]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2011 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | /* Manage timers */ | |
30 | ||
31 | #include <mach/mach_types.h> | |
32 | #include <kern/cpu_data.h> /* current_thread() */ | |
33 | #include <kern/kalloc.h> | |
34 | #include <stdatomic.h> | |
35 | #include <sys/errno.h> | |
36 | #include <sys/vm.h> | |
37 | #include <sys/ktrace.h> | |
38 | ||
39 | #include <machine/machine_routines.h> | |
40 | #if defined(__x86_64__) | |
41 | #include <i386/mp.h> | |
42 | #endif /* defined(__x86_64__) */ | |
43 | ||
44 | #include <kperf/kperf.h> | |
45 | #include <kperf/buffer.h> | |
46 | #include <kperf/context.h> | |
47 | #include <kperf/action.h> | |
48 | #include <kperf/kperf_timer.h> | |
49 | #include <kperf/kperf_arch.h> | |
50 | #include <kperf/pet.h> | |
51 | #include <kperf/sample.h> | |
52 | ||
53 | /* the list of timers */ | |
54 | struct kperf_timer *kperf_timerv = NULL; | |
55 | unsigned int kperf_timerc = 0; | |
56 | ||
57 | static unsigned int pet_timer_id = 999; | |
58 | ||
59 | #define KPERF_TMR_ACTION_MASK (0xff) | |
60 | #define KPERF_TMR_ACTION(action_state) ((action_state) & KPERF_TMR_ACTION_MASK) | |
61 | #define KPERF_TMR_ACTIVE (0x100) | |
62 | ||
63 | /* maximum number of timers we can construct */ | |
64 | #define TIMER_MAX (16) | |
65 | ||
66 | static uint64_t min_period_abstime; | |
67 | static uint64_t min_period_bg_abstime; | |
68 | static uint64_t min_period_pet_abstime; | |
69 | static uint64_t min_period_pet_bg_abstime; | |
70 | ||
71 | static uint64_t | |
72 | kperf_timer_min_period_abstime(void) | |
73 | { | |
74 | if (ktrace_background_active()) { | |
75 | return min_period_bg_abstime; | |
76 | } else { | |
77 | return min_period_abstime; | |
78 | } | |
79 | } | |
80 | ||
81 | static uint64_t | |
82 | kperf_timer_min_pet_period_abstime(void) | |
83 | { | |
84 | if (ktrace_background_active()) { | |
85 | return min_period_pet_bg_abstime; | |
86 | } else { | |
87 | return min_period_pet_abstime; | |
88 | } | |
89 | } | |
90 | ||
91 | static void | |
92 | kperf_timer_schedule(struct kperf_timer *timer, uint64_t now) | |
93 | { | |
94 | BUF_INFO(PERF_TM_SCHED, timer->period); | |
95 | ||
96 | /* if we re-programmed the timer to zero, just drop it */ | |
97 | if (timer->period == 0) { | |
98 | return; | |
99 | } | |
100 | ||
101 | /* calculate deadline */ | |
102 | uint64_t deadline = now + timer->period; | |
103 | ||
104 | /* re-schedule the timer, making sure we don't apply slop */ | |
105 | timer_call_enter(&timer->tcall, deadline, TIMER_CALL_SYS_CRITICAL); | |
106 | } | |
107 | ||
108 | static void | |
109 | kperf_sample_cpu(struct kperf_timer *timer, bool system_sample, | |
110 | bool only_system) | |
111 | { | |
112 | assert(timer != NULL); | |
113 | ||
114 | /* Always cut a tracepoint to show a sample event occurred */ | |
115 | BUF_DATA(PERF_TM_HNDLR | DBG_FUNC_START, 0); | |
116 | ||
117 | int ncpu = cpu_number(); | |
118 | ||
119 | struct kperf_sample *intbuf = kperf_intr_sample_buffer(); | |
120 | #if DEVELOPMENT || DEBUG | |
121 | intbuf->sample_time = mach_absolute_time(); | |
122 | #endif /* DEVELOPMENT || DEBUG */ | |
123 | ||
124 | /* On a timer, we can see the "real" current thread */ | |
125 | thread_t thread = current_thread(); | |
126 | task_t task = get_threadtask(thread); | |
127 | struct kperf_context ctx = { | |
128 | .cur_thread = thread, | |
129 | .cur_task = task, | |
130 | .cur_pid = task_pid(task), | |
131 | .trigger_type = TRIGGER_TYPE_TIMER, | |
132 | .trigger_id = (unsigned int)(timer - kperf_timerv), | |
133 | }; | |
134 | ||
135 | if (ctx.trigger_id == pet_timer_id && ncpu < machine_info.logical_cpu_max) { | |
136 | kperf_tid_on_cpus[ncpu] = thread_tid(ctx.cur_thread); | |
137 | } | |
138 | ||
139 | /* make sure sampling is on */ | |
140 | unsigned int status = kperf_sampling_status(); | |
141 | if (status == KPERF_SAMPLING_OFF) { | |
142 | BUF_INFO(PERF_TM_HNDLR | DBG_FUNC_END, SAMPLE_OFF); | |
143 | return; | |
144 | } else if (status == KPERF_SAMPLING_SHUTDOWN) { | |
145 | BUF_INFO(PERF_TM_HNDLR | DBG_FUNC_END, SAMPLE_SHUTDOWN); | |
146 | return; | |
147 | } | |
148 | ||
149 | /* call the action -- kernel-only from interrupt, pend user */ | |
150 | int r = kperf_sample(intbuf, &ctx, timer->actionid, | |
151 | SAMPLE_FLAG_PEND_USER | (system_sample ? SAMPLE_FLAG_SYSTEM : 0) | | |
152 | (only_system ? SAMPLE_FLAG_ONLY_SYSTEM : 0)); | |
153 | ||
154 | /* end tracepoint is informational */ | |
155 | BUF_INFO(PERF_TM_HNDLR | DBG_FUNC_END, r); | |
156 | ||
157 | (void)atomic_fetch_and_explicit(&timer->pending_cpus, | |
158 | ~(UINT64_C(1) << ncpu), memory_order_relaxed); | |
159 | } | |
160 | ||
161 | void | |
162 | kperf_ipi_handler(void *param) | |
163 | { | |
164 | kperf_sample_cpu((struct kperf_timer *)param, false, false); | |
165 | } | |
166 | ||
167 | static void | |
168 | kperf_timer_handler(void *param0, __unused void *param1) | |
169 | { | |
170 | struct kperf_timer *timer = param0; | |
171 | unsigned int ntimer = (unsigned int)(timer - kperf_timerv); | |
172 | unsigned int ncpus = machine_info.logical_cpu_max; | |
173 | bool system_only_self = true; | |
174 | ||
175 | uint32_t action_state = atomic_fetch_or(&timer->action_state, | |
176 | KPERF_TMR_ACTIVE); | |
177 | ||
178 | uint32_t actionid = KPERF_TMR_ACTION(action_state); | |
179 | if (actionid == 0) { | |
180 | goto deactivate; | |
181 | } | |
182 | ||
183 | #if DEVELOPMENT || DEBUG | |
184 | timer->fire_time = mach_absolute_time(); | |
185 | #endif /* DEVELOPMENT || DEBUG */ | |
186 | ||
187 | /* along the lines of do not ipi if we are all shutting down */ | |
188 | if (kperf_sampling_status() == KPERF_SAMPLING_SHUTDOWN) { | |
189 | goto deactivate; | |
190 | } | |
191 | ||
192 | BUF_DATA(PERF_TM_FIRE, ntimer, ntimer == pet_timer_id, timer->period, | |
193 | actionid); | |
194 | ||
195 | if (ntimer == pet_timer_id) { | |
196 | kperf_pet_fire_before(); | |
197 | ||
198 | /* clean-up the thread-on-CPUs cache */ | |
199 | bzero(kperf_tid_on_cpus, ncpus * sizeof(*kperf_tid_on_cpus)); | |
200 | } | |
201 | ||
202 | /* | |
203 | * IPI other cores only if the action has non-system samplers. | |
204 | */ | |
205 | if (kperf_action_has_non_system(actionid)) { | |
206 | /* | |
207 | * If the core that's handling the timer is not scheduling | |
208 | * threads, only run system samplers. | |
209 | */ | |
210 | system_only_self = kperf_mp_broadcast_other_running(timer); | |
211 | } | |
212 | kperf_sample_cpu(timer, true, system_only_self); | |
213 | ||
214 | /* release the pet thread? */ | |
215 | if (ntimer == pet_timer_id) { | |
216 | /* PET mode is responsible for rearming the timer */ | |
217 | kperf_pet_fire_after(); | |
218 | } else { | |
219 | /* | |
220 | * FIXME: Get the current time from elsewhere. The next | |
221 | * timer's period now includes the time taken to reach this | |
222 | * point. This causes a bias towards longer sampling periods | |
223 | * than requested. | |
224 | */ | |
225 | kperf_timer_schedule(timer, mach_absolute_time()); | |
226 | } | |
227 | ||
228 | deactivate: | |
229 | atomic_fetch_and(&timer->action_state, ~KPERF_TMR_ACTIVE); | |
230 | } | |
231 | ||
232 | /* program the timer from the PET thread */ | |
233 | void | |
234 | kperf_timer_pet_rearm(uint64_t elapsed_ticks) | |
235 | { | |
236 | struct kperf_timer *timer = NULL; | |
237 | uint64_t period = 0; | |
238 | uint64_t deadline; | |
239 | ||
240 | /* | |
241 | * If the pet_timer_id is invalid, it has been disabled, so this should | |
242 | * do nothing. | |
243 | */ | |
244 | if (pet_timer_id >= kperf_timerc) { | |
245 | return; | |
246 | } | |
247 | ||
248 | unsigned int status = kperf_sampling_status(); | |
249 | /* do not reprogram the timer if it has been shutdown or sampling is off */ | |
250 | if (status == KPERF_SAMPLING_OFF) { | |
251 | BUF_INFO(PERF_PET_END, SAMPLE_OFF); | |
252 | return; | |
253 | } else if (status == KPERF_SAMPLING_SHUTDOWN) { | |
254 | BUF_INFO(PERF_PET_END, SAMPLE_SHUTDOWN); | |
255 | return; | |
256 | } | |
257 | ||
258 | timer = &(kperf_timerv[pet_timer_id]); | |
259 | ||
260 | /* if we re-programmed the timer to zero, just drop it */ | |
261 | if (!timer->period) { | |
262 | return; | |
263 | } | |
264 | ||
265 | /* subtract the time the pet sample took being careful not to underflow */ | |
266 | if (timer->period > elapsed_ticks) { | |
267 | period = timer->period - elapsed_ticks; | |
268 | } | |
269 | ||
270 | /* make sure we don't set the next PET sample to happen too soon */ | |
271 | if (period < min_period_pet_abstime) { | |
272 | period = min_period_pet_abstime; | |
273 | } | |
274 | ||
275 | /* we probably took so long in the PET thread, it makes sense to take | |
276 | * the time again. | |
277 | */ | |
278 | deadline = mach_absolute_time() + period; | |
279 | ||
280 | BUF_INFO(PERF_PET_SCHED, timer->period, period, elapsed_ticks, deadline); | |
281 | ||
282 | /* re-schedule the timer, making sure we don't apply slop */ | |
283 | timer_call_enter(&timer->tcall, deadline, TIMER_CALL_SYS_CRITICAL); | |
284 | ||
285 | return; | |
286 | } | |
287 | ||
288 | /* turn on all the timers */ | |
289 | void | |
290 | kperf_timer_go(void) | |
291 | { | |
292 | /* get the PET thread going */ | |
293 | if (pet_timer_id < kperf_timerc) { | |
294 | kperf_pet_config(kperf_timerv[pet_timer_id].actionid); | |
295 | } | |
296 | ||
297 | uint64_t now = mach_absolute_time(); | |
298 | ||
299 | for (unsigned int i = 0; i < kperf_timerc; i++) { | |
300 | struct kperf_timer *timer = &kperf_timerv[i]; | |
301 | if (timer->period == 0) { | |
302 | continue; | |
303 | } | |
304 | ||
305 | atomic_store(&timer->action_state, | |
306 | timer->actionid & KPERF_TMR_ACTION_MASK); | |
307 | kperf_timer_schedule(timer, now); | |
308 | } | |
309 | } | |
310 | ||
311 | void | |
312 | kperf_timer_stop(void) | |
313 | { | |
314 | /* | |
315 | * Determine which timers are running and store them in a bitset, while | |
316 | * cancelling their timer call. | |
317 | */ | |
318 | uint64_t running_timers = 0; | |
319 | for (unsigned int i = 0; i < kperf_timerc; i++) { | |
320 | struct kperf_timer *timer = &kperf_timerv[i]; | |
321 | if (timer->period == 0) { | |
322 | continue; | |
323 | } | |
324 | ||
325 | uint32_t action_state = atomic_fetch_and(&timer->action_state, | |
326 | ~KPERF_TMR_ACTION_MASK); | |
327 | if (action_state & KPERF_TMR_ACTIVE) { | |
328 | bit_set(running_timers, i); | |
329 | } | |
330 | ||
331 | timer_call_cancel(&timer->tcall); | |
332 | } | |
333 | ||
334 | /* | |
335 | * Wait for any running timers to finish their critical sections. | |
336 | */ | |
337 | for (unsigned int i = lsb_first(running_timers); i < kperf_timerc; | |
338 | i = lsb_next(running_timers, i)) { | |
339 | while (atomic_load(&kperf_timerv[i].action_state) != 0) { | |
340 | delay(10); | |
341 | } | |
342 | } | |
343 | ||
344 | if (pet_timer_id < kperf_timerc) { | |
345 | /* wait for PET to stop, too */ | |
346 | kperf_pet_config(0); | |
347 | } | |
348 | } | |
349 | ||
350 | unsigned int | |
351 | kperf_timer_get_petid(void) | |
352 | { | |
353 | return pet_timer_id; | |
354 | } | |
355 | ||
356 | int | |
357 | kperf_timer_set_petid(unsigned int timerid) | |
358 | { | |
359 | if (timerid < kperf_timerc) { | |
360 | uint64_t min_period; | |
361 | ||
362 | min_period = kperf_timer_min_pet_period_abstime(); | |
363 | if (kperf_timerv[timerid].period < min_period) { | |
364 | kperf_timerv[timerid].period = min_period; | |
365 | } | |
366 | kperf_pet_config(kperf_timerv[timerid].actionid); | |
367 | } else { | |
368 | /* clear the PET trigger if it's a bogus ID */ | |
369 | kperf_pet_config(0); | |
370 | } | |
371 | ||
372 | pet_timer_id = timerid; | |
373 | ||
374 | return 0; | |
375 | } | |
376 | ||
377 | int | |
378 | kperf_timer_get_period(unsigned int timerid, uint64_t *period_abstime) | |
379 | { | |
380 | if (timerid >= kperf_timerc) { | |
381 | return EINVAL; | |
382 | } | |
383 | ||
384 | *period_abstime = kperf_timerv[timerid].period; | |
385 | return 0; | |
386 | } | |
387 | ||
388 | int | |
389 | kperf_timer_set_period(unsigned int timerid, uint64_t period_abstime) | |
390 | { | |
391 | uint64_t min_period; | |
392 | ||
393 | if (timerid >= kperf_timerc) { | |
394 | return EINVAL; | |
395 | } | |
396 | ||
397 | if (pet_timer_id == timerid) { | |
398 | min_period = kperf_timer_min_pet_period_abstime(); | |
399 | } else { | |
400 | min_period = kperf_timer_min_period_abstime(); | |
401 | } | |
402 | ||
403 | if (period_abstime > 0 && period_abstime < min_period) { | |
404 | period_abstime = min_period; | |
405 | } | |
406 | ||
407 | kperf_timerv[timerid].period = period_abstime; | |
408 | ||
409 | /* FIXME: re-program running timers? */ | |
410 | ||
411 | return 0; | |
412 | } | |
413 | ||
414 | int | |
415 | kperf_timer_get_action(unsigned int timerid, uint32_t *action) | |
416 | { | |
417 | if (timerid >= kperf_timerc) { | |
418 | return EINVAL; | |
419 | } | |
420 | ||
421 | *action = kperf_timerv[timerid].actionid; | |
422 | return 0; | |
423 | } | |
424 | ||
425 | int | |
426 | kperf_timer_set_action(unsigned int timerid, uint32_t action) | |
427 | { | |
428 | if (timerid >= kperf_timerc) { | |
429 | return EINVAL; | |
430 | } | |
431 | ||
432 | kperf_timerv[timerid].actionid = action; | |
433 | return 0; | |
434 | } | |
435 | ||
436 | unsigned int | |
437 | kperf_timer_get_count(void) | |
438 | { | |
439 | return kperf_timerc; | |
440 | } | |
441 | ||
442 | void | |
443 | kperf_timer_reset(void) | |
444 | { | |
445 | kperf_timer_set_petid(999); | |
446 | kperf_set_pet_idle_rate(KPERF_PET_DEFAULT_IDLE_RATE); | |
447 | kperf_set_lightweight_pet(0); | |
448 | for (unsigned int i = 0; i < kperf_timerc; i++) { | |
449 | kperf_timerv[i].period = 0; | |
450 | kperf_timerv[i].actionid = 0; | |
451 | atomic_store_explicit(&kperf_timerv[i].pending_cpus, 0, memory_order_relaxed); | |
452 | } | |
453 | } | |
454 | ||
455 | extern int | |
456 | kperf_timer_set_count(unsigned int count) | |
457 | { | |
458 | struct kperf_timer *new_timerv = NULL, *old_timerv = NULL; | |
459 | unsigned int old_count; | |
460 | ||
461 | if (min_period_abstime == 0) { | |
462 | nanoseconds_to_absolutetime(KP_MIN_PERIOD_NS, &min_period_abstime); | |
463 | nanoseconds_to_absolutetime(KP_MIN_PERIOD_BG_NS, &min_period_bg_abstime); | |
464 | nanoseconds_to_absolutetime(KP_MIN_PERIOD_PET_NS, &min_period_pet_abstime); | |
465 | nanoseconds_to_absolutetime(KP_MIN_PERIOD_PET_BG_NS, | |
466 | &min_period_pet_bg_abstime); | |
467 | assert(min_period_abstime > 0); | |
468 | } | |
469 | ||
470 | if (count == kperf_timerc) { | |
471 | return 0; | |
472 | } | |
473 | if (count > TIMER_MAX) { | |
474 | return EINVAL; | |
475 | } | |
476 | ||
477 | /* TODO: allow shrinking? */ | |
478 | if (count < kperf_timerc) { | |
479 | return EINVAL; | |
480 | } | |
481 | ||
482 | /* | |
483 | * Make sure kperf is initialized when creating the array for the first | |
484 | * time. | |
485 | */ | |
486 | if (kperf_timerc == 0) { | |
487 | int r; | |
488 | ||
489 | /* main kperf */ | |
490 | if ((r = kperf_init())) { | |
491 | return r; | |
492 | } | |
493 | } | |
494 | ||
495 | /* | |
496 | * Shut down any running timers since we will be messing with the timer | |
497 | * call structures. | |
498 | */ | |
499 | kperf_timer_stop(); | |
500 | ||
501 | /* create a new array */ | |
502 | new_timerv = kalloc_tag(count * sizeof(struct kperf_timer), | |
503 | VM_KERN_MEMORY_DIAG); | |
504 | if (new_timerv == NULL) { | |
505 | return ENOMEM; | |
506 | } | |
507 | old_timerv = kperf_timerv; | |
508 | old_count = kperf_timerc; | |
509 | ||
510 | if (old_timerv != NULL) { | |
511 | bcopy(kperf_timerv, new_timerv, | |
512 | kperf_timerc * sizeof(struct kperf_timer)); | |
513 | } | |
514 | ||
515 | /* zero the new entries */ | |
516 | bzero(&(new_timerv[kperf_timerc]), | |
517 | (count - old_count) * sizeof(struct kperf_timer)); | |
518 | ||
519 | /* (re-)setup the timer call info for all entries */ | |
520 | for (unsigned int i = 0; i < count; i++) { | |
521 | timer_call_setup(&new_timerv[i].tcall, kperf_timer_handler, &new_timerv[i]); | |
522 | } | |
523 | ||
524 | kperf_timerv = new_timerv; | |
525 | kperf_timerc = count; | |
526 | ||
527 | if (old_timerv != NULL) { | |
528 | kfree(old_timerv, old_count * sizeof(struct kperf_timer)); | |
529 | } | |
530 | ||
531 | return 0; | |
532 | } |