]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * Copyright (c) 1992 NeXT, Inc. | |
30 | * | |
31 | * HISTORY | |
32 | * 13 May 1992 ? at NeXT | |
33 | * Created. | |
34 | */ | |
35 | ||
36 | #include <mach/mach_types.h> | |
37 | #include <mach/exception.h> | |
38 | ||
39 | #include <kern/thread.h> | |
40 | #include <kern/ast.h> | |
41 | ||
42 | #include <sys/systm.h> | |
43 | #include <sys/param.h> | |
44 | #include <sys/proc_internal.h> | |
45 | #include <sys/user.h> | |
46 | #include <sys/sysproto.h> | |
47 | #include <sys/sysent.h> | |
48 | #include <sys/ucontext.h> | |
49 | #include <sys/wait.h> | |
50 | ||
51 | #include <sys/ux_exception.h> | |
52 | ||
53 | #include <mach/thread_act.h> /* for thread_abort_safely */ | |
54 | #include <mach/thread_status.h> | |
55 | ||
56 | #include <i386/eflags.h> | |
57 | #include <i386/psl.h> | |
58 | #include <i386/machine_routines.h> | |
59 | #include <i386/seg.h> | |
60 | #include <i386/fpu.h> | |
61 | ||
62 | #include <machine/pal_routines.h> | |
63 | ||
64 | #include <sys/kdebug.h> | |
65 | #include <sys/sdt.h> | |
66 | ||
67 | ||
68 | /* Forward: */ | |
69 | extern kern_return_t thread_getstatus(thread_t act, int flavor, | |
70 | thread_state_t tstate, mach_msg_type_number_t *count); | |
71 | extern kern_return_t thread_setstatus(thread_t thread, int flavor, | |
72 | thread_state_t tstate, mach_msg_type_number_t count); | |
73 | ||
74 | /* Signal handler flavors supported */ | |
75 | /* These defns should match the Libc implmn */ | |
76 | #define UC_TRAD 1 | |
77 | #define UC_FLAVOR 30 | |
78 | #define UC_SET_ALT_STACK 0x40000000 | |
79 | #define UC_RESET_ALT_STACK 0x80000000 | |
80 | ||
81 | #define C_32_STK_ALIGN 16 | |
82 | #define C_64_STK_ALIGN 16 | |
83 | #define C_64_REDZONE_LEN 128 | |
84 | #define TRUNC_DOWN32(a, c) ((((uint32_t)a)-(c)) & ((uint32_t)(-(c)))) | |
85 | #define TRUNC_DOWN64(a, c) ((((uint64_t)a)-(c)) & ((uint64_t)(-(c)))) | |
86 | ||
87 | /* | |
88 | * Send an interrupt to process. | |
89 | * | |
90 | * Stack is set up to allow sigcode stored | |
91 | * in u. to call routine, followed by chmk | |
92 | * to sigreturn routine below. After sigreturn | |
93 | * resets the signal mask, the stack, the frame | |
94 | * pointer, and the argument pointer, it returns | |
95 | * to the user specified pc, psl. | |
96 | */ | |
97 | struct sigframe32 { | |
98 | int retaddr; | |
99 | user32_addr_t catcher; /* sig_t */ | |
100 | int sigstyle; | |
101 | int sig; | |
102 | user32_addr_t sinfo; /* siginfo32_t* */ | |
103 | user32_addr_t uctx; /* struct ucontext32 */ | |
104 | user32_addr_t token; | |
105 | }; | |
106 | ||
107 | /* | |
108 | * Declare table of structure flavors and sizes for 64-bit and 32-bit processes | |
109 | * for the cases of extended states (plain FP, or AVX): | |
110 | */ | |
111 | typedef struct { | |
112 | int flavor; natural_t state_count; size_t mcontext_size; | |
113 | } xstate_info_t; | |
114 | static const xstate_info_t thread_state64[] = { | |
115 | [FP] = { x86_FLOAT_STATE64, x86_FLOAT_STATE64_COUNT, sizeof(struct mcontext64) }, | |
116 | [FP_FULL] = { x86_FLOAT_STATE64, x86_FLOAT_STATE64_COUNT, sizeof(struct mcontext64_full) }, | |
117 | [AVX] = { x86_AVX_STATE64, x86_AVX_STATE64_COUNT, sizeof(struct mcontext_avx64) }, | |
118 | [AVX_FULL] = { x86_AVX_STATE64, x86_AVX_STATE64_COUNT, sizeof(struct mcontext_avx64_full) }, | |
119 | [AVX512] = { x86_AVX512_STATE64, x86_AVX512_STATE64_COUNT, sizeof(struct mcontext_avx512_64) }, | |
120 | [AVX512_FULL] = { x86_AVX512_STATE64, x86_AVX512_STATE64_COUNT, sizeof(struct mcontext_avx512_64_full) } | |
121 | }; | |
122 | static const xstate_info_t thread_state32[] = { | |
123 | [FP] = { x86_FLOAT_STATE32, x86_FLOAT_STATE32_COUNT, sizeof(struct mcontext32) }, | |
124 | [AVX] = { x86_AVX_STATE32, x86_AVX_STATE32_COUNT, sizeof(struct mcontext_avx32) }, | |
125 | [AVX512] = { x86_AVX512_STATE32, x86_AVX512_STATE32_COUNT, sizeof(struct mcontext_avx512_32) } | |
126 | }; | |
127 | ||
128 | /* | |
129 | * NOTE: Source and target may *NOT* overlap! | |
130 | * XXX: Unify with bsd/kern/kern_exit.c | |
131 | */ | |
132 | static void | |
133 | siginfo_user_to_user32_x86(user_siginfo_t *in, user32_siginfo_t *out) | |
134 | { | |
135 | out->si_signo = in->si_signo; | |
136 | out->si_errno = in->si_errno; | |
137 | out->si_code = in->si_code; | |
138 | out->si_pid = in->si_pid; | |
139 | out->si_uid = in->si_uid; | |
140 | out->si_status = in->si_status; | |
141 | out->si_addr = CAST_DOWN_EXPLICIT(user32_addr_t, in->si_addr); | |
142 | /* following cast works for sival_int because of padding */ | |
143 | out->si_value.sival_ptr = CAST_DOWN_EXPLICIT(user32_addr_t, in->si_value.sival_ptr); | |
144 | out->si_band = in->si_band; /* range reduction */ | |
145 | out->__pad[0] = in->pad[0]; /* mcontext.ss.r1 */ | |
146 | } | |
147 | ||
148 | static void | |
149 | siginfo_user_to_user64_x86(user_siginfo_t *in, user64_siginfo_t *out) | |
150 | { | |
151 | out->si_signo = in->si_signo; | |
152 | out->si_errno = in->si_errno; | |
153 | out->si_code = in->si_code; | |
154 | out->si_pid = in->si_pid; | |
155 | out->si_uid = in->si_uid; | |
156 | out->si_status = in->si_status; | |
157 | out->si_addr = in->si_addr; | |
158 | out->si_value.sival_ptr = in->si_value.sival_ptr; | |
159 | out->si_band = in->si_band; /* range reduction */ | |
160 | out->__pad[0] = in->pad[0]; /* mcontext.ss.r1 */ | |
161 | } | |
162 | ||
163 | void | |
164 | sendsig(struct proc *p, user_addr_t ua_catcher, int sig, int mask, __unused uint32_t code, sigset_t siginfo) | |
165 | { | |
166 | union { | |
167 | struct mcontext_avx32 mctx_avx32; | |
168 | struct mcontext_avx64 mctx_avx64; | |
169 | struct mcontext_avx64_full mctx_avx64_full; | |
170 | struct mcontext_avx512_32 mctx_avx512_32; | |
171 | struct mcontext_avx512_64 mctx_avx512_64; | |
172 | struct mcontext_avx512_64_full mctx_avx512_64_full; | |
173 | } mctx_store, *mctxp = &mctx_store; | |
174 | ||
175 | user_addr_t ua_sp; | |
176 | user_addr_t ua_fp; | |
177 | user_addr_t ua_cr2; | |
178 | user_addr_t ua_sip; | |
179 | user_addr_t ua_uctxp; | |
180 | user_addr_t ua_mctxp; | |
181 | user_siginfo_t sinfo64; | |
182 | ||
183 | struct sigacts *ps = p->p_sigacts; | |
184 | int oonstack, flavor; | |
185 | user_addr_t trampact; | |
186 | int sigonstack; | |
187 | void * state, *fpstate; | |
188 | mach_msg_type_number_t state_count; | |
189 | ||
190 | thread_t thread; | |
191 | struct uthread * ut; | |
192 | int stack_size = 0; | |
193 | int infostyle = UC_TRAD; | |
194 | xstate_t sig_xstate; | |
195 | user_addr_t token_uctx; | |
196 | kern_return_t kr; | |
197 | boolean_t reset_ss = TRUE; | |
198 | ||
199 | thread = current_thread(); | |
200 | ut = get_bsdthread_info(thread); | |
201 | ||
202 | if (siginfo & sigmask(sig)) { | |
203 | infostyle = UC_FLAVOR; | |
204 | } | |
205 | ||
206 | oonstack = ut->uu_sigstk.ss_flags & SA_ONSTACK; | |
207 | trampact = ps->ps_trampact[sig]; | |
208 | sigonstack = (ps->ps_sigonstack & sigmask(sig)); | |
209 | ||
210 | /* | |
211 | * init siginfo | |
212 | */ | |
213 | proc_unlock(p); | |
214 | ||
215 | bzero((caddr_t)&sinfo64, sizeof(sinfo64)); | |
216 | sinfo64.si_signo = sig; | |
217 | ||
218 | bzero(mctxp, sizeof(*mctxp)); | |
219 | ||
220 | sig_xstate = current_xstate(); | |
221 | ||
222 | if (proc_is64bit(p)) { | |
223 | x86_thread_state64_t *tstate64; | |
224 | struct user_ucontext64 uctx64; | |
225 | user64_addr_t token; | |
226 | int task_has_ldt = thread_task_has_ldt(thread); | |
227 | ||
228 | if (task_has_ldt) { | |
229 | flavor = x86_THREAD_FULL_STATE64; | |
230 | state_count = x86_THREAD_FULL_STATE64_COUNT; | |
231 | fpstate = (void *)&mctxp->mctx_avx64_full.fs; | |
232 | sig_xstate |= STATE64_FULL; | |
233 | } else { | |
234 | flavor = x86_THREAD_STATE64; | |
235 | state_count = x86_THREAD_STATE64_COUNT; | |
236 | fpstate = (void *)&mctxp->mctx_avx64.fs; | |
237 | } | |
238 | state = (void *)&mctxp->mctx_avx64.ss; | |
239 | ||
240 | /* | |
241 | * The state copying is performed with pointers to fields in the state | |
242 | * struct. This works specifically because the mcontext is layed-out with the | |
243 | * variable-sized FP-state as the last member. However, with the requirement | |
244 | * to support passing "full" 64-bit state to the signal handler, that layout has now | |
245 | * changed (since the "full" state has a larger "ss" member than the non-"full" | |
246 | * structure. Because of this, and to retain the array-lookup method of determining | |
247 | * structure sizes, we OR-in STATE64_FULL to sig_xstate to ensure the proper mcontext | |
248 | * size is passed. | |
249 | */ | |
250 | ||
251 | if (thread_getstatus(thread, flavor, (thread_state_t)state, &state_count) != KERN_SUCCESS) { | |
252 | goto bad; | |
253 | } | |
254 | ||
255 | if ((sig_xstate & STATE64_FULL) && mctxp->mctx_avx64.ss.cs != USER64_CS) { | |
256 | if ((ut->uu_flag & UT_ALTSTACK) && !oonstack && | |
257 | (sigonstack)) { | |
258 | reset_ss = TRUE; | |
259 | } else { | |
260 | reset_ss = FALSE; | |
261 | } | |
262 | } else { | |
263 | reset_ss = FALSE; | |
264 | } | |
265 | ||
266 | flavor = thread_state64[sig_xstate].flavor; | |
267 | state_count = thread_state64[sig_xstate].state_count; | |
268 | if (thread_getstatus(thread, flavor, (thread_state_t)fpstate, &state_count) != KERN_SUCCESS) { | |
269 | goto bad; | |
270 | } | |
271 | ||
272 | flavor = x86_EXCEPTION_STATE64; | |
273 | state_count = x86_EXCEPTION_STATE64_COUNT; | |
274 | state = (void *)&mctxp->mctx_avx64.es; | |
275 | if (thread_getstatus(thread, flavor, (thread_state_t)state, &state_count) != KERN_SUCCESS) { | |
276 | goto bad; | |
277 | } | |
278 | ||
279 | tstate64 = &mctxp->mctx_avx64.ss; | |
280 | ||
281 | /* figure out where our new stack lives */ | |
282 | if ((ut->uu_flag & UT_ALTSTACK) && !oonstack && | |
283 | (sigonstack)) { | |
284 | ua_sp = ut->uu_sigstk.ss_sp; | |
285 | stack_size = ut->uu_sigstk.ss_size; | |
286 | ua_sp += stack_size; | |
287 | ut->uu_sigstk.ss_flags |= SA_ONSTACK; | |
288 | } else { | |
289 | if ((sig_xstate & STATE64_FULL) && tstate64->cs != USER64_CS) { | |
290 | reset_ss = FALSE; | |
291 | } | |
292 | ua_sp = tstate64->rsp; | |
293 | } | |
294 | ua_cr2 = mctxp->mctx_avx64.es.faultvaddr; | |
295 | ||
296 | /* The x86_64 ABI defines a 128-byte red zone. */ | |
297 | ua_sp -= C_64_REDZONE_LEN; | |
298 | ||
299 | ua_sp -= sizeof(struct user_ucontext64); | |
300 | ua_uctxp = ua_sp; // someone tramples the first word! | |
301 | ||
302 | ua_sp -= sizeof(user64_siginfo_t); | |
303 | ua_sip = ua_sp; | |
304 | ||
305 | ua_sp -= thread_state64[sig_xstate].mcontext_size; | |
306 | ua_mctxp = ua_sp; | |
307 | ||
308 | /* | |
309 | * Align the frame and stack pointers to 16 bytes for SSE. | |
310 | * (Note that we use 'ua_fp' as the base of the stack going forward) | |
311 | */ | |
312 | ua_fp = TRUNC_DOWN64(ua_sp, C_64_STK_ALIGN); | |
313 | ||
314 | /* | |
315 | * But we need to account for the return address so the alignment is | |
316 | * truly "correct" at _sigtramp | |
317 | */ | |
318 | ua_fp -= sizeof(user_addr_t); | |
319 | ||
320 | /* | |
321 | * Generate the validation token for sigreturn | |
322 | */ | |
323 | token_uctx = ua_uctxp; | |
324 | kr = machine_thread_siguctx_pointer_convert_to_user(thread, &token_uctx); | |
325 | assert(kr == KERN_SUCCESS); | |
326 | token = (user64_addr_t)token_uctx ^ (user64_addr_t)ps->ps_sigreturn_token; | |
327 | ||
328 | /* | |
329 | * Build the signal context to be used by sigreturn. | |
330 | */ | |
331 | bzero(&uctx64, sizeof(uctx64)); | |
332 | ||
333 | uctx64.uc_onstack = oonstack; | |
334 | uctx64.uc_sigmask = mask; | |
335 | uctx64.uc_stack.ss_sp = ua_fp; | |
336 | uctx64.uc_stack.ss_size = stack_size; | |
337 | ||
338 | if (oonstack) { | |
339 | uctx64.uc_stack.ss_flags |= SS_ONSTACK; | |
340 | } | |
341 | uctx64.uc_link = 0; | |
342 | ||
343 | uctx64.uc_mcsize = thread_state64[sig_xstate].mcontext_size; | |
344 | uctx64.uc_mcontext64 = ua_mctxp; | |
345 | ||
346 | if (copyout((caddr_t)&uctx64, ua_uctxp, sizeof(uctx64))) { | |
347 | goto bad; | |
348 | } | |
349 | ||
350 | if (copyout((caddr_t)&mctx_store, ua_mctxp, thread_state64[sig_xstate].mcontext_size)) { | |
351 | goto bad; | |
352 | } | |
353 | ||
354 | sinfo64.pad[0] = tstate64->rsp; | |
355 | sinfo64.si_addr = tstate64->rip; | |
356 | ||
357 | tstate64->rip = trampact; | |
358 | tstate64->rsp = ua_fp; | |
359 | tstate64->rflags = get_eflags_exportmask(); | |
360 | ||
361 | /* | |
362 | * SETH - need to set these for processes with LDTs | |
363 | */ | |
364 | tstate64->cs = USER64_CS; | |
365 | tstate64->fs = NULL_SEG; | |
366 | /* | |
367 | * Set gs to 0 here to prevent restoration of %gs on return-to-user. If we | |
368 | * did NOT do that here and %gs was non-zero, we'd blow away gsbase when | |
369 | * we restore %gs in the kernel exit trampoline. | |
370 | */ | |
371 | tstate64->gs = 0; | |
372 | ||
373 | if (sig_xstate & STATE64_FULL) { | |
374 | /* Reset DS, ES, and possibly SS */ | |
375 | if (reset_ss) { | |
376 | /* | |
377 | * Restore %ss if (a) an altstack was used for signal delivery | |
378 | * or (b) %cs at the time of the signal was the default | |
379 | * (USER64_CS) | |
380 | */ | |
381 | mctxp->mctx_avx64_full.ss.ss = USER64_DS; | |
382 | } | |
383 | mctxp->mctx_avx64_full.ss.ds = USER64_DS; | |
384 | mctxp->mctx_avx64_full.ss.es = 0; | |
385 | } | |
386 | ||
387 | /* | |
388 | * Build the argument list for the signal handler. | |
389 | * Handler should call sigreturn to get out of it | |
390 | */ | |
391 | tstate64->rdi = ua_catcher; | |
392 | tstate64->rsi = infostyle; | |
393 | tstate64->rdx = sig; | |
394 | tstate64->rcx = ua_sip; | |
395 | tstate64->r8 = ua_uctxp; | |
396 | tstate64->r9 = token; | |
397 | } else { | |
398 | x86_thread_state32_t *tstate32; | |
399 | struct user_ucontext32 uctx32; | |
400 | struct sigframe32 frame32; | |
401 | user32_addr_t token; | |
402 | ||
403 | flavor = x86_THREAD_STATE32; | |
404 | state_count = x86_THREAD_STATE32_COUNT; | |
405 | state = (void *)&mctxp->mctx_avx32.ss; | |
406 | if (thread_getstatus(thread, flavor, (thread_state_t)state, &state_count) != KERN_SUCCESS) { | |
407 | goto bad; | |
408 | } | |
409 | ||
410 | flavor = thread_state32[sig_xstate].flavor; | |
411 | state_count = thread_state32[sig_xstate].state_count; | |
412 | state = (void *)&mctxp->mctx_avx32.fs; | |
413 | if (thread_getstatus(thread, flavor, (thread_state_t)state, &state_count) != KERN_SUCCESS) { | |
414 | goto bad; | |
415 | } | |
416 | ||
417 | flavor = x86_EXCEPTION_STATE32; | |
418 | state_count = x86_EXCEPTION_STATE32_COUNT; | |
419 | state = (void *)&mctxp->mctx_avx32.es; | |
420 | if (thread_getstatus(thread, flavor, (thread_state_t)state, &state_count) != KERN_SUCCESS) { | |
421 | goto bad; | |
422 | } | |
423 | ||
424 | tstate32 = &mctxp->mctx_avx32.ss; | |
425 | ||
426 | /* figure out where our new stack lives */ | |
427 | if ((ut->uu_flag & UT_ALTSTACK) && !oonstack && | |
428 | (sigonstack)) { | |
429 | ua_sp = ut->uu_sigstk.ss_sp; | |
430 | stack_size = ut->uu_sigstk.ss_size; | |
431 | ua_sp += stack_size; | |
432 | ut->uu_sigstk.ss_flags |= SA_ONSTACK; | |
433 | } else { | |
434 | ua_sp = tstate32->esp; | |
435 | } | |
436 | ua_cr2 = mctxp->mctx_avx32.es.faultvaddr; | |
437 | ||
438 | ua_sp -= sizeof(struct user_ucontext32); | |
439 | ua_uctxp = ua_sp; // someone tramples the first word! | |
440 | ||
441 | ua_sp -= sizeof(user32_siginfo_t); | |
442 | ua_sip = ua_sp; | |
443 | ||
444 | ua_sp -= thread_state32[sig_xstate].mcontext_size; | |
445 | ua_mctxp = ua_sp; | |
446 | ||
447 | ua_sp -= sizeof(struct sigframe32); | |
448 | ua_fp = ua_sp; | |
449 | ||
450 | /* | |
451 | * Align the frame and stack pointers to 16 bytes for SSE. | |
452 | * (Note that we use 'fp' as the base of the stack going forward) | |
453 | */ | |
454 | ua_fp = TRUNC_DOWN32(ua_fp, C_32_STK_ALIGN); | |
455 | ||
456 | /* | |
457 | * But we need to account for the return address so the alignment is | |
458 | * truly "correct" at _sigtramp | |
459 | */ | |
460 | ua_fp -= sizeof(frame32.retaddr); | |
461 | ||
462 | /* | |
463 | * Generate the validation token for sigreturn | |
464 | */ | |
465 | token_uctx = ua_uctxp; | |
466 | kr = machine_thread_siguctx_pointer_convert_to_user(thread, &token_uctx); | |
467 | assert(kr == KERN_SUCCESS); | |
468 | token = CAST_DOWN_EXPLICIT(user32_addr_t, token_uctx) ^ | |
469 | CAST_DOWN_EXPLICIT(user32_addr_t, ps->ps_sigreturn_token); | |
470 | ||
471 | /* | |
472 | * Build the argument list for the signal handler. | |
473 | * Handler should call sigreturn to get out of it | |
474 | */ | |
475 | frame32.retaddr = -1; | |
476 | frame32.sigstyle = infostyle; | |
477 | frame32.sig = sig; | |
478 | frame32.catcher = CAST_DOWN_EXPLICIT(user32_addr_t, ua_catcher); | |
479 | frame32.sinfo = CAST_DOWN_EXPLICIT(user32_addr_t, ua_sip); | |
480 | frame32.uctx = CAST_DOWN_EXPLICIT(user32_addr_t, ua_uctxp); | |
481 | frame32.token = token; | |
482 | ||
483 | if (copyout((caddr_t)&frame32, ua_fp, sizeof(frame32))) { | |
484 | goto bad; | |
485 | } | |
486 | ||
487 | /* | |
488 | * Build the signal context to be used by sigreturn. | |
489 | */ | |
490 | bzero(&uctx32, sizeof(uctx32)); | |
491 | ||
492 | uctx32.uc_onstack = oonstack; | |
493 | uctx32.uc_sigmask = mask; | |
494 | uctx32.uc_stack.ss_sp = CAST_DOWN_EXPLICIT(user32_addr_t, ua_fp); | |
495 | uctx32.uc_stack.ss_size = stack_size; | |
496 | ||
497 | if (oonstack) { | |
498 | uctx32.uc_stack.ss_flags |= SS_ONSTACK; | |
499 | } | |
500 | uctx32.uc_link = 0; | |
501 | ||
502 | uctx32.uc_mcsize = thread_state64[sig_xstate].mcontext_size; | |
503 | ||
504 | uctx32.uc_mcontext = CAST_DOWN_EXPLICIT(user32_addr_t, ua_mctxp); | |
505 | ||
506 | if (copyout((caddr_t)&uctx32, ua_uctxp, sizeof(uctx32))) { | |
507 | goto bad; | |
508 | } | |
509 | ||
510 | if (copyout((caddr_t)&mctx_store, ua_mctxp, thread_state32[sig_xstate].mcontext_size)) { | |
511 | goto bad; | |
512 | } | |
513 | ||
514 | sinfo64.pad[0] = tstate32->esp; | |
515 | sinfo64.si_addr = tstate32->eip; | |
516 | } | |
517 | ||
518 | switch (sig) { | |
519 | case SIGILL: | |
520 | switch (ut->uu_code) { | |
521 | case EXC_I386_INVOP: | |
522 | sinfo64.si_code = ILL_ILLOPC; | |
523 | break; | |
524 | default: | |
525 | sinfo64.si_code = ILL_NOOP; | |
526 | } | |
527 | break; | |
528 | case SIGFPE: | |
529 | #define FP_IE 0 /* Invalid operation */ | |
530 | #define FP_DE 1 /* Denormalized operand */ | |
531 | #define FP_ZE 2 /* Zero divide */ | |
532 | #define FP_OE 3 /* overflow */ | |
533 | #define FP_UE 4 /* underflow */ | |
534 | #define FP_PE 5 /* precision */ | |
535 | if (ut->uu_code == EXC_I386_DIV) { | |
536 | sinfo64.si_code = FPE_INTDIV; | |
537 | } else if (ut->uu_code == EXC_I386_INTO) { | |
538 | sinfo64.si_code = FPE_INTOVF; | |
539 | } else if (ut->uu_subcode & (1 << FP_ZE)) { | |
540 | sinfo64.si_code = FPE_FLTDIV; | |
541 | } else if (ut->uu_subcode & (1 << FP_OE)) { | |
542 | sinfo64.si_code = FPE_FLTOVF; | |
543 | } else if (ut->uu_subcode & (1 << FP_UE)) { | |
544 | sinfo64.si_code = FPE_FLTUND; | |
545 | } else if (ut->uu_subcode & (1 << FP_PE)) { | |
546 | sinfo64.si_code = FPE_FLTRES; | |
547 | } else if (ut->uu_subcode & (1 << FP_IE)) { | |
548 | sinfo64.si_code = FPE_FLTINV; | |
549 | } else { | |
550 | sinfo64.si_code = FPE_NOOP; | |
551 | } | |
552 | break; | |
553 | case SIGBUS: | |
554 | sinfo64.si_code = BUS_ADRERR; | |
555 | sinfo64.si_addr = ua_cr2; | |
556 | break; | |
557 | case SIGTRAP: | |
558 | sinfo64.si_code = TRAP_BRKPT; | |
559 | break; | |
560 | case SIGSEGV: | |
561 | sinfo64.si_addr = ua_cr2; | |
562 | ||
563 | switch (ut->uu_code) { | |
564 | case EXC_I386_GPFLT: | |
565 | /* CR2 is meaningless after GP fault */ | |
566 | /* XXX namespace clash! */ | |
567 | sinfo64.si_addr = 0ULL; | |
568 | sinfo64.si_code = 0; | |
569 | break; | |
570 | case KERN_PROTECTION_FAILURE: | |
571 | sinfo64.si_code = SEGV_ACCERR; | |
572 | break; | |
573 | case KERN_INVALID_ADDRESS: | |
574 | sinfo64.si_code = SEGV_MAPERR; | |
575 | break; | |
576 | default: | |
577 | sinfo64.si_code = FPE_NOOP; | |
578 | } | |
579 | break; | |
580 | default: | |
581 | { | |
582 | int status_and_exitcode; | |
583 | ||
584 | /* | |
585 | * All other signals need to fill out a minimum set of | |
586 | * information for the siginfo structure passed into | |
587 | * the signal handler, if SA_SIGINFO was specified. | |
588 | * | |
589 | * p->si_status actually contains both the status and | |
590 | * the exit code; we save it off in its own variable | |
591 | * for later breakdown. | |
592 | */ | |
593 | proc_lock(p); | |
594 | sinfo64.si_pid = p->si_pid; | |
595 | p->si_pid = 0; | |
596 | status_and_exitcode = p->si_status; | |
597 | p->si_status = 0; | |
598 | sinfo64.si_uid = p->si_uid; | |
599 | p->si_uid = 0; | |
600 | sinfo64.si_code = p->si_code; | |
601 | p->si_code = 0; | |
602 | proc_unlock(p); | |
603 | if (sinfo64.si_code == CLD_EXITED) { | |
604 | if (WIFEXITED(status_and_exitcode)) { | |
605 | sinfo64.si_code = CLD_EXITED; | |
606 | } else if (WIFSIGNALED(status_and_exitcode)) { | |
607 | if (WCOREDUMP(status_and_exitcode)) { | |
608 | sinfo64.si_code = CLD_DUMPED; | |
609 | status_and_exitcode = W_EXITCODE(status_and_exitcode, status_and_exitcode); | |
610 | } else { | |
611 | sinfo64.si_code = CLD_KILLED; | |
612 | status_and_exitcode = W_EXITCODE(status_and_exitcode, status_and_exitcode); | |
613 | } | |
614 | } | |
615 | } | |
616 | /* | |
617 | * The recorded status contains the exit code and the | |
618 | * signal information, but the information to be passed | |
619 | * in the siginfo to the handler is supposed to only | |
620 | * contain the status, so we have to shift it out. | |
621 | */ | |
622 | sinfo64.si_status = (WEXITSTATUS(status_and_exitcode) & 0x00FFFFFF) | (((uint32_t)(p->p_xhighbits) << 24) & 0xFF000000); | |
623 | p->p_xhighbits = 0; | |
624 | break; | |
625 | } | |
626 | } | |
627 | if (proc_is64bit(p)) { | |
628 | user64_siginfo_t sinfo64_user64; | |
629 | ||
630 | bzero((caddr_t)&sinfo64_user64, sizeof(sinfo64_user64)); | |
631 | ||
632 | siginfo_user_to_user64_x86(&sinfo64, &sinfo64_user64); | |
633 | ||
634 | #if CONFIG_DTRACE | |
635 | bzero((caddr_t)&(ut->t_dtrace_siginfo), sizeof(ut->t_dtrace_siginfo)); | |
636 | ||
637 | ut->t_dtrace_siginfo.si_signo = sinfo64.si_signo; | |
638 | ut->t_dtrace_siginfo.si_code = sinfo64.si_code; | |
639 | ut->t_dtrace_siginfo.si_pid = sinfo64.si_pid; | |
640 | ut->t_dtrace_siginfo.si_uid = sinfo64.si_uid; | |
641 | ut->t_dtrace_siginfo.si_status = sinfo64.si_status; | |
642 | /* XXX truncates faulting address to void * on K32 */ | |
643 | ut->t_dtrace_siginfo.si_addr = CAST_DOWN(void *, sinfo64.si_addr); | |
644 | ||
645 | /* Fire DTrace proc:::fault probe when signal is generated by hardware. */ | |
646 | switch (sig) { | |
647 | case SIGILL: case SIGBUS: case SIGSEGV: case SIGFPE: case SIGTRAP: | |
648 | DTRACE_PROC2(fault, int, (int)(ut->uu_code), siginfo_t *, &(ut->t_dtrace_siginfo)); | |
649 | break; | |
650 | default: | |
651 | break; | |
652 | } | |
653 | ||
654 | /* XXX truncates catcher address to uintptr_t */ | |
655 | DTRACE_PROC3(signal__handle, int, sig, siginfo_t *, &(ut->t_dtrace_siginfo), | |
656 | void (*)(void), CAST_DOWN(sig_t, ua_catcher)); | |
657 | #endif /* CONFIG_DTRACE */ | |
658 | ||
659 | if (copyout((caddr_t)&sinfo64_user64, ua_sip, sizeof(sinfo64_user64))) { | |
660 | goto bad; | |
661 | } | |
662 | ||
663 | if (sig_xstate & STATE64_FULL) { | |
664 | flavor = x86_THREAD_FULL_STATE64; | |
665 | state_count = x86_THREAD_FULL_STATE64_COUNT; | |
666 | } else { | |
667 | flavor = x86_THREAD_STATE64; | |
668 | state_count = x86_THREAD_STATE64_COUNT; | |
669 | } | |
670 | state = (void *)&mctxp->mctx_avx64.ss; | |
671 | } else { | |
672 | x86_thread_state32_t *tstate32; | |
673 | user32_siginfo_t sinfo32; | |
674 | ||
675 | bzero((caddr_t)&sinfo32, sizeof(sinfo32)); | |
676 | ||
677 | siginfo_user_to_user32_x86(&sinfo64, &sinfo32); | |
678 | ||
679 | #if CONFIG_DTRACE | |
680 | bzero((caddr_t)&(ut->t_dtrace_siginfo), sizeof(ut->t_dtrace_siginfo)); | |
681 | ||
682 | ut->t_dtrace_siginfo.si_signo = sinfo32.si_signo; | |
683 | ut->t_dtrace_siginfo.si_code = sinfo32.si_code; | |
684 | ut->t_dtrace_siginfo.si_pid = sinfo32.si_pid; | |
685 | ut->t_dtrace_siginfo.si_uid = sinfo32.si_uid; | |
686 | ut->t_dtrace_siginfo.si_status = sinfo32.si_status; | |
687 | ut->t_dtrace_siginfo.si_addr = CAST_DOWN(void *, sinfo32.si_addr); | |
688 | ||
689 | /* Fire DTrace proc:::fault probe when signal is generated by hardware. */ | |
690 | switch (sig) { | |
691 | case SIGILL: case SIGBUS: case SIGSEGV: case SIGFPE: case SIGTRAP: | |
692 | DTRACE_PROC2(fault, int, (int)(ut->uu_code), siginfo_t *, &(ut->t_dtrace_siginfo)); | |
693 | break; | |
694 | default: | |
695 | break; | |
696 | } | |
697 | ||
698 | DTRACE_PROC3(signal__handle, int, sig, siginfo_t *, &(ut->t_dtrace_siginfo), | |
699 | void (*)(void), CAST_DOWN(sig_t, ua_catcher)); | |
700 | #endif /* CONFIG_DTRACE */ | |
701 | ||
702 | if (copyout((caddr_t)&sinfo32, ua_sip, sizeof(sinfo32))) { | |
703 | goto bad; | |
704 | } | |
705 | ||
706 | tstate32 = &mctxp->mctx_avx32.ss; | |
707 | ||
708 | tstate32->eip = CAST_DOWN_EXPLICIT(user32_addr_t, trampact); | |
709 | tstate32->esp = CAST_DOWN_EXPLICIT(user32_addr_t, ua_fp); | |
710 | ||
711 | tstate32->eflags = get_eflags_exportmask(); | |
712 | ||
713 | tstate32->cs = USER_CS; | |
714 | tstate32->ss = USER_DS; | |
715 | tstate32->ds = USER_DS; | |
716 | tstate32->es = USER_DS; | |
717 | tstate32->fs = NULL_SEG; | |
718 | tstate32->gs = USER_CTHREAD; | |
719 | ||
720 | flavor = x86_THREAD_STATE32; | |
721 | state_count = x86_THREAD_STATE32_COUNT; | |
722 | state = (void *)tstate32; | |
723 | } | |
724 | if (thread_setstatus(thread, flavor, (thread_state_t)state, state_count) != KERN_SUCCESS) { | |
725 | goto bad; | |
726 | } | |
727 | ml_fp_setvalid(FALSE); | |
728 | ||
729 | /* Tell the PAL layer about the signal */ | |
730 | pal_set_signal_delivery( thread ); | |
731 | ||
732 | proc_lock(p); | |
733 | ||
734 | return; | |
735 | ||
736 | bad: | |
737 | ||
738 | proc_lock(p); | |
739 | SIGACTION(p, SIGILL) = SIG_DFL; | |
740 | sig = sigmask(SIGILL); | |
741 | p->p_sigignore &= ~sig; | |
742 | p->p_sigcatch &= ~sig; | |
743 | ut->uu_sigmask &= ~sig; | |
744 | /* sendsig is called with signal lock held */ | |
745 | proc_unlock(p); | |
746 | psignal_locked(p, SIGILL); | |
747 | proc_lock(p); | |
748 | return; | |
749 | } | |
750 | ||
751 | /* | |
752 | * System call to cleanup state after a signal | |
753 | * has been taken. Reset signal mask and | |
754 | * stack state from context left by sendsig (above). | |
755 | * Return to previous pc and psl as specified by | |
756 | * context left by sendsig. Check carefully to | |
757 | * make sure that the user has not modified the | |
758 | * psl to gain improper priviledges or to cause | |
759 | * a machine fault. | |
760 | */ | |
761 | ||
762 | int | |
763 | sigreturn(struct proc *p, struct sigreturn_args *uap, __unused int *retval) | |
764 | { | |
765 | union { | |
766 | struct mcontext_avx32 mctx_avx32; | |
767 | struct mcontext_avx64 mctx_avx64; | |
768 | struct mcontext_avx64_full mctx_avx64_full; | |
769 | struct mcontext_avx512_32 mctx_avx512_32; | |
770 | struct mcontext_avx512_64 mctx_avx512_64; | |
771 | struct mcontext_avx512_64_full mctx_avx512_64_full; | |
772 | } mctx_store, *mctxp = &mctx_store; | |
773 | ||
774 | thread_t thread = current_thread(); | |
775 | struct uthread * ut; | |
776 | struct sigacts *ps = p->p_sigacts; | |
777 | int error; | |
778 | int onstack = 0; | |
779 | ||
780 | mach_msg_type_number_t ts_count; | |
781 | unsigned int ts_flavor; | |
782 | void * ts; | |
783 | mach_msg_type_number_t fs_count; | |
784 | unsigned int fs_flavor; | |
785 | void * fs; | |
786 | int rval = EJUSTRETURN; | |
787 | xstate_t sig_xstate; | |
788 | uint32_t sigreturn_validation; | |
789 | user_addr_t token_uctx; | |
790 | kern_return_t kr; | |
791 | ||
792 | ut = (struct uthread *)get_bsdthread_info(thread); | |
793 | ||
794 | /* | |
795 | * If we are being asked to change the altstack flag on the thread, we | |
796 | * just set/reset it and return (the uap->uctx is not used). | |
797 | */ | |
798 | if ((unsigned int)uap->infostyle == UC_SET_ALT_STACK) { | |
799 | ut->uu_sigstk.ss_flags |= SA_ONSTACK; | |
800 | return 0; | |
801 | } else if ((unsigned int)uap->infostyle == UC_RESET_ALT_STACK) { | |
802 | ut->uu_sigstk.ss_flags &= ~SA_ONSTACK; | |
803 | return 0; | |
804 | } | |
805 | ||
806 | /* see osfmk/kern/restartable.c */ | |
807 | act_set_ast_reset_pcs(thread); | |
808 | ||
809 | bzero(mctxp, sizeof(*mctxp)); | |
810 | ||
811 | sig_xstate = current_xstate(); | |
812 | ||
813 | sigreturn_validation = atomic_load_explicit( | |
814 | &ps->ps_sigreturn_validation, memory_order_relaxed); | |
815 | token_uctx = uap->uctx; | |
816 | kr = machine_thread_siguctx_pointer_convert_to_user(thread, &token_uctx); | |
817 | assert(kr == KERN_SUCCESS); | |
818 | ||
819 | if (proc_is64bit(p)) { | |
820 | struct user_ucontext64 uctx64; | |
821 | user64_addr_t token; | |
822 | int task_has_ldt = thread_task_has_ldt(thread); | |
823 | ||
824 | if ((error = copyin(uap->uctx, (void *)&uctx64, sizeof(uctx64)))) { | |
825 | return error; | |
826 | } | |
827 | ||
828 | onstack = uctx64.uc_onstack & 01; | |
829 | ut->uu_sigmask = uctx64.uc_sigmask & ~sigcantmask; | |
830 | ||
831 | if (task_has_ldt) { | |
832 | ts_flavor = x86_THREAD_FULL_STATE64; | |
833 | ts_count = x86_THREAD_FULL_STATE64_COUNT; | |
834 | fs = (void *)&mctxp->mctx_avx64_full.fs; | |
835 | sig_xstate |= STATE64_FULL; | |
836 | } else { | |
837 | ts_flavor = x86_THREAD_STATE64; | |
838 | ts_count = x86_THREAD_STATE64_COUNT; | |
839 | fs = (void *)&mctxp->mctx_avx64.fs; | |
840 | } | |
841 | ||
842 | if ((error = copyin(uctx64.uc_mcontext64, (void *)mctxp, thread_state64[sig_xstate].mcontext_size))) { | |
843 | return error; | |
844 | } | |
845 | ||
846 | ts = (void *)&mctxp->mctx_avx64.ss; | |
847 | ||
848 | fs_flavor = thread_state64[sig_xstate].flavor; | |
849 | fs_count = thread_state64[sig_xstate].state_count; | |
850 | ||
851 | token = (user64_addr_t)token_uctx ^ (user64_addr_t)ps->ps_sigreturn_token; | |
852 | if ((user64_addr_t)uap->token != token) { | |
853 | #if DEVELOPMENT || DEBUG | |
854 | printf("process %s[%d] sigreturn token mismatch: received 0x%llx expected 0x%llx\n", | |
855 | p->p_comm, p->p_pid, (user64_addr_t)uap->token, token); | |
856 | #endif /* DEVELOPMENT || DEBUG */ | |
857 | if (sigreturn_validation != PS_SIGRETURN_VALIDATION_DISABLED) { | |
858 | rval = EINVAL; | |
859 | } | |
860 | } | |
861 | } else { | |
862 | struct user_ucontext32 uctx32; | |
863 | user32_addr_t token; | |
864 | ||
865 | if ((error = copyin(uap->uctx, (void *)&uctx32, sizeof(uctx32)))) { | |
866 | return error; | |
867 | } | |
868 | ||
869 | if ((error = copyin(CAST_USER_ADDR_T(uctx32.uc_mcontext), (void *)mctxp, thread_state32[sig_xstate].mcontext_size))) { | |
870 | return error; | |
871 | } | |
872 | ||
873 | onstack = uctx32.uc_onstack & 01; | |
874 | ut->uu_sigmask = uctx32.uc_sigmask & ~sigcantmask; | |
875 | ||
876 | ts_flavor = x86_THREAD_STATE32; | |
877 | ts_count = x86_THREAD_STATE32_COUNT; | |
878 | ts = (void *)&mctxp->mctx_avx32.ss; | |
879 | ||
880 | fs_flavor = thread_state32[sig_xstate].flavor; | |
881 | fs_count = thread_state32[sig_xstate].state_count; | |
882 | fs = (void *)&mctxp->mctx_avx32.fs; | |
883 | ||
884 | token = CAST_DOWN_EXPLICIT(user32_addr_t, uap->uctx) ^ | |
885 | CAST_DOWN_EXPLICIT(user32_addr_t, ps->ps_sigreturn_token); | |
886 | if ((user32_addr_t)uap->token != token) { | |
887 | #if DEVELOPMENT || DEBUG | |
888 | printf("process %s[%d] sigreturn token mismatch: received 0x%x expected 0x%x\n", | |
889 | p->p_comm, p->p_pid, (user32_addr_t)uap->token, token); | |
890 | #endif /* DEVELOPMENT || DEBUG */ | |
891 | if (sigreturn_validation != PS_SIGRETURN_VALIDATION_DISABLED) { | |
892 | rval = EINVAL; | |
893 | } | |
894 | } | |
895 | } | |
896 | ||
897 | if (onstack) { | |
898 | ut->uu_sigstk.ss_flags |= SA_ONSTACK; | |
899 | } else { | |
900 | ut->uu_sigstk.ss_flags &= ~SA_ONSTACK; | |
901 | } | |
902 | ||
903 | if (ut->uu_siglist & ~ut->uu_sigmask) { | |
904 | signal_setast(thread); | |
905 | } | |
906 | ||
907 | if (rval == EINVAL) { | |
908 | goto error_ret; | |
909 | } | |
910 | ||
911 | /* | |
912 | * thread_set_state() does all the needed checks for the passed in | |
913 | * content | |
914 | */ | |
915 | if (thread_setstatus(thread, ts_flavor, ts, ts_count) != KERN_SUCCESS) { | |
916 | rval = EINVAL; | |
917 | #if DEVELOPMENT || DEBUG | |
918 | printf("process %s[%d] sigreturn thread_setstatus error %d\n", | |
919 | p->p_comm, p->p_pid, rval); | |
920 | #endif /* DEVELOPMENT || DEBUG */ | |
921 | goto error_ret; | |
922 | } | |
923 | ||
924 | ml_fp_setvalid(TRUE); | |
925 | ||
926 | if (thread_setstatus(thread, fs_flavor, fs, fs_count) != KERN_SUCCESS) { | |
927 | rval = EINVAL; | |
928 | #if DEVELOPMENT || DEBUG | |
929 | printf("process %s[%d] sigreturn thread_setstatus error %d\n", | |
930 | p->p_comm, p->p_pid, rval); | |
931 | #endif /* DEVELOPMENT || DEBUG */ | |
932 | goto error_ret; | |
933 | } | |
934 | error_ret: | |
935 | return rval; | |
936 | } | |
937 | ||
938 | ||
939 | /* | |
940 | * machine_exception() performs machine-dependent translation | |
941 | * of a mach exception to a unix signal. | |
942 | */ | |
943 | int | |
944 | machine_exception(int exception, | |
945 | mach_exception_code_t code, | |
946 | __unused mach_exception_subcode_t subcode) | |
947 | { | |
948 | switch (exception) { | |
949 | case EXC_BAD_ACCESS: | |
950 | /* Map GP fault to SIGSEGV, otherwise defer to caller */ | |
951 | if (code == EXC_I386_GPFLT) { | |
952 | return SIGSEGV; | |
953 | } | |
954 | break; | |
955 | ||
956 | case EXC_BAD_INSTRUCTION: | |
957 | return SIGILL; | |
958 | ||
959 | case EXC_ARITHMETIC: | |
960 | return SIGFPE; | |
961 | ||
962 | case EXC_SOFTWARE: | |
963 | if (code == EXC_I386_BOUND) { | |
964 | /* | |
965 | * Map #BR, the Bound Range Exceeded exception, to | |
966 | * SIGTRAP. | |
967 | */ | |
968 | return SIGTRAP; | |
969 | } | |
970 | break; | |
971 | } | |
972 | ||
973 | return 0; | |
974 | } |