]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2019 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 | |
30 | * The Regents of the University of California. All rights reserved. | |
31 | * | |
32 | * Redistribution and use in source and binary forms, with or without | |
33 | * modification, are permitted provided that the following conditions | |
34 | * are met: | |
35 | * 1. Redistributions of source code must retain the above copyright | |
36 | * notice, this list of conditions and the following disclaimer. | |
37 | * 2. Redistributions in binary form must reproduce the above copyright | |
38 | * notice, this list of conditions and the following disclaimer in the | |
39 | * documentation and/or other materials provided with the distribution. | |
40 | * 3. All advertising materials mentioning features or use of this software | |
41 | * must display the following acknowledgement: | |
42 | * This product includes software developed by the University of | |
43 | * California, Berkeley and its contributors. | |
44 | * 4. Neither the name of the University nor the names of its contributors | |
45 | * may be used to endorse or promote products derived from this software | |
46 | * without specific prior written permission. | |
47 | * | |
48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
58 | * SUCH DAMAGE. | |
59 | * | |
60 | * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 | |
61 | */ | |
62 | ||
63 | #include <sys/param.h> | |
64 | #include <sys/systm.h> | |
65 | #include <sys/kernel.h> | |
66 | #include <sys/malloc.h> | |
67 | #include <sys/mbuf.h> | |
68 | #include <sys/domain.h> | |
69 | #include <sys/protosw.h> | |
70 | #include <sys/socket.h> | |
71 | #include <sys/socketvar.h> | |
72 | #include <sys/sysctl.h> | |
73 | #include <sys/syslog.h> | |
74 | #include <sys/mcache.h> | |
75 | #include <net/ntstat.h> | |
76 | ||
77 | #include <kern/zalloc.h> | |
78 | #include <mach/boolean.h> | |
79 | ||
80 | #include <net/if.h> | |
81 | #include <net/if_types.h> | |
82 | #include <net/route.h> | |
83 | #include <net/dlil.h> | |
84 | #include <net/net_api_stats.h> | |
85 | ||
86 | #include <netinet/in.h> | |
87 | #include <netinet/in_systm.h> | |
88 | #include <netinet/in_tclass.h> | |
89 | #include <netinet/ip.h> | |
90 | #if INET6 | |
91 | #include <netinet/ip6.h> | |
92 | #endif /* INET6 */ | |
93 | #include <netinet/in_pcb.h> | |
94 | #include <netinet/in_var.h> | |
95 | #include <netinet/ip_var.h> | |
96 | #if INET6 | |
97 | #include <netinet6/in6_pcb.h> | |
98 | #include <netinet6/ip6_var.h> | |
99 | #include <netinet6/udp6_var.h> | |
100 | #endif /* INET6 */ | |
101 | #include <netinet/ip_icmp.h> | |
102 | #include <netinet/icmp_var.h> | |
103 | #include <netinet/udp.h> | |
104 | #include <netinet/udp_var.h> | |
105 | #include <sys/kdebug.h> | |
106 | ||
107 | #if IPSEC | |
108 | #include <netinet6/ipsec.h> | |
109 | #include <netinet6/esp.h> | |
110 | #include <netkey/key.h> | |
111 | extern int ipsec_bypass; | |
112 | extern int esp_udp_encap_port; | |
113 | #endif /* IPSEC */ | |
114 | ||
115 | #if NECP | |
116 | #include <net/necp.h> | |
117 | #endif /* NECP */ | |
118 | ||
119 | #if FLOW_DIVERT | |
120 | #include <netinet/flow_divert.h> | |
121 | #endif /* FLOW_DIVERT */ | |
122 | ||
123 | #if CONTENT_FILTER | |
124 | #include <net/content_filter.h> | |
125 | #endif /* CONTENT_FILTER */ | |
126 | ||
127 | #define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETUDP, 0) | |
128 | #define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETUDP, 2) | |
129 | #define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETUDP, 1) | |
130 | #define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETUDP, 3) | |
131 | #define DBG_FNC_UDP_INPUT NETDBG_CODE(DBG_NETUDP, (5 << 8)) | |
132 | #define DBG_FNC_UDP_OUTPUT NETDBG_CODE(DBG_NETUDP, (6 << 8) | 1) | |
133 | ||
134 | /* | |
135 | * UDP protocol implementation. | |
136 | * Per RFC 768, August, 1980. | |
137 | */ | |
138 | #ifndef COMPAT_42 | |
139 | static int udpcksum = 1; | |
140 | #else | |
141 | static int udpcksum = 0; /* XXX */ | |
142 | #endif | |
143 | SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, | |
144 | CTLFLAG_RW | CTLFLAG_LOCKED, &udpcksum, 0, ""); | |
145 | ||
146 | int udp_log_in_vain = 0; | |
147 | SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW | CTLFLAG_LOCKED, | |
148 | &udp_log_in_vain, 0, "Log all incoming UDP packets"); | |
149 | ||
150 | static int blackhole = 0; | |
151 | SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW | CTLFLAG_LOCKED, | |
152 | &blackhole, 0, "Do not send port unreachables for refused connects"); | |
153 | ||
154 | struct inpcbhead udb; /* from udp_var.h */ | |
155 | #define udb6 udb /* for KAME src sync over BSD*'s */ | |
156 | struct inpcbinfo udbinfo; | |
157 | ||
158 | #ifndef UDBHASHSIZE | |
159 | #define UDBHASHSIZE 16 | |
160 | #endif | |
161 | ||
162 | /* Garbage collection performed during most recent udp_gc() run */ | |
163 | static boolean_t udp_gc_done = FALSE; | |
164 | ||
165 | #if IPFIREWALL | |
166 | extern int fw_verbose; | |
167 | extern void ipfwsyslog(int level, const char *format, ...); | |
168 | extern void ipfw_stealth_stats_incr_udp(void); | |
169 | ||
170 | /* Apple logging, log to ipfw.log */ | |
171 | #define log_in_vain_log(a) { \ | |
172 | if ((udp_log_in_vain == 3) && (fw_verbose == 2)) { \ | |
173 | ipfwsyslog a; \ | |
174 | } else if ((udp_log_in_vain == 4) && (fw_verbose == 2)) { \ | |
175 | ipfw_stealth_stats_incr_udp(); \ | |
176 | } else { \ | |
177 | log a; \ | |
178 | } \ | |
179 | } | |
180 | #else /* !IPFIREWALL */ | |
181 | #define log_in_vain_log(a) { log a; } | |
182 | #endif /* !IPFIREWALL */ | |
183 | ||
184 | static int udp_getstat SYSCTL_HANDLER_ARGS; | |
185 | struct udpstat udpstat; /* from udp_var.h */ | |
186 | SYSCTL_PROC(_net_inet_udp, UDPCTL_STATS, stats, | |
187 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, | |
188 | 0, 0, udp_getstat, "S,udpstat", | |
189 | "UDP statistics (struct udpstat, netinet/udp_var.h)"); | |
190 | ||
191 | SYSCTL_INT(_net_inet_udp, OID_AUTO, pcbcount, | |
192 | CTLFLAG_RD | CTLFLAG_LOCKED, &udbinfo.ipi_count, 0, | |
193 | "Number of active PCBs"); | |
194 | ||
195 | __private_extern__ int udp_use_randomport = 1; | |
196 | SYSCTL_INT(_net_inet_udp, OID_AUTO, randomize_ports, | |
197 | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_use_randomport, 0, | |
198 | "Randomize UDP port numbers"); | |
199 | ||
200 | #if INET6 | |
201 | struct udp_in6 { | |
202 | struct sockaddr_in6 uin6_sin; | |
203 | u_char uin6_init_done : 1; | |
204 | }; | |
205 | struct udp_ip6 { | |
206 | struct ip6_hdr uip6_ip6; | |
207 | u_char uip6_init_done : 1; | |
208 | }; | |
209 | ||
210 | int udp_abort(struct socket *); | |
211 | int udp_attach(struct socket *, int, struct proc *); | |
212 | int udp_bind(struct socket *, struct sockaddr *, struct proc *); | |
213 | int udp_connect(struct socket *, struct sockaddr *, struct proc *); | |
214 | int udp_connectx(struct socket *, struct sockaddr *, | |
215 | struct sockaddr *, struct proc *, uint32_t, sae_associd_t, | |
216 | sae_connid_t *, uint32_t, void *, uint32_t, struct uio *, user_ssize_t *); | |
217 | int udp_detach(struct socket *); | |
218 | int udp_disconnect(struct socket *); | |
219 | int udp_disconnectx(struct socket *, sae_associd_t, sae_connid_t); | |
220 | int udp_send(struct socket *, int, struct mbuf *, struct sockaddr *, | |
221 | struct mbuf *, struct proc *); | |
222 | static void udp_append(struct inpcb *, struct ip *, struct mbuf *, int, | |
223 | struct sockaddr_in *, struct udp_in6 *, struct udp_ip6 *, struct ifnet *); | |
224 | #else /* !INET6 */ | |
225 | static void udp_append(struct inpcb *, struct ip *, struct mbuf *, int, | |
226 | struct sockaddr_in *, struct ifnet *); | |
227 | #endif /* !INET6 */ | |
228 | static int udp_input_checksum(struct mbuf *, struct udphdr *, int, int); | |
229 | int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, | |
230 | struct mbuf *, struct proc *); | |
231 | static void ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip); | |
232 | static void udp_gc(struct inpcbinfo *); | |
233 | ||
234 | struct pr_usrreqs udp_usrreqs = { | |
235 | .pru_abort = udp_abort, | |
236 | .pru_attach = udp_attach, | |
237 | .pru_bind = udp_bind, | |
238 | .pru_connect = udp_connect, | |
239 | .pru_connectx = udp_connectx, | |
240 | .pru_control = in_control, | |
241 | .pru_detach = udp_detach, | |
242 | .pru_disconnect = udp_disconnect, | |
243 | .pru_disconnectx = udp_disconnectx, | |
244 | .pru_peeraddr = in_getpeeraddr, | |
245 | .pru_send = udp_send, | |
246 | .pru_shutdown = udp_shutdown, | |
247 | .pru_sockaddr = in_getsockaddr, | |
248 | .pru_sosend = sosend, | |
249 | .pru_soreceive = soreceive, | |
250 | .pru_soreceive_list = soreceive_list, | |
251 | }; | |
252 | ||
253 | void | |
254 | udp_init(struct protosw *pp, struct domain *dp) | |
255 | { | |
256 | #pragma unused(dp) | |
257 | static int udp_initialized = 0; | |
258 | vm_size_t str_size; | |
259 | struct inpcbinfo *pcbinfo; | |
260 | ||
261 | VERIFY((pp->pr_flags & (PR_INITIALIZED | PR_ATTACHED)) == PR_ATTACHED); | |
262 | ||
263 | if (udp_initialized) { | |
264 | return; | |
265 | } | |
266 | udp_initialized = 1; | |
267 | uint32_t pool_size = (nmbclusters << MCLSHIFT) >> MBSHIFT; | |
268 | if (pool_size >= 96) { | |
269 | /* Improves 10GbE UDP performance. */ | |
270 | udp_recvspace = 786896; | |
271 | } | |
272 | LIST_INIT(&udb); | |
273 | udbinfo.ipi_listhead = &udb; | |
274 | udbinfo.ipi_hashbase = hashinit(UDBHASHSIZE, M_PCB, | |
275 | &udbinfo.ipi_hashmask); | |
276 | udbinfo.ipi_porthashbase = hashinit(UDBHASHSIZE, M_PCB, | |
277 | &udbinfo.ipi_porthashmask); | |
278 | str_size = (vm_size_t) sizeof(struct inpcb); | |
279 | udbinfo.ipi_zone = zinit(str_size, 80000 * str_size, 8192, "udpcb"); | |
280 | ||
281 | pcbinfo = &udbinfo; | |
282 | /* | |
283 | * allocate lock group attribute and group for udp pcb mutexes | |
284 | */ | |
285 | pcbinfo->ipi_lock_grp_attr = lck_grp_attr_alloc_init(); | |
286 | pcbinfo->ipi_lock_grp = lck_grp_alloc_init("udppcb", | |
287 | pcbinfo->ipi_lock_grp_attr); | |
288 | pcbinfo->ipi_lock_attr = lck_attr_alloc_init(); | |
289 | if ((pcbinfo->ipi_lock = lck_rw_alloc_init(pcbinfo->ipi_lock_grp, | |
290 | pcbinfo->ipi_lock_attr)) == NULL) { | |
291 | panic("%s: unable to allocate PCB lock\n", __func__); | |
292 | /* NOTREACHED */ | |
293 | } | |
294 | ||
295 | udbinfo.ipi_gc = udp_gc; | |
296 | in_pcbinfo_attach(&udbinfo); | |
297 | } | |
298 | ||
299 | void | |
300 | udp_input(struct mbuf *m, int iphlen) | |
301 | { | |
302 | struct ip *ip; | |
303 | struct udphdr *uh; | |
304 | struct inpcb *inp; | |
305 | struct mbuf *opts = NULL; | |
306 | int len, isbroadcast; | |
307 | struct ip save_ip; | |
308 | struct sockaddr *append_sa; | |
309 | struct inpcbinfo *pcbinfo = &udbinfo; | |
310 | struct sockaddr_in udp_in; | |
311 | struct ip_moptions *imo = NULL; | |
312 | int foundmembership = 0, ret = 0; | |
313 | #if INET6 | |
314 | struct udp_in6 udp_in6; | |
315 | struct udp_ip6 udp_ip6; | |
316 | #endif /* INET6 */ | |
317 | struct ifnet *ifp = m->m_pkthdr.rcvif; | |
318 | boolean_t cell = IFNET_IS_CELLULAR(ifp); | |
319 | boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp)); | |
320 | boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp)); | |
321 | ||
322 | bzero(&udp_in, sizeof(udp_in)); | |
323 | udp_in.sin_len = sizeof(struct sockaddr_in); | |
324 | udp_in.sin_family = AF_INET; | |
325 | #if INET6 | |
326 | bzero(&udp_in6, sizeof(udp_in6)); | |
327 | udp_in6.uin6_sin.sin6_len = sizeof(struct sockaddr_in6); | |
328 | udp_in6.uin6_sin.sin6_family = AF_INET6; | |
329 | #endif /* INET6 */ | |
330 | ||
331 | udpstat.udps_ipackets++; | |
332 | ||
333 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
334 | ||
335 | /* Expect 32-bit aligned data pointer on strict-align platforms */ | |
336 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); | |
337 | ||
338 | /* | |
339 | * Strip IP options, if any; should skip this, | |
340 | * make available to user, and use on returned packets, | |
341 | * but we don't yet have a way to check the checksum | |
342 | * with options still present. | |
343 | */ | |
344 | if (iphlen > sizeof(struct ip)) { | |
345 | ip_stripoptions(m); | |
346 | iphlen = sizeof(struct ip); | |
347 | } | |
348 | ||
349 | /* | |
350 | * Get IP and UDP header together in first mbuf. | |
351 | */ | |
352 | ip = mtod(m, struct ip *); | |
353 | if (m->m_len < iphlen + sizeof(struct udphdr)) { | |
354 | m = m_pullup(m, iphlen + sizeof(struct udphdr)); | |
355 | if (m == NULL) { | |
356 | udpstat.udps_hdrops++; | |
357 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, | |
358 | 0, 0, 0, 0, 0); | |
359 | return; | |
360 | } | |
361 | ip = mtod(m, struct ip *); | |
362 | } | |
363 | uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen); | |
364 | ||
365 | /* destination port of 0 is illegal, based on RFC768. */ | |
366 | if (uh->uh_dport == 0) { | |
367 | IF_UDP_STATINC(ifp, port0); | |
368 | goto bad; | |
369 | } | |
370 | ||
371 | KERNEL_DEBUG(DBG_LAYER_IN_BEG, uh->uh_dport, uh->uh_sport, | |
372 | ip->ip_src.s_addr, ip->ip_dst.s_addr, uh->uh_ulen); | |
373 | ||
374 | /* | |
375 | * Make mbuf data length reflect UDP length. | |
376 | * If not enough data to reflect UDP length, drop. | |
377 | */ | |
378 | len = ntohs((u_short)uh->uh_ulen); | |
379 | if (ip->ip_len != len) { | |
380 | if (len > ip->ip_len || len < sizeof(struct udphdr)) { | |
381 | udpstat.udps_badlen++; | |
382 | IF_UDP_STATINC(ifp, badlength); | |
383 | goto bad; | |
384 | } | |
385 | m_adj(m, len - ip->ip_len); | |
386 | /* ip->ip_len = len; */ | |
387 | } | |
388 | /* | |
389 | * Save a copy of the IP header in case we want restore it | |
390 | * for sending an ICMP error message in response. | |
391 | */ | |
392 | save_ip = *ip; | |
393 | ||
394 | /* | |
395 | * Checksum extended UDP header and data. | |
396 | */ | |
397 | if (udp_input_checksum(m, uh, iphlen, len)) { | |
398 | goto bad; | |
399 | } | |
400 | ||
401 | isbroadcast = in_broadcast(ip->ip_dst, ifp); | |
402 | ||
403 | if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || isbroadcast) { | |
404 | int reuse_sock = 0, mcast_delivered = 0; | |
405 | ||
406 | lck_rw_lock_shared(pcbinfo->ipi_lock); | |
407 | /* | |
408 | * Deliver a multicast or broadcast datagram to *all* sockets | |
409 | * for which the local and remote addresses and ports match | |
410 | * those of the incoming datagram. This allows more than | |
411 | * one process to receive multi/broadcasts on the same port. | |
412 | * (This really ought to be done for unicast datagrams as | |
413 | * well, but that would cause problems with existing | |
414 | * applications that open both address-specific sockets and | |
415 | * a wildcard socket listening to the same port -- they would | |
416 | * end up receiving duplicates of every unicast datagram. | |
417 | * Those applications open the multiple sockets to overcome an | |
418 | * inadequacy of the UDP socket interface, but for backwards | |
419 | * compatibility we avoid the problem here rather than | |
420 | * fixing the interface. Maybe 4.5BSD will remedy this?) | |
421 | */ | |
422 | ||
423 | /* | |
424 | * Construct sockaddr format source address. | |
425 | */ | |
426 | udp_in.sin_port = uh->uh_sport; | |
427 | udp_in.sin_addr = ip->ip_src; | |
428 | /* | |
429 | * Locate pcb(s) for datagram. | |
430 | * (Algorithm copied from raw_intr().) | |
431 | */ | |
432 | #if INET6 | |
433 | udp_in6.uin6_init_done = udp_ip6.uip6_init_done = 0; | |
434 | #endif /* INET6 */ | |
435 | LIST_FOREACH(inp, &udb, inp_list) { | |
436 | #if IPSEC | |
437 | int skipit; | |
438 | #endif /* IPSEC */ | |
439 | ||
440 | if (inp->inp_socket == NULL) { | |
441 | continue; | |
442 | } | |
443 | if (inp != sotoinpcb(inp->inp_socket)) { | |
444 | panic("%s: bad so back ptr inp=%p\n", | |
445 | __func__, inp); | |
446 | /* NOTREACHED */ | |
447 | } | |
448 | #if INET6 | |
449 | if ((inp->inp_vflag & INP_IPV4) == 0) { | |
450 | continue; | |
451 | } | |
452 | #endif /* INET6 */ | |
453 | if (inp_restricted_recv(inp, ifp)) { | |
454 | continue; | |
455 | } | |
456 | ||
457 | if ((inp->inp_moptions == NULL) && | |
458 | (ntohl(ip->ip_dst.s_addr) != | |
459 | INADDR_ALLHOSTS_GROUP) && (isbroadcast == 0)) { | |
460 | continue; | |
461 | } | |
462 | ||
463 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == | |
464 | WNT_STOPUSING) { | |
465 | continue; | |
466 | } | |
467 | ||
468 | udp_lock(inp->inp_socket, 1, 0); | |
469 | ||
470 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == | |
471 | WNT_STOPUSING) { | |
472 | udp_unlock(inp->inp_socket, 1, 0); | |
473 | continue; | |
474 | } | |
475 | ||
476 | if (inp->inp_lport != uh->uh_dport) { | |
477 | udp_unlock(inp->inp_socket, 1, 0); | |
478 | continue; | |
479 | } | |
480 | if (inp->inp_laddr.s_addr != INADDR_ANY) { | |
481 | if (inp->inp_laddr.s_addr != | |
482 | ip->ip_dst.s_addr) { | |
483 | udp_unlock(inp->inp_socket, 1, 0); | |
484 | continue; | |
485 | } | |
486 | } | |
487 | if (inp->inp_faddr.s_addr != INADDR_ANY) { | |
488 | if (inp->inp_faddr.s_addr != | |
489 | ip->ip_src.s_addr || | |
490 | inp->inp_fport != uh->uh_sport) { | |
491 | udp_unlock(inp->inp_socket, 1, 0); | |
492 | continue; | |
493 | } | |
494 | } | |
495 | ||
496 | if (isbroadcast == 0 && (ntohl(ip->ip_dst.s_addr) != | |
497 | INADDR_ALLHOSTS_GROUP)) { | |
498 | struct sockaddr_in group; | |
499 | int blocked; | |
500 | ||
501 | if ((imo = inp->inp_moptions) == NULL) { | |
502 | udp_unlock(inp->inp_socket, 1, 0); | |
503 | continue; | |
504 | } | |
505 | IMO_LOCK(imo); | |
506 | ||
507 | bzero(&group, sizeof(struct sockaddr_in)); | |
508 | group.sin_len = sizeof(struct sockaddr_in); | |
509 | group.sin_family = AF_INET; | |
510 | group.sin_addr = ip->ip_dst; | |
511 | ||
512 | blocked = imo_multi_filter(imo, ifp, | |
513 | &group, &udp_in); | |
514 | if (blocked == MCAST_PASS) { | |
515 | foundmembership = 1; | |
516 | } | |
517 | ||
518 | IMO_UNLOCK(imo); | |
519 | if (!foundmembership) { | |
520 | udp_unlock(inp->inp_socket, 1, 0); | |
521 | if (blocked == MCAST_NOTSMEMBER || | |
522 | blocked == MCAST_MUTED) { | |
523 | udpstat.udps_filtermcast++; | |
524 | } | |
525 | continue; | |
526 | } | |
527 | foundmembership = 0; | |
528 | } | |
529 | ||
530 | reuse_sock = (inp->inp_socket->so_options & | |
531 | (SO_REUSEPORT | SO_REUSEADDR)); | |
532 | ||
533 | #if NECP | |
534 | skipit = 0; | |
535 | if (!necp_socket_is_allowed_to_send_recv_v4(inp, | |
536 | uh->uh_dport, uh->uh_sport, &ip->ip_dst, | |
537 | &ip->ip_src, ifp, NULL, NULL, NULL)) { | |
538 | /* do not inject data to pcb */ | |
539 | skipit = 1; | |
540 | } | |
541 | if (skipit == 0) | |
542 | #endif /* NECP */ | |
543 | { | |
544 | struct mbuf *n = NULL; | |
545 | ||
546 | if (reuse_sock) { | |
547 | n = m_copy(m, 0, M_COPYALL); | |
548 | } | |
549 | #if INET6 | |
550 | udp_append(inp, ip, m, | |
551 | iphlen + sizeof(struct udphdr), | |
552 | &udp_in, &udp_in6, &udp_ip6, ifp); | |
553 | #else /* !INET6 */ | |
554 | udp_append(inp, ip, m, | |
555 | iphlen + sizeof(struct udphdr), | |
556 | &udp_in, ifp); | |
557 | #endif /* !INET6 */ | |
558 | mcast_delivered++; | |
559 | ||
560 | m = n; | |
561 | } | |
562 | udp_unlock(inp->inp_socket, 1, 0); | |
563 | ||
564 | /* | |
565 | * Don't look for additional matches if this one does | |
566 | * not have either the SO_REUSEPORT or SO_REUSEADDR | |
567 | * socket options set. This heuristic avoids searching | |
568 | * through all pcbs in the common case of a non-shared | |
569 | * port. It assumes that an application will never | |
570 | * clear these options after setting them. | |
571 | */ | |
572 | if (reuse_sock == 0 || m == NULL) { | |
573 | break; | |
574 | } | |
575 | ||
576 | /* | |
577 | * Expect 32-bit aligned data pointer on strict-align | |
578 | * platforms. | |
579 | */ | |
580 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); | |
581 | /* | |
582 | * Recompute IP and UDP header pointers for new mbuf | |
583 | */ | |
584 | ip = mtod(m, struct ip *); | |
585 | uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen); | |
586 | } | |
587 | lck_rw_done(pcbinfo->ipi_lock); | |
588 | ||
589 | if (mcast_delivered == 0) { | |
590 | /* | |
591 | * No matching pcb found; discard datagram. | |
592 | * (No need to send an ICMP Port Unreachable | |
593 | * for a broadcast or multicast datgram.) | |
594 | */ | |
595 | udpstat.udps_noportbcast++; | |
596 | IF_UDP_STATINC(ifp, port_unreach); | |
597 | goto bad; | |
598 | } | |
599 | ||
600 | /* free the extra copy of mbuf or skipped by IPsec */ | |
601 | if (m != NULL) { | |
602 | m_freem(m); | |
603 | } | |
604 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
605 | return; | |
606 | } | |
607 | ||
608 | #if IPSEC | |
609 | /* | |
610 | * UDP to port 4500 with a payload where the first four bytes are | |
611 | * not zero is a UDP encapsulated IPsec packet. Packets where | |
612 | * the payload is one byte and that byte is 0xFF are NAT keepalive | |
613 | * packets. Decapsulate the ESP packet and carry on with IPsec input | |
614 | * or discard the NAT keep-alive. | |
615 | */ | |
616 | if (ipsec_bypass == 0 && (esp_udp_encap_port & 0xFFFF) != 0 && | |
617 | (uh->uh_dport == ntohs((u_short)esp_udp_encap_port) || | |
618 | uh->uh_sport == ntohs((u_short)esp_udp_encap_port))) { | |
619 | /* | |
620 | * Check if ESP or keepalive: | |
621 | * 1. If the destination port of the incoming packet is 4500. | |
622 | * 2. If the source port of the incoming packet is 4500, | |
623 | * then check the SADB to match IP address and port. | |
624 | */ | |
625 | bool check_esp = true; | |
626 | if (uh->uh_dport != ntohs((u_short)esp_udp_encap_port)) { | |
627 | check_esp = key_checksa_present(AF_INET, (caddr_t)&ip->ip_dst, | |
628 | (caddr_t)&ip->ip_src, uh->uh_dport, | |
629 | uh->uh_sport); | |
630 | } | |
631 | ||
632 | if (check_esp) { | |
633 | int payload_len = len - sizeof(struct udphdr) > 4 ? 4 : | |
634 | len - sizeof(struct udphdr); | |
635 | ||
636 | if (m->m_len < iphlen + sizeof(struct udphdr) + payload_len) { | |
637 | if ((m = m_pullup(m, iphlen + sizeof(struct udphdr) + | |
638 | payload_len)) == NULL) { | |
639 | udpstat.udps_hdrops++; | |
640 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, | |
641 | 0, 0, 0, 0, 0); | |
642 | return; | |
643 | } | |
644 | /* | |
645 | * Expect 32-bit aligned data pointer on strict-align | |
646 | * platforms. | |
647 | */ | |
648 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); | |
649 | ||
650 | ip = mtod(m, struct ip *); | |
651 | uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen); | |
652 | } | |
653 | /* Check for NAT keepalive packet */ | |
654 | if (payload_len == 1 && *(u_int8_t *) | |
655 | ((caddr_t)uh + sizeof(struct udphdr)) == 0xFF) { | |
656 | m_freem(m); | |
657 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, | |
658 | 0, 0, 0, 0, 0); | |
659 | return; | |
660 | } else if (payload_len == 4 && *(u_int32_t *)(void *) | |
661 | ((caddr_t)uh + sizeof(struct udphdr)) != 0) { | |
662 | /* UDP encapsulated IPsec packet to pass through NAT */ | |
663 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, | |
664 | 0, 0, 0, 0, 0); | |
665 | /* preserve the udp header */ | |
666 | esp4_input(m, iphlen + sizeof(struct udphdr)); | |
667 | return; | |
668 | } | |
669 | } | |
670 | } | |
671 | #endif /* IPSEC */ | |
672 | ||
673 | /* | |
674 | * Locate pcb for datagram. | |
675 | */ | |
676 | inp = in_pcblookup_hash(&udbinfo, ip->ip_src, uh->uh_sport, | |
677 | ip->ip_dst, uh->uh_dport, 1, ifp); | |
678 | if (inp == NULL) { | |
679 | IF_UDP_STATINC(ifp, port_unreach); | |
680 | ||
681 | if (udp_log_in_vain) { | |
682 | char buf[MAX_IPv4_STR_LEN]; | |
683 | char buf2[MAX_IPv4_STR_LEN]; | |
684 | ||
685 | /* check src and dst address */ | |
686 | if (udp_log_in_vain < 3) { | |
687 | log(LOG_INFO, "Connection attempt to " | |
688 | "UDP %s:%d from %s:%d\n", inet_ntop(AF_INET, | |
689 | &ip->ip_dst, buf, sizeof(buf)), | |
690 | ntohs(uh->uh_dport), inet_ntop(AF_INET, | |
691 | &ip->ip_src, buf2, sizeof(buf2)), | |
692 | ntohs(uh->uh_sport)); | |
693 | } else if (!(m->m_flags & (M_BCAST | M_MCAST)) && | |
694 | ip->ip_dst.s_addr != ip->ip_src.s_addr) { | |
695 | log_in_vain_log((LOG_INFO, | |
696 | "Stealth Mode connection attempt to " | |
697 | "UDP %s:%d from %s:%d\n", inet_ntop(AF_INET, | |
698 | &ip->ip_dst, buf, sizeof(buf)), | |
699 | ntohs(uh->uh_dport), inet_ntop(AF_INET, | |
700 | &ip->ip_src, buf2, sizeof(buf2)), | |
701 | ntohs(uh->uh_sport))) | |
702 | } | |
703 | } | |
704 | udpstat.udps_noport++; | |
705 | if (m->m_flags & (M_BCAST | M_MCAST)) { | |
706 | udpstat.udps_noportbcast++; | |
707 | goto bad; | |
708 | } | |
709 | #if ICMP_BANDLIM | |
710 | if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) { | |
711 | goto bad; | |
712 | } | |
713 | #endif /* ICMP_BANDLIM */ | |
714 | if (blackhole) { | |
715 | if (ifp && ifp->if_type != IFT_LOOP) { | |
716 | goto bad; | |
717 | } | |
718 | } | |
719 | *ip = save_ip; | |
720 | ip->ip_len += iphlen; | |
721 | icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); | |
722 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
723 | return; | |
724 | } | |
725 | udp_lock(inp->inp_socket, 1, 0); | |
726 | ||
727 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { | |
728 | udp_unlock(inp->inp_socket, 1, 0); | |
729 | IF_UDP_STATINC(ifp, cleanup); | |
730 | goto bad; | |
731 | } | |
732 | #if NECP | |
733 | if (!necp_socket_is_allowed_to_send_recv_v4(inp, uh->uh_dport, | |
734 | uh->uh_sport, &ip->ip_dst, &ip->ip_src, ifp, NULL, NULL, NULL)) { | |
735 | udp_unlock(inp->inp_socket, 1, 0); | |
736 | IF_UDP_STATINC(ifp, badipsec); | |
737 | goto bad; | |
738 | } | |
739 | #endif /* NECP */ | |
740 | ||
741 | /* | |
742 | * Construct sockaddr format source address. | |
743 | * Stuff source address and datagram in user buffer. | |
744 | */ | |
745 | udp_in.sin_port = uh->uh_sport; | |
746 | udp_in.sin_addr = ip->ip_src; | |
747 | if ((inp->inp_flags & INP_CONTROLOPTS) != 0 || | |
748 | (inp->inp_socket->so_options & SO_TIMESTAMP) != 0 || | |
749 | (inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0 || | |
750 | (inp->inp_socket->so_options & SO_TIMESTAMP_CONTINUOUS) != 0) { | |
751 | #if INET6 | |
752 | if (inp->inp_vflag & INP_IPV6) { | |
753 | int savedflags; | |
754 | ||
755 | ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip); | |
756 | savedflags = inp->inp_flags; | |
757 | inp->inp_flags &= ~INP_UNMAPPABLEOPTS; | |
758 | ret = ip6_savecontrol(inp, m, &opts); | |
759 | inp->inp_flags = savedflags; | |
760 | } else | |
761 | #endif /* INET6 */ | |
762 | { | |
763 | ret = ip_savecontrol(inp, &opts, ip, m); | |
764 | } | |
765 | if (ret != 0) { | |
766 | udp_unlock(inp->inp_socket, 1, 0); | |
767 | goto bad; | |
768 | } | |
769 | } | |
770 | m_adj(m, iphlen + sizeof(struct udphdr)); | |
771 | ||
772 | KERNEL_DEBUG(DBG_LAYER_IN_END, uh->uh_dport, uh->uh_sport, | |
773 | save_ip.ip_src.s_addr, save_ip.ip_dst.s_addr, uh->uh_ulen); | |
774 | ||
775 | #if INET6 | |
776 | if (inp->inp_vflag & INP_IPV6) { | |
777 | in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin); | |
778 | append_sa = (struct sockaddr *)&udp_in6.uin6_sin; | |
779 | } else | |
780 | #endif /* INET6 */ | |
781 | { | |
782 | append_sa = (struct sockaddr *)&udp_in; | |
783 | } | |
784 | if (nstat_collect) { | |
785 | INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1); | |
786 | INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, m->m_pkthdr.len); | |
787 | inp_set_activity_bitmap(inp); | |
788 | } | |
789 | so_recv_data_stat(inp->inp_socket, m, 0); | |
790 | if (sbappendaddr(&inp->inp_socket->so_rcv, append_sa, | |
791 | m, opts, NULL) == 0) { | |
792 | udpstat.udps_fullsock++; | |
793 | } else { | |
794 | sorwakeup(inp->inp_socket); | |
795 | } | |
796 | udp_unlock(inp->inp_socket, 1, 0); | |
797 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
798 | return; | |
799 | bad: | |
800 | m_freem(m); | |
801 | if (opts) { | |
802 | m_freem(opts); | |
803 | } | |
804 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
805 | } | |
806 | ||
807 | #if INET6 | |
808 | static void | |
809 | ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip) | |
810 | { | |
811 | bzero(ip6, sizeof(*ip6)); | |
812 | ||
813 | ip6->ip6_vfc = IPV6_VERSION; | |
814 | ip6->ip6_plen = ip->ip_len; | |
815 | ip6->ip6_nxt = ip->ip_p; | |
816 | ip6->ip6_hlim = ip->ip_ttl; | |
817 | if (ip->ip_src.s_addr) { | |
818 | ip6->ip6_src.s6_addr32[2] = IPV6_ADDR_INT32_SMP; | |
819 | ip6->ip6_src.s6_addr32[3] = ip->ip_src.s_addr; | |
820 | } | |
821 | if (ip->ip_dst.s_addr) { | |
822 | ip6->ip6_dst.s6_addr32[2] = IPV6_ADDR_INT32_SMP; | |
823 | ip6->ip6_dst.s6_addr32[3] = ip->ip_dst.s_addr; | |
824 | } | |
825 | } | |
826 | #endif /* INET6 */ | |
827 | ||
828 | /* | |
829 | * subroutine of udp_input(), mainly for source code readability. | |
830 | */ | |
831 | static void | |
832 | #if INET6 | |
833 | udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off, | |
834 | struct sockaddr_in *pudp_in, struct udp_in6 *pudp_in6, | |
835 | struct udp_ip6 *pudp_ip6, struct ifnet *ifp) | |
836 | #else /* !INET6 */ | |
837 | udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off, | |
838 | struct sockaddr_in *pudp_in, struct ifnet *ifp) | |
839 | #endif /* !INET6 */ | |
840 | { | |
841 | struct sockaddr *append_sa; | |
842 | struct mbuf *opts = 0; | |
843 | boolean_t cell = IFNET_IS_CELLULAR(ifp); | |
844 | boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp)); | |
845 | boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp)); | |
846 | int ret = 0; | |
847 | ||
848 | #if CONFIG_MACF_NET | |
849 | if (mac_inpcb_check_deliver(last, n, AF_INET, SOCK_DGRAM) != 0) { | |
850 | m_freem(n); | |
851 | return; | |
852 | } | |
853 | #endif /* CONFIG_MACF_NET */ | |
854 | if ((last->inp_flags & INP_CONTROLOPTS) != 0 || | |
855 | (last->inp_socket->so_options & SO_TIMESTAMP) != 0 || | |
856 | (last->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0 || | |
857 | (last->inp_socket->so_options & SO_TIMESTAMP_CONTINUOUS) != 0) { | |
858 | #if INET6 | |
859 | if (last->inp_vflag & INP_IPV6) { | |
860 | int savedflags; | |
861 | ||
862 | if (pudp_ip6->uip6_init_done == 0) { | |
863 | ip_2_ip6_hdr(&pudp_ip6->uip6_ip6, ip); | |
864 | pudp_ip6->uip6_init_done = 1; | |
865 | } | |
866 | savedflags = last->inp_flags; | |
867 | last->inp_flags &= ~INP_UNMAPPABLEOPTS; | |
868 | ret = ip6_savecontrol(last, n, &opts); | |
869 | if (ret != 0) { | |
870 | last->inp_flags = savedflags; | |
871 | goto error; | |
872 | } | |
873 | last->inp_flags = savedflags; | |
874 | } else | |
875 | #endif /* INET6 */ | |
876 | { | |
877 | ret = ip_savecontrol(last, &opts, ip, n); | |
878 | if (ret != 0) { | |
879 | goto error; | |
880 | } | |
881 | } | |
882 | } | |
883 | #if INET6 | |
884 | if (last->inp_vflag & INP_IPV6) { | |
885 | if (pudp_in6->uin6_init_done == 0) { | |
886 | in6_sin_2_v4mapsin6(pudp_in, &pudp_in6->uin6_sin); | |
887 | pudp_in6->uin6_init_done = 1; | |
888 | } | |
889 | append_sa = (struct sockaddr *)&pudp_in6->uin6_sin; | |
890 | } else | |
891 | #endif /* INET6 */ | |
892 | append_sa = (struct sockaddr *)pudp_in; | |
893 | if (nstat_collect) { | |
894 | INP_ADD_STAT(last, cell, wifi, wired, rxpackets, 1); | |
895 | INP_ADD_STAT(last, cell, wifi, wired, rxbytes, | |
896 | n->m_pkthdr.len); | |
897 | inp_set_activity_bitmap(last); | |
898 | } | |
899 | so_recv_data_stat(last->inp_socket, n, 0); | |
900 | m_adj(n, off); | |
901 | if (sbappendaddr(&last->inp_socket->so_rcv, append_sa, | |
902 | n, opts, NULL) == 0) { | |
903 | udpstat.udps_fullsock++; | |
904 | } else { | |
905 | sorwakeup(last->inp_socket); | |
906 | } | |
907 | return; | |
908 | error: | |
909 | m_freem(n); | |
910 | m_freem(opts); | |
911 | } | |
912 | ||
913 | /* | |
914 | * Notify a udp user of an asynchronous error; | |
915 | * just wake up so that he can collect error status. | |
916 | */ | |
917 | void | |
918 | udp_notify(struct inpcb *inp, int errno) | |
919 | { | |
920 | inp->inp_socket->so_error = errno; | |
921 | sorwakeup(inp->inp_socket); | |
922 | sowwakeup(inp->inp_socket); | |
923 | } | |
924 | ||
925 | void | |
926 | udp_ctlinput(int cmd, struct sockaddr *sa, void *vip, __unused struct ifnet * ifp) | |
927 | { | |
928 | struct ip *ip = vip; | |
929 | void (*notify)(struct inpcb *, int) = udp_notify; | |
930 | struct in_addr faddr; | |
931 | struct inpcb *inp = NULL; | |
932 | ||
933 | faddr = ((struct sockaddr_in *)(void *)sa)->sin_addr; | |
934 | if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) { | |
935 | return; | |
936 | } | |
937 | ||
938 | if (PRC_IS_REDIRECT(cmd)) { | |
939 | ip = 0; | |
940 | notify = in_rtchange; | |
941 | } else if (cmd == PRC_HOSTDEAD) { | |
942 | ip = 0; | |
943 | } else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) { | |
944 | return; | |
945 | } | |
946 | if (ip) { | |
947 | struct udphdr uh; | |
948 | ||
949 | bcopy(((caddr_t)ip + (ip->ip_hl << 2)), &uh, sizeof(uh)); | |
950 | inp = in_pcblookup_hash(&udbinfo, faddr, uh.uh_dport, | |
951 | ip->ip_src, uh.uh_sport, 0, NULL); | |
952 | if (inp != NULL && inp->inp_socket != NULL) { | |
953 | udp_lock(inp->inp_socket, 1, 0); | |
954 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == | |
955 | WNT_STOPUSING) { | |
956 | udp_unlock(inp->inp_socket, 1, 0); | |
957 | return; | |
958 | } | |
959 | (*notify)(inp, inetctlerrmap[cmd]); | |
960 | udp_unlock(inp->inp_socket, 1, 0); | |
961 | } | |
962 | } else { | |
963 | in_pcbnotifyall(&udbinfo, faddr, inetctlerrmap[cmd], notify); | |
964 | } | |
965 | } | |
966 | ||
967 | int | |
968 | udp_ctloutput(struct socket *so, struct sockopt *sopt) | |
969 | { | |
970 | int error = 0, optval = 0; | |
971 | struct inpcb *inp; | |
972 | ||
973 | /* Allow <SOL_SOCKET,SO_FLUSH> at this level */ | |
974 | if (sopt->sopt_level != IPPROTO_UDP && | |
975 | !(sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_FLUSH)) { | |
976 | return ip_ctloutput(so, sopt); | |
977 | } | |
978 | ||
979 | inp = sotoinpcb(so); | |
980 | ||
981 | switch (sopt->sopt_dir) { | |
982 | case SOPT_SET: | |
983 | switch (sopt->sopt_name) { | |
984 | case UDP_NOCKSUM: | |
985 | /* This option is settable only for UDP over IPv4 */ | |
986 | if (!(inp->inp_vflag & INP_IPV4)) { | |
987 | error = EINVAL; | |
988 | break; | |
989 | } | |
990 | ||
991 | if ((error = sooptcopyin(sopt, &optval, sizeof(optval), | |
992 | sizeof(optval))) != 0) { | |
993 | break; | |
994 | } | |
995 | ||
996 | if (optval != 0) { | |
997 | inp->inp_flags |= INP_UDP_NOCKSUM; | |
998 | } else { | |
999 | inp->inp_flags &= ~INP_UDP_NOCKSUM; | |
1000 | } | |
1001 | break; | |
1002 | case UDP_KEEPALIVE_OFFLOAD: | |
1003 | { | |
1004 | struct udp_keepalive_offload ka; | |
1005 | /* | |
1006 | * If the socket is not connected, the stack will | |
1007 | * not know the destination address to put in the | |
1008 | * keepalive datagram. Return an error now instead | |
1009 | * of failing later. | |
1010 | */ | |
1011 | if (!(so->so_state & SS_ISCONNECTED)) { | |
1012 | error = EINVAL; | |
1013 | break; | |
1014 | } | |
1015 | if (sopt->sopt_valsize != sizeof(ka)) { | |
1016 | error = EINVAL; | |
1017 | break; | |
1018 | } | |
1019 | if ((error = sooptcopyin(sopt, &ka, sizeof(ka), | |
1020 | sizeof(ka))) != 0) { | |
1021 | break; | |
1022 | } | |
1023 | ||
1024 | /* application should specify the type */ | |
1025 | if (ka.ka_type == 0) { | |
1026 | return EINVAL; | |
1027 | } | |
1028 | ||
1029 | if (ka.ka_interval == 0) { | |
1030 | /* | |
1031 | * if interval is 0, disable the offload | |
1032 | * mechanism | |
1033 | */ | |
1034 | if (inp->inp_keepalive_data != NULL) { | |
1035 | FREE(inp->inp_keepalive_data, | |
1036 | M_TEMP); | |
1037 | } | |
1038 | inp->inp_keepalive_data = NULL; | |
1039 | inp->inp_keepalive_datalen = 0; | |
1040 | inp->inp_keepalive_interval = 0; | |
1041 | inp->inp_keepalive_type = 0; | |
1042 | inp->inp_flags2 &= ~INP2_KEEPALIVE_OFFLOAD; | |
1043 | } else { | |
1044 | if (inp->inp_keepalive_data != NULL) { | |
1045 | FREE(inp->inp_keepalive_data, | |
1046 | M_TEMP); | |
1047 | inp->inp_keepalive_data = NULL; | |
1048 | } | |
1049 | ||
1050 | inp->inp_keepalive_datalen = min( | |
1051 | ka.ka_data_len, | |
1052 | UDP_KEEPALIVE_OFFLOAD_DATA_SIZE); | |
1053 | if (inp->inp_keepalive_datalen > 0) { | |
1054 | MALLOC(inp->inp_keepalive_data, | |
1055 | u_int8_t *, | |
1056 | inp->inp_keepalive_datalen, | |
1057 | M_TEMP, M_WAITOK); | |
1058 | if (inp->inp_keepalive_data == NULL) { | |
1059 | inp->inp_keepalive_datalen = 0; | |
1060 | error = ENOMEM; | |
1061 | break; | |
1062 | } | |
1063 | bcopy(ka.ka_data, | |
1064 | inp->inp_keepalive_data, | |
1065 | inp->inp_keepalive_datalen); | |
1066 | } else { | |
1067 | inp->inp_keepalive_datalen = 0; | |
1068 | } | |
1069 | inp->inp_keepalive_interval = | |
1070 | min(UDP_KEEPALIVE_INTERVAL_MAX_SECONDS, | |
1071 | ka.ka_interval); | |
1072 | inp->inp_keepalive_type = ka.ka_type; | |
1073 | inp->inp_flags2 |= INP2_KEEPALIVE_OFFLOAD; | |
1074 | } | |
1075 | break; | |
1076 | } | |
1077 | case SO_FLUSH: | |
1078 | if ((error = sooptcopyin(sopt, &optval, sizeof(optval), | |
1079 | sizeof(optval))) != 0) { | |
1080 | break; | |
1081 | } | |
1082 | ||
1083 | error = inp_flush(inp, optval); | |
1084 | break; | |
1085 | ||
1086 | default: | |
1087 | error = ENOPROTOOPT; | |
1088 | break; | |
1089 | } | |
1090 | break; | |
1091 | ||
1092 | case SOPT_GET: | |
1093 | switch (sopt->sopt_name) { | |
1094 | case UDP_NOCKSUM: | |
1095 | optval = inp->inp_flags & INP_UDP_NOCKSUM; | |
1096 | break; | |
1097 | ||
1098 | default: | |
1099 | error = ENOPROTOOPT; | |
1100 | break; | |
1101 | } | |
1102 | if (error == 0) { | |
1103 | error = sooptcopyout(sopt, &optval, sizeof(optval)); | |
1104 | } | |
1105 | break; | |
1106 | } | |
1107 | return error; | |
1108 | } | |
1109 | ||
1110 | static int | |
1111 | udp_pcblist SYSCTL_HANDLER_ARGS | |
1112 | { | |
1113 | #pragma unused(oidp, arg1, arg2) | |
1114 | int error, i, n; | |
1115 | struct inpcb *inp, **inp_list; | |
1116 | inp_gen_t gencnt; | |
1117 | struct xinpgen xig; | |
1118 | ||
1119 | /* | |
1120 | * The process of preparing the TCB list is too time-consuming and | |
1121 | * resource-intensive to repeat twice on every request. | |
1122 | */ | |
1123 | lck_rw_lock_exclusive(udbinfo.ipi_lock); | |
1124 | if (req->oldptr == USER_ADDR_NULL) { | |
1125 | n = udbinfo.ipi_count; | |
1126 | req->oldidx = 2 * (sizeof(xig)) | |
1127 | + (n + n / 8) * sizeof(struct xinpcb); | |
1128 | lck_rw_done(udbinfo.ipi_lock); | |
1129 | return 0; | |
1130 | } | |
1131 | ||
1132 | if (req->newptr != USER_ADDR_NULL) { | |
1133 | lck_rw_done(udbinfo.ipi_lock); | |
1134 | return EPERM; | |
1135 | } | |
1136 | ||
1137 | /* | |
1138 | * OK, now we're committed to doing something. | |
1139 | */ | |
1140 | gencnt = udbinfo.ipi_gencnt; | |
1141 | n = udbinfo.ipi_count; | |
1142 | ||
1143 | bzero(&xig, sizeof(xig)); | |
1144 | xig.xig_len = sizeof(xig); | |
1145 | xig.xig_count = n; | |
1146 | xig.xig_gen = gencnt; | |
1147 | xig.xig_sogen = so_gencnt; | |
1148 | error = SYSCTL_OUT(req, &xig, sizeof(xig)); | |
1149 | if (error) { | |
1150 | lck_rw_done(udbinfo.ipi_lock); | |
1151 | return error; | |
1152 | } | |
1153 | /* | |
1154 | * We are done if there is no pcb | |
1155 | */ | |
1156 | if (n == 0) { | |
1157 | lck_rw_done(udbinfo.ipi_lock); | |
1158 | return 0; | |
1159 | } | |
1160 | ||
1161 | inp_list = _MALLOC(n * sizeof(*inp_list), M_TEMP, M_WAITOK); | |
1162 | if (inp_list == 0) { | |
1163 | lck_rw_done(udbinfo.ipi_lock); | |
1164 | return ENOMEM; | |
1165 | } | |
1166 | ||
1167 | for (inp = LIST_FIRST(udbinfo.ipi_listhead), i = 0; inp && i < n; | |
1168 | inp = LIST_NEXT(inp, inp_list)) { | |
1169 | if (inp->inp_gencnt <= gencnt && | |
1170 | inp->inp_state != INPCB_STATE_DEAD) { | |
1171 | inp_list[i++] = inp; | |
1172 | } | |
1173 | } | |
1174 | n = i; | |
1175 | ||
1176 | error = 0; | |
1177 | for (i = 0; i < n; i++) { | |
1178 | struct xinpcb xi; | |
1179 | ||
1180 | inp = inp_list[i]; | |
1181 | ||
1182 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) { | |
1183 | continue; | |
1184 | } | |
1185 | udp_lock(inp->inp_socket, 1, 0); | |
1186 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { | |
1187 | udp_unlock(inp->inp_socket, 1, 0); | |
1188 | continue; | |
1189 | } | |
1190 | if (inp->inp_gencnt > gencnt) { | |
1191 | udp_unlock(inp->inp_socket, 1, 0); | |
1192 | continue; | |
1193 | } | |
1194 | ||
1195 | bzero(&xi, sizeof(xi)); | |
1196 | xi.xi_len = sizeof(xi); | |
1197 | /* XXX should avoid extra copy */ | |
1198 | inpcb_to_compat(inp, &xi.xi_inp); | |
1199 | if (inp->inp_socket) { | |
1200 | sotoxsocket(inp->inp_socket, &xi.xi_socket); | |
1201 | } | |
1202 | ||
1203 | udp_unlock(inp->inp_socket, 1, 0); | |
1204 | ||
1205 | error = SYSCTL_OUT(req, &xi, sizeof(xi)); | |
1206 | } | |
1207 | if (!error) { | |
1208 | /* | |
1209 | * Give the user an updated idea of our state. | |
1210 | * If the generation differs from what we told | |
1211 | * her before, she knows that something happened | |
1212 | * while we were processing this request, and it | |
1213 | * might be necessary to retry. | |
1214 | */ | |
1215 | bzero(&xig, sizeof(xig)); | |
1216 | xig.xig_len = sizeof(xig); | |
1217 | xig.xig_gen = udbinfo.ipi_gencnt; | |
1218 | xig.xig_sogen = so_gencnt; | |
1219 | xig.xig_count = udbinfo.ipi_count; | |
1220 | error = SYSCTL_OUT(req, &xig, sizeof(xig)); | |
1221 | } | |
1222 | FREE(inp_list, M_TEMP); | |
1223 | lck_rw_done(udbinfo.ipi_lock); | |
1224 | return error; | |
1225 | } | |
1226 | ||
1227 | SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, | |
1228 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist, | |
1229 | "S,xinpcb", "List of active UDP sockets"); | |
1230 | ||
1231 | #if !CONFIG_EMBEDDED | |
1232 | ||
1233 | static int | |
1234 | udp_pcblist64 SYSCTL_HANDLER_ARGS | |
1235 | { | |
1236 | #pragma unused(oidp, arg1, arg2) | |
1237 | int error, i, n; | |
1238 | struct inpcb *inp, **inp_list; | |
1239 | inp_gen_t gencnt; | |
1240 | struct xinpgen xig; | |
1241 | ||
1242 | /* | |
1243 | * The process of preparing the TCB list is too time-consuming and | |
1244 | * resource-intensive to repeat twice on every request. | |
1245 | */ | |
1246 | lck_rw_lock_shared(udbinfo.ipi_lock); | |
1247 | if (req->oldptr == USER_ADDR_NULL) { | |
1248 | n = udbinfo.ipi_count; | |
1249 | req->oldidx = | |
1250 | 2 * (sizeof(xig)) + (n + n / 8) * sizeof(struct xinpcb64); | |
1251 | lck_rw_done(udbinfo.ipi_lock); | |
1252 | return 0; | |
1253 | } | |
1254 | ||
1255 | if (req->newptr != USER_ADDR_NULL) { | |
1256 | lck_rw_done(udbinfo.ipi_lock); | |
1257 | return EPERM; | |
1258 | } | |
1259 | ||
1260 | /* | |
1261 | * OK, now we're committed to doing something. | |
1262 | */ | |
1263 | gencnt = udbinfo.ipi_gencnt; | |
1264 | n = udbinfo.ipi_count; | |
1265 | ||
1266 | bzero(&xig, sizeof(xig)); | |
1267 | xig.xig_len = sizeof(xig); | |
1268 | xig.xig_count = n; | |
1269 | xig.xig_gen = gencnt; | |
1270 | xig.xig_sogen = so_gencnt; | |
1271 | error = SYSCTL_OUT(req, &xig, sizeof(xig)); | |
1272 | if (error) { | |
1273 | lck_rw_done(udbinfo.ipi_lock); | |
1274 | return error; | |
1275 | } | |
1276 | /* | |
1277 | * We are done if there is no pcb | |
1278 | */ | |
1279 | if (n == 0) { | |
1280 | lck_rw_done(udbinfo.ipi_lock); | |
1281 | return 0; | |
1282 | } | |
1283 | ||
1284 | inp_list = _MALLOC(n * sizeof(*inp_list), M_TEMP, M_WAITOK); | |
1285 | if (inp_list == 0) { | |
1286 | lck_rw_done(udbinfo.ipi_lock); | |
1287 | return ENOMEM; | |
1288 | } | |
1289 | ||
1290 | for (inp = LIST_FIRST(udbinfo.ipi_listhead), i = 0; inp && i < n; | |
1291 | inp = LIST_NEXT(inp, inp_list)) { | |
1292 | if (inp->inp_gencnt <= gencnt && | |
1293 | inp->inp_state != INPCB_STATE_DEAD) { | |
1294 | inp_list[i++] = inp; | |
1295 | } | |
1296 | } | |
1297 | n = i; | |
1298 | ||
1299 | error = 0; | |
1300 | for (i = 0; i < n; i++) { | |
1301 | struct xinpcb64 xi; | |
1302 | ||
1303 | inp = inp_list[i]; | |
1304 | ||
1305 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) { | |
1306 | continue; | |
1307 | } | |
1308 | udp_lock(inp->inp_socket, 1, 0); | |
1309 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { | |
1310 | udp_unlock(inp->inp_socket, 1, 0); | |
1311 | continue; | |
1312 | } | |
1313 | if (inp->inp_gencnt > gencnt) { | |
1314 | udp_unlock(inp->inp_socket, 1, 0); | |
1315 | continue; | |
1316 | } | |
1317 | ||
1318 | bzero(&xi, sizeof(xi)); | |
1319 | xi.xi_len = sizeof(xi); | |
1320 | inpcb_to_xinpcb64(inp, &xi); | |
1321 | if (inp->inp_socket) { | |
1322 | sotoxsocket64(inp->inp_socket, &xi.xi_socket); | |
1323 | } | |
1324 | ||
1325 | udp_unlock(inp->inp_socket, 1, 0); | |
1326 | ||
1327 | error = SYSCTL_OUT(req, &xi, sizeof(xi)); | |
1328 | } | |
1329 | if (!error) { | |
1330 | /* | |
1331 | * Give the user an updated idea of our state. | |
1332 | * If the generation differs from what we told | |
1333 | * her before, she knows that something happened | |
1334 | * while we were processing this request, and it | |
1335 | * might be necessary to retry. | |
1336 | */ | |
1337 | bzero(&xig, sizeof(xig)); | |
1338 | xig.xig_len = sizeof(xig); | |
1339 | xig.xig_gen = udbinfo.ipi_gencnt; | |
1340 | xig.xig_sogen = so_gencnt; | |
1341 | xig.xig_count = udbinfo.ipi_count; | |
1342 | error = SYSCTL_OUT(req, &xig, sizeof(xig)); | |
1343 | } | |
1344 | FREE(inp_list, M_TEMP); | |
1345 | lck_rw_done(udbinfo.ipi_lock); | |
1346 | return error; | |
1347 | } | |
1348 | ||
1349 | SYSCTL_PROC(_net_inet_udp, OID_AUTO, pcblist64, | |
1350 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist64, | |
1351 | "S,xinpcb64", "List of active UDP sockets"); | |
1352 | ||
1353 | #endif /* !CONFIG_EMBEDDED */ | |
1354 | ||
1355 | static int | |
1356 | udp_pcblist_n SYSCTL_HANDLER_ARGS | |
1357 | { | |
1358 | #pragma unused(oidp, arg1, arg2) | |
1359 | return get_pcblist_n(IPPROTO_UDP, req, &udbinfo); | |
1360 | } | |
1361 | ||
1362 | SYSCTL_PROC(_net_inet_udp, OID_AUTO, pcblist_n, | |
1363 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist_n, | |
1364 | "S,xinpcb_n", "List of active UDP sockets"); | |
1365 | ||
1366 | __private_extern__ void | |
1367 | udp_get_ports_used(uint32_t ifindex, int protocol, uint32_t flags, | |
1368 | bitstr_t *bitfield) | |
1369 | { | |
1370 | inpcb_get_ports_used(ifindex, protocol, flags, bitfield, | |
1371 | &udbinfo); | |
1372 | } | |
1373 | ||
1374 | __private_extern__ uint32_t | |
1375 | udp_count_opportunistic(unsigned int ifindex, u_int32_t flags) | |
1376 | { | |
1377 | return inpcb_count_opportunistic(ifindex, &udbinfo, flags); | |
1378 | } | |
1379 | ||
1380 | __private_extern__ uint32_t | |
1381 | udp_find_anypcb_byaddr(struct ifaddr *ifa) | |
1382 | { | |
1383 | return inpcb_find_anypcb_byaddr(ifa, &udbinfo); | |
1384 | } | |
1385 | ||
1386 | static int | |
1387 | udp_check_pktinfo(struct mbuf *control, struct ifnet **outif, | |
1388 | struct in_addr *laddr) | |
1389 | { | |
1390 | struct cmsghdr *cm = 0; | |
1391 | struct in_pktinfo *pktinfo; | |
1392 | struct ifnet *ifp; | |
1393 | ||
1394 | if (outif != NULL) { | |
1395 | *outif = NULL; | |
1396 | } | |
1397 | ||
1398 | /* | |
1399 | * XXX: Currently, we assume all the optional information is stored | |
1400 | * in a single mbuf. | |
1401 | */ | |
1402 | if (control->m_next) { | |
1403 | return EINVAL; | |
1404 | } | |
1405 | ||
1406 | if (control->m_len < CMSG_LEN(0)) { | |
1407 | return EINVAL; | |
1408 | } | |
1409 | ||
1410 | for (cm = M_FIRST_CMSGHDR(control); | |
1411 | is_cmsg_valid(control, cm); | |
1412 | cm = M_NXT_CMSGHDR(control, cm)) { | |
1413 | if (cm->cmsg_level != IPPROTO_IP || | |
1414 | cm->cmsg_type != IP_PKTINFO) { | |
1415 | continue; | |
1416 | } | |
1417 | ||
1418 | if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_pktinfo))) { | |
1419 | return EINVAL; | |
1420 | } | |
1421 | ||
1422 | pktinfo = (struct in_pktinfo *)(void *)CMSG_DATA(cm); | |
1423 | ||
1424 | /* Check for a valid ifindex in pktinfo */ | |
1425 | ifnet_head_lock_shared(); | |
1426 | ||
1427 | if (pktinfo->ipi_ifindex > if_index) { | |
1428 | ifnet_head_done(); | |
1429 | return ENXIO; | |
1430 | } | |
1431 | ||
1432 | /* | |
1433 | * If ipi_ifindex is specified it takes precedence | |
1434 | * over ipi_spec_dst. | |
1435 | */ | |
1436 | if (pktinfo->ipi_ifindex) { | |
1437 | ifp = ifindex2ifnet[pktinfo->ipi_ifindex]; | |
1438 | if (ifp == NULL) { | |
1439 | ifnet_head_done(); | |
1440 | return ENXIO; | |
1441 | } | |
1442 | if (outif != NULL) { | |
1443 | ifnet_reference(ifp); | |
1444 | *outif = ifp; | |
1445 | } | |
1446 | ifnet_head_done(); | |
1447 | laddr->s_addr = INADDR_ANY; | |
1448 | break; | |
1449 | } | |
1450 | ||
1451 | ifnet_head_done(); | |
1452 | ||
1453 | /* | |
1454 | * Use the provided ipi_spec_dst address for temp | |
1455 | * source address. | |
1456 | */ | |
1457 | *laddr = pktinfo->ipi_spec_dst; | |
1458 | break; | |
1459 | } | |
1460 | return 0; | |
1461 | } | |
1462 | ||
1463 | int | |
1464 | udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, | |
1465 | struct mbuf *control, struct proc *p) | |
1466 | { | |
1467 | struct udpiphdr *ui; | |
1468 | int len = m->m_pkthdr.len; | |
1469 | struct sockaddr_in *sin; | |
1470 | struct in_addr origladdr, laddr, faddr, pi_laddr; | |
1471 | u_short lport, fport; | |
1472 | int error = 0, udp_dodisconnect = 0, pktinfo = 0; | |
1473 | struct socket *so = inp->inp_socket; | |
1474 | int soopts = 0; | |
1475 | struct mbuf *inpopts; | |
1476 | struct ip_moptions *mopts; | |
1477 | struct route ro; | |
1478 | struct ip_out_args ipoa; | |
1479 | #if CONTENT_FILTER | |
1480 | struct m_tag *cfil_tag = NULL; | |
1481 | bool cfil_faddr_use = false; | |
1482 | bool sndinprog_cnt_used = false; | |
1483 | uint32_t cfil_so_state_change_cnt = 0; | |
1484 | short cfil_so_options = 0; | |
1485 | struct sockaddr *cfil_faddr = NULL; | |
1486 | #endif | |
1487 | ||
1488 | bzero(&ipoa, sizeof(ipoa)); | |
1489 | ipoa.ipoa_boundif = IFSCOPE_NONE; | |
1490 | ipoa.ipoa_flags = IPOAF_SELECT_SRCIF; | |
1491 | ||
1492 | struct ifnet *outif = NULL; | |
1493 | struct flowadv *adv = &ipoa.ipoa_flowadv; | |
1494 | int sotc = SO_TC_UNSPEC; | |
1495 | int netsvctype = _NET_SERVICE_TYPE_UNSPEC; | |
1496 | struct ifnet *origoutifp = NULL; | |
1497 | int flowadv = 0; | |
1498 | int tos = IPTOS_UNSPEC; | |
1499 | ||
1500 | /* Enable flow advisory only when connected */ | |
1501 | flowadv = (so->so_state & SS_ISCONNECTED) ? 1 : 0; | |
1502 | pi_laddr.s_addr = INADDR_ANY; | |
1503 | ||
1504 | KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
1505 | ||
1506 | socket_lock_assert_owned(so); | |
1507 | ||
1508 | #if CONTENT_FILTER | |
1509 | /* | |
1510 | * If socket is subject to UDP Content Filter and no addr is passed in, | |
1511 | * retrieve CFIL saved state from mbuf and use it if necessary. | |
1512 | */ | |
1513 | if (so->so_cfil_db && !addr) { | |
1514 | cfil_tag = cfil_dgram_get_socket_state(m, &cfil_so_state_change_cnt, &cfil_so_options, &cfil_faddr, NULL); | |
1515 | if (cfil_tag) { | |
1516 | sin = (struct sockaddr_in *)(void *)cfil_faddr; | |
1517 | if (inp && inp->inp_faddr.s_addr == INADDR_ANY) { | |
1518 | /* | |
1519 | * Socket is unconnected, simply use the saved faddr as 'addr' to go through | |
1520 | * the connect/disconnect logic. | |
1521 | */ | |
1522 | addr = (struct sockaddr *)cfil_faddr; | |
1523 | } else if ((so->so_state_change_cnt != cfil_so_state_change_cnt) && | |
1524 | (inp->inp_fport != sin->sin_port || | |
1525 | inp->inp_faddr.s_addr != sin->sin_addr.s_addr)) { | |
1526 | /* | |
1527 | * Socket is connected but socket state and dest addr/port changed. | |
1528 | * We need to use the saved faddr info. | |
1529 | */ | |
1530 | cfil_faddr_use = true; | |
1531 | } | |
1532 | } | |
1533 | } | |
1534 | #endif | |
1535 | ||
1536 | if (control != NULL) { | |
1537 | tos = so_tos_from_control(control); | |
1538 | sotc = so_tc_from_control(control, &netsvctype); | |
1539 | VERIFY(outif == NULL); | |
1540 | error = udp_check_pktinfo(control, &outif, &pi_laddr); | |
1541 | m_freem(control); | |
1542 | control = NULL; | |
1543 | if (error) { | |
1544 | goto release; | |
1545 | } | |
1546 | pktinfo++; | |
1547 | if (outif != NULL) { | |
1548 | ipoa.ipoa_boundif = outif->if_index; | |
1549 | } | |
1550 | } | |
1551 | if (sotc == SO_TC_UNSPEC) { | |
1552 | sotc = so->so_traffic_class; | |
1553 | netsvctype = so->so_netsvctype; | |
1554 | } | |
1555 | ||
1556 | KERNEL_DEBUG(DBG_LAYER_OUT_BEG, inp->inp_fport, inp->inp_lport, | |
1557 | inp->inp_laddr.s_addr, inp->inp_faddr.s_addr, | |
1558 | (htons((u_short)len + sizeof(struct udphdr)))); | |
1559 | ||
1560 | if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { | |
1561 | error = EMSGSIZE; | |
1562 | goto release; | |
1563 | } | |
1564 | ||
1565 | if (flowadv && INP_WAIT_FOR_IF_FEEDBACK(inp)) { | |
1566 | /* | |
1567 | * The socket is flow-controlled, drop the packets | |
1568 | * until the inp is not flow controlled | |
1569 | */ | |
1570 | error = ENOBUFS; | |
1571 | goto release; | |
1572 | } | |
1573 | /* | |
1574 | * If socket was bound to an ifindex, tell ip_output about it. | |
1575 | * If the ancillary IP_PKTINFO option contains an interface index, | |
1576 | * it takes precedence over the one specified by IP_BOUND_IF. | |
1577 | */ | |
1578 | if (ipoa.ipoa_boundif == IFSCOPE_NONE && | |
1579 | (inp->inp_flags & INP_BOUND_IF)) { | |
1580 | VERIFY(inp->inp_boundifp != NULL); | |
1581 | ifnet_reference(inp->inp_boundifp); /* for this routine */ | |
1582 | if (outif != NULL) { | |
1583 | ifnet_release(outif); | |
1584 | } | |
1585 | outif = inp->inp_boundifp; | |
1586 | ipoa.ipoa_boundif = outif->if_index; | |
1587 | } | |
1588 | if (INP_NO_CELLULAR(inp)) { | |
1589 | ipoa.ipoa_flags |= IPOAF_NO_CELLULAR; | |
1590 | } | |
1591 | if (INP_NO_EXPENSIVE(inp)) { | |
1592 | ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE; | |
1593 | } | |
1594 | if (INP_NO_CONSTRAINED(inp)) { | |
1595 | ipoa.ipoa_flags |= IPOAF_NO_CONSTRAINED; | |
1596 | } | |
1597 | if (INP_AWDL_UNRESTRICTED(inp)) { | |
1598 | ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED; | |
1599 | } | |
1600 | ipoa.ipoa_sotc = sotc; | |
1601 | ipoa.ipoa_netsvctype = netsvctype; | |
1602 | soopts |= IP_OUTARGS; | |
1603 | ||
1604 | /* | |
1605 | * If there was a routing change, discard cached route and check | |
1606 | * that we have a valid source address. Reacquire a new source | |
1607 | * address if INADDR_ANY was specified. | |
1608 | * | |
1609 | * If we are using cfil saved state, go through this cache cleanup | |
1610 | * so that we can get a new route. | |
1611 | */ | |
1612 | if (ROUTE_UNUSABLE(&inp->inp_route) | |
1613 | #if CONTENT_FILTER | |
1614 | || cfil_faddr_use | |
1615 | #endif | |
1616 | ) { | |
1617 | struct in_ifaddr *ia = NULL; | |
1618 | ||
1619 | ROUTE_RELEASE(&inp->inp_route); | |
1620 | ||
1621 | /* src address is gone? */ | |
1622 | if (inp->inp_laddr.s_addr != INADDR_ANY && | |
1623 | (ia = ifa_foraddr(inp->inp_laddr.s_addr)) == NULL) { | |
1624 | if (!(inp->inp_flags & INP_INADDR_ANY) || | |
1625 | (so->so_state & SS_ISCONNECTED)) { | |
1626 | /* | |
1627 | * Rdar://5448998 | |
1628 | * If the source address is gone, return an | |
1629 | * error if: | |
1630 | * - the source was specified | |
1631 | * - the socket was already connected | |
1632 | */ | |
1633 | soevent(so, (SO_FILT_HINT_LOCKED | | |
1634 | SO_FILT_HINT_NOSRCADDR)); | |
1635 | error = EADDRNOTAVAIL; | |
1636 | goto release; | |
1637 | } else { | |
1638 | /* new src will be set later */ | |
1639 | inp->inp_laddr.s_addr = INADDR_ANY; | |
1640 | inp->inp_last_outifp = NULL; | |
1641 | } | |
1642 | } | |
1643 | if (ia != NULL) { | |
1644 | IFA_REMREF(&ia->ia_ifa); | |
1645 | } | |
1646 | } | |
1647 | ||
1648 | /* | |
1649 | * IP_PKTINFO option check. If a temporary scope or src address | |
1650 | * is provided, use it for this packet only and make sure we forget | |
1651 | * it after sending this datagram. | |
1652 | */ | |
1653 | if (pi_laddr.s_addr != INADDR_ANY || | |
1654 | (ipoa.ipoa_boundif != IFSCOPE_NONE && pktinfo)) { | |
1655 | /* temp src address for this datagram only */ | |
1656 | laddr = pi_laddr; | |
1657 | origladdr.s_addr = INADDR_ANY; | |
1658 | /* we don't want to keep the laddr or route */ | |
1659 | udp_dodisconnect = 1; | |
1660 | /* remember we don't care about src addr */ | |
1661 | inp->inp_flags |= INP_INADDR_ANY; | |
1662 | } else { | |
1663 | origladdr = laddr = inp->inp_laddr; | |
1664 | } | |
1665 | ||
1666 | origoutifp = inp->inp_last_outifp; | |
1667 | faddr = inp->inp_faddr; | |
1668 | lport = inp->inp_lport; | |
1669 | fport = inp->inp_fport; | |
1670 | ||
1671 | #if CONTENT_FILTER | |
1672 | if (cfil_faddr_use) { | |
1673 | faddr = ((struct sockaddr_in *)(void *)cfil_faddr)->sin_addr; | |
1674 | fport = ((struct sockaddr_in *)(void *)cfil_faddr)->sin_port; | |
1675 | } | |
1676 | #endif | |
1677 | inp->inp_sndinprog_cnt++; | |
1678 | sndinprog_cnt_used = true; | |
1679 | ||
1680 | if (addr) { | |
1681 | sin = (struct sockaddr_in *)(void *)addr; | |
1682 | if (faddr.s_addr != INADDR_ANY) { | |
1683 | error = EISCONN; | |
1684 | goto release; | |
1685 | } | |
1686 | if (lport == 0) { | |
1687 | /* | |
1688 | * In case we don't have a local port set, go through | |
1689 | * the full connect. We don't have a local port yet | |
1690 | * (i.e., we can't be looked up), so it's not an issue | |
1691 | * if the input runs at the same time we do this. | |
1692 | */ | |
1693 | /* if we have a source address specified, use that */ | |
1694 | if (pi_laddr.s_addr != INADDR_ANY) { | |
1695 | inp->inp_laddr = pi_laddr; | |
1696 | } | |
1697 | /* | |
1698 | * If a scope is specified, use it. Scope from | |
1699 | * IP_PKTINFO takes precendence over the the scope | |
1700 | * set via INP_BOUND_IF. | |
1701 | */ | |
1702 | error = in_pcbconnect(inp, addr, p, ipoa.ipoa_boundif, | |
1703 | &outif); | |
1704 | if (error) { | |
1705 | goto release; | |
1706 | } | |
1707 | ||
1708 | laddr = inp->inp_laddr; | |
1709 | lport = inp->inp_lport; | |
1710 | faddr = inp->inp_faddr; | |
1711 | fport = inp->inp_fport; | |
1712 | udp_dodisconnect = 1; | |
1713 | ||
1714 | /* synch up in case in_pcbladdr() overrides */ | |
1715 | if (outif != NULL && ipoa.ipoa_boundif != IFSCOPE_NONE) { | |
1716 | ipoa.ipoa_boundif = outif->if_index; | |
1717 | } | |
1718 | } else { | |
1719 | /* | |
1720 | * Fast path case | |
1721 | * | |
1722 | * We have a full address and a local port; use those | |
1723 | * info to build the packet without changing the pcb | |
1724 | * and interfering with the input path. See 3851370. | |
1725 | * | |
1726 | * Scope from IP_PKTINFO takes precendence over the | |
1727 | * the scope set via INP_BOUND_IF. | |
1728 | */ | |
1729 | if (laddr.s_addr == INADDR_ANY) { | |
1730 | if ((error = in_pcbladdr(inp, addr, &laddr, | |
1731 | ipoa.ipoa_boundif, &outif, 0)) != 0) { | |
1732 | goto release; | |
1733 | } | |
1734 | /* | |
1735 | * from pcbconnect: remember we don't | |
1736 | * care about src addr. | |
1737 | */ | |
1738 | inp->inp_flags |= INP_INADDR_ANY; | |
1739 | ||
1740 | /* synch up in case in_pcbladdr() overrides */ | |
1741 | if (outif != NULL && | |
1742 | ipoa.ipoa_boundif != IFSCOPE_NONE) { | |
1743 | ipoa.ipoa_boundif = outif->if_index; | |
1744 | } | |
1745 | } | |
1746 | ||
1747 | faddr = sin->sin_addr; | |
1748 | fport = sin->sin_port; | |
1749 | } | |
1750 | } else { | |
1751 | if (faddr.s_addr == INADDR_ANY) { | |
1752 | error = ENOTCONN; | |
1753 | goto release; | |
1754 | } | |
1755 | } | |
1756 | ||
1757 | #if CONFIG_MACF_NET | |
1758 | mac_mbuf_label_associate_inpcb(inp, m); | |
1759 | #endif /* CONFIG_MACF_NET */ | |
1760 | ||
1761 | if (inp->inp_flowhash == 0) { | |
1762 | inp->inp_flowhash = inp_calc_flowhash(inp); | |
1763 | } | |
1764 | ||
1765 | if (fport == htons(53) && !(so->so_flags1 & SOF1_DNS_COUNTED)) { | |
1766 | so->so_flags1 |= SOF1_DNS_COUNTED; | |
1767 | INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_dns); | |
1768 | } | |
1769 | ||
1770 | /* | |
1771 | * Calculate data length and get a mbuf | |
1772 | * for UDP and IP headers. | |
1773 | */ | |
1774 | M_PREPEND(m, sizeof(struct udpiphdr), M_DONTWAIT, 1); | |
1775 | if (m == 0) { | |
1776 | error = ENOBUFS; | |
1777 | goto abort; | |
1778 | } | |
1779 | ||
1780 | /* | |
1781 | * Fill in mbuf with extended UDP header | |
1782 | * and addresses and length put into network format. | |
1783 | */ | |
1784 | ui = mtod(m, struct udpiphdr *); | |
1785 | bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ | |
1786 | ui->ui_pr = IPPROTO_UDP; | |
1787 | ui->ui_src = laddr; | |
1788 | ui->ui_dst = faddr; | |
1789 | ui->ui_sport = lport; | |
1790 | ui->ui_dport = fport; | |
1791 | ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); | |
1792 | ||
1793 | /* | |
1794 | * Set up checksum to pseudo header checksum and output datagram. | |
1795 | * | |
1796 | * Treat flows to be CLAT46'd as IPv6 flow and compute checksum | |
1797 | * no matter what, as IPv6 mandates checksum for UDP. | |
1798 | * | |
1799 | * Here we only compute the one's complement sum of the pseudo header. | |
1800 | * The payload computation and final complement is delayed to much later | |
1801 | * in IP processing to decide if remaining computation needs to be done | |
1802 | * through offload. | |
1803 | * | |
1804 | * That is communicated by setting CSUM_UDP in csum_flags. | |
1805 | * The offset of checksum from the start of ULP header is communicated | |
1806 | * through csum_data. | |
1807 | * | |
1808 | * Note since this already contains the pseudo checksum header, any | |
1809 | * later operation at IP layer that modify the values used here must | |
1810 | * update the checksum as well (for example NAT etc). | |
1811 | */ | |
1812 | if ((inp->inp_flags2 & INP2_CLAT46_FLOW) || | |
1813 | (udpcksum && !(inp->inp_flags & INP_UDP_NOCKSUM))) { | |
1814 | ui->ui_sum = in_pseudo(ui->ui_src.s_addr, ui->ui_dst.s_addr, | |
1815 | htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP)); | |
1816 | m->m_pkthdr.csum_flags = (CSUM_UDP | CSUM_ZERO_INVERT); | |
1817 | m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); | |
1818 | } else { | |
1819 | ui->ui_sum = 0; | |
1820 | } | |
1821 | ((struct ip *)ui)->ip_len = sizeof(struct udpiphdr) + len; | |
1822 | ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ | |
1823 | if (tos != IPTOS_UNSPEC) { | |
1824 | ((struct ip *)ui)->ip_tos = (uint8_t)(tos & IPTOS_MASK); | |
1825 | } else { | |
1826 | ((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */ | |
1827 | } | |
1828 | udpstat.udps_opackets++; | |
1829 | ||
1830 | KERNEL_DEBUG(DBG_LAYER_OUT_END, ui->ui_dport, ui->ui_sport, | |
1831 | ui->ui_src.s_addr, ui->ui_dst.s_addr, ui->ui_ulen); | |
1832 | ||
1833 | #if NECP | |
1834 | { | |
1835 | necp_kernel_policy_id policy_id; | |
1836 | necp_kernel_policy_id skip_policy_id; | |
1837 | u_int32_t route_rule_id; | |
1838 | ||
1839 | /* | |
1840 | * We need a route to perform NECP route rule checks | |
1841 | */ | |
1842 | if (net_qos_policy_restricted != 0 && | |
1843 | ROUTE_UNUSABLE(&inp->inp_route)) { | |
1844 | struct sockaddr_in to; | |
1845 | struct sockaddr_in from; | |
1846 | ||
1847 | ROUTE_RELEASE(&inp->inp_route); | |
1848 | ||
1849 | bzero(&from, sizeof(struct sockaddr_in)); | |
1850 | from.sin_family = AF_INET; | |
1851 | from.sin_len = sizeof(struct sockaddr_in); | |
1852 | from.sin_addr = laddr; | |
1853 | ||
1854 | bzero(&to, sizeof(struct sockaddr_in)); | |
1855 | to.sin_family = AF_INET; | |
1856 | to.sin_len = sizeof(struct sockaddr_in); | |
1857 | to.sin_addr = faddr; | |
1858 | ||
1859 | inp->inp_route.ro_dst.sa_family = AF_INET; | |
1860 | inp->inp_route.ro_dst.sa_len = sizeof(struct sockaddr_in); | |
1861 | ((struct sockaddr_in *)(void *)&inp->inp_route.ro_dst)->sin_addr = | |
1862 | faddr; | |
1863 | ||
1864 | rtalloc_scoped(&inp->inp_route, ipoa.ipoa_boundif); | |
1865 | ||
1866 | inp_update_necp_policy(inp, (struct sockaddr *)&from, | |
1867 | (struct sockaddr *)&to, ipoa.ipoa_boundif); | |
1868 | inp->inp_policyresult.results.qos_marking_gencount = 0; | |
1869 | } | |
1870 | ||
1871 | if (!necp_socket_is_allowed_to_send_recv_v4(inp, lport, fport, | |
1872 | &laddr, &faddr, NULL, &policy_id, &route_rule_id, &skip_policy_id)) { | |
1873 | error = EHOSTUNREACH; | |
1874 | goto abort; | |
1875 | } | |
1876 | ||
1877 | necp_mark_packet_from_socket(m, inp, policy_id, route_rule_id, skip_policy_id); | |
1878 | ||
1879 | if (net_qos_policy_restricted != 0) { | |
1880 | necp_socket_update_qos_marking(inp, | |
1881 | inp->inp_route.ro_rt, NULL, route_rule_id); | |
1882 | } | |
1883 | } | |
1884 | #endif /* NECP */ | |
1885 | if ((so->so_flags1 & SOF1_QOSMARKING_ALLOWED)) { | |
1886 | ipoa.ipoa_flags |= IPOAF_QOSMARKING_ALLOWED; | |
1887 | } | |
1888 | ||
1889 | #if IPSEC | |
1890 | if (inp->inp_sp != NULL && ipsec_setsocket(m, inp->inp_socket) != 0) { | |
1891 | error = ENOBUFS; | |
1892 | goto abort; | |
1893 | } | |
1894 | #endif /* IPSEC */ | |
1895 | ||
1896 | inpopts = inp->inp_options; | |
1897 | #if CONTENT_FILTER | |
1898 | if (cfil_tag && (inp->inp_socket->so_options != cfil_so_options)) { | |
1899 | soopts |= (cfil_so_options & (SO_DONTROUTE | SO_BROADCAST)); | |
1900 | } else | |
1901 | #endif | |
1902 | soopts |= (inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST)); | |
1903 | ||
1904 | mopts = inp->inp_moptions; | |
1905 | if (mopts != NULL) { | |
1906 | IMO_LOCK(mopts); | |
1907 | IMO_ADDREF_LOCKED(mopts); | |
1908 | if (IN_MULTICAST(ntohl(ui->ui_dst.s_addr)) && | |
1909 | mopts->imo_multicast_ifp != NULL) { | |
1910 | /* no reference needed */ | |
1911 | inp->inp_last_outifp = mopts->imo_multicast_ifp; | |
1912 | } | |
1913 | IMO_UNLOCK(mopts); | |
1914 | } | |
1915 | ||
1916 | /* Copy the cached route and take an extra reference */ | |
1917 | inp_route_copyout(inp, &ro); | |
1918 | ||
1919 | set_packet_service_class(m, so, sotc, 0); | |
1920 | m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB; | |
1921 | m->m_pkthdr.pkt_flowid = inp->inp_flowhash; | |
1922 | m->m_pkthdr.pkt_proto = IPPROTO_UDP; | |
1923 | m->m_pkthdr.pkt_flags |= (PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC); | |
1924 | if (flowadv) { | |
1925 | m->m_pkthdr.pkt_flags |= PKTF_FLOW_ADV; | |
1926 | } | |
1927 | m->m_pkthdr.tx_udp_pid = so->last_pid; | |
1928 | if (so->so_flags & SOF_DELEGATED) { | |
1929 | m->m_pkthdr.tx_udp_e_pid = so->e_pid; | |
1930 | } else { | |
1931 | m->m_pkthdr.tx_udp_e_pid = 0; | |
1932 | } | |
1933 | ||
1934 | if (ipoa.ipoa_boundif != IFSCOPE_NONE) { | |
1935 | ipoa.ipoa_flags |= IPOAF_BOUND_IF; | |
1936 | } | |
1937 | ||
1938 | if (laddr.s_addr != INADDR_ANY) { | |
1939 | ipoa.ipoa_flags |= IPOAF_BOUND_SRCADDR; | |
1940 | } | |
1941 | ||
1942 | socket_unlock(so, 0); | |
1943 | error = ip_output(m, inpopts, &ro, soopts, mopts, &ipoa); | |
1944 | m = NULL; | |
1945 | socket_lock(so, 0); | |
1946 | if (mopts != NULL) { | |
1947 | IMO_REMREF(mopts); | |
1948 | } | |
1949 | ||
1950 | if (error == 0 && nstat_collect) { | |
1951 | boolean_t cell, wifi, wired; | |
1952 | ||
1953 | if (ro.ro_rt != NULL) { | |
1954 | cell = IFNET_IS_CELLULAR(ro.ro_rt->rt_ifp); | |
1955 | wifi = (!cell && IFNET_IS_WIFI(ro.ro_rt->rt_ifp)); | |
1956 | wired = (!wifi && IFNET_IS_WIRED(ro.ro_rt->rt_ifp)); | |
1957 | } else { | |
1958 | cell = wifi = wired = FALSE; | |
1959 | } | |
1960 | INP_ADD_STAT(inp, cell, wifi, wired, txpackets, 1); | |
1961 | INP_ADD_STAT(inp, cell, wifi, wired, txbytes, len); | |
1962 | inp_set_activity_bitmap(inp); | |
1963 | } | |
1964 | ||
1965 | if (flowadv && (adv->code == FADV_FLOW_CONTROLLED || | |
1966 | adv->code == FADV_SUSPENDED)) { | |
1967 | /* | |
1968 | * return a hint to the application that | |
1969 | * the packet has been dropped | |
1970 | */ | |
1971 | error = ENOBUFS; | |
1972 | inp_set_fc_state(inp, adv->code); | |
1973 | } | |
1974 | ||
1975 | /* Synchronize PCB cached route */ | |
1976 | inp_route_copyin(inp, &ro); | |
1977 | ||
1978 | abort: | |
1979 | if (udp_dodisconnect) { | |
1980 | /* Always discard the cached route for unconnected socket */ | |
1981 | ROUTE_RELEASE(&inp->inp_route); | |
1982 | in_pcbdisconnect(inp); | |
1983 | inp->inp_laddr = origladdr; /* XXX rehash? */ | |
1984 | /* no reference needed */ | |
1985 | inp->inp_last_outifp = origoutifp; | |
1986 | } else if (inp->inp_route.ro_rt != NULL) { | |
1987 | struct rtentry *rt = inp->inp_route.ro_rt; | |
1988 | struct ifnet *outifp; | |
1989 | ||
1990 | if (rt->rt_flags & (RTF_MULTICAST | RTF_BROADCAST)) { | |
1991 | rt = NULL; /* unusable */ | |
1992 | } | |
1993 | #if CONTENT_FILTER | |
1994 | /* | |
1995 | * Discard temporary route for cfil case | |
1996 | */ | |
1997 | if (cfil_faddr_use) { | |
1998 | rt = NULL; /* unusable */ | |
1999 | } | |
2000 | #endif | |
2001 | ||
2002 | /* | |
2003 | * Always discard if it is a multicast or broadcast route. | |
2004 | */ | |
2005 | if (rt == NULL) { | |
2006 | ROUTE_RELEASE(&inp->inp_route); | |
2007 | } | |
2008 | ||
2009 | /* | |
2010 | * If the destination route is unicast, update outifp with | |
2011 | * that of the route interface used by IP. | |
2012 | */ | |
2013 | if (rt != NULL && | |
2014 | (outifp = rt->rt_ifp) != inp->inp_last_outifp) { | |
2015 | inp->inp_last_outifp = outifp; /* no reference needed */ | |
2016 | ||
2017 | so->so_pktheadroom = P2ROUNDUP( | |
2018 | sizeof(struct udphdr) + | |
2019 | sizeof(struct ip) + | |
2020 | ifnet_hdrlen(outifp) + | |
2021 | ifnet_mbuf_packetpreamblelen(outifp), | |
2022 | sizeof(u_int32_t)); | |
2023 | } | |
2024 | } else { | |
2025 | ROUTE_RELEASE(&inp->inp_route); | |
2026 | } | |
2027 | ||
2028 | /* | |
2029 | * If output interface was cellular/expensive, and this socket is | |
2030 | * denied access to it, generate an event. | |
2031 | */ | |
2032 | if (error != 0 && (ipoa.ipoa_retflags & IPOARF_IFDENIED) && | |
2033 | (INP_NO_CELLULAR(inp) || INP_NO_EXPENSIVE(inp) || INP_NO_CONSTRAINED(inp))) { | |
2034 | soevent(so, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_IFDENIED)); | |
2035 | } | |
2036 | ||
2037 | release: | |
2038 | KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_END, error, 0, 0, 0, 0); | |
2039 | ||
2040 | if (m != NULL) { | |
2041 | m_freem(m); | |
2042 | } | |
2043 | ||
2044 | if (outif != NULL) { | |
2045 | ifnet_release(outif); | |
2046 | } | |
2047 | ||
2048 | #if CONTENT_FILTER | |
2049 | if (cfil_tag) { | |
2050 | m_tag_free(cfil_tag); | |
2051 | } | |
2052 | #endif | |
2053 | if (sndinprog_cnt_used) { | |
2054 | VERIFY(inp->inp_sndinprog_cnt > 0); | |
2055 | if (--inp->inp_sndinprog_cnt == 0) { | |
2056 | inp->inp_flags &= ~(INP_FC_FEEDBACK); | |
2057 | if (inp->inp_sndingprog_waiters > 0) { | |
2058 | wakeup(&inp->inp_sndinprog_cnt); | |
2059 | } | |
2060 | } | |
2061 | sndinprog_cnt_used = false; | |
2062 | } | |
2063 | ||
2064 | return error; | |
2065 | } | |
2066 | ||
2067 | u_int32_t udp_sendspace = 9216; /* really max datagram size */ | |
2068 | /* 187 1K datagrams (approx 192 KB) */ | |
2069 | u_int32_t udp_recvspace = 187 * (1024 + | |
2070 | #if INET6 | |
2071 | sizeof(struct sockaddr_in6) | |
2072 | #else /* !INET6 */ | |
2073 | sizeof(struct sockaddr_in) | |
2074 | #endif /* !INET6 */ | |
2075 | ); | |
2076 | ||
2077 | /* Check that the values of udp send and recv space do not exceed sb_max */ | |
2078 | static int | |
2079 | sysctl_udp_sospace(struct sysctl_oid *oidp, void *arg1, int arg2, | |
2080 | struct sysctl_req *req) | |
2081 | { | |
2082 | #pragma unused(arg1, arg2) | |
2083 | u_int32_t new_value = 0, *space_p = NULL; | |
2084 | int changed = 0, error = 0; | |
2085 | u_quad_t sb_effective_max = (sb_max / (MSIZE + MCLBYTES)) * MCLBYTES; | |
2086 | ||
2087 | switch (oidp->oid_number) { | |
2088 | case UDPCTL_RECVSPACE: | |
2089 | space_p = &udp_recvspace; | |
2090 | break; | |
2091 | case UDPCTL_MAXDGRAM: | |
2092 | space_p = &udp_sendspace; | |
2093 | break; | |
2094 | default: | |
2095 | return EINVAL; | |
2096 | } | |
2097 | error = sysctl_io_number(req, *space_p, sizeof(u_int32_t), | |
2098 | &new_value, &changed); | |
2099 | if (changed) { | |
2100 | if (new_value > 0 && new_value <= sb_effective_max) { | |
2101 | *space_p = new_value; | |
2102 | } else { | |
2103 | error = ERANGE; | |
2104 | } | |
2105 | } | |
2106 | return error; | |
2107 | } | |
2108 | ||
2109 | SYSCTL_PROC(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, | |
2110 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_recvspace, 0, | |
2111 | &sysctl_udp_sospace, "IU", "Maximum incoming UDP datagram size"); | |
2112 | ||
2113 | SYSCTL_PROC(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, | |
2114 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_sendspace, 0, | |
2115 | &sysctl_udp_sospace, "IU", "Maximum outgoing UDP datagram size"); | |
2116 | ||
2117 | int | |
2118 | udp_abort(struct socket *so) | |
2119 | { | |
2120 | struct inpcb *inp; | |
2121 | ||
2122 | inp = sotoinpcb(so); | |
2123 | if (inp == NULL) { | |
2124 | panic("%s: so=%p null inp\n", __func__, so); | |
2125 | /* NOTREACHED */ | |
2126 | } | |
2127 | soisdisconnected(so); | |
2128 | in_pcbdetach(inp); | |
2129 | return 0; | |
2130 | } | |
2131 | ||
2132 | int | |
2133 | udp_attach(struct socket *so, int proto, struct proc *p) | |
2134 | { | |
2135 | #pragma unused(proto) | |
2136 | struct inpcb *inp; | |
2137 | int error; | |
2138 | ||
2139 | inp = sotoinpcb(so); | |
2140 | if (inp != NULL) { | |
2141 | panic("%s so=%p inp=%p\n", __func__, so, inp); | |
2142 | /* NOTREACHED */ | |
2143 | } | |
2144 | error = in_pcballoc(so, &udbinfo, p); | |
2145 | if (error != 0) { | |
2146 | return error; | |
2147 | } | |
2148 | error = soreserve(so, udp_sendspace, udp_recvspace); | |
2149 | if (error != 0) { | |
2150 | return error; | |
2151 | } | |
2152 | inp = (struct inpcb *)so->so_pcb; | |
2153 | inp->inp_vflag |= INP_IPV4; | |
2154 | inp->inp_ip_ttl = ip_defttl; | |
2155 | if (nstat_collect) { | |
2156 | nstat_udp_new_pcb(inp); | |
2157 | } | |
2158 | return 0; | |
2159 | } | |
2160 | ||
2161 | int | |
2162 | udp_bind(struct socket *so, struct sockaddr *nam, struct proc *p) | |
2163 | { | |
2164 | struct inpcb *inp; | |
2165 | int error; | |
2166 | ||
2167 | if (nam->sa_family != 0 && nam->sa_family != AF_INET && | |
2168 | nam->sa_family != AF_INET6) { | |
2169 | return EAFNOSUPPORT; | |
2170 | } | |
2171 | ||
2172 | inp = sotoinpcb(so); | |
2173 | if (inp == NULL) { | |
2174 | return EINVAL; | |
2175 | } | |
2176 | error = in_pcbbind(inp, nam, p); | |
2177 | ||
2178 | #if NECP | |
2179 | /* Update NECP client with bind result if not in middle of connect */ | |
2180 | if (error == 0 && | |
2181 | (inp->inp_flags2 & INP2_CONNECT_IN_PROGRESS) && | |
2182 | !uuid_is_null(inp->necp_client_uuid)) { | |
2183 | socket_unlock(so, 0); | |
2184 | necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp); | |
2185 | socket_lock(so, 0); | |
2186 | } | |
2187 | #endif /* NECP */ | |
2188 | ||
2189 | return error; | |
2190 | } | |
2191 | ||
2192 | int | |
2193 | udp_connect(struct socket *so, struct sockaddr *nam, struct proc *p) | |
2194 | { | |
2195 | struct inpcb *inp; | |
2196 | int error; | |
2197 | ||
2198 | inp = sotoinpcb(so); | |
2199 | if (inp == NULL) { | |
2200 | return EINVAL; | |
2201 | } | |
2202 | if (inp->inp_faddr.s_addr != INADDR_ANY) { | |
2203 | return EISCONN; | |
2204 | } | |
2205 | ||
2206 | if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) { | |
2207 | so->so_flags1 |= SOF1_CONNECT_COUNTED; | |
2208 | INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_connected); | |
2209 | } | |
2210 | ||
2211 | #if NECP | |
2212 | #if FLOW_DIVERT | |
2213 | if (necp_socket_should_use_flow_divert(inp)) { | |
2214 | uint32_t fd_ctl_unit = | |
2215 | necp_socket_get_flow_divert_control_unit(inp); | |
2216 | if (fd_ctl_unit > 0) { | |
2217 | error = flow_divert_pcb_init(so, fd_ctl_unit); | |
2218 | if (error == 0) { | |
2219 | error = flow_divert_connect_out(so, nam, p); | |
2220 | } | |
2221 | } else { | |
2222 | error = ENETDOWN; | |
2223 | } | |
2224 | return error; | |
2225 | } | |
2226 | #endif /* FLOW_DIVERT */ | |
2227 | #endif /* NECP */ | |
2228 | ||
2229 | error = in_pcbconnect(inp, nam, p, IFSCOPE_NONE, NULL); | |
2230 | if (error == 0) { | |
2231 | #if NECP | |
2232 | /* Update NECP client with connected five-tuple */ | |
2233 | if (!uuid_is_null(inp->necp_client_uuid)) { | |
2234 | socket_unlock(so, 0); | |
2235 | necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp); | |
2236 | socket_lock(so, 0); | |
2237 | } | |
2238 | #endif /* NECP */ | |
2239 | ||
2240 | soisconnected(so); | |
2241 | if (inp->inp_flowhash == 0) { | |
2242 | inp->inp_flowhash = inp_calc_flowhash(inp); | |
2243 | } | |
2244 | } | |
2245 | return error; | |
2246 | } | |
2247 | ||
2248 | int | |
2249 | udp_connectx_common(struct socket *so, int af, struct sockaddr *src, struct sockaddr *dst, | |
2250 | struct proc *p, uint32_t ifscope, sae_associd_t aid, sae_connid_t *pcid, | |
2251 | uint32_t flags, void *arg, uint32_t arglen, | |
2252 | struct uio *uio, user_ssize_t *bytes_written) | |
2253 | { | |
2254 | #pragma unused(aid, flags, arg, arglen) | |
2255 | struct inpcb *inp = sotoinpcb(so); | |
2256 | int error = 0; | |
2257 | user_ssize_t datalen = 0; | |
2258 | ||
2259 | if (inp == NULL) { | |
2260 | return EINVAL; | |
2261 | } | |
2262 | ||
2263 | VERIFY(dst != NULL); | |
2264 | ||
2265 | ASSERT(!(inp->inp_flags2 & INP2_CONNECT_IN_PROGRESS)); | |
2266 | inp->inp_flags2 |= INP2_CONNECT_IN_PROGRESS; | |
2267 | ||
2268 | #if NECP | |
2269 | inp_update_necp_policy(inp, src, dst, ifscope); | |
2270 | #endif /* NECP */ | |
2271 | ||
2272 | /* bind socket to the specified interface, if requested */ | |
2273 | if (ifscope != IFSCOPE_NONE && | |
2274 | (error = inp_bindif(inp, ifscope, NULL)) != 0) { | |
2275 | goto done; | |
2276 | } | |
2277 | ||
2278 | /* if source address and/or port is specified, bind to it */ | |
2279 | if (src != NULL) { | |
2280 | error = sobindlock(so, src, 0); /* already locked */ | |
2281 | if (error != 0) { | |
2282 | goto done; | |
2283 | } | |
2284 | } | |
2285 | ||
2286 | switch (af) { | |
2287 | case AF_INET: | |
2288 | error = udp_connect(so, dst, p); | |
2289 | break; | |
2290 | #if INET6 | |
2291 | case AF_INET6: | |
2292 | error = udp6_connect(so, dst, p); | |
2293 | break; | |
2294 | #endif /* INET6 */ | |
2295 | default: | |
2296 | VERIFY(0); | |
2297 | /* NOTREACHED */ | |
2298 | } | |
2299 | ||
2300 | if (error != 0) { | |
2301 | goto done; | |
2302 | } | |
2303 | ||
2304 | /* | |
2305 | * If there is data, copy it. DATA_IDEMPOTENT is ignored. | |
2306 | * CONNECT_RESUME_ON_READ_WRITE is ignored. | |
2307 | */ | |
2308 | if (uio != NULL) { | |
2309 | socket_unlock(so, 0); | |
2310 | ||
2311 | VERIFY(bytes_written != NULL); | |
2312 | ||
2313 | datalen = uio_resid(uio); | |
2314 | error = so->so_proto->pr_usrreqs->pru_sosend(so, NULL, | |
2315 | (uio_t)uio, NULL, NULL, 0); | |
2316 | socket_lock(so, 0); | |
2317 | ||
2318 | /* If error returned is EMSGSIZE, for example, disconnect */ | |
2319 | if (error == 0 || error == EWOULDBLOCK) { | |
2320 | *bytes_written = datalen - uio_resid(uio); | |
2321 | } else { | |
2322 | (void) so->so_proto->pr_usrreqs->pru_disconnectx(so, | |
2323 | SAE_ASSOCID_ANY, SAE_CONNID_ANY); | |
2324 | } | |
2325 | /* | |
2326 | * mask the EWOULDBLOCK error so that the caller | |
2327 | * knows that atleast the connect was successful. | |
2328 | */ | |
2329 | if (error == EWOULDBLOCK) { | |
2330 | error = 0; | |
2331 | } | |
2332 | } | |
2333 | ||
2334 | if (error == 0 && pcid != NULL) { | |
2335 | *pcid = 1; /* there is only 1 connection for UDP */ | |
2336 | } | |
2337 | done: | |
2338 | inp->inp_flags2 &= ~INP2_CONNECT_IN_PROGRESS; | |
2339 | return error; | |
2340 | } | |
2341 | ||
2342 | int | |
2343 | udp_connectx(struct socket *so, struct sockaddr *src, | |
2344 | struct sockaddr *dst, struct proc *p, uint32_t ifscope, | |
2345 | sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg, | |
2346 | uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written) | |
2347 | { | |
2348 | return udp_connectx_common(so, AF_INET, src, dst, | |
2349 | p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written); | |
2350 | } | |
2351 | ||
2352 | int | |
2353 | udp_detach(struct socket *so) | |
2354 | { | |
2355 | struct inpcb *inp; | |
2356 | ||
2357 | inp = sotoinpcb(so); | |
2358 | if (inp == NULL) { | |
2359 | panic("%s: so=%p null inp\n", __func__, so); | |
2360 | /* NOTREACHED */ | |
2361 | } | |
2362 | ||
2363 | /* | |
2364 | * If this is a socket that does not want to wakeup the device | |
2365 | * for it's traffic, the application might be waiting for | |
2366 | * close to complete before going to sleep. Send a notification | |
2367 | * for this kind of sockets | |
2368 | */ | |
2369 | if (so->so_options & SO_NOWAKEFROMSLEEP) { | |
2370 | socket_post_kev_msg_closed(so); | |
2371 | } | |
2372 | ||
2373 | in_pcbdetach(inp); | |
2374 | inp->inp_state = INPCB_STATE_DEAD; | |
2375 | return 0; | |
2376 | } | |
2377 | ||
2378 | int | |
2379 | udp_disconnect(struct socket *so) | |
2380 | { | |
2381 | struct inpcb *inp; | |
2382 | ||
2383 | inp = sotoinpcb(so); | |
2384 | if (inp == NULL | |
2385 | #if NECP | |
2386 | || (necp_socket_should_use_flow_divert(inp)) | |
2387 | #endif /* NECP */ | |
2388 | ) { | |
2389 | return inp == NULL ? EINVAL : EPROTOTYPE; | |
2390 | } | |
2391 | if (inp->inp_faddr.s_addr == INADDR_ANY) { | |
2392 | return ENOTCONN; | |
2393 | } | |
2394 | ||
2395 | in_pcbdisconnect(inp); | |
2396 | ||
2397 | /* reset flow controlled state, just in case */ | |
2398 | inp_reset_fc_state(inp); | |
2399 | ||
2400 | inp->inp_laddr.s_addr = INADDR_ANY; | |
2401 | so->so_state &= ~SS_ISCONNECTED; /* XXX */ | |
2402 | inp->inp_last_outifp = NULL; | |
2403 | ||
2404 | return 0; | |
2405 | } | |
2406 | ||
2407 | int | |
2408 | udp_disconnectx(struct socket *so, sae_associd_t aid, sae_connid_t cid) | |
2409 | { | |
2410 | #pragma unused(cid) | |
2411 | if (aid != SAE_ASSOCID_ANY && aid != SAE_ASSOCID_ALL) { | |
2412 | return EINVAL; | |
2413 | } | |
2414 | ||
2415 | return udp_disconnect(so); | |
2416 | } | |
2417 | ||
2418 | int | |
2419 | udp_send(struct socket *so, int flags, struct mbuf *m, | |
2420 | struct sockaddr *addr, struct mbuf *control, struct proc *p) | |
2421 | { | |
2422 | #ifndef FLOW_DIVERT | |
2423 | #pragma unused(flags) | |
2424 | #endif /* !(FLOW_DIVERT) */ | |
2425 | struct inpcb *inp; | |
2426 | ||
2427 | inp = sotoinpcb(so); | |
2428 | if (inp == NULL) { | |
2429 | if (m != NULL) { | |
2430 | m_freem(m); | |
2431 | } | |
2432 | if (control != NULL) { | |
2433 | m_freem(control); | |
2434 | } | |
2435 | return EINVAL; | |
2436 | } | |
2437 | ||
2438 | #if NECP | |
2439 | #if FLOW_DIVERT | |
2440 | if (necp_socket_should_use_flow_divert(inp)) { | |
2441 | /* Implicit connect */ | |
2442 | return flow_divert_implicit_data_out(so, flags, m, addr, | |
2443 | control, p); | |
2444 | } | |
2445 | #endif /* FLOW_DIVERT */ | |
2446 | #endif /* NECP */ | |
2447 | ||
2448 | return udp_output(inp, m, addr, control, p); | |
2449 | } | |
2450 | ||
2451 | int | |
2452 | udp_shutdown(struct socket *so) | |
2453 | { | |
2454 | struct inpcb *inp; | |
2455 | ||
2456 | inp = sotoinpcb(so); | |
2457 | if (inp == NULL) { | |
2458 | return EINVAL; | |
2459 | } | |
2460 | socantsendmore(so); | |
2461 | return 0; | |
2462 | } | |
2463 | ||
2464 | int | |
2465 | udp_lock(struct socket *so, int refcount, void *debug) | |
2466 | { | |
2467 | void *lr_saved; | |
2468 | ||
2469 | if (debug == NULL) { | |
2470 | lr_saved = __builtin_return_address(0); | |
2471 | } else { | |
2472 | lr_saved = debug; | |
2473 | } | |
2474 | ||
2475 | if (so->so_pcb != NULL) { | |
2476 | LCK_MTX_ASSERT(&((struct inpcb *)so->so_pcb)->inpcb_mtx, | |
2477 | LCK_MTX_ASSERT_NOTOWNED); | |
2478 | lck_mtx_lock(&((struct inpcb *)so->so_pcb)->inpcb_mtx); | |
2479 | } else { | |
2480 | panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__, | |
2481 | so, lr_saved, solockhistory_nr(so)); | |
2482 | /* NOTREACHED */ | |
2483 | } | |
2484 | if (refcount) { | |
2485 | so->so_usecount++; | |
2486 | } | |
2487 | ||
2488 | so->lock_lr[so->next_lock_lr] = lr_saved; | |
2489 | so->next_lock_lr = (so->next_lock_lr + 1) % SO_LCKDBG_MAX; | |
2490 | return 0; | |
2491 | } | |
2492 | ||
2493 | int | |
2494 | udp_unlock(struct socket *so, int refcount, void *debug) | |
2495 | { | |
2496 | void *lr_saved; | |
2497 | ||
2498 | if (debug == NULL) { | |
2499 | lr_saved = __builtin_return_address(0); | |
2500 | } else { | |
2501 | lr_saved = debug; | |
2502 | } | |
2503 | ||
2504 | if (refcount) { | |
2505 | VERIFY(so->so_usecount > 0); | |
2506 | so->so_usecount--; | |
2507 | } | |
2508 | if (so->so_pcb == NULL) { | |
2509 | panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__, | |
2510 | so, lr_saved, solockhistory_nr(so)); | |
2511 | /* NOTREACHED */ | |
2512 | } else { | |
2513 | LCK_MTX_ASSERT(&((struct inpcb *)so->so_pcb)->inpcb_mtx, | |
2514 | LCK_MTX_ASSERT_OWNED); | |
2515 | so->unlock_lr[so->next_unlock_lr] = lr_saved; | |
2516 | so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX; | |
2517 | lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx); | |
2518 | } | |
2519 | return 0; | |
2520 | } | |
2521 | ||
2522 | lck_mtx_t * | |
2523 | udp_getlock(struct socket *so, int flags) | |
2524 | { | |
2525 | #pragma unused(flags) | |
2526 | struct inpcb *inp = sotoinpcb(so); | |
2527 | ||
2528 | if (so->so_pcb == NULL) { | |
2529 | panic("%s: so=%p NULL so_pcb lrh= %s\n", __func__, | |
2530 | so, solockhistory_nr(so)); | |
2531 | /* NOTREACHED */ | |
2532 | } | |
2533 | return &inp->inpcb_mtx; | |
2534 | } | |
2535 | ||
2536 | /* | |
2537 | * UDP garbage collector callback (inpcb_timer_func_t). | |
2538 | * | |
2539 | * Returns > 0 to keep timer active. | |
2540 | */ | |
2541 | static void | |
2542 | udp_gc(struct inpcbinfo *ipi) | |
2543 | { | |
2544 | struct inpcb *inp, *inpnxt; | |
2545 | struct socket *so; | |
2546 | ||
2547 | if (lck_rw_try_lock_exclusive(ipi->ipi_lock) == FALSE) { | |
2548 | if (udp_gc_done == TRUE) { | |
2549 | udp_gc_done = FALSE; | |
2550 | /* couldn't get the lock, must lock next time */ | |
2551 | atomic_add_32(&ipi->ipi_gc_req.intimer_fast, 1); | |
2552 | return; | |
2553 | } | |
2554 | lck_rw_lock_exclusive(ipi->ipi_lock); | |
2555 | } | |
2556 | ||
2557 | udp_gc_done = TRUE; | |
2558 | ||
2559 | for (inp = udb.lh_first; inp != NULL; inp = inpnxt) { | |
2560 | inpnxt = inp->inp_list.le_next; | |
2561 | ||
2562 | /* | |
2563 | * Skip unless it's STOPUSING; garbage collector will | |
2564 | * be triggered by in_pcb_checkstate() upon setting | |
2565 | * wantcnt to that value. If the PCB is already dead, | |
2566 | * keep gc active to anticipate wantcnt changing. | |
2567 | */ | |
2568 | if (inp->inp_wantcnt != WNT_STOPUSING) { | |
2569 | continue; | |
2570 | } | |
2571 | ||
2572 | /* | |
2573 | * Skip if busy, no hurry for cleanup. Keep gc active | |
2574 | * and try the lock again during next round. | |
2575 | */ | |
2576 | if (!socket_try_lock(inp->inp_socket)) { | |
2577 | atomic_add_32(&ipi->ipi_gc_req.intimer_fast, 1); | |
2578 | continue; | |
2579 | } | |
2580 | ||
2581 | /* | |
2582 | * Keep gc active unless usecount is 0. | |
2583 | */ | |
2584 | so = inp->inp_socket; | |
2585 | if (so->so_usecount == 0) { | |
2586 | if (inp->inp_state != INPCB_STATE_DEAD) { | |
2587 | #if INET6 | |
2588 | if (SOCK_CHECK_DOM(so, PF_INET6)) { | |
2589 | in6_pcbdetach(inp); | |
2590 | } else | |
2591 | #endif /* INET6 */ | |
2592 | in_pcbdetach(inp); | |
2593 | } | |
2594 | in_pcbdispose(inp); | |
2595 | } else { | |
2596 | socket_unlock(so, 0); | |
2597 | atomic_add_32(&ipi->ipi_gc_req.intimer_fast, 1); | |
2598 | } | |
2599 | } | |
2600 | lck_rw_done(ipi->ipi_lock); | |
2601 | } | |
2602 | ||
2603 | static int | |
2604 | udp_getstat SYSCTL_HANDLER_ARGS | |
2605 | { | |
2606 | #pragma unused(oidp, arg1, arg2) | |
2607 | if (req->oldptr == USER_ADDR_NULL) { | |
2608 | req->oldlen = (size_t)sizeof(struct udpstat); | |
2609 | } | |
2610 | ||
2611 | return SYSCTL_OUT(req, &udpstat, MIN(sizeof(udpstat), req->oldlen)); | |
2612 | } | |
2613 | ||
2614 | void | |
2615 | udp_in_cksum_stats(u_int32_t len) | |
2616 | { | |
2617 | udpstat.udps_rcv_swcsum++; | |
2618 | udpstat.udps_rcv_swcsum_bytes += len; | |
2619 | } | |
2620 | ||
2621 | void | |
2622 | udp_out_cksum_stats(u_int32_t len) | |
2623 | { | |
2624 | udpstat.udps_snd_swcsum++; | |
2625 | udpstat.udps_snd_swcsum_bytes += len; | |
2626 | } | |
2627 | ||
2628 | #if INET6 | |
2629 | void | |
2630 | udp_in6_cksum_stats(u_int32_t len) | |
2631 | { | |
2632 | udpstat.udps_rcv6_swcsum++; | |
2633 | udpstat.udps_rcv6_swcsum_bytes += len; | |
2634 | } | |
2635 | ||
2636 | void | |
2637 | udp_out6_cksum_stats(u_int32_t len) | |
2638 | { | |
2639 | udpstat.udps_snd6_swcsum++; | |
2640 | udpstat.udps_snd6_swcsum_bytes += len; | |
2641 | } | |
2642 | #endif /* INET6 */ | |
2643 | ||
2644 | /* | |
2645 | * Checksum extended UDP header and data. | |
2646 | */ | |
2647 | static int | |
2648 | udp_input_checksum(struct mbuf *m, struct udphdr *uh, int off, int ulen) | |
2649 | { | |
2650 | struct ifnet *ifp = m->m_pkthdr.rcvif; | |
2651 | struct ip *ip = mtod(m, struct ip *); | |
2652 | struct ipovly *ipov = (struct ipovly *)ip; | |
2653 | ||
2654 | if (uh->uh_sum == 0) { | |
2655 | udpstat.udps_nosum++; | |
2656 | return 0; | |
2657 | } | |
2658 | ||
2659 | /* ip_stripoptions() must have been called before we get here */ | |
2660 | ASSERT((ip->ip_hl << 2) == sizeof(*ip)); | |
2661 | ||
2662 | if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) || | |
2663 | (m->m_pkthdr.pkt_flags & PKTF_LOOP)) && | |
2664 | (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) { | |
2665 | if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { | |
2666 | uh->uh_sum = m->m_pkthdr.csum_rx_val; | |
2667 | } else { | |
2668 | uint32_t sum = m->m_pkthdr.csum_rx_val; | |
2669 | uint32_t start = m->m_pkthdr.csum_rx_start; | |
2670 | int32_t trailer = (m_pktlen(m) - (off + ulen)); | |
2671 | ||
2672 | /* | |
2673 | * Perform 1's complement adjustment of octets | |
2674 | * that got included/excluded in the hardware- | |
2675 | * calculated checksum value. Ignore cases | |
2676 | * where the value already includes the entire | |
2677 | * IP header span, as the sum for those octets | |
2678 | * would already be 0 by the time we get here; | |
2679 | * IP has already performed its header checksum | |
2680 | * checks. If we do need to adjust, restore | |
2681 | * the original fields in the IP header when | |
2682 | * computing the adjustment value. Also take | |
2683 | * care of any trailing bytes and subtract out | |
2684 | * their partial sum. | |
2685 | */ | |
2686 | ASSERT(trailer >= 0); | |
2687 | if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) && | |
2688 | ((start != 0 && start != off) || trailer != 0)) { | |
2689 | uint32_t swbytes = (uint32_t)trailer; | |
2690 | ||
2691 | if (start < off) { | |
2692 | ip->ip_len += sizeof(*ip); | |
2693 | #if BYTE_ORDER != BIG_ENDIAN | |
2694 | HTONS(ip->ip_len); | |
2695 | HTONS(ip->ip_off); | |
2696 | #endif /* BYTE_ORDER != BIG_ENDIAN */ | |
2697 | } | |
2698 | /* callee folds in sum */ | |
2699 | sum = m_adj_sum16(m, start, off, ulen, sum); | |
2700 | if (off > start) { | |
2701 | swbytes += (off - start); | |
2702 | } else { | |
2703 | swbytes += (start - off); | |
2704 | } | |
2705 | ||
2706 | if (start < off) { | |
2707 | #if BYTE_ORDER != BIG_ENDIAN | |
2708 | NTOHS(ip->ip_off); | |
2709 | NTOHS(ip->ip_len); | |
2710 | #endif /* BYTE_ORDER != BIG_ENDIAN */ | |
2711 | ip->ip_len -= sizeof(*ip); | |
2712 | } | |
2713 | ||
2714 | if (swbytes != 0) { | |
2715 | udp_in_cksum_stats(swbytes); | |
2716 | } | |
2717 | if (trailer != 0) { | |
2718 | m_adj(m, -trailer); | |
2719 | } | |
2720 | } | |
2721 | ||
2722 | /* callee folds in sum */ | |
2723 | uh->uh_sum = in_pseudo(ip->ip_src.s_addr, | |
2724 | ip->ip_dst.s_addr, sum + htonl(ulen + IPPROTO_UDP)); | |
2725 | } | |
2726 | uh->uh_sum ^= 0xffff; | |
2727 | } else { | |
2728 | uint16_t ip_sum; | |
2729 | char b[9]; | |
2730 | ||
2731 | bcopy(ipov->ih_x1, b, sizeof(ipov->ih_x1)); | |
2732 | bzero(ipov->ih_x1, sizeof(ipov->ih_x1)); | |
2733 | ip_sum = ipov->ih_len; | |
2734 | ipov->ih_len = uh->uh_ulen; | |
2735 | uh->uh_sum = in_cksum(m, ulen + sizeof(struct ip)); | |
2736 | bcopy(b, ipov->ih_x1, sizeof(ipov->ih_x1)); | |
2737 | ipov->ih_len = ip_sum; | |
2738 | ||
2739 | udp_in_cksum_stats(ulen); | |
2740 | } | |
2741 | ||
2742 | if (uh->uh_sum != 0) { | |
2743 | udpstat.udps_badsum++; | |
2744 | IF_UDP_STATINC(ifp, badchksum); | |
2745 | return -1; | |
2746 | } | |
2747 | ||
2748 | return 0; | |
2749 | } | |
2750 | ||
2751 | void | |
2752 | udp_fill_keepalive_offload_frames(ifnet_t ifp, | |
2753 | struct ifnet_keepalive_offload_frame *frames_array, | |
2754 | u_int32_t frames_array_count, size_t frame_data_offset, | |
2755 | u_int32_t *used_frames_count) | |
2756 | { | |
2757 | struct inpcb *inp; | |
2758 | inp_gen_t gencnt; | |
2759 | u_int32_t frame_index = *used_frames_count; | |
2760 | ||
2761 | if (ifp == NULL || frames_array == NULL || | |
2762 | frames_array_count == 0 || | |
2763 | frame_index >= frames_array_count || | |
2764 | frame_data_offset >= IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) { | |
2765 | return; | |
2766 | } | |
2767 | ||
2768 | lck_rw_lock_shared(udbinfo.ipi_lock); | |
2769 | gencnt = udbinfo.ipi_gencnt; | |
2770 | LIST_FOREACH(inp, udbinfo.ipi_listhead, inp_list) { | |
2771 | struct socket *so; | |
2772 | u_int8_t *data; | |
2773 | struct ifnet_keepalive_offload_frame *frame; | |
2774 | struct mbuf *m = NULL; | |
2775 | ||
2776 | if (frame_index >= frames_array_count) { | |
2777 | break; | |
2778 | } | |
2779 | ||
2780 | if (inp->inp_gencnt > gencnt || | |
2781 | inp->inp_state == INPCB_STATE_DEAD) { | |
2782 | continue; | |
2783 | } | |
2784 | ||
2785 | if ((so = inp->inp_socket) == NULL || | |
2786 | (so->so_state & SS_DEFUNCT)) { | |
2787 | continue; | |
2788 | } | |
2789 | /* | |
2790 | * check for keepalive offload flag without socket | |
2791 | * lock to avoid a deadlock | |
2792 | */ | |
2793 | if (!(inp->inp_flags2 & INP2_KEEPALIVE_OFFLOAD)) { | |
2794 | continue; | |
2795 | } | |
2796 | ||
2797 | udp_lock(so, 1, 0); | |
2798 | if (!(inp->inp_vflag & (INP_IPV4 | INP_IPV6))) { | |
2799 | udp_unlock(so, 1, 0); | |
2800 | continue; | |
2801 | } | |
2802 | if ((inp->inp_vflag & INP_IPV4) && | |
2803 | (inp->inp_laddr.s_addr == INADDR_ANY || | |
2804 | inp->inp_faddr.s_addr == INADDR_ANY)) { | |
2805 | udp_unlock(so, 1, 0); | |
2806 | continue; | |
2807 | } | |
2808 | if ((inp->inp_vflag & INP_IPV6) && | |
2809 | (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) || | |
2810 | IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))) { | |
2811 | udp_unlock(so, 1, 0); | |
2812 | continue; | |
2813 | } | |
2814 | if (inp->inp_lport == 0 || inp->inp_fport == 0) { | |
2815 | udp_unlock(so, 1, 0); | |
2816 | continue; | |
2817 | } | |
2818 | if (inp->inp_last_outifp == NULL || | |
2819 | inp->inp_last_outifp->if_index != ifp->if_index) { | |
2820 | udp_unlock(so, 1, 0); | |
2821 | continue; | |
2822 | } | |
2823 | if ((inp->inp_vflag & INP_IPV4)) { | |
2824 | if ((frame_data_offset + sizeof(struct udpiphdr) + | |
2825 | inp->inp_keepalive_datalen) > | |
2826 | IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) { | |
2827 | udp_unlock(so, 1, 0); | |
2828 | continue; | |
2829 | } | |
2830 | if ((sizeof(struct udpiphdr) + | |
2831 | inp->inp_keepalive_datalen) > _MHLEN) { | |
2832 | udp_unlock(so, 1, 0); | |
2833 | continue; | |
2834 | } | |
2835 | } else { | |
2836 | if ((frame_data_offset + sizeof(struct ip6_hdr) + | |
2837 | sizeof(struct udphdr) + | |
2838 | inp->inp_keepalive_datalen) > | |
2839 | IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) { | |
2840 | udp_unlock(so, 1, 0); | |
2841 | continue; | |
2842 | } | |
2843 | if ((sizeof(struct ip6_hdr) + sizeof(struct udphdr) + | |
2844 | inp->inp_keepalive_datalen) > _MHLEN) { | |
2845 | udp_unlock(so, 1, 0); | |
2846 | continue; | |
2847 | } | |
2848 | } | |
2849 | MGETHDR(m, M_WAIT, MT_HEADER); | |
2850 | if (m == NULL) { | |
2851 | udp_unlock(so, 1, 0); | |
2852 | continue; | |
2853 | } | |
2854 | /* | |
2855 | * This inp has all the information that is needed to | |
2856 | * generate an offload frame. | |
2857 | */ | |
2858 | if (inp->inp_vflag & INP_IPV4) { | |
2859 | struct ip *ip; | |
2860 | struct udphdr *udp; | |
2861 | ||
2862 | frame = &frames_array[frame_index]; | |
2863 | frame->length = frame_data_offset + | |
2864 | sizeof(struct udpiphdr) + | |
2865 | inp->inp_keepalive_datalen; | |
2866 | frame->ether_type = | |
2867 | IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV4; | |
2868 | frame->interval = inp->inp_keepalive_interval; | |
2869 | switch (inp->inp_keepalive_type) { | |
2870 | case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY: | |
2871 | frame->type = | |
2872 | IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY; | |
2873 | break; | |
2874 | default: | |
2875 | break; | |
2876 | } | |
2877 | data = mtod(m, u_int8_t *); | |
2878 | bzero(data, sizeof(struct udpiphdr)); | |
2879 | ip = (__typeof__(ip))(void *)data; | |
2880 | udp = (__typeof__(udp))(void *) (data + | |
2881 | sizeof(struct ip)); | |
2882 | m->m_len = sizeof(struct udpiphdr); | |
2883 | data = data + sizeof(struct udpiphdr); | |
2884 | if (inp->inp_keepalive_datalen > 0 && | |
2885 | inp->inp_keepalive_data != NULL) { | |
2886 | bcopy(inp->inp_keepalive_data, data, | |
2887 | inp->inp_keepalive_datalen); | |
2888 | m->m_len += inp->inp_keepalive_datalen; | |
2889 | } | |
2890 | m->m_pkthdr.len = m->m_len; | |
2891 | ||
2892 | ip->ip_v = IPVERSION; | |
2893 | ip->ip_hl = (sizeof(struct ip) >> 2); | |
2894 | ip->ip_p = IPPROTO_UDP; | |
2895 | ip->ip_len = htons(sizeof(struct udpiphdr) + | |
2896 | (u_short)inp->inp_keepalive_datalen); | |
2897 | ip->ip_ttl = inp->inp_ip_ttl; | |
2898 | ip->ip_tos |= (inp->inp_ip_tos & ~IPTOS_ECN_MASK); | |
2899 | ip->ip_src = inp->inp_laddr; | |
2900 | ip->ip_dst = inp->inp_faddr; | |
2901 | ip->ip_sum = in_cksum_hdr_opt(ip); | |
2902 | ||
2903 | udp->uh_sport = inp->inp_lport; | |
2904 | udp->uh_dport = inp->inp_fport; | |
2905 | udp->uh_ulen = htons(sizeof(struct udphdr) + | |
2906 | (u_short)inp->inp_keepalive_datalen); | |
2907 | ||
2908 | if (!(inp->inp_flags & INP_UDP_NOCKSUM)) { | |
2909 | udp->uh_sum = in_pseudo(ip->ip_src.s_addr, | |
2910 | ip->ip_dst.s_addr, | |
2911 | htons(sizeof(struct udphdr) + | |
2912 | (u_short)inp->inp_keepalive_datalen + | |
2913 | IPPROTO_UDP)); | |
2914 | m->m_pkthdr.csum_flags = | |
2915 | (CSUM_UDP | CSUM_ZERO_INVERT); | |
2916 | m->m_pkthdr.csum_data = offsetof(struct udphdr, | |
2917 | uh_sum); | |
2918 | } | |
2919 | m->m_pkthdr.pkt_proto = IPPROTO_UDP; | |
2920 | in_delayed_cksum(m); | |
2921 | bcopy(m->m_data, frame->data + frame_data_offset, | |
2922 | m->m_len); | |
2923 | } else { | |
2924 | struct ip6_hdr *ip6; | |
2925 | struct udphdr *udp6; | |
2926 | ||
2927 | VERIFY(inp->inp_vflag & INP_IPV6); | |
2928 | frame = &frames_array[frame_index]; | |
2929 | frame->length = frame_data_offset + | |
2930 | sizeof(struct ip6_hdr) + | |
2931 | sizeof(struct udphdr) + | |
2932 | inp->inp_keepalive_datalen; | |
2933 | frame->ether_type = | |
2934 | IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV6; | |
2935 | frame->interval = inp->inp_keepalive_interval; | |
2936 | switch (inp->inp_keepalive_type) { | |
2937 | case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY: | |
2938 | frame->type = | |
2939 | IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY; | |
2940 | break; | |
2941 | default: | |
2942 | break; | |
2943 | } | |
2944 | data = mtod(m, u_int8_t *); | |
2945 | bzero(data, sizeof(struct ip6_hdr) + sizeof(struct udphdr)); | |
2946 | ip6 = (__typeof__(ip6))(void *)data; | |
2947 | udp6 = (__typeof__(udp6))(void *)(data + | |
2948 | sizeof(struct ip6_hdr)); | |
2949 | m->m_len = sizeof(struct ip6_hdr) + | |
2950 | sizeof(struct udphdr); | |
2951 | data = data + (sizeof(struct ip6_hdr) + | |
2952 | sizeof(struct udphdr)); | |
2953 | if (inp->inp_keepalive_datalen > 0 && | |
2954 | inp->inp_keepalive_data != NULL) { | |
2955 | bcopy(inp->inp_keepalive_data, data, | |
2956 | inp->inp_keepalive_datalen); | |
2957 | m->m_len += inp->inp_keepalive_datalen; | |
2958 | } | |
2959 | m->m_pkthdr.len = m->m_len; | |
2960 | ip6->ip6_flow = inp->inp_flow & IPV6_FLOWINFO_MASK; | |
2961 | ip6->ip6_flow = ip6->ip6_flow & ~IPV6_FLOW_ECN_MASK; | |
2962 | ip6->ip6_vfc &= ~IPV6_VERSION_MASK; | |
2963 | ip6->ip6_vfc |= IPV6_VERSION; | |
2964 | ip6->ip6_nxt = IPPROTO_UDP; | |
2965 | ip6->ip6_hlim = ip6_defhlim; | |
2966 | ip6->ip6_plen = htons(sizeof(struct udphdr) + | |
2967 | (u_short)inp->inp_keepalive_datalen); | |
2968 | ip6->ip6_src = inp->in6p_laddr; | |
2969 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { | |
2970 | ip6->ip6_src.s6_addr16[1] = 0; | |
2971 | } | |
2972 | ||
2973 | ip6->ip6_dst = inp->in6p_faddr; | |
2974 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { | |
2975 | ip6->ip6_dst.s6_addr16[1] = 0; | |
2976 | } | |
2977 | ||
2978 | udp6->uh_sport = inp->in6p_lport; | |
2979 | udp6->uh_dport = inp->in6p_fport; | |
2980 | udp6->uh_ulen = htons(sizeof(struct udphdr) + | |
2981 | (u_short)inp->inp_keepalive_datalen); | |
2982 | if (!(inp->inp_flags & INP_UDP_NOCKSUM)) { | |
2983 | udp6->uh_sum = in6_pseudo(&ip6->ip6_src, | |
2984 | &ip6->ip6_dst, | |
2985 | htonl(sizeof(struct udphdr) + | |
2986 | (u_short)inp->inp_keepalive_datalen + | |
2987 | IPPROTO_UDP)); | |
2988 | m->m_pkthdr.csum_flags = | |
2989 | (CSUM_UDPIPV6 | CSUM_ZERO_INVERT); | |
2990 | m->m_pkthdr.csum_data = offsetof(struct udphdr, | |
2991 | uh_sum); | |
2992 | } | |
2993 | m->m_pkthdr.pkt_proto = IPPROTO_UDP; | |
2994 | in6_delayed_cksum(m); | |
2995 | bcopy(m->m_data, frame->data + frame_data_offset, | |
2996 | m->m_len); | |
2997 | } | |
2998 | if (m != NULL) { | |
2999 | m_freem(m); | |
3000 | m = NULL; | |
3001 | } | |
3002 | frame_index++; | |
3003 | udp_unlock(so, 1, 0); | |
3004 | } | |
3005 | lck_rw_done(udbinfo.ipi_lock); | |
3006 | *used_frames_count = frame_index; | |
3007 | } |