]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2011 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | /* Sample thread data */ | |
30 | ||
31 | #include <kern/debug.h> /* panic */ | |
32 | #include <kern/thread.h> /* thread_* */ | |
33 | #include <kern/timer.h> /* timer_data_t */ | |
34 | #include <kern/policy_internal.h> /* TASK_POLICY_* */ | |
35 | #include <mach/mach_types.h> | |
36 | ||
37 | #include <kperf/kperf.h> | |
38 | #include <kperf/buffer.h> | |
39 | #include <kperf/context.h> | |
40 | #include <kperf/thread_samplers.h> | |
41 | #include <kperf/ast.h> | |
42 | ||
43 | #if MONOTONIC | |
44 | #include <kern/monotonic.h> | |
45 | #include <machine/monotonic.h> | |
46 | #endif /* MONOTONIC */ | |
47 | ||
48 | extern boolean_t stackshot_thread_is_idle_worker_unsafe(thread_t thread); | |
49 | ||
50 | /* | |
51 | * XXX Deprecated, use thread scheduling sampler instead. | |
52 | * | |
53 | * Taken from AppleProfileGetRunModeOfThread and CHUD. Still here for | |
54 | * backwards compatibility. | |
55 | */ | |
56 | ||
57 | #define KPERF_TI_RUNNING (1U << 0) | |
58 | #define KPERF_TI_RUNNABLE (1U << 1) | |
59 | #define KPERF_TI_WAIT (1U << 2) | |
60 | #define KPERF_TI_UNINT (1U << 3) | |
61 | #define KPERF_TI_SUSP (1U << 4) | |
62 | #define KPERF_TI_TERMINATE (1U << 5) | |
63 | #define KPERF_TI_IDLE (1U << 6) | |
64 | ||
65 | static uint32_t | |
66 | kperf_thread_info_runmode_legacy(thread_t thread) | |
67 | { | |
68 | uint32_t kperf_state = 0; | |
69 | int sched_state = thread->state; | |
70 | processor_t last_processor = thread->last_processor; | |
71 | ||
72 | if ((last_processor != PROCESSOR_NULL) && (thread == last_processor->active_thread)) { | |
73 | kperf_state |= KPERF_TI_RUNNING; | |
74 | } | |
75 | if (sched_state & TH_RUN) { | |
76 | kperf_state |= KPERF_TI_RUNNABLE; | |
77 | } | |
78 | if (sched_state & TH_WAIT) { | |
79 | kperf_state |= KPERF_TI_WAIT; | |
80 | } | |
81 | if (sched_state & TH_UNINT) { | |
82 | kperf_state |= KPERF_TI_UNINT; | |
83 | } | |
84 | if (sched_state & TH_SUSP) { | |
85 | kperf_state |= KPERF_TI_SUSP; | |
86 | } | |
87 | if (sched_state & TH_TERMINATE) { | |
88 | kperf_state |= KPERF_TI_TERMINATE; | |
89 | } | |
90 | if (sched_state & TH_IDLE) { | |
91 | kperf_state |= KPERF_TI_IDLE; | |
92 | } | |
93 | ||
94 | #if !CONFIG_EMBEDDED | |
95 | /* on desktop, if state is blank, leave not idle set */ | |
96 | if (kperf_state == 0) { | |
97 | return (TH_IDLE << 16); | |
98 | } | |
99 | #endif /* !CONFIG_EMBEDDED */ | |
100 | ||
101 | /* high two bytes are inverted mask, low two bytes are normal */ | |
102 | return (((~kperf_state & 0xffff) << 16) | (kperf_state & 0xffff)); | |
103 | } | |
104 | ||
105 | void | |
106 | kperf_thread_info_sample(struct kperf_thread_info *ti, struct kperf_context *context) | |
107 | { | |
108 | thread_t cur_thread = context->cur_thread; | |
109 | ||
110 | BUF_INFO(PERF_TI_SAMPLE, (uintptr_t)thread_tid(cur_thread)); | |
111 | ||
112 | ti->kpthi_pid = context->cur_pid; | |
113 | ti->kpthi_tid = thread_tid(cur_thread); | |
114 | ti->kpthi_dq_addr = thread_dispatchqaddr(cur_thread); | |
115 | ti->kpthi_runmode = kperf_thread_info_runmode_legacy(cur_thread); | |
116 | ||
117 | BUF_VERB(PERF_TI_SAMPLE | DBG_FUNC_END); | |
118 | } | |
119 | ||
120 | void | |
121 | kperf_thread_info_log(struct kperf_thread_info *ti) | |
122 | { | |
123 | BUF_DATA(PERF_TI_DATA, ti->kpthi_pid, ti->kpthi_tid /* K64-only */, | |
124 | ti->kpthi_dq_addr, ti->kpthi_runmode); | |
125 | } | |
126 | ||
127 | /* | |
128 | * Scheduling information reports inputs and outputs of the scheduler state for | |
129 | * a thread. | |
130 | */ | |
131 | ||
132 | void | |
133 | kperf_thread_scheduling_sample(struct kperf_thread_scheduling *thsc, | |
134 | struct kperf_context *context) | |
135 | { | |
136 | assert(thsc != NULL); | |
137 | assert(context != NULL); | |
138 | ||
139 | thread_t thread = context->cur_thread; | |
140 | ||
141 | BUF_INFO(PERF_TI_SCHEDSAMPLE | DBG_FUNC_START, (uintptr_t)thread_tid(thread)); | |
142 | ||
143 | thsc->kpthsc_user_time = timer_grab(&thread->user_timer); | |
144 | uint64_t system_time = timer_grab(&thread->system_timer); | |
145 | ||
146 | if (thread->precise_user_kernel_time) { | |
147 | thsc->kpthsc_system_time = system_time; | |
148 | } else { | |
149 | thsc->kpthsc_user_time += system_time; | |
150 | thsc->kpthsc_system_time = 0; | |
151 | } | |
152 | ||
153 | thsc->kpthsc_runnable_time = timer_grab(&thread->runnable_timer); | |
154 | thsc->kpthsc_state = thread->state; | |
155 | thsc->kpthsc_base_priority = thread->base_pri; | |
156 | thsc->kpthsc_sched_priority = thread->sched_pri; | |
157 | thsc->kpthsc_effective_qos = thread->effective_policy.thep_qos; | |
158 | thsc->kpthsc_requested_qos = thread->requested_policy.thrp_qos; | |
159 | thsc->kpthsc_requested_qos_override = MAX(thread->requested_policy.thrp_qos_override, | |
160 | thread->requested_policy.thrp_qos_workq_override); | |
161 | thsc->kpthsc_requested_qos_promote = thread->requested_policy.thrp_qos_promote; | |
162 | thsc->kpthsc_requested_qos_ipc_override = thread->requested_policy.thrp_qos_ipc_override; | |
163 | thsc->kpthsc_requested_qos_sync_ipc_override = thread->requested_policy.thrp_qos_sync_ipc_override; | |
164 | thsc->kpthsc_effective_latency_qos = thread->effective_policy.thep_latency_qos; | |
165 | ||
166 | BUF_INFO(PERF_TI_SCHEDSAMPLE | DBG_FUNC_END); | |
167 | } | |
168 | ||
169 | ||
170 | void | |
171 | kperf_thread_scheduling_log(struct kperf_thread_scheduling *thsc) | |
172 | { | |
173 | assert(thsc != NULL); | |
174 | #if defined(__LP64__) | |
175 | BUF_DATA(PERF_TI_SCHEDDATA_2, thsc->kpthsc_user_time, | |
176 | thsc->kpthsc_system_time, | |
177 | (((uint64_t)thsc->kpthsc_base_priority) << 48) | |
178 | | ((uint64_t)thsc->kpthsc_sched_priority << 32) | |
179 | | ((uint64_t)(thsc->kpthsc_state & 0xff) << 24) | |
180 | | (thsc->kpthsc_effective_qos << 6) | |
181 | | (thsc->kpthsc_requested_qos << 3) | |
182 | | thsc->kpthsc_requested_qos_override, | |
183 | ((uint64_t)thsc->kpthsc_effective_latency_qos << 61) | |
184 | | ((uint64_t)thsc->kpthsc_requested_qos_promote << 58) | |
185 | | ((uint64_t)thsc->kpthsc_requested_qos_ipc_override << 55) | |
186 | | ((uint64_t)thsc->kpthsc_requested_qos_sync_ipc_override << 52) | |
187 | ); | |
188 | BUF_DATA(PERF_TI_SCHEDDATA_3, thsc->kpthsc_runnable_time); | |
189 | #else | |
190 | BUF_DATA(PERF_TI_SCHEDDATA1_32, UPPER_32(thsc->kpthsc_user_time), | |
191 | LOWER_32(thsc->kpthsc_user_time), | |
192 | UPPER_32(thsc->kpthsc_system_time), | |
193 | LOWER_32(thsc->kpthsc_system_time) | |
194 | ); | |
195 | BUF_DATA(PERF_TI_SCHEDDATA2_32_2, (((uint32_t)thsc->kpthsc_base_priority) << 16) | |
196 | | thsc->kpthsc_sched_priority, | |
197 | ((thsc->kpthsc_state & 0xff) << 24) | |
198 | | (thsc->kpthsc_effective_qos << 6) | |
199 | | (thsc->kpthsc_requested_qos << 3) | |
200 | | thsc->kpthsc_requested_qos_override, | |
201 | ((uint32_t)thsc->kpthsc_effective_latency_qos << 29) | |
202 | | ((uint32_t)thsc->kpthsc_requested_qos_promote << 26) | |
203 | | ((uint32_t)thsc->kpthsc_requested_qos_ipc_override << 23) | |
204 | | ((uint32_t)thsc->kpthsc_requested_qos_sync_ipc_override << 20) | |
205 | ); | |
206 | BUF_DATA(PERF_TI_SCHEDDATA3_32, UPPER_32(thsc->kpthsc_runnable_time), | |
207 | LOWER_32(thsc->kpthsc_runnable_time)); | |
208 | #endif /* defined(__LP64__) */ | |
209 | } | |
210 | ||
211 | /* | |
212 | * Snapshot information maintains parity with stackshot information for other, | |
213 | * miscellaneous information about threads. | |
214 | */ | |
215 | ||
216 | #define KPERF_THREAD_SNAPSHOT_DARWIN_BG (1U << 0); | |
217 | #define KPERF_THREAD_SNAPSHOT_PASSIVE_IO (1U << 1); | |
218 | #define KPERF_THREAD_SNAPSHOT_GFI (1U << 2); | |
219 | #define KPERF_THREAD_SNAPSHOT_IDLE_WQ (1U << 3); | |
220 | /* max is 1U << 7 */ | |
221 | ||
222 | void | |
223 | kperf_thread_snapshot_sample(struct kperf_thread_snapshot *thsn, | |
224 | struct kperf_context *context) | |
225 | { | |
226 | assert(thsn != NULL); | |
227 | assert(context != NULL); | |
228 | ||
229 | thread_t thread = context->cur_thread; | |
230 | ||
231 | BUF_INFO(PERF_TI_SNAPSAMPLE | DBG_FUNC_START, (uintptr_t)thread_tid(thread)); | |
232 | ||
233 | thsn->kpthsn_last_made_runnable_time = thread->last_made_runnable_time; | |
234 | ||
235 | thsn->kpthsn_flags = 0; | |
236 | if (thread->effective_policy.thep_darwinbg) { | |
237 | thsn->kpthsn_flags |= KPERF_THREAD_SNAPSHOT_DARWIN_BG; | |
238 | } | |
239 | if (proc_get_effective_thread_policy(thread, TASK_POLICY_PASSIVE_IO)) { | |
240 | thsn->kpthsn_flags |= KPERF_THREAD_SNAPSHOT_PASSIVE_IO; | |
241 | } | |
242 | if (thread->options & TH_OPT_GLOBAL_FORCED_IDLE) { | |
243 | thsn->kpthsn_flags |= KPERF_THREAD_SNAPSHOT_GFI | |
244 | } | |
245 | if (stackshot_thread_is_idle_worker_unsafe(thread)) { | |
246 | thsn->kpthsn_flags |= KPERF_THREAD_SNAPSHOT_IDLE_WQ; | |
247 | } | |
248 | ||
249 | thsn->kpthsn_suspend_count = thread->suspend_count; | |
250 | thsn->kpthsn_io_tier = proc_get_effective_thread_policy(thread, TASK_POLICY_IO); | |
251 | ||
252 | BUF_VERB(PERF_TI_SNAPSAMPLE | DBG_FUNC_END); | |
253 | } | |
254 | ||
255 | void | |
256 | kperf_thread_snapshot_log(struct kperf_thread_snapshot *thsn) | |
257 | { | |
258 | assert(thsn != NULL); | |
259 | #if defined(__LP64__) | |
260 | BUF_DATA(PERF_TI_SNAPDATA, thsn->kpthsn_flags | ((uint32_t)(thsn->kpthsn_suspend_count) << 8) | |
261 | | (thsn->kpthsn_io_tier << 24), | |
262 | thsn->kpthsn_last_made_runnable_time); | |
263 | #else | |
264 | BUF_DATA(PERF_TI_SNAPDATA_32, thsn->kpthsn_flags | ((uint32_t)(thsn->kpthsn_suspend_count) << 8) | |
265 | | (thsn->kpthsn_io_tier << 24), | |
266 | UPPER_32(thsn->kpthsn_last_made_runnable_time), | |
267 | LOWER_32(thsn->kpthsn_last_made_runnable_time)); | |
268 | #endif /* defined(__LP64__) */ | |
269 | } | |
270 | ||
271 | /* | |
272 | * Dispatch information only contains the dispatch queue serial number from | |
273 | * libdispatch. | |
274 | * | |
275 | * It's a separate sampler because queue data must be copied in from user space. | |
276 | */ | |
277 | ||
278 | void | |
279 | kperf_thread_dispatch_sample(struct kperf_thread_dispatch *thdi, | |
280 | struct kperf_context *context) | |
281 | { | |
282 | assert(thdi != NULL); | |
283 | assert(context != NULL); | |
284 | ||
285 | thread_t thread = context->cur_thread; | |
286 | ||
287 | BUF_INFO(PERF_TI_DISPSAMPLE | DBG_FUNC_START, (uintptr_t)thread_tid(thread)); | |
288 | ||
289 | task_t task = thread->task; | |
290 | boolean_t task_64 = task_has_64Bit_addr(task); | |
291 | size_t user_addr_size = task_64 ? 8 : 4; | |
292 | ||
293 | assert(thread->task != kernel_task); | |
294 | uint64_t user_dq_key_addr = thread_dispatchqaddr(thread); | |
295 | if (user_dq_key_addr == 0) { | |
296 | goto error; | |
297 | } | |
298 | ||
299 | uint64_t user_dq_addr; | |
300 | if ((copyin((user_addr_t)user_dq_key_addr, | |
301 | (char *)&user_dq_addr, | |
302 | user_addr_size) != 0) || | |
303 | (user_dq_addr == 0)) | |
304 | { | |
305 | goto error; | |
306 | } | |
307 | ||
308 | uint64_t user_dq_serialno_addr = | |
309 | user_dq_addr + get_task_dispatchqueue_serialno_offset(task); | |
310 | ||
311 | if (copyin((user_addr_t)user_dq_serialno_addr, | |
312 | (char *)&(thdi->kpthdi_dq_serialno), | |
313 | user_addr_size) == 0) | |
314 | { | |
315 | goto out; | |
316 | } | |
317 | ||
318 | error: | |
319 | thdi->kpthdi_dq_serialno = 0; | |
320 | ||
321 | out: | |
322 | BUF_VERB(PERF_TI_DISPSAMPLE | DBG_FUNC_END); | |
323 | } | |
324 | ||
325 | int | |
326 | kperf_thread_dispatch_pend(struct kperf_context *context) | |
327 | { | |
328 | return kperf_ast_pend(context->cur_thread, T_KPERF_AST_DISPATCH); | |
329 | } | |
330 | ||
331 | void | |
332 | kperf_thread_dispatch_log(struct kperf_thread_dispatch *thdi) | |
333 | { | |
334 | assert(thdi != NULL); | |
335 | #if defined(__LP64__) | |
336 | BUF_DATA(PERF_TI_DISPDATA, thdi->kpthdi_dq_serialno); | |
337 | #else | |
338 | BUF_DATA(PERF_TI_DISPDATA_32, UPPER_32(thdi->kpthdi_dq_serialno), | |
339 | LOWER_32(thdi->kpthdi_dq_serialno)); | |
340 | #endif /* defined(__LP64__) */ | |
341 | } | |
342 | ||
343 | /* | |
344 | * A bit different from other samplers -- since logging disables interrupts, | |
345 | * it's a fine place to sample the thread counters. | |
346 | */ | |
347 | void | |
348 | kperf_thread_inscyc_log(struct kperf_context *context) | |
349 | { | |
350 | #if MONOTONIC | |
351 | thread_t cur_thread = current_thread(); | |
352 | ||
353 | if (context->cur_thread != cur_thread) { | |
354 | /* can't safely access another thread's counters */ | |
355 | return; | |
356 | } | |
357 | ||
358 | uint64_t counts[MT_CORE_NFIXED]; | |
359 | ||
360 | int ret = mt_fixed_thread_counts(cur_thread, counts); | |
361 | if (ret) { | |
362 | return; | |
363 | } | |
364 | ||
365 | #if defined(__LP64__) | |
366 | BUF_DATA(PERF_TI_INSCYCDATA, counts[MT_CORE_INSTRS], counts[MT_CORE_CYCLES]); | |
367 | #else /* defined(__LP64__) */ | |
368 | /* 32-bit platforms don't count instructions */ | |
369 | BUF_DATA(PERF_TI_INSCYCDATA_32, 0, 0, UPPER_32(counts[MT_CORE_CYCLES]), | |
370 | LOWER_32(counts[MT_CORE_CYCLES])); | |
371 | #endif /* !defined(__LP64__) */ | |
372 | ||
373 | #else | |
374 | #pragma unused(context) | |
375 | #endif /* MONOTONIC */ | |
376 | ||
377 | } |