]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2007-2015 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | /************* | |
30 | * These functions implement RPCSEC_GSS security for the NFS client and server. | |
31 | * The code is specific to the use of Kerberos v5 and the use of DES MAC MD5 | |
32 | * protection as described in Internet RFC 2203 and 2623. | |
33 | * | |
34 | * In contrast to the original AUTH_SYS authentication, RPCSEC_GSS is stateful. | |
35 | * It requires the client and server negotiate a secure connection as part of a | |
36 | * security context. The context state is maintained in client and server structures. | |
37 | * On the client side, each user of an NFS mount is assigned their own context, | |
38 | * identified by UID, on their first use of the mount, and it persists until the | |
39 | * unmount or until the context is renewed. Each user context has a corresponding | |
40 | * server context which the server maintains until the client destroys it, or | |
41 | * until the context expires. | |
42 | * | |
43 | * The client and server contexts are set up dynamically. When a user attempts | |
44 | * to send an NFS request, if there is no context for the user, then one is | |
45 | * set up via an exchange of NFS null procedure calls as described in RFC 2203. | |
46 | * During this exchange, the client and server pass a security token that is | |
47 | * forwarded via Mach upcall to the gssd, which invokes the GSS-API to authenticate | |
48 | * the user to the server (and vice-versa). The client and server also receive | |
49 | * a unique session key that can be used to digitally sign the credentials and | |
50 | * verifier or optionally to provide data integrity and/or privacy. | |
51 | * | |
52 | * Once the context is complete, the client and server enter a normal data | |
53 | * exchange phase - beginning with the NFS request that prompted the context | |
54 | * creation. During this phase, the client's RPC header contains an RPCSEC_GSS | |
55 | * credential and verifier, and the server returns a verifier as well. | |
56 | * For simple authentication, the verifier contains a signed checksum of the | |
57 | * RPC header, including the credential. The server's verifier has a signed | |
58 | * checksum of the current sequence number. | |
59 | * | |
60 | * Each client call contains a sequence number that nominally increases by one | |
61 | * on each request. The sequence number is intended to prevent replay attacks. | |
62 | * Since the protocol can be used over UDP, there is some allowance for | |
63 | * out-of-sequence requests, so the server checks whether the sequence numbers | |
64 | * are within a sequence "window". If a sequence number is outside the lower | |
65 | * bound of the window, the server silently drops the request. This has some | |
66 | * implications for retransmission. If a request needs to be retransmitted, the | |
67 | * client must bump the sequence number even if the request XID is unchanged. | |
68 | * | |
69 | * When the NFS mount is unmounted, the client sends a "destroy" credential | |
70 | * to delete the server's context for each user of the mount. Since it's | |
71 | * possible for the client to crash or disconnect without sending the destroy | |
72 | * message, the server has a thread that reaps contexts that have been idle | |
73 | * too long. | |
74 | */ | |
75 | ||
76 | #include <stdint.h> | |
77 | #include <sys/param.h> | |
78 | #include <sys/systm.h> | |
79 | #include <sys/proc.h> | |
80 | #include <sys/kauth.h> | |
81 | #include <sys/kernel.h> | |
82 | #include <sys/mount_internal.h> | |
83 | #include <sys/vnode.h> | |
84 | #include <sys/ubc.h> | |
85 | #include <sys/malloc.h> | |
86 | #include <sys/kpi_mbuf.h> | |
87 | #include <sys/ucred.h> | |
88 | ||
89 | #include <kern/host.h> | |
90 | #include <kern/task.h> | |
91 | #include <libkern/libkern.h> | |
92 | ||
93 | #include <mach/task.h> | |
94 | #include <mach/host_special_ports.h> | |
95 | #include <mach/host_priv.h> | |
96 | #include <mach/thread_act.h> | |
97 | #include <mach/mig_errors.h> | |
98 | #include <mach/vm_map.h> | |
99 | #include <vm/vm_map.h> | |
100 | #include <vm/vm_kern.h> | |
101 | #include <gssd/gssd_mach.h> | |
102 | ||
103 | #include <nfs/rpcv2.h> | |
104 | #include <nfs/nfsproto.h> | |
105 | #include <nfs/nfs.h> | |
106 | #include <nfs/nfsnode.h> | |
107 | #include <nfs/nfs_gss.h> | |
108 | #include <nfs/nfsmount.h> | |
109 | #include <nfs/xdr_subs.h> | |
110 | #include <nfs/nfsm_subs.h> | |
111 | #include <nfs/nfs_gss.h> | |
112 | #include "nfs_gss_crypto.h" | |
113 | #include <mach_assert.h> | |
114 | #include <kern/assert.h> | |
115 | ||
116 | #define ASSERT(EX) assert(EX) | |
117 | ||
118 | #define NFS_GSS_MACH_MAX_RETRIES 3 | |
119 | ||
120 | #define NFS_GSS_DBG(...) NFS_DBG(NFS_FAC_GSS, 7, ## __VA_ARGS__) | |
121 | #define NFS_GSS_ISDBG (NFS_DEBUG_FACILITY & NFS_FAC_GSS) | |
122 | ||
123 | typedef struct { | |
124 | int type; | |
125 | union { | |
126 | MD5_DESCBC_CTX m_ctx; | |
127 | HMAC_SHA1_DES3KD_CTX h_ctx; | |
128 | }; | |
129 | } GSS_DIGEST_CTX; | |
130 | ||
131 | #define MAX_DIGEST SHA_DIGEST_LENGTH | |
132 | #ifdef NFS_KERNEL_DEBUG | |
133 | #define HASHLEN(ki) (((ki)->hash_len > MAX_DIGEST) ? \ | |
134 | (panic("nfs_gss.c:%d ki->hash_len is invalid = %d\n", __LINE__, (ki)->hash_len), MAX_DIGEST) : (ki)->hash_len) | |
135 | #else | |
136 | #define HASHLEN(ki) (((ki)->hash_len > MAX_DIGEST) ? \ | |
137 | (printf("nfs_gss.c:%d ki->hash_len is invalid = %d\n", __LINE__, (ki)->hash_len), MAX_DIGEST) : (ki)->hash_len) | |
138 | #endif | |
139 | ||
140 | #if NFSSERVER | |
141 | u_long nfs_gss_svc_ctx_hash; | |
142 | struct nfs_gss_svc_ctx_hashhead *nfs_gss_svc_ctx_hashtbl; | |
143 | lck_mtx_t *nfs_gss_svc_ctx_mutex; | |
144 | lck_grp_t *nfs_gss_svc_grp; | |
145 | uint32_t nfsrv_gss_context_ttl = GSS_CTX_EXPIRE; | |
146 | #define GSS_SVC_CTX_TTL ((uint64_t)max(2*GSS_CTX_PEND, nfsrv_gss_context_ttl) * NSEC_PER_SEC) | |
147 | #endif /* NFSSERVER */ | |
148 | ||
149 | #if NFSCLIENT | |
150 | lck_grp_t *nfs_gss_clnt_grp; | |
151 | int nfs_single_des; | |
152 | #endif /* NFSCLIENT */ | |
153 | ||
154 | /* | |
155 | * These octet strings are used to encode/decode ASN.1 tokens | |
156 | * in the RPCSEC_GSS verifiers. | |
157 | */ | |
158 | static u_char krb5_tokhead[] __attribute__((unused)) = { 0x60, 0x23 }; | |
159 | u_char krb5_mech[11] = { 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x01, 0x02, 0x02 }; | |
160 | static u_char krb5_mic[] = { 0x01, 0x01, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff }; | |
161 | static u_char krb5_mic3[] = { 0x01, 0x01, 0x04, 0x00, 0xff, 0xff, 0xff, 0xff }; | |
162 | static u_char krb5_wrap[] = { 0x02, 0x01, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff }; | |
163 | static u_char krb5_wrap3[] = { 0x02, 0x01, 0x04, 0x00, 0x02, 0x00, 0xff, 0xff }; | |
164 | static u_char iv0[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; // DES MAC Initialization Vector | |
165 | ||
166 | #define ALG_MIC(ki) (((ki)->type == NFS_GSS_1DES) ? krb5_mic : krb5_mic3) | |
167 | #define ALG_WRAP(ki) (((ki)->type == NFS_GSS_1DES) ? krb5_wrap : krb5_wrap3) | |
168 | ||
169 | /* | |
170 | * The size of the Kerberos v5 ASN.1 token | |
171 | * in the verifier. | |
172 | * | |
173 | * Note that the second octet of the krb5_tokhead (0x23) is a | |
174 | * DER-encoded size field that has variable length. If the size | |
175 | * is 128 bytes or greater, then it uses two bytes, three bytes | |
176 | * if 65536 or greater, and so on. Since the MIC tokens are | |
177 | * separate from the data, the size is always the same: 35 bytes (0x23). | |
178 | * However, the wrap token is different. Its size field includes the | |
179 | * size of the token + the encrypted data that follows. So the size | |
180 | * field may be two, three or four bytes. | |
181 | */ | |
182 | #define KRB5_SZ_TOKHEAD sizeof(krb5_tokhead) | |
183 | #define KRB5_SZ_MECH sizeof(krb5_mech) | |
184 | #define KRB5_SZ_ALG sizeof(krb5_mic) // 8 - same as krb5_wrap | |
185 | #define KRB5_SZ_SEQ 8 | |
186 | #define KRB5_SZ_EXTRA 3 // a wrap token may be longer by up to this many octets | |
187 | #define KRB5_SZ_TOKEN_NOSUM (KRB5_SZ_TOKHEAD + KRB5_SZ_MECH + KRB5_SZ_ALG + KRB5_SZ_SEQ) | |
188 | #define KRB5_SZ_TOKEN(cksumlen) ((cksumlen) + KRB5_SZ_TOKEN_NOSUM) | |
189 | #define KRB5_SZ_TOKMAX(cksumlen) (KRB5_SZ_TOKEN(cksumlen) + KRB5_SZ_EXTRA) | |
190 | ||
191 | #if NFSCLIENT | |
192 | static int nfs_gss_clnt_ctx_find(struct nfsreq *); | |
193 | static int nfs_gss_clnt_ctx_init(struct nfsreq *, struct nfs_gss_clnt_ctx *); | |
194 | static int nfs_gss_clnt_ctx_init_retry(struct nfsreq *, struct nfs_gss_clnt_ctx *); | |
195 | static int nfs_gss_clnt_ctx_callserver(struct nfsreq *, struct nfs_gss_clnt_ctx *); | |
196 | static uint8_t *nfs_gss_clnt_svcname(struct nfsmount *, gssd_nametype *, uint32_t *); | |
197 | static int nfs_gss_clnt_gssd_upcall(struct nfsreq *, struct nfs_gss_clnt_ctx *); | |
198 | void nfs_gss_clnt_ctx_neg_cache_reap(struct nfsmount *); | |
199 | static void nfs_gss_clnt_ctx_clean(struct nfs_gss_clnt_ctx *); | |
200 | static int nfs_gss_clnt_ctx_copy(struct nfs_gss_clnt_ctx *, struct nfs_gss_clnt_ctx **, gss_key_info *); | |
201 | static void nfs_gss_clnt_ctx_destroy(struct nfs_gss_clnt_ctx *); | |
202 | static void nfs_gss_clnt_log_error(struct nfsreq *, struct nfs_gss_clnt_ctx *, uint32_t, uint32_t); | |
203 | #endif /* NFSCLIENT */ | |
204 | ||
205 | #if NFSSERVER | |
206 | static struct nfs_gss_svc_ctx *nfs_gss_svc_ctx_find(uint32_t); | |
207 | static void nfs_gss_svc_ctx_insert(struct nfs_gss_svc_ctx *); | |
208 | static void nfs_gss_svc_ctx_timer(void *, void *); | |
209 | static int nfs_gss_svc_gssd_upcall(struct nfs_gss_svc_ctx *); | |
210 | static int nfs_gss_svc_seqnum_valid(struct nfs_gss_svc_ctx *, uint32_t); | |
211 | #endif /* NFSSERVER */ | |
212 | ||
213 | static void host_release_special_port(mach_port_t); | |
214 | static mach_port_t host_copy_special_port(mach_port_t); | |
215 | static void nfs_gss_mach_alloc_buffer(u_char *, uint32_t, vm_map_copy_t *); | |
216 | static int nfs_gss_mach_vmcopyout(vm_map_copy_t, uint32_t, u_char *); | |
217 | static int nfs_gss_token_get(gss_key_info *ki, u_char *, u_char *, int, uint32_t *, u_char *); | |
218 | static int nfs_gss_token_put(gss_key_info *ki, u_char *, u_char *, int, int, u_char *); | |
219 | static int nfs_gss_der_length_size(int); | |
220 | static void nfs_gss_der_length_put(u_char **, int); | |
221 | static int nfs_gss_der_length_get(u_char **); | |
222 | static int nfs_gss_mchain_length(mbuf_t); | |
223 | static int nfs_gss_append_chain(struct nfsm_chain *, mbuf_t); | |
224 | static void nfs_gss_nfsm_chain(struct nfsm_chain *, mbuf_t); | |
225 | static void nfs_gss_cksum_mchain(gss_key_info *, mbuf_t, u_char *, int, int, u_char *); | |
226 | static void nfs_gss_cksum_chain(gss_key_info *, struct nfsm_chain *, u_char *, int, int, u_char *); | |
227 | static void nfs_gss_cksum_rep(gss_key_info *, uint32_t, u_char *); | |
228 | static void nfs_gss_encrypt_mchain(gss_key_info *, mbuf_t, int, int, int); | |
229 | static void nfs_gss_encrypt_chain(gss_key_info *, struct nfsm_chain *, int, int, int); | |
230 | ||
231 | static void gss_digest_Init(GSS_DIGEST_CTX *, gss_key_info *); | |
232 | static void gss_digest_Update(GSS_DIGEST_CTX *, void *, size_t); | |
233 | static void gss_digest_Final(GSS_DIGEST_CTX *, void *); | |
234 | static void gss_des_crypt(gss_key_info *, des_cblock *, des_cblock *, | |
235 | int32_t, des_cblock *, des_cblock *, int, int); | |
236 | static int gss_key_init(gss_key_info *, uint32_t); | |
237 | ||
238 | #if NFSSERVER | |
239 | thread_call_t nfs_gss_svc_ctx_timer_call; | |
240 | int nfs_gss_timer_on = 0; | |
241 | uint32_t nfs_gss_ctx_count = 0; | |
242 | const uint32_t nfs_gss_ctx_max = GSS_SVC_MAXCONTEXTS; | |
243 | #endif /* NFSSERVER */ | |
244 | ||
245 | /* | |
246 | * Initialization when NFS starts | |
247 | */ | |
248 | void | |
249 | nfs_gss_init(void) | |
250 | { | |
251 | #if NFSCLIENT | |
252 | nfs_gss_clnt_grp = lck_grp_alloc_init("rpcsec_gss_clnt", LCK_GRP_ATTR_NULL); | |
253 | #endif /* NFSCLIENT */ | |
254 | ||
255 | #if NFSSERVER | |
256 | nfs_gss_svc_grp = lck_grp_alloc_init("rpcsec_gss_svc", LCK_GRP_ATTR_NULL); | |
257 | ||
258 | nfs_gss_svc_ctx_hashtbl = hashinit(SVC_CTX_HASHSZ, M_TEMP, &nfs_gss_svc_ctx_hash); | |
259 | nfs_gss_svc_ctx_mutex = lck_mtx_alloc_init(nfs_gss_svc_grp, LCK_ATTR_NULL); | |
260 | ||
261 | nfs_gss_svc_ctx_timer_call = thread_call_allocate(nfs_gss_svc_ctx_timer, NULL); | |
262 | #endif /* NFSSERVER */ | |
263 | } | |
264 | ||
265 | #if NFSCLIENT | |
266 | ||
267 | /* | |
268 | * Find the context for a particular user. | |
269 | * | |
270 | * If the context doesn't already exist | |
271 | * then create a new context for this user. | |
272 | * | |
273 | * Note that the code allows superuser (uid == 0) | |
274 | * to adopt the context of another user. | |
275 | * | |
276 | * We'll match on the audit session ids, since those | |
277 | * processes will have acccess to the same credential cache. | |
278 | */ | |
279 | ||
280 | #define kauth_cred_getasid(cred) ((cred)->cr_audit.as_aia_p->ai_asid) | |
281 | #define kauth_cred_getauid(cred) ((cred)->cr_audit.as_aia_p->ai_auid) | |
282 | ||
283 | #define SAFE_CAST_INTTYPE( type, intval ) \ | |
284 | ( (type)(intval)/(sizeof(type) < sizeof(intval) ? 0 : 1) ) | |
285 | ||
286 | uid_t | |
287 | nfs_cred_getasid2uid(kauth_cred_t cred) | |
288 | { | |
289 | uid_t result = SAFE_CAST_INTTYPE(uid_t, kauth_cred_getasid(cred)); | |
290 | return (result); | |
291 | } | |
292 | ||
293 | /* | |
294 | * Debugging | |
295 | */ | |
296 | static void | |
297 | nfs_gss_clnt_ctx_dump(struct nfsmount *nmp) | |
298 | { | |
299 | struct nfs_gss_clnt_ctx *cp; | |
300 | ||
301 | lck_mtx_lock(&nmp->nm_lock); | |
302 | NFS_GSS_DBG("Enter\n"); | |
303 | TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) { | |
304 | lck_mtx_lock(cp->gss_clnt_mtx); | |
305 | printf("context %d/%d: refcnt = %d, flags = %x\n", | |
306 | kauth_cred_getasid(cp->gss_clnt_cred), | |
307 | kauth_cred_getauid(cp->gss_clnt_cred), | |
308 | cp->gss_clnt_refcnt, cp->gss_clnt_flags); | |
309 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
310 | } | |
311 | NFS_GSS_DBG("Exit\n"); | |
312 | lck_mtx_unlock(&nmp->nm_lock); | |
313 | } | |
314 | ||
315 | static char * | |
316 | nfs_gss_clnt_ctx_name(struct nfsmount *nmp, struct nfs_gss_clnt_ctx *cp, char *buf, int len) | |
317 | { | |
318 | char *np; | |
319 | int nlen; | |
320 | const char *server = ""; | |
321 | ||
322 | if (nmp && nmp->nm_mountp) | |
323 | server = vfs_statfs(nmp->nm_mountp)->f_mntfromname; | |
324 | ||
325 | if (cp == NULL) { | |
326 | snprintf(buf, len, "[%s] NULL context", server); | |
327 | return (buf); | |
328 | } | |
329 | ||
330 | if (cp->gss_clnt_principal && !cp->gss_clnt_display) { | |
331 | np = (char *)cp->gss_clnt_principal; | |
332 | nlen = cp->gss_clnt_prinlen; | |
333 | } else { | |
334 | np = cp->gss_clnt_display; | |
335 | nlen = np ? strlen(cp->gss_clnt_display) : 0; | |
336 | } | |
337 | if (nlen) | |
338 | snprintf(buf, len, "[%s] %.*s %d/%d %s", server, nlen, np, | |
339 | kauth_cred_getasid(cp->gss_clnt_cred), | |
340 | kauth_cred_getuid(cp->gss_clnt_cred), | |
341 | cp->gss_clnt_principal ? "" : "[from default cred] "); | |
342 | else | |
343 | snprintf(buf, len, "[%s] using default %d/%d ", server, | |
344 | kauth_cred_getasid(cp->gss_clnt_cred), | |
345 | kauth_cred_getuid(cp->gss_clnt_cred)); | |
346 | return (buf); | |
347 | } | |
348 | ||
349 | #define NFS_CTXBUFSZ 80 | |
350 | #define NFS_GSS_CTX(req, cp) nfs_gss_clnt_ctx_name((req)->r_nmp, cp ? cp : (req)->r_gss_ctx, CTXBUF, sizeof(CTXBUF)) | |
351 | ||
352 | #define NFS_GSS_CLNT_CTX_DUMP(nmp) \ | |
353 | do { \ | |
354 | if (NFS_GSS_ISDBG && (NFS_DEBUG_FLAGS & 0x2)) \ | |
355 | nfs_gss_clnt_ctx_dump((nmp)); \ | |
356 | } while (0) | |
357 | ||
358 | static int | |
359 | nfs_gss_clnt_ctx_cred_match(kauth_cred_t cred1, kauth_cred_t cred2) | |
360 | { | |
361 | if (kauth_cred_getasid(cred1) == kauth_cred_getasid(cred2)) | |
362 | return (1); | |
363 | return (0); | |
364 | } | |
365 | ||
366 | /* | |
367 | * Busy the mount for each principal set on the mount | |
368 | * so that the automounter will not unmount the file | |
369 | * system underneath us. With out this, if an unmount | |
370 | * occurs the principal that is set for an audit session | |
371 | * will be lost and we may end up with a different identity. | |
372 | * | |
373 | * Note setting principals on the mount is a bad idea. This | |
374 | * really should be handle by KIM (Kerberos Identity Management) | |
375 | * so that defaults can be set by service identities. | |
376 | */ | |
377 | ||
378 | static void | |
379 | nfs_gss_clnt_mnt_ref(struct nfsmount *nmp) | |
380 | { | |
381 | int error; | |
382 | vnode_t rvp; | |
383 | ||
384 | if (nmp == NULL || | |
385 | !(vfs_flags(nmp->nm_mountp) & MNT_AUTOMOUNTED)) | |
386 | return; | |
387 | ||
388 | error = VFS_ROOT(nmp->nm_mountp, &rvp, NULL); | |
389 | if (!error) { | |
390 | vnode_ref(rvp); | |
391 | vnode_put(rvp); | |
392 | } | |
393 | } | |
394 | ||
395 | /* | |
396 | * Unbusy the mout. See above comment, | |
397 | */ | |
398 | ||
399 | static void | |
400 | nfs_gss_clnt_mnt_rele(struct nfsmount *nmp) | |
401 | { | |
402 | int error; | |
403 | vnode_t rvp; | |
404 | ||
405 | if (nmp == NULL || | |
406 | !(vfs_flags(nmp->nm_mountp) & MNT_AUTOMOUNTED)) | |
407 | return; | |
408 | ||
409 | error = VFS_ROOT(nmp->nm_mountp, &rvp, NULL); | |
410 | if (!error) { | |
411 | vnode_rele(rvp); | |
412 | vnode_put(rvp); | |
413 | } | |
414 | } | |
415 | ||
416 | int nfs_root_steals_ctx = 1; | |
417 | ||
418 | static int | |
419 | nfs_gss_clnt_ctx_find_principal(struct nfsreq *req, uint8_t *principal, uint32_t plen, uint32_t nt) | |
420 | { | |
421 | struct nfsmount *nmp = req->r_nmp; | |
422 | struct nfs_gss_clnt_ctx *cp; | |
423 | struct nfsreq treq; | |
424 | int error = 0; | |
425 | struct timeval now; | |
426 | gss_key_info *ki; | |
427 | char CTXBUF[NFS_CTXBUFSZ]; | |
428 | ||
429 | bzero(&treq, sizeof (struct nfsreq)); | |
430 | treq.r_nmp = nmp; | |
431 | ||
432 | microuptime(&now); | |
433 | lck_mtx_lock(&nmp->nm_lock); | |
434 | TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) { | |
435 | lck_mtx_lock(cp->gss_clnt_mtx); | |
436 | if (cp->gss_clnt_flags & GSS_CTX_DESTROY) { | |
437 | NFS_GSS_DBG("Found destroyed context %s refcnt = %d continuing\n", | |
438 | NFS_GSS_CTX(req, cp), | |
439 | cp->gss_clnt_refcnt); | |
440 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
441 | continue; | |
442 | } | |
443 | if (nfs_gss_clnt_ctx_cred_match(cp->gss_clnt_cred, req->r_cred)) { | |
444 | if (nmp->nm_gsscl.tqh_first != cp) { | |
445 | TAILQ_REMOVE(&nmp->nm_gsscl, cp, gss_clnt_entries); | |
446 | TAILQ_INSERT_HEAD(&nmp->nm_gsscl, cp, gss_clnt_entries); | |
447 | } | |
448 | if (principal) { | |
449 | /* | |
450 | * If we have a principal, but it does not match the current cred | |
451 | * mark it for removal | |
452 | */ | |
453 | if (cp->gss_clnt_prinlen != plen || cp->gss_clnt_prinnt != nt || | |
454 | bcmp(cp->gss_clnt_principal, principal, plen) != 0) { | |
455 | cp->gss_clnt_flags |= (GSS_CTX_INVAL | GSS_CTX_DESTROY); | |
456 | cp->gss_clnt_refcnt++; | |
457 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
458 | NFS_GSS_DBG("Marking %s for deletion because %s does not match\n", | |
459 | NFS_GSS_CTX(req, cp), principal); | |
460 | NFS_GSS_DBG("len = (%d,%d), nt = (%d,%d)\n", cp->gss_clnt_prinlen, plen, | |
461 | cp->gss_clnt_prinnt, nt); | |
462 | treq.r_gss_ctx = cp; | |
463 | cp = NULL; | |
464 | break; | |
465 | } | |
466 | } | |
467 | if (cp->gss_clnt_flags & GSS_CTX_INVAL) { | |
468 | /* | |
469 | * If we're still being used and we're not expired | |
470 | * just return and don't bother gssd again. Note if | |
471 | * gss_clnt_nctime is zero it is about to be set to now. | |
472 | */ | |
473 | if (cp->gss_clnt_nctime + GSS_NEG_CACHE_TO >= now.tv_sec || cp->gss_clnt_nctime == 0) { | |
474 | NFS_GSS_DBG("Context %s (refcnt = %d) not expired returning EAUTH nctime = %ld now = %ld\n", | |
475 | NFS_GSS_CTX(req, cp), cp->gss_clnt_refcnt, cp->gss_clnt_nctime, now.tv_sec); | |
476 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
477 | lck_mtx_unlock(&nmp->nm_lock); | |
478 | return (NFSERR_EAUTH); | |
479 | } | |
480 | if (cp->gss_clnt_refcnt) { | |
481 | struct nfs_gss_clnt_ctx *ncp; | |
482 | /* | |
483 | * If this context has references, we can't use it so we mark if for | |
484 | * destruction and create a new context based on this one in the | |
485 | * same manner as renewing one. | |
486 | */ | |
487 | cp->gss_clnt_flags |= GSS_CTX_DESTROY; | |
488 | NFS_GSS_DBG("Context %s has expired but we still have %d references\n", | |
489 | NFS_GSS_CTX(req, cp), cp->gss_clnt_refcnt); | |
490 | error = nfs_gss_clnt_ctx_copy(cp, &ncp, NULL); | |
491 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
492 | if (error) { | |
493 | lck_mtx_unlock(&nmp->nm_lock); | |
494 | return (error); | |
495 | } | |
496 | cp = ncp; | |
497 | break; | |
498 | } else { | |
499 | /* cp->gss_clnt_kinfo should be NULL here */ | |
500 | if (cp->gss_clnt_kinfo) { | |
501 | FREE(cp->gss_clnt_kinfo, M_TEMP); | |
502 | cp->gss_clnt_kinfo = NULL; | |
503 | } | |
504 | if (cp->gss_clnt_nctime) | |
505 | nmp->nm_ncentries--; | |
506 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
507 | TAILQ_REMOVE(&nmp->nm_gsscl, cp, gss_clnt_entries); | |
508 | break; | |
509 | } | |
510 | } | |
511 | /* Found a valid context to return */ | |
512 | cp->gss_clnt_refcnt++; | |
513 | req->r_gss_ctx = cp; | |
514 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
515 | lck_mtx_unlock(&nmp->nm_lock); | |
516 | return (0); | |
517 | } | |
518 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
519 | } | |
520 | ||
521 | if (!cp && nfs_root_steals_ctx && principal == NULL && kauth_cred_getuid(req->r_cred) == 0) { | |
522 | /* | |
523 | * If superuser is trying to get access, then co-opt | |
524 | * the first valid context in the list. | |
525 | * XXX Ultimately, we need to allow superuser to | |
526 | * go ahead and attempt to set up its own context | |
527 | * in case one is set up for it. | |
528 | */ | |
529 | TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) { | |
530 | if (!(cp->gss_clnt_flags & (GSS_CTX_INVAL|GSS_CTX_DESTROY))) { | |
531 | nfs_gss_clnt_ctx_ref(req, cp); | |
532 | lck_mtx_unlock(&nmp->nm_lock); | |
533 | NFS_GSS_DBG("Root stole context %s\n", NFS_GSS_CTX(req, NULL)); | |
534 | return (0); | |
535 | } | |
536 | } | |
537 | } | |
538 | ||
539 | MALLOC(ki, gss_key_info *, sizeof (gss_key_info), M_TEMP, M_WAITOK|M_ZERO); | |
540 | if (ki == NULL) { | |
541 | lck_mtx_unlock(&nmp->nm_lock); | |
542 | return (ENOMEM); | |
543 | } | |
544 | ||
545 | NFS_GSS_DBG("Context %s%sfound in Neg Cache @ %ld\n", | |
546 | NFS_GSS_CTX(req, cp), | |
547 | cp == NULL ? " not " : "", | |
548 | cp == NULL ? 0L : cp->gss_clnt_nctime); | |
549 | ||
550 | /* | |
551 | * Not found - create a new context | |
552 | */ | |
553 | ||
554 | if (cp == NULL) { | |
555 | MALLOC(cp, struct nfs_gss_clnt_ctx *, sizeof(*cp), M_TEMP, M_WAITOK|M_ZERO); | |
556 | if (cp == NULL) { | |
557 | lck_mtx_unlock(&nmp->nm_lock); | |
558 | return (ENOMEM); | |
559 | } | |
560 | cp->gss_clnt_kinfo = ki; | |
561 | cp->gss_clnt_cred = req->r_cred; | |
562 | kauth_cred_ref(cp->gss_clnt_cred); | |
563 | cp->gss_clnt_mtx = lck_mtx_alloc_init(nfs_gss_clnt_grp, LCK_ATTR_NULL); | |
564 | cp->gss_clnt_ptime = now.tv_sec - GSS_PRINT_DELAY; | |
565 | if (principal) { | |
566 | MALLOC(cp->gss_clnt_principal, uint8_t *, plen+1, M_TEMP, M_WAITOK|M_ZERO); | |
567 | memcpy(cp->gss_clnt_principal, principal, plen); | |
568 | cp->gss_clnt_prinlen = plen; | |
569 | cp->gss_clnt_prinnt = nt; | |
570 | cp->gss_clnt_flags |= GSS_CTX_STICKY; | |
571 | nfs_gss_clnt_mnt_ref(nmp); | |
572 | } | |
573 | } else { | |
574 | cp->gss_clnt_kinfo = ki; | |
575 | nfs_gss_clnt_ctx_clean(cp); | |
576 | if (principal) { | |
577 | /* | |
578 | * If we have a principal and we found a matching audit | |
579 | * session, then to get here, the principal had to match. | |
580 | * In walking the context list if it has a principal | |
581 | * or the principal is not set then we mark the context | |
582 | * for destruction and set cp to NULL and we fall to the | |
583 | * if clause above. If the context still has references | |
584 | * again we copy the context which will preserve the principal | |
585 | * and we end up here with the correct principal set. | |
586 | * If we don't have references the the principal must have | |
587 | * match and we will fall through here. | |
588 | */ | |
589 | cp->gss_clnt_flags |= GSS_CTX_STICKY; | |
590 | } | |
591 | } | |
592 | ||
593 | cp->gss_clnt_thread = current_thread(); | |
594 | nfs_gss_clnt_ctx_ref(req, cp); | |
595 | TAILQ_INSERT_HEAD(&nmp->nm_gsscl, cp, gss_clnt_entries); | |
596 | lck_mtx_unlock(&nmp->nm_lock); | |
597 | ||
598 | error = nfs_gss_clnt_ctx_init_retry(req, cp); // Initialize new context | |
599 | if (error) { | |
600 | NFS_GSS_DBG("nfs_gss_clnt_ctx_init_retry returned %d for %s\n", error, NFS_GSS_CTX(req, cp)); | |
601 | nfs_gss_clnt_ctx_unref(req); | |
602 | } | |
603 | ||
604 | /* Remove any old matching contex that had a different principal */ | |
605 | nfs_gss_clnt_ctx_unref(&treq); | |
606 | ||
607 | return (error); | |
608 | } | |
609 | ||
610 | static int | |
611 | nfs_gss_clnt_ctx_find(struct nfsreq *req) | |
612 | { | |
613 | return (nfs_gss_clnt_ctx_find_principal(req, NULL, 0, 0)); | |
614 | } | |
615 | ||
616 | /* | |
617 | * Inserts an RPCSEC_GSS credential into an RPC header. | |
618 | * After the credential is inserted, the code continues | |
619 | * to build the verifier which contains a signed checksum | |
620 | * of the RPC header. | |
621 | */ | |
622 | int | |
623 | nfs_gss_clnt_cred_put(struct nfsreq *req, struct nfsm_chain *nmc, mbuf_t args) | |
624 | { | |
625 | struct nfs_gss_clnt_ctx *cp; | |
626 | uint32_t seqnum = 0; | |
627 | int error = 0; | |
628 | int slpflag, recordmark = 0; | |
629 | int start, len, offset = 0; | |
630 | int pad, toklen; | |
631 | struct nfsm_chain nmc_tmp; | |
632 | struct gss_seq *gsp; | |
633 | u_char tokbuf[KRB5_SZ_TOKMAX(MAX_DIGEST)]; | |
634 | u_char cksum[MAX_DIGEST]; | |
635 | gss_key_info *ki; | |
636 | ||
637 | slpflag = (PZERO-1); | |
638 | if (req->r_nmp) { | |
639 | slpflag |= (NMFLAG(req->r_nmp, INTR) && req->r_thread && !(req->r_flags & R_NOINTR)) ? PCATCH : 0; | |
640 | recordmark = (req->r_nmp->nm_sotype == SOCK_STREAM); | |
641 | } | |
642 | ||
643 | retry: | |
644 | if (req->r_gss_ctx == NULL) { | |
645 | /* | |
646 | * Find the context for this user. | |
647 | * If no context is found, one will | |
648 | * be created. | |
649 | */ | |
650 | error = nfs_gss_clnt_ctx_find(req); | |
651 | if (error) | |
652 | return (error); | |
653 | } | |
654 | cp = req->r_gss_ctx; | |
655 | ||
656 | /* | |
657 | * If the context thread isn't null, then the context isn't | |
658 | * yet complete and is for the exclusive use of the thread | |
659 | * doing the context setup. Wait until the context thread | |
660 | * is null. | |
661 | */ | |
662 | lck_mtx_lock(cp->gss_clnt_mtx); | |
663 | if (cp->gss_clnt_thread && cp->gss_clnt_thread != current_thread()) { | |
664 | cp->gss_clnt_flags |= GSS_NEEDCTX; | |
665 | msleep(cp, cp->gss_clnt_mtx, slpflag | PDROP, "ctxwait", NULL); | |
666 | slpflag &= ~PCATCH; | |
667 | if ((error = nfs_sigintr(req->r_nmp, req, req->r_thread, 0))) | |
668 | return (error); | |
669 | nfs_gss_clnt_ctx_unref(req); | |
670 | goto retry; | |
671 | } | |
672 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
673 | ||
674 | ki = cp->gss_clnt_kinfo; | |
675 | if (cp->gss_clnt_flags & GSS_CTX_COMPLETE) { | |
676 | /* | |
677 | * Get a sequence number for this request. | |
678 | * Check whether the oldest request in the window is complete. | |
679 | * If it's still pending, then wait until it's done before | |
680 | * we allocate a new sequence number and allow this request | |
681 | * to proceed. | |
682 | */ | |
683 | lck_mtx_lock(cp->gss_clnt_mtx); | |
684 | while (win_getbit(cp->gss_clnt_seqbits, | |
685 | ((cp->gss_clnt_seqnum - cp->gss_clnt_seqwin) + 1) % cp->gss_clnt_seqwin)) { | |
686 | cp->gss_clnt_flags |= GSS_NEEDSEQ; | |
687 | msleep(cp, cp->gss_clnt_mtx, slpflag | PDROP, "seqwin", NULL); | |
688 | slpflag &= ~PCATCH; | |
689 | if ((error = nfs_sigintr(req->r_nmp, req, req->r_thread, 0))) { | |
690 | return (error); | |
691 | } | |
692 | lck_mtx_lock(cp->gss_clnt_mtx); | |
693 | if (cp->gss_clnt_flags & GSS_CTX_INVAL) { | |
694 | /* Renewed while while we were waiting */ | |
695 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
696 | nfs_gss_clnt_ctx_unref(req); | |
697 | goto retry; | |
698 | } | |
699 | } | |
700 | seqnum = ++cp->gss_clnt_seqnum; | |
701 | win_setbit(cp->gss_clnt_seqbits, seqnum % cp->gss_clnt_seqwin); | |
702 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
703 | ||
704 | MALLOC(gsp, struct gss_seq *, sizeof(*gsp), M_TEMP, M_WAITOK|M_ZERO); | |
705 | if (gsp == NULL) | |
706 | return (ENOMEM); | |
707 | gsp->gss_seqnum = seqnum; | |
708 | SLIST_INSERT_HEAD(&req->r_gss_seqlist, gsp, gss_seqnext); | |
709 | } | |
710 | ||
711 | /* Insert the credential */ | |
712 | nfsm_chain_add_32(error, nmc, RPCSEC_GSS); | |
713 | nfsm_chain_add_32(error, nmc, 5 * NFSX_UNSIGNED + cp->gss_clnt_handle_len); | |
714 | nfsm_chain_add_32(error, nmc, RPCSEC_GSS_VERS_1); | |
715 | nfsm_chain_add_32(error, nmc, cp->gss_clnt_proc); | |
716 | nfsm_chain_add_32(error, nmc, seqnum); | |
717 | nfsm_chain_add_32(error, nmc, cp->gss_clnt_service); | |
718 | nfsm_chain_add_32(error, nmc, cp->gss_clnt_handle_len); | |
719 | if (cp->gss_clnt_handle_len > 0) { | |
720 | if (cp->gss_clnt_handle == NULL) | |
721 | return (EBADRPC); | |
722 | nfsm_chain_add_opaque(error, nmc, cp->gss_clnt_handle, cp->gss_clnt_handle_len); | |
723 | } | |
724 | if (error) | |
725 | return(error); | |
726 | /* | |
727 | * Now add the verifier | |
728 | */ | |
729 | if (cp->gss_clnt_proc == RPCSEC_GSS_INIT || | |
730 | cp->gss_clnt_proc == RPCSEC_GSS_CONTINUE_INIT) { | |
731 | /* | |
732 | * If the context is still being created | |
733 | * then use a null verifier. | |
734 | */ | |
735 | nfsm_chain_add_32(error, nmc, RPCAUTH_NULL); // flavor | |
736 | nfsm_chain_add_32(error, nmc, 0); // length | |
737 | nfsm_chain_build_done(error, nmc); | |
738 | if (!error) | |
739 | nfs_gss_append_chain(nmc, args); | |
740 | return (error); | |
741 | } | |
742 | ||
743 | offset = recordmark ? NFSX_UNSIGNED : 0; // record mark | |
744 | nfsm_chain_build_done(error, nmc); | |
745 | nfs_gss_cksum_chain(ki, nmc, ALG_MIC(ki), offset, 0, cksum); | |
746 | ||
747 | toklen = nfs_gss_token_put(ki, ALG_MIC(ki), tokbuf, 1, 0, cksum); | |
748 | nfsm_chain_add_32(error, nmc, RPCSEC_GSS); // flavor | |
749 | nfsm_chain_add_32(error, nmc, toklen); // length | |
750 | nfsm_chain_add_opaque(error, nmc, tokbuf, toklen); | |
751 | nfsm_chain_build_done(error, nmc); | |
752 | if (error) | |
753 | return (error); | |
754 | ||
755 | /* | |
756 | * Now we may have to compute integrity or encrypt the call args | |
757 | * per RFC 2203 Section 5.3.2 | |
758 | */ | |
759 | switch (cp->gss_clnt_service) { | |
760 | case RPCSEC_GSS_SVC_NONE: | |
761 | nfs_gss_append_chain(nmc, args); | |
762 | break; | |
763 | case RPCSEC_GSS_SVC_INTEGRITY: | |
764 | len = nfs_gss_mchain_length(args); // Find args length | |
765 | req->r_gss_arglen = len; // Stash the args len | |
766 | len += NFSX_UNSIGNED; // Add seqnum length | |
767 | nfsm_chain_add_32(error, nmc, len); // and insert it | |
768 | start = nfsm_chain_offset(nmc); | |
769 | nfsm_chain_add_32(error, nmc, seqnum); // Insert seqnum | |
770 | req->r_gss_argoff = nfsm_chain_offset(nmc); // Offset to args | |
771 | nfsm_chain_build_done(error, nmc); | |
772 | if (error) | |
773 | return (error); | |
774 | nfs_gss_append_chain(nmc, args); // Append the args mbufs | |
775 | ||
776 | /* Now compute a checksum over the seqnum + args */ | |
777 | nfs_gss_cksum_chain(ki, nmc, ALG_MIC(ki), start, len, cksum); | |
778 | ||
779 | /* Insert it into a token and append to the request */ | |
780 | toklen = nfs_gss_token_put(ki, ALG_MIC(ki), tokbuf, 1, 0, cksum); | |
781 | nfsm_chain_finish_mbuf(error, nmc); // force checksum into new mbuf | |
782 | nfsm_chain_add_32(error, nmc, toklen); | |
783 | nfsm_chain_add_opaque(error, nmc, tokbuf, toklen); | |
784 | nfsm_chain_build_done(error, nmc); | |
785 | break; | |
786 | case RPCSEC_GSS_SVC_PRIVACY: | |
787 | /* Prepend a new mbuf with the confounder & sequence number */ | |
788 | nfsm_chain_build_alloc_init(error, &nmc_tmp, 3 * NFSX_UNSIGNED); | |
789 | nfsm_chain_add_32(error, &nmc_tmp, random()); // confounder bytes 1-4 | |
790 | nfsm_chain_add_32(error, &nmc_tmp, random()); // confounder bytes 4-8 | |
791 | nfsm_chain_add_32(error, &nmc_tmp, seqnum); | |
792 | nfsm_chain_build_done(error, &nmc_tmp); | |
793 | if (error) | |
794 | return (error); | |
795 | nfs_gss_append_chain(&nmc_tmp, args); // Append the args mbufs | |
796 | ||
797 | len = nfs_gss_mchain_length(args); // Find args length | |
798 | len += 3 * NFSX_UNSIGNED; // add confounder & seqnum | |
799 | req->r_gss_arglen = len; // Stash length | |
800 | ||
801 | /* | |
802 | * Append a pad trailer - per RFC 1964 section 1.2.2.3 | |
803 | * Since XDR data is always 32-bit aligned, it | |
804 | * needs to be padded either by 4 bytes or 8 bytes. | |
805 | */ | |
806 | nfsm_chain_finish_mbuf(error, &nmc_tmp); // force padding into new mbuf | |
807 | if (len % 8 > 0) { | |
808 | nfsm_chain_add_32(error, &nmc_tmp, 0x04040404); | |
809 | len += NFSX_UNSIGNED; | |
810 | } else { | |
811 | nfsm_chain_add_32(error, &nmc_tmp, 0x08080808); | |
812 | nfsm_chain_add_32(error, &nmc_tmp, 0x08080808); | |
813 | len += 2 * NFSX_UNSIGNED; | |
814 | } | |
815 | nfsm_chain_build_done(error, &nmc_tmp); | |
816 | ||
817 | /* Now compute a checksum over the confounder + seqnum + args */ | |
818 | nfs_gss_cksum_chain(ki, &nmc_tmp, ALG_WRAP(ki), 0, len, cksum); | |
819 | ||
820 | /* Insert it into a token */ | |
821 | toklen = nfs_gss_token_put(ki, ALG_WRAP(ki), tokbuf, 1, len, cksum); | |
822 | nfsm_chain_add_32(error, nmc, toklen + len); // token + args length | |
823 | nfsm_chain_add_opaque_nopad(error, nmc, tokbuf, toklen); | |
824 | req->r_gss_argoff = nfsm_chain_offset(nmc); // Stash offset | |
825 | nfsm_chain_build_done(error, nmc); | |
826 | if (error) | |
827 | return (error); | |
828 | nfs_gss_append_chain(nmc, nmc_tmp.nmc_mhead); // Append the args mbufs | |
829 | ||
830 | /* Finally, encrypt the args */ | |
831 | nfs_gss_encrypt_chain(ki, &nmc_tmp, 0, len, DES_ENCRYPT); | |
832 | ||
833 | /* Add null XDR pad if the ASN.1 token misaligned the data */ | |
834 | pad = nfsm_pad(toklen + len); | |
835 | if (pad > 0) { | |
836 | nfsm_chain_add_opaque_nopad(error, nmc, iv0, pad); | |
837 | nfsm_chain_build_done(error, nmc); | |
838 | } | |
839 | break; | |
840 | } | |
841 | ||
842 | return (error); | |
843 | } | |
844 | ||
845 | /* | |
846 | * When receiving a reply, the client checks the verifier | |
847 | * returned by the server. Check that the verifier is the | |
848 | * correct type, then extract the sequence number checksum | |
849 | * from the token in the credential and compare it with a | |
850 | * computed checksum of the sequence number in the request | |
851 | * that was sent. | |
852 | */ | |
853 | int | |
854 | nfs_gss_clnt_verf_get( | |
855 | struct nfsreq *req, | |
856 | struct nfsm_chain *nmc, | |
857 | uint32_t verftype, | |
858 | uint32_t verflen, | |
859 | uint32_t *accepted_statusp) | |
860 | { | |
861 | u_char tokbuf[KRB5_SZ_TOKMAX(MAX_DIGEST)]; | |
862 | u_char cksum1[MAX_DIGEST], cksum2[MAX_DIGEST]; | |
863 | uint32_t seqnum = 0; | |
864 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
865 | struct nfsm_chain nmc_tmp; | |
866 | struct gss_seq *gsp; | |
867 | uint32_t reslen, start, cksumlen, toklen; | |
868 | int error = 0; | |
869 | gss_key_info *ki = cp->gss_clnt_kinfo; | |
870 | ||
871 | reslen = cksumlen = 0; | |
872 | *accepted_statusp = 0; | |
873 | ||
874 | if (cp == NULL) | |
875 | return (NFSERR_EAUTH); | |
876 | /* | |
877 | * If it's not an RPCSEC_GSS verifier, then it has to | |
878 | * be a null verifier that resulted from either | |
879 | * a CONTINUE_NEEDED reply during context setup or | |
880 | * from the reply to an AUTH_UNIX call from a dummy | |
881 | * context that resulted from a fallback to sec=sys. | |
882 | */ | |
883 | if (verftype != RPCSEC_GSS) { | |
884 | if (verftype != RPCAUTH_NULL) | |
885 | return (NFSERR_EAUTH); | |
886 | if (cp->gss_clnt_flags & GSS_CTX_COMPLETE) | |
887 | return (NFSERR_EAUTH); | |
888 | if (verflen > 0) | |
889 | nfsm_chain_adv(error, nmc, nfsm_rndup(verflen)); | |
890 | nfsm_chain_get_32(error, nmc, *accepted_statusp); | |
891 | return (error); | |
892 | } | |
893 | ||
894 | /* | |
895 | * If we received an RPCSEC_GSS verifier but the | |
896 | * context isn't yet complete, then it must be | |
897 | * the context complete message from the server. | |
898 | * The verifier will contain an encrypted checksum | |
899 | * of the window but we don't have the session key | |
900 | * yet so we can't decrypt it. Stash the verifier | |
901 | * and check it later in nfs_gss_clnt_ctx_init() when | |
902 | * the context is complete. | |
903 | */ | |
904 | if (!(cp->gss_clnt_flags & GSS_CTX_COMPLETE)) { | |
905 | MALLOC(cp->gss_clnt_verf, u_char *, verflen, M_TEMP, M_WAITOK|M_ZERO); | |
906 | if (cp->gss_clnt_verf == NULL) | |
907 | return (ENOMEM); | |
908 | nfsm_chain_get_opaque(error, nmc, verflen, cp->gss_clnt_verf); | |
909 | nfsm_chain_get_32(error, nmc, *accepted_statusp); | |
910 | return (error); | |
911 | } | |
912 | ||
913 | if (verflen != KRB5_SZ_TOKEN(ki->hash_len)) | |
914 | return (NFSERR_EAUTH); | |
915 | ||
916 | /* | |
917 | * Get the 8 octet sequence number | |
918 | * checksum out of the verifier token. | |
919 | */ | |
920 | nfsm_chain_get_opaque(error, nmc, verflen, tokbuf); | |
921 | if (error) | |
922 | goto nfsmout; | |
923 | error = nfs_gss_token_get(ki, ALG_MIC(ki), tokbuf, 0, NULL, cksum1); | |
924 | if (error) | |
925 | goto nfsmout; | |
926 | ||
927 | /* | |
928 | * Search the request sequence numbers for this reply, starting | |
929 | * with the most recent, looking for a checksum that matches | |
930 | * the one in the verifier returned by the server. | |
931 | */ | |
932 | SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) { | |
933 | nfs_gss_cksum_rep(ki, gsp->gss_seqnum, cksum2); | |
934 | if (bcmp(cksum1, cksum2, HASHLEN(ki)) == 0) | |
935 | break; | |
936 | } | |
937 | if (gsp == NULL) | |
938 | return (NFSERR_EAUTH); | |
939 | ||
940 | /* | |
941 | * Get the RPC accepted status | |
942 | */ | |
943 | nfsm_chain_get_32(error, nmc, *accepted_statusp); | |
944 | if (*accepted_statusp != RPC_SUCCESS) | |
945 | return (0); | |
946 | ||
947 | /* | |
948 | * Now we may have to check integrity or decrypt the results | |
949 | * per RFC 2203 Section 5.3.2 | |
950 | */ | |
951 | switch (cp->gss_clnt_service) { | |
952 | case RPCSEC_GSS_SVC_NONE: | |
953 | /* nothing to do */ | |
954 | break; | |
955 | case RPCSEC_GSS_SVC_INTEGRITY: | |
956 | /* | |
957 | * Here's what we expect in the integrity results: | |
958 | * | |
959 | * - length of seq num + results (4 bytes) | |
960 | * - sequence number (4 bytes) | |
961 | * - results (variable bytes) | |
962 | * - length of checksum token (37) | |
963 | * - checksum of seqnum + results (37 bytes) | |
964 | */ | |
965 | nfsm_chain_get_32(error, nmc, reslen); // length of results | |
966 | if (reslen > NFS_MAXPACKET) { | |
967 | error = EBADRPC; | |
968 | goto nfsmout; | |
969 | } | |
970 | ||
971 | /* Compute a checksum over the sequence number + results */ | |
972 | start = nfsm_chain_offset(nmc); | |
973 | nfs_gss_cksum_chain(ki, nmc, ALG_MIC(ki), start, reslen, cksum1); | |
974 | ||
975 | /* | |
976 | * Get the sequence number prepended to the results | |
977 | * and compare it against the list in the request. | |
978 | */ | |
979 | nfsm_chain_get_32(error, nmc, seqnum); | |
980 | SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) { | |
981 | if (seqnum == gsp->gss_seqnum) | |
982 | break; | |
983 | } | |
984 | if (gsp == NULL) { | |
985 | error = EBADRPC; | |
986 | goto nfsmout; | |
987 | } | |
988 | ||
989 | /* | |
990 | * Advance to the end of the results and | |
991 | * fetch the checksum computed by the server. | |
992 | */ | |
993 | nmc_tmp = *nmc; | |
994 | reslen -= NFSX_UNSIGNED; // already skipped seqnum | |
995 | nfsm_chain_adv(error, &nmc_tmp, reslen); // skip over the results | |
996 | nfsm_chain_get_32(error, &nmc_tmp, cksumlen); // length of checksum | |
997 | if (cksumlen != KRB5_SZ_TOKEN(ki->hash_len)) { | |
998 | error = EBADRPC; | |
999 | goto nfsmout; | |
1000 | } | |
1001 | nfsm_chain_get_opaque(error, &nmc_tmp, cksumlen, tokbuf); | |
1002 | if (error) | |
1003 | goto nfsmout; | |
1004 | error = nfs_gss_token_get(ki, ALG_MIC(ki), tokbuf, 0, NULL, cksum2); | |
1005 | if (error) | |
1006 | goto nfsmout; | |
1007 | ||
1008 | /* Verify that the checksums are the same */ | |
1009 | if (bcmp(cksum1, cksum2, HASHLEN(ki)) != 0) { | |
1010 | error = EBADRPC; | |
1011 | goto nfsmout; | |
1012 | } | |
1013 | break; | |
1014 | case RPCSEC_GSS_SVC_PRIVACY: | |
1015 | /* | |
1016 | * Here's what we expect in the privacy results: | |
1017 | * | |
1018 | * - length of confounder + seq num + token + results | |
1019 | * - wrap token (37-40 bytes) | |
1020 | * - confounder (8 bytes) | |
1021 | * - sequence number (4 bytes) | |
1022 | * - results (encrypted) | |
1023 | */ | |
1024 | nfsm_chain_get_32(error, nmc, reslen); // length of results | |
1025 | if (reslen > NFS_MAXPACKET) { | |
1026 | error = EBADRPC; | |
1027 | goto nfsmout; | |
1028 | } | |
1029 | ||
1030 | /* Get the token that prepends the encrypted results */ | |
1031 | nfsm_chain_get_opaque(error, nmc, KRB5_SZ_TOKMAX(ki->hash_len), tokbuf); | |
1032 | if (error) | |
1033 | goto nfsmout; | |
1034 | error = nfs_gss_token_get(ki, ALG_WRAP(ki), tokbuf, 0, | |
1035 | &toklen, cksum1); | |
1036 | if (error) | |
1037 | goto nfsmout; | |
1038 | nfsm_chain_reverse(nmc, nfsm_pad(toklen)); | |
1039 | reslen -= toklen; // size of confounder + seqnum + results | |
1040 | ||
1041 | /* decrypt the confounder + sequence number + results */ | |
1042 | start = nfsm_chain_offset(nmc); | |
1043 | nfs_gss_encrypt_chain(ki, nmc, start, reslen, DES_DECRYPT); | |
1044 | ||
1045 | /* Compute a checksum over the confounder + sequence number + results */ | |
1046 | nfs_gss_cksum_chain(ki, nmc, ALG_WRAP(ki), start, reslen, cksum2); | |
1047 | ||
1048 | /* Verify that the checksums are the same */ | |
1049 | if (bcmp(cksum1, cksum2, HASHLEN(ki)) != 0) { | |
1050 | error = EBADRPC; | |
1051 | goto nfsmout; | |
1052 | } | |
1053 | ||
1054 | nfsm_chain_adv(error, nmc, 8); // skip over the confounder | |
1055 | ||
1056 | /* | |
1057 | * Get the sequence number prepended to the results | |
1058 | * and compare it against the list in the request. | |
1059 | */ | |
1060 | nfsm_chain_get_32(error, nmc, seqnum); | |
1061 | SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) { | |
1062 | if (seqnum == gsp->gss_seqnum) | |
1063 | break; | |
1064 | } | |
1065 | if (gsp == NULL) { | |
1066 | error = EBADRPC; | |
1067 | goto nfsmout; | |
1068 | } | |
1069 | ||
1070 | break; | |
1071 | } | |
1072 | nfsmout: | |
1073 | return (error); | |
1074 | } | |
1075 | ||
1076 | /* | |
1077 | * An RPCSEC_GSS request with no integrity or privacy consists | |
1078 | * of just the header mbufs followed by the arg mbufs. | |
1079 | * | |
1080 | * However, integrity or privacy both trailer mbufs to the args, | |
1081 | * which means we have to do some work to restore the arg mbuf | |
1082 | * chain to its previous state in case we need to retransmit. | |
1083 | * | |
1084 | * The location and length of the args is marked by two fields | |
1085 | * in the request structure: r_gss_argoff and r_gss_arglen, | |
1086 | * which are stashed when the NFS request is built. | |
1087 | */ | |
1088 | int | |
1089 | nfs_gss_clnt_args_restore(struct nfsreq *req) | |
1090 | { | |
1091 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
1092 | struct nfsm_chain mchain, *nmc = &mchain; | |
1093 | int len, error = 0; | |
1094 | ||
1095 | if (cp == NULL) | |
1096 | return (NFSERR_EAUTH); | |
1097 | ||
1098 | if ((cp->gss_clnt_flags & GSS_CTX_COMPLETE) == 0) | |
1099 | return (ENEEDAUTH); | |
1100 | ||
1101 | nfsm_chain_dissect_init(error, nmc, req->r_mhead); // start at RPC header | |
1102 | nfsm_chain_adv(error, nmc, req->r_gss_argoff); // advance to args | |
1103 | if (error) | |
1104 | return (error); | |
1105 | ||
1106 | switch (cp->gss_clnt_service) { | |
1107 | case RPCSEC_GSS_SVC_NONE: | |
1108 | /* nothing to do */ | |
1109 | break; | |
1110 | case RPCSEC_GSS_SVC_INTEGRITY: | |
1111 | /* | |
1112 | * All we have to do here is remove the appended checksum mbufs. | |
1113 | * We know that the checksum starts in a new mbuf beyond the end | |
1114 | * of the args. | |
1115 | */ | |
1116 | nfsm_chain_adv(error, nmc, req->r_gss_arglen); // adv to last args mbuf | |
1117 | if (error) | |
1118 | return (error); | |
1119 | ||
1120 | mbuf_freem(mbuf_next(nmc->nmc_mcur)); // free the cksum mbuf | |
1121 | error = mbuf_setnext(nmc->nmc_mcur, NULL); | |
1122 | break; | |
1123 | case RPCSEC_GSS_SVC_PRIVACY: | |
1124 | /* | |
1125 | * The args are encrypted along with prepended confounders and seqnum. | |
1126 | * First we decrypt, the confounder, seqnum and args then skip to the | |
1127 | * final mbuf of the args. | |
1128 | * The arglen includes 8 bytes of confounder and 4 bytes of seqnum. | |
1129 | * Finally, we remove between 4 and 8 bytes of encryption padding | |
1130 | * as well as any alignment padding in the trailing mbuf. | |
1131 | */ | |
1132 | len = req->r_gss_arglen; | |
1133 | len += len % 8 > 0 ? 4 : 8; // add DES padding length | |
1134 | nfs_gss_encrypt_chain(cp->gss_clnt_kinfo, nmc, | |
1135 | req->r_gss_argoff, len, DES_DECRYPT); | |
1136 | nfsm_chain_adv(error, nmc, req->r_gss_arglen); | |
1137 | if (error) | |
1138 | return (error); | |
1139 | mbuf_freem(mbuf_next(nmc->nmc_mcur)); // free the pad mbuf | |
1140 | error = mbuf_setnext(nmc->nmc_mcur, NULL); | |
1141 | break; | |
1142 | } | |
1143 | ||
1144 | return (error); | |
1145 | } | |
1146 | ||
1147 | /* | |
1148 | * This function sets up a new context on the client. | |
1149 | * Context setup alternates upcalls to the gssd with NFS nullproc calls | |
1150 | * to the server. Each of these calls exchanges an opaque token, obtained | |
1151 | * via the gssd's calls into the GSS-API on either the client or the server. | |
1152 | * This cycle of calls ends when the client's upcall to the gssd and the | |
1153 | * server's response both return GSS_S_COMPLETE. At this point, the client | |
1154 | * should have its session key and a handle that it can use to refer to its | |
1155 | * new context on the server. | |
1156 | */ | |
1157 | static int | |
1158 | nfs_gss_clnt_ctx_init(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp) | |
1159 | { | |
1160 | struct nfsmount *nmp = req->r_nmp; | |
1161 | int client_complete = 0; | |
1162 | int server_complete = 0; | |
1163 | u_char cksum1[MAX_DIGEST], cksum2[MAX_DIGEST]; | |
1164 | int error = 0; | |
1165 | gss_key_info *ki = cp->gss_clnt_kinfo; | |
1166 | ||
1167 | /* Initialize a new client context */ | |
1168 | ||
1169 | if (cp->gss_clnt_svcname == NULL) { | |
1170 | cp->gss_clnt_svcname = nfs_gss_clnt_svcname(nmp, &cp->gss_clnt_svcnt, &cp->gss_clnt_svcnamlen); | |
1171 | if (cp->gss_clnt_svcname == NULL) { | |
1172 | error = NFSERR_EAUTH; | |
1173 | goto nfsmout; | |
1174 | } | |
1175 | } | |
1176 | ||
1177 | cp->gss_clnt_proc = RPCSEC_GSS_INIT; | |
1178 | ||
1179 | cp->gss_clnt_service = | |
1180 | req->r_auth == RPCAUTH_KRB5 ? RPCSEC_GSS_SVC_NONE : | |
1181 | req->r_auth == RPCAUTH_KRB5I ? RPCSEC_GSS_SVC_INTEGRITY : | |
1182 | req->r_auth == RPCAUTH_KRB5P ? RPCSEC_GSS_SVC_PRIVACY : 0; | |
1183 | ||
1184 | cp->gss_clnt_gssd_flags = (nfs_single_des ? GSSD_NFS_1DES : 0); | |
1185 | /* | |
1186 | * Now loop around alternating gss_init_sec_context and | |
1187 | * gss_accept_sec_context upcalls to the gssd on the client | |
1188 | * and server side until the context is complete - or fails. | |
1189 | */ | |
1190 | for (;;) { | |
1191 | ||
1192 | retry: | |
1193 | /* Upcall to the gss_init_sec_context in the gssd */ | |
1194 | error = nfs_gss_clnt_gssd_upcall(req, cp); | |
1195 | if (error) | |
1196 | goto nfsmout; | |
1197 | ||
1198 | if (cp->gss_clnt_major == GSS_S_COMPLETE) { | |
1199 | client_complete = 1; | |
1200 | if (server_complete) | |
1201 | break; | |
1202 | } else if (cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) { | |
1203 | error = NFSERR_EAUTH; | |
1204 | goto nfsmout; | |
1205 | } | |
1206 | ||
1207 | /* | |
1208 | * Pass the token to the server. | |
1209 | */ | |
1210 | error = nfs_gss_clnt_ctx_callserver(req, cp); | |
1211 | if (error) { | |
1212 | if (error == ENEEDAUTH && cp->gss_clnt_proc == RPCSEC_GSS_INIT && | |
1213 | (cp->gss_clnt_gssd_flags & (GSSD_RESTART | GSSD_NFS_1DES)) == 0) { | |
1214 | NFS_GSS_DBG("Retrying with single DES for req %p\n", req); | |
1215 | cp->gss_clnt_gssd_flags = (GSSD_RESTART | GSSD_NFS_1DES); | |
1216 | if (cp->gss_clnt_token) | |
1217 | FREE(cp->gss_clnt_token, M_TEMP); | |
1218 | cp->gss_clnt_token = NULL; | |
1219 | cp->gss_clnt_tokenlen = 0; | |
1220 | goto retry; | |
1221 | } | |
1222 | // Reset flags, if error = ENEEDAUTH we will try 3des again | |
1223 | cp->gss_clnt_gssd_flags = 0; | |
1224 | goto nfsmout; | |
1225 | } | |
1226 | if (cp->gss_clnt_major == GSS_S_COMPLETE) { | |
1227 | server_complete = 1; | |
1228 | if (client_complete) | |
1229 | break; | |
1230 | } | |
1231 | cp->gss_clnt_proc = RPCSEC_GSS_CONTINUE_INIT; | |
1232 | } | |
1233 | ||
1234 | /* | |
1235 | * The context is apparently established successfully | |
1236 | */ | |
1237 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1238 | cp->gss_clnt_flags |= GSS_CTX_COMPLETE; | |
1239 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1240 | cp->gss_clnt_proc = RPCSEC_GSS_DATA; | |
1241 | ||
1242 | /* | |
1243 | * Compute checksum of the server's window | |
1244 | */ | |
1245 | nfs_gss_cksum_rep(ki, cp->gss_clnt_seqwin, cksum1); | |
1246 | ||
1247 | /* | |
1248 | * and see if it matches the one in the | |
1249 | * verifier the server returned. | |
1250 | */ | |
1251 | error = nfs_gss_token_get(ki, ALG_MIC(ki), cp->gss_clnt_verf, 0, | |
1252 | NULL, cksum2); | |
1253 | FREE(cp->gss_clnt_verf, M_TEMP); | |
1254 | cp->gss_clnt_verf = NULL; | |
1255 | ||
1256 | if (error || bcmp(cksum1, cksum2, HASHLEN(ki)) != 0) { | |
1257 | error = NFSERR_EAUTH; | |
1258 | goto nfsmout; | |
1259 | } | |
1260 | ||
1261 | /* | |
1262 | * Set an initial sequence number somewhat randomized. | |
1263 | * Start small so we don't overflow GSS_MAXSEQ too quickly. | |
1264 | * Add the size of the sequence window so seqbits arithmetic | |
1265 | * doesn't go negative. | |
1266 | */ | |
1267 | cp->gss_clnt_seqnum = (random() & 0xffff) + cp->gss_clnt_seqwin; | |
1268 | ||
1269 | /* | |
1270 | * Allocate a bitmap to keep track of which requests | |
1271 | * are pending within the sequence number window. | |
1272 | */ | |
1273 | MALLOC(cp->gss_clnt_seqbits, uint32_t *, | |
1274 | nfsm_rndup((cp->gss_clnt_seqwin + 7) / 8), M_TEMP, M_WAITOK|M_ZERO); | |
1275 | if (cp->gss_clnt_seqbits == NULL) | |
1276 | error = NFSERR_EAUTH; | |
1277 | nfsmout: | |
1278 | /* | |
1279 | * If the error is ENEEDAUTH we're not done, so no need | |
1280 | * to wake up other threads again. This thread will retry in | |
1281 | * the find or renew routines. | |
1282 | */ | |
1283 | if (error == ENEEDAUTH) | |
1284 | return (error); | |
1285 | ||
1286 | /* | |
1287 | * If there's an error, just mark it as invalid. | |
1288 | * It will be removed when the reference count | |
1289 | * drops to zero. | |
1290 | */ | |
1291 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1292 | if (error) | |
1293 | cp->gss_clnt_flags |= GSS_CTX_INVAL; | |
1294 | ||
1295 | /* | |
1296 | * Wake any threads waiting to use the context | |
1297 | */ | |
1298 | cp->gss_clnt_thread = NULL; | |
1299 | if (cp->gss_clnt_flags & GSS_NEEDCTX) { | |
1300 | cp->gss_clnt_flags &= ~GSS_NEEDCTX; | |
1301 | wakeup(cp); | |
1302 | } | |
1303 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1304 | ||
1305 | return (error); | |
1306 | } | |
1307 | ||
1308 | /* | |
1309 | * This function calls nfs_gss_clnt_ctx_init() to set up a new context. | |
1310 | * But if there's a failure in trying to establish the context it keeps | |
1311 | * retrying at progressively longer intervals in case the failure is | |
1312 | * due to some transient condition. For instance, the server might be | |
1313 | * failing the context setup because directory services is not coming | |
1314 | * up in a timely fashion. | |
1315 | */ | |
1316 | static int | |
1317 | nfs_gss_clnt_ctx_init_retry(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp) | |
1318 | { | |
1319 | struct nfsmount *nmp = req->r_nmp; | |
1320 | struct timeval now; | |
1321 | time_t waituntil; | |
1322 | int error, slpflag; | |
1323 | int retries = 0; | |
1324 | int timeo = NFS_TRYLATERDEL; | |
1325 | ||
1326 | if (nfs_mount_gone(nmp)) { | |
1327 | error = ENXIO; | |
1328 | goto bad; | |
1329 | } | |
1330 | ||
1331 | /* For an "intr" mount allow a signal to interrupt the retries */ | |
1332 | slpflag = (NMFLAG(nmp, INTR) && !(req->r_flags & R_NOINTR)) ? PCATCH : 0; | |
1333 | ||
1334 | while ((error = nfs_gss_clnt_ctx_init(req, cp)) == ENEEDAUTH) { | |
1335 | microuptime(&now); | |
1336 | waituntil = now.tv_sec + timeo; | |
1337 | while (now.tv_sec < waituntil) { | |
1338 | tsleep(NULL, PSOCK | slpflag, "nfs_gss_clnt_ctx_init_retry", hz); | |
1339 | slpflag = 0; | |
1340 | error = nfs_sigintr(req->r_nmp, req, current_thread(), 0); | |
1341 | if (error) | |
1342 | goto bad; | |
1343 | microuptime(&now); | |
1344 | } | |
1345 | ||
1346 | retries++; | |
1347 | /* If it's a soft mount just give up after a while */ | |
1348 | if ((NMFLAG(nmp, SOFT) || (req->r_flags & R_SOFT)) && (retries > nmp->nm_retry)) { | |
1349 | error = ETIMEDOUT; | |
1350 | goto bad; | |
1351 | } | |
1352 | timeo *= 2; | |
1353 | if (timeo > 60) | |
1354 | timeo = 60; | |
1355 | } | |
1356 | ||
1357 | if (error == 0) | |
1358 | return 0; // success | |
1359 | bad: | |
1360 | /* | |
1361 | * Give up on this context | |
1362 | */ | |
1363 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1364 | cp->gss_clnt_flags |= GSS_CTX_INVAL; | |
1365 | ||
1366 | /* | |
1367 | * Wake any threads waiting to use the context | |
1368 | */ | |
1369 | cp->gss_clnt_thread = NULL; | |
1370 | if (cp->gss_clnt_flags & GSS_NEEDCTX) { | |
1371 | cp->gss_clnt_flags &= ~GSS_NEEDCTX; | |
1372 | wakeup(cp); | |
1373 | } | |
1374 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1375 | ||
1376 | return error; | |
1377 | } | |
1378 | ||
1379 | /* | |
1380 | * Call the NFS server using a null procedure for context setup. | |
1381 | * Even though it's a null procedure and nominally has no arguments | |
1382 | * RFC 2203 requires that the GSS-API token be passed as an argument | |
1383 | * and received as a reply. | |
1384 | */ | |
1385 | static int | |
1386 | nfs_gss_clnt_ctx_callserver(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp) | |
1387 | { | |
1388 | struct nfsm_chain nmreq, nmrep; | |
1389 | int error = 0, status; | |
1390 | uint32_t major = cp->gss_clnt_major, minor = cp->gss_clnt_minor; | |
1391 | int sz; | |
1392 | ||
1393 | if (nfs_mount_gone(req->r_nmp)) | |
1394 | return (ENXIO); | |
1395 | nfsm_chain_null(&nmreq); | |
1396 | nfsm_chain_null(&nmrep); | |
1397 | sz = NFSX_UNSIGNED + nfsm_rndup(cp->gss_clnt_tokenlen); | |
1398 | nfsm_chain_build_alloc_init(error, &nmreq, sz); | |
1399 | nfsm_chain_add_32(error, &nmreq, cp->gss_clnt_tokenlen); | |
1400 | if (cp->gss_clnt_tokenlen > 0) | |
1401 | nfsm_chain_add_opaque(error, &nmreq, cp->gss_clnt_token, cp->gss_clnt_tokenlen); | |
1402 | nfsm_chain_build_done(error, &nmreq); | |
1403 | if (error) | |
1404 | goto nfsmout; | |
1405 | ||
1406 | /* Call the server */ | |
1407 | error = nfs_request_gss(req->r_nmp->nm_mountp, &nmreq, req->r_thread, req->r_cred, | |
1408 | (req->r_flags & R_OPTMASK), cp, &nmrep, &status); | |
1409 | if (cp->gss_clnt_token != NULL) { | |
1410 | FREE(cp->gss_clnt_token, M_TEMP); | |
1411 | cp->gss_clnt_token = NULL; | |
1412 | } | |
1413 | if (!error) | |
1414 | error = status; | |
1415 | if (error) | |
1416 | goto nfsmout; | |
1417 | ||
1418 | /* Get the server's reply */ | |
1419 | ||
1420 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_handle_len); | |
1421 | if (cp->gss_clnt_handle != NULL) { | |
1422 | FREE(cp->gss_clnt_handle, M_TEMP); | |
1423 | cp->gss_clnt_handle = NULL; | |
1424 | } | |
1425 | if (cp->gss_clnt_handle_len > 0) { | |
1426 | MALLOC(cp->gss_clnt_handle, u_char *, cp->gss_clnt_handle_len, M_TEMP, M_WAITOK); | |
1427 | if (cp->gss_clnt_handle == NULL) { | |
1428 | error = ENOMEM; | |
1429 | goto nfsmout; | |
1430 | } | |
1431 | nfsm_chain_get_opaque(error, &nmrep, cp->gss_clnt_handle_len, cp->gss_clnt_handle); | |
1432 | } | |
1433 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_major); | |
1434 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_minor); | |
1435 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_seqwin); | |
1436 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_tokenlen); | |
1437 | if (error) | |
1438 | goto nfsmout; | |
1439 | if (cp->gss_clnt_tokenlen > 0) { | |
1440 | MALLOC(cp->gss_clnt_token, u_char *, cp->gss_clnt_tokenlen, M_TEMP, M_WAITOK); | |
1441 | if (cp->gss_clnt_token == NULL) { | |
1442 | error = ENOMEM; | |
1443 | goto nfsmout; | |
1444 | } | |
1445 | nfsm_chain_get_opaque(error, &nmrep, cp->gss_clnt_tokenlen, cp->gss_clnt_token); | |
1446 | } | |
1447 | ||
1448 | /* | |
1449 | * Make sure any unusual errors are expanded and logged by gssd | |
1450 | */ | |
1451 | if (cp->gss_clnt_major != GSS_S_COMPLETE && | |
1452 | cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) { | |
1453 | ||
1454 | printf("nfs_gss_clnt_ctx_callserver: gss_clnt_major = %d\n", cp->gss_clnt_major); | |
1455 | nfs_gss_clnt_log_error(req, cp, major, minor); | |
1456 | ||
1457 | } | |
1458 | ||
1459 | nfsmout: | |
1460 | nfsm_chain_cleanup(&nmreq); | |
1461 | nfsm_chain_cleanup(&nmrep); | |
1462 | ||
1463 | return (error); | |
1464 | } | |
1465 | ||
1466 | /* | |
1467 | * We construct the service principal as a gss hostbased service principal of | |
1468 | * the form nfs@<server>, unless the servers principal was passed down in the | |
1469 | * mount arguments. If the arguments don't specify the service principal, the | |
1470 | * server name is extracted the location passed in the mount argument if | |
1471 | * available. Otherwise assume a format of <server>:<path> in the | |
1472 | * mntfromname. We don't currently support url's or other bizarre formats like | |
1473 | * path@server. Mount_url will convert the nfs url into <server>:<path> when | |
1474 | * calling mount, so this works out well in practice. | |
1475 | * | |
1476 | */ | |
1477 | ||
1478 | static uint8_t * | |
1479 | nfs_gss_clnt_svcname(struct nfsmount *nmp, gssd_nametype *nt, uint32_t *len) | |
1480 | { | |
1481 | char *svcname, *d, *server; | |
1482 | int lindx, sindx; | |
1483 | ||
1484 | if (nfs_mount_gone(nmp)) | |
1485 | return (NULL); | |
1486 | ||
1487 | if (nmp->nm_sprinc) { | |
1488 | *len = strlen(nmp->nm_sprinc) + 1; | |
1489 | MALLOC(svcname, char *, *len, M_TEMP, M_WAITOK); | |
1490 | *nt = GSSD_HOSTBASED; | |
1491 | if (svcname == NULL) | |
1492 | return (NULL); | |
1493 | strlcpy(svcname, nmp->nm_sprinc, *len); | |
1494 | ||
1495 | return ((uint8_t *)svcname); | |
1496 | } | |
1497 | ||
1498 | *nt = GSSD_HOSTBASED; | |
1499 | if (nmp->nm_locations.nl_numlocs && !(NFS_GSS_ISDBG && (NFS_DEBUG_FLAGS & 0x1))) { | |
1500 | lindx = nmp->nm_locations.nl_current.nli_loc; | |
1501 | sindx = nmp->nm_locations.nl_current.nli_serv; | |
1502 | server = nmp->nm_locations.nl_locations[lindx]->nl_servers[sindx]->ns_name; | |
1503 | *len = (uint32_t)strlen(server); | |
1504 | } else { | |
1505 | /* Older binaries using older mount args end up here */ | |
1506 | server = vfs_statfs(nmp->nm_mountp)->f_mntfromname; | |
1507 | NFS_GSS_DBG("nfs getting gss svcname from %s\n", server); | |
1508 | d = strchr(server, ':'); | |
1509 | *len = (uint32_t)(d ? (d - server) : strlen(server)); | |
1510 | } | |
1511 | ||
1512 | *len += 5; /* "nfs@" plus null */ | |
1513 | MALLOC(svcname, char *, *len, M_TEMP, M_WAITOK); | |
1514 | strlcpy(svcname, "nfs", *len); | |
1515 | strlcat(svcname, "@", *len); | |
1516 | strlcat(svcname, server, *len); | |
1517 | NFS_GSS_DBG("nfs svcname = %s\n", svcname); | |
1518 | ||
1519 | return ((uint8_t *)svcname); | |
1520 | } | |
1521 | ||
1522 | /* | |
1523 | * Get a mach port to talk to gssd. | |
1524 | * gssd lives in the root bootstrap, so we call gssd's lookup routine | |
1525 | * to get a send right to talk to a new gssd instance that launchd has launched | |
1526 | * based on the cred's uid and audit session id. | |
1527 | */ | |
1528 | ||
1529 | static mach_port_t | |
1530 | nfs_gss_clnt_get_upcall_port(kauth_cred_t credp) | |
1531 | { | |
1532 | mach_port_t gssd_host_port, uc_port = IPC_PORT_NULL; | |
1533 | kern_return_t kr; | |
1534 | au_asid_t asid; | |
1535 | uid_t uid; | |
1536 | ||
1537 | kr = host_get_gssd_port(host_priv_self(), &gssd_host_port); | |
1538 | if (kr != KERN_SUCCESS) { | |
1539 | printf("nfs_gss_get_upcall_port: can't get gssd port, status %x (%d)\n", kr, kr); | |
1540 | return (IPC_PORT_NULL); | |
1541 | } | |
1542 | if (!IPC_PORT_VALID(gssd_host_port)) { | |
1543 | printf("nfs_gss_get_upcall_port: gssd port not valid\n"); | |
1544 | return (IPC_PORT_NULL); | |
1545 | } | |
1546 | ||
1547 | asid = kauth_cred_getasid(credp); | |
1548 | uid = kauth_cred_getauid(credp); | |
1549 | if (uid == AU_DEFAUDITID) | |
1550 | uid = kauth_cred_getuid(credp); | |
1551 | kr = mach_gss_lookup(gssd_host_port, uid, asid, &uc_port); | |
1552 | if (kr != KERN_SUCCESS) | |
1553 | printf("nfs_gss_clnt_get_upcall_port: mach_gssd_lookup failed: status %x (%d)\n", kr, kr); | |
1554 | host_release_special_port(gssd_host_port); | |
1555 | ||
1556 | return (uc_port); | |
1557 | } | |
1558 | ||
1559 | ||
1560 | static void | |
1561 | nfs_gss_clnt_log_error(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp, uint32_t major, uint32_t minor) | |
1562 | { | |
1563 | #define GETMAJERROR(x) (((x) >> GSS_C_ROUTINE_ERROR_OFFSET) & GSS_C_ROUTINE_ERROR_MASK) | |
1564 | struct nfsmount *nmp = req->r_nmp; | |
1565 | char who[] = "client"; | |
1566 | uint32_t gss_error = GETMAJERROR(cp->gss_clnt_major); | |
1567 | const char *procn = "unkown"; | |
1568 | proc_t proc; | |
1569 | pid_t pid = -1; | |
1570 | struct timeval now; | |
1571 | ||
1572 | if (req->r_thread) { | |
1573 | proc = (proc_t)get_bsdthreadtask_info(req->r_thread); | |
1574 | if (proc != NULL && (proc->p_fd == NULL || (proc->p_lflag & P_LVFORK))) | |
1575 | proc = NULL; | |
1576 | if (proc) { | |
1577 | if (*proc->p_comm) | |
1578 | procn = proc->p_comm; | |
1579 | pid = proc->p_pid; | |
1580 | } | |
1581 | } else { | |
1582 | procn = "kernproc"; | |
1583 | pid = 0; | |
1584 | } | |
1585 | ||
1586 | microuptime(&now); | |
1587 | if ((cp->gss_clnt_major != major || cp->gss_clnt_minor != minor || | |
1588 | cp->gss_clnt_ptime + GSS_PRINT_DELAY < now.tv_sec) && | |
1589 | (nmp->nm_state & NFSSTA_MOUNTED)) { | |
1590 | /* | |
1591 | * Will let gssd do some logging in hopes that it can translate | |
1592 | * the minor code. | |
1593 | */ | |
1594 | if (cp->gss_clnt_minor && cp->gss_clnt_minor != minor) { | |
1595 | (void) mach_gss_log_error( | |
1596 | cp->gss_clnt_mport, | |
1597 | vfs_statfs(nmp->nm_mountp)->f_mntfromname, | |
1598 | kauth_cred_getuid(cp->gss_clnt_cred), | |
1599 | who, | |
1600 | cp->gss_clnt_major, | |
1601 | cp->gss_clnt_minor); | |
1602 | } | |
1603 | gss_error = gss_error ? gss_error : cp->gss_clnt_major; | |
1604 | ||
1605 | /* | |
1606 | *%%% It would be really nice to get the terminal from the proc or auditinfo_addr struct and print that here. | |
1607 | */ | |
1608 | printf("NFS: gssd auth failure by %s on audit session %d uid %d proc %s/%d for mount %s. Error: major = %d minor = %d\n", | |
1609 | cp->gss_clnt_display ? cp->gss_clnt_display : who, kauth_cred_getasid(req->r_cred), kauth_cred_getuid(req->r_cred), | |
1610 | procn, pid, vfs_statfs(nmp->nm_mountp)->f_mntfromname, gss_error, (int32_t)cp->gss_clnt_minor); | |
1611 | cp->gss_clnt_ptime = now.tv_sec; | |
1612 | switch (gss_error) { | |
1613 | case 7: printf("NFS: gssd does not have credentials for session %d/%d, (kinit)?\n", | |
1614 | kauth_cred_getasid(req->r_cred), kauth_cred_getauid(req->r_cred)); | |
1615 | break; | |
1616 | case 11: printf("NFS: gssd has expired credentals for session %d/%d, (kinit)?\n", | |
1617 | kauth_cred_getasid(req->r_cred), kauth_cred_getauid(req->r_cred)); | |
1618 | break; | |
1619 | } | |
1620 | } else { | |
1621 | NFS_GSS_DBG("NFS: gssd auth failure by %s on audit session %d uid %d proc %s/%d for mount %s. Error: major = %d minor = %d\n", | |
1622 | cp->gss_clnt_display ? cp->gss_clnt_display : who, kauth_cred_getasid(req->r_cred), kauth_cred_getuid(req->r_cred), | |
1623 | procn, pid, vfs_statfs(nmp->nm_mountp)->f_mntfromname, gss_error, (int32_t)cp->gss_clnt_minor); | |
1624 | } | |
1625 | } | |
1626 | ||
1627 | /* | |
1628 | * Make an upcall to the gssd using Mach RPC | |
1629 | * The upcall is made using a host special port. | |
1630 | * This allows launchd to fire up the gssd in the | |
1631 | * user's session. This is important, since gssd | |
1632 | * must have access to the user's credential cache. | |
1633 | */ | |
1634 | static int | |
1635 | nfs_gss_clnt_gssd_upcall(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp) | |
1636 | { | |
1637 | kern_return_t kr; | |
1638 | gssd_byte_buffer okey = NULL; | |
1639 | uint32_t skeylen = 0; | |
1640 | int retry_cnt = 0; | |
1641 | vm_map_copy_t itoken = NULL; | |
1642 | gssd_byte_buffer otoken = NULL; | |
1643 | mach_msg_type_number_t otokenlen; | |
1644 | int error = 0; | |
1645 | uint8_t *principal = NULL; | |
1646 | uint32_t plen = 0; | |
1647 | int32_t nt = GSSD_STRING_NAME; | |
1648 | vm_map_copy_t pname = NULL; | |
1649 | vm_map_copy_t svcname = NULL; | |
1650 | char display_name[MAX_DISPLAY_STR] = ""; | |
1651 | uint32_t ret_flags; | |
1652 | uint32_t nfs_1des = (cp->gss_clnt_gssd_flags & GSSD_NFS_1DES); | |
1653 | struct nfsmount *nmp; | |
1654 | uint32_t major = cp->gss_clnt_major, minor = cp->gss_clnt_minor; | |
1655 | ||
1656 | /* | |
1657 | * NFS currently only supports default principals or | |
1658 | * principals based on the uid of the caller, unless | |
1659 | * the principal to use for the mounting cred was specified | |
1660 | * in the mount argmuments. If the realm to use was specified | |
1661 | * then will send that up as the principal since the realm is | |
1662 | * preceed by an "@" gssd that will try and select the default | |
1663 | * principal for that realm. | |
1664 | */ | |
1665 | ||
1666 | nmp = req->r_nmp; | |
1667 | if (nmp == NULL || vfs_isforce(nmp->nm_mountp) || (nmp->nm_state & (NFSSTA_FORCE | NFSSTA_DEAD))) | |
1668 | return (ENXIO); | |
1669 | ||
1670 | if (cp->gss_clnt_principal && cp->gss_clnt_prinlen) { | |
1671 | principal = cp->gss_clnt_principal; | |
1672 | plen = cp->gss_clnt_prinlen; | |
1673 | nt = cp->gss_clnt_prinnt; | |
1674 | } else if (nmp->nm_principal && IS_VALID_CRED(nmp->nm_mcred) && req->r_cred == nmp->nm_mcred) { | |
1675 | plen = (uint32_t)strlen(nmp->nm_principal); | |
1676 | MALLOC(principal, uint8_t *, plen, M_TEMP, M_WAITOK | M_ZERO); | |
1677 | if (principal == NULL) | |
1678 | return (ENOMEM); | |
1679 | bcopy(nmp->nm_principal, principal, plen); | |
1680 | cp->gss_clnt_prinnt = nt = GSSD_USER; | |
1681 | } | |
1682 | else if (nmp->nm_realm) { | |
1683 | plen = (uint32_t)strlen(nmp->nm_realm); | |
1684 | principal = (uint8_t *)nmp->nm_realm; | |
1685 | nt = GSSD_USER; | |
1686 | } | |
1687 | ||
1688 | if (!IPC_PORT_VALID(cp->gss_clnt_mport)) { | |
1689 | cp->gss_clnt_mport = nfs_gss_clnt_get_upcall_port(req->r_cred); | |
1690 | if (cp->gss_clnt_mport == IPC_PORT_NULL) | |
1691 | goto out; | |
1692 | } | |
1693 | ||
1694 | if (plen) | |
1695 | nfs_gss_mach_alloc_buffer(principal, plen, &pname); | |
1696 | if (cp->gss_clnt_svcnamlen) | |
1697 | nfs_gss_mach_alloc_buffer(cp->gss_clnt_svcname, cp->gss_clnt_svcnamlen, &svcname); | |
1698 | if (cp->gss_clnt_tokenlen) | |
1699 | nfs_gss_mach_alloc_buffer(cp->gss_clnt_token, cp->gss_clnt_tokenlen, &itoken); | |
1700 | ||
1701 | retry: | |
1702 | kr = mach_gss_init_sec_context_v2( | |
1703 | cp->gss_clnt_mport, | |
1704 | GSSD_KRB5_MECH, | |
1705 | (gssd_byte_buffer) itoken, (mach_msg_type_number_t) cp->gss_clnt_tokenlen, | |
1706 | kauth_cred_getuid(cp->gss_clnt_cred), | |
1707 | nt, | |
1708 | (gssd_byte_buffer)pname, (mach_msg_type_number_t) plen, | |
1709 | cp->gss_clnt_svcnt, | |
1710 | (gssd_byte_buffer)svcname, (mach_msg_type_number_t) cp->gss_clnt_svcnamlen, | |
1711 | GSSD_MUTUAL_FLAG, | |
1712 | &cp->gss_clnt_gssd_flags, | |
1713 | &cp->gss_clnt_context, | |
1714 | &cp->gss_clnt_cred_handle, | |
1715 | &ret_flags, | |
1716 | &okey, (mach_msg_type_number_t *) &skeylen, | |
1717 | &otoken, &otokenlen, | |
1718 | cp->gss_clnt_display ? NULL : display_name, | |
1719 | &cp->gss_clnt_major, | |
1720 | &cp->gss_clnt_minor); | |
1721 | ||
1722 | /* Should be cleared and set in gssd ? */ | |
1723 | cp->gss_clnt_gssd_flags &= ~GSSD_RESTART; | |
1724 | cp->gss_clnt_gssd_flags |= nfs_1des; | |
1725 | ||
1726 | if (kr != KERN_SUCCESS) { | |
1727 | printf("nfs_gss_clnt_gssd_upcall: mach_gss_init_sec_context failed: %x (%d)\n", kr, kr); | |
1728 | if (kr == MIG_SERVER_DIED && cp->gss_clnt_cred_handle == 0 && | |
1729 | retry_cnt++ < NFS_GSS_MACH_MAX_RETRIES && | |
1730 | !vfs_isforce(nmp->nm_mountp) && (nmp->nm_state & (NFSSTA_FORCE | NFSSTA_DEAD)) == 0) { | |
1731 | if (plen) | |
1732 | nfs_gss_mach_alloc_buffer(principal, plen, &pname); | |
1733 | if (cp->gss_clnt_svcnamlen) | |
1734 | nfs_gss_mach_alloc_buffer(cp->gss_clnt_svcname, cp->gss_clnt_svcnamlen, &svcname); | |
1735 | if (cp->gss_clnt_tokenlen > 0) | |
1736 | nfs_gss_mach_alloc_buffer(cp->gss_clnt_token, cp->gss_clnt_tokenlen, &itoken); | |
1737 | goto retry; | |
1738 | } | |
1739 | ||
1740 | host_release_special_port(cp->gss_clnt_mport); | |
1741 | cp->gss_clnt_mport = IPC_PORT_NULL; | |
1742 | goto out; | |
1743 | } | |
1744 | ||
1745 | if (cp->gss_clnt_display == NULL && *display_name != '\0') { | |
1746 | int dlen = strnlen(display_name, MAX_DISPLAY_STR) + 1; /* Add extra byte to include '\0' */ | |
1747 | ||
1748 | if (dlen < MAX_DISPLAY_STR) { | |
1749 | MALLOC(cp->gss_clnt_display, char *, dlen, M_TEMP, M_WAITOK); | |
1750 | if (cp->gss_clnt_display == NULL) | |
1751 | goto skip; | |
1752 | bcopy(display_name, cp->gss_clnt_display, dlen); | |
1753 | } else { | |
1754 | goto skip; | |
1755 | } | |
1756 | } | |
1757 | skip: | |
1758 | /* | |
1759 | * Make sure any unusual errors are expanded and logged by gssd | |
1760 | * | |
1761 | * XXXX, we need to rethink this and just have gssd return a string for the major and minor codes. | |
1762 | */ | |
1763 | if (cp->gss_clnt_major != GSS_S_COMPLETE && | |
1764 | cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) { | |
1765 | nfs_gss_clnt_log_error(req, cp, major, minor); | |
1766 | } | |
1767 | ||
1768 | if (skeylen > 0) { | |
1769 | if (skeylen != SKEYLEN && skeylen != SKEYLEN3) { | |
1770 | printf("nfs_gss_clnt_gssd_upcall: bad key length (%d)\n", skeylen); | |
1771 | vm_map_copy_discard((vm_map_copy_t) okey); | |
1772 | vm_map_copy_discard((vm_map_copy_t) otoken); | |
1773 | goto out; | |
1774 | } | |
1775 | error = nfs_gss_mach_vmcopyout((vm_map_copy_t) okey, skeylen, | |
1776 | cp->gss_clnt_kinfo->skey); | |
1777 | if (error) { | |
1778 | vm_map_copy_discard((vm_map_copy_t) otoken); | |
1779 | goto out; | |
1780 | } | |
1781 | ||
1782 | error = gss_key_init(cp->gss_clnt_kinfo, skeylen); | |
1783 | if (error) | |
1784 | goto out; | |
1785 | } | |
1786 | ||
1787 | /* Free context token used as input */ | |
1788 | if (cp->gss_clnt_token) | |
1789 | FREE(cp->gss_clnt_token, M_TEMP); | |
1790 | cp->gss_clnt_token = NULL; | |
1791 | cp->gss_clnt_tokenlen = 0; | |
1792 | ||
1793 | if (otokenlen > 0) { | |
1794 | /* Set context token to gss output token */ | |
1795 | MALLOC(cp->gss_clnt_token, u_char *, otokenlen, M_TEMP, M_WAITOK); | |
1796 | if (cp->gss_clnt_token == NULL) { | |
1797 | printf("nfs_gss_clnt_gssd_upcall: could not allocate %d bytes\n", otokenlen); | |
1798 | vm_map_copy_discard((vm_map_copy_t) otoken); | |
1799 | return (ENOMEM); | |
1800 | } | |
1801 | error = nfs_gss_mach_vmcopyout((vm_map_copy_t) otoken, otokenlen, cp->gss_clnt_token); | |
1802 | if (error) { | |
1803 | FREE(cp->gss_clnt_token, M_TEMP); | |
1804 | cp->gss_clnt_token = NULL; | |
1805 | return (NFSERR_EAUTH); | |
1806 | } | |
1807 | cp->gss_clnt_tokenlen = otokenlen; | |
1808 | } | |
1809 | ||
1810 | return (0); | |
1811 | ||
1812 | out: | |
1813 | if (cp->gss_clnt_token) | |
1814 | FREE(cp->gss_clnt_token, M_TEMP); | |
1815 | cp->gss_clnt_token = NULL; | |
1816 | cp->gss_clnt_tokenlen = 0; | |
1817 | ||
1818 | return (NFSERR_EAUTH); | |
1819 | } | |
1820 | ||
1821 | /* | |
1822 | * Invoked at the completion of an RPC call that uses an RPCSEC_GSS | |
1823 | * credential. The sequence number window that the server returns | |
1824 | * at context setup indicates the maximum number of client calls that | |
1825 | * can be outstanding on a context. The client maintains a bitmap that | |
1826 | * represents the server's window. Each pending request has a bit set | |
1827 | * in the window bitmap. When a reply comes in or times out, we reset | |
1828 | * the bit in the bitmap and if there are any other threads waiting for | |
1829 | * a context slot we notify the waiting thread(s). | |
1830 | * | |
1831 | * Note that if a request is retransmitted, it will have a single XID | |
1832 | * but it may be associated with multiple sequence numbers. So we | |
1833 | * may have to reset multiple sequence number bits in the window bitmap. | |
1834 | */ | |
1835 | void | |
1836 | nfs_gss_clnt_rpcdone(struct nfsreq *req) | |
1837 | { | |
1838 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
1839 | struct gss_seq *gsp, *ngsp; | |
1840 | int i = 0; | |
1841 | ||
1842 | if (cp == NULL || !(cp->gss_clnt_flags & GSS_CTX_COMPLETE)) | |
1843 | return; // no context - don't bother | |
1844 | /* | |
1845 | * Reset the bit for this request in the | |
1846 | * sequence number window to indicate it's done. | |
1847 | * We do this even if the request timed out. | |
1848 | */ | |
1849 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1850 | gsp = SLIST_FIRST(&req->r_gss_seqlist); | |
1851 | if (gsp && gsp->gss_seqnum > (cp->gss_clnt_seqnum - cp->gss_clnt_seqwin)) | |
1852 | win_resetbit(cp->gss_clnt_seqbits, | |
1853 | gsp->gss_seqnum % cp->gss_clnt_seqwin); | |
1854 | ||
1855 | /* | |
1856 | * Limit the seqnum list to GSS_CLNT_SEQLISTMAX entries | |
1857 | */ | |
1858 | SLIST_FOREACH_SAFE(gsp, &req->r_gss_seqlist, gss_seqnext, ngsp) { | |
1859 | if (++i > GSS_CLNT_SEQLISTMAX) { | |
1860 | SLIST_REMOVE(&req->r_gss_seqlist, gsp, gss_seq, gss_seqnext); | |
1861 | FREE(gsp, M_TEMP); | |
1862 | } | |
1863 | } | |
1864 | ||
1865 | /* | |
1866 | * If there's a thread waiting for | |
1867 | * the window to advance, wake it up. | |
1868 | */ | |
1869 | if (cp->gss_clnt_flags & GSS_NEEDSEQ) { | |
1870 | cp->gss_clnt_flags &= ~GSS_NEEDSEQ; | |
1871 | wakeup(cp); | |
1872 | } | |
1873 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1874 | } | |
1875 | ||
1876 | /* | |
1877 | * Create a reference to a context from a request | |
1878 | * and bump the reference count | |
1879 | */ | |
1880 | void | |
1881 | nfs_gss_clnt_ctx_ref(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp) | |
1882 | { | |
1883 | req->r_gss_ctx = cp; | |
1884 | ||
1885 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1886 | cp->gss_clnt_refcnt++; | |
1887 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1888 | } | |
1889 | ||
1890 | /* | |
1891 | * Remove a context reference from a request | |
1892 | * If the reference count drops to zero, and the | |
1893 | * context is invalid, destroy the context | |
1894 | */ | |
1895 | void | |
1896 | nfs_gss_clnt_ctx_unref(struct nfsreq *req) | |
1897 | { | |
1898 | struct nfsmount *nmp = req->r_nmp; | |
1899 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
1900 | int on_neg_cache = 0; | |
1901 | int neg_cache = 0; | |
1902 | int destroy = 0; | |
1903 | struct timeval now; | |
1904 | char CTXBUF[NFS_CTXBUFSZ]; | |
1905 | ||
1906 | if (cp == NULL) | |
1907 | return; | |
1908 | ||
1909 | req->r_gss_ctx = NULL; | |
1910 | ||
1911 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1912 | if (--cp->gss_clnt_refcnt < 0) | |
1913 | panic("Over release of gss context!\n"); | |
1914 | ||
1915 | if (cp->gss_clnt_refcnt == 0) { | |
1916 | if ((cp->gss_clnt_flags & GSS_CTX_INVAL) && | |
1917 | cp->gss_clnt_kinfo) { | |
1918 | FREE(cp->gss_clnt_kinfo, M_TEMP); | |
1919 | cp->gss_clnt_kinfo = NULL; | |
1920 | } | |
1921 | if (cp->gss_clnt_flags & GSS_CTX_DESTROY) { | |
1922 | destroy = 1; | |
1923 | if (cp->gss_clnt_flags & GSS_CTX_STICKY) | |
1924 | nfs_gss_clnt_mnt_rele(nmp); | |
1925 | if (cp->gss_clnt_nctime) | |
1926 | on_neg_cache = 1; | |
1927 | } | |
1928 | } | |
1929 | if (!destroy && cp->gss_clnt_nctime == 0 && | |
1930 | (cp->gss_clnt_flags & GSS_CTX_INVAL)) { | |
1931 | microuptime(&now); | |
1932 | cp->gss_clnt_nctime = now.tv_sec; | |
1933 | neg_cache = 1; | |
1934 | } | |
1935 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1936 | if (destroy) { | |
1937 | NFS_GSS_DBG("Destroying context %s\n", NFS_GSS_CTX(req, cp)); | |
1938 | if (nmp) { | |
1939 | lck_mtx_lock(&nmp->nm_lock); | |
1940 | if (cp->gss_clnt_entries.tqe_next != NFSNOLIST) { | |
1941 | TAILQ_REMOVE(&nmp->nm_gsscl, cp, gss_clnt_entries); | |
1942 | } | |
1943 | if (on_neg_cache) { | |
1944 | nmp->nm_ncentries--; | |
1945 | } | |
1946 | lck_mtx_unlock(&nmp->nm_lock); | |
1947 | } | |
1948 | nfs_gss_clnt_ctx_destroy(cp); | |
1949 | } else if (neg_cache) { | |
1950 | NFS_GSS_DBG("Entering context %s into negative cache\n", NFS_GSS_CTX(req, cp)); | |
1951 | if (nmp) { | |
1952 | lck_mtx_lock(&nmp->nm_lock); | |
1953 | nmp->nm_ncentries++; | |
1954 | nfs_gss_clnt_ctx_neg_cache_reap(nmp); | |
1955 | lck_mtx_unlock(&nmp->nm_lock); | |
1956 | } | |
1957 | } | |
1958 | NFS_GSS_CLNT_CTX_DUMP(nmp); | |
1959 | } | |
1960 | ||
1961 | /* | |
1962 | * Try and reap any old negative cache entries. | |
1963 | * cache queue. | |
1964 | */ | |
1965 | void | |
1966 | nfs_gss_clnt_ctx_neg_cache_reap(struct nfsmount *nmp) | |
1967 | { | |
1968 | struct nfs_gss_clnt_ctx *cp, *tcp; | |
1969 | struct timeval now; | |
1970 | int reaped = 0; | |
1971 | ||
1972 | NFS_GSS_DBG("Reaping contexts ncentries = %d\n", nmp->nm_ncentries); | |
1973 | /* Try and reap old, unreferenced, expired contexts */ | |
1974 | ||
1975 | TAILQ_FOREACH_SAFE(cp, &nmp->nm_gsscl, gss_clnt_entries, tcp) { | |
1976 | int destroy = 0; | |
1977 | ||
1978 | /* Don't reap STICKY contexts */ | |
1979 | if ((cp->gss_clnt_flags & GSS_CTX_STICKY) || | |
1980 | !(cp->gss_clnt_flags & GSS_CTX_INVAL)) | |
1981 | continue; | |
1982 | /* Keep up to GSS_MAX_NEG_CACHE_ENTRIES */ | |
1983 | if (nmp->nm_ncentries <= GSS_MAX_NEG_CACHE_ENTRIES) | |
1984 | break; | |
1985 | /* Contexts too young */ | |
1986 | if (cp->gss_clnt_nctime + GSS_NEG_CACHE_TO >= now.tv_sec) | |
1987 | continue; | |
1988 | /* Not referenced, remove it. */ | |
1989 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1990 | if (cp->gss_clnt_refcnt == 0) { | |
1991 | cp->gss_clnt_flags |= GSS_CTX_DESTROY; | |
1992 | destroy = 1; | |
1993 | } | |
1994 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1995 | if (destroy) { | |
1996 | TAILQ_REMOVE(&nmp->nm_gsscl, cp, gss_clnt_entries); | |
1997 | nmp->nm_ncentries++; | |
1998 | reaped++; | |
1999 | nfs_gss_clnt_ctx_destroy(cp); | |
2000 | } | |
2001 | } | |
2002 | NFS_GSS_DBG("Reaped %d contexts ncentries = %d\n", reaped, nmp->nm_ncentries); | |
2003 | } | |
2004 | ||
2005 | /* | |
2006 | * Clean a context to be cached | |
2007 | */ | |
2008 | static void | |
2009 | nfs_gss_clnt_ctx_clean(struct nfs_gss_clnt_ctx *cp) | |
2010 | { | |
2011 | /* Preserve gss_clnt_mtx */ | |
2012 | assert(cp->gss_clnt_thread == NULL); /* Will be set to this thread */ | |
2013 | /* gss_clnt_entries we should not be on any list at this point */ | |
2014 | cp->gss_clnt_flags = 0; | |
2015 | /* gss_clnt_refcnt should be zero */ | |
2016 | assert(cp->gss_clnt_refcnt == 0); | |
2017 | /* | |
2018 | * We are who we are preserve: | |
2019 | * gss_clnt_cred | |
2020 | * gss_clnt_principal | |
2021 | * gss_clnt_prinlen | |
2022 | * gss_clnt_prinnt | |
2023 | * gss_clnt_desplay | |
2024 | */ | |
2025 | /* gss_clnt_proc will be set in nfs_gss_clnt_ctx_init */ | |
2026 | cp->gss_clnt_seqnum = 0; | |
2027 | /* Preserve gss_clnt_service, we're not changing flavors */ | |
2028 | if (cp->gss_clnt_handle) { | |
2029 | FREE(cp->gss_clnt_handle, M_TEMP); | |
2030 | cp->gss_clnt_handle = NULL; | |
2031 | } | |
2032 | cp->gss_clnt_handle_len = 0; | |
2033 | cp->gss_clnt_nctime = 0; | |
2034 | cp->gss_clnt_seqwin = 0; | |
2035 | if (cp->gss_clnt_seqbits) { | |
2036 | FREE(cp->gss_clnt_seqbits, M_TEMP); | |
2037 | cp->gss_clnt_seqbits = NULL; | |
2038 | } | |
2039 | /* Preserve gss_clnt_mport. Still talking to the same gssd */ | |
2040 | if (cp->gss_clnt_verf) { | |
2041 | FREE(cp->gss_clnt_verf, M_TEMP); | |
2042 | cp->gss_clnt_verf = NULL; | |
2043 | } | |
2044 | /* Service name might change on failover, so reset it */ | |
2045 | if (cp->gss_clnt_svcname) { | |
2046 | FREE(cp->gss_clnt_svcname, M_TEMP); | |
2047 | cp->gss_clnt_svcname = NULL; | |
2048 | cp->gss_clnt_svcnt = 0; | |
2049 | } | |
2050 | cp->gss_clnt_svcnamlen = 0; | |
2051 | cp->gss_clnt_cred_handle = 0; | |
2052 | cp->gss_clnt_context = 0; | |
2053 | if (cp->gss_clnt_token) { | |
2054 | FREE(cp->gss_clnt_token, M_TEMP); | |
2055 | cp->gss_clnt_token = NULL; | |
2056 | } | |
2057 | cp->gss_clnt_tokenlen = 0; | |
2058 | if (cp->gss_clnt_kinfo) | |
2059 | bzero(cp->gss_clnt_kinfo, sizeof(gss_key_info)); | |
2060 | /* | |
2061 | * Preserve: | |
2062 | * gss_clnt_gssd_flags | |
2063 | * gss_clnt_major | |
2064 | * gss_clnt_minor | |
2065 | * gss_clnt_ptime | |
2066 | */ | |
2067 | } | |
2068 | ||
2069 | /* | |
2070 | * Copy a source context to a new context. This is used to create a new context | |
2071 | * with the identity of the old context for renewal. The old context is invalid | |
2072 | * at this point but may have reference still to it, so it is not safe to use that | |
2073 | * context. | |
2074 | */ | |
2075 | static int | |
2076 | nfs_gss_clnt_ctx_copy(struct nfs_gss_clnt_ctx *scp, struct nfs_gss_clnt_ctx **dcpp, gss_key_info *ki) | |
2077 | { | |
2078 | struct nfs_gss_clnt_ctx *dcp; | |
2079 | ||
2080 | *dcpp = (struct nfs_gss_clnt_ctx *)NULL; | |
2081 | MALLOC(dcp, struct nfs_gss_clnt_ctx *, sizeof (struct nfs_gss_clnt_ctx), M_TEMP, M_WAITOK); | |
2082 | if (dcp == NULL) | |
2083 | return (ENOMEM); | |
2084 | bzero(dcp, sizeof (struct nfs_gss_clnt_ctx)); | |
2085 | if (ki == NULL) { | |
2086 | MALLOC(dcp->gss_clnt_kinfo, gss_key_info *, sizeof (gss_key_info), M_TEMP, M_WAITOK); | |
2087 | if (dcp->gss_clnt_kinfo == NULL) { | |
2088 | FREE(dcp, M_TEMP); | |
2089 | return (ENOMEM); | |
2090 | } | |
2091 | } else { | |
2092 | dcp->gss_clnt_kinfo = ki; | |
2093 | } | |
2094 | bzero(dcp->gss_clnt_kinfo, sizeof (gss_key_info)); | |
2095 | dcp->gss_clnt_mtx = lck_mtx_alloc_init(nfs_gss_clnt_grp, LCK_ATTR_NULL); | |
2096 | dcp->gss_clnt_cred = scp->gss_clnt_cred; | |
2097 | kauth_cred_ref(dcp->gss_clnt_cred); | |
2098 | dcp->gss_clnt_prinlen = scp->gss_clnt_prinlen; | |
2099 | dcp->gss_clnt_prinnt = scp->gss_clnt_prinnt; | |
2100 | if (scp->gss_clnt_principal) { | |
2101 | MALLOC(dcp->gss_clnt_principal, uint8_t *, dcp->gss_clnt_prinlen, M_TEMP, M_WAITOK | M_ZERO); | |
2102 | if (dcp->gss_clnt_principal == NULL) { | |
2103 | FREE(dcp->gss_clnt_kinfo, M_TEMP); | |
2104 | FREE(dcp, M_TEMP); | |
2105 | return (ENOMEM); | |
2106 | } | |
2107 | bcopy(scp->gss_clnt_principal, dcp->gss_clnt_principal, dcp->gss_clnt_prinlen); | |
2108 | } | |
2109 | /* Note we don't preserve the display name, that will be set by a successful up call */ | |
2110 | dcp->gss_clnt_service = scp->gss_clnt_service; | |
2111 | dcp->gss_clnt_mport = host_copy_special_port(scp->gss_clnt_mport); | |
2112 | /* gss_clnt_kinfo allocated above */ | |
2113 | dcp->gss_clnt_gssd_flags = scp->gss_clnt_gssd_flags; | |
2114 | dcp->gss_clnt_major = scp->gss_clnt_major; | |
2115 | dcp->gss_clnt_minor = scp->gss_clnt_minor; | |
2116 | dcp->gss_clnt_ptime = scp->gss_clnt_ptime; | |
2117 | ||
2118 | *dcpp = dcp; | |
2119 | ||
2120 | return (0); | |
2121 | } | |
2122 | ||
2123 | /* | |
2124 | * Remove a context | |
2125 | */ | |
2126 | static void | |
2127 | nfs_gss_clnt_ctx_destroy(struct nfs_gss_clnt_ctx *cp) | |
2128 | { | |
2129 | NFS_GSS_DBG("Destroying context %d/%d\n", | |
2130 | kauth_cred_getasid(cp->gss_clnt_cred), | |
2131 | kauth_cred_getauid(cp->gss_clnt_cred)); | |
2132 | ||
2133 | host_release_special_port(cp->gss_clnt_mport); | |
2134 | cp->gss_clnt_mport = IPC_PORT_NULL; | |
2135 | ||
2136 | if (cp->gss_clnt_mtx) { | |
2137 | lck_mtx_destroy(cp->gss_clnt_mtx, nfs_gss_clnt_grp); | |
2138 | cp->gss_clnt_mtx = (lck_mtx_t *)NULL; | |
2139 | } | |
2140 | if (IS_VALID_CRED(cp->gss_clnt_cred)) | |
2141 | kauth_cred_unref(&cp->gss_clnt_cred); | |
2142 | cp->gss_clnt_entries.tqe_next = NFSNOLIST; | |
2143 | cp->gss_clnt_entries.tqe_prev = NFSNOLIST; | |
2144 | if (cp->gss_clnt_principal) { | |
2145 | FREE(cp->gss_clnt_principal, M_TEMP); | |
2146 | cp->gss_clnt_principal = NULL; | |
2147 | } | |
2148 | if (cp->gss_clnt_display) { | |
2149 | FREE(cp->gss_clnt_display, M_TEMP); | |
2150 | cp->gss_clnt_display = NULL; | |
2151 | } | |
2152 | if (cp->gss_clnt_kinfo) { | |
2153 | FREE(cp->gss_clnt_kinfo, M_TEMP); | |
2154 | cp->gss_clnt_kinfo = NULL; | |
2155 | } | |
2156 | ||
2157 | nfs_gss_clnt_ctx_clean(cp); | |
2158 | ||
2159 | FREE(cp, M_TEMP); | |
2160 | } | |
2161 | ||
2162 | /* | |
2163 | * The context for a user is invalid. | |
2164 | * Mark the context as invalid, then | |
2165 | * create a new context. | |
2166 | */ | |
2167 | int | |
2168 | nfs_gss_clnt_ctx_renew(struct nfsreq *req) | |
2169 | { | |
2170 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
2171 | struct nfs_gss_clnt_ctx *ncp; | |
2172 | struct nfsmount *nmp; | |
2173 | int error = 0; | |
2174 | char CTXBUF[NFS_CTXBUFSZ]; | |
2175 | ||
2176 | if (cp == NULL) | |
2177 | return (0); | |
2178 | ||
2179 | if (req->r_nmp == NULL) | |
2180 | return (ENXIO); | |
2181 | nmp = req->r_nmp; | |
2182 | ||
2183 | lck_mtx_lock(cp->gss_clnt_mtx); | |
2184 | if (cp->gss_clnt_flags & GSS_CTX_INVAL) { | |
2185 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
2186 | nfs_gss_clnt_ctx_unref(req); | |
2187 | return (0); // already being renewed | |
2188 | } | |
2189 | ||
2190 | cp->gss_clnt_flags |= (GSS_CTX_INVAL | GSS_CTX_DESTROY); | |
2191 | ||
2192 | if (cp->gss_clnt_flags & (GSS_NEEDCTX | GSS_NEEDSEQ)) { | |
2193 | cp->gss_clnt_flags &= ~GSS_NEEDSEQ; | |
2194 | wakeup(cp); | |
2195 | } | |
2196 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
2197 | ||
2198 | error = nfs_gss_clnt_ctx_copy(cp, &ncp, NULL); | |
2199 | NFS_GSS_DBG("Renewing context %s\n", NFS_GSS_CTX(req, ncp)); | |
2200 | nfs_gss_clnt_ctx_unref(req); | |
2201 | if (error) | |
2202 | return (error); | |
2203 | ||
2204 | lck_mtx_lock(&nmp->nm_lock); | |
2205 | /* | |
2206 | * Note we don't bother taking the new context mutex as we're | |
2207 | * not findable at the moment. | |
2208 | */ | |
2209 | ncp->gss_clnt_thread = current_thread(); | |
2210 | nfs_gss_clnt_ctx_ref(req, ncp); | |
2211 | TAILQ_INSERT_HEAD(&nmp->nm_gsscl, ncp, gss_clnt_entries); | |
2212 | lck_mtx_unlock(&nmp->nm_lock); | |
2213 | ||
2214 | error = nfs_gss_clnt_ctx_init_retry(req, ncp); // Initialize new context | |
2215 | if (error) | |
2216 | nfs_gss_clnt_ctx_unref(req); | |
2217 | ||
2218 | return (error); | |
2219 | } | |
2220 | ||
2221 | ||
2222 | /* | |
2223 | * Destroy all the contexts associated with a mount. | |
2224 | * The contexts are also destroyed by the server. | |
2225 | */ | |
2226 | void | |
2227 | nfs_gss_clnt_ctx_unmount(struct nfsmount *nmp) | |
2228 | { | |
2229 | struct nfs_gss_clnt_ctx *cp; | |
2230 | struct nfsm_chain nmreq, nmrep; | |
2231 | int error, status; | |
2232 | struct nfsreq req; | |
2233 | req.r_nmp = nmp; | |
2234 | ||
2235 | if (!nmp) | |
2236 | return; | |
2237 | ||
2238 | ||
2239 | lck_mtx_lock(&nmp->nm_lock); | |
2240 | while((cp = TAILQ_FIRST(&nmp->nm_gsscl))) { | |
2241 | TAILQ_REMOVE(&nmp->nm_gsscl, cp, gss_clnt_entries); | |
2242 | cp->gss_clnt_entries.tqe_next = NFSNOLIST; | |
2243 | lck_mtx_lock(cp->gss_clnt_mtx); | |
2244 | if (cp->gss_clnt_flags & GSS_CTX_DESTROY) { | |
2245 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
2246 | continue; | |
2247 | } | |
2248 | cp->gss_clnt_refcnt++; | |
2249 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
2250 | req.r_gss_ctx = cp; | |
2251 | ||
2252 | lck_mtx_unlock(&nmp->nm_lock); | |
2253 | /* | |
2254 | * Tell the server to destroy its context. | |
2255 | * But don't bother if it's a forced unmount. | |
2256 | */ | |
2257 | if (!nfs_mount_gone(nmp) && | |
2258 | (cp->gss_clnt_flags & (GSS_CTX_INVAL | GSS_CTX_DESTROY | GSS_CTX_COMPLETE)) == GSS_CTX_COMPLETE) { | |
2259 | cp->gss_clnt_proc = RPCSEC_GSS_DESTROY; | |
2260 | ||
2261 | error = 0; | |
2262 | nfsm_chain_null(&nmreq); | |
2263 | nfsm_chain_null(&nmrep); | |
2264 | nfsm_chain_build_alloc_init(error, &nmreq, 0); | |
2265 | nfsm_chain_build_done(error, &nmreq); | |
2266 | if (!error) | |
2267 | nfs_request_gss(nmp->nm_mountp, &nmreq, | |
2268 | current_thread(), cp->gss_clnt_cred, 0, cp, &nmrep, &status); | |
2269 | nfsm_chain_cleanup(&nmreq); | |
2270 | nfsm_chain_cleanup(&nmrep); | |
2271 | } | |
2272 | ||
2273 | /* | |
2274 | * Mark the context invalid then drop | |
2275 | * the reference to remove it if its | |
2276 | * refcount is zero. | |
2277 | */ | |
2278 | lck_mtx_lock(cp->gss_clnt_mtx); | |
2279 | cp->gss_clnt_flags |= (GSS_CTX_INVAL | GSS_CTX_DESTROY); | |
2280 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
2281 | nfs_gss_clnt_ctx_unref(&req); | |
2282 | lck_mtx_lock(&nmp->nm_lock); | |
2283 | } | |
2284 | lck_mtx_unlock(&nmp->nm_lock); | |
2285 | assert(TAILQ_EMPTY(&nmp->nm_gsscl)); | |
2286 | } | |
2287 | ||
2288 | ||
2289 | /* | |
2290 | * Removes a mounts context for a credential | |
2291 | */ | |
2292 | int | |
2293 | nfs_gss_clnt_ctx_remove(struct nfsmount *nmp, kauth_cred_t cred) | |
2294 | { | |
2295 | struct nfs_gss_clnt_ctx *cp; | |
2296 | struct nfsreq req; | |
2297 | ||
2298 | req.r_nmp = nmp; | |
2299 | ||
2300 | NFS_GSS_DBG("Enter\n"); | |
2301 | NFS_GSS_CLNT_CTX_DUMP(nmp); | |
2302 | lck_mtx_lock(&nmp->nm_lock); | |
2303 | TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) { | |
2304 | lck_mtx_lock(cp->gss_clnt_mtx); | |
2305 | if (nfs_gss_clnt_ctx_cred_match(cp->gss_clnt_cred, cred)) { | |
2306 | if (cp->gss_clnt_flags & GSS_CTX_DESTROY) { | |
2307 | NFS_GSS_DBG("Found destroyed context %d/%d. refcnt = %d continuing\n", | |
2308 | kauth_cred_getasid(cp->gss_clnt_cred), | |
2309 | kauth_cred_getauid(cp->gss_clnt_cred), | |
2310 | cp->gss_clnt_refcnt); | |
2311 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
2312 | continue; | |
2313 | } | |
2314 | cp->gss_clnt_refcnt++; | |
2315 | cp->gss_clnt_flags |= (GSS_CTX_INVAL | GSS_CTX_DESTROY); | |
2316 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
2317 | req.r_gss_ctx = cp; | |
2318 | lck_mtx_unlock(&nmp->nm_lock); | |
2319 | /* | |
2320 | * Drop the reference to remove it if its | |
2321 | * refcount is zero. | |
2322 | */ | |
2323 | NFS_GSS_DBG("Removed context %d/%d refcnt = %d\n", | |
2324 | kauth_cred_getasid(cp->gss_clnt_cred), | |
2325 | kauth_cred_getuid(cp->gss_clnt_cred), | |
2326 | cp->gss_clnt_refcnt); | |
2327 | nfs_gss_clnt_ctx_unref(&req); | |
2328 | return (0); | |
2329 | } | |
2330 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
2331 | } | |
2332 | ||
2333 | lck_mtx_unlock(&nmp->nm_lock); | |
2334 | ||
2335 | NFS_GSS_DBG("Returning ENOENT\n"); | |
2336 | return (ENOENT); | |
2337 | } | |
2338 | ||
2339 | /* | |
2340 | * Sets a mounts principal for a session associated with cred. | |
2341 | */ | |
2342 | int | |
2343 | nfs_gss_clnt_ctx_set_principal(struct nfsmount *nmp, vfs_context_t ctx, | |
2344 | uint8_t *principal, uint32_t princlen, uint32_t nametype) | |
2345 | ||
2346 | { | |
2347 | struct nfsreq req; | |
2348 | int error; | |
2349 | ||
2350 | NFS_GSS_DBG("Enter:\n"); | |
2351 | ||
2352 | bzero(&req, sizeof(struct nfsreq)); | |
2353 | req.r_nmp = nmp; | |
2354 | req.r_gss_ctx = NULL; | |
2355 | req.r_auth = nmp->nm_auth; | |
2356 | req.r_thread = vfs_context_thread(ctx); | |
2357 | req.r_cred = vfs_context_ucred(ctx); | |
2358 | ||
2359 | error = nfs_gss_clnt_ctx_find_principal(&req, principal, princlen, nametype); | |
2360 | NFS_GSS_DBG("nfs_gss_clnt_ctx_find_principal returned %d\n", error); | |
2361 | /* | |
2362 | * We don't care about auth errors. Those would indicate that the context is in the | |
2363 | * neagative cache and if and when the user has credentials for the principal | |
2364 | * we should be good to go in that we will select those credentials for this principal. | |
2365 | */ | |
2366 | if (error == EACCES || error == EAUTH || error == ENEEDAUTH) | |
2367 | error = 0; | |
2368 | ||
2369 | /* We're done with this request */ | |
2370 | nfs_gss_clnt_ctx_unref(&req); | |
2371 | ||
2372 | return (error); | |
2373 | } | |
2374 | ||
2375 | /* | |
2376 | * Gets a mounts principal from a session associated with cred | |
2377 | */ | |
2378 | int | |
2379 | nfs_gss_clnt_ctx_get_principal(struct nfsmount *nmp, vfs_context_t ctx, | |
2380 | struct user_nfs_gss_principal *p) | |
2381 | { | |
2382 | struct nfsreq req; | |
2383 | int error = 0; | |
2384 | struct nfs_gss_clnt_ctx *cp; | |
2385 | kauth_cred_t cred = vfs_context_ucred(ctx); | |
2386 | const char *princ; | |
2387 | char CTXBUF[NFS_CTXBUFSZ]; | |
2388 | ||
2389 | req.r_nmp = nmp; | |
2390 | lck_mtx_lock(&nmp->nm_lock); | |
2391 | TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) { | |
2392 | lck_mtx_lock(cp->gss_clnt_mtx); | |
2393 | if (cp->gss_clnt_flags & GSS_CTX_DESTROY) { | |
2394 | NFS_GSS_DBG("Found destroyed context %s refcnt = %d continuing\n", | |
2395 | NFS_GSS_CTX(&req, cp), | |
2396 | cp->gss_clnt_refcnt); | |
2397 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
2398 | continue; | |
2399 | } | |
2400 | if (nfs_gss_clnt_ctx_cred_match(cp->gss_clnt_cred, cred)) { | |
2401 | cp->gss_clnt_refcnt++; | |
2402 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
2403 | goto out; | |
2404 | } | |
2405 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
2406 | } | |
2407 | ||
2408 | out: | |
2409 | if (cp == NULL) { | |
2410 | lck_mtx_unlock(&nmp->nm_lock); | |
2411 | p->princlen = 0; | |
2412 | p->principal = USER_ADDR_NULL; | |
2413 | p->nametype = GSSD_STRING_NAME; | |
2414 | p->flags |= NFS_IOC_NO_CRED_FLAG; | |
2415 | NFS_GSS_DBG("No context found for session %d by uid %d\n", | |
2416 | kauth_cred_getasid(cred), kauth_cred_getuid(cred)); | |
2417 | return (0); | |
2418 | } | |
2419 | ||
2420 | princ = cp->gss_clnt_principal ? (char *)cp->gss_clnt_principal : cp->gss_clnt_display; | |
2421 | p->princlen = cp->gss_clnt_principal ? cp->gss_clnt_prinlen : | |
2422 | (cp->gss_clnt_display ? strlen(cp->gss_clnt_display) : 0); | |
2423 | p->nametype = cp->gss_clnt_prinnt; | |
2424 | if (princ) { | |
2425 | char *pp; | |
2426 | ||
2427 | MALLOC(pp, char *, p->princlen, M_TEMP, M_WAITOK); | |
2428 | if (pp) { | |
2429 | bcopy(princ, pp, p->princlen); | |
2430 | p->principal = CAST_USER_ADDR_T(pp); | |
2431 | } | |
2432 | else | |
2433 | error = ENOMEM; | |
2434 | } | |
2435 | lck_mtx_unlock(&nmp->nm_lock); | |
2436 | ||
2437 | req.r_gss_ctx = cp; | |
2438 | NFS_GSS_DBG("Found context %s\n", NFS_GSS_CTX(&req, NULL)); | |
2439 | nfs_gss_clnt_ctx_unref(&req); | |
2440 | return (error); | |
2441 | } | |
2442 | #endif /* NFSCLIENT */ | |
2443 | ||
2444 | /************* | |
2445 | * | |
2446 | * Server functions | |
2447 | */ | |
2448 | ||
2449 | #if NFSSERVER | |
2450 | ||
2451 | /* | |
2452 | * Find a server context based on a handle value received | |
2453 | * in an RPCSEC_GSS credential. | |
2454 | */ | |
2455 | static struct nfs_gss_svc_ctx * | |
2456 | nfs_gss_svc_ctx_find(uint32_t handle) | |
2457 | { | |
2458 | struct nfs_gss_svc_ctx_hashhead *head; | |
2459 | struct nfs_gss_svc_ctx *cp; | |
2460 | uint64_t timenow; | |
2461 | ||
2462 | if (handle == 0) | |
2463 | return (NULL); | |
2464 | ||
2465 | head = &nfs_gss_svc_ctx_hashtbl[SVC_CTX_HASH(handle)]; | |
2466 | /* | |
2467 | * Don't return a context that is going to expire in GSS_CTX_PEND seconds | |
2468 | */ | |
2469 | clock_interval_to_deadline(GSS_CTX_PEND, NSEC_PER_SEC, &timenow); | |
2470 | ||
2471 | lck_mtx_lock(nfs_gss_svc_ctx_mutex); | |
2472 | ||
2473 | LIST_FOREACH(cp, head, gss_svc_entries) { | |
2474 | if (cp->gss_svc_handle == handle) { | |
2475 | if (timenow > cp->gss_svc_incarnation + GSS_SVC_CTX_TTL) { | |
2476 | /* | |
2477 | * Context has or is about to expire. Don't use. | |
2478 | * We'll return null and the client will have to create | |
2479 | * a new context. | |
2480 | */ | |
2481 | cp->gss_svc_handle = 0; | |
2482 | /* | |
2483 | * Make sure though that we stay around for GSS_CTX_PEND seconds | |
2484 | * for other threads that might be using the context. | |
2485 | */ | |
2486 | cp->gss_svc_incarnation = timenow; | |
2487 | ||
2488 | cp = NULL; | |
2489 | break; | |
2490 | } | |
2491 | lck_mtx_lock(cp->gss_svc_mtx); | |
2492 | cp->gss_svc_refcnt++; | |
2493 | lck_mtx_unlock(cp->gss_svc_mtx); | |
2494 | break; | |
2495 | } | |
2496 | } | |
2497 | ||
2498 | lck_mtx_unlock(nfs_gss_svc_ctx_mutex); | |
2499 | ||
2500 | return (cp); | |
2501 | } | |
2502 | ||
2503 | /* | |
2504 | * Insert a new server context into the hash table | |
2505 | * and start the context reap thread if necessary. | |
2506 | */ | |
2507 | static void | |
2508 | nfs_gss_svc_ctx_insert(struct nfs_gss_svc_ctx *cp) | |
2509 | { | |
2510 | struct nfs_gss_svc_ctx_hashhead *head; | |
2511 | struct nfs_gss_svc_ctx *p; | |
2512 | ||
2513 | lck_mtx_lock(nfs_gss_svc_ctx_mutex); | |
2514 | ||
2515 | /* | |
2516 | * Give the client a random handle so that if we reboot | |
2517 | * it's unlikely the client will get a bad context match. | |
2518 | * Make sure it's not zero or already assigned. | |
2519 | */ | |
2520 | retry: | |
2521 | cp->gss_svc_handle = random(); | |
2522 | if (cp->gss_svc_handle == 0) | |
2523 | goto retry; | |
2524 | head = &nfs_gss_svc_ctx_hashtbl[SVC_CTX_HASH(cp->gss_svc_handle)]; | |
2525 | LIST_FOREACH(p, head, gss_svc_entries) | |
2526 | if (p->gss_svc_handle == cp->gss_svc_handle) | |
2527 | goto retry; | |
2528 | ||
2529 | clock_interval_to_deadline(GSS_CTX_PEND, NSEC_PER_SEC, | |
2530 | &cp->gss_svc_incarnation); | |
2531 | LIST_INSERT_HEAD(head, cp, gss_svc_entries); | |
2532 | nfs_gss_ctx_count++; | |
2533 | ||
2534 | if (!nfs_gss_timer_on) { | |
2535 | nfs_gss_timer_on = 1; | |
2536 | ||
2537 | nfs_interval_timer_start(nfs_gss_svc_ctx_timer_call, | |
2538 | min(GSS_TIMER_PERIOD, max(GSS_CTX_TTL_MIN, nfsrv_gss_context_ttl)) * MSECS_PER_SEC); | |
2539 | } | |
2540 | ||
2541 | lck_mtx_unlock(nfs_gss_svc_ctx_mutex); | |
2542 | } | |
2543 | ||
2544 | /* | |
2545 | * This function is called via the kernel's callout | |
2546 | * mechanism. It runs only when there are | |
2547 | * cached RPCSEC_GSS contexts. | |
2548 | */ | |
2549 | void | |
2550 | nfs_gss_svc_ctx_timer(__unused void *param1, __unused void *param2) | |
2551 | { | |
2552 | struct nfs_gss_svc_ctx *cp, *next; | |
2553 | uint64_t timenow; | |
2554 | int contexts = 0; | |
2555 | int i; | |
2556 | ||
2557 | lck_mtx_lock(nfs_gss_svc_ctx_mutex); | |
2558 | clock_get_uptime(&timenow); | |
2559 | ||
2560 | NFS_GSS_DBG("is running\n"); | |
2561 | ||
2562 | /* | |
2563 | * Scan all the hash chains | |
2564 | */ | |
2565 | for (i = 0; i < SVC_CTX_HASHSZ; i++) { | |
2566 | /* | |
2567 | * For each hash chain, look for entries | |
2568 | * that haven't been used in a while. | |
2569 | */ | |
2570 | LIST_FOREACH_SAFE(cp, &nfs_gss_svc_ctx_hashtbl[i], gss_svc_entries, next) { | |
2571 | contexts++; | |
2572 | if (timenow > cp->gss_svc_incarnation + | |
2573 | (cp->gss_svc_handle ? GSS_SVC_CTX_TTL : 0) | |
2574 | && cp->gss_svc_refcnt == 0) { | |
2575 | /* | |
2576 | * A stale context - remove it | |
2577 | */ | |
2578 | LIST_REMOVE(cp, gss_svc_entries); | |
2579 | NFS_GSS_DBG("Removing contex for %d\n", cp->gss_svc_uid); | |
2580 | if (cp->gss_svc_seqbits) | |
2581 | FREE(cp->gss_svc_seqbits, M_TEMP); | |
2582 | lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp); | |
2583 | FREE(cp, M_TEMP); | |
2584 | contexts--; | |
2585 | } | |
2586 | } | |
2587 | } | |
2588 | ||
2589 | nfs_gss_ctx_count = contexts; | |
2590 | ||
2591 | /* | |
2592 | * If there are still some cached contexts left, | |
2593 | * set up another callout to check on them later. | |
2594 | */ | |
2595 | nfs_gss_timer_on = nfs_gss_ctx_count > 0; | |
2596 | if (nfs_gss_timer_on) | |
2597 | nfs_interval_timer_start(nfs_gss_svc_ctx_timer_call, | |
2598 | min(GSS_TIMER_PERIOD, max(GSS_CTX_TTL_MIN, nfsrv_gss_context_ttl)) * MSECS_PER_SEC); | |
2599 | ||
2600 | lck_mtx_unlock(nfs_gss_svc_ctx_mutex); | |
2601 | } | |
2602 | ||
2603 | /* | |
2604 | * Here the server receives an RPCSEC_GSS credential in an | |
2605 | * RPC call header. First there's some checking to make sure | |
2606 | * the credential is appropriate - whether the context is still | |
2607 | * being set up, or is complete. Then we use the handle to find | |
2608 | * the server's context and validate the verifier, which contains | |
2609 | * a signed checksum of the RPC header. If the verifier checks | |
2610 | * out, we extract the user's UID and groups from the context | |
2611 | * and use it to set up a UNIX credential for the user's request. | |
2612 | */ | |
2613 | int | |
2614 | nfs_gss_svc_cred_get(struct nfsrv_descript *nd, struct nfsm_chain *nmc) | |
2615 | { | |
2616 | uint32_t vers, proc, seqnum, service; | |
2617 | uint32_t handle, handle_len; | |
2618 | struct nfs_gss_svc_ctx *cp = NULL; | |
2619 | uint32_t flavor = 0, verflen = 0; | |
2620 | int error = 0; | |
2621 | uint32_t arglen, start, toklen, cksumlen; | |
2622 | u_char tokbuf[KRB5_SZ_TOKMAX(MAX_DIGEST)]; | |
2623 | u_char cksum1[MAX_DIGEST], cksum2[MAX_DIGEST]; | |
2624 | struct nfsm_chain nmc_tmp; | |
2625 | gss_key_info *ki; | |
2626 | ||
2627 | vers = proc = seqnum = service = handle_len = 0; | |
2628 | arglen = cksumlen = 0; | |
2629 | ||
2630 | nfsm_chain_get_32(error, nmc, vers); | |
2631 | if (vers != RPCSEC_GSS_VERS_1) { | |
2632 | error = NFSERR_AUTHERR | AUTH_REJECTCRED; | |
2633 | goto nfsmout; | |
2634 | } | |
2635 | ||
2636 | nfsm_chain_get_32(error, nmc, proc); | |
2637 | nfsm_chain_get_32(error, nmc, seqnum); | |
2638 | nfsm_chain_get_32(error, nmc, service); | |
2639 | nfsm_chain_get_32(error, nmc, handle_len); | |
2640 | if (error) | |
2641 | goto nfsmout; | |
2642 | ||
2643 | /* | |
2644 | * Make sure context setup/destroy is being done with a nullproc | |
2645 | */ | |
2646 | if (proc != RPCSEC_GSS_DATA && nd->nd_procnum != NFSPROC_NULL) { | |
2647 | error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM; | |
2648 | goto nfsmout; | |
2649 | } | |
2650 | ||
2651 | /* | |
2652 | * If the sequence number is greater than the max | |
2653 | * allowable, reject and have the client init a | |
2654 | * new context. | |
2655 | */ | |
2656 | if (seqnum > GSS_MAXSEQ) { | |
2657 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; | |
2658 | goto nfsmout; | |
2659 | } | |
2660 | ||
2661 | nd->nd_sec = | |
2662 | service == RPCSEC_GSS_SVC_NONE ? RPCAUTH_KRB5 : | |
2663 | service == RPCSEC_GSS_SVC_INTEGRITY ? RPCAUTH_KRB5I : | |
2664 | service == RPCSEC_GSS_SVC_PRIVACY ? RPCAUTH_KRB5P : 0; | |
2665 | ||
2666 | if (proc == RPCSEC_GSS_INIT) { | |
2667 | /* | |
2668 | * Limit the total number of contexts | |
2669 | */ | |
2670 | if (nfs_gss_ctx_count > nfs_gss_ctx_max) { | |
2671 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; | |
2672 | goto nfsmout; | |
2673 | } | |
2674 | ||
2675 | /* | |
2676 | * Set up a new context | |
2677 | */ | |
2678 | MALLOC(cp, struct nfs_gss_svc_ctx *, sizeof(*cp), M_TEMP, M_WAITOK|M_ZERO); | |
2679 | if (cp == NULL) { | |
2680 | error = ENOMEM; | |
2681 | goto nfsmout; | |
2682 | } | |
2683 | cp->gss_svc_mtx = lck_mtx_alloc_init(nfs_gss_svc_grp, LCK_ATTR_NULL); | |
2684 | cp->gss_svc_refcnt = 1; | |
2685 | } else { | |
2686 | ||
2687 | /* | |
2688 | * Use the handle to find the context | |
2689 | */ | |
2690 | if (handle_len != sizeof(handle)) { | |
2691 | error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM; | |
2692 | goto nfsmout; | |
2693 | } | |
2694 | nfsm_chain_get_32(error, nmc, handle); | |
2695 | if (error) | |
2696 | goto nfsmout; | |
2697 | cp = nfs_gss_svc_ctx_find(handle); | |
2698 | if (cp == NULL) { | |
2699 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; | |
2700 | goto nfsmout; | |
2701 | } | |
2702 | } | |
2703 | ||
2704 | cp->gss_svc_proc = proc; | |
2705 | ki = &cp->gss_svc_kinfo; | |
2706 | ||
2707 | if (proc == RPCSEC_GSS_DATA || proc == RPCSEC_GSS_DESTROY) { | |
2708 | struct posix_cred temp_pcred; | |
2709 | ||
2710 | if (cp->gss_svc_seqwin == 0) { | |
2711 | /* | |
2712 | * Context isn't complete | |
2713 | */ | |
2714 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; | |
2715 | goto nfsmout; | |
2716 | } | |
2717 | ||
2718 | if (!nfs_gss_svc_seqnum_valid(cp, seqnum)) { | |
2719 | /* | |
2720 | * Sequence number is bad | |
2721 | */ | |
2722 | error = EINVAL; // drop the request | |
2723 | goto nfsmout; | |
2724 | } | |
2725 | ||
2726 | /* Now compute the client's call header checksum */ | |
2727 | nfs_gss_cksum_chain(ki, nmc, ALG_MIC(ki), 0, 0, cksum1); | |
2728 | ||
2729 | /* | |
2730 | * Validate the verifier. | |
2731 | * The verifier contains an encrypted checksum | |
2732 | * of the call header from the XID up to and | |
2733 | * including the credential. We compute the | |
2734 | * checksum and compare it with what came in | |
2735 | * the verifier. | |
2736 | */ | |
2737 | nfsm_chain_get_32(error, nmc, flavor); | |
2738 | nfsm_chain_get_32(error, nmc, verflen); | |
2739 | if (error) | |
2740 | goto nfsmout; | |
2741 | if (flavor != RPCSEC_GSS || verflen != KRB5_SZ_TOKEN(ki->hash_len)) | |
2742 | error = NFSERR_AUTHERR | AUTH_BADVERF; | |
2743 | nfsm_chain_get_opaque(error, nmc, verflen, tokbuf); | |
2744 | if (error) | |
2745 | goto nfsmout; | |
2746 | ||
2747 | /* Get the checksum from the token inside the verifier */ | |
2748 | error = nfs_gss_token_get(ki, ALG_MIC(ki), tokbuf, 1, | |
2749 | NULL, cksum2); | |
2750 | if (error) | |
2751 | goto nfsmout; | |
2752 | ||
2753 | if (bcmp(cksum1, cksum2, HASHLEN(ki)) != 0) { | |
2754 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; | |
2755 | goto nfsmout; | |
2756 | } | |
2757 | ||
2758 | nd->nd_gss_seqnum = seqnum; | |
2759 | ||
2760 | /* | |
2761 | * Set up the user's cred | |
2762 | */ | |
2763 | bzero(&temp_pcred, sizeof(temp_pcred)); | |
2764 | temp_pcred.cr_uid = cp->gss_svc_uid; | |
2765 | bcopy(cp->gss_svc_gids, temp_pcred.cr_groups, | |
2766 | sizeof(gid_t) * cp->gss_svc_ngroups); | |
2767 | temp_pcred.cr_ngroups = cp->gss_svc_ngroups; | |
2768 | ||
2769 | nd->nd_cr = posix_cred_create(&temp_pcred); | |
2770 | if (nd->nd_cr == NULL) { | |
2771 | error = ENOMEM; | |
2772 | goto nfsmout; | |
2773 | } | |
2774 | clock_get_uptime(&cp->gss_svc_incarnation); | |
2775 | ||
2776 | /* | |
2777 | * If the call arguments are integrity or privacy protected | |
2778 | * then we need to check them here. | |
2779 | */ | |
2780 | switch (service) { | |
2781 | case RPCSEC_GSS_SVC_NONE: | |
2782 | /* nothing to do */ | |
2783 | break; | |
2784 | case RPCSEC_GSS_SVC_INTEGRITY: | |
2785 | /* | |
2786 | * Here's what we expect in the integrity call args: | |
2787 | * | |
2788 | * - length of seq num + call args (4 bytes) | |
2789 | * - sequence number (4 bytes) | |
2790 | * - call args (variable bytes) | |
2791 | * - length of checksum token (37) | |
2792 | * - checksum of seqnum + call args (37 bytes) | |
2793 | */ | |
2794 | nfsm_chain_get_32(error, nmc, arglen); // length of args | |
2795 | if (arglen > NFS_MAXPACKET) { | |
2796 | error = EBADRPC; | |
2797 | goto nfsmout; | |
2798 | } | |
2799 | ||
2800 | /* Compute the checksum over the call args */ | |
2801 | start = nfsm_chain_offset(nmc); | |
2802 | nfs_gss_cksum_chain(ki, nmc, ALG_MIC(ki), start, arglen, cksum1); | |
2803 | ||
2804 | /* | |
2805 | * Get the sequence number prepended to the args | |
2806 | * and compare it against the one sent in the | |
2807 | * call credential. | |
2808 | */ | |
2809 | nfsm_chain_get_32(error, nmc, seqnum); | |
2810 | if (seqnum != nd->nd_gss_seqnum) { | |
2811 | error = EBADRPC; // returns as GARBAGEARGS | |
2812 | goto nfsmout; | |
2813 | } | |
2814 | ||
2815 | /* | |
2816 | * Advance to the end of the args and | |
2817 | * fetch the checksum computed by the client. | |
2818 | */ | |
2819 | nmc_tmp = *nmc; | |
2820 | arglen -= NFSX_UNSIGNED; // skipped seqnum | |
2821 | nfsm_chain_adv(error, &nmc_tmp, arglen); // skip args | |
2822 | nfsm_chain_get_32(error, &nmc_tmp, cksumlen); // length of checksum | |
2823 | if (cksumlen != KRB5_SZ_TOKEN(ki->hash_len)) { | |
2824 | error = EBADRPC; | |
2825 | goto nfsmout; | |
2826 | } | |
2827 | nfsm_chain_get_opaque(error, &nmc_tmp, cksumlen, tokbuf); | |
2828 | if (error) | |
2829 | goto nfsmout; | |
2830 | error = nfs_gss_token_get(ki, ALG_MIC(ki), tokbuf, 1, | |
2831 | NULL, cksum2); | |
2832 | ||
2833 | /* Verify that the checksums are the same */ | |
2834 | if (error || bcmp(cksum1, cksum2, HASHLEN(ki)) != 0) { | |
2835 | error = EBADRPC; | |
2836 | goto nfsmout; | |
2837 | } | |
2838 | break; | |
2839 | case RPCSEC_GSS_SVC_PRIVACY: | |
2840 | /* | |
2841 | * Here's what we expect in the privacy call args: | |
2842 | * | |
2843 | * - length of confounder + seq num + token + call args | |
2844 | * - wrap token (37-40 bytes) | |
2845 | * - confounder (8 bytes) | |
2846 | * - sequence number (4 bytes) | |
2847 | * - call args (encrypted) | |
2848 | */ | |
2849 | nfsm_chain_get_32(error, nmc, arglen); // length of args | |
2850 | if (arglen > NFS_MAXPACKET) { | |
2851 | error = EBADRPC; | |
2852 | goto nfsmout; | |
2853 | } | |
2854 | ||
2855 | /* Get the token that prepends the encrypted args */ | |
2856 | nfsm_chain_get_opaque(error, nmc, KRB5_SZ_TOKMAX(ki->hash_len), tokbuf); | |
2857 | if (error) | |
2858 | goto nfsmout; | |
2859 | error = nfs_gss_token_get(ki, ALG_WRAP(ki), tokbuf, 1, | |
2860 | &toklen, cksum1); | |
2861 | if (error) | |
2862 | goto nfsmout; | |
2863 | nfsm_chain_reverse(nmc, nfsm_pad(toklen)); | |
2864 | ||
2865 | /* decrypt the 8 byte confounder + seqnum + args */ | |
2866 | start = nfsm_chain_offset(nmc); | |
2867 | arglen -= toklen; | |
2868 | nfs_gss_encrypt_chain(ki, nmc, start, arglen, DES_DECRYPT); | |
2869 | ||
2870 | /* Compute a checksum over the sequence number + results */ | |
2871 | nfs_gss_cksum_chain(ki, nmc, ALG_WRAP(ki), start, arglen, cksum2); | |
2872 | ||
2873 | /* Verify that the checksums are the same */ | |
2874 | if (bcmp(cksum1, cksum2, HASHLEN(ki)) != 0) { | |
2875 | error = EBADRPC; | |
2876 | goto nfsmout; | |
2877 | } | |
2878 | ||
2879 | /* | |
2880 | * Get the sequence number prepended to the args | |
2881 | * and compare it against the one sent in the | |
2882 | * call credential. | |
2883 | */ | |
2884 | nfsm_chain_adv(error, nmc, 8); // skip over the confounder | |
2885 | nfsm_chain_get_32(error, nmc, seqnum); | |
2886 | if (seqnum != nd->nd_gss_seqnum) { | |
2887 | error = EBADRPC; // returns as GARBAGEARGS | |
2888 | goto nfsmout; | |
2889 | } | |
2890 | break; | |
2891 | } | |
2892 | } else { | |
2893 | /* | |
2894 | * If the proc is RPCSEC_GSS_INIT or RPCSEC_GSS_CONTINUE_INIT | |
2895 | * then we expect a null verifier. | |
2896 | */ | |
2897 | nfsm_chain_get_32(error, nmc, flavor); | |
2898 | nfsm_chain_get_32(error, nmc, verflen); | |
2899 | if (error || flavor != RPCAUTH_NULL || verflen > 0) | |
2900 | error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM; | |
2901 | if (error) { | |
2902 | if (proc == RPCSEC_GSS_INIT) { | |
2903 | lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp); | |
2904 | FREE(cp, M_TEMP); | |
2905 | cp = NULL; | |
2906 | } | |
2907 | goto nfsmout; | |
2908 | } | |
2909 | } | |
2910 | ||
2911 | nd->nd_gss_context = cp; | |
2912 | return 0; | |
2913 | nfsmout: | |
2914 | if (cp) | |
2915 | nfs_gss_svc_ctx_deref(cp); | |
2916 | return (error); | |
2917 | } | |
2918 | ||
2919 | /* | |
2920 | * Insert the server's verifier into the RPC reply header. | |
2921 | * It contains a signed checksum of the sequence number that | |
2922 | * was received in the RPC call. | |
2923 | * Then go on to add integrity or privacy if necessary. | |
2924 | */ | |
2925 | int | |
2926 | nfs_gss_svc_verf_put(struct nfsrv_descript *nd, struct nfsm_chain *nmc) | |
2927 | { | |
2928 | struct nfs_gss_svc_ctx *cp; | |
2929 | int error = 0; | |
2930 | u_char tokbuf[KRB5_SZ_TOKEN(MAX_DIGEST)]; | |
2931 | int toklen; | |
2932 | u_char cksum[MAX_DIGEST]; | |
2933 | gss_key_info *ki; | |
2934 | ||
2935 | cp = nd->nd_gss_context; | |
2936 | ki = &cp->gss_svc_kinfo; | |
2937 | ||
2938 | if (cp->gss_svc_major != GSS_S_COMPLETE) { | |
2939 | /* | |
2940 | * If the context isn't yet complete | |
2941 | * then return a null verifier. | |
2942 | */ | |
2943 | nfsm_chain_add_32(error, nmc, RPCAUTH_NULL); | |
2944 | nfsm_chain_add_32(error, nmc, 0); | |
2945 | return (error); | |
2946 | } | |
2947 | ||
2948 | /* | |
2949 | * Compute checksum of the request seq number | |
2950 | * If it's the final reply of context setup | |
2951 | * then return the checksum of the context | |
2952 | * window size. | |
2953 | */ | |
2954 | if (cp->gss_svc_proc == RPCSEC_GSS_INIT || | |
2955 | cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT) | |
2956 | nfs_gss_cksum_rep(ki, cp->gss_svc_seqwin, cksum); | |
2957 | else | |
2958 | nfs_gss_cksum_rep(ki, nd->nd_gss_seqnum, cksum); | |
2959 | /* | |
2960 | * Now wrap it in a token and add | |
2961 | * the verifier to the reply. | |
2962 | */ | |
2963 | toklen = nfs_gss_token_put(ki, ALG_MIC(ki), tokbuf, 0, 0, cksum); | |
2964 | nfsm_chain_add_32(error, nmc, RPCSEC_GSS); | |
2965 | nfsm_chain_add_32(error, nmc, toklen); | |
2966 | nfsm_chain_add_opaque(error, nmc, tokbuf, toklen); | |
2967 | ||
2968 | return (error); | |
2969 | } | |
2970 | ||
2971 | /* | |
2972 | * The results aren't available yet, but if they need to be | |
2973 | * checksummed for integrity protection or encrypted, then | |
2974 | * we can record the start offset here, insert a place-holder | |
2975 | * for the results length, as well as the sequence number. | |
2976 | * The rest of the work is done later by nfs_gss_svc_protect_reply() | |
2977 | * when the results are available. | |
2978 | */ | |
2979 | int | |
2980 | nfs_gss_svc_prepare_reply(struct nfsrv_descript *nd, struct nfsm_chain *nmc) | |
2981 | { | |
2982 | struct nfs_gss_svc_ctx *cp = nd->nd_gss_context; | |
2983 | int error = 0; | |
2984 | ||
2985 | if (cp->gss_svc_proc == RPCSEC_GSS_INIT || | |
2986 | cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT) | |
2987 | return (0); | |
2988 | ||
2989 | switch (nd->nd_sec) { | |
2990 | case RPCAUTH_KRB5: | |
2991 | /* Nothing to do */ | |
2992 | break; | |
2993 | case RPCAUTH_KRB5I: | |
2994 | nd->nd_gss_mb = nmc->nmc_mcur; // record current mbuf | |
2995 | nfsm_chain_finish_mbuf(error, nmc); // split the chain here | |
2996 | nfsm_chain_add_32(error, nmc, nd->nd_gss_seqnum); // req sequence number | |
2997 | break; | |
2998 | case RPCAUTH_KRB5P: | |
2999 | nd->nd_gss_mb = nmc->nmc_mcur; // record current mbuf | |
3000 | nfsm_chain_finish_mbuf(error, nmc); // split the chain here | |
3001 | nfsm_chain_add_32(error, nmc, random()); // confounder bytes 1-4 | |
3002 | nfsm_chain_add_32(error, nmc, random()); // confounder bytes 5-8 | |
3003 | nfsm_chain_add_32(error, nmc, nd->nd_gss_seqnum); // req sequence number | |
3004 | break; | |
3005 | } | |
3006 | ||
3007 | return (error); | |
3008 | } | |
3009 | ||
3010 | /* | |
3011 | * The results are checksummed or encrypted for return to the client | |
3012 | */ | |
3013 | int | |
3014 | nfs_gss_svc_protect_reply(struct nfsrv_descript *nd, mbuf_t mrep) | |
3015 | { | |
3016 | struct nfs_gss_svc_ctx *cp = nd->nd_gss_context; | |
3017 | struct nfsm_chain nmrep_res, *nmc_res = &nmrep_res; | |
3018 | struct nfsm_chain nmrep_pre, *nmc_pre = &nmrep_pre; | |
3019 | mbuf_t mb, results; | |
3020 | uint32_t reslen; | |
3021 | u_char tokbuf[KRB5_SZ_TOKMAX(MAX_DIGEST)]; | |
3022 | int pad, toklen; | |
3023 | u_char cksum[MAX_DIGEST]; | |
3024 | int error = 0; | |
3025 | gss_key_info *ki = &cp->gss_svc_kinfo; | |
3026 | ||
3027 | /* | |
3028 | * Using a reference to the mbuf where we previously split the reply | |
3029 | * mbuf chain, we split the mbuf chain argument into two mbuf chains, | |
3030 | * one that allows us to prepend a length field or token, (nmc_pre) | |
3031 | * and the second which holds just the results that we're going to | |
3032 | * checksum and/or encrypt. When we're done, we join the chains back | |
3033 | * together. | |
3034 | */ | |
3035 | nfs_gss_nfsm_chain(nmc_res, mrep); // set up the results chain | |
3036 | mb = nd->nd_gss_mb; // the mbuf where we split | |
3037 | results = mbuf_next(mb); // first mbuf in the results | |
3038 | reslen = nfs_gss_mchain_length(results); // length of results | |
3039 | error = mbuf_setnext(mb, NULL); // disconnect the chains | |
3040 | if (error) | |
3041 | return (error); | |
3042 | nfs_gss_nfsm_chain(nmc_pre, mb); // set up the prepend chain | |
3043 | ||
3044 | if (nd->nd_sec == RPCAUTH_KRB5I) { | |
3045 | nfsm_chain_add_32(error, nmc_pre, reslen); | |
3046 | nfsm_chain_build_done(error, nmc_pre); | |
3047 | if (error) | |
3048 | return (error); | |
3049 | nfs_gss_append_chain(nmc_pre, results); // Append the results mbufs | |
3050 | ||
3051 | /* Now compute the checksum over the results data */ | |
3052 | nfs_gss_cksum_mchain(ki, results, ALG_MIC(ki), 0, reslen, cksum); | |
3053 | ||
3054 | /* Put it into a token and append to the request */ | |
3055 | toklen = nfs_gss_token_put(ki, ALG_MIC(ki), tokbuf, 0, 0, cksum); | |
3056 | nfsm_chain_add_32(error, nmc_res, toklen); | |
3057 | nfsm_chain_add_opaque(error, nmc_res, tokbuf, toklen); | |
3058 | nfsm_chain_build_done(error, nmc_res); | |
3059 | } else { | |
3060 | /* RPCAUTH_KRB5P */ | |
3061 | /* | |
3062 | * Append a pad trailer - per RFC 1964 section 1.2.2.3 | |
3063 | * Since XDR data is always 32-bit aligned, it | |
3064 | * needs to be padded either by 4 bytes or 8 bytes. | |
3065 | */ | |
3066 | if (reslen % 8 > 0) { | |
3067 | nfsm_chain_add_32(error, nmc_res, 0x04040404); | |
3068 | reslen += NFSX_UNSIGNED; | |
3069 | } else { | |
3070 | nfsm_chain_add_32(error, nmc_res, 0x08080808); | |
3071 | nfsm_chain_add_32(error, nmc_res, 0x08080808); | |
3072 | reslen += 2 * NFSX_UNSIGNED; | |
3073 | } | |
3074 | nfsm_chain_build_done(error, nmc_res); | |
3075 | ||
3076 | /* Now compute the checksum over the results data */ | |
3077 | nfs_gss_cksum_mchain(ki, results, ALG_WRAP(ki), 0, reslen, cksum); | |
3078 | ||
3079 | /* Put it into a token and insert in the reply */ | |
3080 | toklen = nfs_gss_token_put(ki, ALG_WRAP(ki), tokbuf, 0, reslen, cksum); | |
3081 | nfsm_chain_add_32(error, nmc_pre, toklen + reslen); | |
3082 | nfsm_chain_add_opaque_nopad(error, nmc_pre, tokbuf, toklen); | |
3083 | nfsm_chain_build_done(error, nmc_pre); | |
3084 | if (error) | |
3085 | return (error); | |
3086 | nfs_gss_append_chain(nmc_pre, results); // Append the results mbufs | |
3087 | ||
3088 | /* Encrypt the confounder + seqnum + results */ | |
3089 | nfs_gss_encrypt_mchain(ki, results, 0, reslen, DES_ENCRYPT); | |
3090 | ||
3091 | /* Add null XDR pad if the ASN.1 token misaligned the data */ | |
3092 | pad = nfsm_pad(toklen + reslen); | |
3093 | if (pad > 0) { | |
3094 | nfsm_chain_add_opaque_nopad(error, nmc_pre, iv0, pad); | |
3095 | nfsm_chain_build_done(error, nmc_pre); | |
3096 | } | |
3097 | } | |
3098 | ||
3099 | return (error); | |
3100 | } | |
3101 | ||
3102 | /* | |
3103 | * This function handles the context setup calls from the client. | |
3104 | * Essentially, it implements the NFS null procedure calls when | |
3105 | * an RPCSEC_GSS credential is used. | |
3106 | * This is the context maintenance function. It creates and | |
3107 | * destroys server contexts at the whim of the client. | |
3108 | * During context creation, it receives GSS-API tokens from the | |
3109 | * client, passes them up to gssd, and returns a received token | |
3110 | * back to the client in the null procedure reply. | |
3111 | */ | |
3112 | int | |
3113 | nfs_gss_svc_ctx_init(struct nfsrv_descript *nd, struct nfsrv_sock *slp, mbuf_t *mrepp) | |
3114 | { | |
3115 | struct nfs_gss_svc_ctx *cp = NULL; | |
3116 | int error = 0; | |
3117 | int autherr = 0; | |
3118 | struct nfsm_chain *nmreq, nmrep; | |
3119 | int sz; | |
3120 | ||
3121 | nmreq = &nd->nd_nmreq; | |
3122 | nfsm_chain_null(&nmrep); | |
3123 | *mrepp = NULL; | |
3124 | cp = nd->nd_gss_context; | |
3125 | nd->nd_repstat = 0; | |
3126 | ||
3127 | switch (cp->gss_svc_proc) { | |
3128 | case RPCSEC_GSS_INIT: | |
3129 | nfs_gss_svc_ctx_insert(cp); | |
3130 | /* FALLTHRU */ | |
3131 | ||
3132 | case RPCSEC_GSS_CONTINUE_INIT: | |
3133 | /* Get the token from the request */ | |
3134 | nfsm_chain_get_32(error, nmreq, cp->gss_svc_tokenlen); | |
3135 | if (cp->gss_svc_tokenlen == 0) { | |
3136 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
3137 | break; | |
3138 | } | |
3139 | MALLOC(cp->gss_svc_token, u_char *, cp->gss_svc_tokenlen, M_TEMP, M_WAITOK); | |
3140 | if (cp->gss_svc_token == NULL) { | |
3141 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
3142 | break; | |
3143 | } | |
3144 | nfsm_chain_get_opaque(error, nmreq, cp->gss_svc_tokenlen, cp->gss_svc_token); | |
3145 | ||
3146 | /* Use the token in a gss_accept_sec_context upcall */ | |
3147 | error = nfs_gss_svc_gssd_upcall(cp); | |
3148 | if (error) { | |
3149 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
3150 | if (error == NFSERR_EAUTH) | |
3151 | error = 0; | |
3152 | break; | |
3153 | } | |
3154 | ||
3155 | /* | |
3156 | * If the context isn't complete, pass the new token | |
3157 | * back to the client for another round. | |
3158 | */ | |
3159 | if (cp->gss_svc_major != GSS_S_COMPLETE) | |
3160 | break; | |
3161 | ||
3162 | /* | |
3163 | * Now the server context is complete. | |
3164 | * Finish setup. | |
3165 | */ | |
3166 | clock_get_uptime(&cp->gss_svc_incarnation); | |
3167 | ||
3168 | cp->gss_svc_seqwin = GSS_SVC_SEQWINDOW; | |
3169 | MALLOC(cp->gss_svc_seqbits, uint32_t *, | |
3170 | nfsm_rndup((cp->gss_svc_seqwin + 7) / 8), M_TEMP, M_WAITOK|M_ZERO); | |
3171 | if (cp->gss_svc_seqbits == NULL) { | |
3172 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
3173 | break; | |
3174 | } | |
3175 | break; | |
3176 | ||
3177 | case RPCSEC_GSS_DATA: | |
3178 | /* Just a nullproc ping - do nothing */ | |
3179 | break; | |
3180 | ||
3181 | case RPCSEC_GSS_DESTROY: | |
3182 | /* | |
3183 | * Don't destroy the context immediately because | |
3184 | * other active requests might still be using it. | |
3185 | * Instead, schedule it for destruction after | |
3186 | * GSS_CTX_PEND time has elapsed. | |
3187 | */ | |
3188 | cp = nfs_gss_svc_ctx_find(cp->gss_svc_handle); | |
3189 | if (cp != NULL) { | |
3190 | cp->gss_svc_handle = 0; // so it can't be found | |
3191 | lck_mtx_lock(cp->gss_svc_mtx); | |
3192 | clock_interval_to_deadline(GSS_CTX_PEND, NSEC_PER_SEC, | |
3193 | &cp->gss_svc_incarnation); | |
3194 | lck_mtx_unlock(cp->gss_svc_mtx); | |
3195 | } | |
3196 | break; | |
3197 | default: | |
3198 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
3199 | break; | |
3200 | } | |
3201 | ||
3202 | /* Now build the reply */ | |
3203 | ||
3204 | if (nd->nd_repstat == 0) | |
3205 | nd->nd_repstat = autherr ? (NFSERR_AUTHERR | autherr) : NFSERR_RETVOID; | |
3206 | sz = 7 * NFSX_UNSIGNED + nfsm_rndup(cp->gss_svc_tokenlen); // size of results | |
3207 | error = nfsrv_rephead(nd, slp, &nmrep, sz); | |
3208 | *mrepp = nmrep.nmc_mhead; | |
3209 | if (error || autherr) | |
3210 | goto nfsmout; | |
3211 | ||
3212 | if (cp->gss_svc_proc == RPCSEC_GSS_INIT || | |
3213 | cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT) { | |
3214 | nfsm_chain_add_32(error, &nmrep, sizeof(cp->gss_svc_handle)); | |
3215 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_handle); | |
3216 | ||
3217 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_major); | |
3218 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_minor); | |
3219 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_seqwin); | |
3220 | ||
3221 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_tokenlen); | |
3222 | if (cp->gss_svc_token != NULL) { | |
3223 | nfsm_chain_add_opaque(error, &nmrep, cp->gss_svc_token, cp->gss_svc_tokenlen); | |
3224 | FREE(cp->gss_svc_token, M_TEMP); | |
3225 | cp->gss_svc_token = NULL; | |
3226 | } | |
3227 | } | |
3228 | ||
3229 | nfsmout: | |
3230 | if (autherr != 0) { | |
3231 | nd->nd_gss_context = NULL; | |
3232 | LIST_REMOVE(cp, gss_svc_entries); | |
3233 | if (cp->gss_svc_seqbits != NULL) | |
3234 | FREE(cp->gss_svc_seqbits, M_TEMP); | |
3235 | if (cp->gss_svc_token != NULL) | |
3236 | FREE(cp->gss_svc_token, M_TEMP); | |
3237 | lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp); | |
3238 | FREE(cp, M_TEMP); | |
3239 | } | |
3240 | ||
3241 | nfsm_chain_build_done(error, &nmrep); | |
3242 | if (error) { | |
3243 | nfsm_chain_cleanup(&nmrep); | |
3244 | *mrepp = NULL; | |
3245 | } | |
3246 | return (error); | |
3247 | } | |
3248 | ||
3249 | /* | |
3250 | * This is almost a mirror-image of the client side upcall. | |
3251 | * It passes and receives a token, but invokes gss_accept_sec_context. | |
3252 | * If it's the final call of the context setup, then gssd also returns | |
3253 | * the session key and the user's UID. | |
3254 | */ | |
3255 | static int | |
3256 | nfs_gss_svc_gssd_upcall(struct nfs_gss_svc_ctx *cp) | |
3257 | { | |
3258 | kern_return_t kr; | |
3259 | mach_port_t mp; | |
3260 | int retry_cnt = 0; | |
3261 | gssd_byte_buffer okey = NULL; | |
3262 | uint32_t skeylen = 0; | |
3263 | uint32_t ret_flags; | |
3264 | vm_map_copy_t itoken = NULL; | |
3265 | gssd_byte_buffer otoken = NULL; | |
3266 | mach_msg_type_number_t otokenlen; | |
3267 | int error = 0; | |
3268 | char svcname[] = "nfs"; | |
3269 | ||
3270 | kr = host_get_gssd_port(host_priv_self(), &mp); | |
3271 | if (kr != KERN_SUCCESS) { | |
3272 | printf("nfs_gss_svc_gssd_upcall: can't get gssd port, status %x (%d)\n", kr, kr); | |
3273 | goto out; | |
3274 | } | |
3275 | if (!IPC_PORT_VALID(mp)) { | |
3276 | printf("nfs_gss_svc_gssd_upcall: gssd port not valid\n"); | |
3277 | goto out; | |
3278 | } | |
3279 | ||
3280 | if (cp->gss_svc_tokenlen > 0) | |
3281 | nfs_gss_mach_alloc_buffer(cp->gss_svc_token, cp->gss_svc_tokenlen, &itoken); | |
3282 | ||
3283 | retry: | |
3284 | kr = mach_gss_accept_sec_context( | |
3285 | mp, | |
3286 | (gssd_byte_buffer) itoken, (mach_msg_type_number_t) cp->gss_svc_tokenlen, | |
3287 | svcname, | |
3288 | 0, | |
3289 | &cp->gss_svc_context, | |
3290 | &cp->gss_svc_cred_handle, | |
3291 | &ret_flags, | |
3292 | &cp->gss_svc_uid, | |
3293 | cp->gss_svc_gids, | |
3294 | &cp->gss_svc_ngroups, | |
3295 | &okey, (mach_msg_type_number_t *) &skeylen, | |
3296 | &otoken, &otokenlen, | |
3297 | &cp->gss_svc_major, | |
3298 | &cp->gss_svc_minor); | |
3299 | ||
3300 | if (kr != KERN_SUCCESS) { | |
3301 | printf("nfs_gss_svc_gssd_upcall failed: %x (%d)\n", kr, kr); | |
3302 | if (kr == MIG_SERVER_DIED && cp->gss_svc_context == 0 && | |
3303 | retry_cnt++ < NFS_GSS_MACH_MAX_RETRIES) { | |
3304 | if (cp->gss_svc_tokenlen > 0) | |
3305 | nfs_gss_mach_alloc_buffer(cp->gss_svc_token, cp->gss_svc_tokenlen, &itoken); | |
3306 | goto retry; | |
3307 | } | |
3308 | host_release_special_port(mp); | |
3309 | goto out; | |
3310 | } | |
3311 | ||
3312 | host_release_special_port(mp); | |
3313 | ||
3314 | if (skeylen > 0) { | |
3315 | if (skeylen != SKEYLEN && skeylen != SKEYLEN3) { | |
3316 | printf("nfs_gss_svc_gssd_upcall: bad key length (%d)\n", skeylen); | |
3317 | vm_map_copy_discard((vm_map_copy_t) okey); | |
3318 | vm_map_copy_discard((vm_map_copy_t) otoken); | |
3319 | goto out; | |
3320 | } | |
3321 | error = nfs_gss_mach_vmcopyout((vm_map_copy_t) okey, skeylen, cp->gss_svc_kinfo.skey); | |
3322 | if (error) { | |
3323 | vm_map_copy_discard((vm_map_copy_t) otoken); | |
3324 | goto out; | |
3325 | } | |
3326 | error = gss_key_init(&cp->gss_svc_kinfo, skeylen); | |
3327 | if (error) | |
3328 | goto out; | |
3329 | ||
3330 | } | |
3331 | ||
3332 | /* Free context token used as input */ | |
3333 | if (cp->gss_svc_token) | |
3334 | FREE(cp->gss_svc_token, M_TEMP); | |
3335 | cp->gss_svc_token = NULL; | |
3336 | cp->gss_svc_tokenlen = 0; | |
3337 | ||
3338 | if (otokenlen > 0) { | |
3339 | /* Set context token to gss output token */ | |
3340 | MALLOC(cp->gss_svc_token, u_char *, otokenlen, M_TEMP, M_WAITOK); | |
3341 | if (cp->gss_svc_token == NULL) { | |
3342 | printf("nfs_gss_svc_gssd_upcall: could not allocate %d bytes\n", otokenlen); | |
3343 | vm_map_copy_discard((vm_map_copy_t) otoken); | |
3344 | return (ENOMEM); | |
3345 | } | |
3346 | error = nfs_gss_mach_vmcopyout((vm_map_copy_t) otoken, otokenlen, cp->gss_svc_token); | |
3347 | if (error) { | |
3348 | FREE(cp->gss_svc_token, M_TEMP); | |
3349 | cp->gss_svc_token = NULL; | |
3350 | return (NFSERR_EAUTH); | |
3351 | } | |
3352 | cp->gss_svc_tokenlen = otokenlen; | |
3353 | } | |
3354 | ||
3355 | return (0); | |
3356 | ||
3357 | out: | |
3358 | FREE(cp->gss_svc_token, M_TEMP); | |
3359 | cp->gss_svc_tokenlen = 0; | |
3360 | cp->gss_svc_token = NULL; | |
3361 | ||
3362 | return (NFSERR_EAUTH); | |
3363 | } | |
3364 | ||
3365 | /* | |
3366 | * Validate the sequence number in the credential as described | |
3367 | * in RFC 2203 Section 5.3.3.1 | |
3368 | * | |
3369 | * Here the window of valid sequence numbers is represented by | |
3370 | * a bitmap. As each sequence number is received, its bit is | |
3371 | * set in the bitmap. An invalid sequence number lies below | |
3372 | * the lower bound of the window, or is within the window but | |
3373 | * has its bit already set. | |
3374 | */ | |
3375 | static int | |
3376 | nfs_gss_svc_seqnum_valid(struct nfs_gss_svc_ctx *cp, uint32_t seq) | |
3377 | { | |
3378 | uint32_t *bits = cp->gss_svc_seqbits; | |
3379 | uint32_t win = cp->gss_svc_seqwin; | |
3380 | uint32_t i; | |
3381 | ||
3382 | lck_mtx_lock(cp->gss_svc_mtx); | |
3383 | ||
3384 | /* | |
3385 | * If greater than the window upper bound, | |
3386 | * move the window up, and set the bit. | |
3387 | */ | |
3388 | if (seq > cp->gss_svc_seqmax) { | |
3389 | if (seq - cp->gss_svc_seqmax > win) | |
3390 | bzero(bits, nfsm_rndup((win + 7) / 8)); | |
3391 | else | |
3392 | for (i = cp->gss_svc_seqmax + 1; i < seq; i++) | |
3393 | win_resetbit(bits, i % win); | |
3394 | win_setbit(bits, seq % win); | |
3395 | cp->gss_svc_seqmax = seq; | |
3396 | lck_mtx_unlock(cp->gss_svc_mtx); | |
3397 | return (1); | |
3398 | } | |
3399 | ||
3400 | /* | |
3401 | * Invalid if below the lower bound of the window | |
3402 | */ | |
3403 | if (seq <= cp->gss_svc_seqmax - win) { | |
3404 | lck_mtx_unlock(cp->gss_svc_mtx); | |
3405 | return (0); | |
3406 | } | |
3407 | ||
3408 | /* | |
3409 | * In the window, invalid if the bit is already set | |
3410 | */ | |
3411 | if (win_getbit(bits, seq % win)) { | |
3412 | lck_mtx_unlock(cp->gss_svc_mtx); | |
3413 | return (0); | |
3414 | } | |
3415 | win_setbit(bits, seq % win); | |
3416 | lck_mtx_unlock(cp->gss_svc_mtx); | |
3417 | return (1); | |
3418 | } | |
3419 | ||
3420 | /* | |
3421 | * Drop a reference to a context | |
3422 | * | |
3423 | * Note that it's OK for the context to exist | |
3424 | * with a refcount of zero. The refcount isn't | |
3425 | * checked until we're about to reap an expired one. | |
3426 | */ | |
3427 | void | |
3428 | nfs_gss_svc_ctx_deref(struct nfs_gss_svc_ctx *cp) | |
3429 | { | |
3430 | lck_mtx_lock(cp->gss_svc_mtx); | |
3431 | if (cp->gss_svc_refcnt > 0) | |
3432 | cp->gss_svc_refcnt--; | |
3433 | else | |
3434 | printf("nfs_gss_ctx_deref: zero refcount\n"); | |
3435 | lck_mtx_unlock(cp->gss_svc_mtx); | |
3436 | } | |
3437 | ||
3438 | /* | |
3439 | * Called at NFS server shutdown - destroy all contexts | |
3440 | */ | |
3441 | void | |
3442 | nfs_gss_svc_cleanup(void) | |
3443 | { | |
3444 | struct nfs_gss_svc_ctx_hashhead *head; | |
3445 | struct nfs_gss_svc_ctx *cp, *ncp; | |
3446 | int i; | |
3447 | ||
3448 | lck_mtx_lock(nfs_gss_svc_ctx_mutex); | |
3449 | ||
3450 | /* | |
3451 | * Run through all the buckets | |
3452 | */ | |
3453 | for (i = 0; i < SVC_CTX_HASHSZ; i++) { | |
3454 | /* | |
3455 | * Remove and free all entries in the bucket | |
3456 | */ | |
3457 | head = &nfs_gss_svc_ctx_hashtbl[i]; | |
3458 | LIST_FOREACH_SAFE(cp, head, gss_svc_entries, ncp) { | |
3459 | LIST_REMOVE(cp, gss_svc_entries); | |
3460 | if (cp->gss_svc_seqbits) | |
3461 | FREE(cp->gss_svc_seqbits, M_TEMP); | |
3462 | lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp); | |
3463 | FREE(cp, M_TEMP); | |
3464 | } | |
3465 | } | |
3466 | ||
3467 | lck_mtx_unlock(nfs_gss_svc_ctx_mutex); | |
3468 | } | |
3469 | ||
3470 | #endif /* NFSSERVER */ | |
3471 | ||
3472 | ||
3473 | /************* | |
3474 | * The following functions are used by both client and server. | |
3475 | */ | |
3476 | ||
3477 | /* | |
3478 | * Release a host special port that was obtained by host_get_special_port | |
3479 | * or one of its macros (host_get_gssd_port in this case). | |
3480 | * This really should be in a public kpi. | |
3481 | */ | |
3482 | ||
3483 | /* This should be in a public header if this routine is not */ | |
3484 | extern void ipc_port_release_send(ipc_port_t); | |
3485 | extern ipc_port_t ipc_port_copy_send(ipc_port_t); | |
3486 | ||
3487 | static void | |
3488 | host_release_special_port(mach_port_t mp) | |
3489 | { | |
3490 | if (IPC_PORT_VALID(mp)) | |
3491 | ipc_port_release_send(mp); | |
3492 | } | |
3493 | ||
3494 | static mach_port_t | |
3495 | host_copy_special_port(mach_port_t mp) | |
3496 | { | |
3497 | return (ipc_port_copy_send(mp)); | |
3498 | } | |
3499 | ||
3500 | /* | |
3501 | * The token that is sent and received in the gssd upcall | |
3502 | * has unbounded variable length. Mach RPC does not pass | |
3503 | * the token in-line. Instead it uses page mapping to handle | |
3504 | * these parameters. This function allocates a VM buffer | |
3505 | * to hold the token for an upcall and copies the token | |
3506 | * (received from the client) into it. The VM buffer is | |
3507 | * marked with a src_destroy flag so that the upcall will | |
3508 | * automatically de-allocate the buffer when the upcall is | |
3509 | * complete. | |
3510 | */ | |
3511 | static void | |
3512 | nfs_gss_mach_alloc_buffer(u_char *buf, uint32_t buflen, vm_map_copy_t *addr) | |
3513 | { | |
3514 | kern_return_t kr; | |
3515 | vm_offset_t kmem_buf; | |
3516 | vm_size_t tbuflen; | |
3517 | ||
3518 | *addr = NULL; | |
3519 | if (buf == NULL || buflen == 0) | |
3520 | return; | |
3521 | ||
3522 | tbuflen = vm_map_round_page(buflen, | |
3523 | vm_map_page_mask(ipc_kernel_map)); | |
3524 | kr = vm_allocate(ipc_kernel_map, &kmem_buf, tbuflen, VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_FILE)); | |
3525 | if (kr != 0) { | |
3526 | printf("nfs_gss_mach_alloc_buffer: vm_allocate failed\n"); | |
3527 | return; | |
3528 | } | |
3529 | ||
3530 | kr = vm_map_wire(ipc_kernel_map, | |
3531 | vm_map_trunc_page(kmem_buf, | |
3532 | vm_map_page_mask(ipc_kernel_map)), | |
3533 | vm_map_round_page(kmem_buf + tbuflen, | |
3534 | vm_map_page_mask(ipc_kernel_map)), | |
3535 | VM_PROT_READ|VM_PROT_WRITE|VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE), FALSE); | |
3536 | if (kr != 0) { | |
3537 | printf("nfs_gss_mach_alloc_buffer: vm_map_wire failed\n"); | |
3538 | return; | |
3539 | } | |
3540 | ||
3541 | bcopy(buf, (void *) kmem_buf, buflen); | |
3542 | // Shouldn't need to bzero below since vm_allocate returns zeroed pages | |
3543 | // bzero(kmem_buf + buflen, tbuflen - buflen); | |
3544 | ||
3545 | kr = vm_map_unwire(ipc_kernel_map, | |
3546 | vm_map_trunc_page(kmem_buf, | |
3547 | vm_map_page_mask(ipc_kernel_map)), | |
3548 | vm_map_round_page(kmem_buf + tbuflen, | |
3549 | vm_map_page_mask(ipc_kernel_map)), | |
3550 | FALSE); | |
3551 | if (kr != 0) { | |
3552 | printf("nfs_gss_mach_alloc_buffer: vm_map_unwire failed\n"); | |
3553 | return; | |
3554 | } | |
3555 | ||
3556 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t) kmem_buf, | |
3557 | (vm_map_size_t) buflen, TRUE, addr); | |
3558 | if (kr != 0) { | |
3559 | printf("nfs_gss_mach_alloc_buffer: vm_map_copyin failed\n"); | |
3560 | return; | |
3561 | } | |
3562 | } | |
3563 | ||
3564 | /* | |
3565 | * Here we handle a token received from the gssd via an upcall. | |
3566 | * The received token resides in an allocate VM buffer. | |
3567 | * We copy the token out of this buffer to a chunk of malloc'ed | |
3568 | * memory of the right size, then de-allocate the VM buffer. | |
3569 | */ | |
3570 | static int | |
3571 | nfs_gss_mach_vmcopyout(vm_map_copy_t in, uint32_t len, u_char *out) | |
3572 | { | |
3573 | vm_map_offset_t map_data; | |
3574 | vm_offset_t data; | |
3575 | int error; | |
3576 | ||
3577 | error = vm_map_copyout(ipc_kernel_map, &map_data, in); | |
3578 | if (error) | |
3579 | return (error); | |
3580 | ||
3581 | data = CAST_DOWN(vm_offset_t, map_data); | |
3582 | bcopy((void *) data, out, len); | |
3583 | vm_deallocate(ipc_kernel_map, data, len); | |
3584 | ||
3585 | return (0); | |
3586 | } | |
3587 | ||
3588 | /* | |
3589 | * Encode an ASN.1 token to be wrapped in an RPCSEC_GSS verifier. | |
3590 | * Returns the size of the token, since it contains a variable | |
3591 | * length DER encoded size field. | |
3592 | */ | |
3593 | static int | |
3594 | nfs_gss_token_put( | |
3595 | gss_key_info *ki, | |
3596 | u_char *alg, | |
3597 | u_char *p, | |
3598 | int initiator, | |
3599 | int datalen, | |
3600 | u_char *cksum) | |
3601 | { | |
3602 | static uint32_t seqnum = 0; | |
3603 | u_char *psave = p; | |
3604 | u_char plain[8]; | |
3605 | int toklen, i; | |
3606 | ||
3607 | /* | |
3608 | * Fill in the token header: 2 octets. | |
3609 | * This is 0x06 - an ASN.1 tag for APPLICATION, 0, SEQUENCE | |
3610 | * followed by the length of the token: 35 + 0 octets for a | |
3611 | * MIC token, or 35 + encrypted octets for a wrap token; | |
3612 | */ | |
3613 | *p++ = 0x060; | |
3614 | toklen = KRB5_SZ_MECH + KRB5_SZ_ALG + KRB5_SZ_SEQ + HASHLEN(ki); | |
3615 | nfs_gss_der_length_put(&p, toklen + datalen); | |
3616 | ||
3617 | /* | |
3618 | * Fill in the DER encoded mech OID for Kerberos v5. | |
3619 | * This represents the Kerberos OID 1.2.840.113554.1.2.2 | |
3620 | * described in RFC 2623, section 4.2 | |
3621 | */ | |
3622 | bcopy(krb5_mech, p, sizeof(krb5_mech)); | |
3623 | p += sizeof(krb5_mech); | |
3624 | ||
3625 | /* | |
3626 | * Now at the token described in RFC 1964, section 1.2.1 | |
3627 | * Fill in the token ID, integrity algorithm indicator, | |
3628 | * for DES MAC MD5, and four filler octets. | |
3629 | * The alg string encodes the bytes to represent either | |
3630 | * a MIC token or a WRAP token for Kerberos. | |
3631 | */ | |
3632 | bcopy(alg, p, KRB5_SZ_ALG); | |
3633 | p += KRB5_SZ_ALG; | |
3634 | ||
3635 | /* | |
3636 | * Now encode the sequence number according to | |
3637 | * RFC 1964, section 1.2.1.2 which dictates 4 octets | |
3638 | * of sequence number followed by 4 bytes of direction | |
3639 | * indicator: 0x00 for initiator or 0xff for acceptor. | |
3640 | * We DES CBC encrypt the sequence number using the first | |
3641 | * 8 octets of the checksum field as an initialization | |
3642 | * vector. | |
3643 | * Note that this sequence number is not at all related | |
3644 | * to the RPCSEC_GSS protocol sequence number. This | |
3645 | * number is private to the ASN.1 token. The only | |
3646 | * requirement is that it not be repeated in case the | |
3647 | * server has replay detection on, which normally should | |
3648 | * not be the case, since RFC 2203 section 5.2.3 says that | |
3649 | * replay detection and sequence checking must be turned off. | |
3650 | */ | |
3651 | seqnum++; | |
3652 | for (i = 0; i < 4; i++) | |
3653 | plain[i] = (u_char) ((seqnum >> (i * 8)) & 0xff); | |
3654 | for (i = 4; i < 8; i++) | |
3655 | plain[i] = initiator ? 0x00 : 0xff; | |
3656 | gss_des_crypt(ki, (des_cblock *) plain, (des_cblock *) p, 8, | |
3657 | (des_cblock *) cksum, NULL, DES_ENCRYPT, KG_USAGE_SEQ); | |
3658 | p += 8; | |
3659 | ||
3660 | /* | |
3661 | * Finally, append the octets of the | |
3662 | * checksum of the alg + plaintext data. | |
3663 | * The plaintext could be an RPC call header, | |
3664 | * the window value, or a sequence number. | |
3665 | */ | |
3666 | bcopy(cksum, p, HASHLEN(ki)); | |
3667 | p += HASHLEN(ki); | |
3668 | ||
3669 | return (p - psave); | |
3670 | } | |
3671 | ||
3672 | /* | |
3673 | * Determine size of ASN.1 DER length | |
3674 | */ | |
3675 | static int | |
3676 | nfs_gss_der_length_size(int len) | |
3677 | { | |
3678 | return | |
3679 | len < (1 << 7) ? 1 : | |
3680 | len < (1 << 8) ? 2 : | |
3681 | len < (1 << 16) ? 3 : | |
3682 | len < (1 << 24) ? 4 : 5; | |
3683 | } | |
3684 | ||
3685 | /* | |
3686 | * Encode an ASN.1 DER length field | |
3687 | */ | |
3688 | static void | |
3689 | nfs_gss_der_length_put(u_char **pp, int len) | |
3690 | { | |
3691 | int sz = nfs_gss_der_length_size(len); | |
3692 | u_char *p = *pp; | |
3693 | ||
3694 | if (sz == 1) { | |
3695 | *p++ = (u_char) len; | |
3696 | } else { | |
3697 | *p++ = (u_char) ((sz-1) | 0x80); | |
3698 | sz -= 1; | |
3699 | while (sz--) | |
3700 | *p++ = (u_char) ((len >> (sz * 8)) & 0xff); | |
3701 | } | |
3702 | ||
3703 | *pp = p; | |
3704 | } | |
3705 | ||
3706 | /* | |
3707 | * Decode an ASN.1 DER length field | |
3708 | */ | |
3709 | static int | |
3710 | nfs_gss_der_length_get(u_char **pp) | |
3711 | { | |
3712 | u_char *p = *pp; | |
3713 | uint32_t flen, len = 0; | |
3714 | ||
3715 | flen = *p & 0x7f; | |
3716 | ||
3717 | if ((*p++ & 0x80) == 0) | |
3718 | len = flen; | |
3719 | else { | |
3720 | if (flen > sizeof(uint32_t)) | |
3721 | return (-1); | |
3722 | while (flen--) | |
3723 | len = (len << 8) + *p++; | |
3724 | } | |
3725 | *pp = p; | |
3726 | return (len); | |
3727 | } | |
3728 | ||
3729 | /* | |
3730 | * Decode an ASN.1 token from an RPCSEC_GSS verifier. | |
3731 | */ | |
3732 | static int | |
3733 | nfs_gss_token_get( | |
3734 | gss_key_info *ki, | |
3735 | u_char *alg, | |
3736 | u_char *p, | |
3737 | int initiator, | |
3738 | uint32_t *len, | |
3739 | u_char *cksum) | |
3740 | { | |
3741 | u_char d, plain[8]; | |
3742 | u_char *psave = p; | |
3743 | int seqnum, i; | |
3744 | ||
3745 | /* | |
3746 | * Check that we have a valid token header | |
3747 | */ | |
3748 | if (*p++ != 0x60) | |
3749 | return (AUTH_BADCRED); | |
3750 | (void) nfs_gss_der_length_get(&p); // ignore the size | |
3751 | ||
3752 | /* | |
3753 | * Check that we have the DER encoded Kerberos v5 mech OID | |
3754 | */ | |
3755 | if (bcmp(p, krb5_mech, sizeof(krb5_mech) != 0)) | |
3756 | return (AUTH_BADCRED); | |
3757 | p += sizeof(krb5_mech); | |
3758 | ||
3759 | /* | |
3760 | * Now check the token ID, DES MAC MD5 algorithm | |
3761 | * indicator, and filler octets. | |
3762 | */ | |
3763 | if (bcmp(p, alg, KRB5_SZ_ALG) != 0) | |
3764 | return (AUTH_BADCRED); | |
3765 | p += KRB5_SZ_ALG; | |
3766 | ||
3767 | /* | |
3768 | * Now decrypt the sequence number. | |
3769 | * Note that the gss decryption uses the first 8 octets | |
3770 | * of the checksum field as an initialization vector (p + 8). | |
3771 | * Per RFC 2203 section 5.2.2 we don't check the sequence number | |
3772 | * in the ASN.1 token because the RPCSEC_GSS protocol has its | |
3773 | * own sequence number described in section 5.3.3.1 | |
3774 | */ | |
3775 | seqnum = 0; | |
3776 | gss_des_crypt(ki, (des_cblock *)p, (des_cblock *) plain, 8, | |
3777 | (des_cblock *) (p + 8), NULL, DES_DECRYPT, KG_USAGE_SEQ); | |
3778 | p += 8; | |
3779 | for (i = 0; i < 4; i++) | |
3780 | seqnum |= plain[i] << (i * 8); | |
3781 | ||
3782 | /* | |
3783 | * Make sure the direction | |
3784 | * indicator octets are correct. | |
3785 | */ | |
3786 | d = initiator ? 0x00 : 0xff; | |
3787 | for (i = 4; i < 8; i++) | |
3788 | if (plain[i] != d) | |
3789 | return (AUTH_BADCRED); | |
3790 | ||
3791 | /* | |
3792 | * Finally, get the checksum | |
3793 | */ | |
3794 | bcopy(p, cksum, HASHLEN(ki)); | |
3795 | p += HASHLEN(ki); | |
3796 | ||
3797 | if (len != NULL) | |
3798 | *len = p - psave; | |
3799 | ||
3800 | return (0); | |
3801 | } | |
3802 | ||
3803 | /* | |
3804 | * Return the number of bytes in an mbuf chain. | |
3805 | */ | |
3806 | static int | |
3807 | nfs_gss_mchain_length(mbuf_t mhead) | |
3808 | { | |
3809 | mbuf_t mb; | |
3810 | int len = 0; | |
3811 | ||
3812 | for (mb = mhead; mb; mb = mbuf_next(mb)) | |
3813 | len += mbuf_len(mb); | |
3814 | ||
3815 | return (len); | |
3816 | } | |
3817 | ||
3818 | /* | |
3819 | * Append an args or results mbuf chain to the header chain | |
3820 | */ | |
3821 | static int | |
3822 | nfs_gss_append_chain(struct nfsm_chain *nmc, mbuf_t mc) | |
3823 | { | |
3824 | int error = 0; | |
3825 | mbuf_t mb, tail; | |
3826 | ||
3827 | /* Connect the mbuf chains */ | |
3828 | error = mbuf_setnext(nmc->nmc_mcur, mc); | |
3829 | if (error) | |
3830 | return (error); | |
3831 | ||
3832 | /* Find the last mbuf in the chain */ | |
3833 | tail = NULL; | |
3834 | for (mb = mc; mb; mb = mbuf_next(mb)) | |
3835 | tail = mb; | |
3836 | ||
3837 | nmc->nmc_mcur = tail; | |
3838 | nmc->nmc_ptr = (caddr_t) mbuf_data(tail) + mbuf_len(tail); | |
3839 | nmc->nmc_left = mbuf_trailingspace(tail); | |
3840 | ||
3841 | return (0); | |
3842 | } | |
3843 | ||
3844 | /* | |
3845 | * Convert an mbuf chain to an NFS mbuf chain | |
3846 | */ | |
3847 | static void | |
3848 | nfs_gss_nfsm_chain(struct nfsm_chain *nmc, mbuf_t mc) | |
3849 | { | |
3850 | mbuf_t mb, tail; | |
3851 | ||
3852 | /* Find the last mbuf in the chain */ | |
3853 | tail = NULL; | |
3854 | for (mb = mc; mb; mb = mbuf_next(mb)) | |
3855 | tail = mb; | |
3856 | ||
3857 | nmc->nmc_mhead = mc; | |
3858 | nmc->nmc_mcur = tail; | |
3859 | nmc->nmc_ptr = (caddr_t) mbuf_data(tail) + mbuf_len(tail); | |
3860 | nmc->nmc_left = mbuf_trailingspace(tail); | |
3861 | nmc->nmc_flags = 0; | |
3862 | } | |
3863 | ||
3864 | ||
3865 | /* | |
3866 | * Compute a checksum over an mbuf chain. | |
3867 | * Start building an MD5 digest at the given offset and keep | |
3868 | * going until the end of data in the current mbuf is reached. | |
3869 | * Then convert the 16 byte MD5 digest to an 8 byte DES CBC | |
3870 | * checksum. | |
3871 | */ | |
3872 | static void | |
3873 | nfs_gss_cksum_mchain( | |
3874 | gss_key_info *ki, | |
3875 | mbuf_t mhead, | |
3876 | u_char *alg, | |
3877 | int offset, | |
3878 | int len, | |
3879 | u_char *digest) | |
3880 | { | |
3881 | mbuf_t mb; | |
3882 | u_char *ptr; | |
3883 | int left, bytes; | |
3884 | GSS_DIGEST_CTX context; | |
3885 | ||
3886 | gss_digest_Init(&context, ki); | |
3887 | ||
3888 | /* | |
3889 | * Logically prepend the first 8 bytes of the algorithm | |
3890 | * field as required by RFC 1964, section 1.2.1.1 | |
3891 | */ | |
3892 | gss_digest_Update(&context, alg, KRB5_SZ_ALG); | |
3893 | ||
3894 | /* | |
3895 | * Move down the mbuf chain until we reach the given | |
3896 | * byte offset, then start MD5 on the mbuf data until | |
3897 | * we've done len bytes. | |
3898 | */ | |
3899 | ||
3900 | for (mb = mhead; mb && len > 0; mb = mbuf_next(mb)) { | |
3901 | ptr = mbuf_data(mb); | |
3902 | left = mbuf_len(mb); | |
3903 | if (offset >= left) { | |
3904 | /* Offset not yet reached */ | |
3905 | offset -= left; | |
3906 | continue; | |
3907 | } | |
3908 | /* At or beyond offset - checksum data */ | |
3909 | ptr += offset; | |
3910 | left -= offset; | |
3911 | offset = 0; | |
3912 | ||
3913 | bytes = left < len ? left : len; | |
3914 | if (bytes > 0) | |
3915 | gss_digest_Update(&context, ptr, bytes); | |
3916 | len -= bytes; | |
3917 | } | |
3918 | ||
3919 | gss_digest_Final(&context, digest); | |
3920 | } | |
3921 | ||
3922 | /* | |
3923 | * Compute a checksum over an NFS mbuf chain. | |
3924 | * Start building an MD5 digest at the given offset and keep | |
3925 | * going until the end of data in the current mbuf is reached. | |
3926 | * Then convert the 16 byte MD5 digest to an 8 byte DES CBC | |
3927 | * checksum. | |
3928 | */ | |
3929 | static void | |
3930 | nfs_gss_cksum_chain( | |
3931 | gss_key_info *ki, | |
3932 | struct nfsm_chain *nmc, | |
3933 | u_char *alg, | |
3934 | int offset, | |
3935 | int len, | |
3936 | u_char *cksum) | |
3937 | { | |
3938 | /* | |
3939 | * If the length parameter is zero, then we need | |
3940 | * to use the length from the offset to the current | |
3941 | * encode/decode offset. | |
3942 | */ | |
3943 | if (len == 0) | |
3944 | len = nfsm_chain_offset(nmc) - offset; | |
3945 | ||
3946 | return (nfs_gss_cksum_mchain(ki, nmc->nmc_mhead, alg, offset, len, cksum)); | |
3947 | } | |
3948 | ||
3949 | /* | |
3950 | * Compute a checksum of the sequence number (or sequence window) | |
3951 | * of an RPCSEC_GSS reply. | |
3952 | */ | |
3953 | static void | |
3954 | nfs_gss_cksum_rep(gss_key_info *ki, uint32_t seqnum, u_char *cksum) | |
3955 | { | |
3956 | GSS_DIGEST_CTX context; | |
3957 | uint32_t val = htonl(seqnum); | |
3958 | ||
3959 | gss_digest_Init(&context, ki); | |
3960 | ||
3961 | /* | |
3962 | * Logically prepend the first 8 bytes of the MIC | |
3963 | * token as required by RFC 1964, section 1.2.1.1 | |
3964 | */ | |
3965 | gss_digest_Update(&context, ALG_MIC(ki), KRB5_SZ_ALG); | |
3966 | ||
3967 | /* | |
3968 | * Compute the digest of the seqnum in network order | |
3969 | */ | |
3970 | gss_digest_Update(&context, &val, 4); | |
3971 | gss_digest_Final(&context, cksum); | |
3972 | } | |
3973 | ||
3974 | /* | |
3975 | * Encrypt or decrypt data in an mbuf chain with des-cbc. | |
3976 | */ | |
3977 | static void | |
3978 | nfs_gss_encrypt_mchain( | |
3979 | gss_key_info *ki, | |
3980 | mbuf_t mhead, | |
3981 | int offset, | |
3982 | int len, | |
3983 | int encrypt) | |
3984 | { | |
3985 | mbuf_t mb, mbn; | |
3986 | u_char *ptr, *nptr; | |
3987 | u_char tmp[8], ivec[8]; | |
3988 | int left, left8, remain; | |
3989 | ||
3990 | ||
3991 | bzero(ivec, 8); | |
3992 | ||
3993 | /* | |
3994 | * Move down the mbuf chain until we reach the given | |
3995 | * byte offset, then start encrypting the mbuf data until | |
3996 | * we've done len bytes. | |
3997 | */ | |
3998 | ||
3999 | for (mb = mhead; mb && len > 0; mb = mbn) { | |
4000 | mbn = mbuf_next(mb); | |
4001 | ptr = mbuf_data(mb); | |
4002 | left = mbuf_len(mb); | |
4003 | if (offset >= left) { | |
4004 | /* Offset not yet reached */ | |
4005 | offset -= left; | |
4006 | continue; | |
4007 | } | |
4008 | /* At or beyond offset - encrypt data */ | |
4009 | ptr += offset; | |
4010 | left -= offset; | |
4011 | offset = 0; | |
4012 | ||
4013 | /* | |
4014 | * DES or DES3 CBC has to encrypt 8 bytes at a time. | |
4015 | * If the number of bytes to be encrypted in this | |
4016 | * mbuf isn't some multiple of 8 bytes, encrypt all | |
4017 | * the 8 byte blocks, then combine the remaining | |
4018 | * bytes with enough from the next mbuf to make up | |
4019 | * an 8 byte block and encrypt that block separately, | |
4020 | * i.e. that block is split across two mbufs. | |
4021 | */ | |
4022 | remain = left % 8; | |
4023 | left8 = left - remain; | |
4024 | left = left8 < len ? left8 : len; | |
4025 | if (left > 0) { | |
4026 | gss_des_crypt(ki, (des_cblock *) ptr, (des_cblock *) ptr, | |
4027 | left, &ivec, &ivec, encrypt, KG_USAGE_SEAL); | |
4028 | len -= left; | |
4029 | } | |
4030 | ||
4031 | if (mbn && remain > 0) { | |
4032 | nptr = mbuf_data(mbn); | |
4033 | offset = 8 - remain; | |
4034 | bcopy(ptr + left, tmp, remain); // grab from this mbuf | |
4035 | bcopy(nptr, tmp + remain, offset); // grab from next mbuf | |
4036 | gss_des_crypt(ki, (des_cblock *) tmp, (des_cblock *) tmp, 8, | |
4037 | &ivec, &ivec, encrypt, KG_USAGE_SEAL); | |
4038 | bcopy(tmp, ptr + left, remain); // return to this mbuf | |
4039 | bcopy(tmp + remain, nptr, offset); // return to next mbuf | |
4040 | len -= 8; | |
4041 | } | |
4042 | } | |
4043 | } | |
4044 | ||
4045 | /* | |
4046 | * Encrypt or decrypt data in an NFS mbuf chain with des-cbc. | |
4047 | */ | |
4048 | static void | |
4049 | nfs_gss_encrypt_chain( | |
4050 | gss_key_info *ki, | |
4051 | struct nfsm_chain *nmc, | |
4052 | int offset, | |
4053 | int len, | |
4054 | int encrypt) | |
4055 | { | |
4056 | /* | |
4057 | * If the length parameter is zero, then we need | |
4058 | * to use the length from the offset to the current | |
4059 | * encode/decode offset. | |
4060 | */ | |
4061 | if (len == 0) | |
4062 | len = nfsm_chain_offset(nmc) - offset; | |
4063 | ||
4064 | return (nfs_gss_encrypt_mchain(ki, nmc->nmc_mhead, offset, len, encrypt)); | |
4065 | } | |
4066 | ||
4067 | /* | |
4068 | * The routines that follow provide abstractions for doing digests and crypto. | |
4069 | */ | |
4070 | ||
4071 | static void | |
4072 | gss_digest_Init(GSS_DIGEST_CTX *ctx, gss_key_info *ki) | |
4073 | { | |
4074 | ctx->type = ki->type; | |
4075 | switch (ki->type) { | |
4076 | case NFS_GSS_1DES: MD5_DESCBC_Init(&ctx->m_ctx, &ki->ks_u.des.gss_sched); | |
4077 | break; | |
4078 | case NFS_GSS_3DES: HMAC_SHA1_DES3KD_Init(&ctx->h_ctx, ki->ks_u.des3.ckey, 0); | |
4079 | break; | |
4080 | default: | |
4081 | printf("gss_digest_Init: Unknown key info type %d\n", ki->type); | |
4082 | } | |
4083 | } | |
4084 | ||
4085 | static void | |
4086 | gss_digest_Update(GSS_DIGEST_CTX *ctx, void *data, size_t len) | |
4087 | { | |
4088 | switch (ctx->type) { | |
4089 | case NFS_GSS_1DES: MD5_DESCBC_Update(&ctx->m_ctx, data, len); | |
4090 | break; | |
4091 | case NFS_GSS_3DES: HMAC_SHA1_DES3KD_Update(&ctx->h_ctx, data, len); | |
4092 | break; | |
4093 | } | |
4094 | } | |
4095 | ||
4096 | static void | |
4097 | gss_digest_Final(GSS_DIGEST_CTX *ctx, void *digest) | |
4098 | { | |
4099 | switch (ctx->type) { | |
4100 | case NFS_GSS_1DES: MD5_DESCBC_Final(digest, &ctx->m_ctx); | |
4101 | break; | |
4102 | case NFS_GSS_3DES: HMAC_SHA1_DES3KD_Final(digest, &ctx->h_ctx); | |
4103 | break; | |
4104 | } | |
4105 | } | |
4106 | ||
4107 | static void | |
4108 | gss_des_crypt(gss_key_info *ki, des_cblock *in, des_cblock *out, | |
4109 | int32_t len, des_cblock *iv, des_cblock *retiv, int encrypt, int usage) | |
4110 | { | |
4111 | switch (ki->type) { | |
4112 | case NFS_GSS_1DES: | |
4113 | { | |
4114 | des_cbc_key_schedule *sched = ((usage == KG_USAGE_SEAL) ? | |
4115 | &ki->ks_u.des.gss_sched_Ke : | |
4116 | &ki->ks_u.des.gss_sched); | |
4117 | des_cbc_encrypt(in, out, len, sched, iv, retiv, encrypt); | |
4118 | } | |
4119 | break; | |
4120 | case NFS_GSS_3DES: | |
4121 | ||
4122 | des3_cbc_encrypt(in, out, len, &ki->ks_u.des3.gss_sched, iv, retiv, encrypt); | |
4123 | break; | |
4124 | } | |
4125 | } | |
4126 | ||
4127 | static int | |
4128 | gss_key_init(gss_key_info *ki, uint32_t skeylen) | |
4129 | { | |
4130 | size_t i; | |
4131 | int rc; | |
4132 | des_cblock k[3]; | |
4133 | ||
4134 | ki->keybytes = skeylen; | |
4135 | switch (skeylen) { | |
4136 | case sizeof(des_cblock): | |
4137 | ki->type = NFS_GSS_1DES; | |
4138 | ki->hash_len = MD5_DESCBC_DIGEST_LENGTH; | |
4139 | ki->ks_u.des.key = (des_cblock *)ki->skey; | |
4140 | rc = des_cbc_key_sched(ki->ks_u.des.key, &ki->ks_u.des.gss_sched); | |
4141 | if (rc) | |
4142 | return (rc); | |
4143 | for (i = 0; i < ki->keybytes; i++) | |
4144 | k[0][i] = 0xf0 ^ (*ki->ks_u.des.key)[i]; | |
4145 | rc = des_cbc_key_sched(&k[0], &ki->ks_u.des.gss_sched_Ke); | |
4146 | break; | |
4147 | case 3*sizeof(des_cblock): | |
4148 | ki->type = NFS_GSS_3DES; | |
4149 | ki->hash_len = SHA_DIGEST_LENGTH; | |
4150 | ki->ks_u.des3.key = (des_cblock (*)[3])ki->skey; | |
4151 | des3_derive_key(*ki->ks_u.des3.key, ki->ks_u.des3.ckey, | |
4152 | KEY_USAGE_DES3_SIGN, KEY_USAGE_LEN); | |
4153 | rc = des3_cbc_key_sched(*ki->ks_u.des3.key, &ki->ks_u.des3.gss_sched); | |
4154 | if (rc) | |
4155 | return (rc); | |
4156 | break; | |
4157 | default: | |
4158 | printf("gss_key_init: Invalid key length %d\n", skeylen); | |
4159 | rc = EINVAL; | |
4160 | break; | |
4161 | } | |
4162 | ||
4163 | return (rc); | |
4164 | } | |
4165 | ||
4166 | #if 0 | |
4167 | #define DISPLAYLEN 16 | |
4168 | #define MAXDISPLAYLEN 256 | |
4169 | ||
4170 | static void | |
4171 | hexdump(const char *msg, void *data, size_t len) | |
4172 | { | |
4173 | size_t i, j; | |
4174 | u_char *d = data; | |
4175 | char *p, disbuf[3*DISPLAYLEN+1]; | |
4176 | ||
4177 | printf("NFS DEBUG %s len=%d:\n", msg, (uint32_t)len); | |
4178 | if (len > MAXDISPLAYLEN) | |
4179 | len = MAXDISPLAYLEN; | |
4180 | ||
4181 | for (i = 0; i < len; i += DISPLAYLEN) { | |
4182 | for (p = disbuf, j = 0; (j + i) < len && j < DISPLAYLEN; j++, p += 3) | |
4183 | snprintf(p, 4, "%02x ", d[i + j]); | |
4184 | printf("\t%s\n", disbuf); | |
4185 | } | |
4186 | } | |
4187 | #endif |