | |
1604 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_BEGIN, | |
1605 | STACKSHOT_KCCONTAINER_TASK, task_uniqueid)); | |
1606 | ||
1607 | if (!collect_delta_stackshot || (task_start_abstime == 0) || | |
1608 | (task_start_abstime > stack_snapshot_delta_since_timestamp)) { | |
1609 | kcd_exit_on_error(kcdata_record_task_snapshot(stackshot_kcdata_p, task, trace_flags, have_pmap, &task_snap_ss_flags)); | |
1610 | } else { | |
1611 | task_delta_stackshot = TRUE; | |
1612 | if (minimize_nonrunnables) { | |
1613 | // delay taking the task snapshot. If there are no runnable threads we'll skip it. | |
1614 | } else { | |
1615 | kcd_exit_on_error(kcdata_record_task_delta_snapshot(stackshot_kcdata_p, task, have_pmap, &task_snap_ss_flags)); | |
1616 | } | |
1617 | } | |
1618 | ||
1619 | /* Iterate over task threads */ | |
1620 | queue_iterate(&task->threads, thread, thread_t, task_threads) | |
1621 | { | |
1622 | uint64_t thread_uniqueid; | |
1623 | ||
1624 | if ((thread == NULL) || !ml_validate_nofault((vm_offset_t)thread, sizeof(struct thread))) { | |
1625 | error = KERN_FAILURE; | |
1626 | goto error_exit; | |
1627 | } | |
1628 | ||
1629 | if (active_kthreads_only_p && thread->kernel_stack == 0) | |
1630 | continue; | |
1631 | ||
1632 | thread_uniqueid = thread_tid(thread); | |
1633 | ||
1634 | boolean_t thread_on_core; | |
1635 | enum thread_classification thread_classification = classify_thread(thread, &thread_on_core, trace_flags); | |
1636 | ||
1637 | switch (thread_classification) { | |
1638 | case tc_full_snapshot: | |
1639 | /* add thread marker */ | |
1640 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_BEGIN, | |
1641 | STACKSHOT_KCCONTAINER_THREAD, thread_uniqueid)); | |
1642 | kcd_exit_on_error( | |
1643 | kcdata_record_thread_snapshot(stackshot_kcdata_p, thread, task, trace_flags, have_pmap, thread_on_core)); | |
1644 | ||
1645 | /* mark end of thread snapshot data */ | |
1646 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_END, | |
1647 | STACKSHOT_KCCONTAINER_THREAD, thread_uniqueid)); | |
1648 | ||
1649 | some_thread_ran = TRUE; | |
1650 | break; | |
1651 | ||
1652 | case tc_delta_snapshot: | |
1653 | num_delta_thread_snapshots++; | |
1654 | break; | |
1655 | ||
1656 | case tc_nonrunnable: | |
1657 | num_nonrunnable_threads++; | |
1658 | break; | |
1659 | } | |
1660 | } | |
1661 | ||
1662 | if (task_delta_stackshot && minimize_nonrunnables) { | |
1663 | if (some_thread_ran || num_delta_thread_snapshots > 0) { | |
1664 | kcd_exit_on_error(kcdata_record_task_delta_snapshot(stackshot_kcdata_p, task, have_pmap, &task_snap_ss_flags)); | |
1665 | } else { | |
1666 | kcd_exit_on_error(kcdata_undo_add_container_begin(stackshot_kcdata_p)); | |
1667 | ||
1668 | #if DEBUG || DEVELOPMENT | |
1669 | mach_vm_address_t undo_addr = stackshot_kcdata_p->kcd_addr_end; | |
1670 | if (revert_addr != undo_addr) { | |
1671 | panic("tried to revert a container begin but we already moved past it. revert=%p undo=%p", | |
1672 | (void *)revert_addr, (void *)undo_addr); | |
1673 | } | |
1674 | #endif | |
1675 | kcd_exit_on_error(handle_nonrunnable_task(&saved_uniqueids, task_uniqueid)); | |
1676 | continue; | |
1677 | } | |
1678 | } | |
1679 | ||
1680 | struct thread_delta_snapshot_v2 * delta_snapshots = NULL; | |
1681 | int current_delta_snapshot_index = 0; | |
1682 | ||
1683 | if (num_delta_thread_snapshots > 0) { | |
1684 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_THREAD_DELTA_SNAPSHOT, | |
1685 | sizeof(struct thread_delta_snapshot_v2), | |
1686 | num_delta_thread_snapshots, &out_addr)); | |
1687 | delta_snapshots = (struct thread_delta_snapshot_v2 *)out_addr; | |
1688 | } | |
1689 | ||
1690 | uint64_t * nonrunnable_tids = NULL; | |
1691 | int current_nonrunnable_index = 0; | |
1692 | ||
1693 | if (num_nonrunnable_threads > 0) { | |
1694 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_NONRUNNABLE_TIDS, | |
1695 | sizeof(uint64_t), num_nonrunnable_threads, &out_addr)); | |
1696 | nonrunnable_tids = (uint64_t *)out_addr; | |
1697 | } | |
1698 | ||
1699 | if (num_delta_thread_snapshots > 0 || num_nonrunnable_threads > 0) { | |
1700 | queue_iterate(&task->threads, thread, thread_t, task_threads) | |
1701 | { | |
1702 | if (active_kthreads_only_p && thread->kernel_stack == 0) | |
1703 | continue; | |
1704 | ||
1705 | boolean_t thread_on_core; | |
1706 | enum thread_classification thread_classification = classify_thread(thread, &thread_on_core, trace_flags); | |
1707 | ||
1708 | switch (thread_classification) { | |
1709 | case tc_full_snapshot: | |
1710 | /* full thread snapshot captured above */ | |
1711 | continue; | |
1712 | ||
1713 | case tc_delta_snapshot: | |
1714 | kcd_exit_on_error(kcdata_record_thread_delta_snapshot(&delta_snapshots[current_delta_snapshot_index++], | |
1715 | thread, thread_on_core)); | |
1716 | break; | |
1717 | ||
1718 | case tc_nonrunnable: | |
1719 | nonrunnable_tids[current_nonrunnable_index++] = thread_tid(thread); | |
1720 | continue; | |
1721 | } | |
1722 | } | |
1723 | ||
1724 | #if DEBUG || DEVELOPMENT | |
1725 | if (current_delta_snapshot_index != num_delta_thread_snapshots) { | |
1726 | panic("delta thread snapshot count mismatch while capturing snapshots for task %p. expected %d, found %d", task, | |
1727 | num_delta_thread_snapshots, current_delta_snapshot_index); | |
1728 | } | |
1729 | if (current_nonrunnable_index != num_nonrunnable_threads) { | |
1730 | panic("delta thread snapshot count mismatch while capturing snapshots for task %p. expected %d, found %d", task, | |
1731 | num_nonrunnable_threads, current_nonrunnable_index); | |
1732 | } | |
1733 | #endif | |
1734 | } | |
1735 | ||
1736 | #if IMPORTANCE_INHERITANCE | |
1737 | if (save_donating_pids_p) { | |
1738 | kcd_exit_on_error( | |
1739 | ((((mach_vm_address_t)kcd_end_address(stackshot_kcdata_p) + (TASK_IMP_WALK_LIMIT * sizeof(int32_t))) < | |
1740 | (mach_vm_address_t)kcd_max_address(stackshot_kcdata_p)) | |
1741 | ? KERN_SUCCESS | |
1742 | : KERN_RESOURCE_SHORTAGE)); | |
1743 | saved_count = task_importance_list_pids(task, TASK_IMP_LIST_DONATING_PIDS, | |
1744 | (void *)kcd_end_address(stackshot_kcdata_p), TASK_IMP_WALK_LIMIT); | |
1745 | if (saved_count > 0) | |
1746 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_DONATING_PIDS, | |
1747 | sizeof(int32_t), saved_count, &out_addr)); | |
1748 | } | |
1749 | #endif | |
1750 | ||
1751 | if (!collect_delta_stackshot || (num_delta_thread_snapshots != task->thread_count) || !task_delta_stackshot) { | |
1752 | /* | |
1753 | * Collect shared cache info and UUID info in these scenarios | |
1754 | * 1) a full stackshot | |
1755 | * 2) a delta stackshot where the task started after the previous full stackshot OR | |
1756 | * any thread from the task has run since the previous full stackshot | |
1757 | */ | |
1758 | ||
1759 | kcd_exit_on_error(kcdata_record_shared_cache_info(stackshot_kcdata_p, task, sys_shared_cache_loadinfo, trace_flags, task_snap_ss_flags)); | |
1760 | kcd_exit_on_error(kcdata_record_uuid_info(stackshot_kcdata_p, task, trace_flags, have_pmap, task_snap_ss_flags)); | |
1761 | } | |
1762 | /* mark end of task snapshot data */ | |
1763 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_END, STACKSHOT_KCCONTAINER_TASK, | |
1764 | task_uniqueid)); | |
1765 | } | |
1766 | } | |
1767 | ||
1768 | if (minimize_nonrunnables) { | |
1769 | flush_nonrunnable_tasks(&saved_uniqueids); | |
1770 | } | |
1771 | ||
1772 | if (use_fault_path) { | |
1773 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_STACKSHOT_FAULT_STATS, | |
1774 | sizeof(struct stackshot_fault_stats), &out_addr)); | |
1775 | stackshot_memcpy((void*)out_addr, &fault_stats, sizeof(struct stackshot_fault_stats)); | |
1776 | } | |
1777 | ||
1778 | /* update timestamp of the stackshot */ | |
1779 | abs_time_end = mach_absolute_time(); | |
1780 | #if DEVELOPMENT || DEBUG | |
1781 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_STACKSHOT_DURATION, | |
1782 | sizeof(struct stackshot_duration), &out_addr)); | |
1783 | struct stackshot_duration * stackshot_duration = (struct stackshot_duration *)out_addr; | |
1784 | stackshot_duration->stackshot_duration = (abs_time_end - abs_time); | |
1785 | stackshot_duration->stackshot_duration_outer = 0; | |
1786 | stackshot_duration_outer = &stackshot_duration->stackshot_duration_outer; | |
1787 | #endif | |
1788 | stackshot_memcpy((void *)abs_time_addr, &abs_time_end, sizeof(uint64_t)); | |
1789 | ||
1790 | ||
1791 | kcd_exit_on_error(kcdata_write_buffer_end(stackshot_kcdata_p)); | |
1792 | ||
1793 | /* === END of populating stackshot data === */ | |
1794 | ||
1795 | *pBytesTraced = (uint32_t) kcdata_memory_get_used_bytes(stackshot_kcdata_p); | |
1796 | error_exit: | |
1797 | ||
1798 | stack_enable_faulting = FALSE; | |
1799 | ||
1800 | return error; | |
1801 | } | |
1802 | ||
1803 | static int pid_from_task(task_t task) | |
1804 | { | |
1805 | int pid = -1; | |
1806 | ||
1807 | if (task->bsd_info) { | |
1808 | pid = proc_pid(task->bsd_info); | |
1809 | } else { | |
1810 | pid = task_pid(task); | |
1811 | } | |
1812 | ||
1813 | return pid; | |
1814 | } | |
1815 | ||
1816 | static uint64_t | |
1817 | proc_was_throttled_from_task(task_t task) | |
1818 | { | |
1819 | uint64_t was_throttled = 0; | |
1820 | ||
1821 | if (task->bsd_info) | |
1822 | was_throttled = proc_was_throttled(task->bsd_info); | |
1823 | ||
1824 | return was_throttled; | |
1825 | } | |
1826 | ||
1827 | static uint64_t | |
1828 | proc_did_throttle_from_task(task_t task) | |
1829 | { | |
1830 | uint64_t did_throttle = 0; | |
1831 | ||
1832 | if (task->bsd_info) | |
1833 | did_throttle = proc_did_throttle(task->bsd_info); | |
1834 | ||
1835 | return did_throttle; | |
1836 | } | |
1837 | ||
1838 | static void | |
1839 | kdp_mem_and_io_snapshot(struct mem_and_io_snapshot *memio_snap) | |
1840 | { | |
1841 | unsigned int pages_reclaimed; | |
1842 | unsigned int pages_wanted; | |
1843 | kern_return_t kErr; | |
1844 | ||
1845 | processor_t processor; | |
1846 | vm_statistics64_t stat; | |
1847 | vm_statistics64_data_t host_vm_stat; | |
1848 | ||
1849 | processor = processor_list; | |
1850 | stat = &PROCESSOR_DATA(processor, vm_stat); | |
1851 | host_vm_stat = *stat; | |
1852 | ||
1853 | if (processor_count > 1) { | |
1854 | /* | |
1855 | * processor_list may be in the process of changing as we are | |
1856 | * attempting a stackshot. Ordinarily it will be lock protected, | |
1857 | * but it is not safe to lock in the context of the debugger. | |
1858 | * Fortunately we never remove elements from the processor list, | |
1859 | * and only add to to the end of the list, so we SHOULD be able | |
1860 | * to walk it. If we ever want to truly tear down processors, | |
1861 | * this will have to change. | |
1862 | */ | |
1863 | while ((processor = processor->processor_list) != NULL) { | |
1864 | stat = &PROCESSOR_DATA(processor, vm_stat); | |
1865 | host_vm_stat.compressions += stat->compressions; | |
1866 | host_vm_stat.decompressions += stat->decompressions; | |
1867 | } | |
1868 | } | |
1869 | ||
1870 | memio_snap->snapshot_magic = STACKSHOT_MEM_AND_IO_SNAPSHOT_MAGIC; | |
1871 | memio_snap->free_pages = vm_page_free_count; | |
1872 | memio_snap->active_pages = vm_page_active_count; | |
1873 | memio_snap->inactive_pages = vm_page_inactive_count; | |
1874 | memio_snap->purgeable_pages = vm_page_purgeable_count; | |
1875 | memio_snap->wired_pages = vm_page_wire_count; | |
1876 | memio_snap->speculative_pages = vm_page_speculative_count; | |
1877 | memio_snap->throttled_pages = vm_page_throttled_count; | |
1878 | memio_snap->busy_buffer_count = count_busy_buffers(); | |
1879 | memio_snap->filebacked_pages = vm_page_pageable_external_count; | |
1880 | memio_snap->compressions = (uint32_t)host_vm_stat.compressions; | |
1881 | memio_snap->decompressions = (uint32_t)host_vm_stat.decompressions; | |
1882 | memio_snap->compressor_size = VM_PAGE_COMPRESSOR_COUNT; | |
1883 | kErr = mach_vm_pressure_monitor(FALSE, VM_PRESSURE_TIME_WINDOW, &pages_reclaimed, &pages_wanted); | |
1884 | ||
1885 | if ( ! kErr ) { | |
1886 | memio_snap->pages_wanted = (uint32_t)pages_wanted; | |
1887 | memio_snap->pages_reclaimed = (uint32_t)pages_reclaimed; | |
1888 | memio_snap->pages_wanted_reclaimed_valid = 1; | |
1889 | } else { | |
1890 | memio_snap->pages_wanted = 0; | |
1891 | memio_snap->pages_reclaimed = 0; | |
1892 | memio_snap->pages_wanted_reclaimed_valid = 0; | |
1893 | } | |
1894 | } | |
1895 | ||
1896 | void | |
1897 | stackshot_memcpy(void *dst, const void *src, size_t len) | |
1898 | { | |
1899 | memcpy(dst, src, len); | |
1900 | } | |
1901 | ||
1902 | size_t | |
1903 | stackshot_strlcpy(char *dst, const char *src, size_t maxlen) | |
1904 | { | |
1905 | const size_t srclen = strlen(src); | |
1906 | ||
1907 | if (srclen < maxlen) { | |
1908 | stackshot_memcpy(dst, src, srclen+1); | |
1909 | } else if (maxlen != 0) { | |
1910 | stackshot_memcpy(dst, src, maxlen-1); | |
1911 | dst[maxlen-1] = '\0'; | |
1912 | } | |
1913 | ||
1914 | return srclen; | |
1915 | } | |
1916 | ||
1917 | ||
1918 | /* | |
1919 | * Returns the physical address of the specified map:target address, | |
1920 | * using the kdp fault path if requested and the page is not resident. | |
1921 | */ | |
1922 | vm_offset_t | |
1923 | kdp_find_phys(vm_map_t map, vm_offset_t target_addr, boolean_t try_fault, uint32_t *kdp_fault_results) | |
1924 | { | |
1925 | vm_offset_t cur_phys_addr; | |
1926 | unsigned cur_wimg_bits; | |
1927 | uint64_t fault_start_time = 0; | |
1928 | ||
1929 | if (map == VM_MAP_NULL) { | |
1930 | return 0; | |
1931 | } | |
1932 | ||
1933 | cur_phys_addr = kdp_vtophys(map->pmap, target_addr); | |
1934 | if (!pmap_valid_page((ppnum_t) atop(cur_phys_addr))) { | |
1935 | if (!try_fault || fault_stats.sfs_stopped_faulting) { | |
1936 | if (kdp_fault_results) | |
1937 | *kdp_fault_results |= KDP_FAULT_RESULT_PAGED_OUT; | |
1938 | ||
1939 | return 0; | |
1940 | } | |
1941 | ||
1942 | /* | |
1943 | * The pmap doesn't have a valid page so we start at the top level | |
1944 | * vm map and try a lightweight fault. Update fault path usage stats. | |
1945 | */ | |
1946 | fault_start_time = mach_absolute_time(); | |
1947 | cur_phys_addr = kdp_lightweight_fault(map, (target_addr & ~PAGE_MASK)); | |
1948 | fault_stats.sfs_time_spent_faulting += (mach_absolute_time() - fault_start_time); | |
1949 | ||
1950 | if ((fault_stats.sfs_time_spent_faulting >= fault_stats.sfs_system_max_fault_time) && !panic_stackshot) { | |
1951 | fault_stats.sfs_stopped_faulting = (uint8_t) TRUE; | |
1952 | } | |
1953 | ||
1954 | cur_phys_addr += (target_addr & PAGE_MASK); | |
1955 | ||
1956 | if (!pmap_valid_page((ppnum_t) atop(cur_phys_addr))) { | |
1957 | if (kdp_fault_results) | |
1958 | *kdp_fault_results |= (KDP_FAULT_RESULT_TRIED_FAULT | KDP_FAULT_RESULT_PAGED_OUT); | |
1959 | ||
1960 | return 0; | |
1961 | } | |
1962 | ||
1963 | if (kdp_fault_results) | |
1964 | *kdp_fault_results |= KDP_FAULT_RESULT_FAULTED_IN; | |
1965 | ||
1966 | fault_stats.sfs_pages_faulted_in++; | |
1967 | } else { | |
1968 | /* | |
1969 | * This check is done in kdp_lightweight_fault for the fault path. | |
1970 | */ | |
1971 | cur_wimg_bits = pmap_cache_attributes((ppnum_t) atop(cur_phys_addr)); | |
1972 | ||
1973 | if ((cur_wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) { | |
1974 | return 0; | |
1975 | } | |
1976 | } | |
1977 | ||
1978 | return cur_phys_addr; | |
1979 | } | |
1980 | ||
1981 | boolean_t | |
1982 | kdp_copyin_word( | |
1983 | task_t task, uint64_t addr, uint64_t *result, boolean_t try_fault, uint32_t *kdp_fault_results) | |
1984 | { | |
1985 | if (task_has_64BitAddr(task)) { | |
1986 | return kdp_copyin(task->map, addr, result, sizeof(uint64_t), try_fault, kdp_fault_results); | |
1987 | } else { | |
1988 | uint32_t buf; | |
1989 | boolean_t r = kdp_copyin(task->map, addr, &buf, sizeof(uint32_t), try_fault, kdp_fault_results); | |
1990 | *result = buf; | |
1991 | return r; | |
1992 | } | |
1993 | } | |
1994 | ||
1995 | boolean_t | |
1996 | kdp_copyin(vm_map_t map, uint64_t uaddr, void *dest, size_t size, boolean_t try_fault, uint32_t *kdp_fault_results) | |
1997 | { | |
1998 | size_t rem = size; | |
1999 | char *kvaddr = dest; | |
2000 | ||
2001 | #if (defined(__arm64__) || defined(NAND_PANIC_DEVICE)) && !defined(LEGACY_PANIC_LOGS) | |
2002 | /* Identify if destination buffer is in panic storage area */ | |
2003 | if ((vm_offset_t)dest >= gPanicBase && (vm_offset_t)dest < gPanicBase + gPanicSize) { | |
2004 | if (((vm_offset_t)dest + size) >= (gPanicBase + gPanicSize)) { | |
2005 | return FALSE; | |
2006 | } | |
2007 | } | |
2008 | #endif | |
2009 | ||
2010 | while (rem) { | |
2011 | uint64_t phys_src = kdp_find_phys(map, uaddr, try_fault, kdp_fault_results); | |
2012 | uint64_t phys_dest = kvtophys((vm_offset_t)kvaddr); | |
2013 | uint64_t src_rem = PAGE_SIZE - (phys_src & PAGE_MASK); | |
2014 | uint64_t dst_rem = PAGE_SIZE - (phys_dest & PAGE_MASK); | |
2015 | size_t cur_size = (uint32_t) MIN(src_rem, dst_rem); | |
2016 | cur_size = MIN(cur_size, rem); | |
2017 | ||
2018 | if (phys_src && phys_dest) { | |
2019 | bcopy_phys(phys_src, phys_dest, cur_size); | |
2020 | } else { | |
2021 | break; | |
2022 | } | |
2023 | ||
2024 | uaddr += cur_size; | |
2025 | kvaddr += cur_size; | |
2026 | rem -= cur_size; | |
2027 | } | |
2028 | ||
2029 | return (rem == 0); | |
2030 | } | |
2031 | ||
2032 | kern_return_t | |
2033 | do_stackshot(void *context) | |
2034 | { | |
2035 | #pragma unused(context) | |
2036 | kdp_snapshot++; | |
2037 | ||
2038 | stack_snapshot_ret = kdp_stackshot_kcdata_format(stack_snapshot_pid, | |
2039 | stack_snapshot_flags, | |
2040 | &stack_snapshot_bytes_traced); | |
2041 | ||
2042 | kdp_snapshot--; | |
2043 | return stack_snapshot_ret; | |
2044 | } | |
2045 | ||
2046 | /* | |
2047 | * A fantastical routine that tries to be fast about returning | |
2048 | * translations. Caches the last page we found a translation | |
2049 | * for, so that we can be quick about multiple queries to the | |
2050 | * same page. It turns out this is exactly the workflow | |
2051 | * machine_trace_thread and its relatives tend to throw at us. | |
2052 | * | |
2053 | * Please zero the nasty global this uses after a bulk lookup; | |
2054 | * this isn't safe across a switch of the map or changes | |
2055 | * to a pmap. | |
2056 | * | |
2057 | * This also means that if zero is a valid KVA, we are | |
2058 | * screwed. Sucks to be us. Fortunately, this should never | |
2059 | * happen. | |
2060 | */ | |
2061 | vm_offset_t | |
2062 | machine_trace_thread_get_kva(vm_offset_t cur_target_addr, vm_map_t map, uint32_t *thread_trace_flags) | |
2063 | { | |
2064 | vm_offset_t cur_target_page; | |
2065 | vm_offset_t cur_phys_addr; | |
2066 | vm_offset_t kern_virt_target_addr; | |
2067 | uint32_t kdp_fault_results = 0; | |
2068 | ||
2069 | cur_target_page = atop(cur_target_addr); | |
2070 | ||
2071 | if ((cur_target_page != prev_target_page) || validate_next_addr) { | |
2072 | ||
2073 | /* | |
2074 | * Alright; it wasn't our previous page. So | |
2075 | * we must validate that there is a page | |
2076 | * table entry for this address under the | |
2077 | * current pmap, and that it has default | |
2078 | * cache attributes (otherwise it may not be | |
2079 | * safe to access it). | |
2080 | */ | |
2081 | cur_phys_addr = kdp_find_phys(map, cur_target_addr, stack_enable_faulting, &kdp_fault_results); | |
2082 | if (thread_trace_flags) { | |
2083 | if (kdp_fault_results & KDP_FAULT_RESULT_PAGED_OUT) { | |
2084 | *thread_trace_flags |= kThreadTruncatedBT; | |
2085 | } | |
2086 | ||
2087 | if (kdp_fault_results & KDP_FAULT_RESULT_TRIED_FAULT) { | |
2088 | *thread_trace_flags |= kThreadTriedFaultBT; | |
2089 | } | |
2090 | ||
2091 | if (kdp_fault_results & KDP_FAULT_RESULT_FAULTED_IN) { | |
2092 | *thread_trace_flags |= kThreadFaultedBT; | |
2093 | } | |
2094 | } | |
2095 | ||
2096 | if (cur_phys_addr == 0) { | |
2097 | return 0; | |
2098 | } | |
2099 | #if __x86_64__ | |
2100 | kern_virt_target_addr = (vm_offset_t) PHYSMAP_PTOV(cur_phys_addr); | |
2101 | #else | |
2102 | #error Oh come on... we should really unify the physical -> kernel virtual interface | |
2103 | #endif | |
2104 | prev_target_page = cur_target_page; | |
2105 | prev_target_kva = (kern_virt_target_addr & ~PAGE_MASK); | |
2106 | validate_next_addr = FALSE; | |
2107 | return kern_virt_target_addr; | |
2108 | } else { | |
2109 | /* We found a translation, so stash this page */ | |
2110 | kern_virt_target_addr = prev_target_kva + (cur_target_addr & PAGE_MASK); | |
2111 | return kern_virt_target_addr; | |
2112 | } | |
2113 | } | |
2114 | ||
2115 | void | |
2116 | machine_trace_thread_clear_validation_cache(void) | |
2117 | { | |
2118 | validate_next_addr = TRUE; | |
2119 | } | |
2120 | ||
2121 | boolean_t | |
2122 | stackshot_thread_is_idle_worker_unsafe(thread_t thread) | |
2123 | { | |
2124 | /* When the pthread kext puts a worker thread to sleep, it will call | |
2125 | * assert_wait on the thread's own threadlist. see parkit() in | |
2126 | * kern_support.c. | |
2127 | */ | |
2128 | struct uthread * uthread = get_bsdthread_info(thread); | |
2129 | event64_t threadlist = (event64_t)proc_get_uthread_uu_threadlist(uthread); | |
2130 | event64_t wait_event = thread->wait_event; | |
2131 | return uthread && | |
2132 | (thread->state & TH_WAIT) && | |
2133 | wait_event && | |
2134 | threadlist == wait_event; | |
2135 | } |