]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2007-2008 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <string.h> | |
29 | #include <sys/types.h> | |
30 | ||
31 | #define DEBUG_ASSERT_COMPONENT_NAME_STRING "kxld" | |
32 | #include <AssertMacros.h> | |
33 | ||
34 | #include "kxld_dict.h" | |
35 | #include "kxld_util.h" | |
36 | ||
37 | /******************************************************************************* | |
38 | * Types and macros | |
39 | *******************************************************************************/ | |
40 | ||
41 | /* Ratio of num_entries:num_buckets that will cause a resize */ | |
42 | #define RESIZE_NUMER 7 | |
43 | #define RESIZE_DENOM 10 | |
44 | #define RESIZE_THRESHOLD(x) (((x)*RESIZE_NUMER) / RESIZE_DENOM) | |
45 | #define MIN_BUCKETS(x) (((x)*RESIZE_DENOM) / RESIZE_NUMER) | |
46 | ||
47 | /* Selected for good scaling qualities when resizing dictionary | |
48 | * ... see: http://www.concentric.net/~ttwang/tech/hashsize.htm | |
49 | */ | |
50 | #define DEFAULT_DICT_SIZE 89 | |
51 | ||
52 | typedef struct dict_entry DictEntry; | |
53 | ||
54 | typedef enum { | |
55 | EMPTY = 0, | |
56 | USED = 1, | |
57 | DELETED = 2 | |
58 | } DictEntryState; | |
59 | ||
60 | struct dict_entry { | |
61 | const void *key; | |
62 | void *value; | |
63 | DictEntryState state; | |
64 | }; | |
65 | ||
66 | /******************************************************************************* | |
67 | * Function prototypes | |
68 | *******************************************************************************/ | |
69 | ||
70 | static kern_return_t get_locate_index(const KXLDDict *dict, const void *key, | |
71 | u_int *idx); | |
72 | static kern_return_t get_insert_index(const KXLDDict *dict, const void *key, | |
73 | u_int *idx); | |
74 | static kern_return_t resize_dict(KXLDDict *dict); | |
75 | ||
76 | /******************************************************************************* | |
77 | *******************************************************************************/ | |
78 | kern_return_t | |
79 | kxld_dict_init(KXLDDict * dict, kxld_dict_hash hash, kxld_dict_cmp cmp, | |
80 | u_int num_entries) | |
81 | { | |
82 | kern_return_t rval = KERN_FAILURE; | |
83 | u_int min_buckets = MIN_BUCKETS(num_entries); | |
84 | u_int num_buckets = DEFAULT_DICT_SIZE; | |
85 | ||
86 | check(dict); | |
87 | check(hash); | |
88 | check(cmp); | |
89 | ||
90 | /* We want the number of allocated buckets to be at least twice that of the | |
91 | * number to be inserted. | |
92 | */ | |
93 | while (min_buckets > num_buckets) { | |
94 | num_buckets *= 2; | |
95 | num_buckets++; | |
96 | } | |
97 | ||
98 | /* Allocate enough buckets for the anticipated number of entries */ | |
99 | rval = kxld_array_init(&dict->buckets, sizeof(DictEntry), num_buckets); | |
100 | require_noerr(rval, finish); | |
101 | ||
102 | /* Initialize */ | |
103 | dict->hash = hash; | |
104 | dict->cmp = cmp; | |
105 | dict->num_entries = 0; | |
106 | dict->resize_threshold = RESIZE_THRESHOLD(num_buckets); | |
107 | ||
108 | rval = KERN_SUCCESS; | |
109 | ||
110 | finish: | |
111 | return rval; | |
112 | } | |
113 | ||
114 | /******************************************************************************* | |
115 | *******************************************************************************/ | |
116 | void | |
117 | kxld_dict_clear(KXLDDict *dict) | |
118 | { | |
119 | check(dict); | |
120 | ||
121 | dict->hash = NULL; | |
122 | dict->cmp = NULL; | |
123 | dict->num_entries = 0; | |
124 | dict->resize_threshold = 0; | |
125 | kxld_array_clear(&dict->buckets); | |
126 | kxld_array_clear(&dict->resize_buckets); | |
127 | } | |
128 | ||
129 | /******************************************************************************* | |
130 | *******************************************************************************/ | |
131 | void | |
132 | kxld_dict_iterator_init(KXLDDictIterator *iter, const KXLDDict *dict) | |
133 | { | |
134 | check(iter); | |
135 | check(dict); | |
136 | ||
137 | iter->idx = 0; | |
138 | iter->dict = dict; | |
139 | } | |
140 | ||
141 | /******************************************************************************* | |
142 | *******************************************************************************/ | |
143 | void | |
144 | kxld_dict_deinit(KXLDDict *dict) | |
145 | { | |
146 | check(dict); | |
147 | ||
148 | kxld_array_deinit(&dict->buckets); | |
149 | kxld_array_deinit(&dict->resize_buckets); | |
150 | } | |
151 | ||
152 | /******************************************************************************* | |
153 | *******************************************************************************/ | |
154 | u_int | |
155 | kxld_dict_get_num_entries(const KXLDDict *dict) | |
156 | { | |
157 | check(dict); | |
158 | ||
159 | return dict->num_entries; | |
160 | } | |
161 | ||
162 | /******************************************************************************* | |
163 | *******************************************************************************/ | |
164 | void * | |
165 | kxld_dict_find(const KXLDDict *dict, const void *key) | |
166 | { | |
167 | kern_return_t rval = KERN_FAILURE; | |
168 | DictEntry *entry = NULL; | |
169 | u_int idx = 0; | |
170 | ||
171 | check(dict); | |
172 | check(key); | |
173 | ||
174 | rval = get_locate_index(dict, key, &idx); | |
175 | if (rval) return NULL; | |
176 | ||
177 | entry = kxld_array_get_item(&dict->buckets, idx); | |
178 | ||
179 | return entry->value; | |
180 | } | |
181 | ||
182 | /******************************************************************************* | |
183 | * This dictionary uses linear probing, which means that when there is a | |
184 | * collision, we just walk along the buckets until a free bucket shows up. | |
185 | * A consequence of this is that when looking up an item, items that lie between | |
186 | * its hash value and its actual bucket may have been deleted since it was | |
187 | * inserted. Thus, we should only stop a lookup when we've wrapped around the | |
188 | * dictionary or encountered an EMPTY bucket. | |
189 | ********************************************************************************/ | |
190 | static kern_return_t | |
191 | get_locate_index(const KXLDDict *dict, const void *key, u_int *_idx) | |
192 | { | |
193 | kern_return_t rval = KERN_FAILURE; | |
194 | DictEntry *entry = NULL; | |
195 | u_int base, idx; | |
196 | ||
197 | base = idx = dict->hash(dict, key); | |
198 | ||
199 | /* Iterate until we match the key, wrap, or hit an empty bucket */ | |
200 | entry = kxld_array_get_item(&dict->buckets, idx); | |
201 | while (!dict->cmp(entry->key, key)) { | |
202 | if (entry->state == EMPTY) goto finish; | |
203 | ||
204 | idx = (idx + 1) % dict->buckets.nitems; | |
205 | if (idx == base) goto finish; | |
206 | ||
207 | entry = kxld_array_get_item(&dict->buckets, idx); | |
208 | } | |
209 | ||
210 | check(idx < dict->buckets.nitems); | |
211 | ||
212 | *_idx = idx; | |
213 | rval = KERN_SUCCESS; | |
214 | ||
215 | finish: | |
216 | return rval; | |
217 | } | |
218 | ||
219 | /******************************************************************************* | |
220 | *******************************************************************************/ | |
221 | kern_return_t | |
222 | kxld_dict_insert(KXLDDict *dict, const void *key, void *value) | |
223 | { | |
224 | kern_return_t rval = KERN_FAILURE; | |
225 | DictEntry *entry = NULL; | |
226 | u_int idx = 0; | |
227 | ||
228 | check(dict); | |
229 | check(key); | |
230 | check(value); | |
231 | ||
232 | /* Resize if we are greater than the capacity threshold. | |
233 | * Note: this is expensive, but the dictionary can be sized correctly at | |
234 | * construction to avoid ever having to do this. | |
235 | */ | |
236 | while (dict->num_entries > dict->resize_threshold) { | |
237 | rval = resize_dict(dict); | |
238 | require_noerr(rval, finish); | |
239 | } | |
240 | ||
241 | /* If this function returns FULL after we've already resized appropriately | |
242 | * something is very wrong and we should return an error. | |
243 | */ | |
244 | rval = get_insert_index(dict, key, &idx); | |
245 | require_noerr(rval, finish); | |
246 | ||
247 | /* Insert the new key-value pair into the bucket, but only count it as a | |
248 | * new entry if we are not overwriting an existing entry. | |
249 | */ | |
250 | entry = kxld_array_get_item(&dict->buckets, idx); | |
251 | if (entry->state != USED) { | |
252 | dict->num_entries++; | |
253 | entry->key = key; | |
254 | entry->state = USED; | |
255 | } | |
256 | entry->value = value; | |
257 | ||
258 | rval = KERN_SUCCESS; | |
259 | ||
260 | finish: | |
261 | return rval; | |
262 | } | |
263 | ||
264 | /******************************************************************************* | |
265 | * Increases the hash table's capacity by 2N+1. Uses dictionary API. Not | |
266 | * fast; just correct. | |
267 | *******************************************************************************/ | |
268 | static kern_return_t | |
269 | resize_dict(KXLDDict *dict) | |
270 | { | |
271 | kern_return_t rval = KERN_FAILURE; | |
272 | KXLDArray tmparray; | |
273 | DictEntry *entry = NULL; | |
274 | u_int nbuckets = (dict->buckets.nitems * 2 + 1); | |
275 | u_int i = 0; | |
276 | ||
277 | check(dict); | |
278 | ||
279 | /* Initialize a new set of buckets to hold more entries */ | |
280 | rval = kxld_array_init(&dict->resize_buckets, sizeof(DictEntry), nbuckets); | |
281 | require_noerr(rval, finish); | |
282 | ||
283 | /* Swap the new buckets with the old buckets */ | |
284 | tmparray = dict->buckets; | |
285 | dict->buckets = dict->resize_buckets; | |
286 | dict->resize_buckets = tmparray; | |
287 | ||
288 | /* Reset dictionary parameters */ | |
289 | dict->num_entries = 0; | |
290 | dict->resize_threshold = RESIZE_THRESHOLD(dict->buckets.nitems); | |
291 | ||
292 | /* Rehash all of the entries */ | |
293 | for (i = 0; i < dict->resize_buckets.nitems; ++i) { | |
294 | entry = kxld_array_get_item(&dict->resize_buckets, i); | |
295 | if (entry->state == USED) { | |
296 | rval = kxld_dict_insert(dict, entry->key, entry->value); | |
297 | require_noerr(rval, finish); | |
298 | } | |
299 | } | |
300 | ||
301 | /* Clear the old buckets */ | |
302 | kxld_array_clear(&dict->resize_buckets); | |
303 | ||
304 | rval = KERN_SUCCESS; | |
305 | ||
306 | finish: | |
307 | return rval; | |
308 | } | |
309 | ||
310 | /******************************************************************************* | |
311 | * Simple function to find the first empty cell | |
312 | *******************************************************************************/ | |
313 | static kern_return_t | |
314 | get_insert_index(const KXLDDict *dict, const void *key, u_int *r_index) | |
315 | { | |
316 | kern_return_t rval = KERN_FAILURE; | |
317 | DictEntry *entry = NULL; | |
318 | u_int base, idx; | |
319 | ||
320 | base = idx = dict->hash(dict, key); | |
321 | ||
322 | /* Iterate through the buckets until we find an EMPTY bucket, a DELETED | |
323 | * bucket, or a key match. | |
324 | */ | |
325 | entry = kxld_array_get_item(&dict->buckets, idx); | |
326 | while (entry->state == USED && !dict->cmp(entry->key, key)) { | |
327 | idx = (idx + 1) % dict->buckets.nitems; | |
328 | require_action(base != idx, finish, rval=KERN_FAILURE); | |
329 | entry = kxld_array_get_item(&dict->buckets, idx); | |
330 | } | |
331 | ||
332 | *r_index = idx; | |
333 | rval = KERN_SUCCESS; | |
334 | ||
335 | finish: | |
336 | return rval; | |
337 | } | |
338 | ||
339 | /******************************************************************************* | |
340 | *******************************************************************************/ | |
341 | void | |
342 | kxld_dict_remove(KXLDDict *dict, const void *key, void **value) | |
343 | { | |
344 | kern_return_t rval = KERN_FAILURE; | |
345 | DictEntry *entry = NULL; | |
346 | u_int idx = 0; | |
347 | ||
348 | check(dict); | |
349 | check(key); | |
350 | ||
351 | /* Find the item */ | |
352 | rval = get_locate_index(dict, key, &idx); | |
353 | if (rval) { | |
354 | if (value) *value = NULL; | |
355 | return; | |
356 | } | |
357 | ||
358 | entry = kxld_array_get_item(&dict->buckets, idx); | |
359 | ||
360 | /* Save the value if requested */ | |
361 | if (value) *value = entry->value; | |
362 | ||
363 | /* Delete the item from the dictionary */ | |
364 | entry->key = NULL; | |
365 | entry->value = NULL; | |
366 | entry->state = DELETED; | |
367 | dict->num_entries--; | |
368 | } | |
369 | ||
370 | /******************************************************************************* | |
371 | *******************************************************************************/ | |
372 | void | |
373 | kxld_dict_iterator_get_next(KXLDDictIterator *iter, const void **key, | |
374 | void **value) | |
375 | { | |
376 | DictEntry *entry = NULL; | |
377 | ||
378 | check(iter); | |
379 | check(key); | |
380 | check(value); | |
381 | ||
382 | *key = NULL; | |
383 | *value = NULL; | |
384 | ||
385 | /* Walk over the dictionary looking for USED buckets */ | |
386 | for (; iter->idx < iter->dict->buckets.nitems; ++(iter->idx)) { | |
387 | entry = kxld_array_get_item(&iter->dict->buckets, iter->idx); | |
388 | if (entry->state == USED) { | |
389 | *key = entry->key; | |
390 | *value = entry->value; | |
391 | ++(iter->idx); | |
392 | break; | |
393 | } | |
394 | } | |
395 | } | |
396 | ||
397 | /******************************************************************************* | |
398 | *******************************************************************************/ | |
399 | void | |
400 | kxld_dict_iterator_reset(KXLDDictIterator *iter) | |
401 | { | |
402 | iter->idx = 0; | |
403 | } | |
404 | ||
405 | /******************************************************************************* | |
406 | * This is Daniel Bernstein's hash algorithm from comp.lang.c | |
407 | * It's fast and distributes well. Returns an idx into the symbol hash table. | |
408 | * NOTE: Will not check for a valid pointer - performance | |
409 | *******************************************************************************/ | |
410 | u_int | |
411 | kxld_dict_string_hash(const KXLDDict *dict, const void *_key) | |
412 | { | |
413 | const char *key = _key; | |
414 | u_int c = 0; | |
415 | u_int hash_val = 5381; | |
416 | ||
417 | check(dict); | |
418 | check(_key); | |
419 | ||
420 | while ((c = *key++)) { | |
421 | /* hash(i) = hash(i-1) *33 ^ name[i] */ | |
422 | hash_val = ((hash_val << 5) + hash_val) ^ c; | |
423 | } | |
424 | ||
425 | return (hash_val % dict->buckets.nitems); | |
426 | } | |
427 | ||
428 | u_int | |
429 | kxld_dict_uint32_hash(const KXLDDict *dict, const void *_key) | |
430 | { | |
431 | uint32_t key = *(const uint32_t *) _key; | |
432 | ||
433 | check(_key); | |
434 | ||
435 | return (u_int) (key % dict->buckets.nitems); | |
436 | } | |
437 | ||
438 | u_int | |
439 | kxld_dict_kxldaddr_hash(const KXLDDict *dict, const void *_key) | |
440 | { | |
441 | kxld_addr_t key = *(const kxld_addr_t *) _key; | |
442 | ||
443 | check(_key); | |
444 | ||
445 | return (u_int) (key % dict->buckets.nitems); | |
446 | } | |
447 | ||
448 | u_int | |
449 | kxld_dict_string_cmp(const void *key1, const void *key2) | |
450 | { | |
451 | return streq(key1, key2); | |
452 | } | |
453 | ||
454 | u_int | |
455 | kxld_dict_uint32_cmp(const void *key1, const void *key2) | |
456 | { | |
457 | const uint32_t *a = key1; | |
458 | const uint32_t *b = key2; | |
459 | ||
460 | return (a && b && (*a == *b)); | |
461 | } | |
462 | ||
463 | u_int | |
464 | kxld_dict_kxldaddr_cmp(const void *key1, const void *key2) | |
465 | { | |
466 | const kxld_addr_t *a = key1; | |
467 | const kxld_addr_t *b = key2; | |
468 | ||
469 | return (a && b && (*a == *b)); | |
470 | } | |
471 |