]> git.saurik.com Git - apple/xnu.git/blame_incremental - osfmk/kern/host.c
xnu-2050.22.13.tar.gz
[apple/xnu.git] / osfmk / kern / host.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56/*
57 */
58
59/*
60 * host.c
61 *
62 * Non-ipc host functions.
63 */
64
65#include <mach/mach_types.h>
66#include <mach/boolean.h>
67#include <mach/host_info.h>
68#include <mach/host_special_ports.h>
69#include <mach/kern_return.h>
70#include <mach/machine.h>
71#include <mach/port.h>
72#include <mach/processor_info.h>
73#include <mach/vm_param.h>
74#include <mach/processor.h>
75#include <mach/mach_host_server.h>
76#include <mach/host_priv_server.h>
77#include <mach/vm_map.h>
78
79#include <kern/kern_types.h>
80#include <kern/assert.h>
81#include <kern/kalloc.h>
82#include <kern/host.h>
83#include <kern/host_statistics.h>
84#include <kern/ipc_host.h>
85#include <kern/misc_protos.h>
86#include <kern/sched.h>
87#include <kern/processor.h>
88
89#include <vm/vm_map.h>
90
91host_data_t realhost;
92
93vm_extmod_statistics_data_t host_extmod_statistics;
94
95kern_return_t
96host_processors(
97 host_priv_t host_priv,
98 processor_array_t *out_array,
99 mach_msg_type_number_t *countp)
100{
101 register processor_t processor, *tp;
102 void *addr;
103 unsigned int count, i;
104
105 if (host_priv == HOST_PRIV_NULL)
106 return (KERN_INVALID_ARGUMENT);
107
108 assert(host_priv == &realhost);
109
110 count = processor_count;
111 assert(count != 0);
112
113 addr = kalloc((vm_size_t) (count * sizeof(mach_port_t)));
114 if (addr == 0)
115 return (KERN_RESOURCE_SHORTAGE);
116
117 tp = (processor_t *) addr;
118 *tp++ = processor = processor_list;
119
120 if (count > 1) {
121 simple_lock(&processor_list_lock);
122
123 for (i = 1; i < count; i++)
124 *tp++ = processor = processor->processor_list;
125
126 simple_unlock(&processor_list_lock);
127 }
128
129 *countp = count;
130 *out_array = (processor_array_t)addr;
131
132 /* do the conversion that Mig should handle */
133
134 tp = (processor_t *) addr;
135 for (i = 0; i < count; i++)
136 ((mach_port_t *) tp)[i] =
137 (mach_port_t)convert_processor_to_port(tp[i]);
138
139 return (KERN_SUCCESS);
140}
141
142kern_return_t
143host_info(
144 host_t host,
145 host_flavor_t flavor,
146 host_info_t info,
147 mach_msg_type_number_t *count)
148{
149
150 if (host == HOST_NULL)
151 return (KERN_INVALID_ARGUMENT);
152
153 switch (flavor) {
154
155 case HOST_BASIC_INFO:
156 {
157 register host_basic_info_t basic_info;
158 register int master_id;
159
160 /*
161 * Basic information about this host.
162 */
163 if (*count < HOST_BASIC_INFO_OLD_COUNT)
164 return (KERN_FAILURE);
165
166 basic_info = (host_basic_info_t) info;
167
168 basic_info->memory_size = machine_info.memory_size;
169 basic_info->max_cpus = machine_info.max_cpus;
170 basic_info->avail_cpus = processor_avail_count;
171 master_id = master_processor->cpu_id;
172 basic_info->cpu_type = slot_type(master_id);
173 basic_info->cpu_subtype = slot_subtype(master_id);
174
175 if (*count >= HOST_BASIC_INFO_COUNT) {
176 basic_info->cpu_threadtype = slot_threadtype(master_id);
177 basic_info->physical_cpu = machine_info.physical_cpu;
178 basic_info->physical_cpu_max = machine_info.physical_cpu_max;
179 basic_info->logical_cpu = machine_info.logical_cpu;
180 basic_info->logical_cpu_max = machine_info.logical_cpu_max;
181 basic_info->max_mem = machine_info.max_mem;
182
183 *count = HOST_BASIC_INFO_COUNT;
184 } else {
185 *count = HOST_BASIC_INFO_OLD_COUNT;
186 }
187
188 return (KERN_SUCCESS);
189 }
190
191 case HOST_SCHED_INFO:
192 {
193 register host_sched_info_t sched_info;
194 uint32_t quantum_time;
195 uint64_t quantum_ns;
196
197 /*
198 * Return scheduler information.
199 */
200 if (*count < HOST_SCHED_INFO_COUNT)
201 return (KERN_FAILURE);
202
203 sched_info = (host_sched_info_t) info;
204
205 quantum_time = SCHED(initial_quantum_size)(THREAD_NULL);
206 absolutetime_to_nanoseconds(quantum_time, &quantum_ns);
207
208 sched_info->min_timeout =
209 sched_info->min_quantum = (uint32_t)(quantum_ns / 1000 / 1000);
210
211 *count = HOST_SCHED_INFO_COUNT;
212
213 return (KERN_SUCCESS);
214 }
215
216 case HOST_RESOURCE_SIZES:
217 {
218 /*
219 * Return sizes of kernel data structures
220 */
221 if (*count < HOST_RESOURCE_SIZES_COUNT)
222 return (KERN_FAILURE);
223
224 /* XXX Fail until ledgers are implemented */
225 return (KERN_INVALID_ARGUMENT);
226 }
227
228 case HOST_PRIORITY_INFO:
229 {
230 register host_priority_info_t priority_info;
231
232 if (*count < HOST_PRIORITY_INFO_COUNT)
233 return (KERN_FAILURE);
234
235 priority_info = (host_priority_info_t) info;
236
237 priority_info->kernel_priority = MINPRI_KERNEL;
238 priority_info->system_priority = MINPRI_KERNEL;
239 priority_info->server_priority = MINPRI_RESERVED;
240 priority_info->user_priority = BASEPRI_DEFAULT;
241 priority_info->depress_priority = DEPRESSPRI;
242 priority_info->idle_priority = IDLEPRI;
243 priority_info->minimum_priority = MINPRI_USER;
244 priority_info->maximum_priority = MAXPRI_RESERVED;
245
246 *count = HOST_PRIORITY_INFO_COUNT;
247
248 return (KERN_SUCCESS);
249 }
250
251 /*
252 * Gestalt for various trap facilities.
253 */
254 case HOST_MACH_MSG_TRAP:
255 case HOST_SEMAPHORE_TRAPS:
256 {
257 *count = 0;
258 return (KERN_SUCCESS);
259 }
260
261 default:
262 return (KERN_INVALID_ARGUMENT);
263 }
264}
265
266kern_return_t
267host_statistics(
268 host_t host,
269 host_flavor_t flavor,
270 host_info_t info,
271 mach_msg_type_number_t *count)
272{
273 uint32_t i;
274
275 if (host == HOST_NULL)
276 return (KERN_INVALID_HOST);
277
278 switch(flavor) {
279
280 case HOST_LOAD_INFO:
281 {
282 host_load_info_t load_info;
283
284 if (*count < HOST_LOAD_INFO_COUNT)
285 return (KERN_FAILURE);
286
287 load_info = (host_load_info_t) info;
288
289 bcopy((char *) avenrun,
290 (char *) load_info->avenrun, sizeof avenrun);
291 bcopy((char *) mach_factor,
292 (char *) load_info->mach_factor, sizeof mach_factor);
293
294 *count = HOST_LOAD_INFO_COUNT;
295 return (KERN_SUCCESS);
296 }
297
298 case HOST_VM_INFO:
299 {
300 register processor_t processor;
301 register vm_statistics64_t stat;
302 vm_statistics64_data_t host_vm_stat;
303 vm_statistics_t stat32;
304 mach_msg_type_number_t original_count;
305
306 if (*count < HOST_VM_INFO_REV0_COUNT)
307 return (KERN_FAILURE);
308
309 processor = processor_list;
310 stat = &PROCESSOR_DATA(processor, vm_stat);
311 host_vm_stat = *stat;
312
313 if (processor_count > 1) {
314 simple_lock(&processor_list_lock);
315
316 while ((processor = processor->processor_list) != NULL) {
317 stat = &PROCESSOR_DATA(processor, vm_stat);
318
319 host_vm_stat.zero_fill_count += stat->zero_fill_count;
320 host_vm_stat.reactivations += stat->reactivations;
321 host_vm_stat.pageins += stat->pageins;
322 host_vm_stat.pageouts += stat->pageouts;
323 host_vm_stat.faults += stat->faults;
324 host_vm_stat.cow_faults += stat->cow_faults;
325 host_vm_stat.lookups += stat->lookups;
326 host_vm_stat.hits += stat->hits;
327 }
328
329 simple_unlock(&processor_list_lock);
330 }
331
332 stat32 = (vm_statistics_t) info;
333
334 stat32->free_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_free_count + vm_page_speculative_count);
335 stat32->active_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_active_count);
336
337 if (vm_page_local_q) {
338 for (i = 0; i < vm_page_local_q_count; i++) {
339 struct vpl *lq;
340
341 lq = &vm_page_local_q[i].vpl_un.vpl;
342
343 stat32->active_count += VM_STATISTICS_TRUNCATE_TO_32_BIT(lq->vpl_count);
344 }
345 }
346 stat32->inactive_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_inactive_count);
347#if CONFIG_EMBEDDED
348 stat32->wire_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_wire_count);
349#else
350 stat32->wire_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_wire_count + vm_page_throttled_count + vm_lopage_free_count);
351#endif
352 stat32->zero_fill_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.zero_fill_count);
353 stat32->reactivations = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.reactivations);
354 stat32->pageins = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.pageins);
355 stat32->pageouts = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.pageouts);
356 stat32->faults = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.faults);
357 stat32->cow_faults = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.cow_faults);
358 stat32->lookups = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.lookups);
359 stat32->hits = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.hits);
360
361 /*
362 * Fill in extra info added in later revisions of the
363 * vm_statistics data structure. Fill in only what can fit
364 * in the data structure the caller gave us !
365 */
366 original_count = *count;
367 *count = HOST_VM_INFO_REV0_COUNT; /* rev0 already filled in */
368 if (original_count >= HOST_VM_INFO_REV1_COUNT) {
369 /* rev1 added "purgeable" info */
370 stat32->purgeable_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_purgeable_count);
371 stat32->purges = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_purged_count);
372 *count = HOST_VM_INFO_REV1_COUNT;
373 }
374
375 if (original_count >= HOST_VM_INFO_REV2_COUNT) {
376 /* rev2 added "speculative" info */
377 stat32->speculative_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_speculative_count);
378 *count = HOST_VM_INFO_REV2_COUNT;
379 }
380
381 /* rev3 changed some of the fields to be 64-bit*/
382
383 return (KERN_SUCCESS);
384 }
385
386 case HOST_CPU_LOAD_INFO:
387 {
388 register processor_t processor;
389 host_cpu_load_info_t cpu_load_info;
390
391 if (*count < HOST_CPU_LOAD_INFO_COUNT)
392 return (KERN_FAILURE);
393
394#define GET_TICKS_VALUE(processor, state, timer) \
395MACRO_BEGIN \
396 cpu_load_info->cpu_ticks[(state)] += \
397 (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, timer)) \
398 / hz_tick_interval); \
399MACRO_END
400
401 cpu_load_info = (host_cpu_load_info_t)info;
402 cpu_load_info->cpu_ticks[CPU_STATE_USER] = 0;
403 cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = 0;
404 cpu_load_info->cpu_ticks[CPU_STATE_IDLE] = 0;
405 cpu_load_info->cpu_ticks[CPU_STATE_NICE] = 0;
406
407 simple_lock(&processor_list_lock);
408
409 for (processor = processor_list; processor != NULL; processor = processor->processor_list) {
410 timer_data_t idle_temp;
411 timer_t idle_state;
412
413 GET_TICKS_VALUE(processor, CPU_STATE_USER, user_state);
414 if (precise_user_kernel_time) {
415 GET_TICKS_VALUE(processor, CPU_STATE_SYSTEM, system_state);
416 } else {
417 /* system_state may represent either sys or user */
418 GET_TICKS_VALUE(processor, CPU_STATE_USER, system_state);
419 }
420
421 idle_state = &PROCESSOR_DATA(processor, idle_state);
422 idle_temp = *idle_state;
423
424 if (PROCESSOR_DATA(processor, current_state) != idle_state ||
425 timer_grab(&idle_temp) != timer_grab(idle_state))
426 GET_TICKS_VALUE(processor, CPU_STATE_IDLE, idle_state);
427 else {
428 timer_advance(&idle_temp, mach_absolute_time() - idle_temp.tstamp);
429
430 cpu_load_info->cpu_ticks[CPU_STATE_IDLE] +=
431 (uint32_t)(timer_grab(&idle_temp) / hz_tick_interval);
432 }
433 }
434 simple_unlock(&processor_list_lock);
435
436 *count = HOST_CPU_LOAD_INFO_COUNT;
437
438 return (KERN_SUCCESS);
439 }
440
441 default:
442 return (KERN_INVALID_ARGUMENT);
443 }
444}
445
446
447kern_return_t
448host_statistics64(
449 host_t host,
450 host_flavor_t flavor,
451 host_info64_t info,
452 mach_msg_type_number_t *count)
453{
454 uint32_t i;
455
456 if (host == HOST_NULL)
457 return (KERN_INVALID_HOST);
458
459 switch(flavor) {
460
461 case HOST_VM_INFO64: /* We were asked to get vm_statistics64 */
462 {
463 register processor_t processor;
464 register vm_statistics64_t stat;
465 vm_statistics64_data_t host_vm_stat;
466
467 if (*count < HOST_VM_INFO64_COUNT)
468 return (KERN_FAILURE);
469
470 processor = processor_list;
471 stat = &PROCESSOR_DATA(processor, vm_stat);
472 host_vm_stat = *stat;
473
474 if (processor_count > 1) {
475 simple_lock(&processor_list_lock);
476
477 while ((processor = processor->processor_list) != NULL) {
478 stat = &PROCESSOR_DATA(processor, vm_stat);
479
480 host_vm_stat.zero_fill_count += stat->zero_fill_count;
481 host_vm_stat.reactivations += stat->reactivations;
482 host_vm_stat.pageins += stat->pageins;
483 host_vm_stat.pageouts += stat->pageouts;
484 host_vm_stat.faults += stat->faults;
485 host_vm_stat.cow_faults += stat->cow_faults;
486 host_vm_stat.lookups += stat->lookups;
487 host_vm_stat.hits += stat->hits;
488 }
489
490 simple_unlock(&processor_list_lock);
491 }
492
493 stat = (vm_statistics64_t) info;
494
495 stat->free_count = vm_page_free_count + vm_page_speculative_count;
496 stat->active_count = vm_page_active_count;
497
498 if (vm_page_local_q) {
499 for (i = 0; i < vm_page_local_q_count; i++) {
500 struct vpl *lq;
501
502 lq = &vm_page_local_q[i].vpl_un.vpl;
503
504 stat->active_count += lq->vpl_count;
505 }
506 }
507 stat->inactive_count = vm_page_inactive_count;
508#if CONFIG_EMBEDDED
509 stat->wire_count = vm_page_wire_count;
510#else
511 stat->wire_count = vm_page_wire_count + vm_page_throttled_count + vm_lopage_free_count;
512#endif
513 stat->zero_fill_count = host_vm_stat.zero_fill_count;
514 stat->reactivations = host_vm_stat.reactivations;
515 stat->pageins = host_vm_stat.pageins;
516 stat->pageouts = host_vm_stat.pageouts;
517 stat->faults = host_vm_stat.faults;
518 stat->cow_faults = host_vm_stat.cow_faults;
519 stat->lookups = host_vm_stat.lookups;
520 stat->hits = host_vm_stat.hits;
521
522 /* rev1 added "purgable" info */
523 stat->purgeable_count = vm_page_purgeable_count;
524 stat->purges = vm_page_purged_count;
525
526 /* rev2 added "speculative" info */
527 stat->speculative_count = vm_page_speculative_count;
528
529 *count = HOST_VM_INFO64_COUNT;
530
531 return(KERN_SUCCESS);
532 }
533
534 case HOST_EXTMOD_INFO64: /* We were asked to get vm_statistics64 */
535 {
536 vm_extmod_statistics_t out_extmod_statistics;
537
538 if (*count < HOST_EXTMOD_INFO64_COUNT)
539 return (KERN_FAILURE);
540
541 out_extmod_statistics = (vm_extmod_statistics_t) info;
542 *out_extmod_statistics = host_extmod_statistics;
543
544 *count = HOST_EXTMOD_INFO64_COUNT;
545
546 return(KERN_SUCCESS);
547 }
548
549 default: /* If we didn't recognize the flavor, send to host_statistics */
550 return(host_statistics(host, flavor, (host_info_t) info, count));
551 }
552}
553
554
555/*
556 * Get host statistics that require privilege.
557 * None for now, just call the un-privileged version.
558 */
559kern_return_t
560host_priv_statistics(
561 host_priv_t host_priv,
562 host_flavor_t flavor,
563 host_info_t info,
564 mach_msg_type_number_t *count)
565{
566 return(host_statistics((host_t)host_priv, flavor, info, count));
567}
568
569kern_return_t
570set_sched_stats_active(
571 boolean_t active)
572{
573 sched_stats_active = active;
574 return KERN_SUCCESS;
575}
576
577
578kern_return_t
579get_sched_statistics(
580 struct _processor_statistics_np *out,
581 uint32_t *count)
582{
583 processor_t processor;
584
585 if (!sched_stats_active) {
586 return KERN_FAILURE;
587 }
588
589 simple_lock(&processor_list_lock);
590
591 if (*count < (processor_count + 2) * sizeof(struct _processor_statistics_np)) { /* One for RT, one for FS */
592 simple_unlock(&processor_list_lock);
593 return KERN_FAILURE;
594 }
595
596 processor = processor_list;
597 while (processor) {
598 struct processor_sched_statistics *stats = &processor->processor_data.sched_stats;
599
600 out->ps_cpuid = processor->cpu_id;
601 out->ps_csw_count = stats->csw_count;
602 out->ps_preempt_count = stats->preempt_count;
603 out->ps_preempted_rt_count = stats->preempted_rt_count;
604 out->ps_preempted_by_rt_count = stats->preempted_by_rt_count;
605 out->ps_rt_sched_count = stats->rt_sched_count;
606 out->ps_interrupt_count = stats->interrupt_count;
607 out->ps_ipi_count = stats->ipi_count;
608 out->ps_timer_pop_count = stats->timer_pop_count;
609 out->ps_runq_count_sum = SCHED(processor_runq_stats_count_sum)(processor);
610 out->ps_idle_transitions = stats->idle_transitions;
611 out->ps_quantum_timer_expirations = stats->quantum_timer_expirations;
612
613 out++;
614 processor = processor->processor_list;
615 }
616
617 *count = (uint32_t) (processor_count * sizeof(struct _processor_statistics_np));
618
619 simple_unlock(&processor_list_lock);
620
621 /* And include RT Queue information */
622 bzero(out, sizeof(*out));
623 out->ps_cpuid = (-1);
624 out->ps_runq_count_sum = rt_runq.runq_stats.count_sum;
625 out++;
626 *count += (uint32_t)sizeof(struct _processor_statistics_np);
627
628 /* And include Fair Share Queue information at the end */
629 bzero(out, sizeof(*out));
630 out->ps_cpuid = (-2);
631 out->ps_runq_count_sum = SCHED(fairshare_runq_stats_count_sum)();
632 *count += (uint32_t)sizeof(struct _processor_statistics_np);
633
634 return KERN_SUCCESS;
635}
636
637kern_return_t
638host_page_size(
639 host_t host,
640 vm_size_t *out_page_size)
641{
642 if (host == HOST_NULL)
643 return(KERN_INVALID_ARGUMENT);
644
645 *out_page_size = PAGE_SIZE;
646
647 return(KERN_SUCCESS);
648}
649
650/*
651 * Return kernel version string (more than you ever
652 * wanted to know about what version of the kernel this is).
653 */
654extern char version[];
655
656kern_return_t
657host_kernel_version(
658 host_t host,
659 kernel_version_t out_version)
660{
661
662 if (host == HOST_NULL)
663 return(KERN_INVALID_ARGUMENT);
664
665 (void) strncpy(out_version, version, sizeof(kernel_version_t));
666
667 return(KERN_SUCCESS);
668}
669
670/*
671 * host_processor_sets:
672 *
673 * List all processor sets on the host.
674 */
675kern_return_t
676host_processor_sets(
677 host_priv_t host_priv,
678 processor_set_name_array_t *pset_list,
679 mach_msg_type_number_t *count)
680{
681 void *addr;
682
683 if (host_priv == HOST_PRIV_NULL)
684 return (KERN_INVALID_ARGUMENT);
685
686 /*
687 * Allocate memory. Can be pageable because it won't be
688 * touched while holding a lock.
689 */
690
691 addr = kalloc((vm_size_t) sizeof(mach_port_t));
692 if (addr == 0)
693 return (KERN_RESOURCE_SHORTAGE);
694
695 /* do the conversion that Mig should handle */
696 *((ipc_port_t *) addr) = convert_pset_name_to_port(&pset0);
697
698 *pset_list = (processor_set_array_t)addr;
699 *count = 1;
700
701 return (KERN_SUCCESS);
702}
703
704/*
705 * host_processor_set_priv:
706 *
707 * Return control port for given processor set.
708 */
709kern_return_t
710host_processor_set_priv(
711 host_priv_t host_priv,
712 processor_set_t pset_name,
713 processor_set_t *pset)
714{
715 if (host_priv == HOST_PRIV_NULL || pset_name == PROCESSOR_SET_NULL) {
716 *pset = PROCESSOR_SET_NULL;
717
718 return (KERN_INVALID_ARGUMENT);
719 }
720
721 *pset = pset_name;
722
723 return (KERN_SUCCESS);
724}
725
726/*
727 * host_processor_info
728 *
729 * Return info about the processors on this host. It will return
730 * the number of processors, and the specific type of info requested
731 * in an OOL array.
732 */
733kern_return_t
734host_processor_info(
735 host_t host,
736 processor_flavor_t flavor,
737 natural_t *out_pcount,
738 processor_info_array_t *out_array,
739 mach_msg_type_number_t *out_array_count)
740{
741 kern_return_t result;
742 processor_t processor;
743 host_t thost;
744 processor_info_t info;
745 unsigned int icount, tcount;
746 unsigned int pcount, i;
747 vm_offset_t addr;
748 vm_size_t size, needed;
749 vm_map_copy_t copy;
750
751 if (host == HOST_NULL)
752 return (KERN_INVALID_ARGUMENT);
753
754 result = processor_info_count(flavor, &icount);
755 if (result != KERN_SUCCESS)
756 return (result);
757
758 pcount = processor_count;
759 assert(pcount != 0);
760
761 needed = pcount * icount * sizeof(natural_t);
762 size = round_page(needed);
763 result = kmem_alloc(ipc_kernel_map, &addr, size);
764 if (result != KERN_SUCCESS)
765 return (KERN_RESOURCE_SHORTAGE);
766
767 info = (processor_info_t) addr;
768 processor = processor_list;
769 tcount = icount;
770
771 result = processor_info(processor, flavor, &thost, info, &tcount);
772 if (result != KERN_SUCCESS) {
773 kmem_free(ipc_kernel_map, addr, size);
774 return (result);
775 }
776
777 if (pcount > 1) {
778 for (i = 1; i < pcount; i++) {
779 simple_lock(&processor_list_lock);
780 processor = processor->processor_list;
781 simple_unlock(&processor_list_lock);
782
783 info += icount;
784 tcount = icount;
785 result = processor_info(processor, flavor, &thost, info, &tcount);
786 if (result != KERN_SUCCESS) {
787 kmem_free(ipc_kernel_map, addr, size);
788 return (result);
789 }
790 }
791 }
792
793 if (size != needed)
794 bzero((char *) addr + needed, size - needed);
795
796 result = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(addr),
797 vm_map_round_page(addr + size), FALSE);
798 assert(result == KERN_SUCCESS);
799 result = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)addr,
800 (vm_map_size_t)size, TRUE, &copy);
801 assert(result == KERN_SUCCESS);
802
803 *out_pcount = pcount;
804 *out_array = (processor_info_array_t) copy;
805 *out_array_count = pcount * icount;
806
807 return (KERN_SUCCESS);
808}
809
810/*
811 * Kernel interface for setting a special port.
812 */
813kern_return_t
814kernel_set_special_port(
815 host_priv_t host_priv,
816 int id,
817 ipc_port_t port)
818{
819 ipc_port_t old_port;
820
821 host_lock(host_priv);
822 old_port = host_priv->special[id];
823 host_priv->special[id] = port;
824 host_unlock(host_priv);
825 if (IP_VALID(old_port))
826 ipc_port_release_send(old_port);
827 return KERN_SUCCESS;
828}
829
830/*
831 * User interface for setting a special port.
832 *
833 * Only permits the user to set a user-owned special port
834 * ID, rejecting a kernel-owned special port ID.
835 *
836 * A special kernel port cannot be set up using this
837 * routine; use kernel_set_special_port() instead.
838 */
839kern_return_t
840host_set_special_port(
841 host_priv_t host_priv,
842 int id,
843 ipc_port_t port)
844{
845 if (host_priv == HOST_PRIV_NULL ||
846 id <= HOST_MAX_SPECIAL_KERNEL_PORT || id > HOST_MAX_SPECIAL_PORT ) {
847 if (IP_VALID(port))
848 ipc_port_release_send(port);
849 return KERN_INVALID_ARGUMENT;
850 }
851
852 return kernel_set_special_port(host_priv, id, port);
853}
854
855
856/*
857 * User interface for retrieving a special port.
858 *
859 * Note that there is nothing to prevent a user special
860 * port from disappearing after it has been discovered by
861 * the caller; thus, using a special port can always result
862 * in a "port not valid" error.
863 */
864
865kern_return_t
866host_get_special_port(
867 host_priv_t host_priv,
868 __unused int node,
869 int id,
870 ipc_port_t *portp)
871{
872 ipc_port_t port;
873
874 if (host_priv == HOST_PRIV_NULL ||
875 id == HOST_SECURITY_PORT || id > HOST_MAX_SPECIAL_PORT || id < 0)
876 return KERN_INVALID_ARGUMENT;
877
878 host_lock(host_priv);
879 port = realhost.special[id];
880 *portp = ipc_port_copy_send(port);
881 host_unlock(host_priv);
882
883 return KERN_SUCCESS;
884}
885
886
887/*
888 * host_get_io_master
889 *
890 * Return the IO master access port for this host.
891 */
892kern_return_t
893host_get_io_master(
894 host_t host,
895 io_master_t *io_masterp)
896{
897 if (host == HOST_NULL)
898 return KERN_INVALID_ARGUMENT;
899
900 return (host_get_io_master_port(host_priv_self(), io_masterp));
901}
902
903host_t
904host_self(void)
905{
906 return &realhost;
907}
908
909host_priv_t
910host_priv_self(void)
911{
912 return &realhost;
913}
914
915host_security_t
916host_security_self(void)
917{
918 return &realhost;
919}
920