]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2019 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 | |
30 | * The Regents of the University of California. All rights reserved. | |
31 | * | |
32 | * Redistribution and use in source and binary forms, with or without | |
33 | * modification, are permitted provided that the following conditions | |
34 | * are met: | |
35 | * 1. Redistributions of source code must retain the above copyright | |
36 | * notice, this list of conditions and the following disclaimer. | |
37 | * 2. Redistributions in binary form must reproduce the above copyright | |
38 | * notice, this list of conditions and the following disclaimer in the | |
39 | * documentation and/or other materials provided with the distribution. | |
40 | * 3. All advertising materials mentioning features or use of this software | |
41 | * must display the following acknowledgement: | |
42 | * This product includes software developed by the University of | |
43 | * California, Berkeley and its contributors. | |
44 | * 4. Neither the name of the University nor the names of its contributors | |
45 | * may be used to endorse or promote products derived from this software | |
46 | * without specific prior written permission. | |
47 | * | |
48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
58 | * SUCH DAMAGE. | |
59 | * | |
60 | * @(#)tcp_output.c 8.4 (Berkeley) 5/24/95 | |
61 | * $FreeBSD: src/sys/netinet/tcp_output.c,v 1.39.2.10 2001/07/07 04:30:38 silby Exp $ | |
62 | */ | |
63 | /* | |
64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce | |
65 | * support for mandatory and extensible security protections. This notice | |
66 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
67 | * Version 2.0. | |
68 | */ | |
69 | ||
70 | #define _IP_VHL | |
71 | ||
72 | ||
73 | #include <sys/param.h> | |
74 | #include <sys/systm.h> | |
75 | #include <sys/kernel.h> | |
76 | #include <sys/sysctl.h> | |
77 | #include <sys/mbuf.h> | |
78 | #include <sys/domain.h> | |
79 | #include <sys/protosw.h> | |
80 | #include <sys/socket.h> | |
81 | #include <sys/socketvar.h> | |
82 | ||
83 | #include <net/route.h> | |
84 | #include <net/ntstat.h> | |
85 | #include <net/if_var.h> | |
86 | #include <net/if.h> | |
87 | #include <net/if_types.h> | |
88 | #include <net/dlil.h> | |
89 | ||
90 | #include <netinet/in.h> | |
91 | #include <netinet/in_systm.h> | |
92 | #include <netinet/in_var.h> | |
93 | #include <netinet/in_tclass.h> | |
94 | #include <netinet/ip.h> | |
95 | #include <netinet/in_pcb.h> | |
96 | #include <netinet/ip_var.h> | |
97 | #include <mach/sdt.h> | |
98 | #if INET6 | |
99 | #include <netinet6/in6_pcb.h> | |
100 | #include <netinet/ip6.h> | |
101 | #include <netinet6/ip6_var.h> | |
102 | #endif | |
103 | #include <netinet/tcp.h> | |
104 | #define TCPOUTFLAGS | |
105 | #include <netinet/tcp_cache.h> | |
106 | #include <netinet/tcp_fsm.h> | |
107 | #include <netinet/tcp_seq.h> | |
108 | #include <netinet/tcp_timer.h> | |
109 | #include <netinet/tcp_var.h> | |
110 | #include <netinet/tcpip.h> | |
111 | #include <netinet/tcp_cc.h> | |
112 | #if TCPDEBUG | |
113 | #include <netinet/tcp_debug.h> | |
114 | #endif | |
115 | #include <netinet/tcp_log.h> | |
116 | #include <sys/kdebug.h> | |
117 | #include <mach/sdt.h> | |
118 | ||
119 | #if IPSEC | |
120 | #include <netinet6/ipsec.h> | |
121 | #endif /*IPSEC*/ | |
122 | ||
123 | #if CONFIG_MACF_NET | |
124 | #include <security/mac_framework.h> | |
125 | #endif /* MAC_SOCKET */ | |
126 | ||
127 | #include <netinet/lro_ext.h> | |
128 | #if MPTCP | |
129 | #include <netinet/mptcp_var.h> | |
130 | #include <netinet/mptcp.h> | |
131 | #include <netinet/mptcp_opt.h> | |
132 | #endif | |
133 | ||
134 | #include <corecrypto/ccaes.h> | |
135 | ||
136 | #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETTCP, 1) | |
137 | #define DBG_LAYER_END NETDBG_CODE(DBG_NETTCP, 3) | |
138 | #define DBG_FNC_TCP_OUTPUT NETDBG_CODE(DBG_NETTCP, (4 << 8) | 1) | |
139 | ||
140 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, path_mtu_discovery, | |
141 | CTLFLAG_RW | CTLFLAG_LOCKED, int, path_mtu_discovery, 1, | |
142 | "Enable Path MTU Discovery"); | |
143 | ||
144 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, slowstart_flightsize, | |
145 | CTLFLAG_RW | CTLFLAG_LOCKED, int, ss_fltsz, 1, | |
146 | "Slow start flight size"); | |
147 | ||
148 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, local_slowstart_flightsize, | |
149 | CTLFLAG_RW | CTLFLAG_LOCKED, int, ss_fltsz_local, 8, | |
150 | "Slow start flight size for local networks"); | |
151 | ||
152 | int tcp_do_tso = 1; | |
153 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, tso, CTLFLAG_RW | CTLFLAG_LOCKED, | |
154 | &tcp_do_tso, 0, "Enable TCP Segmentation Offload"); | |
155 | ||
156 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, ecn_setup_percentage, | |
157 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_ecn_setup_percentage, 100, | |
158 | "Max ECN setup percentage"); | |
159 | ||
160 | static int | |
161 | sysctl_change_ecn_setting SYSCTL_HANDLER_ARGS | |
162 | { | |
163 | #pragma unused(oidp, arg1, arg2) | |
164 | int i, err = 0, changed = 0; | |
165 | struct ifnet *ifp; | |
166 | ||
167 | err = sysctl_io_number(req, tcp_ecn_outbound, sizeof(int32_t), | |
168 | &i, &changed); | |
169 | if (err != 0 || req->newptr == USER_ADDR_NULL) | |
170 | return err; | |
171 | ||
172 | if (changed) { | |
173 | if ((tcp_ecn_outbound == 0 || tcp_ecn_outbound == 1) && | |
174 | (i == 0 || i == 1)) { | |
175 | tcp_ecn_outbound = i; | |
176 | SYSCTL_SKMEM_UPDATE_FIELD(tcp.ecn_initiate_out, tcp_ecn_outbound); | |
177 | return err; | |
178 | } | |
179 | if (tcp_ecn_outbound == 2 && (i == 0 || i == 1)) { | |
180 | /* | |
181 | * Reset ECN enable flags on non-cellular | |
182 | * interfaces so that the system default will take | |
183 | * over | |
184 | */ | |
185 | ifnet_head_lock_shared(); | |
186 | TAILQ_FOREACH(ifp, &ifnet_head, if_link) { | |
187 | if (!IFNET_IS_CELLULAR(ifp)) { | |
188 | ifnet_lock_exclusive(ifp); | |
189 | ifp->if_eflags &= ~IFEF_ECN_DISABLE; | |
190 | ifp->if_eflags &= ~IFEF_ECN_ENABLE; | |
191 | ifnet_lock_done(ifp); | |
192 | } | |
193 | } | |
194 | ifnet_head_done(); | |
195 | } else { | |
196 | /* | |
197 | * Set ECN enable flags on non-cellular | |
198 | * interfaces | |
199 | */ | |
200 | ifnet_head_lock_shared(); | |
201 | TAILQ_FOREACH(ifp, &ifnet_head, if_link) { | |
202 | if (!IFNET_IS_CELLULAR(ifp)) { | |
203 | ifnet_lock_exclusive(ifp); | |
204 | ifp->if_eflags |= IFEF_ECN_ENABLE; | |
205 | ifp->if_eflags &= ~IFEF_ECN_DISABLE; | |
206 | ifnet_lock_done(ifp); | |
207 | } | |
208 | } | |
209 | ifnet_head_done(); | |
210 | } | |
211 | tcp_ecn_outbound = i; | |
212 | SYSCTL_SKMEM_UPDATE_FIELD(tcp.ecn_initiate_out, tcp_ecn_outbound); | |
213 | } | |
214 | /* Change the other one too as the work is done */ | |
215 | if (i == 2 || tcp_ecn_inbound == 2) { | |
216 | tcp_ecn_inbound = i; | |
217 | SYSCTL_SKMEM_UPDATE_FIELD(tcp.ecn_negotiate_in, tcp_ecn_inbound); | |
218 | } | |
219 | return err; | |
220 | } | |
221 | ||
222 | int tcp_ecn_outbound = 2; | |
223 | SYSCTL_PROC(_net_inet_tcp, OID_AUTO, ecn_initiate_out, | |
224 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_ecn_outbound, 0, | |
225 | sysctl_change_ecn_setting, "IU", | |
226 | "Initiate ECN for outbound connections"); | |
227 | ||
228 | int tcp_ecn_inbound = 2; | |
229 | SYSCTL_PROC(_net_inet_tcp, OID_AUTO, ecn_negotiate_in, | |
230 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_ecn_inbound, 0, | |
231 | sysctl_change_ecn_setting, "IU", | |
232 | "Initiate ECN for inbound connections"); | |
233 | ||
234 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, packetchain, | |
235 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_packet_chaining, 50, | |
236 | "Enable TCP output packet chaining"); | |
237 | ||
238 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, socket_unlocked_on_output, | |
239 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_output_unlocked, 1, | |
240 | "Unlock TCP when sending packets down to IP"); | |
241 | ||
242 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, rfc3390, | |
243 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_do_rfc3390, 1, | |
244 | "Calculate intial slowstart cwnd depending on MSS"); | |
245 | ||
246 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, min_iaj_win, | |
247 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_min_iaj_win, MIN_IAJ_WIN, | |
248 | "Minimum recv win based on inter-packet arrival jitter"); | |
249 | ||
250 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, acc_iaj_react_limit, | |
251 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_acc_iaj_react_limit, | |
252 | ACC_IAJ_REACT_LIMIT, "Accumulated IAJ when receiver starts to react"); | |
253 | ||
254 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, doautosndbuf, | |
255 | CTLFLAG_RW | CTLFLAG_LOCKED, uint32_t, tcp_do_autosendbuf, 1, | |
256 | "Enable send socket buffer auto-tuning"); | |
257 | ||
258 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, autosndbufinc, | |
259 | CTLFLAG_RW | CTLFLAG_LOCKED, uint32_t, tcp_autosndbuf_inc, | |
260 | 8 * 1024, "Increment in send socket bufffer size"); | |
261 | ||
262 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, autosndbufmax, | |
263 | CTLFLAG_RW | CTLFLAG_LOCKED, uint32_t, tcp_autosndbuf_max, 512 * 1024, | |
264 | "Maximum send socket buffer size"); | |
265 | ||
266 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, ack_prioritize, | |
267 | CTLFLAG_RW | CTLFLAG_LOCKED, uint32_t, tcp_prioritize_acks, 1, | |
268 | "Prioritize pure acks"); | |
269 | ||
270 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, rtt_recvbg, | |
271 | CTLFLAG_RW | CTLFLAG_LOCKED, uint32_t, tcp_use_rtt_recvbg, 1, | |
272 | "Use RTT for bg recv algorithm"); | |
273 | ||
274 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, recv_throttle_minwin, | |
275 | CTLFLAG_RW | CTLFLAG_LOCKED, uint32_t, tcp_recv_throttle_minwin, 16 * 1024, | |
276 | "Minimum recv win for throttling"); | |
277 | ||
278 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, enable_tlp, | |
279 | CTLFLAG_RW | CTLFLAG_LOCKED, | |
280 | int32_t, tcp_enable_tlp, 1, "Enable Tail loss probe"); | |
281 | ||
282 | static int32_t packchain_newlist = 0; | |
283 | static int32_t packchain_looped = 0; | |
284 | static int32_t packchain_sent = 0; | |
285 | ||
286 | /* temporary: for testing */ | |
287 | #if IPSEC | |
288 | extern int ipsec_bypass; | |
289 | #endif | |
290 | ||
291 | extern int slowlink_wsize; /* window correction for slow links */ | |
292 | #if IPFIREWALL | |
293 | extern int fw_enable; /* firewall check for packet chaining */ | |
294 | extern int fw_bypass; /* firewall check: disable packet chaining if there is rules */ | |
295 | #endif /* IPFIREWALL */ | |
296 | ||
297 | extern u_int32_t dlil_filter_disable_tso_count; | |
298 | extern u_int32_t kipf_count; | |
299 | ||
300 | static int tcp_ip_output(struct socket *, struct tcpcb *, struct mbuf *, | |
301 | int, struct mbuf *, int, int, boolean_t); | |
302 | static struct mbuf* tcp_send_lroacks(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th); | |
303 | static int tcp_recv_throttle(struct tcpcb *tp); | |
304 | ||
305 | static int32_t tcp_tfo_check(struct tcpcb *tp, int32_t len) | |
306 | { | |
307 | struct socket *so = tp->t_inpcb->inp_socket; | |
308 | unsigned int optlen = 0; | |
309 | unsigned int cookie_len; | |
310 | ||
311 | if (tp->t_flags & TF_NOOPT) | |
312 | goto fallback; | |
313 | ||
314 | if (!(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE) && | |
315 | !tcp_heuristic_do_tfo(tp)) { | |
316 | tp->t_tfo_stats |= TFO_S_HEURISTICS_DISABLE; | |
317 | tcpstat.tcps_tfo_heuristics_disable++; | |
318 | goto fallback; | |
319 | } | |
320 | ||
321 | if (so->so_flags1 & SOF1_DATA_AUTHENTICATED) | |
322 | return len; | |
323 | ||
324 | optlen += TCPOLEN_MAXSEG; | |
325 | ||
326 | if (tp->t_flags & TF_REQ_SCALE) | |
327 | optlen += 4; | |
328 | ||
329 | #if MPTCP | |
330 | if ((so->so_flags & SOF_MP_SUBFLOW) && mptcp_enable && | |
331 | (tp->t_rxtshift <= mptcp_mpcap_retries || | |
332 | (tptomptp(tp)->mpt_mpte->mpte_flags & MPTE_FORCE_ENABLE))) | |
333 | optlen += sizeof(struct mptcp_mpcapable_opt_common) + sizeof(mptcp_key_t); | |
334 | #endif /* MPTCP */ | |
335 | ||
336 | if (tp->t_flags & TF_REQ_TSTMP) | |
337 | optlen += TCPOLEN_TSTAMP_APPA; | |
338 | ||
339 | if (SACK_ENABLED(tp)) | |
340 | optlen += TCPOLEN_SACK_PERMITTED; | |
341 | ||
342 | /* Now, decide whether to use TFO or not */ | |
343 | ||
344 | /* Don't even bother trying if there is no space at all... */ | |
345 | if (MAX_TCPOPTLEN - optlen < TCPOLEN_FASTOPEN_REQ) | |
346 | goto fallback; | |
347 | ||
348 | cookie_len = tcp_cache_get_cookie_len(tp); | |
349 | if (cookie_len == 0) | |
350 | /* No cookie, so we request one */ | |
351 | return 0; | |
352 | ||
353 | /* There is not enough space for the cookie, so we cannot do TFO */ | |
354 | if (MAX_TCPOPTLEN - optlen < cookie_len) | |
355 | goto fallback; | |
356 | ||
357 | /* Do not send SYN+data if there is more in the queue than MSS */ | |
358 | if (so->so_snd.sb_cc > (tp->t_maxopd - MAX_TCPOPTLEN)) | |
359 | goto fallback; | |
360 | ||
361 | /* Ok, everything looks good. We can go on and do TFO */ | |
362 | return len; | |
363 | ||
364 | fallback: | |
365 | tcp_disable_tfo(tp); | |
366 | return 0; | |
367 | } | |
368 | ||
369 | /* Returns the number of bytes written to the TCP option-space */ | |
370 | static unsigned | |
371 | tcp_tfo_write_cookie_rep(struct tcpcb *tp, unsigned optlen, u_char *opt) | |
372 | { | |
373 | u_char out[CCAES_BLOCK_SIZE]; | |
374 | unsigned ret = 0; | |
375 | u_char *bp; | |
376 | ||
377 | if ((MAX_TCPOPTLEN - optlen) < | |
378 | (TCPOLEN_FASTOPEN_REQ + TFO_COOKIE_LEN_DEFAULT)) | |
379 | return ret; | |
380 | ||
381 | tcp_tfo_gen_cookie(tp->t_inpcb, out, sizeof(out)); | |
382 | ||
383 | bp = opt + optlen; | |
384 | ||
385 | *bp++ = TCPOPT_FASTOPEN; | |
386 | *bp++ = 2 + TFO_COOKIE_LEN_DEFAULT; | |
387 | memcpy(bp, out, TFO_COOKIE_LEN_DEFAULT); | |
388 | ret += 2 + TFO_COOKIE_LEN_DEFAULT; | |
389 | ||
390 | tp->t_tfo_stats |= TFO_S_COOKIE_SENT; | |
391 | tcpstat.tcps_tfo_cookie_sent++; | |
392 | ||
393 | return ret; | |
394 | } | |
395 | ||
396 | static unsigned | |
397 | tcp_tfo_write_cookie(struct tcpcb *tp, unsigned optlen, int32_t len, | |
398 | u_char *opt) | |
399 | { | |
400 | u_int8_t tfo_len = MAX_TCPOPTLEN - optlen - TCPOLEN_FASTOPEN_REQ; | |
401 | struct socket *so = tp->t_inpcb->inp_socket; | |
402 | unsigned ret = 0; | |
403 | int res; | |
404 | u_char *bp; | |
405 | ||
406 | if (so->so_flags1 & SOF1_DATA_AUTHENTICATED) { | |
407 | /* If there is some data, let's track it */ | |
408 | if (len > 0) { | |
409 | tp->t_tfo_stats |= TFO_S_SYN_DATA_SENT; | |
410 | tcpstat.tcps_tfo_syn_data_sent++; | |
411 | } | |
412 | ||
413 | return 0; | |
414 | } | |
415 | ||
416 | bp = opt + optlen; | |
417 | ||
418 | /* | |
419 | * The cookie will be copied in the appropriate place within the | |
420 | * TCP-option space. That way we avoid the need for an intermediate | |
421 | * variable. | |
422 | */ | |
423 | res = tcp_cache_get_cookie(tp, bp + TCPOLEN_FASTOPEN_REQ, &tfo_len); | |
424 | if (res == 0) { | |
425 | *bp++ = TCPOPT_FASTOPEN; | |
426 | *bp++ = TCPOLEN_FASTOPEN_REQ; | |
427 | ret += TCPOLEN_FASTOPEN_REQ; | |
428 | ||
429 | tp->t_tfo_flags |= TFO_F_COOKIE_REQ; | |
430 | ||
431 | tp->t_tfo_stats |= TFO_S_COOKIE_REQ; | |
432 | tcpstat.tcps_tfo_cookie_req++; | |
433 | } else { | |
434 | *bp++ = TCPOPT_FASTOPEN; | |
435 | *bp++ = TCPOLEN_FASTOPEN_REQ + tfo_len; | |
436 | ||
437 | ret += TCPOLEN_FASTOPEN_REQ + tfo_len; | |
438 | ||
439 | tp->t_tfo_flags |= TFO_F_COOKIE_SENT; | |
440 | ||
441 | /* If there is some data, let's track it */ | |
442 | if (len > 0) { | |
443 | tp->t_tfo_stats |= TFO_S_SYN_DATA_SENT; | |
444 | tcpstat.tcps_tfo_syn_data_sent++; | |
445 | } | |
446 | } | |
447 | ||
448 | return ret; | |
449 | } | |
450 | ||
451 | static inline bool | |
452 | tcp_send_ecn_flags_on_syn(struct tcpcb *tp, struct socket *so) | |
453 | { | |
454 | return !((tp->ecn_flags & TE_SETUPSENT || | |
455 | (so->so_flags & SOF_MP_SUBFLOW) || | |
456 | (tfo_enabled(tp)))); | |
457 | } | |
458 | ||
459 | void | |
460 | tcp_set_ecn(struct tcpcb *tp, struct ifnet *ifp) | |
461 | { | |
462 | boolean_t inbound; | |
463 | ||
464 | /* | |
465 | * Socket option has precedence | |
466 | */ | |
467 | if (tp->ecn_flags & TE_ECN_MODE_ENABLE) { | |
468 | tp->ecn_flags |= TE_ENABLE_ECN; | |
469 | goto check_heuristic; | |
470 | } | |
471 | ||
472 | if (tp->ecn_flags & TE_ECN_MODE_DISABLE) { | |
473 | tp->ecn_flags &= ~TE_ENABLE_ECN; | |
474 | return; | |
475 | } | |
476 | /* | |
477 | * Per interface setting comes next | |
478 | */ | |
479 | if (ifp != NULL) { | |
480 | if (ifp->if_eflags & IFEF_ECN_ENABLE) { | |
481 | tp->ecn_flags |= TE_ENABLE_ECN; | |
482 | goto check_heuristic; | |
483 | } | |
484 | ||
485 | if (ifp->if_eflags & IFEF_ECN_DISABLE) { | |
486 | tp->ecn_flags &= ~TE_ENABLE_ECN; | |
487 | return; | |
488 | } | |
489 | } | |
490 | /* | |
491 | * System wide settings come last | |
492 | */ | |
493 | inbound = (tp->t_inpcb->inp_socket->so_head != NULL); | |
494 | if ((inbound && tcp_ecn_inbound == 1) || | |
495 | (!inbound && tcp_ecn_outbound == 1)) { | |
496 | tp->ecn_flags |= TE_ENABLE_ECN; | |
497 | goto check_heuristic; | |
498 | } else { | |
499 | tp->ecn_flags &= ~TE_ENABLE_ECN; | |
500 | } | |
501 | ||
502 | return; | |
503 | ||
504 | check_heuristic: | |
505 | if (!tcp_heuristic_do_ecn(tp)) | |
506 | tp->ecn_flags &= ~TE_ENABLE_ECN; | |
507 | ||
508 | /* | |
509 | * If the interface setting, system-level setting and heuristics | |
510 | * allow to enable ECN, randomly select 5% of connections to | |
511 | * enable it | |
512 | */ | |
513 | if ((tp->ecn_flags & (TE_ECN_MODE_ENABLE | TE_ECN_MODE_DISABLE | |
514 | | TE_ENABLE_ECN)) == TE_ENABLE_ECN) { | |
515 | /* | |
516 | * Use the random value in iss for randomizing | |
517 | * this selection | |
518 | */ | |
519 | if ((tp->iss % 100) >= tcp_ecn_setup_percentage) | |
520 | tp->ecn_flags &= ~TE_ENABLE_ECN; | |
521 | } | |
522 | } | |
523 | ||
524 | /* | |
525 | * Tcp output routine: figure out what should be sent and send it. | |
526 | * | |
527 | * Returns: 0 Success | |
528 | * EADDRNOTAVAIL | |
529 | * ENOBUFS | |
530 | * EMSGSIZE | |
531 | * EHOSTUNREACH | |
532 | * ENETDOWN | |
533 | * ip_output_list:ENOMEM | |
534 | * ip_output_list:EADDRNOTAVAIL | |
535 | * ip_output_list:ENETUNREACH | |
536 | * ip_output_list:EHOSTUNREACH | |
537 | * ip_output_list:EACCES | |
538 | * ip_output_list:EMSGSIZE | |
539 | * ip_output_list:ENOBUFS | |
540 | * ip_output_list:??? [ignorable: mostly IPSEC/firewall/DLIL] | |
541 | * ip6_output_list:EINVAL | |
542 | * ip6_output_list:EOPNOTSUPP | |
543 | * ip6_output_list:EHOSTUNREACH | |
544 | * ip6_output_list:EADDRNOTAVAIL | |
545 | * ip6_output_list:ENETUNREACH | |
546 | * ip6_output_list:EMSGSIZE | |
547 | * ip6_output_list:ENOBUFS | |
548 | * ip6_output_list:??? [ignorable: mostly IPSEC/firewall/DLIL] | |
549 | */ | |
550 | int | |
551 | tcp_output(struct tcpcb *tp) | |
552 | { | |
553 | struct inpcb *inp = tp->t_inpcb; | |
554 | struct socket *so = inp->inp_socket; | |
555 | int32_t len, recwin, sendwin, off; | |
556 | int flags, error; | |
557 | struct mbuf *m; | |
558 | struct ip *ip = NULL; | |
559 | struct ipovly *ipov = NULL; | |
560 | #if INET6 | |
561 | struct ip6_hdr *ip6 = NULL; | |
562 | #endif /* INET6 */ | |
563 | struct tcphdr *th; | |
564 | u_char opt[TCP_MAXOLEN]; | |
565 | unsigned ipoptlen, optlen, hdrlen; | |
566 | int idle, sendalot, lost = 0; | |
567 | int i, sack_rxmit; | |
568 | int tso = 0; | |
569 | int sack_bytes_rxmt; | |
570 | tcp_seq old_snd_nxt = 0; | |
571 | struct sackhole *p; | |
572 | #if IPSEC | |
573 | unsigned ipsec_optlen = 0; | |
574 | #endif /* IPSEC */ | |
575 | int idle_time = 0; | |
576 | struct mbuf *packetlist = NULL; | |
577 | struct mbuf *tp_inp_options = inp->inp_depend4.inp4_options; | |
578 | #if INET6 | |
579 | int isipv6 = inp->inp_vflag & INP_IPV6 ; | |
580 | #else | |
581 | int isipv6 = 0; | |
582 | #endif | |
583 | short packchain_listadd = 0; | |
584 | int so_options = so->so_options; | |
585 | struct rtentry *rt; | |
586 | u_int32_t svc_flags = 0, allocated_len; | |
587 | u_int32_t lro_ackmore = (tp->t_lropktlen != 0) ? 1 : 0; | |
588 | struct mbuf *mnext = NULL; | |
589 | int sackoptlen = 0; | |
590 | #if MPTCP | |
591 | boolean_t mptcp_acknow; | |
592 | #endif /* MPTCP */ | |
593 | boolean_t cell = FALSE; | |
594 | boolean_t wifi = FALSE; | |
595 | boolean_t wired = FALSE; | |
596 | boolean_t sack_rescue_rxt = FALSE; | |
597 | int sotc = so->so_traffic_class; | |
598 | ||
599 | /* | |
600 | * Determine length of data that should be transmitted, | |
601 | * and flags that will be used. | |
602 | * If there is some data or critical controls (SYN, RST) | |
603 | * to send, then transmit; otherwise, investigate further. | |
604 | */ | |
605 | idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una); | |
606 | ||
607 | /* Since idle_time is signed integer, the following integer subtraction | |
608 | * will take care of wrap around of tcp_now | |
609 | */ | |
610 | idle_time = tcp_now - tp->t_rcvtime; | |
611 | if (idle && idle_time >= TCP_IDLETIMEOUT(tp)) { | |
612 | if (CC_ALGO(tp)->after_idle != NULL && | |
613 | (tp->tcp_cc_index != TCP_CC_ALGO_CUBIC_INDEX || | |
614 | idle_time >= TCP_CC_CWND_NONVALIDATED_PERIOD)) { | |
615 | CC_ALGO(tp)->after_idle(tp); | |
616 | tcp_ccdbg_trace(tp, NULL, TCP_CC_IDLE_TIMEOUT); | |
617 | } | |
618 | ||
619 | /* | |
620 | * Do some other tasks that need to be done after | |
621 | * idle time | |
622 | */ | |
623 | if (!SLIST_EMPTY(&tp->t_rxt_segments)) | |
624 | tcp_rxtseg_clean(tp); | |
625 | ||
626 | /* If stretch ack was auto-disabled, re-evaluate it */ | |
627 | tcp_cc_after_idle_stretchack(tp); | |
628 | } | |
629 | tp->t_flags &= ~TF_LASTIDLE; | |
630 | if (idle) { | |
631 | if (tp->t_flags & TF_MORETOCOME) { | |
632 | tp->t_flags |= TF_LASTIDLE; | |
633 | idle = 0; | |
634 | } | |
635 | } | |
636 | #if MPTCP | |
637 | if (tp->t_mpflags & TMPF_RESET) { | |
638 | tcp_check_timer_state(tp); | |
639 | /* | |
640 | * Once a RST has been sent for an MPTCP subflow, | |
641 | * the subflow socket stays around until deleted. | |
642 | * No packets such as FINs must be sent after RST. | |
643 | */ | |
644 | return 0; | |
645 | } | |
646 | #endif /* MPTCP */ | |
647 | ||
648 | again: | |
649 | #if MPTCP | |
650 | mptcp_acknow = FALSE; | |
651 | #endif | |
652 | ||
653 | KERNEL_DEBUG(DBG_FNC_TCP_OUTPUT | DBG_FUNC_START, 0,0,0,0,0); | |
654 | ||
655 | #if INET6 | |
656 | if (isipv6) { | |
657 | KERNEL_DEBUG(DBG_LAYER_BEG, | |
658 | ((inp->inp_fport << 16) | inp->inp_lport), | |
659 | (((inp->in6p_laddr.s6_addr16[0] & 0xffff) << 16) | | |
660 | (inp->in6p_faddr.s6_addr16[0] & 0xffff)), | |
661 | sendalot,0,0); | |
662 | } else | |
663 | #endif | |
664 | ||
665 | { | |
666 | KERNEL_DEBUG(DBG_LAYER_BEG, | |
667 | ((inp->inp_fport << 16) | inp->inp_lport), | |
668 | (((inp->inp_laddr.s_addr & 0xffff) << 16) | | |
669 | (inp->inp_faddr.s_addr & 0xffff)), | |
670 | sendalot,0,0); | |
671 | } | |
672 | /* | |
673 | * If the route generation id changed, we need to check that our | |
674 | * local (source) IP address is still valid. If it isn't either | |
675 | * return error or silently do nothing (assuming the address will | |
676 | * come back before the TCP connection times out). | |
677 | */ | |
678 | rt = inp->inp_route.ro_rt; | |
679 | if (rt != NULL && ROUTE_UNUSABLE(&tp->t_inpcb->inp_route)) { | |
680 | struct ifnet *ifp; | |
681 | struct in_ifaddr *ia = NULL; | |
682 | struct in6_ifaddr *ia6 = NULL; | |
683 | int found_srcaddr = 0; | |
684 | ||
685 | /* disable multipages at the socket */ | |
686 | somultipages(so, FALSE); | |
687 | ||
688 | /* Disable TSO for the socket until we know more */ | |
689 | tp->t_flags &= ~TF_TSO; | |
690 | ||
691 | soif2kcl(so, FALSE); | |
692 | ||
693 | if (isipv6) { | |
694 | ia6 = ifa_foraddr6(&inp->in6p_laddr); | |
695 | if (ia6 != NULL) | |
696 | found_srcaddr = 1; | |
697 | } else { | |
698 | ia = ifa_foraddr(inp->inp_laddr.s_addr); | |
699 | if (ia != NULL) | |
700 | found_srcaddr = 1; | |
701 | } | |
702 | ||
703 | /* check that the source address is still valid */ | |
704 | if (found_srcaddr == 0) { | |
705 | soevent(so, | |
706 | (SO_FILT_HINT_LOCKED | SO_FILT_HINT_NOSRCADDR)); | |
707 | ||
708 | if (tp->t_state >= TCPS_CLOSE_WAIT) { | |
709 | tcp_drop(tp, EADDRNOTAVAIL); | |
710 | return EADDRNOTAVAIL; | |
711 | } | |
712 | ||
713 | /* | |
714 | * Set retransmit timer if it wasn't set, | |
715 | * reset Persist timer and shift register as the | |
716 | * advertised peer window may not be valid anymore | |
717 | */ | |
718 | if (tp->t_timer[TCPT_REXMT] == 0) { | |
719 | tp->t_timer[TCPT_REXMT] = | |
720 | OFFSET_FROM_START(tp, tp->t_rxtcur); | |
721 | if (tp->t_timer[TCPT_PERSIST] != 0) { | |
722 | tp->t_timer[TCPT_PERSIST] = 0; | |
723 | tp->t_persist_stop = 0; | |
724 | TCP_RESET_REXMT_STATE(tp); | |
725 | } | |
726 | } | |
727 | ||
728 | if (tp->t_pktlist_head != NULL) | |
729 | m_freem_list(tp->t_pktlist_head); | |
730 | TCP_PKTLIST_CLEAR(tp); | |
731 | ||
732 | /* drop connection if source address isn't available */ | |
733 | if (so->so_flags & SOF_NOADDRAVAIL) { | |
734 | tcp_drop(tp, EADDRNOTAVAIL); | |
735 | return EADDRNOTAVAIL; | |
736 | } else { | |
737 | tcp_check_timer_state(tp); | |
738 | return 0; /* silently ignore, keep data in socket: address may be back */ | |
739 | } | |
740 | } | |
741 | if (ia != NULL) | |
742 | IFA_REMREF(&ia->ia_ifa); | |
743 | ||
744 | if (ia6 != NULL) | |
745 | IFA_REMREF(&ia6->ia_ifa); | |
746 | ||
747 | /* | |
748 | * Address is still valid; check for multipages capability | |
749 | * again in case the outgoing interface has changed. | |
750 | */ | |
751 | RT_LOCK(rt); | |
752 | if ((ifp = rt->rt_ifp) != NULL) { | |
753 | somultipages(so, (ifp->if_hwassist & IFNET_MULTIPAGES)); | |
754 | tcp_set_tso(tp, ifp); | |
755 | soif2kcl(so, (ifp->if_eflags & IFEF_2KCL)); | |
756 | tcp_set_ecn(tp, ifp); | |
757 | } | |
758 | if (rt->rt_flags & RTF_UP) | |
759 | RT_GENID_SYNC(rt); | |
760 | /* | |
761 | * See if we should do MTU discovery. Don't do it if: | |
762 | * 1) it is disabled via the sysctl | |
763 | * 2) the route isn't up | |
764 | * 3) the MTU is locked (if it is, then discovery | |
765 | * has been disabled) | |
766 | */ | |
767 | ||
768 | if (!path_mtu_discovery || ((rt != NULL) && | |
769 | (!(rt->rt_flags & RTF_UP) || | |
770 | (rt->rt_rmx.rmx_locks & RTV_MTU)))) | |
771 | tp->t_flags &= ~TF_PMTUD; | |
772 | else | |
773 | tp->t_flags |= TF_PMTUD; | |
774 | ||
775 | RT_UNLOCK(rt); | |
776 | } | |
777 | ||
778 | if (rt != NULL) { | |
779 | cell = IFNET_IS_CELLULAR(rt->rt_ifp); | |
780 | wifi = (!cell && IFNET_IS_WIFI(rt->rt_ifp)); | |
781 | wired = (!wifi && IFNET_IS_WIRED(rt->rt_ifp)); | |
782 | } | |
783 | ||
784 | /* | |
785 | * If we've recently taken a timeout, snd_max will be greater than | |
786 | * snd_nxt. There may be SACK information that allows us to avoid | |
787 | * resending already delivered data. Adjust snd_nxt accordingly. | |
788 | */ | |
789 | if (SACK_ENABLED(tp) && SEQ_LT(tp->snd_nxt, tp->snd_max)) | |
790 | tcp_sack_adjust(tp); | |
791 | sendalot = 0; | |
792 | off = tp->snd_nxt - tp->snd_una; | |
793 | sendwin = min(tp->snd_wnd, tp->snd_cwnd); | |
794 | ||
795 | if (tp->t_flags & TF_SLOWLINK && slowlink_wsize > 0) | |
796 | sendwin = min(sendwin, slowlink_wsize); | |
797 | ||
798 | flags = tcp_outflags[tp->t_state]; | |
799 | /* | |
800 | * Send any SACK-generated retransmissions. If we're explicitly | |
801 | * trying to send out new data (when sendalot is 1), bypass this | |
802 | * function. If we retransmit in fast recovery mode, decrement | |
803 | * snd_cwnd, since we're replacing a (future) new transmission | |
804 | * with a retransmission now, and we previously incremented | |
805 | * snd_cwnd in tcp_input(). | |
806 | */ | |
807 | /* | |
808 | * Still in sack recovery , reset rxmit flag to zero. | |
809 | */ | |
810 | sack_rxmit = 0; | |
811 | sack_bytes_rxmt = 0; | |
812 | len = 0; | |
813 | p = NULL; | |
814 | if (SACK_ENABLED(tp) && IN_FASTRECOVERY(tp) && | |
815 | (p = tcp_sack_output(tp, &sack_bytes_rxmt))) { | |
816 | int32_t cwin; | |
817 | ||
818 | cwin = min(tp->snd_wnd, tp->snd_cwnd) - sack_bytes_rxmt; | |
819 | if (cwin < 0) | |
820 | cwin = 0; | |
821 | /* Do not retransmit SACK segments beyond snd_recover */ | |
822 | if (SEQ_GT(p->end, tp->snd_recover)) { | |
823 | /* | |
824 | * (At least) part of sack hole extends beyond | |
825 | * snd_recover. Check to see if we can rexmit data | |
826 | * for this hole. | |
827 | */ | |
828 | if (SEQ_GEQ(p->rxmit, tp->snd_recover)) { | |
829 | /* | |
830 | * Can't rexmit any more data for this hole. | |
831 | * That data will be rexmitted in the next | |
832 | * sack recovery episode, when snd_recover | |
833 | * moves past p->rxmit. | |
834 | */ | |
835 | p = NULL; | |
836 | goto after_sack_rexmit; | |
837 | } else | |
838 | /* Can rexmit part of the current hole */ | |
839 | len = ((int32_t)min(cwin, | |
840 | tp->snd_recover - p->rxmit)); | |
841 | } else { | |
842 | len = ((int32_t)min(cwin, p->end - p->rxmit)); | |
843 | } | |
844 | if (len > 0) { | |
845 | off = p->rxmit - tp->snd_una; | |
846 | sack_rxmit = 1; | |
847 | sendalot = 1; | |
848 | tcpstat.tcps_sack_rexmits++; | |
849 | tcpstat.tcps_sack_rexmit_bytes += | |
850 | min(len, tp->t_maxseg); | |
851 | } else { | |
852 | len = 0; | |
853 | } | |
854 | } | |
855 | after_sack_rexmit: | |
856 | /* | |
857 | * Get standard flags, and add SYN or FIN if requested by 'hidden' | |
858 | * state flags. | |
859 | */ | |
860 | if (tp->t_flags & TF_NEEDFIN) | |
861 | flags |= TH_FIN; | |
862 | if (tp->t_flags & TF_NEEDSYN) | |
863 | flags |= TH_SYN; | |
864 | ||
865 | /* | |
866 | * If in persist timeout with window of 0, send 1 byte. | |
867 | * Otherwise, if window is small but nonzero | |
868 | * and timer expired, we will send what we can | |
869 | * and go to transmit state. | |
870 | */ | |
871 | if (tp->t_flagsext & TF_FORCE) { | |
872 | if (sendwin == 0) { | |
873 | /* | |
874 | * If we still have some data to send, then | |
875 | * clear the FIN bit. Usually this would | |
876 | * happen below when it realizes that we | |
877 | * aren't sending all the data. However, | |
878 | * if we have exactly 1 byte of unsent data, | |
879 | * then it won't clear the FIN bit below, | |
880 | * and if we are in persist state, we wind | |
881 | * up sending the packet without recording | |
882 | * that we sent the FIN bit. | |
883 | * | |
884 | * We can't just blindly clear the FIN bit, | |
885 | * because if we don't have any more data | |
886 | * to send then the probe will be the FIN | |
887 | * itself. | |
888 | */ | |
889 | if (off < so->so_snd.sb_cc) | |
890 | flags &= ~TH_FIN; | |
891 | sendwin = 1; | |
892 | } else { | |
893 | tp->t_timer[TCPT_PERSIST] = 0; | |
894 | tp->t_persist_stop = 0; | |
895 | TCP_RESET_REXMT_STATE(tp); | |
896 | } | |
897 | } | |
898 | ||
899 | /* | |
900 | * If snd_nxt == snd_max and we have transmitted a FIN, the | |
901 | * offset will be > 0 even if so_snd.sb_cc is 0, resulting in | |
902 | * a negative length. This can also occur when TCP opens up | |
903 | * its congestion window while receiving additional duplicate | |
904 | * acks after fast-retransmit because TCP will reset snd_nxt | |
905 | * to snd_max after the fast-retransmit. | |
906 | * | |
907 | * In the normal retransmit-FIN-only case, however, snd_nxt will | |
908 | * be set to snd_una, the offset will be 0, and the length may | |
909 | * wind up 0. | |
910 | * | |
911 | * If sack_rxmit is true we are retransmitting from the scoreboard | |
912 | * in which case len is already set. | |
913 | */ | |
914 | if (sack_rxmit == 0) { | |
915 | if (sack_bytes_rxmt == 0) { | |
916 | len = min(so->so_snd.sb_cc, sendwin) - off; | |
917 | } else { | |
918 | int32_t cwin; | |
919 | ||
920 | cwin = tp->snd_cwnd - | |
921 | (tp->snd_nxt - tp->sack_newdata) - | |
922 | sack_bytes_rxmt; | |
923 | if (cwin < 0) | |
924 | cwin = 0; | |
925 | /* | |
926 | * We are inside of a SACK recovery episode and are | |
927 | * sending new data, having retransmitted all the | |
928 | * data possible in the scoreboard. | |
929 | */ | |
930 | len = min(so->so_snd.sb_cc, tp->snd_wnd) | |
931 | - off; | |
932 | /* | |
933 | * Don't remove this (len > 0) check ! | |
934 | * We explicitly check for len > 0 here (although it | |
935 | * isn't really necessary), to work around a gcc | |
936 | * optimization issue - to force gcc to compute | |
937 | * len above. Without this check, the computation | |
938 | * of len is bungled by the optimizer. | |
939 | */ | |
940 | if (len > 0) { | |
941 | len = imin(len, cwin); | |
942 | } else { | |
943 | len = 0; | |
944 | } | |
945 | /* | |
946 | * At this point SACK recovery can not send any | |
947 | * data from scoreboard or any new data. Check | |
948 | * if we can do a rescue retransmit towards the | |
949 | * tail end of recovery window. | |
950 | */ | |
951 | if (len == 0 && cwin > 0 && | |
952 | SEQ_LT(tp->snd_fack, tp->snd_recover) && | |
953 | !(tp->t_flagsext & TF_RESCUE_RXT)) { | |
954 | len = min((tp->snd_recover - tp->snd_fack), | |
955 | tp->t_maxseg); | |
956 | len = imin(len, cwin); | |
957 | old_snd_nxt = tp->snd_nxt; | |
958 | sack_rescue_rxt = TRUE; | |
959 | tp->snd_nxt = tp->snd_recover - len; | |
960 | /* | |
961 | * If FIN has been sent, snd_max | |
962 | * must have been advanced to cover it. | |
963 | */ | |
964 | if ((tp->t_flags & TF_SENTFIN) && | |
965 | tp->snd_max == tp->snd_recover) | |
966 | tp->snd_nxt--; | |
967 | ||
968 | off = tp->snd_nxt - tp->snd_una; | |
969 | sendalot = 0; | |
970 | tp->t_flagsext |= TF_RESCUE_RXT; | |
971 | } | |
972 | } | |
973 | } | |
974 | ||
975 | /* | |
976 | * Lop off SYN bit if it has already been sent. However, if this | |
977 | * is SYN-SENT state and if segment contains data and if we don't | |
978 | * know that foreign host supports TAO, suppress sending segment. | |
979 | */ | |
980 | if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una)) { | |
981 | if (tp->t_state == TCPS_SYN_RECEIVED && tfo_enabled(tp) && tp->snd_nxt == tp->snd_una + 1) { | |
982 | /* We are sending the SYN again! */ | |
983 | off--; | |
984 | len++; | |
985 | } else { | |
986 | if (tp->t_state != TCPS_SYN_RECEIVED || tfo_enabled(tp)) { | |
987 | flags &= ~TH_SYN; | |
988 | } | |
989 | ||
990 | off--; | |
991 | len++; | |
992 | if (len > 0 && tp->t_state == TCPS_SYN_SENT) { | |
993 | while (inp->inp_sndinprog_cnt == 0 && | |
994 | tp->t_pktlist_head != NULL) { | |
995 | packetlist = tp->t_pktlist_head; | |
996 | packchain_listadd = tp->t_lastchain; | |
997 | packchain_sent++; | |
998 | TCP_PKTLIST_CLEAR(tp); | |
999 | ||
1000 | error = tcp_ip_output(so, tp, packetlist, | |
1001 | packchain_listadd, tp_inp_options, | |
1002 | (so_options & SO_DONTROUTE), | |
1003 | (sack_rxmit || (sack_bytes_rxmt != 0)), | |
1004 | isipv6); | |
1005 | } | |
1006 | ||
1007 | /* | |
1008 | * tcp was closed while we were in ip, | |
1009 | * resume close | |
1010 | */ | |
1011 | if (inp->inp_sndinprog_cnt == 0 && | |
1012 | (tp->t_flags & TF_CLOSING)) { | |
1013 | tp->t_flags &= ~TF_CLOSING; | |
1014 | (void) tcp_close(tp); | |
1015 | } else { | |
1016 | tcp_check_timer_state(tp); | |
1017 | } | |
1018 | KERNEL_DEBUG(DBG_FNC_TCP_OUTPUT | DBG_FUNC_END, | |
1019 | 0,0,0,0,0); | |
1020 | return 0; | |
1021 | } | |
1022 | } | |
1023 | } | |
1024 | ||
1025 | /* | |
1026 | * Be careful not to send data and/or FIN on SYN segments. | |
1027 | * This measure is needed to prevent interoperability problems | |
1028 | * with not fully conformant TCP implementations. | |
1029 | * | |
1030 | * In case of TFO, we handle the setting of the len in | |
1031 | * tcp_tfo_check. In case TFO is not enabled, never ever send | |
1032 | * SYN+data. | |
1033 | */ | |
1034 | if ((flags & TH_SYN) && !tfo_enabled(tp)) { | |
1035 | len = 0; | |
1036 | flags &= ~TH_FIN; | |
1037 | } | |
1038 | ||
1039 | /* | |
1040 | * Don't send a RST with data. | |
1041 | */ | |
1042 | if (flags & TH_RST) | |
1043 | len = 0; | |
1044 | ||
1045 | if ((flags & TH_SYN) && tp->t_state <= TCPS_SYN_SENT && tfo_enabled(tp)) | |
1046 | len = tcp_tfo_check(tp, len); | |
1047 | ||
1048 | /* | |
1049 | * The check here used to be (len < 0). Some times len is zero | |
1050 | * when the congestion window is closed and we need to check | |
1051 | * if persist timer has to be set in that case. But don't set | |
1052 | * persist until connection is established. | |
1053 | */ | |
1054 | if (len <= 0 && !(flags & TH_SYN)) { | |
1055 | /* | |
1056 | * If FIN has been sent but not acked, | |
1057 | * but we haven't been called to retransmit, | |
1058 | * len will be < 0. Otherwise, window shrank | |
1059 | * after we sent into it. If window shrank to 0, | |
1060 | * cancel pending retransmit, pull snd_nxt back | |
1061 | * to (closed) window, and set the persist timer | |
1062 | * if it isn't already going. If the window didn't | |
1063 | * close completely, just wait for an ACK. | |
1064 | */ | |
1065 | len = 0; | |
1066 | if (sendwin == 0) { | |
1067 | tp->t_timer[TCPT_REXMT] = 0; | |
1068 | tp->t_timer[TCPT_PTO] = 0; | |
1069 | TCP_RESET_REXMT_STATE(tp); | |
1070 | tp->snd_nxt = tp->snd_una; | |
1071 | off = 0; | |
1072 | if (tp->t_timer[TCPT_PERSIST] == 0) | |
1073 | tcp_setpersist(tp); | |
1074 | } | |
1075 | } | |
1076 | ||
1077 | /* | |
1078 | * Automatic sizing of send socket buffer. Increase the send | |
1079 | * socket buffer size if all of the following criteria are met | |
1080 | * 1. the receiver has enough buffer space for this data | |
1081 | * 2. send buffer is filled to 7/8th with data (so we actually | |
1082 | * have data to make use of it); | |
1083 | * 3. our send window (slow start and congestion controlled) is | |
1084 | * larger than sent but unacknowledged data in send buffer. | |
1085 | */ | |
1086 | if (tcp_do_autosendbuf == 1 && | |
1087 | !INP_WAIT_FOR_IF_FEEDBACK(inp) && !IN_FASTRECOVERY(tp) && | |
1088 | (so->so_snd.sb_flags & (SB_AUTOSIZE | SB_TRIM)) == SB_AUTOSIZE && | |
1089 | tcp_cansbgrow(&so->so_snd)) { | |
1090 | if ((tp->snd_wnd / 4 * 5) >= so->so_snd.sb_hiwat && | |
1091 | so->so_snd.sb_cc >= (so->so_snd.sb_hiwat / 8 * 7) && | |
1092 | sendwin >= (so->so_snd.sb_cc - (tp->snd_nxt - tp->snd_una))) { | |
1093 | if (sbreserve(&so->so_snd, | |
1094 | min(so->so_snd.sb_hiwat + tcp_autosndbuf_inc, | |
1095 | tcp_autosndbuf_max)) == 1) { | |
1096 | so->so_snd.sb_idealsize = so->so_snd.sb_hiwat; | |
1097 | } | |
1098 | } | |
1099 | } | |
1100 | ||
1101 | /* | |
1102 | * Truncate to the maximum segment length or enable TCP Segmentation | |
1103 | * Offloading (if supported by hardware) and ensure that FIN is removed | |
1104 | * if the length no longer contains the last data byte. | |
1105 | * | |
1106 | * TSO may only be used if we are in a pure bulk sending state. | |
1107 | * The presence of TCP-MD5, SACK retransmits, SACK advertizements, | |
1108 | * ipfw rules and IP options, as well as disabling hardware checksum | |
1109 | * offload prevent using TSO. With TSO the TCP header is the same | |
1110 | * (except for the sequence number) for all generated packets. This | |
1111 | * makes it impossible to transmit any options which vary per generated | |
1112 | * segment or packet. | |
1113 | * | |
1114 | * The length of TSO bursts is limited to TCP_MAXWIN. That limit and | |
1115 | * removal of FIN (if not already catched here) are handled later after | |
1116 | * the exact length of the TCP options are known. | |
1117 | */ | |
1118 | #if IPSEC | |
1119 | /* | |
1120 | * Pre-calculate here as we save another lookup into the darknesses | |
1121 | * of IPsec that way and can actually decide if TSO is ok. | |
1122 | */ | |
1123 | if (ipsec_bypass == 0) | |
1124 | ipsec_optlen = ipsec_hdrsiz_tcp(tp); | |
1125 | #endif | |
1126 | if (len > tp->t_maxseg) { | |
1127 | if ((tp->t_flags & TF_TSO) && tcp_do_tso && hwcksum_tx && | |
1128 | ip_use_randomid && kipf_count == 0 && | |
1129 | dlil_filter_disable_tso_count == 0 && | |
1130 | tp->rcv_numsacks == 0 && sack_rxmit == 0 && | |
1131 | sack_bytes_rxmt == 0 && | |
1132 | inp->inp_options == NULL && | |
1133 | inp->in6p_options == NULL | |
1134 | #if IPSEC | |
1135 | && ipsec_optlen == 0 | |
1136 | #endif | |
1137 | #if IPFIREWALL | |
1138 | && (fw_enable == 0 || fw_bypass) | |
1139 | #endif | |
1140 | ) { | |
1141 | tso = 1; | |
1142 | sendalot = 0; | |
1143 | } else { | |
1144 | len = tp->t_maxseg; | |
1145 | sendalot = 1; | |
1146 | tso = 0; | |
1147 | } | |
1148 | } | |
1149 | ||
1150 | /* Send one segment or less as a tail loss probe */ | |
1151 | if (tp->t_flagsext & TF_SENT_TLPROBE) { | |
1152 | len = min(len, tp->t_maxseg); | |
1153 | sendalot = 0; | |
1154 | tso = 0; | |
1155 | } | |
1156 | ||
1157 | #if MPTCP | |
1158 | if (so->so_flags & SOF_MP_SUBFLOW && off < 0) { | |
1159 | os_log_error(mptcp_log_handle, "%s - %lx: offset is negative! len %d off %d\n", | |
1160 | __func__, (unsigned long)VM_KERNEL_ADDRPERM(tp->t_mpsub->mpts_mpte), | |
1161 | len, off); | |
1162 | } | |
1163 | ||
1164 | if ((so->so_flags & SOF_MP_SUBFLOW) && | |
1165 | !(tp->t_mpflags & TMPF_TCP_FALLBACK)) { | |
1166 | int newlen = len; | |
1167 | if (tp->t_state >= TCPS_ESTABLISHED && | |
1168 | (tp->t_mpflags & TMPF_SND_MPPRIO || | |
1169 | tp->t_mpflags & TMPF_SND_REM_ADDR || | |
1170 | tp->t_mpflags & TMPF_SND_MPFAIL || | |
1171 | tp->t_mpflags & TMPF_SND_KEYS || | |
1172 | tp->t_mpflags & TMPF_SND_JACK)) { | |
1173 | if (len > 0) { | |
1174 | len = 0; | |
1175 | } | |
1176 | /* | |
1177 | * On a new subflow, don't try to send again, because | |
1178 | * we are still waiting for the fourth ack. | |
1179 | */ | |
1180 | if (!(tp->t_mpflags & TMPF_PREESTABLISHED)) | |
1181 | sendalot = 1; | |
1182 | mptcp_acknow = TRUE; | |
1183 | } else { | |
1184 | mptcp_acknow = FALSE; | |
1185 | } | |
1186 | /* | |
1187 | * The contiguous bytes in the subflow socket buffer can be | |
1188 | * discontiguous at the MPTCP level. Since only one DSS | |
1189 | * option can be sent in one packet, reduce length to match | |
1190 | * the contiguous MPTCP level. Set sendalot to send remainder. | |
1191 | */ | |
1192 | if (len > 0 && off >= 0) { | |
1193 | newlen = mptcp_adj_sendlen(so, off); | |
1194 | } | |
1195 | ||
1196 | if (newlen < len) { | |
1197 | len = newlen; | |
1198 | } | |
1199 | } | |
1200 | #endif /* MPTCP */ | |
1201 | ||
1202 | /* | |
1203 | * If the socket is capable of doing unordered send, | |
1204 | * pull the amount of data that can be sent from the | |
1205 | * unordered priority queues to the serial queue in | |
1206 | * the socket buffer. If bytes are not yet available | |
1207 | * in the highest priority message, we may not be able | |
1208 | * to send any new data. | |
1209 | */ | |
1210 | if (so->so_flags & SOF_ENABLE_MSGS) { | |
1211 | if ((off + len) > | |
1212 | so->so_msg_state->msg_serial_bytes) { | |
1213 | sbpull_unordered_data(so, off, len); | |
1214 | ||
1215 | /* check if len needs to be modified */ | |
1216 | if ((off + len) > | |
1217 | so->so_msg_state->msg_serial_bytes) { | |
1218 | len = so->so_msg_state->msg_serial_bytes - off; | |
1219 | if (len <= 0) { | |
1220 | len = 0; | |
1221 | tcpstat.tcps_msg_sndwaithipri++; | |
1222 | } | |
1223 | } | |
1224 | } | |
1225 | } | |
1226 | ||
1227 | if (sack_rxmit) { | |
1228 | if (SEQ_LT(p->rxmit + len, tp->snd_una + so->so_snd.sb_cc)) | |
1229 | flags &= ~TH_FIN; | |
1230 | } else { | |
1231 | if (SEQ_LT(tp->snd_nxt + len, tp->snd_una + so->so_snd.sb_cc)) | |
1232 | flags &= ~TH_FIN; | |
1233 | } | |
1234 | /* | |
1235 | * Compare available window to amount of window | |
1236 | * known to peer (as advertised window less | |
1237 | * next expected input). If the difference is at least two | |
1238 | * max size segments, or at least 25% of the maximum possible | |
1239 | * window, then want to send a window update to peer. | |
1240 | */ | |
1241 | recwin = tcp_sbspace(tp); | |
1242 | ||
1243 | if (!(so->so_flags & SOF_MP_SUBFLOW)) { | |
1244 | if (recwin < (int32_t)(so->so_rcv.sb_hiwat / 4) && | |
1245 | recwin < (int)tp->t_maxseg) { | |
1246 | recwin = 0; | |
1247 | } | |
1248 | } else { | |
1249 | struct mptcb *mp_tp = tptomptp(tp); | |
1250 | struct socket *mp_so = mptetoso(mp_tp->mpt_mpte); | |
1251 | ||
1252 | if (recwin < (int32_t)(mp_so->so_rcv.sb_hiwat / 4) && | |
1253 | recwin < (int)tp->t_maxseg) { | |
1254 | recwin = 0; | |
1255 | } | |
1256 | } | |
1257 | ||
1258 | #if TRAFFIC_MGT | |
1259 | if (tcp_recv_bg == 1 || IS_TCP_RECV_BG(so)) { | |
1260 | if (recwin > 0 && tcp_recv_throttle(tp)) { | |
1261 | uint32_t min_iaj_win = tcp_min_iaj_win * tp->t_maxseg; | |
1262 | uint32_t bg_rwintop = tp->rcv_adv; | |
1263 | if (SEQ_LT(bg_rwintop, tp->rcv_nxt + min_iaj_win)) | |
1264 | bg_rwintop = tp->rcv_nxt + min_iaj_win; | |
1265 | recwin = imin((int32_t)(bg_rwintop - tp->rcv_nxt), | |
1266 | recwin); | |
1267 | if (recwin < 0) | |
1268 | recwin = 0; | |
1269 | } | |
1270 | } | |
1271 | #endif /* TRAFFIC_MGT */ | |
1272 | ||
1273 | if (recwin > (int32_t)(TCP_MAXWIN << tp->rcv_scale)) | |
1274 | recwin = (int32_t)(TCP_MAXWIN << tp->rcv_scale); | |
1275 | ||
1276 | if (!(so->so_flags & SOF_MP_SUBFLOW)) { | |
1277 | if (recwin < (int32_t)(tp->rcv_adv - tp->rcv_nxt)) { | |
1278 | recwin = (int32_t)(tp->rcv_adv - tp->rcv_nxt); | |
1279 | } | |
1280 | } else { | |
1281 | struct mptcb *mp_tp = tptomptp(tp); | |
1282 | ||
1283 | /* Don't remove what we announced at the MPTCP-layer */ | |
1284 | if (recwin < (int32_t)(mp_tp->mpt_rcvadv - (uint32_t)mp_tp->mpt_rcvnxt)) { | |
1285 | recwin = (int32_t)(mp_tp->mpt_rcvadv - (uint32_t)mp_tp->mpt_rcvnxt); | |
1286 | } | |
1287 | } | |
1288 | ||
1289 | /* | |
1290 | * Sender silly window avoidance. We transmit under the following | |
1291 | * conditions when len is non-zero: | |
1292 | * | |
1293 | * - we've timed out (e.g. persist timer) | |
1294 | * - we need to retransmit | |
1295 | * - We have a full segment (or more with TSO) | |
1296 | * - This is the last buffer in a write()/send() and we are | |
1297 | * either idle or running NODELAY | |
1298 | * - we have more then 1/2 the maximum send window's worth of | |
1299 | * data (receiver may be limited the window size) | |
1300 | */ | |
1301 | if (len) { | |
1302 | if (tp->t_flagsext & TF_FORCE) | |
1303 | goto send; | |
1304 | if (SEQ_LT(tp->snd_nxt, tp->snd_max)) | |
1305 | goto send; | |
1306 | if (sack_rxmit) | |
1307 | goto send; | |
1308 | ||
1309 | /* | |
1310 | * If this here is the first segment after SYN/ACK and TFO | |
1311 | * is being used, then we always send it, regardless of Nagle,... | |
1312 | */ | |
1313 | if (tp->t_state == TCPS_SYN_RECEIVED && | |
1314 | tfo_enabled(tp) && | |
1315 | (tp->t_tfo_flags & TFO_F_COOKIE_VALID) && | |
1316 | tp->snd_nxt == tp->iss + 1) | |
1317 | goto send; | |
1318 | ||
1319 | /* | |
1320 | * Send new data on the connection only if it is | |
1321 | * not flow controlled | |
1322 | */ | |
1323 | if (!INP_WAIT_FOR_IF_FEEDBACK(inp) || | |
1324 | tp->t_state != TCPS_ESTABLISHED) { | |
1325 | if (len >= tp->t_maxseg) | |
1326 | goto send; | |
1327 | ||
1328 | if (!(tp->t_flags & TF_MORETOCOME) && | |
1329 | (idle || tp->t_flags & TF_NODELAY || | |
1330 | (tp->t_flags & TF_MAXSEGSNT) || | |
1331 | ALLOW_LIMITED_TRANSMIT(tp)) && | |
1332 | (tp->t_flags & TF_NOPUSH) == 0 && | |
1333 | (len + off >= so->so_snd.sb_cc || | |
1334 | /* | |
1335 | * MPTCP needs to respect the DSS-mappings. So, it | |
1336 | * may be sending data that *could* have been | |
1337 | * coalesced, but cannot because of | |
1338 | * mptcp_adj_sendlen(). | |
1339 | */ | |
1340 | so->so_flags & SOF_MP_SUBFLOW)) | |
1341 | goto send; | |
1342 | if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) | |
1343 | goto send; | |
1344 | } else { | |
1345 | tcpstat.tcps_fcholdpacket++; | |
1346 | } | |
1347 | } | |
1348 | ||
1349 | if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN)) { | |
1350 | /* | |
1351 | * "adv" is the amount we can increase the window, | |
1352 | * taking into account that we are limited by | |
1353 | * TCP_MAXWIN << tp->rcv_scale. | |
1354 | */ | |
1355 | int32_t adv, oldwin = 0; | |
1356 | adv = imin(recwin, (int)TCP_MAXWIN << tp->rcv_scale) - | |
1357 | (tp->rcv_adv - tp->rcv_nxt); | |
1358 | ||
1359 | if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) | |
1360 | oldwin = tp->rcv_adv - tp->rcv_nxt; | |
1361 | ||
1362 | if (adv >= (int32_t) (2 * tp->t_maxseg)) { | |
1363 | /* | |
1364 | * Update only if the resulting scaled value of | |
1365 | * the window changed, or if there is a change in | |
1366 | * the sequence since the last ack. This avoids | |
1367 | * what appears as dupe ACKS (see rdar://5640997) | |
1368 | * | |
1369 | * If streaming is detected avoid sending too many | |
1370 | * window updates. We will depend on the delack | |
1371 | * timer to send a window update when needed. | |
1372 | */ | |
1373 | if (!(tp->t_flags & TF_STRETCHACK) && | |
1374 | (tp->last_ack_sent != tp->rcv_nxt || | |
1375 | ((oldwin + adv) >> tp->rcv_scale) > | |
1376 | (oldwin >> tp->rcv_scale))) { | |
1377 | goto send; | |
1378 | } | |
1379 | ||
1380 | } | |
1381 | if (4 * adv >= (int32_t) so->so_rcv.sb_hiwat) | |
1382 | goto send; | |
1383 | ||
1384 | /* | |
1385 | * Make sure that the delayed ack timer is set if | |
1386 | * we delayed sending a window update because of | |
1387 | * streaming detection. | |
1388 | */ | |
1389 | if ((tp->t_flags & TF_STRETCHACK) && | |
1390 | !(tp->t_flags & TF_DELACK)) { | |
1391 | tp->t_flags |= TF_DELACK; | |
1392 | tp->t_timer[TCPT_DELACK] = | |
1393 | OFFSET_FROM_START(tp, tcp_delack); | |
1394 | } | |
1395 | } | |
1396 | ||
1397 | /* | |
1398 | * Send if we owe the peer an ACK, RST, SYN, or urgent data. ACKNOW | |
1399 | * is also a catch-all for the retransmit timer timeout case. | |
1400 | */ | |
1401 | if (tp->t_flags & TF_ACKNOW) | |
1402 | goto send; | |
1403 | if ((flags & TH_RST) || | |
1404 | ((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) | |
1405 | goto send; | |
1406 | if (SEQ_GT(tp->snd_up, tp->snd_una)) | |
1407 | goto send; | |
1408 | #if MPTCP | |
1409 | if (mptcp_acknow) | |
1410 | goto send; | |
1411 | #endif /* MPTCP */ | |
1412 | /* | |
1413 | * If our state indicates that FIN should be sent | |
1414 | * and we have not yet done so, then we need to send. | |
1415 | */ | |
1416 | if ((flags & TH_FIN) && | |
1417 | (!(tp->t_flags & TF_SENTFIN) || tp->snd_nxt == tp->snd_una)) | |
1418 | goto send; | |
1419 | /* | |
1420 | * In SACK, it is possible for tcp_output to fail to send a segment | |
1421 | * after the retransmission timer has been turned off. Make sure | |
1422 | * that the retransmission timer is set. | |
1423 | */ | |
1424 | if (SACK_ENABLED(tp) && (tp->t_state >= TCPS_ESTABLISHED) && | |
1425 | SEQ_GT(tp->snd_max, tp->snd_una) && | |
1426 | tp->t_timer[TCPT_REXMT] == 0 && | |
1427 | tp->t_timer[TCPT_PERSIST] == 0) { | |
1428 | tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, | |
1429 | tp->t_rxtcur); | |
1430 | goto just_return; | |
1431 | } | |
1432 | /* | |
1433 | * TCP window updates are not reliable, rather a polling protocol | |
1434 | * using ``persist'' packets is used to insure receipt of window | |
1435 | * updates. The three ``states'' for the output side are: | |
1436 | * idle not doing retransmits or persists | |
1437 | * persisting to move a small or zero window | |
1438 | * (re)transmitting and thereby not persisting | |
1439 | * | |
1440 | * tp->t_timer[TCPT_PERSIST] | |
1441 | * is set when we are in persist state. | |
1442 | * tp->t_force | |
1443 | * is set when we are called to send a persist packet. | |
1444 | * tp->t_timer[TCPT_REXMT] | |
1445 | * is set when we are retransmitting | |
1446 | * The output side is idle when both timers are zero. | |
1447 | * | |
1448 | * If send window is too small, there is data to transmit, and no | |
1449 | * retransmit or persist is pending, then go to persist state. | |
1450 | * If nothing happens soon, send when timer expires: | |
1451 | * if window is nonzero, transmit what we can, | |
1452 | * otherwise force out a byte. | |
1453 | */ | |
1454 | if (so->so_snd.sb_cc && tp->t_timer[TCPT_REXMT] == 0 && | |
1455 | tp->t_timer[TCPT_PERSIST] == 0) { | |
1456 | TCP_RESET_REXMT_STATE(tp); | |
1457 | tcp_setpersist(tp); | |
1458 | } | |
1459 | just_return: | |
1460 | /* | |
1461 | * If there is no reason to send a segment, just return. | |
1462 | * but if there is some packets left in the packet list, send them now. | |
1463 | */ | |
1464 | while (inp->inp_sndinprog_cnt == 0 && | |
1465 | tp->t_pktlist_head != NULL) { | |
1466 | packetlist = tp->t_pktlist_head; | |
1467 | packchain_listadd = tp->t_lastchain; | |
1468 | packchain_sent++; | |
1469 | TCP_PKTLIST_CLEAR(tp); | |
1470 | ||
1471 | error = tcp_ip_output(so, tp, packetlist, | |
1472 | packchain_listadd, | |
1473 | tp_inp_options, (so_options & SO_DONTROUTE), | |
1474 | (sack_rxmit || (sack_bytes_rxmt != 0)), isipv6); | |
1475 | } | |
1476 | /* tcp was closed while we were in ip; resume close */ | |
1477 | if (inp->inp_sndinprog_cnt == 0 && | |
1478 | (tp->t_flags & TF_CLOSING)) { | |
1479 | tp->t_flags &= ~TF_CLOSING; | |
1480 | (void) tcp_close(tp); | |
1481 | } else { | |
1482 | tcp_check_timer_state(tp); | |
1483 | } | |
1484 | KERNEL_DEBUG(DBG_FNC_TCP_OUTPUT | DBG_FUNC_END, 0,0,0,0,0); | |
1485 | return 0; | |
1486 | ||
1487 | send: | |
1488 | /* | |
1489 | * Set TF_MAXSEGSNT flag if the segment size is greater than | |
1490 | * the max segment size. | |
1491 | */ | |
1492 | if (len > 0) { | |
1493 | if (len >= tp->t_maxseg) | |
1494 | tp->t_flags |= TF_MAXSEGSNT; | |
1495 | else | |
1496 | tp->t_flags &= ~TF_MAXSEGSNT; | |
1497 | } | |
1498 | /* | |
1499 | * Before ESTABLISHED, force sending of initial options | |
1500 | * unless TCP set not to do any options. | |
1501 | * NOTE: we assume that the IP/TCP header plus TCP options | |
1502 | * always fit in a single mbuf, leaving room for a maximum | |
1503 | * link header, i.e. | |
1504 | * max_linkhdr + sizeof (struct tcpiphdr) + optlen <= MCLBYTES | |
1505 | */ | |
1506 | optlen = 0; | |
1507 | #if INET6 | |
1508 | if (isipv6) | |
1509 | hdrlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr); | |
1510 | else | |
1511 | #endif | |
1512 | hdrlen = sizeof (struct tcpiphdr); | |
1513 | if (flags & TH_SYN) { | |
1514 | tp->snd_nxt = tp->iss; | |
1515 | if ((tp->t_flags & TF_NOOPT) == 0) { | |
1516 | u_short mss; | |
1517 | ||
1518 | opt[0] = TCPOPT_MAXSEG; | |
1519 | opt[1] = TCPOLEN_MAXSEG; | |
1520 | mss = htons((u_short) tcp_mssopt(tp)); | |
1521 | (void)memcpy(opt + 2, &mss, sizeof(mss)); | |
1522 | optlen = TCPOLEN_MAXSEG; | |
1523 | ||
1524 | if ((tp->t_flags & TF_REQ_SCALE) && | |
1525 | ((flags & TH_ACK) == 0 || | |
1526 | (tp->t_flags & TF_RCVD_SCALE))) { | |
1527 | *((u_int32_t *)(void *)(opt + optlen)) = htonl( | |
1528 | TCPOPT_NOP << 24 | | |
1529 | TCPOPT_WINDOW << 16 | | |
1530 | TCPOLEN_WINDOW << 8 | | |
1531 | tp->request_r_scale); | |
1532 | optlen += 4; | |
1533 | } | |
1534 | #if MPTCP | |
1535 | if (mptcp_enable && (so->so_flags & SOF_MP_SUBFLOW)) { | |
1536 | optlen = mptcp_setup_syn_opts(so, opt, optlen); | |
1537 | } | |
1538 | #endif /* MPTCP */ | |
1539 | } | |
1540 | } | |
1541 | ||
1542 | /* | |
1543 | * Send a timestamp and echo-reply if this is a SYN and our side | |
1544 | * wants to use timestamps (TF_REQ_TSTMP is set) or both our side | |
1545 | * and our peer have sent timestamps in our SYN's. | |
1546 | */ | |
1547 | if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP && | |
1548 | (flags & TH_RST) == 0 && | |
1549 | ((flags & TH_ACK) == 0 || | |
1550 | (tp->t_flags & TF_RCVD_TSTMP))) { | |
1551 | u_int32_t *lp = (u_int32_t *)(void *)(opt + optlen); | |
1552 | ||
1553 | /* Form timestamp option as shown in appendix A of RFC 1323. */ | |
1554 | *lp++ = htonl(TCPOPT_TSTAMP_HDR); | |
1555 | *lp++ = htonl(tcp_now); | |
1556 | *lp = htonl(tp->ts_recent); | |
1557 | optlen += TCPOLEN_TSTAMP_APPA; | |
1558 | } | |
1559 | ||
1560 | /* Note the timestamp for receive buffer autosizing */ | |
1561 | if (tp->rfbuf_ts == 0 && (so->so_rcv.sb_flags & SB_AUTOSIZE)) | |
1562 | tp->rfbuf_ts = tcp_now; | |
1563 | ||
1564 | if (SACK_ENABLED(tp) && ((tp->t_flags & TF_NOOPT) == 0)) { | |
1565 | /* | |
1566 | * Tack on the SACK permitted option *last*. | |
1567 | * And do padding of options after tacking this on. | |
1568 | * This is because of MSS, TS, WinScale and Signatures are | |
1569 | * all present, we have just 2 bytes left for the SACK | |
1570 | * permitted option, which is just enough. | |
1571 | */ | |
1572 | /* | |
1573 | * If this is the first SYN of connection (not a SYN | |
1574 | * ACK), include SACK permitted option. If this is a | |
1575 | * SYN ACK, include SACK permitted option if peer has | |
1576 | * already done so. This is only for active connect, | |
1577 | * since the syncache takes care of the passive connect. | |
1578 | */ | |
1579 | if ((flags & TH_SYN) && | |
1580 | (!(flags & TH_ACK) || (tp->t_flags & TF_SACK_PERMIT))) { | |
1581 | u_char *bp; | |
1582 | bp = (u_char *)opt + optlen; | |
1583 | ||
1584 | *bp++ = TCPOPT_SACK_PERMITTED; | |
1585 | *bp++ = TCPOLEN_SACK_PERMITTED; | |
1586 | optlen += TCPOLEN_SACK_PERMITTED; | |
1587 | } | |
1588 | } | |
1589 | #if MPTCP | |
1590 | if (so->so_flags & SOF_MP_SUBFLOW) { | |
1591 | /* | |
1592 | * Its important to piggyback acks with data as ack only packets | |
1593 | * may get lost and data packets that don't send Data ACKs | |
1594 | * still advance the subflow level ACK and therefore make it | |
1595 | * hard for the remote end to recover in low cwnd situations. | |
1596 | */ | |
1597 | if (len != 0) { | |
1598 | tp->t_mpflags |= (TMPF_SEND_DSN | | |
1599 | TMPF_MPTCP_ACKNOW); | |
1600 | } else { | |
1601 | tp->t_mpflags |= TMPF_MPTCP_ACKNOW; | |
1602 | } | |
1603 | optlen = mptcp_setup_opts(tp, off, &opt[0], optlen, flags, | |
1604 | len, &mptcp_acknow); | |
1605 | tp->t_mpflags &= ~TMPF_SEND_DSN; | |
1606 | } | |
1607 | #endif /* MPTCP */ | |
1608 | ||
1609 | if (tfo_enabled(tp) && !(tp->t_flags & TF_NOOPT) && | |
1610 | (flags & (TH_SYN | TH_ACK)) == TH_SYN) | |
1611 | optlen += tcp_tfo_write_cookie(tp, optlen, len, opt); | |
1612 | ||
1613 | if (tfo_enabled(tp) && | |
1614 | (flags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK) && | |
1615 | (tp->t_tfo_flags & TFO_F_OFFER_COOKIE)) | |
1616 | optlen += tcp_tfo_write_cookie_rep(tp, optlen, opt); | |
1617 | ||
1618 | if (SACK_ENABLED(tp) && ((tp->t_flags & TF_NOOPT) == 0)) { | |
1619 | /* | |
1620 | * Send SACKs if necessary. This should be the last | |
1621 | * option processed. Only as many SACKs are sent as | |
1622 | * are permitted by the maximum options size. | |
1623 | * | |
1624 | * In general, SACK blocks consume 8*n+2 bytes. | |
1625 | * So a full size SACK blocks option is 34 bytes | |
1626 | * (to generate 4 SACK blocks). At a minimum, | |
1627 | * we need 10 bytes (to generate 1 SACK block). | |
1628 | * If TCP Timestamps (12 bytes) and TCP Signatures | |
1629 | * (18 bytes) are both present, we'll just have | |
1630 | * 10 bytes for SACK options 40 - (12 + 18). | |
1631 | */ | |
1632 | if (TCPS_HAVEESTABLISHED(tp->t_state) && | |
1633 | (tp->t_flags & TF_SACK_PERMIT) && | |
1634 | (tp->rcv_numsacks > 0 || TCP_SEND_DSACK_OPT(tp)) && | |
1635 | MAX_TCPOPTLEN - optlen - 2 >= TCPOLEN_SACK) { | |
1636 | int nsack, padlen; | |
1637 | u_char *bp = (u_char *)opt + optlen; | |
1638 | u_int32_t *lp; | |
1639 | ||
1640 | nsack = (MAX_TCPOPTLEN - optlen - 2) / TCPOLEN_SACK; | |
1641 | nsack = min(nsack, (tp->rcv_numsacks + | |
1642 | (TCP_SEND_DSACK_OPT(tp) ? 1 : 0))); | |
1643 | sackoptlen = (2 + nsack * TCPOLEN_SACK); | |
1644 | ||
1645 | /* | |
1646 | * First we need to pad options so that the | |
1647 | * SACK blocks can start at a 4-byte boundary | |
1648 | * (sack option and length are at a 2 byte offset). | |
1649 | */ | |
1650 | padlen = (MAX_TCPOPTLEN - optlen - sackoptlen) % 4; | |
1651 | optlen += padlen; | |
1652 | while (padlen-- > 0) | |
1653 | *bp++ = TCPOPT_NOP; | |
1654 | ||
1655 | tcpstat.tcps_sack_send_blocks++; | |
1656 | *bp++ = TCPOPT_SACK; | |
1657 | *bp++ = sackoptlen; | |
1658 | lp = (u_int32_t *)(void *)bp; | |
1659 | ||
1660 | /* | |
1661 | * First block of SACK option should represent | |
1662 | * DSACK. Prefer to send SACK information if there | |
1663 | * is space for only one SACK block. This will | |
1664 | * allow for faster recovery. | |
1665 | */ | |
1666 | if (TCP_SEND_DSACK_OPT(tp) && nsack > 0 && | |
1667 | (tp->rcv_numsacks == 0 || nsack > 1)) { | |
1668 | *lp++ = htonl(tp->t_dsack_lseq); | |
1669 | *lp++ = htonl(tp->t_dsack_rseq); | |
1670 | tcpstat.tcps_dsack_sent++; | |
1671 | tp->t_dsack_sent++; | |
1672 | nsack--; | |
1673 | } | |
1674 | VERIFY(nsack == 0 || tp->rcv_numsacks >= nsack); | |
1675 | for (i = 0; i < nsack; i++) { | |
1676 | struct sackblk sack = tp->sackblks[i]; | |
1677 | *lp++ = htonl(sack.start); | |
1678 | *lp++ = htonl(sack.end); | |
1679 | } | |
1680 | optlen += sackoptlen; | |
1681 | } | |
1682 | } | |
1683 | ||
1684 | /* Pad TCP options to a 4 byte boundary */ | |
1685 | if (optlen < MAX_TCPOPTLEN && (optlen % sizeof(u_int32_t))) { | |
1686 | int pad = sizeof(u_int32_t) - (optlen % sizeof(u_int32_t)); | |
1687 | u_char *bp = (u_char *)opt + optlen; | |
1688 | ||
1689 | optlen += pad; | |
1690 | while (pad) { | |
1691 | *bp++ = TCPOPT_EOL; | |
1692 | pad--; | |
1693 | } | |
1694 | } | |
1695 | ||
1696 | /* | |
1697 | * RFC 3168 states that: | |
1698 | * - If you ever sent an ECN-setup SYN/SYN-ACK you must be prepared | |
1699 | * to handle the TCP ECE flag, even if you also later send a | |
1700 | * non-ECN-setup SYN/SYN-ACK. | |
1701 | * - If you ever send a non-ECN-setup SYN/SYN-ACK, you must not set | |
1702 | * the ip ECT flag. | |
1703 | * | |
1704 | * It is not clear how the ECE flag would ever be set if you never | |
1705 | * set the IP ECT flag on outbound packets. All the same, we use | |
1706 | * the TE_SETUPSENT to indicate that we have committed to handling | |
1707 | * the TCP ECE flag correctly. We use the TE_SENDIPECT to indicate | |
1708 | * whether or not we should set the IP ECT flag on outbound packet | |
1709 | * | |
1710 | * For a SYN-ACK, send an ECN setup SYN-ACK | |
1711 | */ | |
1712 | if ((flags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK) && | |
1713 | (tp->ecn_flags & TE_ENABLE_ECN)) { | |
1714 | if (tp->ecn_flags & TE_SETUPRECEIVED) { | |
1715 | if (tcp_send_ecn_flags_on_syn(tp, so)) { | |
1716 | /* | |
1717 | * Setting TH_ECE makes this an ECN-setup | |
1718 | * SYN-ACK | |
1719 | */ | |
1720 | flags |= TH_ECE; | |
1721 | ||
1722 | /* | |
1723 | * Record that we sent the ECN-setup and | |
1724 | * default to setting IP ECT. | |
1725 | */ | |
1726 | tp->ecn_flags |= (TE_SETUPSENT|TE_SENDIPECT); | |
1727 | tcpstat.tcps_ecn_server_setup++; | |
1728 | tcpstat.tcps_ecn_server_success++; | |
1729 | } else { | |
1730 | /* | |
1731 | * We sent an ECN-setup SYN-ACK but it was | |
1732 | * dropped. Fallback to non-ECN-setup | |
1733 | * SYN-ACK and clear flag to indicate that | |
1734 | * we should not send data with IP ECT set | |
1735 | * | |
1736 | * Pretend we didn't receive an | |
1737 | * ECN-setup SYN. | |
1738 | * | |
1739 | * We already incremented the counter | |
1740 | * assuming that the ECN setup will | |
1741 | * succeed. Decrementing here | |
1742 | * tcps_ecn_server_success to correct it. | |
1743 | */ | |
1744 | if (tp->ecn_flags & TE_SETUPSENT) { | |
1745 | tcpstat.tcps_ecn_lost_synack++; | |
1746 | tcpstat.tcps_ecn_server_success--; | |
1747 | tp->ecn_flags |= TE_LOST_SYNACK; | |
1748 | } | |
1749 | ||
1750 | tp->ecn_flags &= | |
1751 | ~(TE_SETUPRECEIVED | TE_SENDIPECT | | |
1752 | TE_SENDCWR); | |
1753 | } | |
1754 | } | |
1755 | } else if ((flags & (TH_SYN | TH_ACK)) == TH_SYN && | |
1756 | (tp->ecn_flags & TE_ENABLE_ECN)) { | |
1757 | if (tcp_send_ecn_flags_on_syn(tp, so)) { | |
1758 | /* | |
1759 | * Setting TH_ECE and TH_CWR makes this an | |
1760 | * ECN-setup SYN | |
1761 | */ | |
1762 | flags |= (TH_ECE | TH_CWR); | |
1763 | tcpstat.tcps_ecn_client_setup++; | |
1764 | tp->ecn_flags |= TE_CLIENT_SETUP; | |
1765 | ||
1766 | /* | |
1767 | * Record that we sent the ECN-setup and default to | |
1768 | * setting IP ECT. | |
1769 | */ | |
1770 | tp->ecn_flags |= (TE_SETUPSENT | TE_SENDIPECT); | |
1771 | } else { | |
1772 | /* | |
1773 | * We sent an ECN-setup SYN but it was dropped. | |
1774 | * Fall back to non-ECN and clear flag indicating | |
1775 | * we should send data with IP ECT set. | |
1776 | */ | |
1777 | if (tp->ecn_flags & TE_SETUPSENT) { | |
1778 | tcpstat.tcps_ecn_lost_syn++; | |
1779 | tp->ecn_flags |= TE_LOST_SYN; | |
1780 | } | |
1781 | tp->ecn_flags &= ~TE_SENDIPECT; | |
1782 | } | |
1783 | } | |
1784 | ||
1785 | /* | |
1786 | * Check if we should set the TCP CWR flag. | |
1787 | * CWR flag is sent when we reduced the congestion window because | |
1788 | * we received a TCP ECE or we performed a fast retransmit. We | |
1789 | * never set the CWR flag on retransmitted packets. We only set | |
1790 | * the CWR flag on data packets. Pure acks don't have this set. | |
1791 | */ | |
1792 | if ((tp->ecn_flags & TE_SENDCWR) != 0 && len != 0 && | |
1793 | !SEQ_LT(tp->snd_nxt, tp->snd_max) && !sack_rxmit) { | |
1794 | flags |= TH_CWR; | |
1795 | tp->ecn_flags &= ~TE_SENDCWR; | |
1796 | } | |
1797 | ||
1798 | /* | |
1799 | * Check if we should set the TCP ECE flag. | |
1800 | */ | |
1801 | if ((tp->ecn_flags & TE_SENDECE) != 0 && len == 0) { | |
1802 | flags |= TH_ECE; | |
1803 | tcpstat.tcps_ecn_sent_ece++; | |
1804 | } | |
1805 | ||
1806 | ||
1807 | hdrlen += optlen; | |
1808 | ||
1809 | /* Reset DSACK sequence numbers */ | |
1810 | tp->t_dsack_lseq = 0; | |
1811 | tp->t_dsack_rseq = 0; | |
1812 | ||
1813 | #if INET6 | |
1814 | if (isipv6) | |
1815 | ipoptlen = ip6_optlen(inp); | |
1816 | else | |
1817 | #endif | |
1818 | { | |
1819 | if (tp_inp_options) { | |
1820 | ipoptlen = tp_inp_options->m_len - | |
1821 | offsetof(struct ipoption, ipopt_list); | |
1822 | } else { | |
1823 | ipoptlen = 0; | |
1824 | } | |
1825 | } | |
1826 | #if IPSEC | |
1827 | ipoptlen += ipsec_optlen; | |
1828 | #endif | |
1829 | ||
1830 | /* | |
1831 | * Adjust data length if insertion of options will | |
1832 | * bump the packet length beyond the t_maxopd length. | |
1833 | * Clear the FIN bit because we cut off the tail of | |
1834 | * the segment. | |
1835 | * | |
1836 | * When doing TSO limit a burst to TCP_MAXWIN minus the | |
1837 | * IP, TCP and Options length to keep ip->ip_len from | |
1838 | * overflowing. Prevent the last segment from being | |
1839 | * fractional thus making them all equal sized and set | |
1840 | * the flag to continue sending. TSO is disabled when | |
1841 | * IP options or IPSEC are present. | |
1842 | */ | |
1843 | if (len + optlen + ipoptlen > tp->t_maxopd) { | |
1844 | /* | |
1845 | * If there is still more to send, | |
1846 | * don't close the connection. | |
1847 | */ | |
1848 | flags &= ~TH_FIN; | |
1849 | if (tso) { | |
1850 | int32_t tso_maxlen; | |
1851 | ||
1852 | tso_maxlen = tp->tso_max_segment_size ? | |
1853 | tp->tso_max_segment_size : TCP_MAXWIN; | |
1854 | ||
1855 | if (len > tso_maxlen - hdrlen - optlen) { | |
1856 | len = tso_maxlen - hdrlen - optlen; | |
1857 | len = len - (len % (tp->t_maxopd - optlen)); | |
1858 | sendalot = 1; | |
1859 | } else if (tp->t_flags & TF_NEEDFIN) { | |
1860 | sendalot = 1; | |
1861 | } | |
1862 | } else { | |
1863 | len = tp->t_maxopd - optlen - ipoptlen; | |
1864 | sendalot = 1; | |
1865 | } | |
1866 | } | |
1867 | ||
1868 | if (max_linkhdr + hdrlen > MCLBYTES) | |
1869 | panic("tcphdr too big"); | |
1870 | ||
1871 | /* Check if there is enough data in the send socket | |
1872 | * buffer to start measuring bandwidth | |
1873 | */ | |
1874 | if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 && | |
1875 | (tp->t_bwmeas != NULL) && | |
1876 | (tp->t_flagsext & TF_BWMEAS_INPROGRESS) == 0) { | |
1877 | tp->t_bwmeas->bw_size = min(min( | |
1878 | (so->so_snd.sb_cc - (tp->snd_max - tp->snd_una)), | |
1879 | tp->snd_cwnd), tp->snd_wnd); | |
1880 | if (tp->t_bwmeas->bw_minsize > 0 && | |
1881 | tp->t_bwmeas->bw_size < tp->t_bwmeas->bw_minsize) | |
1882 | tp->t_bwmeas->bw_size = 0; | |
1883 | if (tp->t_bwmeas->bw_maxsize > 0) | |
1884 | tp->t_bwmeas->bw_size = min(tp->t_bwmeas->bw_size, | |
1885 | tp->t_bwmeas->bw_maxsize); | |
1886 | if (tp->t_bwmeas->bw_size > 0) { | |
1887 | tp->t_flagsext |= TF_BWMEAS_INPROGRESS; | |
1888 | tp->t_bwmeas->bw_start = tp->snd_max; | |
1889 | tp->t_bwmeas->bw_ts = tcp_now; | |
1890 | } | |
1891 | } | |
1892 | ||
1893 | VERIFY(inp->inp_flowhash != 0); | |
1894 | /* | |
1895 | * Grab a header mbuf, attaching a copy of data to | |
1896 | * be transmitted, and initialize the header from | |
1897 | * the template for sends on this connection. | |
1898 | */ | |
1899 | if (len) { | |
1900 | tp->t_pmtud_lastseg_size = len + optlen + ipoptlen; | |
1901 | if ((tp->t_flagsext & TF_FORCE) && len == 1) | |
1902 | tcpstat.tcps_sndprobe++; | |
1903 | else if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) { | |
1904 | tcpstat.tcps_sndrexmitpack++; | |
1905 | tcpstat.tcps_sndrexmitbyte += len; | |
1906 | if (nstat_collect) { | |
1907 | nstat_route_tx(inp->inp_route.ro_rt, 1, | |
1908 | len, NSTAT_TX_FLAG_RETRANSMIT); | |
1909 | INP_ADD_STAT(inp, cell, wifi, wired, | |
1910 | txpackets, 1); | |
1911 | INP_ADD_STAT(inp, cell, wifi, wired, | |
1912 | txbytes, len); | |
1913 | tp->t_stat.txretransmitbytes += len; | |
1914 | tp->t_stat.rxmitpkts++; | |
1915 | } | |
1916 | } else { | |
1917 | tcpstat.tcps_sndpack++; | |
1918 | tcpstat.tcps_sndbyte += len; | |
1919 | ||
1920 | if (nstat_collect) { | |
1921 | INP_ADD_STAT(inp, cell, wifi, wired, | |
1922 | txpackets, 1); | |
1923 | INP_ADD_STAT(inp, cell, wifi, wired, | |
1924 | txbytes, len); | |
1925 | } | |
1926 | inp_decr_sndbytes_unsent(so, len); | |
1927 | } | |
1928 | inp_set_activity_bitmap(inp); | |
1929 | #if MPTCP | |
1930 | if (tp->t_mpflags & TMPF_MPTCP_TRUE) { | |
1931 | tcpstat.tcps_mp_sndpacks++; | |
1932 | tcpstat.tcps_mp_sndbytes += len; | |
1933 | } | |
1934 | #endif /* MPTCP */ | |
1935 | /* | |
1936 | * try to use the new interface that allocates all | |
1937 | * the necessary mbuf hdrs under 1 mbuf lock and | |
1938 | * avoids rescanning the socket mbuf list if | |
1939 | * certain conditions are met. This routine can't | |
1940 | * be used in the following cases... | |
1941 | * 1) the protocol headers exceed the capacity of | |
1942 | * of a single mbuf header's data area (no cluster attached) | |
1943 | * 2) the length of the data being transmitted plus | |
1944 | * the protocol headers fits into a single mbuf header's | |
1945 | * data area (no cluster attached) | |
1946 | */ | |
1947 | m = NULL; | |
1948 | ||
1949 | /* minimum length we are going to allocate */ | |
1950 | allocated_len = MHLEN; | |
1951 | if (MHLEN < hdrlen + max_linkhdr) { | |
1952 | MGETHDR(m, M_DONTWAIT, MT_HEADER); | |
1953 | if (m == NULL) { | |
1954 | error = ENOBUFS; | |
1955 | goto out; | |
1956 | } | |
1957 | MCLGET(m, M_DONTWAIT); | |
1958 | if ((m->m_flags & M_EXT) == 0) { | |
1959 | m_freem(m); | |
1960 | error = ENOBUFS; | |
1961 | goto out; | |
1962 | } | |
1963 | m->m_data += max_linkhdr; | |
1964 | m->m_len = hdrlen; | |
1965 | allocated_len = MCLBYTES; | |
1966 | } | |
1967 | if (len <= allocated_len - hdrlen - max_linkhdr) { | |
1968 | if (m == NULL) { | |
1969 | VERIFY(allocated_len <= MHLEN); | |
1970 | MGETHDR(m, M_DONTWAIT, MT_HEADER); | |
1971 | if (m == NULL) { | |
1972 | error = ENOBUFS; | |
1973 | goto out; | |
1974 | } | |
1975 | m->m_data += max_linkhdr; | |
1976 | m->m_len = hdrlen; | |
1977 | } | |
1978 | /* makes sure we still have data left to be sent at this point */ | |
1979 | if (so->so_snd.sb_mb == NULL || off < 0) { | |
1980 | if (m != NULL) m_freem(m); | |
1981 | error = 0; /* should we return an error? */ | |
1982 | goto out; | |
1983 | } | |
1984 | m_copydata(so->so_snd.sb_mb, off, (int) len, | |
1985 | mtod(m, caddr_t) + hdrlen); | |
1986 | m->m_len += len; | |
1987 | } else { | |
1988 | uint32_t copymode; | |
1989 | /* | |
1990 | * Retain packet header metadata at the socket | |
1991 | * buffer if this is is an MPTCP subflow, | |
1992 | * otherwise move it. | |
1993 | */ | |
1994 | copymode = M_COPYM_MOVE_HDR; | |
1995 | #if MPTCP | |
1996 | if (so->so_flags & SOF_MP_SUBFLOW) { | |
1997 | copymode = M_COPYM_NOOP_HDR; | |
1998 | } | |
1999 | #endif /* MPTCP */ | |
2000 | if (m != NULL) { | |
2001 | m->m_next = m_copym_mode(so->so_snd.sb_mb, | |
2002 | off, (int)len, M_DONTWAIT, copymode); | |
2003 | if (m->m_next == NULL) { | |
2004 | (void) m_free(m); | |
2005 | error = ENOBUFS; | |
2006 | goto out; | |
2007 | } | |
2008 | } else { | |
2009 | /* | |
2010 | * make sure we still have data left | |
2011 | * to be sent at this point | |
2012 | */ | |
2013 | if (so->so_snd.sb_mb == NULL) { | |
2014 | error = 0; /* should we return an error? */ | |
2015 | goto out; | |
2016 | } | |
2017 | ||
2018 | /* | |
2019 | * m_copym_with_hdrs will always return the | |
2020 | * last mbuf pointer and the offset into it that | |
2021 | * it acted on to fullfill the current request, | |
2022 | * whether a valid 'hint' was passed in or not. | |
2023 | */ | |
2024 | if ((m = m_copym_with_hdrs(so->so_snd.sb_mb, | |
2025 | off, len, M_DONTWAIT, NULL, NULL, | |
2026 | copymode)) == NULL) { | |
2027 | error = ENOBUFS; | |
2028 | goto out; | |
2029 | } | |
2030 | m->m_data += max_linkhdr; | |
2031 | m->m_len = hdrlen; | |
2032 | } | |
2033 | } | |
2034 | /* | |
2035 | * If we're sending everything we've got, set PUSH. | |
2036 | * (This will keep happy those implementations which only | |
2037 | * give data to the user when a buffer fills or | |
2038 | * a PUSH comes in.) | |
2039 | * | |
2040 | * On SYN-segments we should not add the PUSH-flag. | |
2041 | */ | |
2042 | if (off + len == so->so_snd.sb_cc && !(flags & TH_SYN)) | |
2043 | flags |= TH_PUSH; | |
2044 | } else { | |
2045 | if (tp->t_flags & TF_ACKNOW) | |
2046 | tcpstat.tcps_sndacks++; | |
2047 | else if (flags & (TH_SYN|TH_FIN|TH_RST)) | |
2048 | tcpstat.tcps_sndctrl++; | |
2049 | else if (SEQ_GT(tp->snd_up, tp->snd_una)) | |
2050 | tcpstat.tcps_sndurg++; | |
2051 | else | |
2052 | tcpstat.tcps_sndwinup++; | |
2053 | ||
2054 | MGETHDR(m, M_DONTWAIT, MT_HEADER); /* MAC-OK */ | |
2055 | if (m == NULL) { | |
2056 | error = ENOBUFS; | |
2057 | goto out; | |
2058 | } | |
2059 | if (MHLEN < (hdrlen + max_linkhdr)) { | |
2060 | MCLGET(m, M_DONTWAIT); | |
2061 | if ((m->m_flags & M_EXT) == 0) { | |
2062 | m_freem(m); | |
2063 | error = ENOBUFS; | |
2064 | goto out; | |
2065 | } | |
2066 | } | |
2067 | m->m_data += max_linkhdr; | |
2068 | m->m_len = hdrlen; | |
2069 | } | |
2070 | m->m_pkthdr.rcvif = 0; | |
2071 | #if CONFIG_MACF_NET | |
2072 | mac_mbuf_label_associate_inpcb(inp, m); | |
2073 | #endif | |
2074 | #if INET6 | |
2075 | if (isipv6) { | |
2076 | ip6 = mtod(m, struct ip6_hdr *); | |
2077 | th = (struct tcphdr *)(void *)(ip6 + 1); | |
2078 | tcp_fillheaders(tp, ip6, th); | |
2079 | if ((tp->ecn_flags & TE_SENDIPECT) != 0 && len && | |
2080 | !SEQ_LT(tp->snd_nxt, tp->snd_max) && !sack_rxmit) { | |
2081 | ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20); | |
2082 | } | |
2083 | svc_flags |= PKT_SCF_IPV6; | |
2084 | #if PF_ECN | |
2085 | m_pftag(m)->pftag_hdr = (void *)ip6; | |
2086 | m_pftag(m)->pftag_flags |= PF_TAG_HDR_INET6; | |
2087 | #endif /* PF_ECN */ | |
2088 | } else | |
2089 | #endif /* INET6 */ | |
2090 | { | |
2091 | ip = mtod(m, struct ip *); | |
2092 | ipov = (struct ipovly *)ip; | |
2093 | th = (struct tcphdr *)(void *)(ip + 1); | |
2094 | /* this picks up the pseudo header (w/o the length) */ | |
2095 | tcp_fillheaders(tp, ip, th); | |
2096 | if ((tp->ecn_flags & TE_SENDIPECT) != 0 && len && | |
2097 | !SEQ_LT(tp->snd_nxt, tp->snd_max) && | |
2098 | !sack_rxmit && !(flags & TH_SYN)) { | |
2099 | ip->ip_tos |= IPTOS_ECN_ECT0; | |
2100 | } | |
2101 | #if PF_ECN | |
2102 | m_pftag(m)->pftag_hdr = (void *)ip; | |
2103 | m_pftag(m)->pftag_flags |= PF_TAG_HDR_INET; | |
2104 | #endif /* PF_ECN */ | |
2105 | } | |
2106 | ||
2107 | /* | |
2108 | * Fill in fields, remembering maximum advertised | |
2109 | * window for use in delaying messages about window sizes. | |
2110 | * If resending a FIN, be sure not to use a new sequence number. | |
2111 | */ | |
2112 | if ((flags & TH_FIN) && (tp->t_flags & TF_SENTFIN) && | |
2113 | tp->snd_nxt == tp->snd_max) | |
2114 | tp->snd_nxt--; | |
2115 | /* | |
2116 | * If we are doing retransmissions, then snd_nxt will | |
2117 | * not reflect the first unsent octet. For ACK only | |
2118 | * packets, we do not want the sequence number of the | |
2119 | * retransmitted packet, we want the sequence number | |
2120 | * of the next unsent octet. So, if there is no data | |
2121 | * (and no SYN or FIN), use snd_max instead of snd_nxt | |
2122 | * when filling in ti_seq. But if we are in persist | |
2123 | * state, snd_max might reflect one byte beyond the | |
2124 | * right edge of the window, so use snd_nxt in that | |
2125 | * case, since we know we aren't doing a retransmission. | |
2126 | * (retransmit and persist are mutually exclusive...) | |
2127 | * | |
2128 | * Note the state of this retransmit segment to detect spurious | |
2129 | * retransmissions. | |
2130 | */ | |
2131 | if (sack_rxmit == 0) { | |
2132 | if (len || (flags & (TH_SYN|TH_FIN)) || | |
2133 | tp->t_timer[TCPT_PERSIST]) { | |
2134 | th->th_seq = htonl(tp->snd_nxt); | |
2135 | if (len > 0) { | |
2136 | m->m_pkthdr.tx_start_seq = tp->snd_nxt; | |
2137 | m->m_pkthdr.pkt_flags |= PKTF_START_SEQ; | |
2138 | } | |
2139 | if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { | |
2140 | if (SACK_ENABLED(tp) && len > 1) { | |
2141 | tcp_rxtseg_insert(tp, tp->snd_nxt, | |
2142 | (tp->snd_nxt + len - 1)); | |
2143 | } | |
2144 | if (len > 0) | |
2145 | m->m_pkthdr.pkt_flags |= | |
2146 | PKTF_TCP_REXMT; | |
2147 | } | |
2148 | } else { | |
2149 | th->th_seq = htonl(tp->snd_max); | |
2150 | } | |
2151 | } else { | |
2152 | th->th_seq = htonl(p->rxmit); | |
2153 | if (len > 0) { | |
2154 | m->m_pkthdr.pkt_flags |= | |
2155 | (PKTF_TCP_REXMT | PKTF_START_SEQ); | |
2156 | m->m_pkthdr.tx_start_seq = p->rxmit; | |
2157 | } | |
2158 | tcp_rxtseg_insert(tp, p->rxmit, (p->rxmit + len - 1)); | |
2159 | p->rxmit += len; | |
2160 | tp->sackhint.sack_bytes_rexmit += len; | |
2161 | } | |
2162 | th->th_ack = htonl(tp->rcv_nxt); | |
2163 | tp->last_ack_sent = tp->rcv_nxt; | |
2164 | if (optlen) { | |
2165 | bcopy(opt, th + 1, optlen); | |
2166 | th->th_off = (sizeof (struct tcphdr) + optlen) >> 2; | |
2167 | } | |
2168 | th->th_flags = flags; | |
2169 | th->th_win = htons((u_short) (recwin>>tp->rcv_scale)); | |
2170 | if (!(so->so_flags & SOF_MP_SUBFLOW)) { | |
2171 | if (recwin > 0 && SEQ_LT(tp->rcv_adv, tp->rcv_nxt + recwin)) { | |
2172 | tp->rcv_adv = tp->rcv_nxt + recwin; | |
2173 | } | |
2174 | } else { | |
2175 | struct mptcb *mp_tp = tptomptp(tp); | |
2176 | if (recwin > 0) { | |
2177 | tp->rcv_adv = tp->rcv_nxt + recwin; | |
2178 | } | |
2179 | ||
2180 | if (recwin > 0 && SEQ_LT(mp_tp->mpt_rcvadv, (uint32_t)mp_tp->mpt_rcvnxt + recwin)) { | |
2181 | mp_tp->mpt_rcvadv = (uint32_t)mp_tp->mpt_rcvnxt + recwin; | |
2182 | } | |
2183 | } | |
2184 | ||
2185 | /* | |
2186 | * Adjust the RXWIN0SENT flag - indicate that we have advertised | |
2187 | * a 0 window. This may cause the remote transmitter to stall. This | |
2188 | * flag tells soreceive() to disable delayed acknowledgements when | |
2189 | * draining the buffer. This can occur if the receiver is attempting | |
2190 | * to read more data then can be buffered prior to transmitting on | |
2191 | * the connection. | |
2192 | */ | |
2193 | if (th->th_win == 0) | |
2194 | tp->t_flags |= TF_RXWIN0SENT; | |
2195 | else | |
2196 | tp->t_flags &= ~TF_RXWIN0SENT; | |
2197 | ||
2198 | if (SEQ_GT(tp->snd_up, tp->snd_nxt)) { | |
2199 | th->th_urp = htons((u_short)(tp->snd_up - tp->snd_nxt)); | |
2200 | th->th_flags |= TH_URG; | |
2201 | } else { | |
2202 | /* | |
2203 | * If no urgent pointer to send, then we pull | |
2204 | * the urgent pointer to the left edge of the send window | |
2205 | * so that it doesn't drift into the send window on sequence | |
2206 | * number wraparound. | |
2207 | */ | |
2208 | tp->snd_up = tp->snd_una; /* drag it along */ | |
2209 | } | |
2210 | ||
2211 | /* | |
2212 | * Put TCP length in extended header, and then | |
2213 | * checksum extended header and data. | |
2214 | */ | |
2215 | m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ | |
2216 | ||
2217 | /* | |
2218 | * If this is potentially the last packet on the stream, then mark | |
2219 | * it in order to enable some optimizations in the underlying | |
2220 | * layers | |
2221 | */ | |
2222 | if (tp->t_state != TCPS_ESTABLISHED && | |
2223 | (tp->t_state == TCPS_CLOSING || tp->t_state == TCPS_TIME_WAIT | |
2224 | || tp->t_state == TCPS_LAST_ACK || (th->th_flags & TH_RST))) | |
2225 | m->m_pkthdr.pkt_flags |= PKTF_LAST_PKT; | |
2226 | ||
2227 | #if INET6 | |
2228 | if (isipv6) { | |
2229 | /* | |
2230 | * ip6_plen is not need to be filled now, and will be filled | |
2231 | * in ip6_output. | |
2232 | */ | |
2233 | m->m_pkthdr.csum_flags = CSUM_TCPIPV6; | |
2234 | m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); | |
2235 | if (len + optlen) | |
2236 | th->th_sum = in_addword(th->th_sum, | |
2237 | htons((u_short)(optlen + len))); | |
2238 | } | |
2239 | else | |
2240 | #endif /* INET6 */ | |
2241 | { | |
2242 | m->m_pkthdr.csum_flags = CSUM_TCP; | |
2243 | m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); | |
2244 | if (len + optlen) | |
2245 | th->th_sum = in_addword(th->th_sum, | |
2246 | htons((u_short)(optlen + len))); | |
2247 | } | |
2248 | ||
2249 | /* | |
2250 | * Enable TSO and specify the size of the segments. | |
2251 | * The TCP pseudo header checksum is always provided. | |
2252 | */ | |
2253 | if (tso) { | |
2254 | #if INET6 | |
2255 | if (isipv6) | |
2256 | m->m_pkthdr.csum_flags |= CSUM_TSO_IPV6; | |
2257 | else | |
2258 | #endif /* INET6 */ | |
2259 | m->m_pkthdr.csum_flags |= CSUM_TSO_IPV4; | |
2260 | ||
2261 | m->m_pkthdr.tso_segsz = tp->t_maxopd - optlen; | |
2262 | } else { | |
2263 | m->m_pkthdr.tso_segsz = 0; | |
2264 | } | |
2265 | ||
2266 | /* | |
2267 | * In transmit state, time the transmission and arrange for | |
2268 | * the retransmit. In persist state, just set snd_max. | |
2269 | */ | |
2270 | if (!(tp->t_flagsext & TF_FORCE) | |
2271 | || tp->t_timer[TCPT_PERSIST] == 0) { | |
2272 | tcp_seq startseq = tp->snd_nxt; | |
2273 | ||
2274 | /* | |
2275 | * Advance snd_nxt over sequence space of this segment. | |
2276 | */ | |
2277 | if (flags & (TH_SYN|TH_FIN)) { | |
2278 | if (flags & TH_SYN) | |
2279 | tp->snd_nxt++; | |
2280 | if ((flags & TH_FIN) && | |
2281 | !(tp->t_flags & TF_SENTFIN)) { | |
2282 | tp->snd_nxt++; | |
2283 | tp->t_flags |= TF_SENTFIN; | |
2284 | } | |
2285 | } | |
2286 | if (sack_rxmit) | |
2287 | goto timer; | |
2288 | if (sack_rescue_rxt == TRUE) { | |
2289 | tp->snd_nxt = old_snd_nxt; | |
2290 | sack_rescue_rxt = FALSE; | |
2291 | tcpstat.tcps_pto_in_recovery++; | |
2292 | } else { | |
2293 | tp->snd_nxt += len; | |
2294 | } | |
2295 | if (SEQ_GT(tp->snd_nxt, tp->snd_max)) { | |
2296 | tp->snd_max = tp->snd_nxt; | |
2297 | tp->t_sndtime = tcp_now; | |
2298 | /* | |
2299 | * Time this transmission if not a retransmission and | |
2300 | * not currently timing anything. | |
2301 | */ | |
2302 | if (tp->t_rtttime == 0) { | |
2303 | tp->t_rtttime = tcp_now; | |
2304 | tp->t_rtseq = startseq; | |
2305 | tcpstat.tcps_segstimed++; | |
2306 | ||
2307 | /* update variables related to pipe ack */ | |
2308 | tp->t_pipeack_lastuna = tp->snd_una; | |
2309 | } | |
2310 | } | |
2311 | ||
2312 | /* | |
2313 | * Set retransmit timer if not currently set, | |
2314 | * and not doing an ack or a keep-alive probe. | |
2315 | */ | |
2316 | timer: | |
2317 | if (tp->t_timer[TCPT_REXMT] == 0 && | |
2318 | ((sack_rxmit && tp->snd_nxt != tp->snd_max) || | |
2319 | tp->snd_nxt != tp->snd_una || (flags & TH_FIN))) { | |
2320 | if (tp->t_timer[TCPT_PERSIST]) { | |
2321 | tp->t_timer[TCPT_PERSIST] = 0; | |
2322 | tp->t_persist_stop = 0; | |
2323 | TCP_RESET_REXMT_STATE(tp); | |
2324 | } | |
2325 | tp->t_timer[TCPT_REXMT] = | |
2326 | OFFSET_FROM_START(tp, tp->t_rxtcur); | |
2327 | } | |
2328 | ||
2329 | /* | |
2330 | * Set tail loss probe timeout if new data is being | |
2331 | * transmitted. This will be supported only when | |
2332 | * SACK option is enabled on a connection. | |
2333 | * | |
2334 | * Every time new data is sent PTO will get reset. | |
2335 | */ | |
2336 | if (tcp_enable_tlp && len != 0 && tp->t_state == TCPS_ESTABLISHED && | |
2337 | SACK_ENABLED(tp) && !IN_FASTRECOVERY(tp) && | |
2338 | tp->snd_nxt == tp->snd_max && | |
2339 | SEQ_GT(tp->snd_nxt, tp->snd_una) && | |
2340 | tp->t_rxtshift == 0 && | |
2341 | (tp->t_flagsext & (TF_SENT_TLPROBE|TF_PKTS_REORDERED)) == 0) { | |
2342 | u_int32_t pto, srtt; | |
2343 | ||
2344 | /* | |
2345 | * Using SRTT alone to set PTO can cause spurious | |
2346 | * retransmissions on wireless networks where there | |
2347 | * is a lot of variance in RTT. Taking variance | |
2348 | * into account will avoid this. | |
2349 | */ | |
2350 | srtt = tp->t_srtt >> TCP_RTT_SHIFT; | |
2351 | pto = ((TCP_REXMTVAL(tp)) * 3) >> 1; | |
2352 | pto = max (2 * srtt, pto); | |
2353 | if ((tp->snd_max - tp->snd_una) == tp->t_maxseg) | |
2354 | pto = max(pto, | |
2355 | (((3 * pto) >> 2) + tcp_delack * 2)); | |
2356 | else | |
2357 | pto = max(10, pto); | |
2358 | ||
2359 | /* if RTO is less than PTO, choose RTO instead */ | |
2360 | if (tp->t_rxtcur < pto) | |
2361 | pto = tp->t_rxtcur; | |
2362 | ||
2363 | tp->t_timer[TCPT_PTO] = OFFSET_FROM_START(tp, pto); | |
2364 | } | |
2365 | } else { | |
2366 | /* | |
2367 | * Persist case, update snd_max but since we are in | |
2368 | * persist mode (no window) we do not update snd_nxt. | |
2369 | */ | |
2370 | int xlen = len; | |
2371 | if (flags & TH_SYN) | |
2372 | ++xlen; | |
2373 | if ((flags & TH_FIN) && | |
2374 | !(tp->t_flags & TF_SENTFIN)) { | |
2375 | ++xlen; | |
2376 | tp->t_flags |= TF_SENTFIN; | |
2377 | } | |
2378 | if (SEQ_GT(tp->snd_nxt + xlen, tp->snd_max)) { | |
2379 | tp->snd_max = tp->snd_nxt + len; | |
2380 | tp->t_sndtime = tcp_now; | |
2381 | } | |
2382 | } | |
2383 | ||
2384 | #if TCPDEBUG | |
2385 | /* | |
2386 | * Trace. | |
2387 | */ | |
2388 | if (so_options & SO_DEBUG) | |
2389 | tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0); | |
2390 | #endif | |
2391 | ||
2392 | /* | |
2393 | * Fill in IP length and desired time to live and | |
2394 | * send to IP level. There should be a better way | |
2395 | * to handle ttl and tos; we could keep them in | |
2396 | * the template, but need a way to checksum without them. | |
2397 | */ | |
2398 | #if INET6 | |
2399 | /* | |
2400 | * m->m_pkthdr.len should have been set before cksum calcuration, | |
2401 | * because in6_cksum() need it. | |
2402 | */ | |
2403 | if (isipv6) { | |
2404 | /* | |
2405 | * we separately set hoplimit for every segment, since the | |
2406 | * user might want to change the value via setsockopt. | |
2407 | * Also, desired default hop limit might be changed via | |
2408 | * Neighbor Discovery. | |
2409 | */ | |
2410 | ip6->ip6_hlim = in6_selecthlim(inp, inp->in6p_route.ro_rt ? | |
2411 | inp->in6p_route.ro_rt->rt_ifp : NULL); | |
2412 | ||
2413 | /* TODO: IPv6 IP6TOS_ECT bit on */ | |
2414 | KERNEL_DEBUG(DBG_LAYER_BEG, | |
2415 | ((inp->inp_fport << 16) | inp->inp_lport), | |
2416 | (((inp->in6p_laddr.s6_addr16[0] & 0xffff) << 16) | | |
2417 | (inp->in6p_faddr.s6_addr16[0] & 0xffff)), | |
2418 | sendalot,0,0); | |
2419 | } else | |
2420 | #endif /* INET6 */ | |
2421 | { | |
2422 | ip->ip_len = m->m_pkthdr.len; | |
2423 | ip->ip_ttl = inp->inp_ip_ttl; /* XXX */ | |
2424 | ip->ip_tos |= (inp->inp_ip_tos & ~IPTOS_ECN_MASK);/* XXX */ | |
2425 | KERNEL_DEBUG(DBG_LAYER_BEG, | |
2426 | ((inp->inp_fport << 16) | inp->inp_lport), | |
2427 | (((inp->inp_laddr.s_addr & 0xffff) << 16) | | |
2428 | (inp->inp_faddr.s_addr & 0xffff)), 0,0,0); | |
2429 | } | |
2430 | ||
2431 | /* | |
2432 | * See if we should do MTU discovery. | |
2433 | * Look at the flag updated on the following criterias: | |
2434 | * 1) Path MTU discovery is authorized by the sysctl | |
2435 | * 2) The route isn't set yet (unlikely but could happen) | |
2436 | * 3) The route is up | |
2437 | * 4) the MTU is not locked (if it is, then discovery has been | |
2438 | * disabled for that route) | |
2439 | */ | |
2440 | #if INET6 | |
2441 | if (!isipv6) | |
2442 | #endif /* INET6 */ | |
2443 | if (path_mtu_discovery && (tp->t_flags & TF_PMTUD)) | |
2444 | ip->ip_off |= IP_DF; | |
2445 | ||
2446 | #if NECP | |
2447 | { | |
2448 | necp_kernel_policy_id policy_id; | |
2449 | necp_kernel_policy_id skip_policy_id; | |
2450 | u_int32_t route_rule_id; | |
2451 | if (!necp_socket_is_allowed_to_send_recv(inp, NULL, &policy_id, &route_rule_id, &skip_policy_id)) { | |
2452 | TCP_LOG_DROP_NECP(isipv6 ? (void *)ip6 : (void *)ip, th, tp, true); | |
2453 | m_freem(m); | |
2454 | error = EHOSTUNREACH; | |
2455 | goto out; | |
2456 | } | |
2457 | necp_mark_packet_from_socket(m, inp, policy_id, route_rule_id, skip_policy_id); | |
2458 | ||
2459 | if (net_qos_policy_restricted != 0) { | |
2460 | necp_socket_update_qos_marking(inp, inp->inp_route.ro_rt, | |
2461 | NULL, route_rule_id); | |
2462 | } | |
2463 | } | |
2464 | #endif /* NECP */ | |
2465 | ||
2466 | #if IPSEC | |
2467 | if (inp->inp_sp != NULL) | |
2468 | ipsec_setsocket(m, so); | |
2469 | #endif /*IPSEC*/ | |
2470 | ||
2471 | /* | |
2472 | * The socket is kept locked while sending out packets in ip_output, even if packet chaining is not active. | |
2473 | */ | |
2474 | lost = 0; | |
2475 | ||
2476 | /* | |
2477 | * Embed the flow hash in pkt hdr and mark the packet as | |
2478 | * capable of flow controlling | |
2479 | */ | |
2480 | m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB; | |
2481 | m->m_pkthdr.pkt_flowid = inp->inp_flowhash; | |
2482 | m->m_pkthdr.pkt_flags |= (PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC | PKTF_FLOW_ADV); | |
2483 | m->m_pkthdr.pkt_proto = IPPROTO_TCP; | |
2484 | m->m_pkthdr.tx_tcp_pid = so->last_pid; | |
2485 | if (so->so_flags & SOF_DELEGATED) | |
2486 | m->m_pkthdr.tx_tcp_e_pid = so->e_pid; | |
2487 | else | |
2488 | m->m_pkthdr.tx_tcp_e_pid = 0; | |
2489 | ||
2490 | m->m_nextpkt = NULL; | |
2491 | ||
2492 | if (inp->inp_last_outifp != NULL && | |
2493 | !(inp->inp_last_outifp->if_flags & IFF_LOOPBACK)) { | |
2494 | /* Hint to prioritize this packet if | |
2495 | * 1. if the packet has no data | |
2496 | * 2. the interface supports transmit-start model and did | |
2497 | * not disable ACK prioritization. | |
2498 | * 3. Only ACK flag is set. | |
2499 | * 4. there is no outstanding data on this connection. | |
2500 | */ | |
2501 | if (tcp_prioritize_acks != 0 && len == 0 && | |
2502 | (inp->inp_last_outifp->if_eflags & | |
2503 | (IFEF_TXSTART | IFEF_NOACKPRI)) == IFEF_TXSTART) { | |
2504 | if (th->th_flags == TH_ACK && | |
2505 | tp->snd_una == tp->snd_max && | |
2506 | tp->t_timer[TCPT_REXMT] == 0) | |
2507 | svc_flags |= PKT_SCF_TCP_ACK; | |
2508 | if (th->th_flags & TH_SYN) | |
2509 | svc_flags |= PKT_SCF_TCP_SYN; | |
2510 | } | |
2511 | set_packet_service_class(m, so, sotc, svc_flags); | |
2512 | } else { | |
2513 | /* | |
2514 | * Optimization for loopback just set the mbuf | |
2515 | * service class | |
2516 | */ | |
2517 | (void) m_set_service_class(m, so_tc2msc(sotc)); | |
2518 | } | |
2519 | ||
2520 | TCP_LOG_TH_FLAGS(isipv6 ? (void *)ip6 : (void *)ip, th, tp, true, | |
2521 | inp->inp_last_outifp != NULL ? inp->inp_last_outifp : | |
2522 | inp->inp_boundifp); | |
2523 | ||
2524 | tp->t_pktlist_sentlen += len; | |
2525 | tp->t_lastchain++; | |
2526 | ||
2527 | #if INET6 | |
2528 | if (isipv6) { | |
2529 | DTRACE_TCP5(send, struct mbuf *, m, struct inpcb *, inp, | |
2530 | struct ip6 *, ip6, struct tcpcb *, tp, struct tcphdr *, | |
2531 | th); | |
2532 | } else | |
2533 | #endif /* INET6 */ | |
2534 | { | |
2535 | DTRACE_TCP5(send, struct mbuf *, m, struct inpcb *, inp, | |
2536 | struct ip *, ip, struct tcpcb *, tp, struct tcphdr *, th); | |
2537 | } | |
2538 | ||
2539 | if (tp->t_pktlist_head != NULL) { | |
2540 | tp->t_pktlist_tail->m_nextpkt = m; | |
2541 | tp->t_pktlist_tail = m; | |
2542 | } else { | |
2543 | packchain_newlist++; | |
2544 | tp->t_pktlist_head = tp->t_pktlist_tail = m; | |
2545 | } | |
2546 | ||
2547 | if (lro_ackmore && !sackoptlen && tp->t_timer[TCPT_PERSIST] == 0 && | |
2548 | (th->th_flags & TH_ACK) == TH_ACK && len == 0 && | |
2549 | tp->t_state == TCPS_ESTABLISHED) { | |
2550 | /* For a pure ACK, see if you need to send more of them */ | |
2551 | mnext = tcp_send_lroacks(tp, m, th); | |
2552 | if (mnext) { | |
2553 | tp->t_pktlist_tail->m_nextpkt = mnext; | |
2554 | if (mnext->m_nextpkt == NULL) { | |
2555 | tp->t_pktlist_tail = mnext; | |
2556 | tp->t_lastchain++; | |
2557 | } else { | |
2558 | struct mbuf *tail, *next; | |
2559 | next = mnext->m_nextpkt; | |
2560 | tail = next->m_nextpkt; | |
2561 | while (tail) { | |
2562 | next = tail; | |
2563 | tail = tail->m_nextpkt; | |
2564 | tp->t_lastchain++; | |
2565 | } | |
2566 | tp->t_pktlist_tail = next; | |
2567 | } | |
2568 | } | |
2569 | } | |
2570 | ||
2571 | if (sendalot == 0 || (tp->t_state != TCPS_ESTABLISHED) || | |
2572 | (tp->snd_cwnd <= (tp->snd_wnd / 8)) || | |
2573 | (tp->t_flags & TF_ACKNOW) || | |
2574 | (tp->t_flagsext & TF_FORCE) || | |
2575 | tp->t_lastchain >= tcp_packet_chaining) { | |
2576 | error = 0; | |
2577 | while (inp->inp_sndinprog_cnt == 0 && | |
2578 | tp->t_pktlist_head != NULL) { | |
2579 | packetlist = tp->t_pktlist_head; | |
2580 | packchain_listadd = tp->t_lastchain; | |
2581 | packchain_sent++; | |
2582 | lost = tp->t_pktlist_sentlen; | |
2583 | TCP_PKTLIST_CLEAR(tp); | |
2584 | ||
2585 | error = tcp_ip_output(so, tp, packetlist, | |
2586 | packchain_listadd, tp_inp_options, | |
2587 | (so_options & SO_DONTROUTE), | |
2588 | (sack_rxmit || (sack_bytes_rxmt != 0)), isipv6); | |
2589 | if (error) { | |
2590 | /* | |
2591 | * Take into account the rest of unsent | |
2592 | * packets in the packet list for this tcp | |
2593 | * into "lost", since we're about to free | |
2594 | * the whole list below. | |
2595 | */ | |
2596 | lost += tp->t_pktlist_sentlen; | |
2597 | break; | |
2598 | } else { | |
2599 | lost = 0; | |
2600 | } | |
2601 | } | |
2602 | /* tcp was closed while we were in ip; resume close */ | |
2603 | if (inp->inp_sndinprog_cnt == 0 && | |
2604 | (tp->t_flags & TF_CLOSING)) { | |
2605 | tp->t_flags &= ~TF_CLOSING; | |
2606 | (void) tcp_close(tp); | |
2607 | return 0; | |
2608 | } | |
2609 | } else { | |
2610 | error = 0; | |
2611 | packchain_looped++; | |
2612 | tcpstat.tcps_sndtotal++; | |
2613 | ||
2614 | goto again; | |
2615 | } | |
2616 | if (error) { | |
2617 | /* | |
2618 | * Assume that the packets were lost, so back out the | |
2619 | * sequence number advance, if any. Note that the "lost" | |
2620 | * variable represents the amount of user data sent during | |
2621 | * the recent call to ip_output_list() plus the amount of | |
2622 | * user data in the packet list for this tcp at the moment. | |
2623 | */ | |
2624 | if (!(tp->t_flagsext & TF_FORCE) | |
2625 | || tp->t_timer[TCPT_PERSIST] == 0) { | |
2626 | /* | |
2627 | * No need to check for TH_FIN here because | |
2628 | * the TF_SENTFIN flag handles that case. | |
2629 | */ | |
2630 | if ((flags & TH_SYN) == 0) { | |
2631 | if (sack_rxmit) { | |
2632 | if (SEQ_GT((p->rxmit - lost), | |
2633 | tp->snd_una)) { | |
2634 | p->rxmit -= lost; | |
2635 | } else { | |
2636 | lost = p->rxmit - tp->snd_una; | |
2637 | p->rxmit = tp->snd_una; | |
2638 | } | |
2639 | tp->sackhint.sack_bytes_rexmit -= lost; | |
2640 | } else { | |
2641 | if (SEQ_GT((tp->snd_nxt - lost), | |
2642 | tp->snd_una)) | |
2643 | tp->snd_nxt -= lost; | |
2644 | else | |
2645 | tp->snd_nxt = tp->snd_una; | |
2646 | } | |
2647 | } | |
2648 | } | |
2649 | out: | |
2650 | if (tp->t_pktlist_head != NULL) | |
2651 | m_freem_list(tp->t_pktlist_head); | |
2652 | TCP_PKTLIST_CLEAR(tp); | |
2653 | ||
2654 | if (error == ENOBUFS) { | |
2655 | /* | |
2656 | * Set retransmit timer if not currently set | |
2657 | * when we failed to send a segment that can be | |
2658 | * retransmitted (i.e. not pure ack or rst) | |
2659 | */ | |
2660 | if (tp->t_timer[TCPT_REXMT] == 0 && | |
2661 | tp->t_timer[TCPT_PERSIST] == 0 && | |
2662 | (len != 0 || (flags & (TH_SYN | TH_FIN)) != 0 || | |
2663 | so->so_snd.sb_cc > 0)) | |
2664 | tp->t_timer[TCPT_REXMT] = | |
2665 | OFFSET_FROM_START(tp, tp->t_rxtcur); | |
2666 | tp->snd_cwnd = tp->t_maxseg; | |
2667 | tp->t_bytes_acked = 0; | |
2668 | tcp_check_timer_state(tp); | |
2669 | KERNEL_DEBUG(DBG_FNC_TCP_OUTPUT | DBG_FUNC_END, 0,0,0,0,0); | |
2670 | ||
2671 | tcp_ccdbg_trace(tp, NULL, TCP_CC_OUTPUT_ERROR); | |
2672 | return 0; | |
2673 | } | |
2674 | if (error == EMSGSIZE) { | |
2675 | /* | |
2676 | * ip_output() will have already fixed the route | |
2677 | * for us. tcp_mtudisc() will, as its last action, | |
2678 | * initiate retransmission, so it is important to | |
2679 | * not do so here. | |
2680 | * | |
2681 | * If TSO was active we either got an interface | |
2682 | * without TSO capabilits or TSO was turned off. | |
2683 | * Disable it for this connection as too and | |
2684 | * immediatly retry with MSS sized segments generated | |
2685 | * by this function. | |
2686 | */ | |
2687 | if (tso) | |
2688 | tp->t_flags &= ~TF_TSO; | |
2689 | ||
2690 | tcp_mtudisc(inp, 0); | |
2691 | tcp_check_timer_state(tp); | |
2692 | ||
2693 | KERNEL_DEBUG(DBG_FNC_TCP_OUTPUT | DBG_FUNC_END, 0,0,0,0,0); | |
2694 | return 0; | |
2695 | } | |
2696 | /* | |
2697 | * Unless this is due to interface restriction policy, | |
2698 | * treat EHOSTUNREACH/ENETDOWN as a soft error. | |
2699 | */ | |
2700 | if ((error == EHOSTUNREACH || error == ENETDOWN) && | |
2701 | TCPS_HAVERCVDSYN(tp->t_state) && | |
2702 | !inp_restricted_send(inp, inp->inp_last_outifp)) { | |
2703 | tp->t_softerror = error; | |
2704 | error = 0; | |
2705 | } | |
2706 | tcp_check_timer_state(tp); | |
2707 | KERNEL_DEBUG(DBG_FNC_TCP_OUTPUT | DBG_FUNC_END, 0,0,0,0,0); | |
2708 | return error; | |
2709 | } | |
2710 | ||
2711 | tcpstat.tcps_sndtotal++; | |
2712 | ||
2713 | KERNEL_DEBUG(DBG_FNC_TCP_OUTPUT | DBG_FUNC_END,0,0,0,0,0); | |
2714 | if (sendalot) | |
2715 | goto again; | |
2716 | ||
2717 | tcp_check_timer_state(tp); | |
2718 | ||
2719 | return 0; | |
2720 | } | |
2721 | ||
2722 | static int | |
2723 | tcp_ip_output(struct socket *so, struct tcpcb *tp, struct mbuf *pkt, | |
2724 | int cnt, struct mbuf *opt, int flags, int sack_in_progress, boolean_t isipv6) | |
2725 | { | |
2726 | int error = 0; | |
2727 | boolean_t chain; | |
2728 | boolean_t unlocked = FALSE; | |
2729 | boolean_t ifdenied = FALSE; | |
2730 | struct inpcb *inp = tp->t_inpcb; | |
2731 | struct ip_out_args ipoa; | |
2732 | struct route ro; | |
2733 | struct ifnet *outif = NULL; | |
2734 | ||
2735 | bzero(&ipoa, sizeof(ipoa)); | |
2736 | ipoa.ipoa_boundif = IFSCOPE_NONE; | |
2737 | ipoa.ipoa_flags = IPOAF_SELECT_SRCIF | IPOAF_BOUND_SRCADDR; | |
2738 | ipoa.ipoa_sotc = SO_TC_UNSPEC; | |
2739 | ipoa.ipoa_netsvctype = _NET_SERVICE_TYPE_UNSPEC; | |
2740 | #if INET6 | |
2741 | struct ip6_out_args ip6oa; | |
2742 | struct route_in6 ro6; | |
2743 | ||
2744 | bzero(&ip6oa, sizeof(ip6oa)); | |
2745 | ip6oa.ip6oa_boundif = IFSCOPE_NONE; | |
2746 | ip6oa.ip6oa_flags = IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_SRCADDR; | |
2747 | ip6oa.ip6oa_sotc = SO_TC_UNSPEC; | |
2748 | ip6oa.ip6oa_netsvctype = _NET_SERVICE_TYPE_UNSPEC; | |
2749 | ||
2750 | struct flowadv *adv = | |
2751 | (isipv6 ? &ip6oa.ip6oa_flowadv : &ipoa.ipoa_flowadv); | |
2752 | #else /* INET6 */ | |
2753 | struct flowadv *adv = &ipoa.ipoa_flowadv; | |
2754 | #endif /* !INET6 */ | |
2755 | ||
2756 | /* If socket was bound to an ifindex, tell ip_output about it */ | |
2757 | if (inp->inp_flags & INP_BOUND_IF) { | |
2758 | #if INET6 | |
2759 | if (isipv6) { | |
2760 | ip6oa.ip6oa_boundif = inp->inp_boundifp->if_index; | |
2761 | ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF; | |
2762 | } else | |
2763 | #endif /* INET6 */ | |
2764 | { | |
2765 | ipoa.ipoa_boundif = inp->inp_boundifp->if_index; | |
2766 | ipoa.ipoa_flags |= IPOAF_BOUND_IF; | |
2767 | } | |
2768 | } | |
2769 | ||
2770 | if (INP_NO_CELLULAR(inp)) { | |
2771 | #if INET6 | |
2772 | if (isipv6) | |
2773 | ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR; | |
2774 | else | |
2775 | #endif /* INET6 */ | |
2776 | ipoa.ipoa_flags |= IPOAF_NO_CELLULAR; | |
2777 | } | |
2778 | if (INP_NO_EXPENSIVE(inp)) { | |
2779 | #if INET6 | |
2780 | if (isipv6) | |
2781 | ip6oa.ip6oa_flags |= IP6OAF_NO_EXPENSIVE; | |
2782 | else | |
2783 | #endif /* INET6 */ | |
2784 | ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE; | |
2785 | ||
2786 | } | |
2787 | if (INP_NO_CONSTRAINED(inp)) { | |
2788 | #if INET6 | |
2789 | if (isipv6) | |
2790 | ip6oa.ip6oa_flags |= IP6OAF_NO_CONSTRAINED; | |
2791 | else | |
2792 | #endif /* INET6 */ | |
2793 | ipoa.ipoa_flags |= IPOAF_NO_CONSTRAINED; | |
2794 | } | |
2795 | if (INP_AWDL_UNRESTRICTED(inp)) { | |
2796 | #if INET6 | |
2797 | if (isipv6) | |
2798 | ip6oa.ip6oa_flags |= IP6OAF_AWDL_UNRESTRICTED; | |
2799 | else | |
2800 | #endif /* INET6 */ | |
2801 | ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED; | |
2802 | ||
2803 | } | |
2804 | #if INET6 | |
2805 | if (INP_INTCOPROC_ALLOWED(inp) && isipv6) { | |
2806 | ip6oa.ip6oa_flags |= IP6OAF_INTCOPROC_ALLOWED; | |
2807 | } | |
2808 | if (isipv6) { | |
2809 | ip6oa.ip6oa_sotc = so->so_traffic_class; | |
2810 | ip6oa.ip6oa_netsvctype = so->so_netsvctype; | |
2811 | } else | |
2812 | #endif /* INET6 */ | |
2813 | { | |
2814 | ipoa.ipoa_sotc = so->so_traffic_class; | |
2815 | ipoa.ipoa_netsvctype = so->so_netsvctype; | |
2816 | } | |
2817 | if ((so->so_flags1 & SOF1_QOSMARKING_ALLOWED)) { | |
2818 | #if INET6 | |
2819 | if (isipv6) | |
2820 | ip6oa.ip6oa_flags |= IP6OAF_QOSMARKING_ALLOWED; | |
2821 | else | |
2822 | #endif /* INET6 */ | |
2823 | ipoa.ipoa_flags |= IPOAF_QOSMARKING_ALLOWED; | |
2824 | } | |
2825 | #if INET6 | |
2826 | if (isipv6) | |
2827 | flags |= IPV6_OUTARGS; | |
2828 | else | |
2829 | #endif /* INET6 */ | |
2830 | flags |= IP_OUTARGS; | |
2831 | ||
2832 | /* Copy the cached route and take an extra reference */ | |
2833 | #if INET6 | |
2834 | if (isipv6) | |
2835 | in6p_route_copyout(inp, &ro6); | |
2836 | else | |
2837 | #endif /* INET6 */ | |
2838 | inp_route_copyout(inp, &ro); | |
2839 | ||
2840 | /* | |
2841 | * Make sure ACK/DELACK conditions are cleared before | |
2842 | * we unlock the socket. | |
2843 | */ | |
2844 | tp->last_ack_sent = tp->rcv_nxt; | |
2845 | tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); | |
2846 | tp->t_timer[TCPT_DELACK] = 0; | |
2847 | tp->t_unacksegs = 0; | |
2848 | ||
2849 | /* Increment the count of outstanding send operations */ | |
2850 | inp->inp_sndinprog_cnt++; | |
2851 | ||
2852 | /* | |
2853 | * If allowed, unlock TCP socket while in IP | |
2854 | * but only if the connection is established and | |
2855 | * in a normal mode where reentrancy on the tcpcb won't be | |
2856 | * an issue: | |
2857 | * - there is no SACK episode | |
2858 | * - we're not in Fast Recovery mode | |
2859 | * - if we're not sending from an upcall. | |
2860 | */ | |
2861 | if (tcp_output_unlocked && !so->so_upcallusecount && | |
2862 | (tp->t_state == TCPS_ESTABLISHED) && (sack_in_progress == 0) && | |
2863 | !IN_FASTRECOVERY(tp) && !(so->so_flags & SOF_MP_SUBFLOW)) { | |
2864 | ||
2865 | unlocked = TRUE; | |
2866 | socket_unlock(so, 0); | |
2867 | } | |
2868 | ||
2869 | /* | |
2870 | * Don't send down a chain of packets when: | |
2871 | * - TCP chaining is disabled | |
2872 | * - there is an IPsec rule set | |
2873 | * - there is a non default rule set for the firewall | |
2874 | */ | |
2875 | ||
2876 | chain = tcp_packet_chaining > 1 | |
2877 | #if IPSEC | |
2878 | && ipsec_bypass | |
2879 | #endif | |
2880 | #if IPFIREWALL | |
2881 | && (fw_enable == 0 || fw_bypass) | |
2882 | #endif | |
2883 | ; // I'm important, not extraneous | |
2884 | ||
2885 | while (pkt != NULL) { | |
2886 | struct mbuf *npkt = pkt->m_nextpkt; | |
2887 | ||
2888 | if (!chain) { | |
2889 | pkt->m_nextpkt = NULL; | |
2890 | /* | |
2891 | * If we are not chaining, make sure to set the packet | |
2892 | * list count to 0 so that IP takes the right path; | |
2893 | * this is important for cases such as IPsec where a | |
2894 | * single mbuf might result in multiple mbufs as part | |
2895 | * of the encapsulation. If a non-zero count is passed | |
2896 | * down to IP, the head of the chain might change and | |
2897 | * we could end up skipping it (thus generating bogus | |
2898 | * packets). Fixing it in IP would be desirable, but | |
2899 | * for now this would do it. | |
2900 | */ | |
2901 | cnt = 0; | |
2902 | } | |
2903 | #if INET6 | |
2904 | if (isipv6) { | |
2905 | error = ip6_output_list(pkt, cnt, | |
2906 | inp->in6p_outputopts, &ro6, flags, NULL, NULL, | |
2907 | &ip6oa); | |
2908 | ifdenied = (ip6oa.ip6oa_retflags & IP6OARF_IFDENIED); | |
2909 | } else { | |
2910 | #endif /* INET6 */ | |
2911 | error = ip_output_list(pkt, cnt, opt, &ro, flags, NULL, | |
2912 | &ipoa); | |
2913 | ifdenied = (ipoa.ipoa_retflags & IPOARF_IFDENIED); | |
2914 | } | |
2915 | ||
2916 | if (chain || error) { | |
2917 | /* | |
2918 | * If we sent down a chain then we are done since | |
2919 | * the callee had taken care of everything; else | |
2920 | * we need to free the rest of the chain ourselves. | |
2921 | */ | |
2922 | if (!chain) | |
2923 | m_freem_list(npkt); | |
2924 | break; | |
2925 | } | |
2926 | pkt = npkt; | |
2927 | } | |
2928 | ||
2929 | if (unlocked) | |
2930 | socket_lock(so, 0); | |
2931 | ||
2932 | /* | |
2933 | * Enter flow controlled state if the connection is established | |
2934 | * and is not in recovery. Flow control is allowed only if there | |
2935 | * is outstanding data. | |
2936 | * | |
2937 | * A connection will enter suspended state even if it is in | |
2938 | * recovery. | |
2939 | */ | |
2940 | if (((adv->code == FADV_FLOW_CONTROLLED && !IN_FASTRECOVERY(tp)) || | |
2941 | adv->code == FADV_SUSPENDED) && | |
2942 | !(tp->t_flags & TF_CLOSING) && | |
2943 | tp->t_state == TCPS_ESTABLISHED && | |
2944 | SEQ_GT(tp->snd_max, tp->snd_una)) { | |
2945 | int rc; | |
2946 | rc = inp_set_fc_state(inp, adv->code); | |
2947 | ||
2948 | if (rc == 1) | |
2949 | tcp_ccdbg_trace(tp, NULL, | |
2950 | ((adv->code == FADV_FLOW_CONTROLLED) ? | |
2951 | TCP_CC_FLOW_CONTROL : TCP_CC_SUSPEND)); | |
2952 | } | |
2953 | ||
2954 | /* | |
2955 | * When an interface queue gets suspended, some of the | |
2956 | * packets are dropped. Return ENOBUFS, to update the | |
2957 | * pcb state. | |
2958 | */ | |
2959 | if (adv->code == FADV_SUSPENDED) | |
2960 | error = ENOBUFS; | |
2961 | ||
2962 | VERIFY(inp->inp_sndinprog_cnt > 0); | |
2963 | if ( --inp->inp_sndinprog_cnt == 0) { | |
2964 | inp->inp_flags &= ~(INP_FC_FEEDBACK); | |
2965 | if (inp->inp_sndingprog_waiters > 0) { | |
2966 | wakeup(&inp->inp_sndinprog_cnt); | |
2967 | } | |
2968 | } | |
2969 | ||
2970 | #if INET6 | |
2971 | if (isipv6) { | |
2972 | /* | |
2973 | * When an NECP IP tunnel policy forces the outbound interface, | |
2974 | * ip6_output_list() informs the transport layer what is the actual | |
2975 | * outgoing interface | |
2976 | */ | |
2977 | if (ip6oa.ip6oa_flags & IP6OAF_BOUND_IF) { | |
2978 | outif = ifindex2ifnet[ip6oa.ip6oa_boundif]; | |
2979 | } else if (ro6.ro_rt != NULL) { | |
2980 | outif = ro6.ro_rt->rt_ifp; | |
2981 | } | |
2982 | } else | |
2983 | #endif /* INET6 */ | |
2984 | if (ro.ro_rt != NULL) | |
2985 | outif = ro.ro_rt->rt_ifp; | |
2986 | ||
2987 | if (outif != NULL && outif != inp->inp_last_outifp) { | |
2988 | /* Update the send byte count */ | |
2989 | if (so->so_snd.sb_cc > 0 && so->so_snd.sb_flags & SB_SNDBYTE_CNT) { | |
2990 | inp_decr_sndbytes_total(so, so->so_snd.sb_cc); | |
2991 | inp_decr_sndbytes_allunsent(so, tp->snd_una); | |
2992 | so->so_snd.sb_flags &= ~SB_SNDBYTE_CNT; | |
2993 | } | |
2994 | inp->inp_last_outifp = outif; | |
2995 | ||
2996 | } | |
2997 | ||
2998 | if (error != 0 && ifdenied && | |
2999 | (INP_NO_CELLULAR(inp) || INP_NO_EXPENSIVE(inp) || INP_NO_CONSTRAINED(inp))) | |
3000 | soevent(so, | |
3001 | (SO_FILT_HINT_LOCKED|SO_FILT_HINT_IFDENIED)); | |
3002 | ||
3003 | /* Synchronize cached PCB route & options */ | |
3004 | #if INET6 | |
3005 | if (isipv6) | |
3006 | in6p_route_copyin(inp, &ro6); | |
3007 | else | |
3008 | #endif /* INET6 */ | |
3009 | inp_route_copyin(inp, &ro); | |
3010 | ||
3011 | if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift == 0 && | |
3012 | tp->t_inpcb->inp_route.ro_rt != NULL) { | |
3013 | /* If we found the route and there is an rtt on it | |
3014 | * reset the retransmit timer | |
3015 | */ | |
3016 | tcp_getrt_rtt(tp, tp->t_inpcb->in6p_route.ro_rt); | |
3017 | tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, tp->t_rxtcur); | |
3018 | } | |
3019 | return error; | |
3020 | } | |
3021 | ||
3022 | int tcptv_persmin_val = TCPTV_PERSMIN; | |
3023 | ||
3024 | void | |
3025 | tcp_setpersist(struct tcpcb *tp) | |
3026 | { | |
3027 | int t = ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1; | |
3028 | ||
3029 | /* If a PERSIST_TIMER option was set we will limit the | |
3030 | * time the persist timer will be active for that connection | |
3031 | * in order to avoid DOS by using zero window probes. | |
3032 | * see rdar://5805356 | |
3033 | */ | |
3034 | ||
3035 | if (tp->t_persist_timeout != 0 && | |
3036 | tp->t_timer[TCPT_PERSIST] == 0 && | |
3037 | tp->t_persist_stop == 0) { | |
3038 | tp->t_persist_stop = tcp_now + tp->t_persist_timeout; | |
3039 | } | |
3040 | ||
3041 | /* | |
3042 | * Start/restart persistance timer. | |
3043 | */ | |
3044 | TCPT_RANGESET(tp->t_timer[TCPT_PERSIST], | |
3045 | t * tcp_backoff[tp->t_rxtshift], | |
3046 | tcptv_persmin_val, TCPTV_PERSMAX, 0); | |
3047 | tp->t_timer[TCPT_PERSIST] = OFFSET_FROM_START(tp, tp->t_timer[TCPT_PERSIST]); | |
3048 | ||
3049 | if (tp->t_rxtshift < TCP_MAXRXTSHIFT) | |
3050 | tp->t_rxtshift++; | |
3051 | } | |
3052 | ||
3053 | /* | |
3054 | * Send as many acks as data coalesced. Every other packet when stretch | |
3055 | * ACK is not enabled. Every 8 packets, if stretch ACK is enabled. | |
3056 | */ | |
3057 | static struct mbuf* | |
3058 | tcp_send_lroacks(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th) | |
3059 | { | |
3060 | struct mbuf *mnext = NULL, *ack_chain = NULL, *tail = NULL; | |
3061 | int count = 0; | |
3062 | tcp_seq org_ack = ntohl(th->th_ack); | |
3063 | tcp_seq prev_ack = 0; | |
3064 | int tack_offset = 28; /* IPv6 and IP options not supported */ | |
3065 | int twin_offset = 34; /* IPv6 and IP options not supported */ | |
3066 | int ack_size = (tp->t_flags & TF_STRETCHACK) ? | |
3067 | (maxseg_unacked * tp->t_maxseg) : (tp->t_maxseg << 1); | |
3068 | int segs_acked = (tp->t_flags & TF_STRETCHACK) ? maxseg_unacked : 2; | |
3069 | struct mbuf *prev_ack_pkt = NULL; | |
3070 | struct socket *so = tp->t_inpcb->inp_socket; | |
3071 | unsigned short winsz = ntohs(th->th_win); | |
3072 | unsigned int scaled_win = winsz<<tp->rcv_scale; | |
3073 | tcp_seq win_rtedge = org_ack + scaled_win; | |
3074 | ||
3075 | count = tp->t_lropktlen/tp->t_maxseg; | |
3076 | ||
3077 | prev_ack = (org_ack - tp->t_lropktlen) + ack_size; | |
3078 | if (prev_ack < org_ack) { | |
3079 | ack_chain = m_dup(m, M_DONTWAIT); | |
3080 | if (ack_chain) { | |
3081 | th->th_ack = htonl(prev_ack); | |
3082 | /* Keep adv window constant for duplicated ACK packets */ | |
3083 | scaled_win = win_rtedge - prev_ack; | |
3084 | if (scaled_win > (int32_t)(TCP_MAXWIN << tp->rcv_scale)) | |
3085 | scaled_win = (int32_t)(TCP_MAXWIN << tp->rcv_scale); | |
3086 | th->th_win = htons(scaled_win>>tp->rcv_scale); | |
3087 | if (lrodebug == 5) { | |
3088 | printf("%s: win = %d winsz = %d sc = %d" | |
3089 | " lro_len %d %d\n", | |
3090 | __func__, scaled_win>>tp->rcv_scale, winsz, | |
3091 | tp->rcv_scale, tp->t_lropktlen, count); | |
3092 | } | |
3093 | tail = ack_chain; | |
3094 | count -= segs_acked; /* accounts for prev_ack packet */ | |
3095 | count = (count <= segs_acked) ? 0 : count - segs_acked; | |
3096 | tcpstat.tcps_sndacks++; | |
3097 | so_tc_update_stats(m, so, m_get_service_class(m)); | |
3098 | } else { | |
3099 | return NULL; | |
3100 | } | |
3101 | } | |
3102 | else { | |
3103 | tp->t_lropktlen = 0; | |
3104 | return NULL; | |
3105 | } | |
3106 | ||
3107 | prev_ack_pkt = ack_chain; | |
3108 | ||
3109 | while (count > 0) { | |
3110 | if ((prev_ack + ack_size) < org_ack) { | |
3111 | prev_ack += ack_size; | |
3112 | } else { | |
3113 | /* | |
3114 | * The last ACK sent must have the ACK number that TCP | |
3115 | * thinks is the last sent ACK number. | |
3116 | */ | |
3117 | prev_ack = org_ack; | |
3118 | } | |
3119 | mnext = m_dup(prev_ack_pkt, M_DONTWAIT); | |
3120 | if (mnext) { | |
3121 | /* Keep adv window constant for duplicated ACK packets */ | |
3122 | scaled_win = win_rtedge - prev_ack; | |
3123 | if (scaled_win > (int32_t)(TCP_MAXWIN << tp->rcv_scale)) | |
3124 | scaled_win = (int32_t)(TCP_MAXWIN << tp->rcv_scale); | |
3125 | winsz = htons(scaled_win>>tp->rcv_scale); | |
3126 | if (lrodebug == 5) { | |
3127 | printf("%s: winsz = %d ack %x count %d\n", | |
3128 | __func__, scaled_win>>tp->rcv_scale, | |
3129 | prev_ack, count); | |
3130 | } | |
3131 | bcopy(&winsz, mtod(prev_ack_pkt, caddr_t) + twin_offset, 2); | |
3132 | HTONL(prev_ack); | |
3133 | bcopy(&prev_ack, mtod(prev_ack_pkt, caddr_t) + tack_offset, 4); | |
3134 | NTOHL(prev_ack); | |
3135 | tail->m_nextpkt = mnext; | |
3136 | tail = mnext; | |
3137 | count -= segs_acked; | |
3138 | tcpstat.tcps_sndacks++; | |
3139 | so_tc_update_stats(m, so, m_get_service_class(m)); | |
3140 | } else { | |
3141 | if (lrodebug == 5) { | |
3142 | printf("%s: failed to alloc mbuf.\n", __func__); | |
3143 | } | |
3144 | break; | |
3145 | } | |
3146 | prev_ack_pkt = mnext; | |
3147 | } | |
3148 | tp->t_lropktlen = 0; | |
3149 | return ack_chain; | |
3150 | } | |
3151 | ||
3152 | static int | |
3153 | tcp_recv_throttle (struct tcpcb *tp) | |
3154 | { | |
3155 | uint32_t base_rtt, newsize; | |
3156 | struct sockbuf *sbrcv = &tp->t_inpcb->inp_socket->so_rcv; | |
3157 | ||
3158 | if (tcp_use_rtt_recvbg == 1 && | |
3159 | TSTMP_SUPPORTED(tp)) { | |
3160 | /* | |
3161 | * Timestamps are supported on this connection. Use | |
3162 | * RTT to look for an increase in latency. | |
3163 | */ | |
3164 | ||
3165 | /* | |
3166 | * If the connection is already being throttled, leave it | |
3167 | * in that state until rtt comes closer to base rtt | |
3168 | */ | |
3169 | if (tp->t_flagsext & TF_RECV_THROTTLE) | |
3170 | return 1; | |
3171 | ||
3172 | base_rtt = get_base_rtt(tp); | |
3173 | ||
3174 | if (base_rtt != 0 && tp->t_rttcur != 0) { | |
3175 | /* | |
3176 | * if latency increased on a background flow, | |
3177 | * return 1 to start throttling. | |
3178 | */ | |
3179 | if (tp->t_rttcur > (base_rtt + target_qdelay)) { | |
3180 | tp->t_flagsext |= TF_RECV_THROTTLE; | |
3181 | if (tp->t_recv_throttle_ts == 0) | |
3182 | tp->t_recv_throttle_ts = tcp_now; | |
3183 | /* | |
3184 | * Reduce the recv socket buffer size to | |
3185 | * minimize latecy. | |
3186 | */ | |
3187 | if (sbrcv->sb_idealsize > | |
3188 | tcp_recv_throttle_minwin) { | |
3189 | newsize = sbrcv->sb_idealsize >> 1; | |
3190 | /* Set a minimum of 16 K */ | |
3191 | newsize = | |
3192 | max(newsize, | |
3193 | tcp_recv_throttle_minwin); | |
3194 | sbrcv->sb_idealsize = newsize; | |
3195 | } | |
3196 | return 1; | |
3197 | } else { | |
3198 | return 0; | |
3199 | } | |
3200 | } | |
3201 | } | |
3202 | ||
3203 | /* | |
3204 | * Timestamps are not supported or there is no good RTT | |
3205 | * measurement. Use IPDV in this case. | |
3206 | */ | |
3207 | if (tp->acc_iaj > tcp_acc_iaj_react_limit) | |
3208 | return 1; | |
3209 | ||
3210 | return 0; | |
3211 | } |