]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_object.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Virtual memory object module. | |
63 | */ | |
64 | ||
65 | #include <debug.h> | |
66 | #include <mach_pagemap.h> | |
67 | #include <task_swapper.h> | |
68 | ||
69 | #include <mach/mach_types.h> | |
70 | #include <mach/memory_object.h> | |
71 | #include <mach/memory_object_default.h> | |
72 | #include <mach/memory_object_control_server.h> | |
73 | #include <mach/vm_param.h> | |
74 | ||
75 | #include <ipc/ipc_types.h> | |
76 | #include <ipc/ipc_port.h> | |
77 | ||
78 | #include <kern/kern_types.h> | |
79 | #include <kern/assert.h> | |
80 | #include <kern/lock.h> | |
81 | #include <kern/queue.h> | |
82 | #include <kern/xpr.h> | |
83 | #include <kern/kalloc.h> | |
84 | #include <kern/zalloc.h> | |
85 | #include <kern/host.h> | |
86 | #include <kern/host_statistics.h> | |
87 | #include <kern/processor.h> | |
88 | #include <kern/misc_protos.h> | |
89 | ||
90 | #include <vm/memory_object.h> | |
91 | #include <vm/vm_fault.h> | |
92 | #include <vm/vm_map.h> | |
93 | #include <vm/vm_object.h> | |
94 | #include <vm/vm_page.h> | |
95 | #include <vm/vm_pageout.h> | |
96 | #include <vm/vm_protos.h> | |
97 | #include <vm/vm_purgeable_internal.h> | |
98 | ||
99 | #if CONFIG_EMBEDDED | |
100 | #include <sys/kern_memorystatus.h> | |
101 | #endif | |
102 | ||
103 | /* | |
104 | * Virtual memory objects maintain the actual data | |
105 | * associated with allocated virtual memory. A given | |
106 | * page of memory exists within exactly one object. | |
107 | * | |
108 | * An object is only deallocated when all "references" | |
109 | * are given up. | |
110 | * | |
111 | * Associated with each object is a list of all resident | |
112 | * memory pages belonging to that object; this list is | |
113 | * maintained by the "vm_page" module, but locked by the object's | |
114 | * lock. | |
115 | * | |
116 | * Each object also records the memory object reference | |
117 | * that is used by the kernel to request and write | |
118 | * back data (the memory object, field "pager"), etc... | |
119 | * | |
120 | * Virtual memory objects are allocated to provide | |
121 | * zero-filled memory (vm_allocate) or map a user-defined | |
122 | * memory object into a virtual address space (vm_map). | |
123 | * | |
124 | * Virtual memory objects that refer to a user-defined | |
125 | * memory object are called "permanent", because all changes | |
126 | * made in virtual memory are reflected back to the | |
127 | * memory manager, which may then store it permanently. | |
128 | * Other virtual memory objects are called "temporary", | |
129 | * meaning that changes need be written back only when | |
130 | * necessary to reclaim pages, and that storage associated | |
131 | * with the object can be discarded once it is no longer | |
132 | * mapped. | |
133 | * | |
134 | * A permanent memory object may be mapped into more | |
135 | * than one virtual address space. Moreover, two threads | |
136 | * may attempt to make the first mapping of a memory | |
137 | * object concurrently. Only one thread is allowed to | |
138 | * complete this mapping; all others wait for the | |
139 | * "pager_initialized" field is asserted, indicating | |
140 | * that the first thread has initialized all of the | |
141 | * necessary fields in the virtual memory object structure. | |
142 | * | |
143 | * The kernel relies on a *default memory manager* to | |
144 | * provide backing storage for the zero-filled virtual | |
145 | * memory objects. The pager memory objects associated | |
146 | * with these temporary virtual memory objects are only | |
147 | * requested from the default memory manager when it | |
148 | * becomes necessary. Virtual memory objects | |
149 | * that depend on the default memory manager are called | |
150 | * "internal". The "pager_created" field is provided to | |
151 | * indicate whether these ports have ever been allocated. | |
152 | * | |
153 | * The kernel may also create virtual memory objects to | |
154 | * hold changed pages after a copy-on-write operation. | |
155 | * In this case, the virtual memory object (and its | |
156 | * backing storage -- its memory object) only contain | |
157 | * those pages that have been changed. The "shadow" | |
158 | * field refers to the virtual memory object that contains | |
159 | * the remainder of the contents. The "shadow_offset" | |
160 | * field indicates where in the "shadow" these contents begin. | |
161 | * The "copy" field refers to a virtual memory object | |
162 | * to which changed pages must be copied before changing | |
163 | * this object, in order to implement another form | |
164 | * of copy-on-write optimization. | |
165 | * | |
166 | * The virtual memory object structure also records | |
167 | * the attributes associated with its memory object. | |
168 | * The "pager_ready", "can_persist" and "copy_strategy" | |
169 | * fields represent those attributes. The "cached_list" | |
170 | * field is used in the implementation of the persistence | |
171 | * attribute. | |
172 | * | |
173 | * ZZZ Continue this comment. | |
174 | */ | |
175 | ||
176 | /* Forward declarations for internal functions. */ | |
177 | static kern_return_t vm_object_terminate( | |
178 | vm_object_t object); | |
179 | ||
180 | extern void vm_object_remove( | |
181 | vm_object_t object); | |
182 | ||
183 | static kern_return_t vm_object_copy_call( | |
184 | vm_object_t src_object, | |
185 | vm_object_offset_t src_offset, | |
186 | vm_object_size_t size, | |
187 | vm_object_t *_result_object); | |
188 | ||
189 | static void vm_object_do_collapse( | |
190 | vm_object_t object, | |
191 | vm_object_t backing_object); | |
192 | ||
193 | static void vm_object_do_bypass( | |
194 | vm_object_t object, | |
195 | vm_object_t backing_object); | |
196 | ||
197 | static void vm_object_release_pager( | |
198 | memory_object_t pager, | |
199 | boolean_t hashed); | |
200 | ||
201 | static zone_t vm_object_zone; /* vm backing store zone */ | |
202 | ||
203 | /* | |
204 | * All wired-down kernel memory belongs to a single virtual | |
205 | * memory object (kernel_object) to avoid wasting data structures. | |
206 | */ | |
207 | static struct vm_object kernel_object_store; | |
208 | vm_object_t kernel_object; | |
209 | ||
210 | ||
211 | /* | |
212 | * The submap object is used as a placeholder for vm_map_submap | |
213 | * operations. The object is declared in vm_map.c because it | |
214 | * is exported by the vm_map module. The storage is declared | |
215 | * here because it must be initialized here. | |
216 | */ | |
217 | static struct vm_object vm_submap_object_store; | |
218 | ||
219 | /* | |
220 | * Virtual memory objects are initialized from | |
221 | * a template (see vm_object_allocate). | |
222 | * | |
223 | * When adding a new field to the virtual memory | |
224 | * object structure, be sure to add initialization | |
225 | * (see _vm_object_allocate()). | |
226 | */ | |
227 | static struct vm_object vm_object_template; | |
228 | ||
229 | unsigned int vm_page_purged_wired = 0; | |
230 | unsigned int vm_page_purged_busy = 0; | |
231 | unsigned int vm_page_purged_others = 0; | |
232 | ||
233 | #if VM_OBJECT_CACHE | |
234 | /* | |
235 | * Virtual memory objects that are not referenced by | |
236 | * any address maps, but that are allowed to persist | |
237 | * (an attribute specified by the associated memory manager), | |
238 | * are kept in a queue (vm_object_cached_list). | |
239 | * | |
240 | * When an object from this queue is referenced again, | |
241 | * for example to make another address space mapping, | |
242 | * it must be removed from the queue. That is, the | |
243 | * queue contains *only* objects with zero references. | |
244 | * | |
245 | * The kernel may choose to terminate objects from this | |
246 | * queue in order to reclaim storage. The current policy | |
247 | * is to permit a fixed maximum number of unreferenced | |
248 | * objects (vm_object_cached_max). | |
249 | * | |
250 | * A spin lock (accessed by routines | |
251 | * vm_object_cache_{lock,lock_try,unlock}) governs the | |
252 | * object cache. It must be held when objects are | |
253 | * added to or removed from the cache (in vm_object_terminate). | |
254 | * The routines that acquire a reference to a virtual | |
255 | * memory object based on one of the memory object ports | |
256 | * must also lock the cache. | |
257 | * | |
258 | * Ideally, the object cache should be more isolated | |
259 | * from the reference mechanism, so that the lock need | |
260 | * not be held to make simple references. | |
261 | */ | |
262 | static vm_object_t vm_object_cache_trim( | |
263 | boolean_t called_from_vm_object_deallocate); | |
264 | ||
265 | static void vm_object_deactivate_all_pages( | |
266 | vm_object_t object); | |
267 | ||
268 | static int vm_object_cached_high; /* highest # cached objects */ | |
269 | static int vm_object_cached_max = 512; /* may be patched*/ | |
270 | ||
271 | #define vm_object_cache_lock() \ | |
272 | lck_mtx_lock(&vm_object_cached_lock_data) | |
273 | #define vm_object_cache_lock_try() \ | |
274 | lck_mtx_try_lock(&vm_object_cached_lock_data) | |
275 | ||
276 | #endif /* VM_OBJECT_CACHE */ | |
277 | ||
278 | static queue_head_t vm_object_cached_list; | |
279 | static uint32_t vm_object_cache_pages_freed = 0; | |
280 | static uint32_t vm_object_cache_pages_moved = 0; | |
281 | static uint32_t vm_object_cache_pages_skipped = 0; | |
282 | static uint32_t vm_object_cache_adds = 0; | |
283 | static uint32_t vm_object_cached_count = 0; | |
284 | static lck_mtx_t vm_object_cached_lock_data; | |
285 | static lck_mtx_ext_t vm_object_cached_lock_data_ext; | |
286 | ||
287 | static uint32_t vm_object_page_grab_failed = 0; | |
288 | static uint32_t vm_object_page_grab_skipped = 0; | |
289 | static uint32_t vm_object_page_grab_returned = 0; | |
290 | static uint32_t vm_object_page_grab_pmapped = 0; | |
291 | static uint32_t vm_object_page_grab_reactivations = 0; | |
292 | ||
293 | #define vm_object_cache_lock_spin() \ | |
294 | lck_mtx_lock_spin(&vm_object_cached_lock_data) | |
295 | #define vm_object_cache_unlock() \ | |
296 | lck_mtx_unlock(&vm_object_cached_lock_data) | |
297 | ||
298 | static void vm_object_cache_remove_locked(vm_object_t); | |
299 | ||
300 | ||
301 | #define VM_OBJECT_HASH_COUNT 1024 | |
302 | #define VM_OBJECT_HASH_LOCK_COUNT 512 | |
303 | ||
304 | static lck_mtx_t vm_object_hashed_lock_data[VM_OBJECT_HASH_LOCK_COUNT]; | |
305 | static lck_mtx_ext_t vm_object_hashed_lock_data_ext[VM_OBJECT_HASH_LOCK_COUNT]; | |
306 | ||
307 | static queue_head_t vm_object_hashtable[VM_OBJECT_HASH_COUNT]; | |
308 | static struct zone *vm_object_hash_zone; | |
309 | ||
310 | struct vm_object_hash_entry { | |
311 | queue_chain_t hash_link; /* hash chain link */ | |
312 | memory_object_t pager; /* pager we represent */ | |
313 | vm_object_t object; /* corresponding object */ | |
314 | boolean_t waiting; /* someone waiting for | |
315 | * termination */ | |
316 | }; | |
317 | ||
318 | typedef struct vm_object_hash_entry *vm_object_hash_entry_t; | |
319 | #define VM_OBJECT_HASH_ENTRY_NULL ((vm_object_hash_entry_t) 0) | |
320 | ||
321 | #define VM_OBJECT_HASH_SHIFT 5 | |
322 | #define vm_object_hash(pager) \ | |
323 | ((int)((((uintptr_t)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_COUNT)) | |
324 | ||
325 | #define vm_object_lock_hash(pager) \ | |
326 | ((int)((((uintptr_t)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_LOCK_COUNT)) | |
327 | ||
328 | void vm_object_hash_entry_free( | |
329 | vm_object_hash_entry_t entry); | |
330 | ||
331 | static void vm_object_reap(vm_object_t object); | |
332 | static void vm_object_reap_async(vm_object_t object); | |
333 | static void vm_object_reaper_thread(void); | |
334 | ||
335 | static lck_mtx_t vm_object_reaper_lock_data; | |
336 | static lck_mtx_ext_t vm_object_reaper_lock_data_ext; | |
337 | ||
338 | static queue_head_t vm_object_reaper_queue; /* protected by vm_object_reaper_lock() */ | |
339 | unsigned int vm_object_reap_count = 0; | |
340 | unsigned int vm_object_reap_count_async = 0; | |
341 | ||
342 | #define vm_object_reaper_lock() \ | |
343 | lck_mtx_lock(&vm_object_reaper_lock_data) | |
344 | #define vm_object_reaper_lock_spin() \ | |
345 | lck_mtx_lock_spin(&vm_object_reaper_lock_data) | |
346 | #define vm_object_reaper_unlock() \ | |
347 | lck_mtx_unlock(&vm_object_reaper_lock_data) | |
348 | ||
349 | #if 0 | |
350 | #undef KERNEL_DEBUG | |
351 | #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT | |
352 | #endif | |
353 | ||
354 | ||
355 | static lck_mtx_t * | |
356 | vm_object_hash_lock_spin( | |
357 | memory_object_t pager) | |
358 | { | |
359 | int index; | |
360 | ||
361 | index = vm_object_lock_hash(pager); | |
362 | ||
363 | lck_mtx_lock_spin(&vm_object_hashed_lock_data[index]); | |
364 | ||
365 | return (&vm_object_hashed_lock_data[index]); | |
366 | } | |
367 | ||
368 | static void | |
369 | vm_object_hash_unlock(lck_mtx_t *lck) | |
370 | { | |
371 | lck_mtx_unlock(lck); | |
372 | } | |
373 | ||
374 | ||
375 | /* | |
376 | * vm_object_hash_lookup looks up a pager in the hashtable | |
377 | * and returns the corresponding entry, with optional removal. | |
378 | */ | |
379 | static vm_object_hash_entry_t | |
380 | vm_object_hash_lookup( | |
381 | memory_object_t pager, | |
382 | boolean_t remove_entry) | |
383 | { | |
384 | queue_t bucket; | |
385 | vm_object_hash_entry_t entry; | |
386 | ||
387 | bucket = &vm_object_hashtable[vm_object_hash(pager)]; | |
388 | ||
389 | entry = (vm_object_hash_entry_t)queue_first(bucket); | |
390 | while (!queue_end(bucket, (queue_entry_t)entry)) { | |
391 | if (entry->pager == pager) { | |
392 | if (remove_entry) { | |
393 | queue_remove(bucket, entry, | |
394 | vm_object_hash_entry_t, hash_link); | |
395 | } | |
396 | return(entry); | |
397 | } | |
398 | entry = (vm_object_hash_entry_t)queue_next(&entry->hash_link); | |
399 | } | |
400 | return(VM_OBJECT_HASH_ENTRY_NULL); | |
401 | } | |
402 | ||
403 | /* | |
404 | * vm_object_hash_enter enters the specified | |
405 | * pager / cache object association in the hashtable. | |
406 | */ | |
407 | ||
408 | static void | |
409 | vm_object_hash_insert( | |
410 | vm_object_hash_entry_t entry, | |
411 | vm_object_t object) | |
412 | { | |
413 | queue_t bucket; | |
414 | ||
415 | bucket = &vm_object_hashtable[vm_object_hash(entry->pager)]; | |
416 | ||
417 | queue_enter(bucket, entry, vm_object_hash_entry_t, hash_link); | |
418 | ||
419 | entry->object = object; | |
420 | object->hashed = TRUE; | |
421 | } | |
422 | ||
423 | static vm_object_hash_entry_t | |
424 | vm_object_hash_entry_alloc( | |
425 | memory_object_t pager) | |
426 | { | |
427 | vm_object_hash_entry_t entry; | |
428 | ||
429 | entry = (vm_object_hash_entry_t)zalloc(vm_object_hash_zone); | |
430 | entry->pager = pager; | |
431 | entry->object = VM_OBJECT_NULL; | |
432 | entry->waiting = FALSE; | |
433 | ||
434 | return(entry); | |
435 | } | |
436 | ||
437 | void | |
438 | vm_object_hash_entry_free( | |
439 | vm_object_hash_entry_t entry) | |
440 | { | |
441 | zfree(vm_object_hash_zone, entry); | |
442 | } | |
443 | ||
444 | /* | |
445 | * vm_object_allocate: | |
446 | * | |
447 | * Returns a new object with the given size. | |
448 | */ | |
449 | ||
450 | __private_extern__ void | |
451 | _vm_object_allocate( | |
452 | vm_object_size_t size, | |
453 | vm_object_t object) | |
454 | { | |
455 | XPR(XPR_VM_OBJECT, | |
456 | "vm_object_allocate, object 0x%X size 0x%X\n", | |
457 | object, size, 0,0,0); | |
458 | ||
459 | *object = vm_object_template; | |
460 | queue_init(&object->memq); | |
461 | queue_init(&object->msr_q); | |
462 | #if UPL_DEBUG | |
463 | queue_init(&object->uplq); | |
464 | #endif /* UPL_DEBUG */ | |
465 | vm_object_lock_init(object); | |
466 | object->vo_size = size; | |
467 | } | |
468 | ||
469 | __private_extern__ vm_object_t | |
470 | vm_object_allocate( | |
471 | vm_object_size_t size) | |
472 | { | |
473 | register vm_object_t object; | |
474 | ||
475 | object = (vm_object_t) zalloc(vm_object_zone); | |
476 | ||
477 | // dbgLog(object, size, 0, 2); /* (TEST/DEBUG) */ | |
478 | ||
479 | if (object != VM_OBJECT_NULL) | |
480 | _vm_object_allocate(size, object); | |
481 | ||
482 | return object; | |
483 | } | |
484 | ||
485 | ||
486 | lck_grp_t vm_object_lck_grp; | |
487 | lck_grp_t vm_object_cache_lck_grp; | |
488 | lck_grp_attr_t vm_object_lck_grp_attr; | |
489 | lck_attr_t vm_object_lck_attr; | |
490 | lck_attr_t kernel_object_lck_attr; | |
491 | ||
492 | /* | |
493 | * vm_object_bootstrap: | |
494 | * | |
495 | * Initialize the VM objects module. | |
496 | */ | |
497 | __private_extern__ void | |
498 | vm_object_bootstrap(void) | |
499 | { | |
500 | register int i; | |
501 | ||
502 | vm_object_zone = zinit((vm_size_t) sizeof(struct vm_object), | |
503 | round_page(512*1024), | |
504 | round_page(12*1024), | |
505 | "vm objects"); | |
506 | zone_change(vm_object_zone, Z_CALLERACCT, FALSE); /* don't charge caller */ | |
507 | zone_change(vm_object_zone, Z_NOENCRYPT, TRUE); | |
508 | ||
509 | vm_object_init_lck_grp(); | |
510 | ||
511 | queue_init(&vm_object_cached_list); | |
512 | ||
513 | lck_mtx_init_ext(&vm_object_cached_lock_data, | |
514 | &vm_object_cached_lock_data_ext, | |
515 | &vm_object_cache_lck_grp, | |
516 | &vm_object_lck_attr); | |
517 | ||
518 | queue_init(&vm_object_reaper_queue); | |
519 | ||
520 | for (i = 0; i < VM_OBJECT_HASH_LOCK_COUNT; i++) { | |
521 | lck_mtx_init_ext(&vm_object_hashed_lock_data[i], | |
522 | &vm_object_hashed_lock_data_ext[i], | |
523 | &vm_object_lck_grp, | |
524 | &vm_object_lck_attr); | |
525 | } | |
526 | lck_mtx_init_ext(&vm_object_reaper_lock_data, | |
527 | &vm_object_reaper_lock_data_ext, | |
528 | &vm_object_lck_grp, | |
529 | &vm_object_lck_attr); | |
530 | ||
531 | vm_object_hash_zone = | |
532 | zinit((vm_size_t) sizeof (struct vm_object_hash_entry), | |
533 | round_page(512*1024), | |
534 | round_page(12*1024), | |
535 | "vm object hash entries"); | |
536 | zone_change(vm_object_hash_zone, Z_CALLERACCT, FALSE); | |
537 | zone_change(vm_object_hash_zone, Z_NOENCRYPT, TRUE); | |
538 | ||
539 | for (i = 0; i < VM_OBJECT_HASH_COUNT; i++) | |
540 | queue_init(&vm_object_hashtable[i]); | |
541 | ||
542 | ||
543 | /* | |
544 | * Fill in a template object, for quick initialization | |
545 | */ | |
546 | ||
547 | /* memq; Lock; init after allocation */ | |
548 | vm_object_template.memq.prev = NULL; | |
549 | vm_object_template.memq.next = NULL; | |
550 | #if 0 | |
551 | /* | |
552 | * We can't call vm_object_lock_init() here because that will | |
553 | * allocate some memory and VM is not fully initialized yet. | |
554 | * The lock will be initialized for each allocated object in | |
555 | * _vm_object_allocate(), so we don't need to initialize it in | |
556 | * the vm_object_template. | |
557 | */ | |
558 | vm_object_lock_init(&vm_object_template); | |
559 | #endif | |
560 | vm_object_template.vo_size = 0; | |
561 | vm_object_template.memq_hint = VM_PAGE_NULL; | |
562 | vm_object_template.ref_count = 1; | |
563 | #if TASK_SWAPPER | |
564 | vm_object_template.res_count = 1; | |
565 | #endif /* TASK_SWAPPER */ | |
566 | vm_object_template.resident_page_count = 0; | |
567 | vm_object_template.wired_page_count = 0; | |
568 | vm_object_template.reusable_page_count = 0; | |
569 | vm_object_template.copy = VM_OBJECT_NULL; | |
570 | vm_object_template.shadow = VM_OBJECT_NULL; | |
571 | vm_object_template.vo_shadow_offset = (vm_object_offset_t) 0; | |
572 | vm_object_template.pager = MEMORY_OBJECT_NULL; | |
573 | vm_object_template.paging_offset = 0; | |
574 | vm_object_template.pager_control = MEMORY_OBJECT_CONTROL_NULL; | |
575 | vm_object_template.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC; | |
576 | vm_object_template.paging_in_progress = 0; | |
577 | vm_object_template.activity_in_progress = 0; | |
578 | ||
579 | /* Begin bitfields */ | |
580 | vm_object_template.all_wanted = 0; /* all bits FALSE */ | |
581 | vm_object_template.pager_created = FALSE; | |
582 | vm_object_template.pager_initialized = FALSE; | |
583 | vm_object_template.pager_ready = FALSE; | |
584 | vm_object_template.pager_trusted = FALSE; | |
585 | vm_object_template.can_persist = FALSE; | |
586 | vm_object_template.internal = TRUE; | |
587 | vm_object_template.temporary = TRUE; | |
588 | vm_object_template.private = FALSE; | |
589 | vm_object_template.pageout = FALSE; | |
590 | vm_object_template.alive = TRUE; | |
591 | vm_object_template.purgable = VM_PURGABLE_DENY; | |
592 | vm_object_template.shadowed = FALSE; | |
593 | vm_object_template.silent_overwrite = FALSE; | |
594 | vm_object_template.advisory_pageout = FALSE; | |
595 | vm_object_template.true_share = FALSE; | |
596 | vm_object_template.terminating = FALSE; | |
597 | vm_object_template.named = FALSE; | |
598 | vm_object_template.shadow_severed = FALSE; | |
599 | vm_object_template.phys_contiguous = FALSE; | |
600 | vm_object_template.nophyscache = FALSE; | |
601 | /* End bitfields */ | |
602 | ||
603 | vm_object_template.cached_list.prev = NULL; | |
604 | vm_object_template.cached_list.next = NULL; | |
605 | vm_object_template.msr_q.prev = NULL; | |
606 | vm_object_template.msr_q.next = NULL; | |
607 | ||
608 | vm_object_template.last_alloc = (vm_object_offset_t) 0; | |
609 | vm_object_template.sequential = (vm_object_offset_t) 0; | |
610 | vm_object_template.pages_created = 0; | |
611 | vm_object_template.pages_used = 0; | |
612 | vm_object_template.scan_collisions = 0; | |
613 | ||
614 | #if MACH_PAGEMAP | |
615 | vm_object_template.existence_map = VM_EXTERNAL_NULL; | |
616 | #endif /* MACH_PAGEMAP */ | |
617 | vm_object_template.cow_hint = ~(vm_offset_t)0; | |
618 | #if MACH_ASSERT | |
619 | vm_object_template.paging_object = VM_OBJECT_NULL; | |
620 | #endif /* MACH_ASSERT */ | |
621 | ||
622 | /* cache bitfields */ | |
623 | vm_object_template.wimg_bits = VM_WIMG_USE_DEFAULT; | |
624 | vm_object_template.set_cache_attr = FALSE; | |
625 | vm_object_template.code_signed = FALSE; | |
626 | vm_object_template.hashed = FALSE; | |
627 | vm_object_template.transposed = FALSE; | |
628 | vm_object_template.mapping_in_progress = FALSE; | |
629 | vm_object_template.volatile_empty = FALSE; | |
630 | vm_object_template.volatile_fault = FALSE; | |
631 | vm_object_template.all_reusable = FALSE; | |
632 | vm_object_template.blocked_access = FALSE; | |
633 | vm_object_template.__object2_unused_bits = 0; | |
634 | #if UPL_DEBUG | |
635 | vm_object_template.uplq.prev = NULL; | |
636 | vm_object_template.uplq.next = NULL; | |
637 | #endif /* UPL_DEBUG */ | |
638 | #ifdef VM_PIP_DEBUG | |
639 | bzero(&vm_object_template.pip_holders, | |
640 | sizeof (vm_object_template.pip_holders)); | |
641 | #endif /* VM_PIP_DEBUG */ | |
642 | ||
643 | vm_object_template.objq.next=NULL; | |
644 | vm_object_template.objq.prev=NULL; | |
645 | ||
646 | vm_object_template.vo_cache_ts = 0; | |
647 | ||
648 | /* | |
649 | * Initialize the "kernel object" | |
650 | */ | |
651 | ||
652 | kernel_object = &kernel_object_store; | |
653 | ||
654 | /* | |
655 | * Note that in the following size specifications, we need to add 1 because | |
656 | * VM_MAX_KERNEL_ADDRESS (vm_last_addr) is a maximum address, not a size. | |
657 | */ | |
658 | ||
659 | #ifdef ppc | |
660 | _vm_object_allocate(vm_last_addr + 1, | |
661 | kernel_object); | |
662 | #else | |
663 | _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, | |
664 | kernel_object); | |
665 | #endif | |
666 | kernel_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
667 | ||
668 | /* | |
669 | * Initialize the "submap object". Make it as large as the | |
670 | * kernel object so that no limit is imposed on submap sizes. | |
671 | */ | |
672 | ||
673 | vm_submap_object = &vm_submap_object_store; | |
674 | #ifdef ppc | |
675 | _vm_object_allocate(vm_last_addr + 1, | |
676 | vm_submap_object); | |
677 | #else | |
678 | _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, | |
679 | vm_submap_object); | |
680 | #endif | |
681 | vm_submap_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
682 | ||
683 | /* | |
684 | * Create an "extra" reference to this object so that we never | |
685 | * try to deallocate it; zfree doesn't like to be called with | |
686 | * non-zone memory. | |
687 | */ | |
688 | vm_object_reference(vm_submap_object); | |
689 | ||
690 | #if MACH_PAGEMAP | |
691 | vm_external_module_initialize(); | |
692 | #endif /* MACH_PAGEMAP */ | |
693 | } | |
694 | ||
695 | void | |
696 | vm_object_reaper_init(void) | |
697 | { | |
698 | kern_return_t kr; | |
699 | thread_t thread; | |
700 | ||
701 | kr = kernel_thread_start_priority( | |
702 | (thread_continue_t) vm_object_reaper_thread, | |
703 | NULL, | |
704 | BASEPRI_PREEMPT - 1, | |
705 | &thread); | |
706 | if (kr != KERN_SUCCESS) { | |
707 | panic("failed to launch vm_object_reaper_thread kr=0x%x", kr); | |
708 | } | |
709 | thread_deallocate(thread); | |
710 | } | |
711 | ||
712 | __private_extern__ void | |
713 | vm_object_init(void) | |
714 | { | |
715 | /* | |
716 | * Finish initializing the kernel object. | |
717 | */ | |
718 | } | |
719 | ||
720 | ||
721 | __private_extern__ void | |
722 | vm_object_init_lck_grp(void) | |
723 | { | |
724 | /* | |
725 | * initialze the vm_object lock world | |
726 | */ | |
727 | lck_grp_attr_setdefault(&vm_object_lck_grp_attr); | |
728 | lck_grp_init(&vm_object_lck_grp, "vm_object", &vm_object_lck_grp_attr); | |
729 | lck_grp_init(&vm_object_cache_lck_grp, "vm_object_cache", &vm_object_lck_grp_attr); | |
730 | lck_attr_setdefault(&vm_object_lck_attr); | |
731 | lck_attr_setdefault(&kernel_object_lck_attr); | |
732 | lck_attr_cleardebug(&kernel_object_lck_attr); | |
733 | } | |
734 | ||
735 | #if VM_OBJECT_CACHE | |
736 | #define MIGHT_NOT_CACHE_SHADOWS 1 | |
737 | #if MIGHT_NOT_CACHE_SHADOWS | |
738 | static int cache_shadows = TRUE; | |
739 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
740 | #endif | |
741 | ||
742 | /* | |
743 | * vm_object_deallocate: | |
744 | * | |
745 | * Release a reference to the specified object, | |
746 | * gained either through a vm_object_allocate | |
747 | * or a vm_object_reference call. When all references | |
748 | * are gone, storage associated with this object | |
749 | * may be relinquished. | |
750 | * | |
751 | * No object may be locked. | |
752 | */ | |
753 | unsigned long vm_object_deallocate_shared_successes = 0; | |
754 | unsigned long vm_object_deallocate_shared_failures = 0; | |
755 | unsigned long vm_object_deallocate_shared_swap_failures = 0; | |
756 | __private_extern__ void | |
757 | vm_object_deallocate( | |
758 | register vm_object_t object) | |
759 | { | |
760 | #if VM_OBJECT_CACHE | |
761 | boolean_t retry_cache_trim = FALSE; | |
762 | uint32_t try_failed_count = 0; | |
763 | #endif | |
764 | vm_object_t shadow = VM_OBJECT_NULL; | |
765 | ||
766 | // if(object)dbgLog(object, object->ref_count, object->can_persist, 3); /* (TEST/DEBUG) */ | |
767 | // else dbgLog(object, 0, 0, 3); /* (TEST/DEBUG) */ | |
768 | ||
769 | if (object == VM_OBJECT_NULL) | |
770 | return; | |
771 | ||
772 | if (object == kernel_object) { | |
773 | vm_object_lock_shared(object); | |
774 | ||
775 | OSAddAtomic(-1, &object->ref_count); | |
776 | ||
777 | if (object->ref_count == 0) { | |
778 | panic("vm_object_deallocate: losing kernel_object\n"); | |
779 | } | |
780 | vm_object_unlock(object); | |
781 | return; | |
782 | } | |
783 | ||
784 | if (object->ref_count > 2 || | |
785 | (!object->named && object->ref_count > 1)) { | |
786 | UInt32 original_ref_count; | |
787 | volatile UInt32 *ref_count_p; | |
788 | Boolean atomic_swap; | |
789 | ||
790 | /* | |
791 | * The object currently looks like it is not being | |
792 | * kept alive solely by the reference we're about to release. | |
793 | * Let's try and release our reference without taking | |
794 | * all the locks we would need if we had to terminate the | |
795 | * object (cache lock + exclusive object lock). | |
796 | * Lock the object "shared" to make sure we don't race with | |
797 | * anyone holding it "exclusive". | |
798 | */ | |
799 | vm_object_lock_shared(object); | |
800 | ref_count_p = (volatile UInt32 *) &object->ref_count; | |
801 | original_ref_count = object->ref_count; | |
802 | /* | |
803 | * Test again as "ref_count" could have changed. | |
804 | * "named" shouldn't change. | |
805 | */ | |
806 | if (original_ref_count > 2 || | |
807 | (!object->named && original_ref_count > 1)) { | |
808 | atomic_swap = OSCompareAndSwap( | |
809 | original_ref_count, | |
810 | original_ref_count - 1, | |
811 | (UInt32 *) &object->ref_count); | |
812 | if (atomic_swap == FALSE) { | |
813 | vm_object_deallocate_shared_swap_failures++; | |
814 | } | |
815 | ||
816 | } else { | |
817 | atomic_swap = FALSE; | |
818 | } | |
819 | vm_object_unlock(object); | |
820 | ||
821 | if (atomic_swap) { | |
822 | /* | |
823 | * ref_count was updated atomically ! | |
824 | */ | |
825 | vm_object_deallocate_shared_successes++; | |
826 | return; | |
827 | } | |
828 | ||
829 | /* | |
830 | * Someone else updated the ref_count at the same | |
831 | * time and we lost the race. Fall back to the usual | |
832 | * slow but safe path... | |
833 | */ | |
834 | vm_object_deallocate_shared_failures++; | |
835 | } | |
836 | ||
837 | while (object != VM_OBJECT_NULL) { | |
838 | ||
839 | vm_object_lock(object); | |
840 | ||
841 | assert(object->ref_count > 0); | |
842 | ||
843 | /* | |
844 | * If the object has a named reference, and only | |
845 | * that reference would remain, inform the pager | |
846 | * about the last "mapping" reference going away. | |
847 | */ | |
848 | if ((object->ref_count == 2) && (object->named)) { | |
849 | memory_object_t pager = object->pager; | |
850 | ||
851 | /* Notify the Pager that there are no */ | |
852 | /* more mappers for this object */ | |
853 | ||
854 | if (pager != MEMORY_OBJECT_NULL) { | |
855 | vm_object_mapping_wait(object, THREAD_UNINT); | |
856 | vm_object_mapping_begin(object); | |
857 | vm_object_unlock(object); | |
858 | ||
859 | memory_object_last_unmap(pager); | |
860 | ||
861 | vm_object_lock(object); | |
862 | vm_object_mapping_end(object); | |
863 | } | |
864 | assert(object->ref_count > 0); | |
865 | } | |
866 | ||
867 | /* | |
868 | * Lose the reference. If other references | |
869 | * remain, then we are done, unless we need | |
870 | * to retry a cache trim. | |
871 | * If it is the last reference, then keep it | |
872 | * until any pending initialization is completed. | |
873 | */ | |
874 | ||
875 | /* if the object is terminating, it cannot go into */ | |
876 | /* the cache and we obviously should not call */ | |
877 | /* terminate again. */ | |
878 | ||
879 | if ((object->ref_count > 1) || object->terminating) { | |
880 | vm_object_lock_assert_exclusive(object); | |
881 | object->ref_count--; | |
882 | vm_object_res_deallocate(object); | |
883 | ||
884 | if (object->ref_count == 1 && | |
885 | object->shadow != VM_OBJECT_NULL) { | |
886 | /* | |
887 | * There's only one reference left on this | |
888 | * VM object. We can't tell if it's a valid | |
889 | * one (from a mapping for example) or if this | |
890 | * object is just part of a possibly stale and | |
891 | * useless shadow chain. | |
892 | * We would like to try and collapse it into | |
893 | * its parent, but we don't have any pointers | |
894 | * back to this parent object. | |
895 | * But we can try and collapse this object with | |
896 | * its own shadows, in case these are useless | |
897 | * too... | |
898 | * We can't bypass this object though, since we | |
899 | * don't know if this last reference on it is | |
900 | * meaningful or not. | |
901 | */ | |
902 | vm_object_collapse(object, 0, FALSE); | |
903 | } | |
904 | vm_object_unlock(object); | |
905 | #if VM_OBJECT_CACHE | |
906 | if (retry_cache_trim && | |
907 | ((object = vm_object_cache_trim(TRUE)) != | |
908 | VM_OBJECT_NULL)) { | |
909 | continue; | |
910 | } | |
911 | #endif | |
912 | return; | |
913 | } | |
914 | ||
915 | /* | |
916 | * We have to wait for initialization | |
917 | * before destroying or caching the object. | |
918 | */ | |
919 | ||
920 | if (object->pager_created && ! object->pager_initialized) { | |
921 | assert(! object->can_persist); | |
922 | vm_object_assert_wait(object, | |
923 | VM_OBJECT_EVENT_INITIALIZED, | |
924 | THREAD_UNINT); | |
925 | vm_object_unlock(object); | |
926 | ||
927 | thread_block(THREAD_CONTINUE_NULL); | |
928 | continue; | |
929 | } | |
930 | ||
931 | #if VM_OBJECT_CACHE | |
932 | /* | |
933 | * If this object can persist, then enter it in | |
934 | * the cache. Otherwise, terminate it. | |
935 | * | |
936 | * NOTE: Only permanent objects are cached, and | |
937 | * permanent objects cannot have shadows. This | |
938 | * affects the residence counting logic in a minor | |
939 | * way (can do it in-line, mostly). | |
940 | */ | |
941 | ||
942 | if ((object->can_persist) && (object->alive)) { | |
943 | /* | |
944 | * Now it is safe to decrement reference count, | |
945 | * and to return if reference count is > 0. | |
946 | */ | |
947 | ||
948 | vm_object_lock_assert_exclusive(object); | |
949 | if (--object->ref_count > 0) { | |
950 | vm_object_res_deallocate(object); | |
951 | vm_object_unlock(object); | |
952 | ||
953 | if (retry_cache_trim && | |
954 | ((object = vm_object_cache_trim(TRUE)) != | |
955 | VM_OBJECT_NULL)) { | |
956 | continue; | |
957 | } | |
958 | return; | |
959 | } | |
960 | ||
961 | #if MIGHT_NOT_CACHE_SHADOWS | |
962 | /* | |
963 | * Remove shadow now if we don't | |
964 | * want to cache shadows. | |
965 | */ | |
966 | if (! cache_shadows) { | |
967 | shadow = object->shadow; | |
968 | object->shadow = VM_OBJECT_NULL; | |
969 | } | |
970 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
971 | ||
972 | /* | |
973 | * Enter the object onto the queue of | |
974 | * cached objects, and deactivate | |
975 | * all of its pages. | |
976 | */ | |
977 | assert(object->shadow == VM_OBJECT_NULL); | |
978 | VM_OBJ_RES_DECR(object); | |
979 | XPR(XPR_VM_OBJECT, | |
980 | "vm_o_deallocate: adding %x to cache, queue = (%x, %x)\n", | |
981 | object, | |
982 | vm_object_cached_list.next, | |
983 | vm_object_cached_list.prev,0,0); | |
984 | ||
985 | ||
986 | vm_object_unlock(object); | |
987 | ||
988 | try_failed_count = 0; | |
989 | for (;;) { | |
990 | vm_object_cache_lock(); | |
991 | ||
992 | /* | |
993 | * if we try to take a regular lock here | |
994 | * we risk deadlocking against someone | |
995 | * holding a lock on this object while | |
996 | * trying to vm_object_deallocate a different | |
997 | * object | |
998 | */ | |
999 | if (vm_object_lock_try(object)) | |
1000 | break; | |
1001 | vm_object_cache_unlock(); | |
1002 | try_failed_count++; | |
1003 | ||
1004 | mutex_pause(try_failed_count); /* wait a bit */ | |
1005 | } | |
1006 | vm_object_cached_count++; | |
1007 | if (vm_object_cached_count > vm_object_cached_high) | |
1008 | vm_object_cached_high = vm_object_cached_count; | |
1009 | queue_enter(&vm_object_cached_list, object, | |
1010 | vm_object_t, cached_list); | |
1011 | vm_object_cache_unlock(); | |
1012 | ||
1013 | vm_object_deactivate_all_pages(object); | |
1014 | vm_object_unlock(object); | |
1015 | ||
1016 | #if MIGHT_NOT_CACHE_SHADOWS | |
1017 | /* | |
1018 | * If we have a shadow that we need | |
1019 | * to deallocate, do so now, remembering | |
1020 | * to trim the cache later. | |
1021 | */ | |
1022 | if (! cache_shadows && shadow != VM_OBJECT_NULL) { | |
1023 | object = shadow; | |
1024 | retry_cache_trim = TRUE; | |
1025 | continue; | |
1026 | } | |
1027 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
1028 | ||
1029 | /* | |
1030 | * Trim the cache. If the cache trim | |
1031 | * returns with a shadow for us to deallocate, | |
1032 | * then remember to retry the cache trim | |
1033 | * when we are done deallocating the shadow. | |
1034 | * Otherwise, we are done. | |
1035 | */ | |
1036 | ||
1037 | object = vm_object_cache_trim(TRUE); | |
1038 | if (object == VM_OBJECT_NULL) { | |
1039 | return; | |
1040 | } | |
1041 | retry_cache_trim = TRUE; | |
1042 | } else | |
1043 | #endif /* VM_OBJECT_CACHE */ | |
1044 | { | |
1045 | /* | |
1046 | * This object is not cachable; terminate it. | |
1047 | */ | |
1048 | XPR(XPR_VM_OBJECT, | |
1049 | "vm_o_deallocate: !cacheable 0x%X res %d paging_ops %d thread 0x%p ref %d\n", | |
1050 | object, object->resident_page_count, | |
1051 | object->paging_in_progress, | |
1052 | (void *)current_thread(),object->ref_count); | |
1053 | ||
1054 | VM_OBJ_RES_DECR(object); /* XXX ? */ | |
1055 | /* | |
1056 | * Terminate this object. If it had a shadow, | |
1057 | * then deallocate it; otherwise, if we need | |
1058 | * to retry a cache trim, do so now; otherwise, | |
1059 | * we are done. "pageout" objects have a shadow, | |
1060 | * but maintain a "paging reference" rather than | |
1061 | * a normal reference. | |
1062 | */ | |
1063 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
1064 | ||
1065 | if (vm_object_terminate(object) != KERN_SUCCESS) { | |
1066 | return; | |
1067 | } | |
1068 | if (shadow != VM_OBJECT_NULL) { | |
1069 | object = shadow; | |
1070 | continue; | |
1071 | } | |
1072 | #if VM_OBJECT_CACHE | |
1073 | if (retry_cache_trim && | |
1074 | ((object = vm_object_cache_trim(TRUE)) != | |
1075 | VM_OBJECT_NULL)) { | |
1076 | continue; | |
1077 | } | |
1078 | #endif | |
1079 | return; | |
1080 | } | |
1081 | } | |
1082 | #if VM_OBJECT_CACHE | |
1083 | assert(! retry_cache_trim); | |
1084 | #endif | |
1085 | } | |
1086 | ||
1087 | ||
1088 | ||
1089 | vm_page_t | |
1090 | vm_object_page_grab( | |
1091 | vm_object_t object) | |
1092 | { | |
1093 | vm_page_t p, next_p; | |
1094 | int p_limit = 0; | |
1095 | int p_skipped = 0; | |
1096 | ||
1097 | vm_object_lock_assert_exclusive(object); | |
1098 | ||
1099 | next_p = (vm_page_t)queue_first(&object->memq); | |
1100 | p_limit = MIN(50, object->resident_page_count); | |
1101 | ||
1102 | while (!queue_end(&object->memq, (queue_entry_t)next_p) && --p_limit > 0) { | |
1103 | ||
1104 | p = next_p; | |
1105 | next_p = (vm_page_t)queue_next(&next_p->listq); | |
1106 | ||
1107 | if (VM_PAGE_WIRED(p) || p->busy || p->cleaning || p->fictitious) | |
1108 | goto move_page_in_obj; | |
1109 | ||
1110 | if (p->pmapped || p->dirty || p->precious) { | |
1111 | vm_page_lockspin_queues(); | |
1112 | ||
1113 | if (p->pmapped) { | |
1114 | int refmod_state; | |
1115 | ||
1116 | vm_object_page_grab_pmapped++; | |
1117 | ||
1118 | if (p->reference == FALSE || p->dirty == FALSE) { | |
1119 | ||
1120 | refmod_state = pmap_get_refmod(p->phys_page); | |
1121 | ||
1122 | if (refmod_state & VM_MEM_REFERENCED) | |
1123 | p->reference = TRUE; | |
1124 | if (refmod_state & VM_MEM_MODIFIED) | |
1125 | p->dirty = TRUE; | |
1126 | } | |
1127 | if (p->dirty == FALSE && p->precious == FALSE) { | |
1128 | ||
1129 | refmod_state = pmap_disconnect(p->phys_page); | |
1130 | ||
1131 | if (refmod_state & VM_MEM_REFERENCED) | |
1132 | p->reference = TRUE; | |
1133 | if (refmod_state & VM_MEM_MODIFIED) | |
1134 | p->dirty = TRUE; | |
1135 | ||
1136 | if (p->dirty == FALSE) | |
1137 | goto take_page; | |
1138 | } | |
1139 | } | |
1140 | if (p->inactive && p->reference == TRUE) { | |
1141 | vm_page_activate(p); | |
1142 | ||
1143 | VM_STAT_INCR(reactivations); | |
1144 | vm_object_page_grab_reactivations++; | |
1145 | } | |
1146 | vm_page_unlock_queues(); | |
1147 | move_page_in_obj: | |
1148 | queue_remove(&object->memq, p, vm_page_t, listq); | |
1149 | queue_enter(&object->memq, p, vm_page_t, listq); | |
1150 | ||
1151 | p_skipped++; | |
1152 | continue; | |
1153 | } | |
1154 | vm_page_lockspin_queues(); | |
1155 | take_page: | |
1156 | vm_page_free_prepare_queues(p); | |
1157 | vm_object_page_grab_returned++; | |
1158 | vm_object_page_grab_skipped += p_skipped; | |
1159 | ||
1160 | vm_page_unlock_queues(); | |
1161 | ||
1162 | vm_page_free_prepare_object(p, TRUE); | |
1163 | ||
1164 | return (p); | |
1165 | } | |
1166 | vm_object_page_grab_skipped += p_skipped; | |
1167 | vm_object_page_grab_failed++; | |
1168 | ||
1169 | return (NULL); | |
1170 | } | |
1171 | ||
1172 | ||
1173 | ||
1174 | #define EVICT_PREPARE_LIMIT 64 | |
1175 | #define EVICT_AGE 10 | |
1176 | ||
1177 | static clock_sec_t vm_object_cache_aging_ts = 0; | |
1178 | ||
1179 | static void | |
1180 | vm_object_cache_remove_locked( | |
1181 | vm_object_t object) | |
1182 | { | |
1183 | queue_remove(&vm_object_cached_list, object, vm_object_t, objq); | |
1184 | object->objq.next = NULL; | |
1185 | object->objq.prev = NULL; | |
1186 | ||
1187 | vm_object_cached_count--; | |
1188 | } | |
1189 | ||
1190 | void | |
1191 | vm_object_cache_remove( | |
1192 | vm_object_t object) | |
1193 | { | |
1194 | vm_object_cache_lock_spin(); | |
1195 | ||
1196 | if (object->objq.next || object->objq.prev) | |
1197 | vm_object_cache_remove_locked(object); | |
1198 | ||
1199 | vm_object_cache_unlock(); | |
1200 | } | |
1201 | ||
1202 | void | |
1203 | vm_object_cache_add( | |
1204 | vm_object_t object) | |
1205 | { | |
1206 | clock_sec_t sec; | |
1207 | clock_nsec_t nsec; | |
1208 | ||
1209 | if (object->resident_page_count == 0) | |
1210 | return; | |
1211 | clock_get_system_nanotime(&sec, &nsec); | |
1212 | ||
1213 | vm_object_cache_lock_spin(); | |
1214 | ||
1215 | if (object->objq.next == NULL && object->objq.prev == NULL) { | |
1216 | queue_enter(&vm_object_cached_list, object, vm_object_t, objq); | |
1217 | object->vo_cache_ts = sec + EVICT_AGE; | |
1218 | object->vo_cache_pages_to_scan = object->resident_page_count; | |
1219 | ||
1220 | vm_object_cached_count++; | |
1221 | vm_object_cache_adds++; | |
1222 | } | |
1223 | vm_object_cache_unlock(); | |
1224 | } | |
1225 | ||
1226 | int | |
1227 | vm_object_cache_evict( | |
1228 | int num_to_evict, | |
1229 | int max_objects_to_examine) | |
1230 | { | |
1231 | vm_object_t object = VM_OBJECT_NULL; | |
1232 | vm_object_t next_obj = VM_OBJECT_NULL; | |
1233 | vm_page_t local_free_q = VM_PAGE_NULL; | |
1234 | vm_page_t p; | |
1235 | vm_page_t next_p; | |
1236 | int object_cnt = 0; | |
1237 | vm_page_t ep_array[EVICT_PREPARE_LIMIT]; | |
1238 | int ep_count; | |
1239 | int ep_limit; | |
1240 | int ep_index; | |
1241 | int ep_freed = 0; | |
1242 | int ep_moved = 0; | |
1243 | uint32_t ep_skipped = 0; | |
1244 | clock_sec_t sec; | |
1245 | clock_nsec_t nsec; | |
1246 | ||
1247 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
1248 | /* | |
1249 | * do a couple of quick checks to see if it's | |
1250 | * worthwhile grabbing the lock | |
1251 | */ | |
1252 | if (queue_empty(&vm_object_cached_list)) { | |
1253 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
1254 | return (0); | |
1255 | } | |
1256 | clock_get_system_nanotime(&sec, &nsec); | |
1257 | ||
1258 | /* | |
1259 | * the object on the head of the queue has not | |
1260 | * yet sufficiently aged | |
1261 | */ | |
1262 | if (sec < vm_object_cache_aging_ts) { | |
1263 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
1264 | return (0); | |
1265 | } | |
1266 | /* | |
1267 | * don't need the queue lock to find | |
1268 | * and lock an object on the cached list | |
1269 | */ | |
1270 | vm_page_unlock_queues(); | |
1271 | ||
1272 | vm_object_cache_lock_spin(); | |
1273 | ||
1274 | for (;;) { | |
1275 | next_obj = (vm_object_t)queue_first(&vm_object_cached_list); | |
1276 | ||
1277 | while (!queue_end(&vm_object_cached_list, (queue_entry_t)next_obj) && object_cnt++ < max_objects_to_examine) { | |
1278 | ||
1279 | object = next_obj; | |
1280 | next_obj = (vm_object_t)queue_next(&next_obj->objq); | |
1281 | ||
1282 | if (sec < object->vo_cache_ts) { | |
1283 | KERNEL_DEBUG(0x130020c, object, object->resident_page_count, object->vo_cache_ts, sec, 0); | |
1284 | ||
1285 | vm_object_cache_aging_ts = object->vo_cache_ts; | |
1286 | object = VM_OBJECT_NULL; | |
1287 | break; | |
1288 | } | |
1289 | if (!vm_object_lock_try_scan(object)) { | |
1290 | /* | |
1291 | * just skip over this guy for now... if we find | |
1292 | * an object to steal pages from, we'll revist in a bit... | |
1293 | * hopefully, the lock will have cleared | |
1294 | */ | |
1295 | KERNEL_DEBUG(0x13001f8, object, object->resident_page_count, 0, 0, 0); | |
1296 | ||
1297 | object = VM_OBJECT_NULL; | |
1298 | continue; | |
1299 | } | |
1300 | if (queue_empty(&object->memq) || object->vo_cache_pages_to_scan == 0) { | |
1301 | /* | |
1302 | * this case really shouldn't happen, but it's not fatal | |
1303 | * so deal with it... if we don't remove the object from | |
1304 | * the list, we'll never move past it. | |
1305 | */ | |
1306 | KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1307 | ||
1308 | vm_object_cache_remove_locked(object); | |
1309 | vm_object_unlock(object); | |
1310 | object = VM_OBJECT_NULL; | |
1311 | continue; | |
1312 | } | |
1313 | /* | |
1314 | * we have a locked object with pages... | |
1315 | * time to start harvesting | |
1316 | */ | |
1317 | break; | |
1318 | } | |
1319 | vm_object_cache_unlock(); | |
1320 | ||
1321 | if (object == VM_OBJECT_NULL) | |
1322 | break; | |
1323 | ||
1324 | /* | |
1325 | * object is locked at this point and | |
1326 | * has resident pages | |
1327 | */ | |
1328 | next_p = (vm_page_t)queue_first(&object->memq); | |
1329 | ||
1330 | /* | |
1331 | * break the page scan into 2 pieces to minimize the time spent | |
1332 | * behind the page queue lock... | |
1333 | * the list of pages on these unused objects is likely to be cold | |
1334 | * w/r to the cpu cache which increases the time to scan the list | |
1335 | * tenfold... and we may have a 'run' of pages we can't utilize that | |
1336 | * needs to be skipped over... | |
1337 | */ | |
1338 | if ((ep_limit = num_to_evict - (ep_freed + ep_moved)) > EVICT_PREPARE_LIMIT) | |
1339 | ep_limit = EVICT_PREPARE_LIMIT; | |
1340 | ep_count = 0; | |
1341 | ||
1342 | while (!queue_end(&object->memq, (queue_entry_t)next_p) && object->vo_cache_pages_to_scan && ep_count < ep_limit) { | |
1343 | ||
1344 | p = next_p; | |
1345 | next_p = (vm_page_t)queue_next(&next_p->listq); | |
1346 | ||
1347 | object->vo_cache_pages_to_scan--; | |
1348 | ||
1349 | if (VM_PAGE_WIRED(p) || p->busy || p->cleaning) { | |
1350 | queue_remove(&object->memq, p, vm_page_t, listq); | |
1351 | queue_enter(&object->memq, p, vm_page_t, listq); | |
1352 | ||
1353 | ep_skipped++; | |
1354 | continue; | |
1355 | } | |
1356 | if (p->wpmapped || p->dirty || p->precious) { | |
1357 | queue_remove(&object->memq, p, vm_page_t, listq); | |
1358 | queue_enter(&object->memq, p, vm_page_t, listq); | |
1359 | ||
1360 | pmap_clear_reference(p->phys_page); | |
1361 | } | |
1362 | ep_array[ep_count++] = p; | |
1363 | } | |
1364 | KERNEL_DEBUG(0x13001f4 | DBG_FUNC_START, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1365 | ||
1366 | vm_page_lockspin_queues(); | |
1367 | ||
1368 | for (ep_index = 0; ep_index < ep_count; ep_index++) { | |
1369 | ||
1370 | p = ep_array[ep_index]; | |
1371 | ||
1372 | if (p->wpmapped || p->dirty || p->precious) { | |
1373 | p->reference = FALSE; | |
1374 | p->no_cache = FALSE; | |
1375 | ||
1376 | VM_PAGE_QUEUES_REMOVE(p); | |
1377 | VM_PAGE_ENQUEUE_INACTIVE(p, TRUE); | |
1378 | ||
1379 | ep_moved++; | |
1380 | } else { | |
1381 | vm_page_free_prepare_queues(p); | |
1382 | ||
1383 | assert(p->pageq.next == NULL && p->pageq.prev == NULL); | |
1384 | /* | |
1385 | * Add this page to our list of reclaimed pages, | |
1386 | * to be freed later. | |
1387 | */ | |
1388 | p->pageq.next = (queue_entry_t) local_free_q; | |
1389 | local_free_q = p; | |
1390 | ||
1391 | ep_freed++; | |
1392 | } | |
1393 | } | |
1394 | vm_page_unlock_queues(); | |
1395 | ||
1396 | KERNEL_DEBUG(0x13001f4 | DBG_FUNC_END, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1397 | ||
1398 | if (local_free_q) { | |
1399 | vm_page_free_list(local_free_q, TRUE); | |
1400 | local_free_q = VM_PAGE_NULL; | |
1401 | } | |
1402 | if (object->vo_cache_pages_to_scan == 0) { | |
1403 | KERNEL_DEBUG(0x1300208, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1404 | ||
1405 | vm_object_cache_remove(object); | |
1406 | ||
1407 | KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1408 | } | |
1409 | /* | |
1410 | * done with this object | |
1411 | */ | |
1412 | vm_object_unlock(object); | |
1413 | object = VM_OBJECT_NULL; | |
1414 | ||
1415 | /* | |
1416 | * at this point, we are not holding any locks | |
1417 | */ | |
1418 | if ((ep_freed + ep_moved) >= num_to_evict) { | |
1419 | /* | |
1420 | * we've reached our target for the | |
1421 | * number of pages to evict | |
1422 | */ | |
1423 | break; | |
1424 | } | |
1425 | vm_object_cache_lock_spin(); | |
1426 | } | |
1427 | /* | |
1428 | * put the page queues lock back to the caller's | |
1429 | * idea of it | |
1430 | */ | |
1431 | vm_page_lock_queues(); | |
1432 | ||
1433 | vm_object_cache_pages_freed += ep_freed; | |
1434 | vm_object_cache_pages_moved += ep_moved; | |
1435 | vm_object_cache_pages_skipped += ep_skipped; | |
1436 | ||
1437 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, ep_freed, 0, 0, 0, 0); | |
1438 | return (ep_freed); | |
1439 | } | |
1440 | ||
1441 | ||
1442 | #if VM_OBJECT_CACHE | |
1443 | /* | |
1444 | * Check to see whether we really need to trim | |
1445 | * down the cache. If so, remove an object from | |
1446 | * the cache, terminate it, and repeat. | |
1447 | * | |
1448 | * Called with, and returns with, cache lock unlocked. | |
1449 | */ | |
1450 | vm_object_t | |
1451 | vm_object_cache_trim( | |
1452 | boolean_t called_from_vm_object_deallocate) | |
1453 | { | |
1454 | register vm_object_t object = VM_OBJECT_NULL; | |
1455 | vm_object_t shadow; | |
1456 | ||
1457 | for (;;) { | |
1458 | ||
1459 | /* | |
1460 | * If we no longer need to trim the cache, | |
1461 | * then we are done. | |
1462 | */ | |
1463 | if (vm_object_cached_count <= vm_object_cached_max) | |
1464 | return VM_OBJECT_NULL; | |
1465 | ||
1466 | vm_object_cache_lock(); | |
1467 | if (vm_object_cached_count <= vm_object_cached_max) { | |
1468 | vm_object_cache_unlock(); | |
1469 | return VM_OBJECT_NULL; | |
1470 | } | |
1471 | ||
1472 | /* | |
1473 | * We must trim down the cache, so remove | |
1474 | * the first object in the cache. | |
1475 | */ | |
1476 | XPR(XPR_VM_OBJECT, | |
1477 | "vm_object_cache_trim: removing from front of cache (%x, %x)\n", | |
1478 | vm_object_cached_list.next, | |
1479 | vm_object_cached_list.prev, 0, 0, 0); | |
1480 | ||
1481 | object = (vm_object_t) queue_first(&vm_object_cached_list); | |
1482 | if(object == (vm_object_t) &vm_object_cached_list) { | |
1483 | /* something's wrong with the calling parameter or */ | |
1484 | /* the value of vm_object_cached_count, just fix */ | |
1485 | /* and return */ | |
1486 | if(vm_object_cached_max < 0) | |
1487 | vm_object_cached_max = 0; | |
1488 | vm_object_cached_count = 0; | |
1489 | vm_object_cache_unlock(); | |
1490 | return VM_OBJECT_NULL; | |
1491 | } | |
1492 | vm_object_lock(object); | |
1493 | queue_remove(&vm_object_cached_list, object, vm_object_t, | |
1494 | cached_list); | |
1495 | vm_object_cached_count--; | |
1496 | ||
1497 | vm_object_cache_unlock(); | |
1498 | /* | |
1499 | * Since this object is in the cache, we know | |
1500 | * that it is initialized and has no references. | |
1501 | * Take a reference to avoid recursive deallocations. | |
1502 | */ | |
1503 | ||
1504 | assert(object->pager_initialized); | |
1505 | assert(object->ref_count == 0); | |
1506 | vm_object_lock_assert_exclusive(object); | |
1507 | object->ref_count++; | |
1508 | ||
1509 | /* | |
1510 | * Terminate the object. | |
1511 | * If the object had a shadow, we let vm_object_deallocate | |
1512 | * deallocate it. "pageout" objects have a shadow, but | |
1513 | * maintain a "paging reference" rather than a normal | |
1514 | * reference. | |
1515 | * (We are careful here to limit recursion.) | |
1516 | */ | |
1517 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
1518 | ||
1519 | if(vm_object_terminate(object) != KERN_SUCCESS) | |
1520 | continue; | |
1521 | ||
1522 | if (shadow != VM_OBJECT_NULL) { | |
1523 | if (called_from_vm_object_deallocate) { | |
1524 | return shadow; | |
1525 | } else { | |
1526 | vm_object_deallocate(shadow); | |
1527 | } | |
1528 | } | |
1529 | } | |
1530 | } | |
1531 | #endif | |
1532 | ||
1533 | ||
1534 | /* | |
1535 | * Routine: vm_object_terminate | |
1536 | * Purpose: | |
1537 | * Free all resources associated with a vm_object. | |
1538 | * In/out conditions: | |
1539 | * Upon entry, the object must be locked, | |
1540 | * and the object must have exactly one reference. | |
1541 | * | |
1542 | * The shadow object reference is left alone. | |
1543 | * | |
1544 | * The object must be unlocked if its found that pages | |
1545 | * must be flushed to a backing object. If someone | |
1546 | * manages to map the object while it is being flushed | |
1547 | * the object is returned unlocked and unchanged. Otherwise, | |
1548 | * upon exit, the cache will be unlocked, and the | |
1549 | * object will cease to exist. | |
1550 | */ | |
1551 | static kern_return_t | |
1552 | vm_object_terminate( | |
1553 | vm_object_t object) | |
1554 | { | |
1555 | vm_object_t shadow_object; | |
1556 | ||
1557 | XPR(XPR_VM_OBJECT, "vm_object_terminate, object 0x%X ref %d\n", | |
1558 | object, object->ref_count, 0, 0, 0); | |
1559 | ||
1560 | if (!object->pageout && (!object->temporary || object->can_persist) && | |
1561 | (object->pager != NULL || object->shadow_severed)) { | |
1562 | /* | |
1563 | * Clear pager_trusted bit so that the pages get yanked | |
1564 | * out of the object instead of cleaned in place. This | |
1565 | * prevents a deadlock in XMM and makes more sense anyway. | |
1566 | */ | |
1567 | object->pager_trusted = FALSE; | |
1568 | ||
1569 | vm_object_reap_pages(object, REAP_TERMINATE); | |
1570 | } | |
1571 | /* | |
1572 | * Make sure the object isn't already being terminated | |
1573 | */ | |
1574 | if (object->terminating) { | |
1575 | vm_object_lock_assert_exclusive(object); | |
1576 | object->ref_count--; | |
1577 | assert(object->ref_count > 0); | |
1578 | vm_object_unlock(object); | |
1579 | return KERN_FAILURE; | |
1580 | } | |
1581 | ||
1582 | /* | |
1583 | * Did somebody get a reference to the object while we were | |
1584 | * cleaning it? | |
1585 | */ | |
1586 | if (object->ref_count != 1) { | |
1587 | vm_object_lock_assert_exclusive(object); | |
1588 | object->ref_count--; | |
1589 | assert(object->ref_count > 0); | |
1590 | vm_object_res_deallocate(object); | |
1591 | vm_object_unlock(object); | |
1592 | return KERN_FAILURE; | |
1593 | } | |
1594 | ||
1595 | /* | |
1596 | * Make sure no one can look us up now. | |
1597 | */ | |
1598 | ||
1599 | object->terminating = TRUE; | |
1600 | object->alive = FALSE; | |
1601 | ||
1602 | if ( !object->internal && (object->objq.next || object->objq.prev)) | |
1603 | vm_object_cache_remove(object); | |
1604 | ||
1605 | if (object->hashed) { | |
1606 | lck_mtx_t *lck; | |
1607 | ||
1608 | lck = vm_object_hash_lock_spin(object->pager); | |
1609 | vm_object_remove(object); | |
1610 | vm_object_hash_unlock(lck); | |
1611 | } | |
1612 | /* | |
1613 | * Detach the object from its shadow if we are the shadow's | |
1614 | * copy. The reference we hold on the shadow must be dropped | |
1615 | * by our caller. | |
1616 | */ | |
1617 | if (((shadow_object = object->shadow) != VM_OBJECT_NULL) && | |
1618 | !(object->pageout)) { | |
1619 | vm_object_lock(shadow_object); | |
1620 | if (shadow_object->copy == object) | |
1621 | shadow_object->copy = VM_OBJECT_NULL; | |
1622 | vm_object_unlock(shadow_object); | |
1623 | } | |
1624 | ||
1625 | if (object->paging_in_progress != 0 || | |
1626 | object->activity_in_progress != 0) { | |
1627 | /* | |
1628 | * There are still some paging_in_progress references | |
1629 | * on this object, meaning that there are some paging | |
1630 | * or other I/O operations in progress for this VM object. | |
1631 | * Such operations take some paging_in_progress references | |
1632 | * up front to ensure that the object doesn't go away, but | |
1633 | * they may also need to acquire a reference on the VM object, | |
1634 | * to map it in kernel space, for example. That means that | |
1635 | * they may end up releasing the last reference on the VM | |
1636 | * object, triggering its termination, while still holding | |
1637 | * paging_in_progress references. Waiting for these | |
1638 | * pending paging_in_progress references to go away here would | |
1639 | * deadlock. | |
1640 | * | |
1641 | * To avoid deadlocking, we'll let the vm_object_reaper_thread | |
1642 | * complete the VM object termination if it still holds | |
1643 | * paging_in_progress references at this point. | |
1644 | * | |
1645 | * No new paging_in_progress should appear now that the | |
1646 | * VM object is "terminating" and not "alive". | |
1647 | */ | |
1648 | vm_object_reap_async(object); | |
1649 | vm_object_unlock(object); | |
1650 | /* | |
1651 | * Return KERN_FAILURE to let the caller know that we | |
1652 | * haven't completed the termination and it can't drop this | |
1653 | * object's reference on its shadow object yet. | |
1654 | * The reaper thread will take care of that once it has | |
1655 | * completed this object's termination. | |
1656 | */ | |
1657 | return KERN_FAILURE; | |
1658 | } | |
1659 | /* | |
1660 | * complete the VM object termination | |
1661 | */ | |
1662 | vm_object_reap(object); | |
1663 | object = VM_OBJECT_NULL; | |
1664 | ||
1665 | /* | |
1666 | * the object lock was released by vm_object_reap() | |
1667 | * | |
1668 | * KERN_SUCCESS means that this object has been terminated | |
1669 | * and no longer needs its shadow object but still holds a | |
1670 | * reference on it. | |
1671 | * The caller is responsible for dropping that reference. | |
1672 | * We can't call vm_object_deallocate() here because that | |
1673 | * would create a recursion. | |
1674 | */ | |
1675 | return KERN_SUCCESS; | |
1676 | } | |
1677 | ||
1678 | ||
1679 | /* | |
1680 | * vm_object_reap(): | |
1681 | * | |
1682 | * Complete the termination of a VM object after it's been marked | |
1683 | * as "terminating" and "!alive" by vm_object_terminate(). | |
1684 | * | |
1685 | * The VM object must be locked by caller. | |
1686 | * The lock will be released on return and the VM object is no longer valid. | |
1687 | */ | |
1688 | void | |
1689 | vm_object_reap( | |
1690 | vm_object_t object) | |
1691 | { | |
1692 | memory_object_t pager; | |
1693 | ||
1694 | vm_object_lock_assert_exclusive(object); | |
1695 | assert(object->paging_in_progress == 0); | |
1696 | assert(object->activity_in_progress == 0); | |
1697 | ||
1698 | vm_object_reap_count++; | |
1699 | ||
1700 | pager = object->pager; | |
1701 | object->pager = MEMORY_OBJECT_NULL; | |
1702 | ||
1703 | if (pager != MEMORY_OBJECT_NULL) | |
1704 | memory_object_control_disable(object->pager_control); | |
1705 | ||
1706 | object->ref_count--; | |
1707 | #if TASK_SWAPPER | |
1708 | assert(object->res_count == 0); | |
1709 | #endif /* TASK_SWAPPER */ | |
1710 | ||
1711 | assert (object->ref_count == 0); | |
1712 | ||
1713 | /* | |
1714 | * remove from purgeable queue if it's on | |
1715 | */ | |
1716 | if (object->internal && (object->objq.next || object->objq.prev)) { | |
1717 | purgeable_q_t queue = vm_purgeable_object_remove(object); | |
1718 | assert(queue); | |
1719 | ||
1720 | /* Must take page lock for this - using it to protect token queue */ | |
1721 | vm_page_lock_queues(); | |
1722 | vm_purgeable_token_delete_first(queue); | |
1723 | ||
1724 | assert(queue->debug_count_objects>=0); | |
1725 | vm_page_unlock_queues(); | |
1726 | } | |
1727 | ||
1728 | /* | |
1729 | * Clean or free the pages, as appropriate. | |
1730 | * It is possible for us to find busy/absent pages, | |
1731 | * if some faults on this object were aborted. | |
1732 | */ | |
1733 | if (object->pageout) { | |
1734 | assert(object->shadow != VM_OBJECT_NULL); | |
1735 | ||
1736 | vm_pageout_object_terminate(object); | |
1737 | ||
1738 | } else if (((object->temporary && !object->can_persist) || (pager == MEMORY_OBJECT_NULL))) { | |
1739 | ||
1740 | vm_object_reap_pages(object, REAP_REAP); | |
1741 | } | |
1742 | assert(queue_empty(&object->memq)); | |
1743 | assert(object->paging_in_progress == 0); | |
1744 | assert(object->activity_in_progress == 0); | |
1745 | assert(object->ref_count == 0); | |
1746 | ||
1747 | /* | |
1748 | * If the pager has not already been released by | |
1749 | * vm_object_destroy, we need to terminate it and | |
1750 | * release our reference to it here. | |
1751 | */ | |
1752 | if (pager != MEMORY_OBJECT_NULL) { | |
1753 | vm_object_unlock(object); | |
1754 | vm_object_release_pager(pager, object->hashed); | |
1755 | vm_object_lock(object); | |
1756 | } | |
1757 | ||
1758 | /* kick off anyone waiting on terminating */ | |
1759 | object->terminating = FALSE; | |
1760 | vm_object_paging_begin(object); | |
1761 | vm_object_paging_end(object); | |
1762 | vm_object_unlock(object); | |
1763 | ||
1764 | #if MACH_PAGEMAP | |
1765 | vm_external_destroy(object->existence_map, object->vo_size); | |
1766 | #endif /* MACH_PAGEMAP */ | |
1767 | ||
1768 | object->shadow = VM_OBJECT_NULL; | |
1769 | ||
1770 | vm_object_lock_destroy(object); | |
1771 | /* | |
1772 | * Free the space for the object. | |
1773 | */ | |
1774 | zfree(vm_object_zone, object); | |
1775 | object = VM_OBJECT_NULL; | |
1776 | } | |
1777 | ||
1778 | ||
1779 | unsigned int vm_max_batch = 256; | |
1780 | ||
1781 | #define V_O_R_MAX_BATCH 128 | |
1782 | ||
1783 | #define BATCH_LIMIT(max) (vm_max_batch >= max ? max : vm_max_batch) | |
1784 | ||
1785 | ||
1786 | #define VM_OBJ_REAP_FREELIST(_local_free_q, do_disconnect) \ | |
1787 | MACRO_BEGIN \ | |
1788 | if (_local_free_q) { \ | |
1789 | if (do_disconnect) { \ | |
1790 | vm_page_t m; \ | |
1791 | for (m = _local_free_q; \ | |
1792 | m != VM_PAGE_NULL; \ | |
1793 | m = (vm_page_t) m->pageq.next) { \ | |
1794 | if (m->pmapped) { \ | |
1795 | pmap_disconnect(m->phys_page); \ | |
1796 | } \ | |
1797 | } \ | |
1798 | } \ | |
1799 | vm_page_free_list(_local_free_q, TRUE); \ | |
1800 | _local_free_q = VM_PAGE_NULL; \ | |
1801 | } \ | |
1802 | MACRO_END | |
1803 | ||
1804 | ||
1805 | void | |
1806 | vm_object_reap_pages( | |
1807 | vm_object_t object, | |
1808 | int reap_type) | |
1809 | { | |
1810 | vm_page_t p; | |
1811 | vm_page_t next; | |
1812 | vm_page_t local_free_q = VM_PAGE_NULL; | |
1813 | int loop_count; | |
1814 | boolean_t disconnect_on_release; | |
1815 | ||
1816 | if (reap_type == REAP_DATA_FLUSH) { | |
1817 | /* | |
1818 | * We need to disconnect pages from all pmaps before | |
1819 | * releasing them to the free list | |
1820 | */ | |
1821 | disconnect_on_release = TRUE; | |
1822 | } else { | |
1823 | /* | |
1824 | * Either the caller has already disconnected the pages | |
1825 | * from all pmaps, or we disconnect them here as we add | |
1826 | * them to out local list of pages to be released. | |
1827 | * No need to re-disconnect them when we release the pages | |
1828 | * to the free list. | |
1829 | */ | |
1830 | disconnect_on_release = FALSE; | |
1831 | } | |
1832 | ||
1833 | restart_after_sleep: | |
1834 | if (queue_empty(&object->memq)) | |
1835 | return; | |
1836 | loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH) + 1; | |
1837 | ||
1838 | vm_page_lockspin_queues(); | |
1839 | ||
1840 | next = (vm_page_t)queue_first(&object->memq); | |
1841 | ||
1842 | while (!queue_end(&object->memq, (queue_entry_t)next)) { | |
1843 | ||
1844 | p = next; | |
1845 | next = (vm_page_t)queue_next(&next->listq); | |
1846 | ||
1847 | if (--loop_count == 0) { | |
1848 | ||
1849 | vm_page_unlock_queues(); | |
1850 | ||
1851 | if (local_free_q) { | |
1852 | /* | |
1853 | * Free the pages we reclaimed so far | |
1854 | * and take a little break to avoid | |
1855 | * hogging the page queue lock too long | |
1856 | */ | |
1857 | VM_OBJ_REAP_FREELIST(local_free_q, | |
1858 | disconnect_on_release); | |
1859 | } else | |
1860 | mutex_pause(0); | |
1861 | ||
1862 | loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH) + 1; | |
1863 | ||
1864 | vm_page_lockspin_queues(); | |
1865 | } | |
1866 | if (reap_type == REAP_DATA_FLUSH || reap_type == REAP_TERMINATE) { | |
1867 | ||
1868 | if (reap_type == REAP_DATA_FLUSH && | |
1869 | ((p->pageout == TRUE || p->cleaning == TRUE) && p->list_req_pending == TRUE)) { | |
1870 | p->list_req_pending = FALSE; | |
1871 | p->cleaning = FALSE; | |
1872 | /* | |
1873 | * need to drop the laundry count... | |
1874 | * we may also need to remove it | |
1875 | * from the I/O paging queue... | |
1876 | * vm_pageout_throttle_up handles both cases | |
1877 | * | |
1878 | * the laundry and pageout_queue flags are cleared... | |
1879 | */ | |
1880 | vm_pageout_throttle_up(p); | |
1881 | ||
1882 | if (p->pageout == TRUE) { | |
1883 | /* | |
1884 | * toss the wire count we picked up | |
1885 | * when we initially set this page up | |
1886 | * to be cleaned and stolen... | |
1887 | */ | |
1888 | vm_page_unwire(p, TRUE); | |
1889 | p->pageout = FALSE; | |
1890 | } | |
1891 | PAGE_WAKEUP(p); | |
1892 | ||
1893 | } else if (p->busy || p->cleaning) { | |
1894 | ||
1895 | vm_page_unlock_queues(); | |
1896 | /* | |
1897 | * free the pages reclaimed so far | |
1898 | */ | |
1899 | VM_OBJ_REAP_FREELIST(local_free_q, | |
1900 | disconnect_on_release); | |
1901 | ||
1902 | PAGE_SLEEP(object, p, THREAD_UNINT); | |
1903 | ||
1904 | goto restart_after_sleep; | |
1905 | } | |
1906 | } | |
1907 | switch (reap_type) { | |
1908 | ||
1909 | case REAP_DATA_FLUSH: | |
1910 | if (VM_PAGE_WIRED(p)) { | |
1911 | /* | |
1912 | * this is an odd case... perhaps we should | |
1913 | * zero-fill this page since we're conceptually | |
1914 | * tossing its data at this point, but leaving | |
1915 | * it on the object to honor the 'wire' contract | |
1916 | */ | |
1917 | continue; | |
1918 | } | |
1919 | break; | |
1920 | ||
1921 | case REAP_PURGEABLE: | |
1922 | if (VM_PAGE_WIRED(p)) { | |
1923 | /* can't purge a wired page */ | |
1924 | vm_page_purged_wired++; | |
1925 | continue; | |
1926 | } | |
1927 | ||
1928 | if (p->busy) { | |
1929 | /* | |
1930 | * We can't reclaim a busy page but we can | |
1931 | * make it pageable (it's not wired) to make | |
1932 | * sure that it gets considered by | |
1933 | * vm_pageout_scan() later. | |
1934 | */ | |
1935 | vm_page_deactivate(p); | |
1936 | vm_page_purged_busy++; | |
1937 | continue; | |
1938 | } | |
1939 | ||
1940 | if (p->cleaning || p->laundry || p->list_req_pending) { | |
1941 | /* | |
1942 | * page is being acted upon, | |
1943 | * so don't mess with it | |
1944 | */ | |
1945 | vm_page_purged_others++; | |
1946 | continue; | |
1947 | } | |
1948 | assert(p->object != kernel_object); | |
1949 | ||
1950 | /* | |
1951 | * we can discard this page... | |
1952 | */ | |
1953 | if (p->pmapped == TRUE) { | |
1954 | int refmod_state; | |
1955 | /* | |
1956 | * unmap the page | |
1957 | */ | |
1958 | refmod_state = pmap_disconnect(p->phys_page); | |
1959 | if (refmod_state & VM_MEM_MODIFIED) { | |
1960 | p->dirty = TRUE; | |
1961 | } | |
1962 | } | |
1963 | if (p->dirty || p->precious) { | |
1964 | /* | |
1965 | * we saved the cost of cleaning this page ! | |
1966 | */ | |
1967 | vm_page_purged_count++; | |
1968 | } | |
1969 | ||
1970 | break; | |
1971 | ||
1972 | case REAP_TERMINATE: | |
1973 | if (p->absent || p->private) { | |
1974 | /* | |
1975 | * For private pages, VM_PAGE_FREE just | |
1976 | * leaves the page structure around for | |
1977 | * its owner to clean up. For absent | |
1978 | * pages, the structure is returned to | |
1979 | * the appropriate pool. | |
1980 | */ | |
1981 | break; | |
1982 | } | |
1983 | if (p->fictitious) { | |
1984 | assert (p->phys_page == vm_page_guard_addr); | |
1985 | break; | |
1986 | } | |
1987 | if (!p->dirty && p->wpmapped) | |
1988 | p->dirty = pmap_is_modified(p->phys_page); | |
1989 | ||
1990 | if ((p->dirty || p->precious) && !p->error && object->alive) { | |
1991 | ||
1992 | p->busy = TRUE; | |
1993 | ||
1994 | VM_PAGE_QUEUES_REMOVE(p); | |
1995 | /* | |
1996 | * flush page... page will be freed | |
1997 | * upon completion of I/O | |
1998 | */ | |
1999 | vm_pageout_cluster(p); | |
2000 | ||
2001 | vm_page_unlock_queues(); | |
2002 | /* | |
2003 | * free the pages reclaimed so far | |
2004 | */ | |
2005 | VM_OBJ_REAP_FREELIST(local_free_q, | |
2006 | disconnect_on_release); | |
2007 | ||
2008 | vm_object_paging_wait(object, THREAD_UNINT); | |
2009 | ||
2010 | goto restart_after_sleep; | |
2011 | } | |
2012 | break; | |
2013 | ||
2014 | case REAP_REAP: | |
2015 | break; | |
2016 | } | |
2017 | vm_page_free_prepare_queues(p); | |
2018 | assert(p->pageq.next == NULL && p->pageq.prev == NULL); | |
2019 | /* | |
2020 | * Add this page to our list of reclaimed pages, | |
2021 | * to be freed later. | |
2022 | */ | |
2023 | p->pageq.next = (queue_entry_t) local_free_q; | |
2024 | local_free_q = p; | |
2025 | } | |
2026 | vm_page_unlock_queues(); | |
2027 | ||
2028 | /* | |
2029 | * Free the remaining reclaimed pages | |
2030 | */ | |
2031 | VM_OBJ_REAP_FREELIST(local_free_q, | |
2032 | disconnect_on_release); | |
2033 | } | |
2034 | ||
2035 | ||
2036 | void | |
2037 | vm_object_reap_async( | |
2038 | vm_object_t object) | |
2039 | { | |
2040 | vm_object_lock_assert_exclusive(object); | |
2041 | ||
2042 | vm_object_reaper_lock_spin(); | |
2043 | ||
2044 | vm_object_reap_count_async++; | |
2045 | ||
2046 | /* enqueue the VM object... */ | |
2047 | queue_enter(&vm_object_reaper_queue, object, | |
2048 | vm_object_t, cached_list); | |
2049 | ||
2050 | vm_object_reaper_unlock(); | |
2051 | ||
2052 | /* ... and wake up the reaper thread */ | |
2053 | thread_wakeup((event_t) &vm_object_reaper_queue); | |
2054 | } | |
2055 | ||
2056 | ||
2057 | void | |
2058 | vm_object_reaper_thread(void) | |
2059 | { | |
2060 | vm_object_t object, shadow_object; | |
2061 | ||
2062 | vm_object_reaper_lock_spin(); | |
2063 | ||
2064 | while (!queue_empty(&vm_object_reaper_queue)) { | |
2065 | queue_remove_first(&vm_object_reaper_queue, | |
2066 | object, | |
2067 | vm_object_t, | |
2068 | cached_list); | |
2069 | ||
2070 | vm_object_reaper_unlock(); | |
2071 | vm_object_lock(object); | |
2072 | ||
2073 | assert(object->terminating); | |
2074 | assert(!object->alive); | |
2075 | ||
2076 | /* | |
2077 | * The pageout daemon might be playing with our pages. | |
2078 | * Now that the object is dead, it won't touch any more | |
2079 | * pages, but some pages might already be on their way out. | |
2080 | * Hence, we wait until the active paging activities have | |
2081 | * ceased before we break the association with the pager | |
2082 | * itself. | |
2083 | */ | |
2084 | while (object->paging_in_progress != 0 || | |
2085 | object->activity_in_progress != 0) { | |
2086 | vm_object_wait(object, | |
2087 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
2088 | THREAD_UNINT); | |
2089 | vm_object_lock(object); | |
2090 | } | |
2091 | ||
2092 | shadow_object = | |
2093 | object->pageout ? VM_OBJECT_NULL : object->shadow; | |
2094 | ||
2095 | vm_object_reap(object); | |
2096 | /* cache is unlocked and object is no longer valid */ | |
2097 | object = VM_OBJECT_NULL; | |
2098 | ||
2099 | if (shadow_object != VM_OBJECT_NULL) { | |
2100 | /* | |
2101 | * Drop the reference "object" was holding on | |
2102 | * its shadow object. | |
2103 | */ | |
2104 | vm_object_deallocate(shadow_object); | |
2105 | shadow_object = VM_OBJECT_NULL; | |
2106 | } | |
2107 | vm_object_reaper_lock_spin(); | |
2108 | } | |
2109 | ||
2110 | /* wait for more work... */ | |
2111 | assert_wait((event_t) &vm_object_reaper_queue, THREAD_UNINT); | |
2112 | ||
2113 | vm_object_reaper_unlock(); | |
2114 | ||
2115 | thread_block((thread_continue_t) vm_object_reaper_thread); | |
2116 | /*NOTREACHED*/ | |
2117 | } | |
2118 | ||
2119 | /* | |
2120 | * Routine: vm_object_pager_wakeup | |
2121 | * Purpose: Wake up anyone waiting for termination of a pager. | |
2122 | */ | |
2123 | ||
2124 | static void | |
2125 | vm_object_pager_wakeup( | |
2126 | memory_object_t pager) | |
2127 | { | |
2128 | vm_object_hash_entry_t entry; | |
2129 | boolean_t waiting = FALSE; | |
2130 | lck_mtx_t *lck; | |
2131 | ||
2132 | /* | |
2133 | * If anyone was waiting for the memory_object_terminate | |
2134 | * to be queued, wake them up now. | |
2135 | */ | |
2136 | lck = vm_object_hash_lock_spin(pager); | |
2137 | entry = vm_object_hash_lookup(pager, TRUE); | |
2138 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) | |
2139 | waiting = entry->waiting; | |
2140 | vm_object_hash_unlock(lck); | |
2141 | ||
2142 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) { | |
2143 | if (waiting) | |
2144 | thread_wakeup((event_t) pager); | |
2145 | vm_object_hash_entry_free(entry); | |
2146 | } | |
2147 | } | |
2148 | ||
2149 | /* | |
2150 | * Routine: vm_object_release_pager | |
2151 | * Purpose: Terminate the pager and, upon completion, | |
2152 | * release our last reference to it. | |
2153 | * just like memory_object_terminate, except | |
2154 | * that we wake up anyone blocked in vm_object_enter | |
2155 | * waiting for termination message to be queued | |
2156 | * before calling memory_object_init. | |
2157 | */ | |
2158 | static void | |
2159 | vm_object_release_pager( | |
2160 | memory_object_t pager, | |
2161 | boolean_t hashed) | |
2162 | { | |
2163 | ||
2164 | /* | |
2165 | * Terminate the pager. | |
2166 | */ | |
2167 | ||
2168 | (void) memory_object_terminate(pager); | |
2169 | ||
2170 | if (hashed == TRUE) { | |
2171 | /* | |
2172 | * Wakeup anyone waiting for this terminate | |
2173 | * and remove the entry from the hash | |
2174 | */ | |
2175 | vm_object_pager_wakeup(pager); | |
2176 | } | |
2177 | /* | |
2178 | * Release reference to pager. | |
2179 | */ | |
2180 | memory_object_deallocate(pager); | |
2181 | } | |
2182 | ||
2183 | /* | |
2184 | * Routine: vm_object_destroy | |
2185 | * Purpose: | |
2186 | * Shut down a VM object, despite the | |
2187 | * presence of address map (or other) references | |
2188 | * to the vm_object. | |
2189 | */ | |
2190 | kern_return_t | |
2191 | vm_object_destroy( | |
2192 | vm_object_t object, | |
2193 | __unused kern_return_t reason) | |
2194 | { | |
2195 | memory_object_t old_pager; | |
2196 | ||
2197 | if (object == VM_OBJECT_NULL) | |
2198 | return(KERN_SUCCESS); | |
2199 | ||
2200 | /* | |
2201 | * Remove the pager association immediately. | |
2202 | * | |
2203 | * This will prevent the memory manager from further | |
2204 | * meddling. [If it wanted to flush data or make | |
2205 | * other changes, it should have done so before performing | |
2206 | * the destroy call.] | |
2207 | */ | |
2208 | ||
2209 | vm_object_lock(object); | |
2210 | object->can_persist = FALSE; | |
2211 | object->named = FALSE; | |
2212 | object->alive = FALSE; | |
2213 | ||
2214 | if (object->hashed) { | |
2215 | lck_mtx_t *lck; | |
2216 | /* | |
2217 | * Rip out the pager from the vm_object now... | |
2218 | */ | |
2219 | lck = vm_object_hash_lock_spin(object->pager); | |
2220 | vm_object_remove(object); | |
2221 | vm_object_hash_unlock(lck); | |
2222 | } | |
2223 | old_pager = object->pager; | |
2224 | object->pager = MEMORY_OBJECT_NULL; | |
2225 | if (old_pager != MEMORY_OBJECT_NULL) | |
2226 | memory_object_control_disable(object->pager_control); | |
2227 | ||
2228 | /* | |
2229 | * Wait for the existing paging activity (that got | |
2230 | * through before we nulled out the pager) to subside. | |
2231 | */ | |
2232 | ||
2233 | vm_object_paging_wait(object, THREAD_UNINT); | |
2234 | vm_object_unlock(object); | |
2235 | ||
2236 | /* | |
2237 | * Terminate the object now. | |
2238 | */ | |
2239 | if (old_pager != MEMORY_OBJECT_NULL) { | |
2240 | vm_object_release_pager(old_pager, object->hashed); | |
2241 | ||
2242 | /* | |
2243 | * JMM - Release the caller's reference. This assumes the | |
2244 | * caller had a reference to release, which is a big (but | |
2245 | * currently valid) assumption if this is driven from the | |
2246 | * vnode pager (it is holding a named reference when making | |
2247 | * this call).. | |
2248 | */ | |
2249 | vm_object_deallocate(object); | |
2250 | ||
2251 | } | |
2252 | return(KERN_SUCCESS); | |
2253 | } | |
2254 | ||
2255 | ||
2256 | #if VM_OBJECT_CACHE | |
2257 | ||
2258 | #define VM_OBJ_DEACT_ALL_STATS DEBUG | |
2259 | #if VM_OBJ_DEACT_ALL_STATS | |
2260 | uint32_t vm_object_deactivate_all_pages_batches = 0; | |
2261 | uint32_t vm_object_deactivate_all_pages_pages = 0; | |
2262 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2263 | /* | |
2264 | * vm_object_deactivate_all_pages | |
2265 | * | |
2266 | * Deactivate all pages in the specified object. (Keep its pages | |
2267 | * in memory even though it is no longer referenced.) | |
2268 | * | |
2269 | * The object must be locked. | |
2270 | */ | |
2271 | static void | |
2272 | vm_object_deactivate_all_pages( | |
2273 | register vm_object_t object) | |
2274 | { | |
2275 | register vm_page_t p; | |
2276 | int loop_count; | |
2277 | #if VM_OBJ_DEACT_ALL_STATS | |
2278 | int pages_count; | |
2279 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2280 | #define V_O_D_A_P_MAX_BATCH 256 | |
2281 | ||
2282 | loop_count = BATCH_LIMIT(V_O_D_A_P_MAX_BATCH); | |
2283 | #if VM_OBJ_DEACT_ALL_STATS | |
2284 | pages_count = 0; | |
2285 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2286 | vm_page_lock_queues(); | |
2287 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
2288 | if (--loop_count == 0) { | |
2289 | #if VM_OBJ_DEACT_ALL_STATS | |
2290 | hw_atomic_add(&vm_object_deactivate_all_pages_batches, | |
2291 | 1); | |
2292 | hw_atomic_add(&vm_object_deactivate_all_pages_pages, | |
2293 | pages_count); | |
2294 | pages_count = 0; | |
2295 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2296 | lck_mtx_yield(&vm_page_queue_lock); | |
2297 | loop_count = BATCH_LIMIT(V_O_D_A_P_MAX_BATCH); | |
2298 | } | |
2299 | if (!p->busy && !p->throttled) { | |
2300 | #if VM_OBJ_DEACT_ALL_STATS | |
2301 | pages_count++; | |
2302 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2303 | vm_page_deactivate(p); | |
2304 | } | |
2305 | } | |
2306 | #if VM_OBJ_DEACT_ALL_STATS | |
2307 | if (pages_count) { | |
2308 | hw_atomic_add(&vm_object_deactivate_all_pages_batches, 1); | |
2309 | hw_atomic_add(&vm_object_deactivate_all_pages_pages, | |
2310 | pages_count); | |
2311 | pages_count = 0; | |
2312 | } | |
2313 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2314 | vm_page_unlock_queues(); | |
2315 | } | |
2316 | #endif /* VM_OBJECT_CACHE */ | |
2317 | ||
2318 | ||
2319 | ||
2320 | /* | |
2321 | * The "chunk" macros are used by routines below when looking for pages to deactivate. These | |
2322 | * exist because of the need to handle shadow chains. When deactivating pages, we only | |
2323 | * want to deactive the ones at the top most level in the object chain. In order to do | |
2324 | * this efficiently, the specified address range is divided up into "chunks" and we use | |
2325 | * a bit map to keep track of which pages have already been processed as we descend down | |
2326 | * the shadow chain. These chunk macros hide the details of the bit map implementation | |
2327 | * as much as we can. | |
2328 | * | |
2329 | * For convenience, we use a 64-bit data type as the bit map, and therefore a chunk is | |
2330 | * set to 64 pages. The bit map is indexed from the low-order end, so that the lowest | |
2331 | * order bit represents page 0 in the current range and highest order bit represents | |
2332 | * page 63. | |
2333 | * | |
2334 | * For further convenience, we also use negative logic for the page state in the bit map. | |
2335 | * The bit is set to 1 to indicate it has not yet been seen, and to 0 to indicate it has | |
2336 | * been processed. This way we can simply test the 64-bit long word to see if it's zero | |
2337 | * to easily tell if the whole range has been processed. Therefore, the bit map starts | |
2338 | * out with all the bits set. The macros below hide all these details from the caller. | |
2339 | */ | |
2340 | ||
2341 | #define PAGES_IN_A_CHUNK 64 /* The number of pages in the chunk must */ | |
2342 | /* be the same as the number of bits in */ | |
2343 | /* the chunk_state_t type. We use 64 */ | |
2344 | /* just for convenience. */ | |
2345 | ||
2346 | #define CHUNK_SIZE (PAGES_IN_A_CHUNK * PAGE_SIZE_64) /* Size of a chunk in bytes */ | |
2347 | ||
2348 | typedef uint64_t chunk_state_t; | |
2349 | ||
2350 | /* | |
2351 | * The bit map uses negative logic, so we start out with all 64 bits set to indicate | |
2352 | * that no pages have been processed yet. Also, if len is less than the full CHUNK_SIZE, | |
2353 | * then we mark pages beyond the len as having been "processed" so that we don't waste time | |
2354 | * looking at pages in that range. This can save us from unnecessarily chasing down the | |
2355 | * shadow chain. | |
2356 | */ | |
2357 | ||
2358 | #define CHUNK_INIT(c, len) \ | |
2359 | MACRO_BEGIN \ | |
2360 | uint64_t p; \ | |
2361 | \ | |
2362 | (c) = 0xffffffffffffffffLL; \ | |
2363 | \ | |
2364 | for (p = (len) / PAGE_SIZE_64; p < PAGES_IN_A_CHUNK; p++) \ | |
2365 | MARK_PAGE_HANDLED(c, p); \ | |
2366 | MACRO_END | |
2367 | ||
2368 | ||
2369 | /* | |
2370 | * Return true if all pages in the chunk have not yet been processed. | |
2371 | */ | |
2372 | ||
2373 | #define CHUNK_NOT_COMPLETE(c) ((c) != 0) | |
2374 | ||
2375 | /* | |
2376 | * Return true if the page at offset 'p' in the bit map has already been handled | |
2377 | * while processing a higher level object in the shadow chain. | |
2378 | */ | |
2379 | ||
2380 | #define PAGE_ALREADY_HANDLED(c, p) (((c) & (1LL << (p))) == 0) | |
2381 | ||
2382 | /* | |
2383 | * Mark the page at offset 'p' in the bit map as having been processed. | |
2384 | */ | |
2385 | ||
2386 | #define MARK_PAGE_HANDLED(c, p) \ | |
2387 | MACRO_BEGIN \ | |
2388 | (c) = (c) & ~(1LL << (p)); \ | |
2389 | MACRO_END | |
2390 | ||
2391 | ||
2392 | /* | |
2393 | * Return true if the page at the given offset has been paged out. Object is | |
2394 | * locked upon entry and returned locked. | |
2395 | */ | |
2396 | ||
2397 | static boolean_t | |
2398 | page_is_paged_out( | |
2399 | vm_object_t object, | |
2400 | vm_object_offset_t offset) | |
2401 | { | |
2402 | kern_return_t kr; | |
2403 | memory_object_t pager; | |
2404 | ||
2405 | /* | |
2406 | * Check the existence map for the page if we have one, otherwise | |
2407 | * ask the pager about this page. | |
2408 | */ | |
2409 | ||
2410 | #if MACH_PAGEMAP | |
2411 | if (object->existence_map) { | |
2412 | if (vm_external_state_get(object->existence_map, offset) | |
2413 | == VM_EXTERNAL_STATE_EXISTS) { | |
2414 | /* | |
2415 | * We found the page | |
2416 | */ | |
2417 | ||
2418 | return TRUE; | |
2419 | } | |
2420 | } else | |
2421 | #endif | |
2422 | if (object->internal && | |
2423 | object->alive && | |
2424 | !object->terminating && | |
2425 | object->pager_ready) { | |
2426 | ||
2427 | /* | |
2428 | * We're already holding a "paging in progress" reference | |
2429 | * so the object can't disappear when we release the lock. | |
2430 | */ | |
2431 | ||
2432 | assert(object->paging_in_progress); | |
2433 | pager = object->pager; | |
2434 | vm_object_unlock(object); | |
2435 | ||
2436 | kr = memory_object_data_request( | |
2437 | pager, | |
2438 | offset + object->paging_offset, | |
2439 | 0, /* just poke the pager */ | |
2440 | VM_PROT_READ, | |
2441 | NULL); | |
2442 | ||
2443 | vm_object_lock(object); | |
2444 | ||
2445 | if (kr == KERN_SUCCESS) { | |
2446 | ||
2447 | /* | |
2448 | * We found the page | |
2449 | */ | |
2450 | ||
2451 | return TRUE; | |
2452 | } | |
2453 | } | |
2454 | ||
2455 | return FALSE; | |
2456 | } | |
2457 | ||
2458 | ||
2459 | ||
2460 | /* | |
2461 | * Deactivate the pages in the specified object and range. If kill_page is set, also discard any | |
2462 | * page modified state from the pmap. Update the chunk_state as we go along. The caller must specify | |
2463 | * a size that is less than or equal to the CHUNK_SIZE. | |
2464 | */ | |
2465 | ||
2466 | static void | |
2467 | deactivate_pages_in_object( | |
2468 | vm_object_t object, | |
2469 | vm_object_offset_t offset, | |
2470 | vm_object_size_t size, | |
2471 | boolean_t kill_page, | |
2472 | boolean_t reusable_page, | |
2473 | #if !MACH_ASSERT | |
2474 | __unused | |
2475 | #endif | |
2476 | boolean_t all_reusable, | |
2477 | chunk_state_t *chunk_state) | |
2478 | { | |
2479 | vm_page_t m; | |
2480 | int p; | |
2481 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; | |
2482 | struct vm_page_delayed_work *dwp; | |
2483 | int dw_count; | |
2484 | int dw_limit; | |
2485 | unsigned int reusable = 0; | |
2486 | ||
2487 | ||
2488 | /* | |
2489 | * Examine each page in the chunk. The variable 'p' is the page number relative to the start of the | |
2490 | * chunk. Since this routine is called once for each level in the shadow chain, the chunk_state may | |
2491 | * have pages marked as having been processed already. We stop the loop early if we find we've handled | |
2492 | * all the pages in the chunk. | |
2493 | */ | |
2494 | ||
2495 | dwp = &dw_array[0]; | |
2496 | dw_count = 0; | |
2497 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); | |
2498 | ||
2499 | for(p = 0; size && CHUNK_NOT_COMPLETE(*chunk_state); p++, size -= PAGE_SIZE_64, offset += PAGE_SIZE_64) { | |
2500 | ||
2501 | /* | |
2502 | * If this offset has already been found and handled in a higher level object, then don't | |
2503 | * do anything with it in the current shadow object. | |
2504 | */ | |
2505 | ||
2506 | if (PAGE_ALREADY_HANDLED(*chunk_state, p)) | |
2507 | continue; | |
2508 | ||
2509 | /* | |
2510 | * See if the page at this offset is around. First check to see if the page is resident, | |
2511 | * then if not, check the existence map or with the pager. | |
2512 | */ | |
2513 | ||
2514 | if ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { | |
2515 | ||
2516 | /* | |
2517 | * We found a page we were looking for. Mark it as "handled" now in the chunk_state | |
2518 | * so that we won't bother looking for a page at this offset again if there are more | |
2519 | * shadow objects. Then deactivate the page. | |
2520 | */ | |
2521 | ||
2522 | MARK_PAGE_HANDLED(*chunk_state, p); | |
2523 | ||
2524 | if (( !VM_PAGE_WIRED(m)) && (!m->private) && (!m->gobbled) && (!m->busy)) { | |
2525 | int clear_refmod; | |
2526 | ||
2527 | assert(!m->laundry); | |
2528 | ||
2529 | clear_refmod = VM_MEM_REFERENCED; | |
2530 | dwp->dw_mask = DW_clear_reference; | |
2531 | ||
2532 | if ((kill_page) && (object->internal)) { | |
2533 | m->precious = FALSE; | |
2534 | m->dirty = FALSE; | |
2535 | ||
2536 | clear_refmod |= VM_MEM_MODIFIED; | |
2537 | if (m->throttled) { | |
2538 | /* | |
2539 | * This page is now clean and | |
2540 | * reclaimable. Move it out | |
2541 | * of the throttled queue, so | |
2542 | * that vm_pageout_scan() can | |
2543 | * find it. | |
2544 | */ | |
2545 | dwp->dw_mask |= DW_move_page; | |
2546 | } | |
2547 | #if MACH_PAGEMAP | |
2548 | vm_external_state_clr(object->existence_map, offset); | |
2549 | #endif /* MACH_PAGEMAP */ | |
2550 | ||
2551 | if (reusable_page && !m->reusable) { | |
2552 | assert(!all_reusable); | |
2553 | assert(!object->all_reusable); | |
2554 | m->reusable = TRUE; | |
2555 | object->reusable_page_count++; | |
2556 | assert(object->resident_page_count >= object->reusable_page_count); | |
2557 | reusable++; | |
2558 | } | |
2559 | } | |
2560 | pmap_clear_refmod(m->phys_page, clear_refmod); | |
2561 | ||
2562 | if (!m->throttled && !(reusable_page || all_reusable)) | |
2563 | dwp->dw_mask |= DW_move_page; | |
2564 | ||
2565 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count); | |
2566 | ||
2567 | if (dw_count >= dw_limit) { | |
2568 | if (reusable) { | |
2569 | OSAddAtomic(reusable, | |
2570 | &vm_page_stats_reusable.reusable_count); | |
2571 | vm_page_stats_reusable.reusable += reusable; | |
2572 | reusable = 0; | |
2573 | } | |
2574 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); | |
2575 | ||
2576 | dwp = &dw_array[0]; | |
2577 | dw_count = 0; | |
2578 | } | |
2579 | } | |
2580 | ||
2581 | } else { | |
2582 | ||
2583 | /* | |
2584 | * The page at this offset isn't memory resident, check to see if it's | |
2585 | * been paged out. If so, mark it as handled so we don't bother looking | |
2586 | * for it in the shadow chain. | |
2587 | */ | |
2588 | ||
2589 | if (page_is_paged_out(object, offset)) { | |
2590 | MARK_PAGE_HANDLED(*chunk_state, p); | |
2591 | ||
2592 | /* | |
2593 | * If we're killing a non-resident page, then clear the page in the existence | |
2594 | * map so we don't bother paging it back in if it's touched again in the future. | |
2595 | */ | |
2596 | ||
2597 | if ((kill_page) && (object->internal)) { | |
2598 | #if MACH_PAGEMAP | |
2599 | vm_external_state_clr(object->existence_map, offset); | |
2600 | #endif /* MACH_PAGEMAP */ | |
2601 | } | |
2602 | } | |
2603 | } | |
2604 | } | |
2605 | ||
2606 | if (reusable) { | |
2607 | OSAddAtomic(reusable, &vm_page_stats_reusable.reusable_count); | |
2608 | vm_page_stats_reusable.reusable += reusable; | |
2609 | reusable = 0; | |
2610 | } | |
2611 | ||
2612 | if (dw_count) | |
2613 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); | |
2614 | } | |
2615 | ||
2616 | ||
2617 | /* | |
2618 | * Deactive a "chunk" of the given range of the object starting at offset. A "chunk" | |
2619 | * will always be less than or equal to the given size. The total range is divided up | |
2620 | * into chunks for efficiency and performance related to the locks and handling the shadow | |
2621 | * chain. This routine returns how much of the given "size" it actually processed. It's | |
2622 | * up to the caler to loop and keep calling this routine until the entire range they want | |
2623 | * to process has been done. | |
2624 | */ | |
2625 | ||
2626 | static vm_object_size_t | |
2627 | deactivate_a_chunk( | |
2628 | vm_object_t orig_object, | |
2629 | vm_object_offset_t offset, | |
2630 | vm_object_size_t size, | |
2631 | boolean_t kill_page, | |
2632 | boolean_t reusable_page, | |
2633 | boolean_t all_reusable) | |
2634 | { | |
2635 | vm_object_t object; | |
2636 | vm_object_t tmp_object; | |
2637 | vm_object_size_t length; | |
2638 | chunk_state_t chunk_state; | |
2639 | ||
2640 | ||
2641 | /* | |
2642 | * Get set to do a chunk. We'll do up to CHUNK_SIZE, but no more than the | |
2643 | * remaining size the caller asked for. | |
2644 | */ | |
2645 | ||
2646 | length = MIN(size, CHUNK_SIZE); | |
2647 | ||
2648 | /* | |
2649 | * The chunk_state keeps track of which pages we've already processed if there's | |
2650 | * a shadow chain on this object. At this point, we haven't done anything with this | |
2651 | * range of pages yet, so initialize the state to indicate no pages processed yet. | |
2652 | */ | |
2653 | ||
2654 | CHUNK_INIT(chunk_state, length); | |
2655 | object = orig_object; | |
2656 | ||
2657 | /* | |
2658 | * Start at the top level object and iterate around the loop once for each object | |
2659 | * in the shadow chain. We stop processing early if we've already found all the pages | |
2660 | * in the range. Otherwise we stop when we run out of shadow objects. | |
2661 | */ | |
2662 | ||
2663 | while (object && CHUNK_NOT_COMPLETE(chunk_state)) { | |
2664 | vm_object_paging_begin(object); | |
2665 | ||
2666 | deactivate_pages_in_object(object, offset, length, kill_page, reusable_page, all_reusable, &chunk_state); | |
2667 | ||
2668 | vm_object_paging_end(object); | |
2669 | ||
2670 | /* | |
2671 | * We've finished with this object, see if there's a shadow object. If | |
2672 | * there is, update the offset and lock the new object. We also turn off | |
2673 | * kill_page at this point since we only kill pages in the top most object. | |
2674 | */ | |
2675 | ||
2676 | tmp_object = object->shadow; | |
2677 | ||
2678 | if (tmp_object) { | |
2679 | kill_page = FALSE; | |
2680 | reusable_page = FALSE; | |
2681 | all_reusable = FALSE; | |
2682 | offset += object->vo_shadow_offset; | |
2683 | vm_object_lock(tmp_object); | |
2684 | } | |
2685 | ||
2686 | if (object != orig_object) | |
2687 | vm_object_unlock(object); | |
2688 | ||
2689 | object = tmp_object; | |
2690 | } | |
2691 | ||
2692 | if (object && object != orig_object) | |
2693 | vm_object_unlock(object); | |
2694 | ||
2695 | return length; | |
2696 | } | |
2697 | ||
2698 | ||
2699 | ||
2700 | /* | |
2701 | * Move any resident pages in the specified range to the inactive queue. If kill_page is set, | |
2702 | * we also clear the modified status of the page and "forget" any changes that have been made | |
2703 | * to the page. | |
2704 | */ | |
2705 | ||
2706 | __private_extern__ void | |
2707 | vm_object_deactivate_pages( | |
2708 | vm_object_t object, | |
2709 | vm_object_offset_t offset, | |
2710 | vm_object_size_t size, | |
2711 | boolean_t kill_page, | |
2712 | boolean_t reusable_page) | |
2713 | { | |
2714 | vm_object_size_t length; | |
2715 | boolean_t all_reusable; | |
2716 | ||
2717 | /* | |
2718 | * We break the range up into chunks and do one chunk at a time. This is for | |
2719 | * efficiency and performance while handling the shadow chains and the locks. | |
2720 | * The deactivate_a_chunk() function returns how much of the range it processed. | |
2721 | * We keep calling this routine until the given size is exhausted. | |
2722 | */ | |
2723 | ||
2724 | ||
2725 | all_reusable = FALSE; | |
2726 | if (reusable_page && | |
2727 | object->internal && | |
2728 | object->vo_size != 0 && | |
2729 | object->vo_size == size && | |
2730 | object->reusable_page_count == 0) { | |
2731 | all_reusable = TRUE; | |
2732 | reusable_page = FALSE; | |
2733 | } | |
2734 | ||
2735 | if ((reusable_page || all_reusable) && object->all_reusable) { | |
2736 | /* This means MADV_FREE_REUSABLE has been called twice, which | |
2737 | * is probably illegal. */ | |
2738 | return; | |
2739 | } | |
2740 | ||
2741 | while (size) { | |
2742 | length = deactivate_a_chunk(object, offset, size, kill_page, reusable_page, all_reusable); | |
2743 | ||
2744 | size -= length; | |
2745 | offset += length; | |
2746 | } | |
2747 | ||
2748 | if (all_reusable) { | |
2749 | if (!object->all_reusable) { | |
2750 | unsigned int reusable; | |
2751 | ||
2752 | object->all_reusable = TRUE; | |
2753 | assert(object->reusable_page_count == 0); | |
2754 | /* update global stats */ | |
2755 | reusable = object->resident_page_count; | |
2756 | OSAddAtomic(reusable, | |
2757 | &vm_page_stats_reusable.reusable_count); | |
2758 | vm_page_stats_reusable.reusable += reusable; | |
2759 | vm_page_stats_reusable.all_reusable_calls++; | |
2760 | } | |
2761 | } else if (reusable_page) { | |
2762 | vm_page_stats_reusable.partial_reusable_calls++; | |
2763 | } | |
2764 | } | |
2765 | ||
2766 | void | |
2767 | vm_object_reuse_pages( | |
2768 | vm_object_t object, | |
2769 | vm_object_offset_t start_offset, | |
2770 | vm_object_offset_t end_offset, | |
2771 | boolean_t allow_partial_reuse) | |
2772 | { | |
2773 | vm_object_offset_t cur_offset; | |
2774 | vm_page_t m; | |
2775 | unsigned int reused, reusable; | |
2776 | ||
2777 | #define VM_OBJECT_REUSE_PAGE(object, m, reused) \ | |
2778 | MACRO_BEGIN \ | |
2779 | if ((m) != VM_PAGE_NULL && \ | |
2780 | (m)->reusable) { \ | |
2781 | assert((object)->reusable_page_count <= \ | |
2782 | (object)->resident_page_count); \ | |
2783 | assert((object)->reusable_page_count > 0); \ | |
2784 | (object)->reusable_page_count--; \ | |
2785 | (m)->reusable = FALSE; \ | |
2786 | (reused)++; \ | |
2787 | } \ | |
2788 | MACRO_END | |
2789 | ||
2790 | reused = 0; | |
2791 | reusable = 0; | |
2792 | ||
2793 | vm_object_lock_assert_exclusive(object); | |
2794 | ||
2795 | if (object->all_reusable) { | |
2796 | assert(object->reusable_page_count == 0); | |
2797 | object->all_reusable = FALSE; | |
2798 | if (end_offset - start_offset == object->vo_size || | |
2799 | !allow_partial_reuse) { | |
2800 | vm_page_stats_reusable.all_reuse_calls++; | |
2801 | reused = object->resident_page_count; | |
2802 | } else { | |
2803 | vm_page_stats_reusable.partial_reuse_calls++; | |
2804 | queue_iterate(&object->memq, m, vm_page_t, listq) { | |
2805 | if (m->offset < start_offset || | |
2806 | m->offset >= end_offset) { | |
2807 | m->reusable = TRUE; | |
2808 | object->reusable_page_count++; | |
2809 | assert(object->resident_page_count >= object->reusable_page_count); | |
2810 | continue; | |
2811 | } else { | |
2812 | assert(!m->reusable); | |
2813 | reused++; | |
2814 | } | |
2815 | } | |
2816 | } | |
2817 | } else if (object->resident_page_count > | |
2818 | ((end_offset - start_offset) >> PAGE_SHIFT)) { | |
2819 | vm_page_stats_reusable.partial_reuse_calls++; | |
2820 | for (cur_offset = start_offset; | |
2821 | cur_offset < end_offset; | |
2822 | cur_offset += PAGE_SIZE_64) { | |
2823 | if (object->reusable_page_count == 0) { | |
2824 | break; | |
2825 | } | |
2826 | m = vm_page_lookup(object, cur_offset); | |
2827 | VM_OBJECT_REUSE_PAGE(object, m, reused); | |
2828 | } | |
2829 | } else { | |
2830 | vm_page_stats_reusable.partial_reuse_calls++; | |
2831 | queue_iterate(&object->memq, m, vm_page_t, listq) { | |
2832 | if (object->reusable_page_count == 0) { | |
2833 | break; | |
2834 | } | |
2835 | if (m->offset < start_offset || | |
2836 | m->offset >= end_offset) { | |
2837 | continue; | |
2838 | } | |
2839 | VM_OBJECT_REUSE_PAGE(object, m, reused); | |
2840 | } | |
2841 | } | |
2842 | ||
2843 | /* update global stats */ | |
2844 | OSAddAtomic(reusable-reused, &vm_page_stats_reusable.reusable_count); | |
2845 | vm_page_stats_reusable.reused += reused; | |
2846 | vm_page_stats_reusable.reusable += reusable; | |
2847 | } | |
2848 | ||
2849 | /* | |
2850 | * Routine: vm_object_pmap_protect | |
2851 | * | |
2852 | * Purpose: | |
2853 | * Reduces the permission for all physical | |
2854 | * pages in the specified object range. | |
2855 | * | |
2856 | * If removing write permission only, it is | |
2857 | * sufficient to protect only the pages in | |
2858 | * the top-level object; only those pages may | |
2859 | * have write permission. | |
2860 | * | |
2861 | * If removing all access, we must follow the | |
2862 | * shadow chain from the top-level object to | |
2863 | * remove access to all pages in shadowed objects. | |
2864 | * | |
2865 | * The object must *not* be locked. The object must | |
2866 | * be temporary/internal. | |
2867 | * | |
2868 | * If pmap is not NULL, this routine assumes that | |
2869 | * the only mappings for the pages are in that | |
2870 | * pmap. | |
2871 | */ | |
2872 | ||
2873 | __private_extern__ void | |
2874 | vm_object_pmap_protect( | |
2875 | register vm_object_t object, | |
2876 | register vm_object_offset_t offset, | |
2877 | vm_object_size_t size, | |
2878 | pmap_t pmap, | |
2879 | vm_map_offset_t pmap_start, | |
2880 | vm_prot_t prot) | |
2881 | { | |
2882 | if (object == VM_OBJECT_NULL) | |
2883 | return; | |
2884 | size = vm_object_round_page(size); | |
2885 | offset = vm_object_trunc_page(offset); | |
2886 | ||
2887 | vm_object_lock(object); | |
2888 | ||
2889 | if (object->phys_contiguous) { | |
2890 | if (pmap != NULL) { | |
2891 | vm_object_unlock(object); | |
2892 | pmap_protect(pmap, pmap_start, pmap_start + size, prot); | |
2893 | } else { | |
2894 | vm_object_offset_t phys_start, phys_end, phys_addr; | |
2895 | ||
2896 | phys_start = object->vo_shadow_offset + offset; | |
2897 | phys_end = phys_start + size; | |
2898 | assert(phys_start <= phys_end); | |
2899 | assert(phys_end <= object->vo_shadow_offset + object->vo_size); | |
2900 | vm_object_unlock(object); | |
2901 | ||
2902 | for (phys_addr = phys_start; | |
2903 | phys_addr < phys_end; | |
2904 | phys_addr += PAGE_SIZE_64) { | |
2905 | pmap_page_protect((ppnum_t) (phys_addr >> PAGE_SHIFT), prot); | |
2906 | } | |
2907 | } | |
2908 | return; | |
2909 | } | |
2910 | ||
2911 | assert(object->internal); | |
2912 | ||
2913 | while (TRUE) { | |
2914 | if (ptoa_64(object->resident_page_count) > size/2 && pmap != PMAP_NULL) { | |
2915 | vm_object_unlock(object); | |
2916 | pmap_protect(pmap, pmap_start, pmap_start + size, prot); | |
2917 | return; | |
2918 | } | |
2919 | ||
2920 | /* if we are doing large ranges with respect to resident */ | |
2921 | /* page count then we should interate over pages otherwise */ | |
2922 | /* inverse page look-up will be faster */ | |
2923 | if (ptoa_64(object->resident_page_count / 4) < size) { | |
2924 | vm_page_t p; | |
2925 | vm_object_offset_t end; | |
2926 | ||
2927 | end = offset + size; | |
2928 | ||
2929 | if (pmap != PMAP_NULL) { | |
2930 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
2931 | if (!p->fictitious && | |
2932 | (offset <= p->offset) && (p->offset < end)) { | |
2933 | vm_map_offset_t start; | |
2934 | ||
2935 | start = pmap_start + p->offset - offset; | |
2936 | pmap_protect(pmap, start, start + PAGE_SIZE_64, prot); | |
2937 | } | |
2938 | } | |
2939 | } else { | |
2940 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
2941 | if (!p->fictitious && | |
2942 | (offset <= p->offset) && (p->offset < end)) { | |
2943 | ||
2944 | pmap_page_protect(p->phys_page, prot); | |
2945 | } | |
2946 | } | |
2947 | } | |
2948 | } else { | |
2949 | vm_page_t p; | |
2950 | vm_object_offset_t end; | |
2951 | vm_object_offset_t target_off; | |
2952 | ||
2953 | end = offset + size; | |
2954 | ||
2955 | if (pmap != PMAP_NULL) { | |
2956 | for(target_off = offset; | |
2957 | target_off < end; | |
2958 | target_off += PAGE_SIZE) { | |
2959 | p = vm_page_lookup(object, target_off); | |
2960 | if (p != VM_PAGE_NULL) { | |
2961 | vm_object_offset_t start; | |
2962 | start = pmap_start + | |
2963 | (p->offset - offset); | |
2964 | pmap_protect(pmap, start, | |
2965 | start + PAGE_SIZE, prot); | |
2966 | } | |
2967 | } | |
2968 | } else { | |
2969 | for(target_off = offset; | |
2970 | target_off < end; target_off += PAGE_SIZE) { | |
2971 | p = vm_page_lookup(object, target_off); | |
2972 | if (p != VM_PAGE_NULL) { | |
2973 | pmap_page_protect(p->phys_page, prot); | |
2974 | } | |
2975 | } | |
2976 | } | |
2977 | } | |
2978 | ||
2979 | if (prot == VM_PROT_NONE) { | |
2980 | /* | |
2981 | * Must follow shadow chain to remove access | |
2982 | * to pages in shadowed objects. | |
2983 | */ | |
2984 | register vm_object_t next_object; | |
2985 | ||
2986 | next_object = object->shadow; | |
2987 | if (next_object != VM_OBJECT_NULL) { | |
2988 | offset += object->vo_shadow_offset; | |
2989 | vm_object_lock(next_object); | |
2990 | vm_object_unlock(object); | |
2991 | object = next_object; | |
2992 | } | |
2993 | else { | |
2994 | /* | |
2995 | * End of chain - we are done. | |
2996 | */ | |
2997 | break; | |
2998 | } | |
2999 | } | |
3000 | else { | |
3001 | /* | |
3002 | * Pages in shadowed objects may never have | |
3003 | * write permission - we may stop here. | |
3004 | */ | |
3005 | break; | |
3006 | } | |
3007 | } | |
3008 | ||
3009 | vm_object_unlock(object); | |
3010 | } | |
3011 | ||
3012 | /* | |
3013 | * Routine: vm_object_copy_slowly | |
3014 | * | |
3015 | * Description: | |
3016 | * Copy the specified range of the source | |
3017 | * virtual memory object without using | |
3018 | * protection-based optimizations (such | |
3019 | * as copy-on-write). The pages in the | |
3020 | * region are actually copied. | |
3021 | * | |
3022 | * In/out conditions: | |
3023 | * The caller must hold a reference and a lock | |
3024 | * for the source virtual memory object. The source | |
3025 | * object will be returned *unlocked*. | |
3026 | * | |
3027 | * Results: | |
3028 | * If the copy is completed successfully, KERN_SUCCESS is | |
3029 | * returned. If the caller asserted the interruptible | |
3030 | * argument, and an interruption occurred while waiting | |
3031 | * for a user-generated event, MACH_SEND_INTERRUPTED is | |
3032 | * returned. Other values may be returned to indicate | |
3033 | * hard errors during the copy operation. | |
3034 | * | |
3035 | * A new virtual memory object is returned in a | |
3036 | * parameter (_result_object). The contents of this | |
3037 | * new object, starting at a zero offset, are a copy | |
3038 | * of the source memory region. In the event of | |
3039 | * an error, this parameter will contain the value | |
3040 | * VM_OBJECT_NULL. | |
3041 | */ | |
3042 | __private_extern__ kern_return_t | |
3043 | vm_object_copy_slowly( | |
3044 | register vm_object_t src_object, | |
3045 | vm_object_offset_t src_offset, | |
3046 | vm_object_size_t size, | |
3047 | boolean_t interruptible, | |
3048 | vm_object_t *_result_object) /* OUT */ | |
3049 | { | |
3050 | vm_object_t new_object; | |
3051 | vm_object_offset_t new_offset; | |
3052 | ||
3053 | struct vm_object_fault_info fault_info; | |
3054 | ||
3055 | XPR(XPR_VM_OBJECT, "v_o_c_slowly obj 0x%x off 0x%x size 0x%x\n", | |
3056 | src_object, src_offset, size, 0, 0); | |
3057 | ||
3058 | if (size == 0) { | |
3059 | vm_object_unlock(src_object); | |
3060 | *_result_object = VM_OBJECT_NULL; | |
3061 | return(KERN_INVALID_ARGUMENT); | |
3062 | } | |
3063 | ||
3064 | /* | |
3065 | * Prevent destruction of the source object while we copy. | |
3066 | */ | |
3067 | ||
3068 | vm_object_reference_locked(src_object); | |
3069 | vm_object_unlock(src_object); | |
3070 | ||
3071 | /* | |
3072 | * Create a new object to hold the copied pages. | |
3073 | * A few notes: | |
3074 | * We fill the new object starting at offset 0, | |
3075 | * regardless of the input offset. | |
3076 | * We don't bother to lock the new object within | |
3077 | * this routine, since we have the only reference. | |
3078 | */ | |
3079 | ||
3080 | new_object = vm_object_allocate(size); | |
3081 | new_offset = 0; | |
3082 | ||
3083 | assert(size == trunc_page_64(size)); /* Will the loop terminate? */ | |
3084 | ||
3085 | fault_info.interruptible = interruptible; | |
3086 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
3087 | fault_info.user_tag = 0; | |
3088 | fault_info.lo_offset = src_offset; | |
3089 | fault_info.hi_offset = src_offset + size; | |
3090 | fault_info.no_cache = FALSE; | |
3091 | fault_info.stealth = TRUE; | |
3092 | fault_info.io_sync = FALSE; | |
3093 | fault_info.cs_bypass = FALSE; | |
3094 | fault_info.mark_zf_absent = FALSE; | |
3095 | ||
3096 | for ( ; | |
3097 | size != 0 ; | |
3098 | src_offset += PAGE_SIZE_64, | |
3099 | new_offset += PAGE_SIZE_64, size -= PAGE_SIZE_64 | |
3100 | ) { | |
3101 | vm_page_t new_page; | |
3102 | vm_fault_return_t result; | |
3103 | ||
3104 | vm_object_lock(new_object); | |
3105 | ||
3106 | while ((new_page = vm_page_alloc(new_object, new_offset)) | |
3107 | == VM_PAGE_NULL) { | |
3108 | ||
3109 | vm_object_unlock(new_object); | |
3110 | ||
3111 | if (!vm_page_wait(interruptible)) { | |
3112 | vm_object_deallocate(new_object); | |
3113 | vm_object_deallocate(src_object); | |
3114 | *_result_object = VM_OBJECT_NULL; | |
3115 | return(MACH_SEND_INTERRUPTED); | |
3116 | } | |
3117 | vm_object_lock(new_object); | |
3118 | } | |
3119 | vm_object_unlock(new_object); | |
3120 | ||
3121 | do { | |
3122 | vm_prot_t prot = VM_PROT_READ; | |
3123 | vm_page_t _result_page; | |
3124 | vm_page_t top_page; | |
3125 | register | |
3126 | vm_page_t result_page; | |
3127 | kern_return_t error_code; | |
3128 | ||
3129 | vm_object_lock(src_object); | |
3130 | vm_object_paging_begin(src_object); | |
3131 | ||
3132 | if (size > (vm_size_t) -1) { | |
3133 | /* 32-bit overflow */ | |
3134 | fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE); | |
3135 | } else { | |
3136 | fault_info.cluster_size = (vm_size_t) size; | |
3137 | assert(fault_info.cluster_size == size); | |
3138 | } | |
3139 | ||
3140 | XPR(XPR_VM_FAULT,"vm_object_copy_slowly -> vm_fault_page",0,0,0,0,0); | |
3141 | result = vm_fault_page(src_object, src_offset, | |
3142 | VM_PROT_READ, FALSE, | |
3143 | &prot, &_result_page, &top_page, | |
3144 | (int *)0, | |
3145 | &error_code, FALSE, FALSE, &fault_info); | |
3146 | ||
3147 | switch(result) { | |
3148 | case VM_FAULT_SUCCESS: | |
3149 | result_page = _result_page; | |
3150 | ||
3151 | /* | |
3152 | * We don't need to hold the object | |
3153 | * lock -- the busy page will be enough. | |
3154 | * [We don't care about picking up any | |
3155 | * new modifications.] | |
3156 | * | |
3157 | * Copy the page to the new object. | |
3158 | * | |
3159 | * POLICY DECISION: | |
3160 | * If result_page is clean, | |
3161 | * we could steal it instead | |
3162 | * of copying. | |
3163 | */ | |
3164 | ||
3165 | vm_object_unlock(result_page->object); | |
3166 | vm_page_copy(result_page, new_page); | |
3167 | ||
3168 | /* | |
3169 | * Let go of both pages (make them | |
3170 | * not busy, perform wakeup, activate). | |
3171 | */ | |
3172 | vm_object_lock(new_object); | |
3173 | new_page->dirty = TRUE; | |
3174 | PAGE_WAKEUP_DONE(new_page); | |
3175 | vm_object_unlock(new_object); | |
3176 | ||
3177 | vm_object_lock(result_page->object); | |
3178 | PAGE_WAKEUP_DONE(result_page); | |
3179 | ||
3180 | vm_page_lockspin_queues(); | |
3181 | if (!result_page->active && | |
3182 | !result_page->inactive && | |
3183 | !result_page->throttled) | |
3184 | vm_page_activate(result_page); | |
3185 | vm_page_activate(new_page); | |
3186 | vm_page_unlock_queues(); | |
3187 | ||
3188 | /* | |
3189 | * Release paging references and | |
3190 | * top-level placeholder page, if any. | |
3191 | */ | |
3192 | ||
3193 | vm_fault_cleanup(result_page->object, | |
3194 | top_page); | |
3195 | ||
3196 | break; | |
3197 | ||
3198 | case VM_FAULT_RETRY: | |
3199 | break; | |
3200 | ||
3201 | case VM_FAULT_MEMORY_SHORTAGE: | |
3202 | if (vm_page_wait(interruptible)) | |
3203 | break; | |
3204 | /* fall thru */ | |
3205 | ||
3206 | case VM_FAULT_INTERRUPTED: | |
3207 | vm_object_lock(new_object); | |
3208 | VM_PAGE_FREE(new_page); | |
3209 | vm_object_unlock(new_object); | |
3210 | ||
3211 | vm_object_deallocate(new_object); | |
3212 | vm_object_deallocate(src_object); | |
3213 | *_result_object = VM_OBJECT_NULL; | |
3214 | return(MACH_SEND_INTERRUPTED); | |
3215 | ||
3216 | case VM_FAULT_SUCCESS_NO_VM_PAGE: | |
3217 | /* success but no VM page: fail */ | |
3218 | vm_object_paging_end(src_object); | |
3219 | vm_object_unlock(src_object); | |
3220 | /*FALLTHROUGH*/ | |
3221 | case VM_FAULT_MEMORY_ERROR: | |
3222 | /* | |
3223 | * A policy choice: | |
3224 | * (a) ignore pages that we can't | |
3225 | * copy | |
3226 | * (b) return the null object if | |
3227 | * any page fails [chosen] | |
3228 | */ | |
3229 | ||
3230 | vm_object_lock(new_object); | |
3231 | VM_PAGE_FREE(new_page); | |
3232 | vm_object_unlock(new_object); | |
3233 | ||
3234 | vm_object_deallocate(new_object); | |
3235 | vm_object_deallocate(src_object); | |
3236 | *_result_object = VM_OBJECT_NULL; | |
3237 | return(error_code ? error_code: | |
3238 | KERN_MEMORY_ERROR); | |
3239 | ||
3240 | default: | |
3241 | panic("vm_object_copy_slowly: unexpected error" | |
3242 | " 0x%x from vm_fault_page()\n", result); | |
3243 | } | |
3244 | } while (result != VM_FAULT_SUCCESS); | |
3245 | } | |
3246 | ||
3247 | /* | |
3248 | * Lose the extra reference, and return our object. | |
3249 | */ | |
3250 | vm_object_deallocate(src_object); | |
3251 | *_result_object = new_object; | |
3252 | return(KERN_SUCCESS); | |
3253 | } | |
3254 | ||
3255 | /* | |
3256 | * Routine: vm_object_copy_quickly | |
3257 | * | |
3258 | * Purpose: | |
3259 | * Copy the specified range of the source virtual | |
3260 | * memory object, if it can be done without waiting | |
3261 | * for user-generated events. | |
3262 | * | |
3263 | * Results: | |
3264 | * If the copy is successful, the copy is returned in | |
3265 | * the arguments; otherwise, the arguments are not | |
3266 | * affected. | |
3267 | * | |
3268 | * In/out conditions: | |
3269 | * The object should be unlocked on entry and exit. | |
3270 | */ | |
3271 | ||
3272 | /*ARGSUSED*/ | |
3273 | __private_extern__ boolean_t | |
3274 | vm_object_copy_quickly( | |
3275 | vm_object_t *_object, /* INOUT */ | |
3276 | __unused vm_object_offset_t offset, /* IN */ | |
3277 | __unused vm_object_size_t size, /* IN */ | |
3278 | boolean_t *_src_needs_copy, /* OUT */ | |
3279 | boolean_t *_dst_needs_copy) /* OUT */ | |
3280 | { | |
3281 | vm_object_t object = *_object; | |
3282 | memory_object_copy_strategy_t copy_strategy; | |
3283 | ||
3284 | XPR(XPR_VM_OBJECT, "v_o_c_quickly obj 0x%x off 0x%x size 0x%x\n", | |
3285 | *_object, offset, size, 0, 0); | |
3286 | if (object == VM_OBJECT_NULL) { | |
3287 | *_src_needs_copy = FALSE; | |
3288 | *_dst_needs_copy = FALSE; | |
3289 | return(TRUE); | |
3290 | } | |
3291 | ||
3292 | vm_object_lock(object); | |
3293 | ||
3294 | copy_strategy = object->copy_strategy; | |
3295 | ||
3296 | switch (copy_strategy) { | |
3297 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
3298 | ||
3299 | /* | |
3300 | * Symmetric copy strategy. | |
3301 | * Make another reference to the object. | |
3302 | * Leave object/offset unchanged. | |
3303 | */ | |
3304 | ||
3305 | vm_object_reference_locked(object); | |
3306 | object->shadowed = TRUE; | |
3307 | vm_object_unlock(object); | |
3308 | ||
3309 | /* | |
3310 | * Both source and destination must make | |
3311 | * shadows, and the source must be made | |
3312 | * read-only if not already. | |
3313 | */ | |
3314 | ||
3315 | *_src_needs_copy = TRUE; | |
3316 | *_dst_needs_copy = TRUE; | |
3317 | ||
3318 | break; | |
3319 | ||
3320 | case MEMORY_OBJECT_COPY_DELAY: | |
3321 | vm_object_unlock(object); | |
3322 | return(FALSE); | |
3323 | ||
3324 | default: | |
3325 | vm_object_unlock(object); | |
3326 | return(FALSE); | |
3327 | } | |
3328 | return(TRUE); | |
3329 | } | |
3330 | ||
3331 | static int copy_call_count = 0; | |
3332 | static int copy_call_sleep_count = 0; | |
3333 | static int copy_call_restart_count = 0; | |
3334 | ||
3335 | /* | |
3336 | * Routine: vm_object_copy_call [internal] | |
3337 | * | |
3338 | * Description: | |
3339 | * Copy the source object (src_object), using the | |
3340 | * user-managed copy algorithm. | |
3341 | * | |
3342 | * In/out conditions: | |
3343 | * The source object must be locked on entry. It | |
3344 | * will be *unlocked* on exit. | |
3345 | * | |
3346 | * Results: | |
3347 | * If the copy is successful, KERN_SUCCESS is returned. | |
3348 | * A new object that represents the copied virtual | |
3349 | * memory is returned in a parameter (*_result_object). | |
3350 | * If the return value indicates an error, this parameter | |
3351 | * is not valid. | |
3352 | */ | |
3353 | static kern_return_t | |
3354 | vm_object_copy_call( | |
3355 | vm_object_t src_object, | |
3356 | vm_object_offset_t src_offset, | |
3357 | vm_object_size_t size, | |
3358 | vm_object_t *_result_object) /* OUT */ | |
3359 | { | |
3360 | kern_return_t kr; | |
3361 | vm_object_t copy; | |
3362 | boolean_t check_ready = FALSE; | |
3363 | uint32_t try_failed_count = 0; | |
3364 | ||
3365 | /* | |
3366 | * If a copy is already in progress, wait and retry. | |
3367 | * | |
3368 | * XXX | |
3369 | * Consider making this call interruptable, as Mike | |
3370 | * intended it to be. | |
3371 | * | |
3372 | * XXXO | |
3373 | * Need a counter or version or something to allow | |
3374 | * us to use the copy that the currently requesting | |
3375 | * thread is obtaining -- is it worth adding to the | |
3376 | * vm object structure? Depends how common this case it. | |
3377 | */ | |
3378 | copy_call_count++; | |
3379 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
3380 | vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL, | |
3381 | THREAD_UNINT); | |
3382 | copy_call_restart_count++; | |
3383 | } | |
3384 | ||
3385 | /* | |
3386 | * Indicate (for the benefit of memory_object_create_copy) | |
3387 | * that we want a copy for src_object. (Note that we cannot | |
3388 | * do a real assert_wait before calling memory_object_copy, | |
3389 | * so we simply set the flag.) | |
3390 | */ | |
3391 | ||
3392 | vm_object_set_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL); | |
3393 | vm_object_unlock(src_object); | |
3394 | ||
3395 | /* | |
3396 | * Ask the memory manager to give us a memory object | |
3397 | * which represents a copy of the src object. | |
3398 | * The memory manager may give us a memory object | |
3399 | * which we already have, or it may give us a | |
3400 | * new memory object. This memory object will arrive | |
3401 | * via memory_object_create_copy. | |
3402 | */ | |
3403 | ||
3404 | kr = KERN_FAILURE; /* XXX need to change memory_object.defs */ | |
3405 | if (kr != KERN_SUCCESS) { | |
3406 | return kr; | |
3407 | } | |
3408 | ||
3409 | /* | |
3410 | * Wait for the copy to arrive. | |
3411 | */ | |
3412 | vm_object_lock(src_object); | |
3413 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
3414 | vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL, | |
3415 | THREAD_UNINT); | |
3416 | copy_call_sleep_count++; | |
3417 | } | |
3418 | Retry: | |
3419 | assert(src_object->copy != VM_OBJECT_NULL); | |
3420 | copy = src_object->copy; | |
3421 | if (!vm_object_lock_try(copy)) { | |
3422 | vm_object_unlock(src_object); | |
3423 | ||
3424 | try_failed_count++; | |
3425 | mutex_pause(try_failed_count); /* wait a bit */ | |
3426 | ||
3427 | vm_object_lock(src_object); | |
3428 | goto Retry; | |
3429 | } | |
3430 | if (copy->vo_size < src_offset+size) | |
3431 | copy->vo_size = src_offset+size; | |
3432 | ||
3433 | if (!copy->pager_ready) | |
3434 | check_ready = TRUE; | |
3435 | ||
3436 | /* | |
3437 | * Return the copy. | |
3438 | */ | |
3439 | *_result_object = copy; | |
3440 | vm_object_unlock(copy); | |
3441 | vm_object_unlock(src_object); | |
3442 | ||
3443 | /* Wait for the copy to be ready. */ | |
3444 | if (check_ready == TRUE) { | |
3445 | vm_object_lock(copy); | |
3446 | while (!copy->pager_ready) { | |
3447 | vm_object_sleep(copy, VM_OBJECT_EVENT_PAGER_READY, THREAD_UNINT); | |
3448 | } | |
3449 | vm_object_unlock(copy); | |
3450 | } | |
3451 | ||
3452 | return KERN_SUCCESS; | |
3453 | } | |
3454 | ||
3455 | static int copy_delayed_lock_collisions = 0; | |
3456 | static int copy_delayed_max_collisions = 0; | |
3457 | static int copy_delayed_lock_contention = 0; | |
3458 | static int copy_delayed_protect_iterate = 0; | |
3459 | ||
3460 | /* | |
3461 | * Routine: vm_object_copy_delayed [internal] | |
3462 | * | |
3463 | * Description: | |
3464 | * Copy the specified virtual memory object, using | |
3465 | * the asymmetric copy-on-write algorithm. | |
3466 | * | |
3467 | * In/out conditions: | |
3468 | * The src_object must be locked on entry. It will be unlocked | |
3469 | * on exit - so the caller must also hold a reference to it. | |
3470 | * | |
3471 | * This routine will not block waiting for user-generated | |
3472 | * events. It is not interruptible. | |
3473 | */ | |
3474 | __private_extern__ vm_object_t | |
3475 | vm_object_copy_delayed( | |
3476 | vm_object_t src_object, | |
3477 | vm_object_offset_t src_offset, | |
3478 | vm_object_size_t size, | |
3479 | boolean_t src_object_shared) | |
3480 | { | |
3481 | vm_object_t new_copy = VM_OBJECT_NULL; | |
3482 | vm_object_t old_copy; | |
3483 | vm_page_t p; | |
3484 | vm_object_size_t copy_size = src_offset + size; | |
3485 | ||
3486 | ||
3487 | int collisions = 0; | |
3488 | /* | |
3489 | * The user-level memory manager wants to see all of the changes | |
3490 | * to this object, but it has promised not to make any changes on | |
3491 | * its own. | |
3492 | * | |
3493 | * Perform an asymmetric copy-on-write, as follows: | |
3494 | * Create a new object, called a "copy object" to hold | |
3495 | * pages modified by the new mapping (i.e., the copy, | |
3496 | * not the original mapping). | |
3497 | * Record the original object as the backing object for | |
3498 | * the copy object. If the original mapping does not | |
3499 | * change a page, it may be used read-only by the copy. | |
3500 | * Record the copy object in the original object. | |
3501 | * When the original mapping causes a page to be modified, | |
3502 | * it must be copied to a new page that is "pushed" to | |
3503 | * the copy object. | |
3504 | * Mark the new mapping (the copy object) copy-on-write. | |
3505 | * This makes the copy object itself read-only, allowing | |
3506 | * it to be reused if the original mapping makes no | |
3507 | * changes, and simplifying the synchronization required | |
3508 | * in the "push" operation described above. | |
3509 | * | |
3510 | * The copy-on-write is said to be assymetric because the original | |
3511 | * object is *not* marked copy-on-write. A copied page is pushed | |
3512 | * to the copy object, regardless which party attempted to modify | |
3513 | * the page. | |
3514 | * | |
3515 | * Repeated asymmetric copy operations may be done. If the | |
3516 | * original object has not been changed since the last copy, its | |
3517 | * copy object can be reused. Otherwise, a new copy object can be | |
3518 | * inserted between the original object and its previous copy | |
3519 | * object. Since any copy object is read-only, this cannot affect | |
3520 | * affect the contents of the previous copy object. | |
3521 | * | |
3522 | * Note that a copy object is higher in the object tree than the | |
3523 | * original object; therefore, use of the copy object recorded in | |
3524 | * the original object must be done carefully, to avoid deadlock. | |
3525 | */ | |
3526 | ||
3527 | Retry: | |
3528 | ||
3529 | /* | |
3530 | * Wait for paging in progress. | |
3531 | */ | |
3532 | if (!src_object->true_share && | |
3533 | (src_object->paging_in_progress != 0 || | |
3534 | src_object->activity_in_progress != 0)) { | |
3535 | if (src_object_shared == TRUE) { | |
3536 | vm_object_unlock(src_object); | |
3537 | vm_object_lock(src_object); | |
3538 | src_object_shared = FALSE; | |
3539 | goto Retry; | |
3540 | } | |
3541 | vm_object_paging_wait(src_object, THREAD_UNINT); | |
3542 | } | |
3543 | /* | |
3544 | * See whether we can reuse the result of a previous | |
3545 | * copy operation. | |
3546 | */ | |
3547 | ||
3548 | old_copy = src_object->copy; | |
3549 | if (old_copy != VM_OBJECT_NULL) { | |
3550 | int lock_granted; | |
3551 | ||
3552 | /* | |
3553 | * Try to get the locks (out of order) | |
3554 | */ | |
3555 | if (src_object_shared == TRUE) | |
3556 | lock_granted = vm_object_lock_try_shared(old_copy); | |
3557 | else | |
3558 | lock_granted = vm_object_lock_try(old_copy); | |
3559 | ||
3560 | if (!lock_granted) { | |
3561 | vm_object_unlock(src_object); | |
3562 | ||
3563 | if (collisions++ == 0) | |
3564 | copy_delayed_lock_contention++; | |
3565 | mutex_pause(collisions); | |
3566 | ||
3567 | /* Heisenberg Rules */ | |
3568 | copy_delayed_lock_collisions++; | |
3569 | ||
3570 | if (collisions > copy_delayed_max_collisions) | |
3571 | copy_delayed_max_collisions = collisions; | |
3572 | ||
3573 | if (src_object_shared == TRUE) | |
3574 | vm_object_lock_shared(src_object); | |
3575 | else | |
3576 | vm_object_lock(src_object); | |
3577 | ||
3578 | goto Retry; | |
3579 | } | |
3580 | ||
3581 | /* | |
3582 | * Determine whether the old copy object has | |
3583 | * been modified. | |
3584 | */ | |
3585 | ||
3586 | if (old_copy->resident_page_count == 0 && | |
3587 | !old_copy->pager_created) { | |
3588 | /* | |
3589 | * It has not been modified. | |
3590 | * | |
3591 | * Return another reference to | |
3592 | * the existing copy-object if | |
3593 | * we can safely grow it (if | |
3594 | * needed). | |
3595 | */ | |
3596 | ||
3597 | if (old_copy->vo_size < copy_size) { | |
3598 | if (src_object_shared == TRUE) { | |
3599 | vm_object_unlock(old_copy); | |
3600 | vm_object_unlock(src_object); | |
3601 | ||
3602 | vm_object_lock(src_object); | |
3603 | src_object_shared = FALSE; | |
3604 | goto Retry; | |
3605 | } | |
3606 | /* | |
3607 | * We can't perform a delayed copy if any of the | |
3608 | * pages in the extended range are wired (because | |
3609 | * we can't safely take write permission away from | |
3610 | * wired pages). If the pages aren't wired, then | |
3611 | * go ahead and protect them. | |
3612 | */ | |
3613 | copy_delayed_protect_iterate++; | |
3614 | ||
3615 | queue_iterate(&src_object->memq, p, vm_page_t, listq) { | |
3616 | if (!p->fictitious && | |
3617 | p->offset >= old_copy->vo_size && | |
3618 | p->offset < copy_size) { | |
3619 | if (VM_PAGE_WIRED(p)) { | |
3620 | vm_object_unlock(old_copy); | |
3621 | vm_object_unlock(src_object); | |
3622 | ||
3623 | if (new_copy != VM_OBJECT_NULL) { | |
3624 | vm_object_unlock(new_copy); | |
3625 | vm_object_deallocate(new_copy); | |
3626 | } | |
3627 | ||
3628 | return VM_OBJECT_NULL; | |
3629 | } else { | |
3630 | pmap_page_protect(p->phys_page, | |
3631 | (VM_PROT_ALL & ~VM_PROT_WRITE)); | |
3632 | } | |
3633 | } | |
3634 | } | |
3635 | old_copy->vo_size = copy_size; | |
3636 | } | |
3637 | if (src_object_shared == TRUE) | |
3638 | vm_object_reference_shared(old_copy); | |
3639 | else | |
3640 | vm_object_reference_locked(old_copy); | |
3641 | vm_object_unlock(old_copy); | |
3642 | vm_object_unlock(src_object); | |
3643 | ||
3644 | if (new_copy != VM_OBJECT_NULL) { | |
3645 | vm_object_unlock(new_copy); | |
3646 | vm_object_deallocate(new_copy); | |
3647 | } | |
3648 | return(old_copy); | |
3649 | } | |
3650 | ||
3651 | ||
3652 | ||
3653 | /* | |
3654 | * Adjust the size argument so that the newly-created | |
3655 | * copy object will be large enough to back either the | |
3656 | * old copy object or the new mapping. | |
3657 | */ | |
3658 | if (old_copy->vo_size > copy_size) | |
3659 | copy_size = old_copy->vo_size; | |
3660 | ||
3661 | if (new_copy == VM_OBJECT_NULL) { | |
3662 | vm_object_unlock(old_copy); | |
3663 | vm_object_unlock(src_object); | |
3664 | new_copy = vm_object_allocate(copy_size); | |
3665 | vm_object_lock(src_object); | |
3666 | vm_object_lock(new_copy); | |
3667 | ||
3668 | src_object_shared = FALSE; | |
3669 | goto Retry; | |
3670 | } | |
3671 | new_copy->vo_size = copy_size; | |
3672 | ||
3673 | /* | |
3674 | * The copy-object is always made large enough to | |
3675 | * completely shadow the original object, since | |
3676 | * it may have several users who want to shadow | |
3677 | * the original object at different points. | |
3678 | */ | |
3679 | ||
3680 | assert((old_copy->shadow == src_object) && | |
3681 | (old_copy->vo_shadow_offset == (vm_object_offset_t) 0)); | |
3682 | ||
3683 | } else if (new_copy == VM_OBJECT_NULL) { | |
3684 | vm_object_unlock(src_object); | |
3685 | new_copy = vm_object_allocate(copy_size); | |
3686 | vm_object_lock(src_object); | |
3687 | vm_object_lock(new_copy); | |
3688 | ||
3689 | src_object_shared = FALSE; | |
3690 | goto Retry; | |
3691 | } | |
3692 | ||
3693 | /* | |
3694 | * We now have the src object locked, and the new copy object | |
3695 | * allocated and locked (and potentially the old copy locked). | |
3696 | * Before we go any further, make sure we can still perform | |
3697 | * a delayed copy, as the situation may have changed. | |
3698 | * | |
3699 | * Specifically, we can't perform a delayed copy if any of the | |
3700 | * pages in the range are wired (because we can't safely take | |
3701 | * write permission away from wired pages). If the pages aren't | |
3702 | * wired, then go ahead and protect them. | |
3703 | */ | |
3704 | copy_delayed_protect_iterate++; | |
3705 | ||
3706 | queue_iterate(&src_object->memq, p, vm_page_t, listq) { | |
3707 | if (!p->fictitious && p->offset < copy_size) { | |
3708 | if (VM_PAGE_WIRED(p)) { | |
3709 | if (old_copy) | |
3710 | vm_object_unlock(old_copy); | |
3711 | vm_object_unlock(src_object); | |
3712 | vm_object_unlock(new_copy); | |
3713 | vm_object_deallocate(new_copy); | |
3714 | return VM_OBJECT_NULL; | |
3715 | } else { | |
3716 | pmap_page_protect(p->phys_page, | |
3717 | (VM_PROT_ALL & ~VM_PROT_WRITE)); | |
3718 | } | |
3719 | } | |
3720 | } | |
3721 | if (old_copy != VM_OBJECT_NULL) { | |
3722 | /* | |
3723 | * Make the old copy-object shadow the new one. | |
3724 | * It will receive no more pages from the original | |
3725 | * object. | |
3726 | */ | |
3727 | ||
3728 | /* remove ref. from old_copy */ | |
3729 | vm_object_lock_assert_exclusive(src_object); | |
3730 | src_object->ref_count--; | |
3731 | assert(src_object->ref_count > 0); | |
3732 | vm_object_lock_assert_exclusive(old_copy); | |
3733 | old_copy->shadow = new_copy; | |
3734 | vm_object_lock_assert_exclusive(new_copy); | |
3735 | assert(new_copy->ref_count > 0); | |
3736 | new_copy->ref_count++; /* for old_copy->shadow ref. */ | |
3737 | ||
3738 | #if TASK_SWAPPER | |
3739 | if (old_copy->res_count) { | |
3740 | VM_OBJ_RES_INCR(new_copy); | |
3741 | VM_OBJ_RES_DECR(src_object); | |
3742 | } | |
3743 | #endif | |
3744 | ||
3745 | vm_object_unlock(old_copy); /* done with old_copy */ | |
3746 | } | |
3747 | ||
3748 | /* | |
3749 | * Point the new copy at the existing object. | |
3750 | */ | |
3751 | vm_object_lock_assert_exclusive(new_copy); | |
3752 | new_copy->shadow = src_object; | |
3753 | new_copy->vo_shadow_offset = 0; | |
3754 | new_copy->shadowed = TRUE; /* caller must set needs_copy */ | |
3755 | ||
3756 | vm_object_lock_assert_exclusive(src_object); | |
3757 | vm_object_reference_locked(src_object); | |
3758 | src_object->copy = new_copy; | |
3759 | vm_object_unlock(src_object); | |
3760 | vm_object_unlock(new_copy); | |
3761 | ||
3762 | XPR(XPR_VM_OBJECT, | |
3763 | "vm_object_copy_delayed: used copy object %X for source %X\n", | |
3764 | new_copy, src_object, 0, 0, 0); | |
3765 | ||
3766 | return new_copy; | |
3767 | } | |
3768 | ||
3769 | /* | |
3770 | * Routine: vm_object_copy_strategically | |
3771 | * | |
3772 | * Purpose: | |
3773 | * Perform a copy according to the source object's | |
3774 | * declared strategy. This operation may block, | |
3775 | * and may be interrupted. | |
3776 | */ | |
3777 | __private_extern__ kern_return_t | |
3778 | vm_object_copy_strategically( | |
3779 | register vm_object_t src_object, | |
3780 | vm_object_offset_t src_offset, | |
3781 | vm_object_size_t size, | |
3782 | vm_object_t *dst_object, /* OUT */ | |
3783 | vm_object_offset_t *dst_offset, /* OUT */ | |
3784 | boolean_t *dst_needs_copy) /* OUT */ | |
3785 | { | |
3786 | boolean_t result; | |
3787 | boolean_t interruptible = THREAD_ABORTSAFE; /* XXX */ | |
3788 | boolean_t object_lock_shared = FALSE; | |
3789 | memory_object_copy_strategy_t copy_strategy; | |
3790 | ||
3791 | assert(src_object != VM_OBJECT_NULL); | |
3792 | ||
3793 | copy_strategy = src_object->copy_strategy; | |
3794 | ||
3795 | if (copy_strategy == MEMORY_OBJECT_COPY_DELAY) { | |
3796 | vm_object_lock_shared(src_object); | |
3797 | object_lock_shared = TRUE; | |
3798 | } else | |
3799 | vm_object_lock(src_object); | |
3800 | ||
3801 | /* | |
3802 | * The copy strategy is only valid if the memory manager | |
3803 | * is "ready". Internal objects are always ready. | |
3804 | */ | |
3805 | ||
3806 | while (!src_object->internal && !src_object->pager_ready) { | |
3807 | wait_result_t wait_result; | |
3808 | ||
3809 | if (object_lock_shared == TRUE) { | |
3810 | vm_object_unlock(src_object); | |
3811 | vm_object_lock(src_object); | |
3812 | object_lock_shared = FALSE; | |
3813 | continue; | |
3814 | } | |
3815 | wait_result = vm_object_sleep( src_object, | |
3816 | VM_OBJECT_EVENT_PAGER_READY, | |
3817 | interruptible); | |
3818 | if (wait_result != THREAD_AWAKENED) { | |
3819 | vm_object_unlock(src_object); | |
3820 | *dst_object = VM_OBJECT_NULL; | |
3821 | *dst_offset = 0; | |
3822 | *dst_needs_copy = FALSE; | |
3823 | return(MACH_SEND_INTERRUPTED); | |
3824 | } | |
3825 | } | |
3826 | ||
3827 | /* | |
3828 | * Use the appropriate copy strategy. | |
3829 | */ | |
3830 | ||
3831 | switch (copy_strategy) { | |
3832 | case MEMORY_OBJECT_COPY_DELAY: | |
3833 | *dst_object = vm_object_copy_delayed(src_object, | |
3834 | src_offset, size, object_lock_shared); | |
3835 | if (*dst_object != VM_OBJECT_NULL) { | |
3836 | *dst_offset = src_offset; | |
3837 | *dst_needs_copy = TRUE; | |
3838 | result = KERN_SUCCESS; | |
3839 | break; | |
3840 | } | |
3841 | vm_object_lock(src_object); | |
3842 | /* fall thru when delayed copy not allowed */ | |
3843 | ||
3844 | case MEMORY_OBJECT_COPY_NONE: | |
3845 | result = vm_object_copy_slowly(src_object, src_offset, size, | |
3846 | interruptible, dst_object); | |
3847 | if (result == KERN_SUCCESS) { | |
3848 | *dst_offset = 0; | |
3849 | *dst_needs_copy = FALSE; | |
3850 | } | |
3851 | break; | |
3852 | ||
3853 | case MEMORY_OBJECT_COPY_CALL: | |
3854 | result = vm_object_copy_call(src_object, src_offset, size, | |
3855 | dst_object); | |
3856 | if (result == KERN_SUCCESS) { | |
3857 | *dst_offset = src_offset; | |
3858 | *dst_needs_copy = TRUE; | |
3859 | } | |
3860 | break; | |
3861 | ||
3862 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
3863 | XPR(XPR_VM_OBJECT, "v_o_c_strategically obj 0x%x off 0x%x size 0x%x\n", src_object, src_offset, size, 0, 0); | |
3864 | vm_object_unlock(src_object); | |
3865 | result = KERN_MEMORY_RESTART_COPY; | |
3866 | break; | |
3867 | ||
3868 | default: | |
3869 | panic("copy_strategically: bad strategy"); | |
3870 | result = KERN_INVALID_ARGUMENT; | |
3871 | } | |
3872 | return(result); | |
3873 | } | |
3874 | ||
3875 | /* | |
3876 | * vm_object_shadow: | |
3877 | * | |
3878 | * Create a new object which is backed by the | |
3879 | * specified existing object range. The source | |
3880 | * object reference is deallocated. | |
3881 | * | |
3882 | * The new object and offset into that object | |
3883 | * are returned in the source parameters. | |
3884 | */ | |
3885 | boolean_t vm_object_shadow_check = TRUE; | |
3886 | ||
3887 | __private_extern__ boolean_t | |
3888 | vm_object_shadow( | |
3889 | vm_object_t *object, /* IN/OUT */ | |
3890 | vm_object_offset_t *offset, /* IN/OUT */ | |
3891 | vm_object_size_t length) | |
3892 | { | |
3893 | register vm_object_t source; | |
3894 | register vm_object_t result; | |
3895 | ||
3896 | source = *object; | |
3897 | #if 0 | |
3898 | /* | |
3899 | * XXX FBDP | |
3900 | * This assertion is valid but it gets triggered by Rosetta for example | |
3901 | * due to a combination of vm_remap() that changes a VM object's | |
3902 | * copy_strategy from SYMMETRIC to DELAY and vm_protect(VM_PROT_COPY) | |
3903 | * that then sets "needs_copy" on its map entry. This creates a | |
3904 | * mapping situation that VM should never see and doesn't know how to | |
3905 | * handle. | |
3906 | * It's not clear if this can create any real problem but we should | |
3907 | * look into fixing this, probably by having vm_protect(VM_PROT_COPY) | |
3908 | * do more than just set "needs_copy" to handle the copy-on-write... | |
3909 | * In the meantime, let's disable the assertion. | |
3910 | */ | |
3911 | assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC); | |
3912 | #endif | |
3913 | ||
3914 | /* | |
3915 | * Determine if we really need a shadow. | |
3916 | * | |
3917 | * If the source object is larger than what we are trying | |
3918 | * to create, then force the shadow creation even if the | |
3919 | * ref count is 1. This will allow us to [potentially] | |
3920 | * collapse the underlying object away in the future | |
3921 | * (freeing up the extra data it might contain and that | |
3922 | * we don't need). | |
3923 | */ | |
3924 | if (vm_object_shadow_check && | |
3925 | source->vo_size == length && | |
3926 | source->ref_count == 1 && | |
3927 | (source->shadow == VM_OBJECT_NULL || | |
3928 | source->shadow->copy == VM_OBJECT_NULL) ) | |
3929 | { | |
3930 | source->shadowed = FALSE; | |
3931 | return FALSE; | |
3932 | } | |
3933 | ||
3934 | /* | |
3935 | * Allocate a new object with the given length | |
3936 | */ | |
3937 | ||
3938 | if ((result = vm_object_allocate(length)) == VM_OBJECT_NULL) | |
3939 | panic("vm_object_shadow: no object for shadowing"); | |
3940 | ||
3941 | /* | |
3942 | * The new object shadows the source object, adding | |
3943 | * a reference to it. Our caller changes his reference | |
3944 | * to point to the new object, removing a reference to | |
3945 | * the source object. Net result: no change of reference | |
3946 | * count. | |
3947 | */ | |
3948 | result->shadow = source; | |
3949 | ||
3950 | /* | |
3951 | * Store the offset into the source object, | |
3952 | * and fix up the offset into the new object. | |
3953 | */ | |
3954 | ||
3955 | result->vo_shadow_offset = *offset; | |
3956 | ||
3957 | /* | |
3958 | * Return the new things | |
3959 | */ | |
3960 | ||
3961 | *offset = 0; | |
3962 | *object = result; | |
3963 | return TRUE; | |
3964 | } | |
3965 | ||
3966 | /* | |
3967 | * The relationship between vm_object structures and | |
3968 | * the memory_object requires careful synchronization. | |
3969 | * | |
3970 | * All associations are created by memory_object_create_named | |
3971 | * for external pagers and vm_object_pager_create for internal | |
3972 | * objects as follows: | |
3973 | * | |
3974 | * pager: the memory_object itself, supplied by | |
3975 | * the user requesting a mapping (or the kernel, | |
3976 | * when initializing internal objects); the | |
3977 | * kernel simulates holding send rights by keeping | |
3978 | * a port reference; | |
3979 | * | |
3980 | * pager_request: | |
3981 | * the memory object control port, | |
3982 | * created by the kernel; the kernel holds | |
3983 | * receive (and ownership) rights to this | |
3984 | * port, but no other references. | |
3985 | * | |
3986 | * When initialization is complete, the "initialized" field | |
3987 | * is asserted. Other mappings using a particular memory object, | |
3988 | * and any references to the vm_object gained through the | |
3989 | * port association must wait for this initialization to occur. | |
3990 | * | |
3991 | * In order to allow the memory manager to set attributes before | |
3992 | * requests (notably virtual copy operations, but also data or | |
3993 | * unlock requests) are made, a "ready" attribute is made available. | |
3994 | * Only the memory manager may affect the value of this attribute. | |
3995 | * Its value does not affect critical kernel functions, such as | |
3996 | * internal object initialization or destruction. [Furthermore, | |
3997 | * memory objects created by the kernel are assumed to be ready | |
3998 | * immediately; the default memory manager need not explicitly | |
3999 | * set the "ready" attribute.] | |
4000 | * | |
4001 | * [Both the "initialized" and "ready" attribute wait conditions | |
4002 | * use the "pager" field as the wait event.] | |
4003 | * | |
4004 | * The port associations can be broken down by any of the | |
4005 | * following routines: | |
4006 | * vm_object_terminate: | |
4007 | * No references to the vm_object remain, and | |
4008 | * the object cannot (or will not) be cached. | |
4009 | * This is the normal case, and is done even | |
4010 | * though one of the other cases has already been | |
4011 | * done. | |
4012 | * memory_object_destroy: | |
4013 | * The memory manager has requested that the | |
4014 | * kernel relinquish references to the memory | |
4015 | * object. [The memory manager may not want to | |
4016 | * destroy the memory object, but may wish to | |
4017 | * refuse or tear down existing memory mappings.] | |
4018 | * | |
4019 | * Each routine that breaks an association must break all of | |
4020 | * them at once. At some later time, that routine must clear | |
4021 | * the pager field and release the memory object references. | |
4022 | * [Furthermore, each routine must cope with the simultaneous | |
4023 | * or previous operations of the others.] | |
4024 | * | |
4025 | * In addition to the lock on the object, the vm_object_hash_lock | |
4026 | * governs the associations. References gained through the | |
4027 | * association require use of the hash lock. | |
4028 | * | |
4029 | * Because the pager field may be cleared spontaneously, it | |
4030 | * cannot be used to determine whether a memory object has | |
4031 | * ever been associated with a particular vm_object. [This | |
4032 | * knowledge is important to the shadow object mechanism.] | |
4033 | * For this reason, an additional "created" attribute is | |
4034 | * provided. | |
4035 | * | |
4036 | * During various paging operations, the pager reference found in the | |
4037 | * vm_object must be valid. To prevent this from being released, | |
4038 | * (other than being removed, i.e., made null), routines may use | |
4039 | * the vm_object_paging_begin/end routines [actually, macros]. | |
4040 | * The implementation uses the "paging_in_progress" and "wanted" fields. | |
4041 | * [Operations that alter the validity of the pager values include the | |
4042 | * termination routines and vm_object_collapse.] | |
4043 | */ | |
4044 | ||
4045 | ||
4046 | /* | |
4047 | * Routine: vm_object_enter | |
4048 | * Purpose: | |
4049 | * Find a VM object corresponding to the given | |
4050 | * pager; if no such object exists, create one, | |
4051 | * and initialize the pager. | |
4052 | */ | |
4053 | vm_object_t | |
4054 | vm_object_enter( | |
4055 | memory_object_t pager, | |
4056 | vm_object_size_t size, | |
4057 | boolean_t internal, | |
4058 | boolean_t init, | |
4059 | boolean_t named) | |
4060 | { | |
4061 | register vm_object_t object; | |
4062 | vm_object_t new_object; | |
4063 | boolean_t must_init; | |
4064 | vm_object_hash_entry_t entry, new_entry; | |
4065 | uint32_t try_failed_count = 0; | |
4066 | lck_mtx_t *lck; | |
4067 | ||
4068 | if (pager == MEMORY_OBJECT_NULL) | |
4069 | return(vm_object_allocate(size)); | |
4070 | ||
4071 | new_object = VM_OBJECT_NULL; | |
4072 | new_entry = VM_OBJECT_HASH_ENTRY_NULL; | |
4073 | must_init = init; | |
4074 | ||
4075 | /* | |
4076 | * Look for an object associated with this port. | |
4077 | */ | |
4078 | Retry: | |
4079 | lck = vm_object_hash_lock_spin(pager); | |
4080 | do { | |
4081 | entry = vm_object_hash_lookup(pager, FALSE); | |
4082 | ||
4083 | if (entry == VM_OBJECT_HASH_ENTRY_NULL) { | |
4084 | if (new_object == VM_OBJECT_NULL) { | |
4085 | /* | |
4086 | * We must unlock to create a new object; | |
4087 | * if we do so, we must try the lookup again. | |
4088 | */ | |
4089 | vm_object_hash_unlock(lck); | |
4090 | assert(new_entry == VM_OBJECT_HASH_ENTRY_NULL); | |
4091 | new_entry = vm_object_hash_entry_alloc(pager); | |
4092 | new_object = vm_object_allocate(size); | |
4093 | lck = vm_object_hash_lock_spin(pager); | |
4094 | } else { | |
4095 | /* | |
4096 | * Lookup failed twice, and we have something | |
4097 | * to insert; set the object. | |
4098 | */ | |
4099 | vm_object_hash_insert(new_entry, new_object); | |
4100 | entry = new_entry; | |
4101 | new_entry = VM_OBJECT_HASH_ENTRY_NULL; | |
4102 | new_object = VM_OBJECT_NULL; | |
4103 | must_init = TRUE; | |
4104 | } | |
4105 | } else if (entry->object == VM_OBJECT_NULL) { | |
4106 | /* | |
4107 | * If a previous object is being terminated, | |
4108 | * we must wait for the termination message | |
4109 | * to be queued (and lookup the entry again). | |
4110 | */ | |
4111 | entry->waiting = TRUE; | |
4112 | entry = VM_OBJECT_HASH_ENTRY_NULL; | |
4113 | assert_wait((event_t) pager, THREAD_UNINT); | |
4114 | vm_object_hash_unlock(lck); | |
4115 | ||
4116 | thread_block(THREAD_CONTINUE_NULL); | |
4117 | lck = vm_object_hash_lock_spin(pager); | |
4118 | } | |
4119 | } while (entry == VM_OBJECT_HASH_ENTRY_NULL); | |
4120 | ||
4121 | object = entry->object; | |
4122 | assert(object != VM_OBJECT_NULL); | |
4123 | ||
4124 | if (!must_init) { | |
4125 | if ( !vm_object_lock_try(object)) { | |
4126 | ||
4127 | vm_object_hash_unlock(lck); | |
4128 | ||
4129 | try_failed_count++; | |
4130 | mutex_pause(try_failed_count); /* wait a bit */ | |
4131 | goto Retry; | |
4132 | } | |
4133 | assert(!internal || object->internal); | |
4134 | #if VM_OBJECT_CACHE | |
4135 | if (object->ref_count == 0) { | |
4136 | if ( !vm_object_cache_lock_try()) { | |
4137 | ||
4138 | vm_object_hash_unlock(lck); | |
4139 | vm_object_unlock(object); | |
4140 | ||
4141 | try_failed_count++; | |
4142 | mutex_pause(try_failed_count); /* wait a bit */ | |
4143 | goto Retry; | |
4144 | } | |
4145 | XPR(XPR_VM_OBJECT_CACHE, | |
4146 | "vm_object_enter: removing %x from cache, head (%x, %x)\n", | |
4147 | object, | |
4148 | vm_object_cached_list.next, | |
4149 | vm_object_cached_list.prev, 0,0); | |
4150 | queue_remove(&vm_object_cached_list, object, | |
4151 | vm_object_t, cached_list); | |
4152 | vm_object_cached_count--; | |
4153 | ||
4154 | vm_object_cache_unlock(); | |
4155 | } | |
4156 | #endif | |
4157 | if (named) { | |
4158 | assert(!object->named); | |
4159 | object->named = TRUE; | |
4160 | } | |
4161 | vm_object_lock_assert_exclusive(object); | |
4162 | object->ref_count++; | |
4163 | vm_object_res_reference(object); | |
4164 | ||
4165 | vm_object_hash_unlock(lck); | |
4166 | vm_object_unlock(object); | |
4167 | ||
4168 | VM_STAT_INCR(hits); | |
4169 | } else | |
4170 | vm_object_hash_unlock(lck); | |
4171 | ||
4172 | assert(object->ref_count > 0); | |
4173 | ||
4174 | VM_STAT_INCR(lookups); | |
4175 | ||
4176 | XPR(XPR_VM_OBJECT, | |
4177 | "vm_o_enter: pager 0x%x obj 0x%x must_init %d\n", | |
4178 | pager, object, must_init, 0, 0); | |
4179 | ||
4180 | /* | |
4181 | * If we raced to create a vm_object but lost, let's | |
4182 | * throw away ours. | |
4183 | */ | |
4184 | ||
4185 | if (new_object != VM_OBJECT_NULL) | |
4186 | vm_object_deallocate(new_object); | |
4187 | ||
4188 | if (new_entry != VM_OBJECT_HASH_ENTRY_NULL) | |
4189 | vm_object_hash_entry_free(new_entry); | |
4190 | ||
4191 | if (must_init) { | |
4192 | memory_object_control_t control; | |
4193 | ||
4194 | /* | |
4195 | * Allocate request port. | |
4196 | */ | |
4197 | ||
4198 | control = memory_object_control_allocate(object); | |
4199 | assert (control != MEMORY_OBJECT_CONTROL_NULL); | |
4200 | ||
4201 | vm_object_lock(object); | |
4202 | assert(object != kernel_object); | |
4203 | ||
4204 | /* | |
4205 | * Copy the reference we were given. | |
4206 | */ | |
4207 | ||
4208 | memory_object_reference(pager); | |
4209 | object->pager_created = TRUE; | |
4210 | object->pager = pager; | |
4211 | object->internal = internal; | |
4212 | object->pager_trusted = internal; | |
4213 | if (!internal) { | |
4214 | /* copy strategy invalid until set by memory manager */ | |
4215 | object->copy_strategy = MEMORY_OBJECT_COPY_INVALID; | |
4216 | } | |
4217 | object->pager_control = control; | |
4218 | object->pager_ready = FALSE; | |
4219 | ||
4220 | vm_object_unlock(object); | |
4221 | ||
4222 | /* | |
4223 | * Let the pager know we're using it. | |
4224 | */ | |
4225 | ||
4226 | (void) memory_object_init(pager, | |
4227 | object->pager_control, | |
4228 | PAGE_SIZE); | |
4229 | ||
4230 | vm_object_lock(object); | |
4231 | if (named) | |
4232 | object->named = TRUE; | |
4233 | if (internal) { | |
4234 | object->pager_ready = TRUE; | |
4235 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
4236 | } | |
4237 | ||
4238 | object->pager_initialized = TRUE; | |
4239 | vm_object_wakeup(object, VM_OBJECT_EVENT_INITIALIZED); | |
4240 | } else { | |
4241 | vm_object_lock(object); | |
4242 | } | |
4243 | ||
4244 | /* | |
4245 | * [At this point, the object must be locked] | |
4246 | */ | |
4247 | ||
4248 | /* | |
4249 | * Wait for the work above to be done by the first | |
4250 | * thread to map this object. | |
4251 | */ | |
4252 | ||
4253 | while (!object->pager_initialized) { | |
4254 | vm_object_sleep(object, | |
4255 | VM_OBJECT_EVENT_INITIALIZED, | |
4256 | THREAD_UNINT); | |
4257 | } | |
4258 | vm_object_unlock(object); | |
4259 | ||
4260 | XPR(XPR_VM_OBJECT, | |
4261 | "vm_object_enter: vm_object %x, memory_object %x, internal %d\n", | |
4262 | object, object->pager, internal, 0,0); | |
4263 | return(object); | |
4264 | } | |
4265 | ||
4266 | /* | |
4267 | * Routine: vm_object_pager_create | |
4268 | * Purpose: | |
4269 | * Create a memory object for an internal object. | |
4270 | * In/out conditions: | |
4271 | * The object is locked on entry and exit; | |
4272 | * it may be unlocked within this call. | |
4273 | * Limitations: | |
4274 | * Only one thread may be performing a | |
4275 | * vm_object_pager_create on an object at | |
4276 | * a time. Presumably, only the pageout | |
4277 | * daemon will be using this routine. | |
4278 | */ | |
4279 | ||
4280 | void | |
4281 | vm_object_pager_create( | |
4282 | register vm_object_t object) | |
4283 | { | |
4284 | memory_object_t pager; | |
4285 | vm_object_hash_entry_t entry; | |
4286 | lck_mtx_t *lck; | |
4287 | #if MACH_PAGEMAP | |
4288 | vm_object_size_t size; | |
4289 | vm_external_map_t map; | |
4290 | #endif /* MACH_PAGEMAP */ | |
4291 | ||
4292 | XPR(XPR_VM_OBJECT, "vm_object_pager_create, object 0x%X\n", | |
4293 | object, 0,0,0,0); | |
4294 | ||
4295 | assert(object != kernel_object); | |
4296 | ||
4297 | if (memory_manager_default_check() != KERN_SUCCESS) | |
4298 | return; | |
4299 | ||
4300 | /* | |
4301 | * Prevent collapse or termination by holding a paging reference | |
4302 | */ | |
4303 | ||
4304 | vm_object_paging_begin(object); | |
4305 | if (object->pager_created) { | |
4306 | /* | |
4307 | * Someone else got to it first... | |
4308 | * wait for them to finish initializing the ports | |
4309 | */ | |
4310 | while (!object->pager_initialized) { | |
4311 | vm_object_sleep(object, | |
4312 | VM_OBJECT_EVENT_INITIALIZED, | |
4313 | THREAD_UNINT); | |
4314 | } | |
4315 | vm_object_paging_end(object); | |
4316 | return; | |
4317 | } | |
4318 | ||
4319 | /* | |
4320 | * Indicate that a memory object has been assigned | |
4321 | * before dropping the lock, to prevent a race. | |
4322 | */ | |
4323 | ||
4324 | object->pager_created = TRUE; | |
4325 | object->paging_offset = 0; | |
4326 | ||
4327 | #if MACH_PAGEMAP | |
4328 | size = object->vo_size; | |
4329 | #endif /* MACH_PAGEMAP */ | |
4330 | vm_object_unlock(object); | |
4331 | ||
4332 | #if MACH_PAGEMAP | |
4333 | map = vm_external_create(size); | |
4334 | vm_object_lock(object); | |
4335 | assert(object->vo_size == size); | |
4336 | object->existence_map = map; | |
4337 | vm_object_unlock(object); | |
4338 | #endif /* MACH_PAGEMAP */ | |
4339 | ||
4340 | if ((uint32_t) object->vo_size != object->vo_size) { | |
4341 | panic("vm_object_pager_create(): object size 0x%llx >= 4GB\n", | |
4342 | (uint64_t) object->vo_size); | |
4343 | } | |
4344 | ||
4345 | /* | |
4346 | * Create the [internal] pager, and associate it with this object. | |
4347 | * | |
4348 | * We make the association here so that vm_object_enter() | |
4349 | * can look up the object to complete initializing it. No | |
4350 | * user will ever map this object. | |
4351 | */ | |
4352 | { | |
4353 | memory_object_default_t dmm; | |
4354 | ||
4355 | /* acquire a reference for the default memory manager */ | |
4356 | dmm = memory_manager_default_reference(); | |
4357 | ||
4358 | assert(object->temporary); | |
4359 | ||
4360 | /* create our new memory object */ | |
4361 | assert((vm_size_t) object->vo_size == object->vo_size); | |
4362 | (void) memory_object_create(dmm, (vm_size_t) object->vo_size, | |
4363 | &pager); | |
4364 | ||
4365 | memory_object_default_deallocate(dmm); | |
4366 | } | |
4367 | ||
4368 | entry = vm_object_hash_entry_alloc(pager); | |
4369 | ||
4370 | lck = vm_object_hash_lock_spin(pager); | |
4371 | vm_object_hash_insert(entry, object); | |
4372 | vm_object_hash_unlock(lck); | |
4373 | ||
4374 | /* | |
4375 | * A reference was returned by | |
4376 | * memory_object_create(), and it is | |
4377 | * copied by vm_object_enter(). | |
4378 | */ | |
4379 | ||
4380 | if (vm_object_enter(pager, object->vo_size, TRUE, TRUE, FALSE) != object) | |
4381 | panic("vm_object_pager_create: mismatch"); | |
4382 | ||
4383 | /* | |
4384 | * Drop the reference we were passed. | |
4385 | */ | |
4386 | memory_object_deallocate(pager); | |
4387 | ||
4388 | vm_object_lock(object); | |
4389 | ||
4390 | /* | |
4391 | * Release the paging reference | |
4392 | */ | |
4393 | vm_object_paging_end(object); | |
4394 | } | |
4395 | ||
4396 | /* | |
4397 | * Routine: vm_object_remove | |
4398 | * Purpose: | |
4399 | * Eliminate the pager/object association | |
4400 | * for this pager. | |
4401 | * Conditions: | |
4402 | * The object cache must be locked. | |
4403 | */ | |
4404 | __private_extern__ void | |
4405 | vm_object_remove( | |
4406 | vm_object_t object) | |
4407 | { | |
4408 | memory_object_t pager; | |
4409 | ||
4410 | if ((pager = object->pager) != MEMORY_OBJECT_NULL) { | |
4411 | vm_object_hash_entry_t entry; | |
4412 | ||
4413 | entry = vm_object_hash_lookup(pager, FALSE); | |
4414 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) | |
4415 | entry->object = VM_OBJECT_NULL; | |
4416 | } | |
4417 | ||
4418 | } | |
4419 | ||
4420 | /* | |
4421 | * Global variables for vm_object_collapse(): | |
4422 | * | |
4423 | * Counts for normal collapses and bypasses. | |
4424 | * Debugging variables, to watch or disable collapse. | |
4425 | */ | |
4426 | static long object_collapses = 0; | |
4427 | static long object_bypasses = 0; | |
4428 | ||
4429 | static boolean_t vm_object_collapse_allowed = TRUE; | |
4430 | static boolean_t vm_object_bypass_allowed = TRUE; | |
4431 | ||
4432 | #if MACH_PAGEMAP | |
4433 | static int vm_external_discarded; | |
4434 | static int vm_external_collapsed; | |
4435 | #endif | |
4436 | ||
4437 | unsigned long vm_object_collapse_encrypted = 0; | |
4438 | ||
4439 | /* | |
4440 | * Routine: vm_object_do_collapse | |
4441 | * Purpose: | |
4442 | * Collapse an object with the object backing it. | |
4443 | * Pages in the backing object are moved into the | |
4444 | * parent, and the backing object is deallocated. | |
4445 | * Conditions: | |
4446 | * Both objects and the cache are locked; the page | |
4447 | * queues are unlocked. | |
4448 | * | |
4449 | */ | |
4450 | static void | |
4451 | vm_object_do_collapse( | |
4452 | vm_object_t object, | |
4453 | vm_object_t backing_object) | |
4454 | { | |
4455 | vm_page_t p, pp; | |
4456 | vm_object_offset_t new_offset, backing_offset; | |
4457 | vm_object_size_t size; | |
4458 | ||
4459 | vm_object_lock_assert_exclusive(object); | |
4460 | vm_object_lock_assert_exclusive(backing_object); | |
4461 | ||
4462 | backing_offset = object->vo_shadow_offset; | |
4463 | size = object->vo_size; | |
4464 | ||
4465 | /* | |
4466 | * Move all in-memory pages from backing_object | |
4467 | * to the parent. Pages that have been paged out | |
4468 | * will be overwritten by any of the parent's | |
4469 | * pages that shadow them. | |
4470 | */ | |
4471 | ||
4472 | while (!queue_empty(&backing_object->memq)) { | |
4473 | ||
4474 | p = (vm_page_t) queue_first(&backing_object->memq); | |
4475 | ||
4476 | new_offset = (p->offset - backing_offset); | |
4477 | ||
4478 | assert(!p->busy || p->absent); | |
4479 | ||
4480 | /* | |
4481 | * If the parent has a page here, or if | |
4482 | * this page falls outside the parent, | |
4483 | * dispose of it. | |
4484 | * | |
4485 | * Otherwise, move it as planned. | |
4486 | */ | |
4487 | ||
4488 | if (p->offset < backing_offset || new_offset >= size) { | |
4489 | VM_PAGE_FREE(p); | |
4490 | } else { | |
4491 | /* | |
4492 | * ENCRYPTED SWAP: | |
4493 | * The encryption key includes the "pager" and the | |
4494 | * "paging_offset". These will not change during the | |
4495 | * object collapse, so we can just move an encrypted | |
4496 | * page from one object to the other in this case. | |
4497 | * We can't decrypt the page here, since we can't drop | |
4498 | * the object lock. | |
4499 | */ | |
4500 | if (p->encrypted) { | |
4501 | vm_object_collapse_encrypted++; | |
4502 | } | |
4503 | pp = vm_page_lookup(object, new_offset); | |
4504 | if (pp == VM_PAGE_NULL) { | |
4505 | ||
4506 | /* | |
4507 | * Parent now has no page. | |
4508 | * Move the backing object's page up. | |
4509 | */ | |
4510 | ||
4511 | vm_page_rename(p, object, new_offset, TRUE); | |
4512 | #if MACH_PAGEMAP | |
4513 | } else if (pp->absent) { | |
4514 | ||
4515 | /* | |
4516 | * Parent has an absent page... | |
4517 | * it's not being paged in, so | |
4518 | * it must really be missing from | |
4519 | * the parent. | |
4520 | * | |
4521 | * Throw out the absent page... | |
4522 | * any faults looking for that | |
4523 | * page will restart with the new | |
4524 | * one. | |
4525 | */ | |
4526 | ||
4527 | VM_PAGE_FREE(pp); | |
4528 | vm_page_rename(p, object, new_offset, TRUE); | |
4529 | #endif /* MACH_PAGEMAP */ | |
4530 | } else { | |
4531 | assert(! pp->absent); | |
4532 | ||
4533 | /* | |
4534 | * Parent object has a real page. | |
4535 | * Throw away the backing object's | |
4536 | * page. | |
4537 | */ | |
4538 | VM_PAGE_FREE(p); | |
4539 | } | |
4540 | } | |
4541 | } | |
4542 | ||
4543 | #if !MACH_PAGEMAP | |
4544 | assert((!object->pager_created && (object->pager == MEMORY_OBJECT_NULL)) | |
4545 | || (!backing_object->pager_created | |
4546 | && (backing_object->pager == MEMORY_OBJECT_NULL))); | |
4547 | #else | |
4548 | assert(!object->pager_created && object->pager == MEMORY_OBJECT_NULL); | |
4549 | #endif /* !MACH_PAGEMAP */ | |
4550 | ||
4551 | if (backing_object->pager != MEMORY_OBJECT_NULL) { | |
4552 | vm_object_hash_entry_t entry; | |
4553 | ||
4554 | /* | |
4555 | * Move the pager from backing_object to object. | |
4556 | * | |
4557 | * XXX We're only using part of the paging space | |
4558 | * for keeps now... we ought to discard the | |
4559 | * unused portion. | |
4560 | */ | |
4561 | ||
4562 | assert(!object->paging_in_progress); | |
4563 | assert(!object->activity_in_progress); | |
4564 | object->pager = backing_object->pager; | |
4565 | ||
4566 | if (backing_object->hashed) { | |
4567 | lck_mtx_t *lck; | |
4568 | ||
4569 | lck = vm_object_hash_lock_spin(backing_object->pager); | |
4570 | entry = vm_object_hash_lookup(object->pager, FALSE); | |
4571 | assert(entry != VM_OBJECT_HASH_ENTRY_NULL); | |
4572 | entry->object = object; | |
4573 | vm_object_hash_unlock(lck); | |
4574 | ||
4575 | object->hashed = TRUE; | |
4576 | } | |
4577 | object->pager_created = backing_object->pager_created; | |
4578 | object->pager_control = backing_object->pager_control; | |
4579 | object->pager_ready = backing_object->pager_ready; | |
4580 | object->pager_initialized = backing_object->pager_initialized; | |
4581 | object->paging_offset = | |
4582 | backing_object->paging_offset + backing_offset; | |
4583 | if (object->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
4584 | memory_object_control_collapse(object->pager_control, | |
4585 | object); | |
4586 | } | |
4587 | } | |
4588 | ||
4589 | #if MACH_PAGEMAP | |
4590 | /* | |
4591 | * If the shadow offset is 0, the use the existence map from | |
4592 | * the backing object if there is one. If the shadow offset is | |
4593 | * not zero, toss it. | |
4594 | * | |
4595 | * XXX - If the shadow offset is not 0 then a bit copy is needed | |
4596 | * if the map is to be salvaged. For now, we just just toss the | |
4597 | * old map, giving the collapsed object no map. This means that | |
4598 | * the pager is invoked for zero fill pages. If analysis shows | |
4599 | * that this happens frequently and is a performance hit, then | |
4600 | * this code should be fixed to salvage the map. | |
4601 | */ | |
4602 | assert(object->existence_map == VM_EXTERNAL_NULL); | |
4603 | if (backing_offset || (size != backing_object->vo_size)) { | |
4604 | vm_external_discarded++; | |
4605 | vm_external_destroy(backing_object->existence_map, | |
4606 | backing_object->vo_size); | |
4607 | } | |
4608 | else { | |
4609 | vm_external_collapsed++; | |
4610 | object->existence_map = backing_object->existence_map; | |
4611 | } | |
4612 | backing_object->existence_map = VM_EXTERNAL_NULL; | |
4613 | #endif /* MACH_PAGEMAP */ | |
4614 | ||
4615 | /* | |
4616 | * Object now shadows whatever backing_object did. | |
4617 | * Note that the reference to backing_object->shadow | |
4618 | * moves from within backing_object to within object. | |
4619 | */ | |
4620 | ||
4621 | assert(!object->phys_contiguous); | |
4622 | assert(!backing_object->phys_contiguous); | |
4623 | object->shadow = backing_object->shadow; | |
4624 | if (object->shadow) { | |
4625 | object->vo_shadow_offset += backing_object->vo_shadow_offset; | |
4626 | } else { | |
4627 | /* no shadow, therefore no shadow offset... */ | |
4628 | object->vo_shadow_offset = 0; | |
4629 | } | |
4630 | assert((object->shadow == VM_OBJECT_NULL) || | |
4631 | (object->shadow->copy != backing_object)); | |
4632 | ||
4633 | /* | |
4634 | * Discard backing_object. | |
4635 | * | |
4636 | * Since the backing object has no pages, no | |
4637 | * pager left, and no object references within it, | |
4638 | * all that is necessary is to dispose of it. | |
4639 | */ | |
4640 | ||
4641 | assert((backing_object->ref_count == 1) && | |
4642 | (backing_object->resident_page_count == 0) && | |
4643 | (backing_object->paging_in_progress == 0) && | |
4644 | (backing_object->activity_in_progress == 0)); | |
4645 | ||
4646 | backing_object->alive = FALSE; | |
4647 | vm_object_unlock(backing_object); | |
4648 | ||
4649 | XPR(XPR_VM_OBJECT, "vm_object_collapse, collapsed 0x%X\n", | |
4650 | backing_object, 0,0,0,0); | |
4651 | ||
4652 | vm_object_lock_destroy(backing_object); | |
4653 | ||
4654 | zfree(vm_object_zone, backing_object); | |
4655 | ||
4656 | object_collapses++; | |
4657 | } | |
4658 | ||
4659 | static void | |
4660 | vm_object_do_bypass( | |
4661 | vm_object_t object, | |
4662 | vm_object_t backing_object) | |
4663 | { | |
4664 | /* | |
4665 | * Make the parent shadow the next object | |
4666 | * in the chain. | |
4667 | */ | |
4668 | ||
4669 | vm_object_lock_assert_exclusive(object); | |
4670 | vm_object_lock_assert_exclusive(backing_object); | |
4671 | ||
4672 | #if TASK_SWAPPER | |
4673 | /* | |
4674 | * Do object reference in-line to | |
4675 | * conditionally increment shadow's | |
4676 | * residence count. If object is not | |
4677 | * resident, leave residence count | |
4678 | * on shadow alone. | |
4679 | */ | |
4680 | if (backing_object->shadow != VM_OBJECT_NULL) { | |
4681 | vm_object_lock(backing_object->shadow); | |
4682 | vm_object_lock_assert_exclusive(backing_object->shadow); | |
4683 | backing_object->shadow->ref_count++; | |
4684 | if (object->res_count != 0) | |
4685 | vm_object_res_reference(backing_object->shadow); | |
4686 | vm_object_unlock(backing_object->shadow); | |
4687 | } | |
4688 | #else /* TASK_SWAPPER */ | |
4689 | vm_object_reference(backing_object->shadow); | |
4690 | #endif /* TASK_SWAPPER */ | |
4691 | ||
4692 | assert(!object->phys_contiguous); | |
4693 | assert(!backing_object->phys_contiguous); | |
4694 | object->shadow = backing_object->shadow; | |
4695 | if (object->shadow) { | |
4696 | object->vo_shadow_offset += backing_object->vo_shadow_offset; | |
4697 | } else { | |
4698 | /* no shadow, therefore no shadow offset... */ | |
4699 | object->vo_shadow_offset = 0; | |
4700 | } | |
4701 | ||
4702 | /* | |
4703 | * Backing object might have had a copy pointer | |
4704 | * to us. If it did, clear it. | |
4705 | */ | |
4706 | if (backing_object->copy == object) { | |
4707 | backing_object->copy = VM_OBJECT_NULL; | |
4708 | } | |
4709 | ||
4710 | /* | |
4711 | * Drop the reference count on backing_object. | |
4712 | #if TASK_SWAPPER | |
4713 | * Since its ref_count was at least 2, it | |
4714 | * will not vanish; so we don't need to call | |
4715 | * vm_object_deallocate. | |
4716 | * [with a caveat for "named" objects] | |
4717 | * | |
4718 | * The res_count on the backing object is | |
4719 | * conditionally decremented. It's possible | |
4720 | * (via vm_pageout_scan) to get here with | |
4721 | * a "swapped" object, which has a 0 res_count, | |
4722 | * in which case, the backing object res_count | |
4723 | * is already down by one. | |
4724 | #else | |
4725 | * Don't call vm_object_deallocate unless | |
4726 | * ref_count drops to zero. | |
4727 | * | |
4728 | * The ref_count can drop to zero here if the | |
4729 | * backing object could be bypassed but not | |
4730 | * collapsed, such as when the backing object | |
4731 | * is temporary and cachable. | |
4732 | #endif | |
4733 | */ | |
4734 | if (backing_object->ref_count > 2 || | |
4735 | (!backing_object->named && backing_object->ref_count > 1)) { | |
4736 | vm_object_lock_assert_exclusive(backing_object); | |
4737 | backing_object->ref_count--; | |
4738 | #if TASK_SWAPPER | |
4739 | if (object->res_count != 0) | |
4740 | vm_object_res_deallocate(backing_object); | |
4741 | assert(backing_object->ref_count > 0); | |
4742 | #endif /* TASK_SWAPPER */ | |
4743 | vm_object_unlock(backing_object); | |
4744 | } else { | |
4745 | ||
4746 | /* | |
4747 | * Drop locks so that we can deallocate | |
4748 | * the backing object. | |
4749 | */ | |
4750 | ||
4751 | #if TASK_SWAPPER | |
4752 | if (object->res_count == 0) { | |
4753 | /* XXX get a reference for the deallocate below */ | |
4754 | vm_object_res_reference(backing_object); | |
4755 | } | |
4756 | #endif /* TASK_SWAPPER */ | |
4757 | vm_object_unlock(object); | |
4758 | vm_object_unlock(backing_object); | |
4759 | vm_object_deallocate(backing_object); | |
4760 | ||
4761 | /* | |
4762 | * Relock object. We don't have to reverify | |
4763 | * its state since vm_object_collapse will | |
4764 | * do that for us as it starts at the | |
4765 | * top of its loop. | |
4766 | */ | |
4767 | ||
4768 | vm_object_lock(object); | |
4769 | } | |
4770 | ||
4771 | object_bypasses++; | |
4772 | } | |
4773 | ||
4774 | ||
4775 | /* | |
4776 | * vm_object_collapse: | |
4777 | * | |
4778 | * Perform an object collapse or an object bypass if appropriate. | |
4779 | * The real work of collapsing and bypassing is performed in | |
4780 | * the routines vm_object_do_collapse and vm_object_do_bypass. | |
4781 | * | |
4782 | * Requires that the object be locked and the page queues be unlocked. | |
4783 | * | |
4784 | */ | |
4785 | static unsigned long vm_object_collapse_calls = 0; | |
4786 | static unsigned long vm_object_collapse_objects = 0; | |
4787 | static unsigned long vm_object_collapse_do_collapse = 0; | |
4788 | static unsigned long vm_object_collapse_do_bypass = 0; | |
4789 | static unsigned long vm_object_collapse_delays = 0; | |
4790 | __private_extern__ void | |
4791 | vm_object_collapse( | |
4792 | register vm_object_t object, | |
4793 | register vm_object_offset_t hint_offset, | |
4794 | boolean_t can_bypass) | |
4795 | { | |
4796 | register vm_object_t backing_object; | |
4797 | register unsigned int rcount; | |
4798 | register unsigned int size; | |
4799 | vm_object_t original_object; | |
4800 | int object_lock_type; | |
4801 | int backing_object_lock_type; | |
4802 | ||
4803 | vm_object_collapse_calls++; | |
4804 | ||
4805 | if (! vm_object_collapse_allowed && | |
4806 | ! (can_bypass && vm_object_bypass_allowed)) { | |
4807 | return; | |
4808 | } | |
4809 | ||
4810 | XPR(XPR_VM_OBJECT, "vm_object_collapse, obj 0x%X\n", | |
4811 | object, 0,0,0,0); | |
4812 | ||
4813 | if (object == VM_OBJECT_NULL) | |
4814 | return; | |
4815 | ||
4816 | original_object = object; | |
4817 | ||
4818 | /* | |
4819 | * The top object was locked "exclusive" by the caller. | |
4820 | * In the first pass, to determine if we can collapse the shadow chain, | |
4821 | * take a "shared" lock on the shadow objects. If we can collapse, | |
4822 | * we'll have to go down the chain again with exclusive locks. | |
4823 | */ | |
4824 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4825 | backing_object_lock_type = OBJECT_LOCK_SHARED; | |
4826 | ||
4827 | retry: | |
4828 | object = original_object; | |
4829 | vm_object_lock_assert_exclusive(object); | |
4830 | ||
4831 | while (TRUE) { | |
4832 | vm_object_collapse_objects++; | |
4833 | /* | |
4834 | * Verify that the conditions are right for either | |
4835 | * collapse or bypass: | |
4836 | */ | |
4837 | ||
4838 | /* | |
4839 | * There is a backing object, and | |
4840 | */ | |
4841 | ||
4842 | backing_object = object->shadow; | |
4843 | if (backing_object == VM_OBJECT_NULL) { | |
4844 | if (object != original_object) { | |
4845 | vm_object_unlock(object); | |
4846 | } | |
4847 | return; | |
4848 | } | |
4849 | if (backing_object_lock_type == OBJECT_LOCK_SHARED) { | |
4850 | vm_object_lock_shared(backing_object); | |
4851 | } else { | |
4852 | vm_object_lock(backing_object); | |
4853 | } | |
4854 | ||
4855 | /* | |
4856 | * No pages in the object are currently | |
4857 | * being paged out, and | |
4858 | */ | |
4859 | if (object->paging_in_progress != 0 || | |
4860 | object->activity_in_progress != 0) { | |
4861 | /* try and collapse the rest of the shadow chain */ | |
4862 | if (object != original_object) { | |
4863 | vm_object_unlock(object); | |
4864 | } | |
4865 | object = backing_object; | |
4866 | object_lock_type = backing_object_lock_type; | |
4867 | continue; | |
4868 | } | |
4869 | ||
4870 | /* | |
4871 | * ... | |
4872 | * The backing object is not read_only, | |
4873 | * and no pages in the backing object are | |
4874 | * currently being paged out. | |
4875 | * The backing object is internal. | |
4876 | * | |
4877 | */ | |
4878 | ||
4879 | if (!backing_object->internal || | |
4880 | backing_object->paging_in_progress != 0 || | |
4881 | backing_object->activity_in_progress != 0) { | |
4882 | /* try and collapse the rest of the shadow chain */ | |
4883 | if (object != original_object) { | |
4884 | vm_object_unlock(object); | |
4885 | } | |
4886 | object = backing_object; | |
4887 | object_lock_type = backing_object_lock_type; | |
4888 | continue; | |
4889 | } | |
4890 | ||
4891 | /* | |
4892 | * The backing object can't be a copy-object: | |
4893 | * the shadow_offset for the copy-object must stay | |
4894 | * as 0. Furthermore (for the 'we have all the | |
4895 | * pages' case), if we bypass backing_object and | |
4896 | * just shadow the next object in the chain, old | |
4897 | * pages from that object would then have to be copied | |
4898 | * BOTH into the (former) backing_object and into the | |
4899 | * parent object. | |
4900 | */ | |
4901 | if (backing_object->shadow != VM_OBJECT_NULL && | |
4902 | backing_object->shadow->copy == backing_object) { | |
4903 | /* try and collapse the rest of the shadow chain */ | |
4904 | if (object != original_object) { | |
4905 | vm_object_unlock(object); | |
4906 | } | |
4907 | object = backing_object; | |
4908 | object_lock_type = backing_object_lock_type; | |
4909 | continue; | |
4910 | } | |
4911 | ||
4912 | /* | |
4913 | * We can now try to either collapse the backing | |
4914 | * object (if the parent is the only reference to | |
4915 | * it) or (perhaps) remove the parent's reference | |
4916 | * to it. | |
4917 | * | |
4918 | * If there is exactly one reference to the backing | |
4919 | * object, we may be able to collapse it into the | |
4920 | * parent. | |
4921 | * | |
4922 | * If MACH_PAGEMAP is defined: | |
4923 | * The parent must not have a pager created for it, | |
4924 | * since collapsing a backing_object dumps new pages | |
4925 | * into the parent that its pager doesn't know about | |
4926 | * (and the collapse code can't merge the existence | |
4927 | * maps). | |
4928 | * Otherwise: | |
4929 | * As long as one of the objects is still not known | |
4930 | * to the pager, we can collapse them. | |
4931 | */ | |
4932 | if (backing_object->ref_count == 1 && | |
4933 | (!object->pager_created | |
4934 | #if !MACH_PAGEMAP | |
4935 | || !backing_object->pager_created | |
4936 | #endif /*!MACH_PAGEMAP */ | |
4937 | ) && vm_object_collapse_allowed) { | |
4938 | ||
4939 | /* | |
4940 | * We need the exclusive lock on the VM objects. | |
4941 | */ | |
4942 | if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) { | |
4943 | /* | |
4944 | * We have an object and its shadow locked | |
4945 | * "shared". We can't just upgrade the locks | |
4946 | * to "exclusive", as some other thread might | |
4947 | * also have these objects locked "shared" and | |
4948 | * attempt to upgrade one or the other to | |
4949 | * "exclusive". The upgrades would block | |
4950 | * forever waiting for the other "shared" locks | |
4951 | * to get released. | |
4952 | * So we have to release the locks and go | |
4953 | * down the shadow chain again (since it could | |
4954 | * have changed) with "exclusive" locking. | |
4955 | */ | |
4956 | vm_object_unlock(backing_object); | |
4957 | if (object != original_object) | |
4958 | vm_object_unlock(object); | |
4959 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4960 | backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4961 | goto retry; | |
4962 | } | |
4963 | ||
4964 | XPR(XPR_VM_OBJECT, | |
4965 | "vm_object_collapse: %x to %x, pager %x, pager_control %x\n", | |
4966 | backing_object, object, | |
4967 | backing_object->pager, | |
4968 | backing_object->pager_control, 0); | |
4969 | ||
4970 | /* | |
4971 | * Collapse the object with its backing | |
4972 | * object, and try again with the object's | |
4973 | * new backing object. | |
4974 | */ | |
4975 | ||
4976 | vm_object_do_collapse(object, backing_object); | |
4977 | vm_object_collapse_do_collapse++; | |
4978 | continue; | |
4979 | } | |
4980 | ||
4981 | /* | |
4982 | * Collapsing the backing object was not possible | |
4983 | * or permitted, so let's try bypassing it. | |
4984 | */ | |
4985 | ||
4986 | if (! (can_bypass && vm_object_bypass_allowed)) { | |
4987 | /* try and collapse the rest of the shadow chain */ | |
4988 | if (object != original_object) { | |
4989 | vm_object_unlock(object); | |
4990 | } | |
4991 | object = backing_object; | |
4992 | object_lock_type = backing_object_lock_type; | |
4993 | continue; | |
4994 | } | |
4995 | ||
4996 | ||
4997 | /* | |
4998 | * If the object doesn't have all its pages present, | |
4999 | * we have to make sure no pages in the backing object | |
5000 | * "show through" before bypassing it. | |
5001 | */ | |
5002 | size = atop(object->vo_size); | |
5003 | rcount = object->resident_page_count; | |
5004 | if (rcount != size) { | |
5005 | vm_object_offset_t offset; | |
5006 | vm_object_offset_t backing_offset; | |
5007 | unsigned int backing_rcount; | |
5008 | unsigned int lookups = 0; | |
5009 | ||
5010 | /* | |
5011 | * If the backing object has a pager but no pagemap, | |
5012 | * then we cannot bypass it, because we don't know | |
5013 | * what pages it has. | |
5014 | */ | |
5015 | if (backing_object->pager_created | |
5016 | #if MACH_PAGEMAP | |
5017 | && (backing_object->existence_map == VM_EXTERNAL_NULL) | |
5018 | #endif /* MACH_PAGEMAP */ | |
5019 | ) { | |
5020 | /* try and collapse the rest of the shadow chain */ | |
5021 | if (object != original_object) { | |
5022 | vm_object_unlock(object); | |
5023 | } | |
5024 | object = backing_object; | |
5025 | object_lock_type = backing_object_lock_type; | |
5026 | continue; | |
5027 | } | |
5028 | ||
5029 | /* | |
5030 | * If the object has a pager but no pagemap, | |
5031 | * then we cannot bypass it, because we don't know | |
5032 | * what pages it has. | |
5033 | */ | |
5034 | if (object->pager_created | |
5035 | #if MACH_PAGEMAP | |
5036 | && (object->existence_map == VM_EXTERNAL_NULL) | |
5037 | #endif /* MACH_PAGEMAP */ | |
5038 | ) { | |
5039 | /* try and collapse the rest of the shadow chain */ | |
5040 | if (object != original_object) { | |
5041 | vm_object_unlock(object); | |
5042 | } | |
5043 | object = backing_object; | |
5044 | object_lock_type = backing_object_lock_type; | |
5045 | continue; | |
5046 | } | |
5047 | ||
5048 | /* | |
5049 | * If all of the pages in the backing object are | |
5050 | * shadowed by the parent object, the parent | |
5051 | * object no longer has to shadow the backing | |
5052 | * object; it can shadow the next one in the | |
5053 | * chain. | |
5054 | * | |
5055 | * If the backing object has existence info, | |
5056 | * we must check examine its existence info | |
5057 | * as well. | |
5058 | * | |
5059 | */ | |
5060 | ||
5061 | backing_offset = object->vo_shadow_offset; | |
5062 | backing_rcount = backing_object->resident_page_count; | |
5063 | ||
5064 | #if MACH_PAGEMAP | |
5065 | #define EXISTS_IN_OBJECT(obj, off, rc) \ | |
5066 | (vm_external_state_get((obj)->existence_map, \ | |
5067 | (vm_offset_t)(off)) == VM_EXTERNAL_STATE_EXISTS || \ | |
5068 | ((rc) && ++lookups && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--)) | |
5069 | #else | |
5070 | #define EXISTS_IN_OBJECT(obj, off, rc) \ | |
5071 | (((rc) && ++lookups && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--)) | |
5072 | #endif /* MACH_PAGEMAP */ | |
5073 | ||
5074 | /* | |
5075 | * Check the hint location first | |
5076 | * (since it is often the quickest way out of here). | |
5077 | */ | |
5078 | if (object->cow_hint != ~(vm_offset_t)0) | |
5079 | hint_offset = (vm_object_offset_t)object->cow_hint; | |
5080 | else | |
5081 | hint_offset = (hint_offset > 8 * PAGE_SIZE_64) ? | |
5082 | (hint_offset - 8 * PAGE_SIZE_64) : 0; | |
5083 | ||
5084 | if (EXISTS_IN_OBJECT(backing_object, hint_offset + | |
5085 | backing_offset, backing_rcount) && | |
5086 | !EXISTS_IN_OBJECT(object, hint_offset, rcount)) { | |
5087 | /* dependency right at the hint */ | |
5088 | object->cow_hint = (vm_offset_t) hint_offset; /* atomic */ | |
5089 | /* try and collapse the rest of the shadow chain */ | |
5090 | if (object != original_object) { | |
5091 | vm_object_unlock(object); | |
5092 | } | |
5093 | object = backing_object; | |
5094 | object_lock_type = backing_object_lock_type; | |
5095 | continue; | |
5096 | } | |
5097 | ||
5098 | /* | |
5099 | * If the object's window onto the backing_object | |
5100 | * is large compared to the number of resident | |
5101 | * pages in the backing object, it makes sense to | |
5102 | * walk the backing_object's resident pages first. | |
5103 | * | |
5104 | * NOTE: Pages may be in both the existence map and | |
5105 | * resident. So, we can't permanently decrement | |
5106 | * the rcount here because the second loop may | |
5107 | * find the same pages in the backing object' | |
5108 | * existence map that we found here and we would | |
5109 | * double-decrement the rcount. We also may or | |
5110 | * may not have found the | |
5111 | */ | |
5112 | if (backing_rcount && | |
5113 | #if MACH_PAGEMAP | |
5114 | size > ((backing_object->existence_map) ? | |
5115 | backing_rcount : (backing_rcount >> 1)) | |
5116 | #else | |
5117 | size > (backing_rcount >> 1) | |
5118 | #endif /* MACH_PAGEMAP */ | |
5119 | ) { | |
5120 | unsigned int rc = rcount; | |
5121 | vm_page_t p; | |
5122 | ||
5123 | backing_rcount = backing_object->resident_page_count; | |
5124 | p = (vm_page_t)queue_first(&backing_object->memq); | |
5125 | do { | |
5126 | /* Until we get more than one lookup lock */ | |
5127 | if (lookups > 256) { | |
5128 | vm_object_collapse_delays++; | |
5129 | lookups = 0; | |
5130 | mutex_pause(0); | |
5131 | } | |
5132 | ||
5133 | offset = (p->offset - backing_offset); | |
5134 | if (offset < object->vo_size && | |
5135 | offset != hint_offset && | |
5136 | !EXISTS_IN_OBJECT(object, offset, rc)) { | |
5137 | /* found a dependency */ | |
5138 | object->cow_hint = (vm_offset_t) offset; /* atomic */ | |
5139 | ||
5140 | break; | |
5141 | } | |
5142 | p = (vm_page_t) queue_next(&p->listq); | |
5143 | ||
5144 | } while (--backing_rcount); | |
5145 | if (backing_rcount != 0 ) { | |
5146 | /* try and collapse the rest of the shadow chain */ | |
5147 | if (object != original_object) { | |
5148 | vm_object_unlock(object); | |
5149 | } | |
5150 | object = backing_object; | |
5151 | object_lock_type = backing_object_lock_type; | |
5152 | continue; | |
5153 | } | |
5154 | } | |
5155 | ||
5156 | /* | |
5157 | * Walk through the offsets looking for pages in the | |
5158 | * backing object that show through to the object. | |
5159 | */ | |
5160 | if (backing_rcount | |
5161 | #if MACH_PAGEMAP | |
5162 | || backing_object->existence_map | |
5163 | #endif /* MACH_PAGEMAP */ | |
5164 | ) { | |
5165 | offset = hint_offset; | |
5166 | ||
5167 | while((offset = | |
5168 | (offset + PAGE_SIZE_64 < object->vo_size) ? | |
5169 | (offset + PAGE_SIZE_64) : 0) != hint_offset) { | |
5170 | ||
5171 | /* Until we get more than one lookup lock */ | |
5172 | if (lookups > 256) { | |
5173 | vm_object_collapse_delays++; | |
5174 | lookups = 0; | |
5175 | mutex_pause(0); | |
5176 | } | |
5177 | ||
5178 | if (EXISTS_IN_OBJECT(backing_object, offset + | |
5179 | backing_offset, backing_rcount) && | |
5180 | !EXISTS_IN_OBJECT(object, offset, rcount)) { | |
5181 | /* found a dependency */ | |
5182 | object->cow_hint = (vm_offset_t) offset; /* atomic */ | |
5183 | break; | |
5184 | } | |
5185 | } | |
5186 | if (offset != hint_offset) { | |
5187 | /* try and collapse the rest of the shadow chain */ | |
5188 | if (object != original_object) { | |
5189 | vm_object_unlock(object); | |
5190 | } | |
5191 | object = backing_object; | |
5192 | object_lock_type = backing_object_lock_type; | |
5193 | continue; | |
5194 | } | |
5195 | } | |
5196 | } | |
5197 | ||
5198 | /* | |
5199 | * We need "exclusive" locks on the 2 VM objects. | |
5200 | */ | |
5201 | if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) { | |
5202 | vm_object_unlock(backing_object); | |
5203 | if (object != original_object) | |
5204 | vm_object_unlock(object); | |
5205 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
5206 | backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
5207 | goto retry; | |
5208 | } | |
5209 | ||
5210 | /* reset the offset hint for any objects deeper in the chain */ | |
5211 | object->cow_hint = (vm_offset_t)0; | |
5212 | ||
5213 | /* | |
5214 | * All interesting pages in the backing object | |
5215 | * already live in the parent or its pager. | |
5216 | * Thus we can bypass the backing object. | |
5217 | */ | |
5218 | ||
5219 | vm_object_do_bypass(object, backing_object); | |
5220 | vm_object_collapse_do_bypass++; | |
5221 | ||
5222 | /* | |
5223 | * Try again with this object's new backing object. | |
5224 | */ | |
5225 | ||
5226 | continue; | |
5227 | } | |
5228 | ||
5229 | if (object != original_object) { | |
5230 | vm_object_unlock(object); | |
5231 | } | |
5232 | } | |
5233 | ||
5234 | /* | |
5235 | * Routine: vm_object_page_remove: [internal] | |
5236 | * Purpose: | |
5237 | * Removes all physical pages in the specified | |
5238 | * object range from the object's list of pages. | |
5239 | * | |
5240 | * In/out conditions: | |
5241 | * The object must be locked. | |
5242 | * The object must not have paging_in_progress, usually | |
5243 | * guaranteed by not having a pager. | |
5244 | */ | |
5245 | unsigned int vm_object_page_remove_lookup = 0; | |
5246 | unsigned int vm_object_page_remove_iterate = 0; | |
5247 | ||
5248 | __private_extern__ void | |
5249 | vm_object_page_remove( | |
5250 | register vm_object_t object, | |
5251 | register vm_object_offset_t start, | |
5252 | register vm_object_offset_t end) | |
5253 | { | |
5254 | register vm_page_t p, next; | |
5255 | ||
5256 | /* | |
5257 | * One and two page removals are most popular. | |
5258 | * The factor of 16 here is somewhat arbitrary. | |
5259 | * It balances vm_object_lookup vs iteration. | |
5260 | */ | |
5261 | ||
5262 | if (atop_64(end - start) < (unsigned)object->resident_page_count/16) { | |
5263 | vm_object_page_remove_lookup++; | |
5264 | ||
5265 | for (; start < end; start += PAGE_SIZE_64) { | |
5266 | p = vm_page_lookup(object, start); | |
5267 | if (p != VM_PAGE_NULL) { | |
5268 | assert(!p->cleaning && !p->pageout); | |
5269 | if (!p->fictitious && p->pmapped) | |
5270 | pmap_disconnect(p->phys_page); | |
5271 | VM_PAGE_FREE(p); | |
5272 | } | |
5273 | } | |
5274 | } else { | |
5275 | vm_object_page_remove_iterate++; | |
5276 | ||
5277 | p = (vm_page_t) queue_first(&object->memq); | |
5278 | while (!queue_end(&object->memq, (queue_entry_t) p)) { | |
5279 | next = (vm_page_t) queue_next(&p->listq); | |
5280 | if ((start <= p->offset) && (p->offset < end)) { | |
5281 | assert(!p->cleaning && !p->pageout); | |
5282 | if (!p->fictitious && p->pmapped) | |
5283 | pmap_disconnect(p->phys_page); | |
5284 | VM_PAGE_FREE(p); | |
5285 | } | |
5286 | p = next; | |
5287 | } | |
5288 | } | |
5289 | } | |
5290 | ||
5291 | ||
5292 | /* | |
5293 | * Routine: vm_object_coalesce | |
5294 | * Function: Coalesces two objects backing up adjoining | |
5295 | * regions of memory into a single object. | |
5296 | * | |
5297 | * returns TRUE if objects were combined. | |
5298 | * | |
5299 | * NOTE: Only works at the moment if the second object is NULL - | |
5300 | * if it's not, which object do we lock first? | |
5301 | * | |
5302 | * Parameters: | |
5303 | * prev_object First object to coalesce | |
5304 | * prev_offset Offset into prev_object | |
5305 | * next_object Second object into coalesce | |
5306 | * next_offset Offset into next_object | |
5307 | * | |
5308 | * prev_size Size of reference to prev_object | |
5309 | * next_size Size of reference to next_object | |
5310 | * | |
5311 | * Conditions: | |
5312 | * The object(s) must *not* be locked. The map must be locked | |
5313 | * to preserve the reference to the object(s). | |
5314 | */ | |
5315 | static int vm_object_coalesce_count = 0; | |
5316 | ||
5317 | __private_extern__ boolean_t | |
5318 | vm_object_coalesce( | |
5319 | register vm_object_t prev_object, | |
5320 | vm_object_t next_object, | |
5321 | vm_object_offset_t prev_offset, | |
5322 | __unused vm_object_offset_t next_offset, | |
5323 | vm_object_size_t prev_size, | |
5324 | vm_object_size_t next_size) | |
5325 | { | |
5326 | vm_object_size_t newsize; | |
5327 | ||
5328 | #ifdef lint | |
5329 | next_offset++; | |
5330 | #endif /* lint */ | |
5331 | ||
5332 | if (next_object != VM_OBJECT_NULL) { | |
5333 | return(FALSE); | |
5334 | } | |
5335 | ||
5336 | if (prev_object == VM_OBJECT_NULL) { | |
5337 | return(TRUE); | |
5338 | } | |
5339 | ||
5340 | XPR(XPR_VM_OBJECT, | |
5341 | "vm_object_coalesce: 0x%X prev_off 0x%X prev_size 0x%X next_size 0x%X\n", | |
5342 | prev_object, prev_offset, prev_size, next_size, 0); | |
5343 | ||
5344 | vm_object_lock(prev_object); | |
5345 | ||
5346 | /* | |
5347 | * Try to collapse the object first | |
5348 | */ | |
5349 | vm_object_collapse(prev_object, prev_offset, TRUE); | |
5350 | ||
5351 | /* | |
5352 | * Can't coalesce if pages not mapped to | |
5353 | * prev_entry may be in use any way: | |
5354 | * . more than one reference | |
5355 | * . paged out | |
5356 | * . shadows another object | |
5357 | * . has a copy elsewhere | |
5358 | * . is purgeable | |
5359 | * . paging references (pages might be in page-list) | |
5360 | */ | |
5361 | ||
5362 | if ((prev_object->ref_count > 1) || | |
5363 | prev_object->pager_created || | |
5364 | (prev_object->shadow != VM_OBJECT_NULL) || | |
5365 | (prev_object->copy != VM_OBJECT_NULL) || | |
5366 | (prev_object->true_share != FALSE) || | |
5367 | (prev_object->purgable != VM_PURGABLE_DENY) || | |
5368 | (prev_object->paging_in_progress != 0) || | |
5369 | (prev_object->activity_in_progress != 0)) { | |
5370 | vm_object_unlock(prev_object); | |
5371 | return(FALSE); | |
5372 | } | |
5373 | ||
5374 | vm_object_coalesce_count++; | |
5375 | ||
5376 | /* | |
5377 | * Remove any pages that may still be in the object from | |
5378 | * a previous deallocation. | |
5379 | */ | |
5380 | vm_object_page_remove(prev_object, | |
5381 | prev_offset + prev_size, | |
5382 | prev_offset + prev_size + next_size); | |
5383 | ||
5384 | /* | |
5385 | * Extend the object if necessary. | |
5386 | */ | |
5387 | newsize = prev_offset + prev_size + next_size; | |
5388 | if (newsize > prev_object->vo_size) { | |
5389 | #if MACH_PAGEMAP | |
5390 | /* | |
5391 | * We cannot extend an object that has existence info, | |
5392 | * since the existence info might then fail to cover | |
5393 | * the entire object. | |
5394 | * | |
5395 | * This assertion must be true because the object | |
5396 | * has no pager, and we only create existence info | |
5397 | * for objects with pagers. | |
5398 | */ | |
5399 | assert(prev_object->existence_map == VM_EXTERNAL_NULL); | |
5400 | #endif /* MACH_PAGEMAP */ | |
5401 | prev_object->vo_size = newsize; | |
5402 | } | |
5403 | ||
5404 | vm_object_unlock(prev_object); | |
5405 | return(TRUE); | |
5406 | } | |
5407 | ||
5408 | /* | |
5409 | * Attach a set of physical pages to an object, so that they can | |
5410 | * be mapped by mapping the object. Typically used to map IO memory. | |
5411 | * | |
5412 | * The mapping function and its private data are used to obtain the | |
5413 | * physical addresses for each page to be mapped. | |
5414 | */ | |
5415 | void | |
5416 | vm_object_page_map( | |
5417 | vm_object_t object, | |
5418 | vm_object_offset_t offset, | |
5419 | vm_object_size_t size, | |
5420 | vm_object_offset_t (*map_fn)(void *map_fn_data, | |
5421 | vm_object_offset_t offset), | |
5422 | void *map_fn_data) /* private to map_fn */ | |
5423 | { | |
5424 | int64_t num_pages; | |
5425 | int i; | |
5426 | vm_page_t m; | |
5427 | vm_page_t old_page; | |
5428 | vm_object_offset_t addr; | |
5429 | ||
5430 | num_pages = atop_64(size); | |
5431 | ||
5432 | for (i = 0; i < num_pages; i++, offset += PAGE_SIZE_64) { | |
5433 | ||
5434 | addr = (*map_fn)(map_fn_data, offset); | |
5435 | ||
5436 | while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL) | |
5437 | vm_page_more_fictitious(); | |
5438 | ||
5439 | vm_object_lock(object); | |
5440 | if ((old_page = vm_page_lookup(object, offset)) | |
5441 | != VM_PAGE_NULL) | |
5442 | { | |
5443 | VM_PAGE_FREE(old_page); | |
5444 | } | |
5445 | ||
5446 | assert((ppnum_t) addr == addr); | |
5447 | vm_page_init(m, (ppnum_t) addr, FALSE); | |
5448 | /* | |
5449 | * private normally requires lock_queues but since we | |
5450 | * are initializing the page, its not necessary here | |
5451 | */ | |
5452 | m->private = TRUE; /* don`t free page */ | |
5453 | m->wire_count = 1; | |
5454 | vm_page_insert(m, object, offset); | |
5455 | ||
5456 | PAGE_WAKEUP_DONE(m); | |
5457 | vm_object_unlock(object); | |
5458 | } | |
5459 | } | |
5460 | ||
5461 | #include <mach_kdb.h> | |
5462 | ||
5463 | #if MACH_KDB | |
5464 | #include <ddb/db_output.h> | |
5465 | #include <vm/vm_print.h> | |
5466 | ||
5467 | #define printf kdbprintf | |
5468 | ||
5469 | extern boolean_t vm_object_cached( | |
5470 | vm_object_t object); | |
5471 | ||
5472 | extern void print_bitstring( | |
5473 | char byte); | |
5474 | ||
5475 | boolean_t vm_object_print_pages = FALSE; | |
5476 | ||
5477 | void | |
5478 | print_bitstring( | |
5479 | char byte) | |
5480 | { | |
5481 | printf("%c%c%c%c%c%c%c%c", | |
5482 | ((byte & (1 << 0)) ? '1' : '0'), | |
5483 | ((byte & (1 << 1)) ? '1' : '0'), | |
5484 | ((byte & (1 << 2)) ? '1' : '0'), | |
5485 | ((byte & (1 << 3)) ? '1' : '0'), | |
5486 | ((byte & (1 << 4)) ? '1' : '0'), | |
5487 | ((byte & (1 << 5)) ? '1' : '0'), | |
5488 | ((byte & (1 << 6)) ? '1' : '0'), | |
5489 | ((byte & (1 << 7)) ? '1' : '0')); | |
5490 | } | |
5491 | ||
5492 | boolean_t | |
5493 | vm_object_cached( | |
5494 | __unused register vm_object_t object) | |
5495 | { | |
5496 | #if VM_OBJECT_CACHE | |
5497 | register vm_object_t o; | |
5498 | ||
5499 | queue_iterate(&vm_object_cached_list, o, vm_object_t, cached_list) { | |
5500 | if (object == o) { | |
5501 | return TRUE; | |
5502 | } | |
5503 | } | |
5504 | #endif | |
5505 | return FALSE; | |
5506 | } | |
5507 | ||
5508 | #if MACH_PAGEMAP | |
5509 | /* | |
5510 | * vm_external_print: [ debug ] | |
5511 | */ | |
5512 | void | |
5513 | vm_external_print( | |
5514 | vm_external_map_t emap, | |
5515 | vm_object_size_t size) | |
5516 | { | |
5517 | if (emap == VM_EXTERNAL_NULL) { | |
5518 | printf("0 "); | |
5519 | } else { | |
5520 | vm_object_size_t existence_size = stob(size); | |
5521 | printf("{ size=%lld, map=[", (uint64_t) existence_size); | |
5522 | if (existence_size > 0) { | |
5523 | print_bitstring(emap[0]); | |
5524 | } | |
5525 | if (existence_size > 1) { | |
5526 | print_bitstring(emap[1]); | |
5527 | } | |
5528 | if (existence_size > 2) { | |
5529 | printf("..."); | |
5530 | print_bitstring(emap[existence_size-1]); | |
5531 | } | |
5532 | printf("] }\n"); | |
5533 | } | |
5534 | return; | |
5535 | } | |
5536 | #endif /* MACH_PAGEMAP */ | |
5537 | ||
5538 | int | |
5539 | vm_follow_object( | |
5540 | vm_object_t object) | |
5541 | { | |
5542 | int count = 0; | |
5543 | int orig_db_indent = db_indent; | |
5544 | ||
5545 | while (TRUE) { | |
5546 | if (object == VM_OBJECT_NULL) { | |
5547 | db_indent = orig_db_indent; | |
5548 | return count; | |
5549 | } | |
5550 | ||
5551 | count += 1; | |
5552 | ||
5553 | iprintf("object 0x%x", object); | |
5554 | printf(", shadow=0x%x", object->shadow); | |
5555 | printf(", copy=0x%x", object->copy); | |
5556 | printf(", pager=0x%x", object->pager); | |
5557 | printf(", ref=%d\n", object->ref_count); | |
5558 | ||
5559 | db_indent += 2; | |
5560 | object = object->shadow; | |
5561 | } | |
5562 | ||
5563 | } | |
5564 | ||
5565 | /* | |
5566 | * vm_object_print: [ debug ] | |
5567 | */ | |
5568 | void | |
5569 | vm_object_print(db_expr_t db_addr, __unused boolean_t have_addr, | |
5570 | __unused db_expr_t arg_count, __unused char *modif) | |
5571 | { | |
5572 | vm_object_t object; | |
5573 | register vm_page_t p; | |
5574 | const char *s; | |
5575 | ||
5576 | register int count; | |
5577 | ||
5578 | object = (vm_object_t) (long) db_addr; | |
5579 | if (object == VM_OBJECT_NULL) | |
5580 | return; | |
5581 | ||
5582 | iprintf("object 0x%x\n", object); | |
5583 | ||
5584 | db_indent += 2; | |
5585 | ||
5586 | iprintf("size=0x%x", object->vo_size); | |
5587 | printf(", memq_hint=%p", object->memq_hint); | |
5588 | printf(", ref_count=%d\n", object->ref_count); | |
5589 | iprintf(""); | |
5590 | #if TASK_SWAPPER | |
5591 | printf("res_count=%d, ", object->res_count); | |
5592 | #endif /* TASK_SWAPPER */ | |
5593 | printf("resident_page_count=%d\n", object->resident_page_count); | |
5594 | ||
5595 | iprintf("shadow=0x%x", object->shadow); | |
5596 | if (object->shadow) { | |
5597 | register int i = 0; | |
5598 | vm_object_t shadow = object; | |
5599 | while((shadow = shadow->shadow)) | |
5600 | i++; | |
5601 | printf(" (depth %d)", i); | |
5602 | } | |
5603 | printf(", copy=0x%x", object->copy); | |
5604 | printf(", shadow_offset=0x%x", object->vo_shadow_offset); | |
5605 | printf(", last_alloc=0x%x\n", object->last_alloc); | |
5606 | ||
5607 | iprintf("pager=0x%x", object->pager); | |
5608 | printf(", paging_offset=0x%x", object->paging_offset); | |
5609 | printf(", pager_control=0x%x\n", object->pager_control); | |
5610 | ||
5611 | iprintf("copy_strategy=%d[", object->copy_strategy); | |
5612 | switch (object->copy_strategy) { | |
5613 | case MEMORY_OBJECT_COPY_NONE: | |
5614 | printf("copy_none"); | |
5615 | break; | |
5616 | ||
5617 | case MEMORY_OBJECT_COPY_CALL: | |
5618 | printf("copy_call"); | |
5619 | break; | |
5620 | ||
5621 | case MEMORY_OBJECT_COPY_DELAY: | |
5622 | printf("copy_delay"); | |
5623 | break; | |
5624 | ||
5625 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
5626 | printf("copy_symmetric"); | |
5627 | break; | |
5628 | ||
5629 | case MEMORY_OBJECT_COPY_INVALID: | |
5630 | printf("copy_invalid"); | |
5631 | break; | |
5632 | ||
5633 | default: | |
5634 | printf("?"); | |
5635 | } | |
5636 | printf("]"); | |
5637 | ||
5638 | iprintf("all_wanted=0x%x<", object->all_wanted); | |
5639 | s = ""; | |
5640 | if (vm_object_wanted(object, VM_OBJECT_EVENT_INITIALIZED)) { | |
5641 | printf("%sinit", s); | |
5642 | s = ","; | |
5643 | } | |
5644 | if (vm_object_wanted(object, VM_OBJECT_EVENT_PAGER_READY)) { | |
5645 | printf("%sready", s); | |
5646 | s = ","; | |
5647 | } | |
5648 | if (vm_object_wanted(object, VM_OBJECT_EVENT_PAGING_IN_PROGRESS)) { | |
5649 | printf("%spaging", s); | |
5650 | s = ","; | |
5651 | } | |
5652 | if (vm_object_wanted(object, VM_OBJECT_EVENT_LOCK_IN_PROGRESS)) { | |
5653 | printf("%slock", s); | |
5654 | s = ","; | |
5655 | } | |
5656 | if (vm_object_wanted(object, VM_OBJECT_EVENT_UNCACHING)) { | |
5657 | printf("%suncaching", s); | |
5658 | s = ","; | |
5659 | } | |
5660 | if (vm_object_wanted(object, VM_OBJECT_EVENT_COPY_CALL)) { | |
5661 | printf("%scopy_call", s); | |
5662 | s = ","; | |
5663 | } | |
5664 | if (vm_object_wanted(object, VM_OBJECT_EVENT_CACHING)) { | |
5665 | printf("%scaching", s); | |
5666 | s = ","; | |
5667 | } | |
5668 | printf(">"); | |
5669 | printf(", paging_in_progress=%d\n", object->paging_in_progress); | |
5670 | printf(", activity_in_progress=%d\n", object->activity_in_progress); | |
5671 | ||
5672 | iprintf("%screated, %sinit, %sready, %spersist, %strusted, %spageout, %s, %s\n", | |
5673 | (object->pager_created ? "" : "!"), | |
5674 | (object->pager_initialized ? "" : "!"), | |
5675 | (object->pager_ready ? "" : "!"), | |
5676 | (object->can_persist ? "" : "!"), | |
5677 | (object->pager_trusted ? "" : "!"), | |
5678 | (object->pageout ? "" : "!"), | |
5679 | (object->internal ? "internal" : "external"), | |
5680 | (object->temporary ? "temporary" : "permanent")); | |
5681 | iprintf("%salive, %spurgeable, %spurgeable_volatile, %spurgeable_empty, %sshadowed, %scached, %sprivate\n", | |
5682 | (object->alive ? "" : "!"), | |
5683 | ((object->purgable != VM_PURGABLE_DENY) ? "" : "!"), | |
5684 | ((object->purgable == VM_PURGABLE_VOLATILE) ? "" : "!"), | |
5685 | ((object->purgable == VM_PURGABLE_EMPTY) ? "" : "!"), | |
5686 | (object->shadowed ? "" : "!"), | |
5687 | (vm_object_cached(object) ? "" : "!"), | |
5688 | (object->private ? "" : "!")); | |
5689 | iprintf("%sadvisory_pageout, %ssilent_overwrite\n", | |
5690 | (object->advisory_pageout ? "" : "!"), | |
5691 | (object->silent_overwrite ? "" : "!")); | |
5692 | ||
5693 | #if MACH_PAGEMAP | |
5694 | iprintf("existence_map="); | |
5695 | vm_external_print(object->existence_map, object->vo_size); | |
5696 | #endif /* MACH_PAGEMAP */ | |
5697 | #if MACH_ASSERT | |
5698 | iprintf("paging_object=0x%x\n", object->paging_object); | |
5699 | #endif /* MACH_ASSERT */ | |
5700 | ||
5701 | if (vm_object_print_pages) { | |
5702 | count = 0; | |
5703 | p = (vm_page_t) queue_first(&object->memq); | |
5704 | while (!queue_end(&object->memq, (queue_entry_t) p)) { | |
5705 | if (count == 0) { | |
5706 | iprintf("memory:="); | |
5707 | } else if (count == 2) { | |
5708 | printf("\n"); | |
5709 | iprintf(" ..."); | |
5710 | count = 0; | |
5711 | } else { | |
5712 | printf(","); | |
5713 | } | |
5714 | count++; | |
5715 | ||
5716 | printf("(off=0x%llX,page=%p)", p->offset, p); | |
5717 | p = (vm_page_t) queue_next(&p->listq); | |
5718 | } | |
5719 | if (count != 0) { | |
5720 | printf("\n"); | |
5721 | } | |
5722 | } | |
5723 | db_indent -= 2; | |
5724 | } | |
5725 | ||
5726 | ||
5727 | /* | |
5728 | * vm_object_find [ debug ] | |
5729 | * | |
5730 | * Find all tasks which reference the given vm_object. | |
5731 | */ | |
5732 | ||
5733 | boolean_t vm_object_find(vm_object_t object); | |
5734 | boolean_t vm_object_print_verbose = FALSE; | |
5735 | ||
5736 | boolean_t | |
5737 | vm_object_find( | |
5738 | vm_object_t object) | |
5739 | { | |
5740 | task_t task; | |
5741 | vm_map_t map; | |
5742 | vm_map_entry_t entry; | |
5743 | boolean_t found = FALSE; | |
5744 | ||
5745 | queue_iterate(&tasks, task, task_t, tasks) { | |
5746 | map = task->map; | |
5747 | for (entry = vm_map_first_entry(map); | |
5748 | entry && entry != vm_map_to_entry(map); | |
5749 | entry = entry->vme_next) { | |
5750 | ||
5751 | vm_object_t obj; | |
5752 | ||
5753 | /* | |
5754 | * For the time being skip submaps, | |
5755 | * only the kernel can have submaps, | |
5756 | * and unless we are interested in | |
5757 | * kernel objects, we can simply skip | |
5758 | * submaps. See sb/dejan/nmk18b7/src/mach_kernel/vm | |
5759 | * for a full solution. | |
5760 | */ | |
5761 | if (entry->is_sub_map) | |
5762 | continue; | |
5763 | if (entry) | |
5764 | obj = entry->object.vm_object; | |
5765 | else | |
5766 | continue; | |
5767 | ||
5768 | while (obj != VM_OBJECT_NULL) { | |
5769 | if (obj == object) { | |
5770 | if (!found) { | |
5771 | printf("TASK\t\tMAP\t\tENTRY\n"); | |
5772 | found = TRUE; | |
5773 | } | |
5774 | printf("0x%x\t0x%x\t0x%x\n", | |
5775 | task, map, entry); | |
5776 | } | |
5777 | obj = obj->shadow; | |
5778 | } | |
5779 | } | |
5780 | } | |
5781 | ||
5782 | return(found); | |
5783 | } | |
5784 | ||
5785 | #endif /* MACH_KDB */ | |
5786 | ||
5787 | kern_return_t | |
5788 | vm_object_populate_with_private( | |
5789 | vm_object_t object, | |
5790 | vm_object_offset_t offset, | |
5791 | ppnum_t phys_page, | |
5792 | vm_size_t size) | |
5793 | { | |
5794 | ppnum_t base_page; | |
5795 | vm_object_offset_t base_offset; | |
5796 | ||
5797 | ||
5798 | if(!object->private) | |
5799 | return KERN_FAILURE; | |
5800 | ||
5801 | base_page = phys_page; | |
5802 | ||
5803 | vm_object_lock(object); | |
5804 | if(!object->phys_contiguous) { | |
5805 | vm_page_t m; | |
5806 | if((base_offset = trunc_page_64(offset)) != offset) { | |
5807 | vm_object_unlock(object); | |
5808 | return KERN_FAILURE; | |
5809 | } | |
5810 | base_offset += object->paging_offset; | |
5811 | while(size) { | |
5812 | m = vm_page_lookup(object, base_offset); | |
5813 | if(m != VM_PAGE_NULL) { | |
5814 | if(m->fictitious) { | |
5815 | if (m->phys_page != vm_page_guard_addr) { | |
5816 | ||
5817 | vm_page_lockspin_queues(); | |
5818 | m->private = TRUE; | |
5819 | vm_page_unlock_queues(); | |
5820 | ||
5821 | m->fictitious = FALSE; | |
5822 | m->phys_page = base_page; | |
5823 | if(!m->busy) { | |
5824 | m->busy = TRUE; | |
5825 | } | |
5826 | if(!m->absent) { | |
5827 | m->absent = TRUE; | |
5828 | } | |
5829 | m->list_req_pending = TRUE; | |
5830 | } | |
5831 | } else if (m->phys_page != base_page) { | |
5832 | if (m->pmapped) { | |
5833 | /* | |
5834 | * pmap call to clear old mapping | |
5835 | */ | |
5836 | pmap_disconnect(m->phys_page); | |
5837 | } | |
5838 | m->phys_page = base_page; | |
5839 | } | |
5840 | ||
5841 | /* | |
5842 | * ENCRYPTED SWAP: | |
5843 | * We're not pointing to the same | |
5844 | * physical page any longer and the | |
5845 | * contents of the new one are not | |
5846 | * supposed to be encrypted. | |
5847 | * XXX What happens to the original | |
5848 | * physical page. Is it lost ? | |
5849 | */ | |
5850 | m->encrypted = FALSE; | |
5851 | ||
5852 | } else { | |
5853 | while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL) | |
5854 | vm_page_more_fictitious(); | |
5855 | ||
5856 | /* | |
5857 | * private normally requires lock_queues but since we | |
5858 | * are initializing the page, its not necessary here | |
5859 | */ | |
5860 | m->private = TRUE; | |
5861 | m->fictitious = FALSE; | |
5862 | m->phys_page = base_page; | |
5863 | m->list_req_pending = TRUE; | |
5864 | m->absent = TRUE; | |
5865 | m->unusual = TRUE; | |
5866 | ||
5867 | vm_page_insert(m, object, base_offset); | |
5868 | } | |
5869 | base_page++; /* Go to the next physical page */ | |
5870 | base_offset += PAGE_SIZE; | |
5871 | size -= PAGE_SIZE; | |
5872 | } | |
5873 | } else { | |
5874 | /* NOTE: we should check the original settings here */ | |
5875 | /* if we have a size > zero a pmap call should be made */ | |
5876 | /* to disable the range */ | |
5877 | ||
5878 | /* pmap_? */ | |
5879 | ||
5880 | /* shadows on contiguous memory are not allowed */ | |
5881 | /* we therefore can use the offset field */ | |
5882 | object->vo_shadow_offset = (vm_object_offset_t)phys_page << PAGE_SHIFT; | |
5883 | object->vo_size = size; | |
5884 | } | |
5885 | vm_object_unlock(object); | |
5886 | return KERN_SUCCESS; | |
5887 | } | |
5888 | ||
5889 | /* | |
5890 | * memory_object_free_from_cache: | |
5891 | * | |
5892 | * Walk the vm_object cache list, removing and freeing vm_objects | |
5893 | * which are backed by the pager identified by the caller, (pager_ops). | |
5894 | * Remove up to "count" objects, if there are that may available | |
5895 | * in the cache. | |
5896 | * | |
5897 | * Walk the list at most once, return the number of vm_objects | |
5898 | * actually freed. | |
5899 | */ | |
5900 | ||
5901 | __private_extern__ kern_return_t | |
5902 | memory_object_free_from_cache( | |
5903 | __unused host_t host, | |
5904 | __unused memory_object_pager_ops_t pager_ops, | |
5905 | int *count) | |
5906 | { | |
5907 | #if VM_OBJECT_CACHE | |
5908 | int object_released = 0; | |
5909 | ||
5910 | register vm_object_t object = VM_OBJECT_NULL; | |
5911 | vm_object_t shadow; | |
5912 | ||
5913 | /* | |
5914 | if(host == HOST_NULL) | |
5915 | return(KERN_INVALID_ARGUMENT); | |
5916 | */ | |
5917 | ||
5918 | try_again: | |
5919 | vm_object_cache_lock(); | |
5920 | ||
5921 | queue_iterate(&vm_object_cached_list, object, | |
5922 | vm_object_t, cached_list) { | |
5923 | if (object->pager && | |
5924 | (pager_ops == object->pager->mo_pager_ops)) { | |
5925 | vm_object_lock(object); | |
5926 | queue_remove(&vm_object_cached_list, object, | |
5927 | vm_object_t, cached_list); | |
5928 | vm_object_cached_count--; | |
5929 | ||
5930 | vm_object_cache_unlock(); | |
5931 | /* | |
5932 | * Since this object is in the cache, we know | |
5933 | * that it is initialized and has only a pager's | |
5934 | * (implicit) reference. Take a reference to avoid | |
5935 | * recursive deallocations. | |
5936 | */ | |
5937 | ||
5938 | assert(object->pager_initialized); | |
5939 | assert(object->ref_count == 0); | |
5940 | vm_object_lock_assert_exclusive(object); | |
5941 | object->ref_count++; | |
5942 | ||
5943 | /* | |
5944 | * Terminate the object. | |
5945 | * If the object had a shadow, we let | |
5946 | * vm_object_deallocate deallocate it. | |
5947 | * "pageout" objects have a shadow, but | |
5948 | * maintain a "paging reference" rather | |
5949 | * than a normal reference. | |
5950 | * (We are careful here to limit recursion.) | |
5951 | */ | |
5952 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
5953 | ||
5954 | if ((vm_object_terminate(object) == KERN_SUCCESS) | |
5955 | && (shadow != VM_OBJECT_NULL)) { | |
5956 | vm_object_deallocate(shadow); | |
5957 | } | |
5958 | ||
5959 | if(object_released++ == *count) | |
5960 | return KERN_SUCCESS; | |
5961 | goto try_again; | |
5962 | } | |
5963 | } | |
5964 | vm_object_cache_unlock(); | |
5965 | *count = object_released; | |
5966 | #else | |
5967 | *count = 0; | |
5968 | #endif | |
5969 | return KERN_SUCCESS; | |
5970 | } | |
5971 | ||
5972 | ||
5973 | ||
5974 | kern_return_t | |
5975 | memory_object_create_named( | |
5976 | memory_object_t pager, | |
5977 | memory_object_offset_t size, | |
5978 | memory_object_control_t *control) | |
5979 | { | |
5980 | vm_object_t object; | |
5981 | vm_object_hash_entry_t entry; | |
5982 | lck_mtx_t *lck; | |
5983 | ||
5984 | *control = MEMORY_OBJECT_CONTROL_NULL; | |
5985 | if (pager == MEMORY_OBJECT_NULL) | |
5986 | return KERN_INVALID_ARGUMENT; | |
5987 | ||
5988 | lck = vm_object_hash_lock_spin(pager); | |
5989 | entry = vm_object_hash_lookup(pager, FALSE); | |
5990 | ||
5991 | if ((entry != VM_OBJECT_HASH_ENTRY_NULL) && | |
5992 | (entry->object != VM_OBJECT_NULL)) { | |
5993 | if (entry->object->named == TRUE) | |
5994 | panic("memory_object_create_named: caller already holds the right"); } | |
5995 | vm_object_hash_unlock(lck); | |
5996 | ||
5997 | if ((object = vm_object_enter(pager, size, FALSE, FALSE, TRUE)) == VM_OBJECT_NULL) { | |
5998 | return(KERN_INVALID_OBJECT); | |
5999 | } | |
6000 | ||
6001 | /* wait for object (if any) to be ready */ | |
6002 | if (object != VM_OBJECT_NULL) { | |
6003 | vm_object_lock(object); | |
6004 | object->named = TRUE; | |
6005 | while (!object->pager_ready) { | |
6006 | vm_object_sleep(object, | |
6007 | VM_OBJECT_EVENT_PAGER_READY, | |
6008 | THREAD_UNINT); | |
6009 | } | |
6010 | *control = object->pager_control; | |
6011 | vm_object_unlock(object); | |
6012 | } | |
6013 | return (KERN_SUCCESS); | |
6014 | } | |
6015 | ||
6016 | ||
6017 | /* | |
6018 | * Routine: memory_object_recover_named [user interface] | |
6019 | * Purpose: | |
6020 | * Attempt to recover a named reference for a VM object. | |
6021 | * VM will verify that the object has not already started | |
6022 | * down the termination path, and if it has, will optionally | |
6023 | * wait for that to finish. | |
6024 | * Returns: | |
6025 | * KERN_SUCCESS - we recovered a named reference on the object | |
6026 | * KERN_FAILURE - we could not recover a reference (object dead) | |
6027 | * KERN_INVALID_ARGUMENT - bad memory object control | |
6028 | */ | |
6029 | kern_return_t | |
6030 | memory_object_recover_named( | |
6031 | memory_object_control_t control, | |
6032 | boolean_t wait_on_terminating) | |
6033 | { | |
6034 | vm_object_t object; | |
6035 | ||
6036 | object = memory_object_control_to_vm_object(control); | |
6037 | if (object == VM_OBJECT_NULL) { | |
6038 | return (KERN_INVALID_ARGUMENT); | |
6039 | } | |
6040 | restart: | |
6041 | vm_object_lock(object); | |
6042 | ||
6043 | if (object->terminating && wait_on_terminating) { | |
6044 | vm_object_wait(object, | |
6045 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
6046 | THREAD_UNINT); | |
6047 | goto restart; | |
6048 | } | |
6049 | ||
6050 | if (!object->alive) { | |
6051 | vm_object_unlock(object); | |
6052 | return KERN_FAILURE; | |
6053 | } | |
6054 | ||
6055 | if (object->named == TRUE) { | |
6056 | vm_object_unlock(object); | |
6057 | return KERN_SUCCESS; | |
6058 | } | |
6059 | #if VM_OBJECT_CACHE | |
6060 | if ((object->ref_count == 0) && (!object->terminating)) { | |
6061 | if (!vm_object_cache_lock_try()) { | |
6062 | vm_object_unlock(object); | |
6063 | goto restart; | |
6064 | } | |
6065 | queue_remove(&vm_object_cached_list, object, | |
6066 | vm_object_t, cached_list); | |
6067 | vm_object_cached_count--; | |
6068 | XPR(XPR_VM_OBJECT_CACHE, | |
6069 | "memory_object_recover_named: removing %X, head (%X, %X)\n", | |
6070 | object, | |
6071 | vm_object_cached_list.next, | |
6072 | vm_object_cached_list.prev, 0,0); | |
6073 | ||
6074 | vm_object_cache_unlock(); | |
6075 | } | |
6076 | #endif | |
6077 | object->named = TRUE; | |
6078 | vm_object_lock_assert_exclusive(object); | |
6079 | object->ref_count++; | |
6080 | vm_object_res_reference(object); | |
6081 | while (!object->pager_ready) { | |
6082 | vm_object_sleep(object, | |
6083 | VM_OBJECT_EVENT_PAGER_READY, | |
6084 | THREAD_UNINT); | |
6085 | } | |
6086 | vm_object_unlock(object); | |
6087 | return (KERN_SUCCESS); | |
6088 | } | |
6089 | ||
6090 | ||
6091 | /* | |
6092 | * vm_object_release_name: | |
6093 | * | |
6094 | * Enforces name semantic on memory_object reference count decrement | |
6095 | * This routine should not be called unless the caller holds a name | |
6096 | * reference gained through the memory_object_create_named. | |
6097 | * | |
6098 | * If the TERMINATE_IDLE flag is set, the call will return if the | |
6099 | * reference count is not 1. i.e. idle with the only remaining reference | |
6100 | * being the name. | |
6101 | * If the decision is made to proceed the name field flag is set to | |
6102 | * false and the reference count is decremented. If the RESPECT_CACHE | |
6103 | * flag is set and the reference count has gone to zero, the | |
6104 | * memory_object is checked to see if it is cacheable otherwise when | |
6105 | * the reference count is zero, it is simply terminated. | |
6106 | */ | |
6107 | ||
6108 | __private_extern__ kern_return_t | |
6109 | vm_object_release_name( | |
6110 | vm_object_t object, | |
6111 | int flags) | |
6112 | { | |
6113 | vm_object_t shadow; | |
6114 | boolean_t original_object = TRUE; | |
6115 | ||
6116 | while (object != VM_OBJECT_NULL) { | |
6117 | ||
6118 | vm_object_lock(object); | |
6119 | ||
6120 | assert(object->alive); | |
6121 | if (original_object) | |
6122 | assert(object->named); | |
6123 | assert(object->ref_count > 0); | |
6124 | ||
6125 | /* | |
6126 | * We have to wait for initialization before | |
6127 | * destroying or caching the object. | |
6128 | */ | |
6129 | ||
6130 | if (object->pager_created && !object->pager_initialized) { | |
6131 | assert(!object->can_persist); | |
6132 | vm_object_assert_wait(object, | |
6133 | VM_OBJECT_EVENT_INITIALIZED, | |
6134 | THREAD_UNINT); | |
6135 | vm_object_unlock(object); | |
6136 | thread_block(THREAD_CONTINUE_NULL); | |
6137 | continue; | |
6138 | } | |
6139 | ||
6140 | if (((object->ref_count > 1) | |
6141 | && (flags & MEMORY_OBJECT_TERMINATE_IDLE)) | |
6142 | || (object->terminating)) { | |
6143 | vm_object_unlock(object); | |
6144 | return KERN_FAILURE; | |
6145 | } else { | |
6146 | if (flags & MEMORY_OBJECT_RELEASE_NO_OP) { | |
6147 | vm_object_unlock(object); | |
6148 | return KERN_SUCCESS; | |
6149 | } | |
6150 | } | |
6151 | ||
6152 | if ((flags & MEMORY_OBJECT_RESPECT_CACHE) && | |
6153 | (object->ref_count == 1)) { | |
6154 | if (original_object) | |
6155 | object->named = FALSE; | |
6156 | vm_object_unlock(object); | |
6157 | /* let vm_object_deallocate push this thing into */ | |
6158 | /* the cache, if that it is where it is bound */ | |
6159 | vm_object_deallocate(object); | |
6160 | return KERN_SUCCESS; | |
6161 | } | |
6162 | VM_OBJ_RES_DECR(object); | |
6163 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
6164 | ||
6165 | if (object->ref_count == 1) { | |
6166 | if (vm_object_terminate(object) != KERN_SUCCESS) { | |
6167 | if (original_object) { | |
6168 | return KERN_FAILURE; | |
6169 | } else { | |
6170 | return KERN_SUCCESS; | |
6171 | } | |
6172 | } | |
6173 | if (shadow != VM_OBJECT_NULL) { | |
6174 | original_object = FALSE; | |
6175 | object = shadow; | |
6176 | continue; | |
6177 | } | |
6178 | return KERN_SUCCESS; | |
6179 | } else { | |
6180 | vm_object_lock_assert_exclusive(object); | |
6181 | object->ref_count--; | |
6182 | assert(object->ref_count > 0); | |
6183 | if(original_object) | |
6184 | object->named = FALSE; | |
6185 | vm_object_unlock(object); | |
6186 | return KERN_SUCCESS; | |
6187 | } | |
6188 | } | |
6189 | /*NOTREACHED*/ | |
6190 | assert(0); | |
6191 | return KERN_FAILURE; | |
6192 | } | |
6193 | ||
6194 | ||
6195 | __private_extern__ kern_return_t | |
6196 | vm_object_lock_request( | |
6197 | vm_object_t object, | |
6198 | vm_object_offset_t offset, | |
6199 | vm_object_size_t size, | |
6200 | memory_object_return_t should_return, | |
6201 | int flags, | |
6202 | vm_prot_t prot) | |
6203 | { | |
6204 | __unused boolean_t should_flush; | |
6205 | ||
6206 | should_flush = flags & MEMORY_OBJECT_DATA_FLUSH; | |
6207 | ||
6208 | XPR(XPR_MEMORY_OBJECT, | |
6209 | "vm_o_lock_request, obj 0x%X off 0x%X size 0x%X flags %X prot %X\n", | |
6210 | object, offset, size, | |
6211 | (((should_return&1)<<1)|should_flush), prot); | |
6212 | ||
6213 | /* | |
6214 | * Check for bogus arguments. | |
6215 | */ | |
6216 | if (object == VM_OBJECT_NULL) | |
6217 | return (KERN_INVALID_ARGUMENT); | |
6218 | ||
6219 | if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) | |
6220 | return (KERN_INVALID_ARGUMENT); | |
6221 | ||
6222 | size = round_page_64(size); | |
6223 | ||
6224 | /* | |
6225 | * Lock the object, and acquire a paging reference to | |
6226 | * prevent the memory_object reference from being released. | |
6227 | */ | |
6228 | vm_object_lock(object); | |
6229 | vm_object_paging_begin(object); | |
6230 | ||
6231 | (void)vm_object_update(object, | |
6232 | offset, size, NULL, NULL, should_return, flags, prot); | |
6233 | ||
6234 | vm_object_paging_end(object); | |
6235 | vm_object_unlock(object); | |
6236 | ||
6237 | return (KERN_SUCCESS); | |
6238 | } | |
6239 | ||
6240 | /* | |
6241 | * Empty a purgeable object by grabbing the physical pages assigned to it and | |
6242 | * putting them on the free queue without writing them to backing store, etc. | |
6243 | * When the pages are next touched they will be demand zero-fill pages. We | |
6244 | * skip pages which are busy, being paged in/out, wired, etc. We do _not_ | |
6245 | * skip referenced/dirty pages, pages on the active queue, etc. We're more | |
6246 | * than happy to grab these since this is a purgeable object. We mark the | |
6247 | * object as "empty" after reaping its pages. | |
6248 | * | |
6249 | * On entry the object must be locked and it must be | |
6250 | * purgeable with no delayed copies pending. | |
6251 | */ | |
6252 | void | |
6253 | vm_object_purge(vm_object_t object) | |
6254 | { | |
6255 | vm_object_lock_assert_exclusive(object); | |
6256 | ||
6257 | if (object->purgable == VM_PURGABLE_DENY) | |
6258 | return; | |
6259 | ||
6260 | assert(object->copy == VM_OBJECT_NULL); | |
6261 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); | |
6262 | ||
6263 | if(object->purgable == VM_PURGABLE_VOLATILE) { | |
6264 | unsigned int delta; | |
6265 | assert(object->resident_page_count >= | |
6266 | object->wired_page_count); | |
6267 | delta = (object->resident_page_count - | |
6268 | object->wired_page_count); | |
6269 | if (delta != 0) { | |
6270 | assert(vm_page_purgeable_count >= | |
6271 | delta); | |
6272 | OSAddAtomic(-delta, | |
6273 | (SInt32 *)&vm_page_purgeable_count); | |
6274 | } | |
6275 | if (object->wired_page_count != 0) { | |
6276 | assert(vm_page_purgeable_wired_count >= | |
6277 | object->wired_page_count); | |
6278 | OSAddAtomic(-object->wired_page_count, | |
6279 | (SInt32 *)&vm_page_purgeable_wired_count); | |
6280 | } | |
6281 | } | |
6282 | object->purgable = VM_PURGABLE_EMPTY; | |
6283 | ||
6284 | vm_object_reap_pages(object, REAP_PURGEABLE); | |
6285 | } | |
6286 | ||
6287 | ||
6288 | /* | |
6289 | * vm_object_purgeable_control() allows the caller to control and investigate the | |
6290 | * state of a purgeable object. A purgeable object is created via a call to | |
6291 | * vm_allocate() with VM_FLAGS_PURGABLE specified. A purgeable object will | |
6292 | * never be coalesced with any other object -- even other purgeable objects -- | |
6293 | * and will thus always remain a distinct object. A purgeable object has | |
6294 | * special semantics when its reference count is exactly 1. If its reference | |
6295 | * count is greater than 1, then a purgeable object will behave like a normal | |
6296 | * object and attempts to use this interface will result in an error return | |
6297 | * of KERN_INVALID_ARGUMENT. | |
6298 | * | |
6299 | * A purgeable object may be put into a "volatile" state which will make the | |
6300 | * object's pages elligable for being reclaimed without paging to backing | |
6301 | * store if the system runs low on memory. If the pages in a volatile | |
6302 | * purgeable object are reclaimed, the purgeable object is said to have been | |
6303 | * "emptied." When a purgeable object is emptied the system will reclaim as | |
6304 | * many pages from the object as it can in a convenient manner (pages already | |
6305 | * en route to backing store or busy for other reasons are left as is). When | |
6306 | * a purgeable object is made volatile, its pages will generally be reclaimed | |
6307 | * before other pages in the application's working set. This semantic is | |
6308 | * generally used by applications which can recreate the data in the object | |
6309 | * faster than it can be paged in. One such example might be media assets | |
6310 | * which can be reread from a much faster RAID volume. | |
6311 | * | |
6312 | * A purgeable object may be designated as "non-volatile" which means it will | |
6313 | * behave like all other objects in the system with pages being written to and | |
6314 | * read from backing store as needed to satisfy system memory needs. If the | |
6315 | * object was emptied before the object was made non-volatile, that fact will | |
6316 | * be returned as the old state of the purgeable object (see | |
6317 | * VM_PURGABLE_SET_STATE below). In this case, any pages of the object which | |
6318 | * were reclaimed as part of emptying the object will be refaulted in as | |
6319 | * zero-fill on demand. It is up to the application to note that an object | |
6320 | * was emptied and recreate the objects contents if necessary. When a | |
6321 | * purgeable object is made non-volatile, its pages will generally not be paged | |
6322 | * out to backing store in the immediate future. A purgeable object may also | |
6323 | * be manually emptied. | |
6324 | * | |
6325 | * Finally, the current state (non-volatile, volatile, volatile & empty) of a | |
6326 | * volatile purgeable object may be queried at any time. This information may | |
6327 | * be used as a control input to let the application know when the system is | |
6328 | * experiencing memory pressure and is reclaiming memory. | |
6329 | * | |
6330 | * The specified address may be any address within the purgeable object. If | |
6331 | * the specified address does not represent any object in the target task's | |
6332 | * virtual address space, then KERN_INVALID_ADDRESS will be returned. If the | |
6333 | * object containing the specified address is not a purgeable object, then | |
6334 | * KERN_INVALID_ARGUMENT will be returned. Otherwise, KERN_SUCCESS will be | |
6335 | * returned. | |
6336 | * | |
6337 | * The control parameter may be any one of VM_PURGABLE_SET_STATE or | |
6338 | * VM_PURGABLE_GET_STATE. For VM_PURGABLE_SET_STATE, the in/out parameter | |
6339 | * state is used to set the new state of the purgeable object and return its | |
6340 | * old state. For VM_PURGABLE_GET_STATE, the current state of the purgeable | |
6341 | * object is returned in the parameter state. | |
6342 | * | |
6343 | * The in/out parameter state may be one of VM_PURGABLE_NONVOLATILE, | |
6344 | * VM_PURGABLE_VOLATILE or VM_PURGABLE_EMPTY. These, respectively, represent | |
6345 | * the non-volatile, volatile and volatile/empty states described above. | |
6346 | * Setting the state of a purgeable object to VM_PURGABLE_EMPTY will | |
6347 | * immediately reclaim as many pages in the object as can be conveniently | |
6348 | * collected (some may have already been written to backing store or be | |
6349 | * otherwise busy). | |
6350 | * | |
6351 | * The process of making a purgeable object non-volatile and determining its | |
6352 | * previous state is atomic. Thus, if a purgeable object is made | |
6353 | * VM_PURGABLE_NONVOLATILE and the old state is returned as | |
6354 | * VM_PURGABLE_VOLATILE, then the purgeable object's previous contents are | |
6355 | * completely intact and will remain so until the object is made volatile | |
6356 | * again. If the old state is returned as VM_PURGABLE_EMPTY then the object | |
6357 | * was reclaimed while it was in a volatile state and its previous contents | |
6358 | * have been lost. | |
6359 | */ | |
6360 | /* | |
6361 | * The object must be locked. | |
6362 | */ | |
6363 | kern_return_t | |
6364 | vm_object_purgable_control( | |
6365 | vm_object_t object, | |
6366 | vm_purgable_t control, | |
6367 | int *state) | |
6368 | { | |
6369 | int old_state; | |
6370 | int new_state; | |
6371 | ||
6372 | if (object == VM_OBJECT_NULL) { | |
6373 | /* | |
6374 | * Object must already be present or it can't be purgeable. | |
6375 | */ | |
6376 | return KERN_INVALID_ARGUMENT; | |
6377 | } | |
6378 | ||
6379 | /* | |
6380 | * Get current state of the purgeable object. | |
6381 | */ | |
6382 | old_state = object->purgable; | |
6383 | if (old_state == VM_PURGABLE_DENY) | |
6384 | return KERN_INVALID_ARGUMENT; | |
6385 | ||
6386 | /* purgeable cant have delayed copies - now or in the future */ | |
6387 | assert(object->copy == VM_OBJECT_NULL); | |
6388 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); | |
6389 | ||
6390 | /* | |
6391 | * Execute the desired operation. | |
6392 | */ | |
6393 | if (control == VM_PURGABLE_GET_STATE) { | |
6394 | *state = old_state; | |
6395 | return KERN_SUCCESS; | |
6396 | } | |
6397 | ||
6398 | if ((*state) & VM_PURGABLE_DEBUG_EMPTY) { | |
6399 | object->volatile_empty = TRUE; | |
6400 | } | |
6401 | if ((*state) & VM_PURGABLE_DEBUG_FAULT) { | |
6402 | object->volatile_fault = TRUE; | |
6403 | } | |
6404 | ||
6405 | new_state = *state & VM_PURGABLE_STATE_MASK; | |
6406 | if (new_state == VM_PURGABLE_VOLATILE && | |
6407 | object->volatile_empty) { | |
6408 | new_state = VM_PURGABLE_EMPTY; | |
6409 | } | |
6410 | ||
6411 | switch (new_state) { | |
6412 | case VM_PURGABLE_DENY: | |
6413 | case VM_PURGABLE_NONVOLATILE: | |
6414 | object->purgable = new_state; | |
6415 | ||
6416 | if (old_state == VM_PURGABLE_VOLATILE) { | |
6417 | unsigned int delta; | |
6418 | ||
6419 | assert(object->resident_page_count >= | |
6420 | object->wired_page_count); | |
6421 | delta = (object->resident_page_count - | |
6422 | object->wired_page_count); | |
6423 | ||
6424 | assert(vm_page_purgeable_count >= delta); | |
6425 | ||
6426 | if (delta != 0) { | |
6427 | OSAddAtomic(-delta, | |
6428 | (SInt32 *)&vm_page_purgeable_count); | |
6429 | } | |
6430 | if (object->wired_page_count != 0) { | |
6431 | assert(vm_page_purgeable_wired_count >= | |
6432 | object->wired_page_count); | |
6433 | OSAddAtomic(-object->wired_page_count, | |
6434 | (SInt32 *)&vm_page_purgeable_wired_count); | |
6435 | } | |
6436 | ||
6437 | vm_page_lock_queues(); | |
6438 | ||
6439 | assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */ | |
6440 | purgeable_q_t queue = vm_purgeable_object_remove(object); | |
6441 | assert(queue); | |
6442 | ||
6443 | vm_purgeable_token_delete_first(queue); | |
6444 | assert(queue->debug_count_objects>=0); | |
6445 | ||
6446 | vm_page_unlock_queues(); | |
6447 | } | |
6448 | break; | |
6449 | ||
6450 | case VM_PURGABLE_VOLATILE: | |
6451 | if (object->volatile_fault) { | |
6452 | vm_page_t p; | |
6453 | int refmod; | |
6454 | ||
6455 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
6456 | if (p->busy || | |
6457 | VM_PAGE_WIRED(p) || | |
6458 | p->fictitious) { | |
6459 | continue; | |
6460 | } | |
6461 | refmod = pmap_disconnect(p->phys_page); | |
6462 | if ((refmod & VM_MEM_MODIFIED) && | |
6463 | !p->dirty) { | |
6464 | p->dirty = TRUE; | |
6465 | } | |
6466 | } | |
6467 | } | |
6468 | ||
6469 | if (old_state == VM_PURGABLE_EMPTY && | |
6470 | object->resident_page_count == 0) | |
6471 | break; | |
6472 | ||
6473 | purgeable_q_t queue; | |
6474 | ||
6475 | /* find the correct queue */ | |
6476 | if ((*state&VM_PURGABLE_ORDERING_MASK) == VM_PURGABLE_ORDERING_OBSOLETE) | |
6477 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE]; | |
6478 | else { | |
6479 | if ((*state&VM_PURGABLE_BEHAVIOR_MASK) == VM_PURGABLE_BEHAVIOR_FIFO) | |
6480 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; | |
6481 | else | |
6482 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; | |
6483 | } | |
6484 | ||
6485 | if (old_state == VM_PURGABLE_NONVOLATILE || | |
6486 | old_state == VM_PURGABLE_EMPTY) { | |
6487 | unsigned int delta; | |
6488 | ||
6489 | /* try to add token... this can fail */ | |
6490 | vm_page_lock_queues(); | |
6491 | ||
6492 | kern_return_t result = vm_purgeable_token_add(queue); | |
6493 | if (result != KERN_SUCCESS) { | |
6494 | vm_page_unlock_queues(); | |
6495 | return result; | |
6496 | } | |
6497 | vm_page_unlock_queues(); | |
6498 | ||
6499 | assert(object->resident_page_count >= | |
6500 | object->wired_page_count); | |
6501 | delta = (object->resident_page_count - | |
6502 | object->wired_page_count); | |
6503 | ||
6504 | if (delta != 0) { | |
6505 | OSAddAtomic(delta, | |
6506 | &vm_page_purgeable_count); | |
6507 | } | |
6508 | if (object->wired_page_count != 0) { | |
6509 | OSAddAtomic(object->wired_page_count, | |
6510 | &vm_page_purgeable_wired_count); | |
6511 | } | |
6512 | ||
6513 | object->purgable = new_state; | |
6514 | ||
6515 | /* object should not be on a queue */ | |
6516 | assert(object->objq.next == NULL && object->objq.prev == NULL); | |
6517 | } | |
6518 | else if (old_state == VM_PURGABLE_VOLATILE) { | |
6519 | /* | |
6520 | * if reassigning priorities / purgeable groups, we don't change the | |
6521 | * token queue. So moving priorities will not make pages stay around longer. | |
6522 | * Reasoning is that the algorithm gives most priority to the most important | |
6523 | * object. If a new token is added, the most important object' priority is boosted. | |
6524 | * This biases the system already for purgeable queues that move a lot. | |
6525 | * It doesn't seem more biasing is neccessary in this case, where no new object is added. | |
6526 | */ | |
6527 | assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */ | |
6528 | ||
6529 | purgeable_q_t old_queue=vm_purgeable_object_remove(object); | |
6530 | assert(old_queue); | |
6531 | ||
6532 | if (old_queue != queue) { | |
6533 | kern_return_t result; | |
6534 | ||
6535 | /* Changing queue. Have to move token. */ | |
6536 | vm_page_lock_queues(); | |
6537 | vm_purgeable_token_delete_first(old_queue); | |
6538 | result = vm_purgeable_token_add(queue); | |
6539 | vm_page_unlock_queues(); | |
6540 | ||
6541 | assert(result==KERN_SUCCESS); /* this should never fail since we just freed a token */ | |
6542 | } | |
6543 | }; | |
6544 | vm_purgeable_object_add(object, queue, (*state&VM_VOLATILE_GROUP_MASK)>>VM_VOLATILE_GROUP_SHIFT ); | |
6545 | ||
6546 | assert(queue->debug_count_objects>=0); | |
6547 | ||
6548 | break; | |
6549 | ||
6550 | ||
6551 | case VM_PURGABLE_EMPTY: | |
6552 | if (object->volatile_fault) { | |
6553 | vm_page_t p; | |
6554 | int refmod; | |
6555 | ||
6556 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
6557 | if (p->busy || | |
6558 | VM_PAGE_WIRED(p) || | |
6559 | p->fictitious) { | |
6560 | continue; | |
6561 | } | |
6562 | refmod = pmap_disconnect(p->phys_page); | |
6563 | if ((refmod & VM_MEM_MODIFIED) && | |
6564 | !p->dirty) { | |
6565 | p->dirty = TRUE; | |
6566 | } | |
6567 | } | |
6568 | } | |
6569 | ||
6570 | if (old_state != new_state) { | |
6571 | assert(old_state == VM_PURGABLE_NONVOLATILE || | |
6572 | old_state == VM_PURGABLE_VOLATILE); | |
6573 | if (old_state == VM_PURGABLE_VOLATILE) { | |
6574 | purgeable_q_t old_queue; | |
6575 | ||
6576 | /* object should be on a queue */ | |
6577 | assert(object->objq.next != NULL && | |
6578 | object->objq.prev != NULL); | |
6579 | old_queue = vm_purgeable_object_remove(object); | |
6580 | assert(old_queue); | |
6581 | vm_page_lock_queues(); | |
6582 | vm_purgeable_token_delete_first(old_queue); | |
6583 | vm_page_unlock_queues(); | |
6584 | } | |
6585 | (void) vm_object_purge(object); | |
6586 | } | |
6587 | break; | |
6588 | ||
6589 | } | |
6590 | *state = old_state; | |
6591 | ||
6592 | return KERN_SUCCESS; | |
6593 | } | |
6594 | ||
6595 | #if TASK_SWAPPER | |
6596 | /* | |
6597 | * vm_object_res_deallocate | |
6598 | * | |
6599 | * (recursively) decrement residence counts on vm objects and their shadows. | |
6600 | * Called from vm_object_deallocate and when swapping out an object. | |
6601 | * | |
6602 | * The object is locked, and remains locked throughout the function, | |
6603 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
6604 | * will be dropped, but not the original object. | |
6605 | * | |
6606 | * NOTE: this function used to use recursion, rather than iteration. | |
6607 | */ | |
6608 | ||
6609 | __private_extern__ void | |
6610 | vm_object_res_deallocate( | |
6611 | vm_object_t object) | |
6612 | { | |
6613 | vm_object_t orig_object = object; | |
6614 | /* | |
6615 | * Object is locked so it can be called directly | |
6616 | * from vm_object_deallocate. Original object is never | |
6617 | * unlocked. | |
6618 | */ | |
6619 | assert(object->res_count > 0); | |
6620 | while (--object->res_count == 0) { | |
6621 | assert(object->ref_count >= object->res_count); | |
6622 | vm_object_deactivate_all_pages(object); | |
6623 | /* iterate on shadow, if present */ | |
6624 | if (object->shadow != VM_OBJECT_NULL) { | |
6625 | vm_object_t tmp_object = object->shadow; | |
6626 | vm_object_lock(tmp_object); | |
6627 | if (object != orig_object) | |
6628 | vm_object_unlock(object); | |
6629 | object = tmp_object; | |
6630 | assert(object->res_count > 0); | |
6631 | } else | |
6632 | break; | |
6633 | } | |
6634 | if (object != orig_object) | |
6635 | vm_object_unlock(object); | |
6636 | } | |
6637 | ||
6638 | /* | |
6639 | * vm_object_res_reference | |
6640 | * | |
6641 | * Internal function to increment residence count on a vm object | |
6642 | * and its shadows. It is called only from vm_object_reference, and | |
6643 | * when swapping in a vm object, via vm_map_swap. | |
6644 | * | |
6645 | * The object is locked, and remains locked throughout the function, | |
6646 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
6647 | * will be dropped, but not the original object. | |
6648 | * | |
6649 | * NOTE: this function used to use recursion, rather than iteration. | |
6650 | */ | |
6651 | ||
6652 | __private_extern__ void | |
6653 | vm_object_res_reference( | |
6654 | vm_object_t object) | |
6655 | { | |
6656 | vm_object_t orig_object = object; | |
6657 | /* | |
6658 | * Object is locked, so this can be called directly | |
6659 | * from vm_object_reference. This lock is never released. | |
6660 | */ | |
6661 | while ((++object->res_count == 1) && | |
6662 | (object->shadow != VM_OBJECT_NULL)) { | |
6663 | vm_object_t tmp_object = object->shadow; | |
6664 | ||
6665 | assert(object->ref_count >= object->res_count); | |
6666 | vm_object_lock(tmp_object); | |
6667 | if (object != orig_object) | |
6668 | vm_object_unlock(object); | |
6669 | object = tmp_object; | |
6670 | } | |
6671 | if (object != orig_object) | |
6672 | vm_object_unlock(object); | |
6673 | assert(orig_object->ref_count >= orig_object->res_count); | |
6674 | } | |
6675 | #endif /* TASK_SWAPPER */ | |
6676 | ||
6677 | /* | |
6678 | * vm_object_reference: | |
6679 | * | |
6680 | * Gets another reference to the given object. | |
6681 | */ | |
6682 | #ifdef vm_object_reference | |
6683 | #undef vm_object_reference | |
6684 | #endif | |
6685 | __private_extern__ void | |
6686 | vm_object_reference( | |
6687 | register vm_object_t object) | |
6688 | { | |
6689 | if (object == VM_OBJECT_NULL) | |
6690 | return; | |
6691 | ||
6692 | vm_object_lock(object); | |
6693 | assert(object->ref_count > 0); | |
6694 | vm_object_reference_locked(object); | |
6695 | vm_object_unlock(object); | |
6696 | } | |
6697 | ||
6698 | #ifdef MACH_BSD | |
6699 | /* | |
6700 | * Scale the vm_object_cache | |
6701 | * This is required to make sure that the vm_object_cache is big | |
6702 | * enough to effectively cache the mapped file. | |
6703 | * This is really important with UBC as all the regular file vnodes | |
6704 | * have memory object associated with them. Havving this cache too | |
6705 | * small results in rapid reclaim of vnodes and hurts performance a LOT! | |
6706 | * | |
6707 | * This is also needed as number of vnodes can be dynamically scaled. | |
6708 | */ | |
6709 | kern_return_t | |
6710 | adjust_vm_object_cache( | |
6711 | __unused vm_size_t oval, | |
6712 | __unused vm_size_t nval) | |
6713 | { | |
6714 | #if VM_OBJECT_CACHE | |
6715 | vm_object_cached_max = nval; | |
6716 | vm_object_cache_trim(FALSE); | |
6717 | #endif | |
6718 | return (KERN_SUCCESS); | |
6719 | } | |
6720 | #endif /* MACH_BSD */ | |
6721 | ||
6722 | ||
6723 | /* | |
6724 | * vm_object_transpose | |
6725 | * | |
6726 | * This routine takes two VM objects of the same size and exchanges | |
6727 | * their backing store. | |
6728 | * The objects should be "quiesced" via a UPL operation with UPL_SET_IO_WIRE | |
6729 | * and UPL_BLOCK_ACCESS if they are referenced anywhere. | |
6730 | * | |
6731 | * The VM objects must not be locked by caller. | |
6732 | */ | |
6733 | unsigned int vm_object_transpose_count = 0; | |
6734 | kern_return_t | |
6735 | vm_object_transpose( | |
6736 | vm_object_t object1, | |
6737 | vm_object_t object2, | |
6738 | vm_object_size_t transpose_size) | |
6739 | { | |
6740 | vm_object_t tmp_object; | |
6741 | kern_return_t retval; | |
6742 | boolean_t object1_locked, object2_locked; | |
6743 | vm_page_t page; | |
6744 | vm_object_offset_t page_offset; | |
6745 | lck_mtx_t *hash_lck; | |
6746 | vm_object_hash_entry_t hash_entry; | |
6747 | ||
6748 | tmp_object = VM_OBJECT_NULL; | |
6749 | object1_locked = FALSE; object2_locked = FALSE; | |
6750 | ||
6751 | if (object1 == object2 || | |
6752 | object1 == VM_OBJECT_NULL || | |
6753 | object2 == VM_OBJECT_NULL) { | |
6754 | /* | |
6755 | * If the 2 VM objects are the same, there's | |
6756 | * no point in exchanging their backing store. | |
6757 | */ | |
6758 | retval = KERN_INVALID_VALUE; | |
6759 | goto done; | |
6760 | } | |
6761 | ||
6762 | /* | |
6763 | * Since we need to lock both objects at the same time, | |
6764 | * make sure we always lock them in the same order to | |
6765 | * avoid deadlocks. | |
6766 | */ | |
6767 | if (object1 > object2) { | |
6768 | tmp_object = object1; | |
6769 | object1 = object2; | |
6770 | object2 = tmp_object; | |
6771 | } | |
6772 | ||
6773 | /* | |
6774 | * Allocate a temporary VM object to hold object1's contents | |
6775 | * while we copy object2 to object1. | |
6776 | */ | |
6777 | tmp_object = vm_object_allocate(transpose_size); | |
6778 | vm_object_lock(tmp_object); | |
6779 | tmp_object->can_persist = FALSE; | |
6780 | ||
6781 | ||
6782 | /* | |
6783 | * Grab control of the 1st VM object. | |
6784 | */ | |
6785 | vm_object_lock(object1); | |
6786 | object1_locked = TRUE; | |
6787 | if (!object1->alive || object1->terminating || | |
6788 | object1->copy || object1->shadow || object1->shadowed || | |
6789 | object1->purgable != VM_PURGABLE_DENY) { | |
6790 | /* | |
6791 | * We don't deal with copy or shadow objects (yet). | |
6792 | */ | |
6793 | retval = KERN_INVALID_VALUE; | |
6794 | goto done; | |
6795 | } | |
6796 | /* | |
6797 | * We're about to mess with the object's backing store and | |
6798 | * taking a "paging_in_progress" reference wouldn't be enough | |
6799 | * to prevent any paging activity on this object, so the caller should | |
6800 | * have "quiesced" the objects beforehand, via a UPL operation with | |
6801 | * UPL_SET_IO_WIRE (to make sure all the pages are there and wired) | |
6802 | * and UPL_BLOCK_ACCESS (to mark the pages "busy"). | |
6803 | * | |
6804 | * Wait for any paging operation to complete (but only paging, not | |
6805 | * other kind of activities not linked to the pager). After we're | |
6806 | * statisfied that there's no more paging in progress, we keep the | |
6807 | * object locked, to guarantee that no one tries to access its pager. | |
6808 | */ | |
6809 | vm_object_paging_only_wait(object1, THREAD_UNINT); | |
6810 | ||
6811 | /* | |
6812 | * Same as above for the 2nd object... | |
6813 | */ | |
6814 | vm_object_lock(object2); | |
6815 | object2_locked = TRUE; | |
6816 | if (! object2->alive || object2->terminating || | |
6817 | object2->copy || object2->shadow || object2->shadowed || | |
6818 | object2->purgable != VM_PURGABLE_DENY) { | |
6819 | retval = KERN_INVALID_VALUE; | |
6820 | goto done; | |
6821 | } | |
6822 | vm_object_paging_only_wait(object2, THREAD_UNINT); | |
6823 | ||
6824 | ||
6825 | if (object1->vo_size != object2->vo_size || | |
6826 | object1->vo_size != transpose_size) { | |
6827 | /* | |
6828 | * If the 2 objects don't have the same size, we can't | |
6829 | * exchange their backing stores or one would overflow. | |
6830 | * If their size doesn't match the caller's | |
6831 | * "transpose_size", we can't do it either because the | |
6832 | * transpose operation will affect the entire span of | |
6833 | * the objects. | |
6834 | */ | |
6835 | retval = KERN_INVALID_VALUE; | |
6836 | goto done; | |
6837 | } | |
6838 | ||
6839 | ||
6840 | /* | |
6841 | * Transpose the lists of resident pages. | |
6842 | * This also updates the resident_page_count and the memq_hint. | |
6843 | */ | |
6844 | if (object1->phys_contiguous || queue_empty(&object1->memq)) { | |
6845 | /* | |
6846 | * No pages in object1, just transfer pages | |
6847 | * from object2 to object1. No need to go through | |
6848 | * an intermediate object. | |
6849 | */ | |
6850 | while (!queue_empty(&object2->memq)) { | |
6851 | page = (vm_page_t) queue_first(&object2->memq); | |
6852 | vm_page_rename(page, object1, page->offset, FALSE); | |
6853 | } | |
6854 | assert(queue_empty(&object2->memq)); | |
6855 | } else if (object2->phys_contiguous || queue_empty(&object2->memq)) { | |
6856 | /* | |
6857 | * No pages in object2, just transfer pages | |
6858 | * from object1 to object2. No need to go through | |
6859 | * an intermediate object. | |
6860 | */ | |
6861 | while (!queue_empty(&object1->memq)) { | |
6862 | page = (vm_page_t) queue_first(&object1->memq); | |
6863 | vm_page_rename(page, object2, page->offset, FALSE); | |
6864 | } | |
6865 | assert(queue_empty(&object1->memq)); | |
6866 | } else { | |
6867 | /* transfer object1's pages to tmp_object */ | |
6868 | while (!queue_empty(&object1->memq)) { | |
6869 | page = (vm_page_t) queue_first(&object1->memq); | |
6870 | page_offset = page->offset; | |
6871 | vm_page_remove(page, TRUE); | |
6872 | page->offset = page_offset; | |
6873 | queue_enter(&tmp_object->memq, page, vm_page_t, listq); | |
6874 | } | |
6875 | assert(queue_empty(&object1->memq)); | |
6876 | /* transfer object2's pages to object1 */ | |
6877 | while (!queue_empty(&object2->memq)) { | |
6878 | page = (vm_page_t) queue_first(&object2->memq); | |
6879 | vm_page_rename(page, object1, page->offset, FALSE); | |
6880 | } | |
6881 | assert(queue_empty(&object2->memq)); | |
6882 | /* transfer tmp_object's pages to object1 */ | |
6883 | while (!queue_empty(&tmp_object->memq)) { | |
6884 | page = (vm_page_t) queue_first(&tmp_object->memq); | |
6885 | queue_remove(&tmp_object->memq, page, | |
6886 | vm_page_t, listq); | |
6887 | vm_page_insert(page, object2, page->offset); | |
6888 | } | |
6889 | assert(queue_empty(&tmp_object->memq)); | |
6890 | } | |
6891 | ||
6892 | #define __TRANSPOSE_FIELD(field) \ | |
6893 | MACRO_BEGIN \ | |
6894 | tmp_object->field = object1->field; \ | |
6895 | object1->field = object2->field; \ | |
6896 | object2->field = tmp_object->field; \ | |
6897 | MACRO_END | |
6898 | ||
6899 | /* "Lock" refers to the object not its contents */ | |
6900 | /* "size" should be identical */ | |
6901 | assert(object1->vo_size == object2->vo_size); | |
6902 | /* "memq_hint" was updated above when transposing pages */ | |
6903 | /* "ref_count" refers to the object not its contents */ | |
6904 | #if TASK_SWAPPER | |
6905 | /* "res_count" refers to the object not its contents */ | |
6906 | #endif | |
6907 | /* "resident_page_count" was updated above when transposing pages */ | |
6908 | /* "wired_page_count" was updated above when transposing pages */ | |
6909 | /* "reusable_page_count" was updated above when transposing pages */ | |
6910 | /* there should be no "copy" */ | |
6911 | assert(!object1->copy); | |
6912 | assert(!object2->copy); | |
6913 | /* there should be no "shadow" */ | |
6914 | assert(!object1->shadow); | |
6915 | assert(!object2->shadow); | |
6916 | __TRANSPOSE_FIELD(vo_shadow_offset); /* used by phys_contiguous objects */ | |
6917 | __TRANSPOSE_FIELD(pager); | |
6918 | __TRANSPOSE_FIELD(paging_offset); | |
6919 | __TRANSPOSE_FIELD(pager_control); | |
6920 | /* update the memory_objects' pointers back to the VM objects */ | |
6921 | if (object1->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
6922 | memory_object_control_collapse(object1->pager_control, | |
6923 | object1); | |
6924 | } | |
6925 | if (object2->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
6926 | memory_object_control_collapse(object2->pager_control, | |
6927 | object2); | |
6928 | } | |
6929 | __TRANSPOSE_FIELD(copy_strategy); | |
6930 | /* "paging_in_progress" refers to the object not its contents */ | |
6931 | assert(!object1->paging_in_progress); | |
6932 | assert(!object2->paging_in_progress); | |
6933 | assert(object1->activity_in_progress); | |
6934 | assert(object2->activity_in_progress); | |
6935 | /* "all_wanted" refers to the object not its contents */ | |
6936 | __TRANSPOSE_FIELD(pager_created); | |
6937 | __TRANSPOSE_FIELD(pager_initialized); | |
6938 | __TRANSPOSE_FIELD(pager_ready); | |
6939 | __TRANSPOSE_FIELD(pager_trusted); | |
6940 | __TRANSPOSE_FIELD(can_persist); | |
6941 | __TRANSPOSE_FIELD(internal); | |
6942 | __TRANSPOSE_FIELD(temporary); | |
6943 | __TRANSPOSE_FIELD(private); | |
6944 | __TRANSPOSE_FIELD(pageout); | |
6945 | /* "alive" should be set */ | |
6946 | assert(object1->alive); | |
6947 | assert(object2->alive); | |
6948 | /* "purgeable" should be non-purgeable */ | |
6949 | assert(object1->purgable == VM_PURGABLE_DENY); | |
6950 | assert(object2->purgable == VM_PURGABLE_DENY); | |
6951 | /* "shadowed" refers to the the object not its contents */ | |
6952 | __TRANSPOSE_FIELD(silent_overwrite); | |
6953 | __TRANSPOSE_FIELD(advisory_pageout); | |
6954 | __TRANSPOSE_FIELD(true_share); | |
6955 | /* "terminating" should not be set */ | |
6956 | assert(!object1->terminating); | |
6957 | assert(!object2->terminating); | |
6958 | __TRANSPOSE_FIELD(named); | |
6959 | /* "shadow_severed" refers to the object not its contents */ | |
6960 | __TRANSPOSE_FIELD(phys_contiguous); | |
6961 | __TRANSPOSE_FIELD(nophyscache); | |
6962 | /* "cached_list.next" points to transposed object */ | |
6963 | object1->cached_list.next = (queue_entry_t) object2; | |
6964 | object2->cached_list.next = (queue_entry_t) object1; | |
6965 | /* "cached_list.prev" should be NULL */ | |
6966 | assert(object1->cached_list.prev == NULL); | |
6967 | assert(object2->cached_list.prev == NULL); | |
6968 | /* "msr_q" is linked to the object not its contents */ | |
6969 | assert(queue_empty(&object1->msr_q)); | |
6970 | assert(queue_empty(&object2->msr_q)); | |
6971 | __TRANSPOSE_FIELD(last_alloc); | |
6972 | __TRANSPOSE_FIELD(sequential); | |
6973 | __TRANSPOSE_FIELD(pages_created); | |
6974 | __TRANSPOSE_FIELD(pages_used); | |
6975 | __TRANSPOSE_FIELD(scan_collisions); | |
6976 | #if MACH_PAGEMAP | |
6977 | __TRANSPOSE_FIELD(existence_map); | |
6978 | #endif | |
6979 | __TRANSPOSE_FIELD(cow_hint); | |
6980 | #if MACH_ASSERT | |
6981 | __TRANSPOSE_FIELD(paging_object); | |
6982 | #endif | |
6983 | __TRANSPOSE_FIELD(wimg_bits); | |
6984 | __TRANSPOSE_FIELD(set_cache_attr); | |
6985 | __TRANSPOSE_FIELD(code_signed); | |
6986 | if (object1->hashed) { | |
6987 | hash_lck = vm_object_hash_lock_spin(object2->pager); | |
6988 | hash_entry = vm_object_hash_lookup(object2->pager, FALSE); | |
6989 | assert(hash_entry != VM_OBJECT_HASH_ENTRY_NULL); | |
6990 | hash_entry->object = object2; | |
6991 | vm_object_hash_unlock(hash_lck); | |
6992 | } | |
6993 | if (object2->hashed) { | |
6994 | hash_lck = vm_object_hash_lock_spin(object1->pager); | |
6995 | hash_entry = vm_object_hash_lookup(object1->pager, FALSE); | |
6996 | assert(hash_entry != VM_OBJECT_HASH_ENTRY_NULL); | |
6997 | hash_entry->object = object1; | |
6998 | vm_object_hash_unlock(hash_lck); | |
6999 | } | |
7000 | __TRANSPOSE_FIELD(hashed); | |
7001 | object1->transposed = TRUE; | |
7002 | object2->transposed = TRUE; | |
7003 | __TRANSPOSE_FIELD(mapping_in_progress); | |
7004 | __TRANSPOSE_FIELD(volatile_empty); | |
7005 | __TRANSPOSE_FIELD(volatile_fault); | |
7006 | __TRANSPOSE_FIELD(all_reusable); | |
7007 | assert(object1->blocked_access); | |
7008 | assert(object2->blocked_access); | |
7009 | assert(object1->__object2_unused_bits == 0); | |
7010 | assert(object2->__object2_unused_bits == 0); | |
7011 | #if UPL_DEBUG | |
7012 | /* "uplq" refers to the object not its contents (see upl_transpose()) */ | |
7013 | #endif | |
7014 | assert(object1->objq.next == NULL); | |
7015 | assert(object1->objq.prev == NULL); | |
7016 | assert(object2->objq.next == NULL); | |
7017 | assert(object2->objq.prev == NULL); | |
7018 | ||
7019 | #undef __TRANSPOSE_FIELD | |
7020 | ||
7021 | retval = KERN_SUCCESS; | |
7022 | ||
7023 | done: | |
7024 | /* | |
7025 | * Cleanup. | |
7026 | */ | |
7027 | if (tmp_object != VM_OBJECT_NULL) { | |
7028 | vm_object_unlock(tmp_object); | |
7029 | /* | |
7030 | * Re-initialize the temporary object to avoid | |
7031 | * deallocating a real pager. | |
7032 | */ | |
7033 | _vm_object_allocate(transpose_size, tmp_object); | |
7034 | vm_object_deallocate(tmp_object); | |
7035 | tmp_object = VM_OBJECT_NULL; | |
7036 | } | |
7037 | ||
7038 | if (object1_locked) { | |
7039 | vm_object_unlock(object1); | |
7040 | object1_locked = FALSE; | |
7041 | } | |
7042 | if (object2_locked) { | |
7043 | vm_object_unlock(object2); | |
7044 | object2_locked = FALSE; | |
7045 | } | |
7046 | ||
7047 | vm_object_transpose_count++; | |
7048 | ||
7049 | return retval; | |
7050 | } | |
7051 | ||
7052 | ||
7053 | /* | |
7054 | * vm_object_cluster_size | |
7055 | * | |
7056 | * Determine how big a cluster we should issue an I/O for... | |
7057 | * | |
7058 | * Inputs: *start == offset of page needed | |
7059 | * *length == maximum cluster pager can handle | |
7060 | * Outputs: *start == beginning offset of cluster | |
7061 | * *length == length of cluster to try | |
7062 | * | |
7063 | * The original *start will be encompassed by the cluster | |
7064 | * | |
7065 | */ | |
7066 | extern int speculative_reads_disabled; | |
7067 | extern int ignore_is_ssd; | |
7068 | ||
7069 | #if CONFIG_EMBEDDED | |
7070 | unsigned int preheat_pages_max = MAX_UPL_TRANSFER; | |
7071 | unsigned int preheat_pages_min = 8; | |
7072 | #else | |
7073 | unsigned int preheat_pages_max = MAX_UPL_TRANSFER; | |
7074 | unsigned int preheat_pages_min = 8; | |
7075 | #endif | |
7076 | ||
7077 | uint32_t pre_heat_scaling[MAX_UPL_TRANSFER + 1]; | |
7078 | uint32_t pre_heat_cluster[MAX_UPL_TRANSFER + 1]; | |
7079 | ||
7080 | ||
7081 | __private_extern__ void | |
7082 | vm_object_cluster_size(vm_object_t object, vm_object_offset_t *start, | |
7083 | vm_size_t *length, vm_object_fault_info_t fault_info, uint32_t *io_streaming) | |
7084 | { | |
7085 | vm_size_t pre_heat_size; | |
7086 | vm_size_t tail_size; | |
7087 | vm_size_t head_size; | |
7088 | vm_size_t max_length; | |
7089 | vm_size_t cluster_size; | |
7090 | vm_object_offset_t object_size; | |
7091 | vm_object_offset_t orig_start; | |
7092 | vm_object_offset_t target_start; | |
7093 | vm_object_offset_t offset; | |
7094 | vm_behavior_t behavior; | |
7095 | boolean_t look_behind = TRUE; | |
7096 | boolean_t look_ahead = TRUE; | |
7097 | boolean_t isSSD = FALSE; | |
7098 | uint32_t throttle_limit; | |
7099 | int sequential_run; | |
7100 | int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
7101 | unsigned int max_ph_size; | |
7102 | unsigned int min_ph_size; | |
7103 | unsigned int min_ph_size_in_bytes; | |
7104 | ||
7105 | assert( !(*length & PAGE_MASK)); | |
7106 | assert( !(*start & PAGE_MASK_64)); | |
7107 | ||
7108 | /* | |
7109 | * remember maxiumum length of run requested | |
7110 | */ | |
7111 | max_length = *length; | |
7112 | /* | |
7113 | * we'll always return a cluster size of at least | |
7114 | * 1 page, since the original fault must always | |
7115 | * be processed | |
7116 | */ | |
7117 | *length = PAGE_SIZE; | |
7118 | *io_streaming = 0; | |
7119 | ||
7120 | if (speculative_reads_disabled || fault_info == NULL) { | |
7121 | /* | |
7122 | * no cluster... just fault the page in | |
7123 | */ | |
7124 | return; | |
7125 | } | |
7126 | orig_start = *start; | |
7127 | target_start = orig_start; | |
7128 | cluster_size = round_page(fault_info->cluster_size); | |
7129 | behavior = fault_info->behavior; | |
7130 | ||
7131 | vm_object_lock(object); | |
7132 | ||
7133 | if (object->pager == MEMORY_OBJECT_NULL) | |
7134 | goto out; /* pager is gone for this object, nothing more to do */ | |
7135 | ||
7136 | if (!ignore_is_ssd) | |
7137 | vnode_pager_get_isSSD(object->pager, &isSSD); | |
7138 | ||
7139 | min_ph_size = preheat_pages_min; | |
7140 | max_ph_size = preheat_pages_max; | |
7141 | ||
7142 | if (isSSD) { | |
7143 | min_ph_size /= 2; | |
7144 | max_ph_size /= 8; | |
7145 | } | |
7146 | if (min_ph_size < 1) | |
7147 | min_ph_size = 1; | |
7148 | ||
7149 | if (max_ph_size < 1) | |
7150 | max_ph_size = 1; | |
7151 | else if (max_ph_size > MAX_UPL_TRANSFER) | |
7152 | max_ph_size = MAX_UPL_TRANSFER; | |
7153 | ||
7154 | if (max_length > (max_ph_size * PAGE_SIZE)) | |
7155 | max_length = max_ph_size * PAGE_SIZE; | |
7156 | ||
7157 | if (max_length <= PAGE_SIZE) | |
7158 | goto out; | |
7159 | ||
7160 | min_ph_size_in_bytes = min_ph_size * PAGE_SIZE; | |
7161 | ||
7162 | if (object->internal) | |
7163 | object_size = object->vo_size; | |
7164 | else | |
7165 | vnode_pager_get_object_size(object->pager, &object_size); | |
7166 | ||
7167 | object_size = round_page_64(object_size); | |
7168 | ||
7169 | if (orig_start >= object_size) { | |
7170 | /* | |
7171 | * fault occurred beyond the EOF... | |
7172 | * we need to punt w/o changing the | |
7173 | * starting offset | |
7174 | */ | |
7175 | goto out; | |
7176 | } | |
7177 | if (object->pages_used > object->pages_created) { | |
7178 | /* | |
7179 | * must have wrapped our 32 bit counters | |
7180 | * so reset | |
7181 | */ | |
7182 | object->pages_used = object->pages_created = 0; | |
7183 | } | |
7184 | if ((sequential_run = object->sequential)) { | |
7185 | if (sequential_run < 0) { | |
7186 | sequential_behavior = VM_BEHAVIOR_RSEQNTL; | |
7187 | sequential_run = 0 - sequential_run; | |
7188 | } else { | |
7189 | sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
7190 | } | |
7191 | ||
7192 | } | |
7193 | switch (behavior) { | |
7194 | ||
7195 | default: | |
7196 | behavior = VM_BEHAVIOR_DEFAULT; | |
7197 | ||
7198 | case VM_BEHAVIOR_DEFAULT: | |
7199 | if (object->internal && fault_info->user_tag == VM_MEMORY_STACK) | |
7200 | goto out; | |
7201 | ||
7202 | if (sequential_run >= (3 * PAGE_SIZE)) { | |
7203 | pre_heat_size = sequential_run + PAGE_SIZE; | |
7204 | ||
7205 | if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) | |
7206 | look_behind = FALSE; | |
7207 | else | |
7208 | look_ahead = FALSE; | |
7209 | ||
7210 | *io_streaming = 1; | |
7211 | } else { | |
7212 | ||
7213 | if (object->pages_created < (20 * min_ph_size)) { | |
7214 | /* | |
7215 | * prime the pump | |
7216 | */ | |
7217 | pre_heat_size = min_ph_size_in_bytes; | |
7218 | } else { | |
7219 | /* | |
7220 | * Linear growth in PH size: The maximum size is max_length... | |
7221 | * this cacluation will result in a size that is neither a | |
7222 | * power of 2 nor a multiple of PAGE_SIZE... so round | |
7223 | * it up to the nearest PAGE_SIZE boundary | |
7224 | */ | |
7225 | pre_heat_size = (max_length * object->pages_used) / object->pages_created; | |
7226 | ||
7227 | if (pre_heat_size < min_ph_size_in_bytes) | |
7228 | pre_heat_size = min_ph_size_in_bytes; | |
7229 | else | |
7230 | pre_heat_size = round_page(pre_heat_size); | |
7231 | } | |
7232 | } | |
7233 | break; | |
7234 | ||
7235 | case VM_BEHAVIOR_RANDOM: | |
7236 | if ((pre_heat_size = cluster_size) <= PAGE_SIZE) | |
7237 | goto out; | |
7238 | break; | |
7239 | ||
7240 | case VM_BEHAVIOR_SEQUENTIAL: | |
7241 | if ((pre_heat_size = cluster_size) == 0) | |
7242 | pre_heat_size = sequential_run + PAGE_SIZE; | |
7243 | look_behind = FALSE; | |
7244 | *io_streaming = 1; | |
7245 | ||
7246 | break; | |
7247 | ||
7248 | case VM_BEHAVIOR_RSEQNTL: | |
7249 | if ((pre_heat_size = cluster_size) == 0) | |
7250 | pre_heat_size = sequential_run + PAGE_SIZE; | |
7251 | look_ahead = FALSE; | |
7252 | *io_streaming = 1; | |
7253 | ||
7254 | break; | |
7255 | ||
7256 | } | |
7257 | throttle_limit = (uint32_t) max_length; | |
7258 | assert(throttle_limit == max_length); | |
7259 | ||
7260 | if (vnode_pager_check_hard_throttle(object->pager, &throttle_limit, *io_streaming) == KERN_SUCCESS) { | |
7261 | if (max_length > throttle_limit) | |
7262 | max_length = throttle_limit; | |
7263 | } | |
7264 | if (pre_heat_size > max_length) | |
7265 | pre_heat_size = max_length; | |
7266 | ||
7267 | if (behavior == VM_BEHAVIOR_DEFAULT && (pre_heat_size > min_ph_size_in_bytes)) { | |
7268 | if (vm_page_free_count < vm_page_throttle_limit) | |
7269 | pre_heat_size = trunc_page(pre_heat_size / 16); | |
7270 | else if (vm_page_free_count < vm_page_free_target) | |
7271 | pre_heat_size = trunc_page(pre_heat_size / 4); | |
7272 | ||
7273 | if (pre_heat_size < min_ph_size_in_bytes) | |
7274 | pre_heat_size = min_ph_size_in_bytes; | |
7275 | } | |
7276 | if (look_ahead == TRUE) { | |
7277 | if (look_behind == TRUE) { | |
7278 | /* | |
7279 | * if we get here its due to a random access... | |
7280 | * so we want to center the original fault address | |
7281 | * within the cluster we will issue... make sure | |
7282 | * to calculate 'head_size' as a multiple of PAGE_SIZE... | |
7283 | * 'pre_heat_size' is a multiple of PAGE_SIZE but not | |
7284 | * necessarily an even number of pages so we need to truncate | |
7285 | * the result to a PAGE_SIZE boundary | |
7286 | */ | |
7287 | head_size = trunc_page(pre_heat_size / 2); | |
7288 | ||
7289 | if (target_start > head_size) | |
7290 | target_start -= head_size; | |
7291 | else | |
7292 | target_start = 0; | |
7293 | ||
7294 | /* | |
7295 | * 'target_start' at this point represents the beginning offset | |
7296 | * of the cluster we are considering... 'orig_start' will be in | |
7297 | * the center of this cluster if we didn't have to clip the start | |
7298 | * due to running into the start of the file | |
7299 | */ | |
7300 | } | |
7301 | if ((target_start + pre_heat_size) > object_size) | |
7302 | pre_heat_size = (vm_size_t)(round_page_64(object_size - target_start)); | |
7303 | /* | |
7304 | * at this point caclulate the number of pages beyond the original fault | |
7305 | * address that we want to consider... this is guaranteed not to extend beyond | |
7306 | * the current EOF... | |
7307 | */ | |
7308 | assert((vm_size_t)(orig_start - target_start) == (orig_start - target_start)); | |
7309 | tail_size = pre_heat_size - (vm_size_t)(orig_start - target_start) - PAGE_SIZE; | |
7310 | } else { | |
7311 | if (pre_heat_size > target_start) { | |
7312 | /* | |
7313 | * since pre_heat_size is always smaller then 2^32, | |
7314 | * if it is larger then target_start (a 64 bit value) | |
7315 | * it is safe to clip target_start to 32 bits | |
7316 | */ | |
7317 | pre_heat_size = (vm_size_t) target_start; | |
7318 | } | |
7319 | tail_size = 0; | |
7320 | } | |
7321 | assert( !(target_start & PAGE_MASK_64)); | |
7322 | assert( !(pre_heat_size & PAGE_MASK)); | |
7323 | ||
7324 | pre_heat_scaling[pre_heat_size / PAGE_SIZE]++; | |
7325 | ||
7326 | if (pre_heat_size <= PAGE_SIZE) | |
7327 | goto out; | |
7328 | ||
7329 | if (look_behind == TRUE) { | |
7330 | /* | |
7331 | * take a look at the pages before the original | |
7332 | * faulting offset... recalculate this in case | |
7333 | * we had to clip 'pre_heat_size' above to keep | |
7334 | * from running past the EOF. | |
7335 | */ | |
7336 | head_size = pre_heat_size - tail_size - PAGE_SIZE; | |
7337 | ||
7338 | for (offset = orig_start - PAGE_SIZE_64; head_size; offset -= PAGE_SIZE_64, head_size -= PAGE_SIZE) { | |
7339 | /* | |
7340 | * don't poke below the lowest offset | |
7341 | */ | |
7342 | if (offset < fault_info->lo_offset) | |
7343 | break; | |
7344 | /* | |
7345 | * for external objects and internal objects w/o an existence map | |
7346 | * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN | |
7347 | */ | |
7348 | #if MACH_PAGEMAP | |
7349 | if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) { | |
7350 | /* | |
7351 | * we know for a fact that the pager can't provide the page | |
7352 | * so don't include it or any pages beyond it in this cluster | |
7353 | */ | |
7354 | break; | |
7355 | } | |
7356 | #endif | |
7357 | if (vm_page_lookup(object, offset) != VM_PAGE_NULL) { | |
7358 | /* | |
7359 | * don't bridge resident pages | |
7360 | */ | |
7361 | break; | |
7362 | } | |
7363 | *start = offset; | |
7364 | *length += PAGE_SIZE; | |
7365 | } | |
7366 | } | |
7367 | if (look_ahead == TRUE) { | |
7368 | for (offset = orig_start + PAGE_SIZE_64; tail_size; offset += PAGE_SIZE_64, tail_size -= PAGE_SIZE) { | |
7369 | /* | |
7370 | * don't poke above the highest offset | |
7371 | */ | |
7372 | if (offset >= fault_info->hi_offset) | |
7373 | break; | |
7374 | assert(offset < object_size); | |
7375 | ||
7376 | /* | |
7377 | * for external objects and internal objects w/o an existence map | |
7378 | * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN | |
7379 | */ | |
7380 | #if MACH_PAGEMAP | |
7381 | if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) { | |
7382 | /* | |
7383 | * we know for a fact that the pager can't provide the page | |
7384 | * so don't include it or any pages beyond it in this cluster | |
7385 | */ | |
7386 | break; | |
7387 | } | |
7388 | #endif | |
7389 | if (vm_page_lookup(object, offset) != VM_PAGE_NULL) { | |
7390 | /* | |
7391 | * don't bridge resident pages | |
7392 | */ | |
7393 | break; | |
7394 | } | |
7395 | *length += PAGE_SIZE; | |
7396 | } | |
7397 | } | |
7398 | out: | |
7399 | if (*length > max_length) | |
7400 | *length = max_length; | |
7401 | ||
7402 | pre_heat_cluster[*length / PAGE_SIZE]++; | |
7403 | ||
7404 | vm_object_unlock(object); | |
7405 | } | |
7406 | ||
7407 | ||
7408 | /* | |
7409 | * Allow manipulation of individual page state. This is actually part of | |
7410 | * the UPL regimen but takes place on the VM object rather than on a UPL | |
7411 | */ | |
7412 | ||
7413 | kern_return_t | |
7414 | vm_object_page_op( | |
7415 | vm_object_t object, | |
7416 | vm_object_offset_t offset, | |
7417 | int ops, | |
7418 | ppnum_t *phys_entry, | |
7419 | int *flags) | |
7420 | { | |
7421 | vm_page_t dst_page; | |
7422 | ||
7423 | vm_object_lock(object); | |
7424 | ||
7425 | if(ops & UPL_POP_PHYSICAL) { | |
7426 | if(object->phys_contiguous) { | |
7427 | if (phys_entry) { | |
7428 | *phys_entry = (ppnum_t) | |
7429 | (object->vo_shadow_offset >> PAGE_SHIFT); | |
7430 | } | |
7431 | vm_object_unlock(object); | |
7432 | return KERN_SUCCESS; | |
7433 | } else { | |
7434 | vm_object_unlock(object); | |
7435 | return KERN_INVALID_OBJECT; | |
7436 | } | |
7437 | } | |
7438 | if(object->phys_contiguous) { | |
7439 | vm_object_unlock(object); | |
7440 | return KERN_INVALID_OBJECT; | |
7441 | } | |
7442 | ||
7443 | while(TRUE) { | |
7444 | if((dst_page = vm_page_lookup(object,offset)) == VM_PAGE_NULL) { | |
7445 | vm_object_unlock(object); | |
7446 | return KERN_FAILURE; | |
7447 | } | |
7448 | ||
7449 | /* Sync up on getting the busy bit */ | |
7450 | if((dst_page->busy || dst_page->cleaning) && | |
7451 | (((ops & UPL_POP_SET) && | |
7452 | (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) { | |
7453 | /* someone else is playing with the page, we will */ | |
7454 | /* have to wait */ | |
7455 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
7456 | continue; | |
7457 | } | |
7458 | ||
7459 | if (ops & UPL_POP_DUMP) { | |
7460 | if (dst_page->pmapped == TRUE) | |
7461 | pmap_disconnect(dst_page->phys_page); | |
7462 | ||
7463 | VM_PAGE_FREE(dst_page); | |
7464 | break; | |
7465 | } | |
7466 | ||
7467 | if (flags) { | |
7468 | *flags = 0; | |
7469 | ||
7470 | /* Get the condition of flags before requested ops */ | |
7471 | /* are undertaken */ | |
7472 | ||
7473 | if(dst_page->dirty) *flags |= UPL_POP_DIRTY; | |
7474 | if(dst_page->pageout) *flags |= UPL_POP_PAGEOUT; | |
7475 | if(dst_page->precious) *flags |= UPL_POP_PRECIOUS; | |
7476 | if(dst_page->absent) *flags |= UPL_POP_ABSENT; | |
7477 | if(dst_page->busy) *flags |= UPL_POP_BUSY; | |
7478 | } | |
7479 | ||
7480 | /* The caller should have made a call either contingent with */ | |
7481 | /* or prior to this call to set UPL_POP_BUSY */ | |
7482 | if(ops & UPL_POP_SET) { | |
7483 | /* The protection granted with this assert will */ | |
7484 | /* not be complete. If the caller violates the */ | |
7485 | /* convention and attempts to change page state */ | |
7486 | /* without first setting busy we may not see it */ | |
7487 | /* because the page may already be busy. However */ | |
7488 | /* if such violations occur we will assert sooner */ | |
7489 | /* or later. */ | |
7490 | assert(dst_page->busy || (ops & UPL_POP_BUSY)); | |
7491 | if (ops & UPL_POP_DIRTY) dst_page->dirty = TRUE; | |
7492 | if (ops & UPL_POP_PAGEOUT) dst_page->pageout = TRUE; | |
7493 | if (ops & UPL_POP_PRECIOUS) dst_page->precious = TRUE; | |
7494 | if (ops & UPL_POP_ABSENT) dst_page->absent = TRUE; | |
7495 | if (ops & UPL_POP_BUSY) dst_page->busy = TRUE; | |
7496 | } | |
7497 | ||
7498 | if(ops & UPL_POP_CLR) { | |
7499 | assert(dst_page->busy); | |
7500 | if (ops & UPL_POP_DIRTY) dst_page->dirty = FALSE; | |
7501 | if (ops & UPL_POP_PAGEOUT) dst_page->pageout = FALSE; | |
7502 | if (ops & UPL_POP_PRECIOUS) dst_page->precious = FALSE; | |
7503 | if (ops & UPL_POP_ABSENT) dst_page->absent = FALSE; | |
7504 | if (ops & UPL_POP_BUSY) { | |
7505 | dst_page->busy = FALSE; | |
7506 | PAGE_WAKEUP(dst_page); | |
7507 | } | |
7508 | } | |
7509 | ||
7510 | if (dst_page->encrypted) { | |
7511 | /* | |
7512 | * ENCRYPTED SWAP: | |
7513 | * We need to decrypt this encrypted page before the | |
7514 | * caller can access its contents. | |
7515 | * But if the caller really wants to access the page's | |
7516 | * contents, they have to keep the page "busy". | |
7517 | * Otherwise, the page could get recycled or re-encrypted | |
7518 | * at any time. | |
7519 | */ | |
7520 | if ((ops & UPL_POP_SET) && (ops & UPL_POP_BUSY) && | |
7521 | dst_page->busy) { | |
7522 | /* | |
7523 | * The page is stable enough to be accessed by | |
7524 | * the caller, so make sure its contents are | |
7525 | * not encrypted. | |
7526 | */ | |
7527 | vm_page_decrypt(dst_page, 0); | |
7528 | } else { | |
7529 | /* | |
7530 | * The page is not busy, so don't bother | |
7531 | * decrypting it, since anything could | |
7532 | * happen to it between now and when the | |
7533 | * caller wants to access it. | |
7534 | * We should not give the caller access | |
7535 | * to this page. | |
7536 | */ | |
7537 | assert(!phys_entry); | |
7538 | } | |
7539 | } | |
7540 | ||
7541 | if (phys_entry) { | |
7542 | /* | |
7543 | * The physical page number will remain valid | |
7544 | * only if the page is kept busy. | |
7545 | * ENCRYPTED SWAP: make sure we don't let the | |
7546 | * caller access an encrypted page. | |
7547 | */ | |
7548 | assert(dst_page->busy); | |
7549 | assert(!dst_page->encrypted); | |
7550 | *phys_entry = dst_page->phys_page; | |
7551 | } | |
7552 | ||
7553 | break; | |
7554 | } | |
7555 | ||
7556 | vm_object_unlock(object); | |
7557 | return KERN_SUCCESS; | |
7558 | ||
7559 | } | |
7560 | ||
7561 | /* | |
7562 | * vm_object_range_op offers performance enhancement over | |
7563 | * vm_object_page_op for page_op functions which do not require page | |
7564 | * level state to be returned from the call. Page_op was created to provide | |
7565 | * a low-cost alternative to page manipulation via UPLs when only a single | |
7566 | * page was involved. The range_op call establishes the ability in the _op | |
7567 | * family of functions to work on multiple pages where the lack of page level | |
7568 | * state handling allows the caller to avoid the overhead of the upl structures. | |
7569 | */ | |
7570 | ||
7571 | kern_return_t | |
7572 | vm_object_range_op( | |
7573 | vm_object_t object, | |
7574 | vm_object_offset_t offset_beg, | |
7575 | vm_object_offset_t offset_end, | |
7576 | int ops, | |
7577 | uint32_t *range) | |
7578 | { | |
7579 | vm_object_offset_t offset; | |
7580 | vm_page_t dst_page; | |
7581 | ||
7582 | if (offset_end - offset_beg > (uint32_t) -1) { | |
7583 | /* range is too big and would overflow "*range" */ | |
7584 | return KERN_INVALID_ARGUMENT; | |
7585 | } | |
7586 | if (object->resident_page_count == 0) { | |
7587 | if (range) { | |
7588 | if (ops & UPL_ROP_PRESENT) { | |
7589 | *range = 0; | |
7590 | } else { | |
7591 | *range = (uint32_t) (offset_end - offset_beg); | |
7592 | assert(*range == (offset_end - offset_beg)); | |
7593 | } | |
7594 | } | |
7595 | return KERN_SUCCESS; | |
7596 | } | |
7597 | vm_object_lock(object); | |
7598 | ||
7599 | if (object->phys_contiguous) { | |
7600 | vm_object_unlock(object); | |
7601 | return KERN_INVALID_OBJECT; | |
7602 | } | |
7603 | ||
7604 | offset = offset_beg & ~PAGE_MASK_64; | |
7605 | ||
7606 | while (offset < offset_end) { | |
7607 | dst_page = vm_page_lookup(object, offset); | |
7608 | if (dst_page != VM_PAGE_NULL) { | |
7609 | if (ops & UPL_ROP_DUMP) { | |
7610 | if (dst_page->list_req_pending) { | |
7611 | /* | |
7612 | * This page isn't on a UPL yet. | |
7613 | * So it's safe to steal it here and dump it. | |
7614 | */ | |
7615 | } else if (dst_page->busy || dst_page->cleaning) { | |
7616 | /* | |
7617 | * someone else is playing with the | |
7618 | * page, we will have to wait | |
7619 | */ | |
7620 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
7621 | /* | |
7622 | * need to relook the page up since it's | |
7623 | * state may have changed while we slept | |
7624 | * it might even belong to a different object | |
7625 | * at this point | |
7626 | */ | |
7627 | continue; | |
7628 | } | |
7629 | if (dst_page->pmapped == TRUE) | |
7630 | pmap_disconnect(dst_page->phys_page); | |
7631 | ||
7632 | VM_PAGE_FREE(dst_page); | |
7633 | ||
7634 | } else if ((ops & UPL_ROP_ABSENT) && !dst_page->absent) | |
7635 | break; | |
7636 | } else if (ops & UPL_ROP_PRESENT) | |
7637 | break; | |
7638 | ||
7639 | offset += PAGE_SIZE; | |
7640 | } | |
7641 | vm_object_unlock(object); | |
7642 | ||
7643 | if (range) { | |
7644 | if (offset > offset_end) | |
7645 | offset = offset_end; | |
7646 | if(offset > offset_beg) { | |
7647 | *range = (uint32_t) (offset - offset_beg); | |
7648 | assert(*range == (offset - offset_beg)); | |
7649 | } else { | |
7650 | *range = 0; | |
7651 | } | |
7652 | } | |
7653 | return KERN_SUCCESS; | |
7654 | } | |
7655 | ||
7656 | ||
7657 | uint32_t scan_object_collision = 0; | |
7658 | ||
7659 | void | |
7660 | vm_object_lock(vm_object_t object) | |
7661 | { | |
7662 | if (object == vm_pageout_scan_wants_object) { | |
7663 | scan_object_collision++; | |
7664 | mutex_pause(2); | |
7665 | } | |
7666 | lck_rw_lock_exclusive(&object->Lock); | |
7667 | } | |
7668 | ||
7669 | boolean_t | |
7670 | vm_object_lock_avoid(vm_object_t object) | |
7671 | { | |
7672 | if (object == vm_pageout_scan_wants_object) { | |
7673 | scan_object_collision++; | |
7674 | return TRUE; | |
7675 | } | |
7676 | return FALSE; | |
7677 | } | |
7678 | ||
7679 | boolean_t | |
7680 | _vm_object_lock_try(vm_object_t object) | |
7681 | { | |
7682 | return (lck_rw_try_lock_exclusive(&object->Lock)); | |
7683 | } | |
7684 | ||
7685 | boolean_t | |
7686 | vm_object_lock_try(vm_object_t object) | |
7687 | { | |
7688 | /* | |
7689 | * Called from hibernate path so check before blocking. | |
7690 | */ | |
7691 | if (vm_object_lock_avoid(object) && ml_get_interrupts_enabled() && get_preemption_level()==0) { | |
7692 | mutex_pause(2); | |
7693 | } | |
7694 | return _vm_object_lock_try(object); | |
7695 | } | |
7696 | ||
7697 | void | |
7698 | vm_object_lock_shared(vm_object_t object) | |
7699 | { | |
7700 | if (vm_object_lock_avoid(object)) { | |
7701 | mutex_pause(2); | |
7702 | } | |
7703 | lck_rw_lock_shared(&object->Lock); | |
7704 | } | |
7705 | ||
7706 | boolean_t | |
7707 | vm_object_lock_try_shared(vm_object_t object) | |
7708 | { | |
7709 | if (vm_object_lock_avoid(object)) { | |
7710 | mutex_pause(2); | |
7711 | } | |
7712 | return (lck_rw_try_lock_shared(&object->Lock)); | |
7713 | } | |
7714 | ||
7715 | ||
7716 | unsigned int vm_object_change_wimg_mode_count = 0; | |
7717 | ||
7718 | /* | |
7719 | * The object must be locked | |
7720 | */ | |
7721 | void | |
7722 | vm_object_change_wimg_mode(vm_object_t object, unsigned int wimg_mode) | |
7723 | { | |
7724 | vm_page_t p; | |
7725 | ||
7726 | vm_object_lock_assert_exclusive(object); | |
7727 | ||
7728 | vm_object_paging_wait(object, THREAD_UNINT); | |
7729 | ||
7730 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
7731 | ||
7732 | if (!p->fictitious) | |
7733 | pmap_set_cache_attributes(p->phys_page, wimg_mode); | |
7734 | } | |
7735 | if (wimg_mode == VM_WIMG_USE_DEFAULT) | |
7736 | object->set_cache_attr = FALSE; | |
7737 | else | |
7738 | object->set_cache_attr = TRUE; | |
7739 | ||
7740 | object->wimg_bits = wimg_mode; | |
7741 | ||
7742 | vm_object_change_wimg_mode_count++; | |
7743 | } | |
7744 | ||
7745 | #if CONFIG_FREEZE | |
7746 | ||
7747 | __private_extern__ void default_freezer_pack_page(vm_page_t , vm_object_t , vm_object_offset_t, void**); | |
7748 | __private_extern__ void default_freezer_unpack(vm_object_t , void**); | |
7749 | ||
7750 | kern_return_t vm_object_pack( | |
7751 | unsigned int *purgeable_count, | |
7752 | unsigned int *wired_count, | |
7753 | unsigned int *clean_count, | |
7754 | unsigned int *dirty_count, | |
7755 | boolean_t *shared, | |
7756 | vm_object_t src_object, | |
7757 | vm_object_t compact_object, | |
7758 | void **table, | |
7759 | vm_object_offset_t *offset) | |
7760 | { | |
7761 | kern_return_t kr = KERN_SUCCESS; | |
7762 | ||
7763 | vm_object_lock(src_object); | |
7764 | ||
7765 | *purgeable_count = *wired_count = *clean_count = *dirty_count = 0; | |
7766 | *shared = FALSE; | |
7767 | ||
7768 | if (!src_object->alive || src_object->terminating){ | |
7769 | kr = KERN_FAILURE; | |
7770 | goto done; | |
7771 | } | |
7772 | ||
7773 | if (src_object->purgable == VM_PURGABLE_VOLATILE) { | |
7774 | *purgeable_count = src_object->resident_page_count; | |
7775 | ||
7776 | /* If the destination object is null, we're just walking the pages to discover how many can be hibernated */ | |
7777 | if (VM_OBJECT_NULL != compact_object) { | |
7778 | purgeable_q_t queue; | |
7779 | /* object should be on a queue */ | |
7780 | assert(src_object->objq.next != NULL && | |
7781 | src_object->objq.prev != NULL); | |
7782 | queue = vm_purgeable_object_remove(src_object); | |
7783 | assert(queue); | |
7784 | vm_page_lock_queues(); | |
7785 | vm_purgeable_token_delete_first(queue); | |
7786 | vm_page_unlock_queues(); | |
7787 | vm_object_purge(src_object); | |
7788 | } | |
7789 | goto done; | |
7790 | } | |
7791 | ||
7792 | if (src_object->ref_count == 1) { | |
7793 | vm_object_pack_pages(wired_count, clean_count, dirty_count, src_object, compact_object, table, offset); | |
7794 | } else { | |
7795 | if (src_object->internal) { | |
7796 | *shared = TRUE; | |
7797 | } | |
7798 | } | |
7799 | done: | |
7800 | vm_object_unlock(src_object); | |
7801 | ||
7802 | return kr; | |
7803 | } | |
7804 | ||
7805 | ||
7806 | void | |
7807 | vm_object_pack_pages( | |
7808 | unsigned int *wired_count, | |
7809 | unsigned int *clean_count, | |
7810 | unsigned int *dirty_count, | |
7811 | vm_object_t src_object, | |
7812 | vm_object_t compact_object, | |
7813 | void **table, | |
7814 | vm_object_offset_t *offset) | |
7815 | { | |
7816 | vm_page_t p, next; | |
7817 | ||
7818 | next = (vm_page_t)queue_first(&src_object->memq); | |
7819 | ||
7820 | /* Since this function is dual purpose in order that we can count | |
7821 | * the freezable pages as well as prepare them, assert that our | |
7822 | * arguments are sane. Gnarly, but avoids code duplication. | |
7823 | */ | |
7824 | if (VM_OBJECT_NULL == compact_object){ | |
7825 | assert(!table); | |
7826 | assert(!offset); | |
7827 | } else { | |
7828 | assert(table); | |
7829 | assert(offset); | |
7830 | } | |
7831 | ||
7832 | while (!queue_end(&src_object->memq, (queue_entry_t)next)) { | |
7833 | p = next; | |
7834 | next = (vm_page_t)queue_next(&next->listq); | |
7835 | ||
7836 | if (p->fictitious || p->busy ) | |
7837 | continue; | |
7838 | ||
7839 | if (p->absent || p->unusual || p->error) | |
7840 | continue; | |
7841 | ||
7842 | if (VM_PAGE_WIRED(p)) { | |
7843 | (*wired_count)++; | |
7844 | continue; | |
7845 | } | |
7846 | ||
7847 | if (VM_OBJECT_NULL == compact_object) { | |
7848 | if (p->dirty || pmap_is_modified(p->phys_page)) { | |
7849 | (*dirty_count)++; | |
7850 | } else { | |
7851 | (*clean_count)++; | |
7852 | } | |
7853 | continue; | |
7854 | } | |
7855 | ||
7856 | if (p->cleaning) { | |
7857 | p->busy = TRUE; | |
7858 | p->pageout = TRUE; | |
7859 | p->dump_cleaning = TRUE; | |
7860 | ||
7861 | vm_page_lockspin_queues(); | |
7862 | vm_page_wire(p); | |
7863 | vm_page_unlock_queues(); | |
7864 | ||
7865 | continue; | |
7866 | } | |
7867 | ||
7868 | if (p->pmapped == TRUE) { | |
7869 | int refmod_state; | |
7870 | refmod_state = pmap_disconnect(p->phys_page); | |
7871 | if (refmod_state & VM_MEM_MODIFIED) { | |
7872 | p->dirty = TRUE; | |
7873 | } | |
7874 | } | |
7875 | ||
7876 | if (p->dirty) { | |
7877 | p->busy = TRUE; | |
7878 | ||
7879 | default_freezer_pack_page(p, compact_object, *offset, table); | |
7880 | *offset += PAGE_SIZE; | |
7881 | ||
7882 | (*dirty_count)++; | |
7883 | } | |
7884 | else { | |
7885 | VM_PAGE_FREE(p); | |
7886 | (*clean_count)++; | |
7887 | } | |
7888 | } | |
7889 | } | |
7890 | ||
7891 | void | |
7892 | vm_object_pageout( | |
7893 | vm_object_t object) | |
7894 | { | |
7895 | vm_page_t p, next; | |
7896 | ||
7897 | assert(object != VM_OBJECT_NULL ); | |
7898 | ||
7899 | vm_object_lock(object); | |
7900 | ||
7901 | next = (vm_page_t)queue_first(&object->memq); | |
7902 | ||
7903 | while (!queue_end(&object->memq, (queue_entry_t)next)) { | |
7904 | p = next; | |
7905 | next = (vm_page_t)queue_next(&next->listq); | |
7906 | ||
7907 | /* Throw to the pageout queue */ | |
7908 | vm_page_lockspin_queues(); | |
7909 | ||
7910 | VM_PAGE_QUEUES_REMOVE(p); | |
7911 | vm_pageout_cluster(p); | |
7912 | ||
7913 | vm_page_unlock_queues(); | |
7914 | } | |
7915 | ||
7916 | vm_object_unlock(object); | |
7917 | } | |
7918 | ||
7919 | kern_return_t | |
7920 | vm_object_pagein( | |
7921 | vm_object_t object) | |
7922 | { | |
7923 | memory_object_t pager; | |
7924 | kern_return_t kr; | |
7925 | ||
7926 | vm_object_lock(object); | |
7927 | ||
7928 | pager = object->pager; | |
7929 | ||
7930 | if (!object->pager_ready || pager == MEMORY_OBJECT_NULL) { | |
7931 | vm_object_unlock(object); | |
7932 | return KERN_FAILURE; | |
7933 | } | |
7934 | ||
7935 | vm_object_paging_wait(object, THREAD_UNINT); | |
7936 | vm_object_paging_begin(object); | |
7937 | ||
7938 | object->blocked_access = TRUE; | |
7939 | vm_object_unlock(object); | |
7940 | ||
7941 | kr = memory_object_data_reclaim(pager, TRUE); | |
7942 | ||
7943 | vm_object_lock(object); | |
7944 | ||
7945 | object->blocked_access = FALSE; | |
7946 | vm_object_paging_end(object); | |
7947 | ||
7948 | vm_object_unlock(object); | |
7949 | ||
7950 | return kr; | |
7951 | } | |
7952 | ||
7953 | void | |
7954 | vm_object_unpack( | |
7955 | vm_object_t compact_object, | |
7956 | void **table) | |
7957 | { | |
7958 | /* | |
7959 | * Future Work: | |
7960 | * Right now we treat the default freezer much like | |
7961 | * the default pager with respect to when it is | |
7962 | * created and terminated. | |
7963 | * But, in the future, we may want to terminate the | |
7964 | * default freezer at the very instant that an object | |
7965 | * has been completely re-filled with all it's previously | |
7966 | * paged-out pages. | |
7967 | * At that time we'll need to reset the object fields like | |
7968 | * "pager" and the associated "pager_{created,initialized,trusted}" | |
7969 | * fields right here. | |
7970 | */ | |
7971 | default_freezer_unpack(compact_object, table); | |
7972 | } | |
7973 | ||
7974 | #endif /* CONFIG_FREEZE */ |