]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2002 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. | |
7 | * | |
8 | * This file contains Original Code and/or Modifications of Original Code | |
9 | * as defined in and that are subject to the Apple Public Source License | |
10 | * Version 2.0 (the 'License'). You may not use this file except in | |
11 | * compliance with the License. Please obtain a copy of the License at | |
12 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
13 | * file. | |
14 | * | |
15 | * The Original Code and all software distributed under the License are | |
16 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
17 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
18 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
19 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
20 | * Please see the License for the specific language governing rights and | |
21 | * limitations under the License. | |
22 | * | |
23 | * @APPLE_LICENSE_HEADER_END@ | |
24 | */ | |
25 | /* | |
26 | * @OSF_COPYRIGHT@ | |
27 | */ | |
28 | /* | |
29 | * Mach Operating System | |
30 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
31 | * All Rights Reserved. | |
32 | * | |
33 | * Permission to use, copy, modify and distribute this software and its | |
34 | * documentation is hereby granted, provided that both the copyright | |
35 | * notice and this permission notice appear in all copies of the | |
36 | * software, derivative works or modified versions, and any portions | |
37 | * thereof, and that both notices appear in supporting documentation. | |
38 | * | |
39 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
40 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
41 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
42 | * | |
43 | * Carnegie Mellon requests users of this software to return to | |
44 | * | |
45 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
46 | * School of Computer Science | |
47 | * Carnegie Mellon University | |
48 | * Pittsburgh PA 15213-3890 | |
49 | * | |
50 | * any improvements or extensions that they make and grant Carnegie Mellon | |
51 | * the rights to redistribute these changes. | |
52 | */ | |
53 | /* | |
54 | */ | |
55 | /* | |
56 | * File: vm/vm_map.c | |
57 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
58 | * Date: 1985 | |
59 | * | |
60 | * Virtual memory mapping module. | |
61 | */ | |
62 | ||
63 | #include <cpus.h> | |
64 | #include <task_swapper.h> | |
65 | #include <mach_assert.h> | |
66 | ||
67 | #include <mach/kern_return.h> | |
68 | #include <mach/port.h> | |
69 | #include <mach/vm_attributes.h> | |
70 | #include <mach/vm_param.h> | |
71 | #include <mach/vm_behavior.h> | |
72 | #include <kern/assert.h> | |
73 | #include <kern/counters.h> | |
74 | #include <kern/zalloc.h> | |
75 | #include <vm/vm_init.h> | |
76 | #include <vm/vm_fault.h> | |
77 | #include <vm/vm_map.h> | |
78 | #include <vm/vm_object.h> | |
79 | #include <vm/vm_page.h> | |
80 | #include <vm/vm_kern.h> | |
81 | #include <ipc/ipc_port.h> | |
82 | #include <kern/sched_prim.h> | |
83 | #include <kern/misc_protos.h> | |
84 | #include <mach/vm_map_server.h> | |
85 | #include <mach/mach_host_server.h> | |
86 | #include <ddb/tr.h> | |
87 | #include <machine/db_machdep.h> | |
88 | #include <kern/xpr.h> | |
89 | ||
90 | /* Internal prototypes | |
91 | */ | |
92 | extern boolean_t vm_map_range_check( | |
93 | vm_map_t map, | |
94 | vm_offset_t start, | |
95 | vm_offset_t end, | |
96 | vm_map_entry_t *entry); | |
97 | ||
98 | extern vm_map_entry_t _vm_map_entry_create( | |
99 | struct vm_map_header *map_header); | |
100 | ||
101 | extern void _vm_map_entry_dispose( | |
102 | struct vm_map_header *map_header, | |
103 | vm_map_entry_t entry); | |
104 | ||
105 | extern void vm_map_pmap_enter( | |
106 | vm_map_t map, | |
107 | vm_offset_t addr, | |
108 | vm_offset_t end_addr, | |
109 | vm_object_t object, | |
110 | vm_object_offset_t offset, | |
111 | vm_prot_t protection); | |
112 | ||
113 | extern void _vm_map_clip_end( | |
114 | struct vm_map_header *map_header, | |
115 | vm_map_entry_t entry, | |
116 | vm_offset_t end); | |
117 | ||
118 | extern void vm_map_entry_delete( | |
119 | vm_map_t map, | |
120 | vm_map_entry_t entry); | |
121 | ||
122 | extern kern_return_t vm_map_delete( | |
123 | vm_map_t map, | |
124 | vm_offset_t start, | |
125 | vm_offset_t end, | |
126 | int flags); | |
127 | ||
128 | extern void vm_map_copy_steal_pages( | |
129 | vm_map_copy_t copy); | |
130 | ||
131 | extern kern_return_t vm_map_copy_overwrite_unaligned( | |
132 | vm_map_t dst_map, | |
133 | vm_map_entry_t entry, | |
134 | vm_map_copy_t copy, | |
135 | vm_offset_t start); | |
136 | ||
137 | extern kern_return_t vm_map_copy_overwrite_aligned( | |
138 | vm_map_t dst_map, | |
139 | vm_map_entry_t tmp_entry, | |
140 | vm_map_copy_t copy, | |
141 | vm_offset_t start, | |
142 | pmap_t pmap); | |
143 | ||
144 | extern kern_return_t vm_map_copyin_kernel_buffer( | |
145 | vm_map_t src_map, | |
146 | vm_offset_t src_addr, | |
147 | vm_size_t len, | |
148 | boolean_t src_destroy, | |
149 | vm_map_copy_t *copy_result); /* OUT */ | |
150 | ||
151 | extern kern_return_t vm_map_copyout_kernel_buffer( | |
152 | vm_map_t map, | |
153 | vm_offset_t *addr, /* IN/OUT */ | |
154 | vm_map_copy_t copy, | |
155 | boolean_t overwrite); | |
156 | ||
157 | extern void vm_map_fork_share( | |
158 | vm_map_t old_map, | |
159 | vm_map_entry_t old_entry, | |
160 | vm_map_t new_map); | |
161 | ||
162 | extern boolean_t vm_map_fork_copy( | |
163 | vm_map_t old_map, | |
164 | vm_map_entry_t *old_entry_p, | |
165 | vm_map_t new_map); | |
166 | ||
167 | extern kern_return_t vm_remap_range_allocate( | |
168 | vm_map_t map, | |
169 | vm_offset_t *address, /* IN/OUT */ | |
170 | vm_size_t size, | |
171 | vm_offset_t mask, | |
172 | boolean_t anywhere, | |
173 | vm_map_entry_t *map_entry); /* OUT */ | |
174 | ||
175 | extern void _vm_map_clip_start( | |
176 | struct vm_map_header *map_header, | |
177 | vm_map_entry_t entry, | |
178 | vm_offset_t start); | |
179 | ||
180 | void vm_region_top_walk( | |
181 | vm_map_entry_t entry, | |
182 | vm_region_top_info_t top); | |
183 | ||
184 | void vm_region_walk( | |
185 | vm_map_entry_t entry, | |
186 | vm_region_extended_info_t extended, | |
187 | vm_object_offset_t offset, | |
188 | vm_offset_t range, | |
189 | vm_map_t map, | |
190 | vm_offset_t va); | |
191 | ||
192 | /* | |
193 | * Macros to copy a vm_map_entry. We must be careful to correctly | |
194 | * manage the wired page count. vm_map_entry_copy() creates a new | |
195 | * map entry to the same memory - the wired count in the new entry | |
196 | * must be set to zero. vm_map_entry_copy_full() creates a new | |
197 | * entry that is identical to the old entry. This preserves the | |
198 | * wire count; it's used for map splitting and zone changing in | |
199 | * vm_map_copyout. | |
200 | */ | |
201 | #define vm_map_entry_copy(NEW,OLD) \ | |
202 | MACRO_BEGIN \ | |
203 | *(NEW) = *(OLD); \ | |
204 | (NEW)->is_shared = FALSE; \ | |
205 | (NEW)->needs_wakeup = FALSE; \ | |
206 | (NEW)->in_transition = FALSE; \ | |
207 | (NEW)->wired_count = 0; \ | |
208 | (NEW)->user_wired_count = 0; \ | |
209 | MACRO_END | |
210 | ||
211 | #define vm_map_entry_copy_full(NEW,OLD) (*(NEW) = *(OLD)) | |
212 | ||
213 | /* | |
214 | * Virtual memory maps provide for the mapping, protection, | |
215 | * and sharing of virtual memory objects. In addition, | |
216 | * this module provides for an efficient virtual copy of | |
217 | * memory from one map to another. | |
218 | * | |
219 | * Synchronization is required prior to most operations. | |
220 | * | |
221 | * Maps consist of an ordered doubly-linked list of simple | |
222 | * entries; a single hint is used to speed up lookups. | |
223 | * | |
224 | * Sharing maps have been deleted from this version of Mach. | |
225 | * All shared objects are now mapped directly into the respective | |
226 | * maps. This requires a change in the copy on write strategy; | |
227 | * the asymmetric (delayed) strategy is used for shared temporary | |
228 | * objects instead of the symmetric (shadow) strategy. All maps | |
229 | * are now "top level" maps (either task map, kernel map or submap | |
230 | * of the kernel map). | |
231 | * | |
232 | * Since portions of maps are specified by start/end addreses, | |
233 | * which may not align with existing map entries, all | |
234 | * routines merely "clip" entries to these start/end values. | |
235 | * [That is, an entry is split into two, bordering at a | |
236 | * start or end value.] Note that these clippings may not | |
237 | * always be necessary (as the two resulting entries are then | |
238 | * not changed); however, the clipping is done for convenience. | |
239 | * No attempt is currently made to "glue back together" two | |
240 | * abutting entries. | |
241 | * | |
242 | * The symmetric (shadow) copy strategy implements virtual copy | |
243 | * by copying VM object references from one map to | |
244 | * another, and then marking both regions as copy-on-write. | |
245 | * It is important to note that only one writeable reference | |
246 | * to a VM object region exists in any map when this strategy | |
247 | * is used -- this means that shadow object creation can be | |
248 | * delayed until a write operation occurs. The symmetric (delayed) | |
249 | * strategy allows multiple maps to have writeable references to | |
250 | * the same region of a vm object, and hence cannot delay creating | |
251 | * its copy objects. See vm_object_copy_quickly() in vm_object.c. | |
252 | * Copying of permanent objects is completely different; see | |
253 | * vm_object_copy_strategically() in vm_object.c. | |
254 | */ | |
255 | ||
256 | zone_t vm_map_zone; /* zone for vm_map structures */ | |
257 | zone_t vm_map_entry_zone; /* zone for vm_map_entry structures */ | |
258 | zone_t vm_map_kentry_zone; /* zone for kernel entry structures */ | |
259 | zone_t vm_map_copy_zone; /* zone for vm_map_copy structures */ | |
260 | ||
261 | ||
262 | /* | |
263 | * Placeholder object for submap operations. This object is dropped | |
264 | * into the range by a call to vm_map_find, and removed when | |
265 | * vm_map_submap creates the submap. | |
266 | */ | |
267 | ||
268 | vm_object_t vm_submap_object; | |
269 | ||
270 | /* | |
271 | * vm_map_init: | |
272 | * | |
273 | * Initialize the vm_map module. Must be called before | |
274 | * any other vm_map routines. | |
275 | * | |
276 | * Map and entry structures are allocated from zones -- we must | |
277 | * initialize those zones. | |
278 | * | |
279 | * There are three zones of interest: | |
280 | * | |
281 | * vm_map_zone: used to allocate maps. | |
282 | * vm_map_entry_zone: used to allocate map entries. | |
283 | * vm_map_kentry_zone: used to allocate map entries for the kernel. | |
284 | * | |
285 | * The kernel allocates map entries from a special zone that is initially | |
286 | * "crammed" with memory. It would be difficult (perhaps impossible) for | |
287 | * the kernel to allocate more memory to a entry zone when it became | |
288 | * empty since the very act of allocating memory implies the creation | |
289 | * of a new entry. | |
290 | */ | |
291 | ||
292 | vm_offset_t map_data; | |
293 | vm_size_t map_data_size; | |
294 | vm_offset_t kentry_data; | |
295 | vm_size_t kentry_data_size; | |
296 | int kentry_count = 2048; /* to init kentry_data_size */ | |
297 | ||
298 | #define NO_COALESCE_LIMIT (1024 * 128) | |
299 | ||
300 | /* | |
301 | * Threshold for aggressive (eager) page map entering for vm copyout | |
302 | * operations. Any copyout larger will NOT be aggressively entered. | |
303 | */ | |
304 | vm_size_t vm_map_aggressive_enter_max; /* set by bootstrap */ | |
305 | ||
306 | void | |
307 | vm_map_init( | |
308 | void) | |
309 | { | |
310 | vm_map_zone = zinit((vm_size_t) sizeof(struct vm_map), 40*1024, | |
311 | PAGE_SIZE, "maps"); | |
312 | ||
313 | vm_map_entry_zone = zinit((vm_size_t) sizeof(struct vm_map_entry), | |
314 | 1024*1024, PAGE_SIZE*5, | |
315 | "non-kernel map entries"); | |
316 | ||
317 | vm_map_kentry_zone = zinit((vm_size_t) sizeof(struct vm_map_entry), | |
318 | kentry_data_size, kentry_data_size, | |
319 | "kernel map entries"); | |
320 | ||
321 | vm_map_copy_zone = zinit((vm_size_t) sizeof(struct vm_map_copy), | |
322 | 16*1024, PAGE_SIZE, "map copies"); | |
323 | ||
324 | /* | |
325 | * Cram the map and kentry zones with initial data. | |
326 | * Set kentry_zone non-collectible to aid zone_gc(). | |
327 | */ | |
328 | zone_change(vm_map_zone, Z_COLLECT, FALSE); | |
329 | zone_change(vm_map_kentry_zone, Z_COLLECT, FALSE); | |
330 | zone_change(vm_map_kentry_zone, Z_EXPAND, FALSE); | |
331 | zcram(vm_map_zone, map_data, map_data_size); | |
332 | zcram(vm_map_kentry_zone, kentry_data, kentry_data_size); | |
333 | } | |
334 | ||
335 | void | |
336 | vm_map_steal_memory( | |
337 | void) | |
338 | { | |
339 | map_data_size = round_page_32(10 * sizeof(struct vm_map)); | |
340 | map_data = pmap_steal_memory(map_data_size); | |
341 | ||
342 | #if 0 | |
343 | /* | |
344 | * Limiting worst case: vm_map_kentry_zone needs to map each "available" | |
345 | * physical page (i.e. that beyond the kernel image and page tables) | |
346 | * individually; we guess at most one entry per eight pages in the | |
347 | * real world. This works out to roughly .1 of 1% of physical memory, | |
348 | * or roughly 1900 entries (64K) for a 64M machine with 4K pages. | |
349 | */ | |
350 | #endif | |
351 | kentry_count = pmap_free_pages() / 8; | |
352 | ||
353 | ||
354 | kentry_data_size = | |
355 | round_page_32(kentry_count * sizeof(struct vm_map_entry)); | |
356 | kentry_data = pmap_steal_memory(kentry_data_size); | |
357 | } | |
358 | ||
359 | /* | |
360 | * vm_map_create: | |
361 | * | |
362 | * Creates and returns a new empty VM map with | |
363 | * the given physical map structure, and having | |
364 | * the given lower and upper address bounds. | |
365 | */ | |
366 | vm_map_t | |
367 | vm_map_create( | |
368 | pmap_t pmap, | |
369 | vm_offset_t min, | |
370 | vm_offset_t max, | |
371 | boolean_t pageable) | |
372 | { | |
373 | register vm_map_t result; | |
374 | ||
375 | result = (vm_map_t) zalloc(vm_map_zone); | |
376 | if (result == VM_MAP_NULL) | |
377 | panic("vm_map_create"); | |
378 | ||
379 | vm_map_first_entry(result) = vm_map_to_entry(result); | |
380 | vm_map_last_entry(result) = vm_map_to_entry(result); | |
381 | result->hdr.nentries = 0; | |
382 | result->hdr.entries_pageable = pageable; | |
383 | ||
384 | result->size = 0; | |
385 | result->ref_count = 1; | |
386 | #if TASK_SWAPPER | |
387 | result->res_count = 1; | |
388 | result->sw_state = MAP_SW_IN; | |
389 | #endif /* TASK_SWAPPER */ | |
390 | result->pmap = pmap; | |
391 | result->min_offset = min; | |
392 | result->max_offset = max; | |
393 | result->wiring_required = FALSE; | |
394 | result->no_zero_fill = FALSE; | |
395 | result->mapped = FALSE; | |
396 | result->wait_for_space = FALSE; | |
397 | result->first_free = vm_map_to_entry(result); | |
398 | result->hint = vm_map_to_entry(result); | |
399 | vm_map_lock_init(result); | |
400 | mutex_init(&result->s_lock, ETAP_VM_RESULT); | |
401 | ||
402 | return(result); | |
403 | } | |
404 | ||
405 | /* | |
406 | * vm_map_entry_create: [ internal use only ] | |
407 | * | |
408 | * Allocates a VM map entry for insertion in the | |
409 | * given map (or map copy). No fields are filled. | |
410 | */ | |
411 | #define vm_map_entry_create(map) \ | |
412 | _vm_map_entry_create(&(map)->hdr) | |
413 | ||
414 | #define vm_map_copy_entry_create(copy) \ | |
415 | _vm_map_entry_create(&(copy)->cpy_hdr) | |
416 | ||
417 | vm_map_entry_t | |
418 | _vm_map_entry_create( | |
419 | register struct vm_map_header *map_header) | |
420 | { | |
421 | register zone_t zone; | |
422 | register vm_map_entry_t entry; | |
423 | ||
424 | if (map_header->entries_pageable) | |
425 | zone = vm_map_entry_zone; | |
426 | else | |
427 | zone = vm_map_kentry_zone; | |
428 | ||
429 | entry = (vm_map_entry_t) zalloc(zone); | |
430 | if (entry == VM_MAP_ENTRY_NULL) | |
431 | panic("vm_map_entry_create"); | |
432 | ||
433 | return(entry); | |
434 | } | |
435 | ||
436 | /* | |
437 | * vm_map_entry_dispose: [ internal use only ] | |
438 | * | |
439 | * Inverse of vm_map_entry_create. | |
440 | */ | |
441 | #define vm_map_entry_dispose(map, entry) \ | |
442 | MACRO_BEGIN \ | |
443 | if((entry) == (map)->first_free) \ | |
444 | (map)->first_free = vm_map_to_entry(map); \ | |
445 | if((entry) == (map)->hint) \ | |
446 | (map)->hint = vm_map_to_entry(map); \ | |
447 | _vm_map_entry_dispose(&(map)->hdr, (entry)); \ | |
448 | MACRO_END | |
449 | ||
450 | #define vm_map_copy_entry_dispose(map, entry) \ | |
451 | _vm_map_entry_dispose(&(copy)->cpy_hdr, (entry)) | |
452 | ||
453 | void | |
454 | _vm_map_entry_dispose( | |
455 | register struct vm_map_header *map_header, | |
456 | register vm_map_entry_t entry) | |
457 | { | |
458 | register zone_t zone; | |
459 | ||
460 | if (map_header->entries_pageable) | |
461 | zone = vm_map_entry_zone; | |
462 | else | |
463 | zone = vm_map_kentry_zone; | |
464 | ||
465 | zfree(zone, (vm_offset_t) entry); | |
466 | } | |
467 | ||
468 | boolean_t first_free_is_valid(vm_map_t map); /* forward */ | |
469 | boolean_t first_free_check = FALSE; | |
470 | boolean_t | |
471 | first_free_is_valid( | |
472 | vm_map_t map) | |
473 | { | |
474 | vm_map_entry_t entry, next; | |
475 | ||
476 | if (!first_free_check) | |
477 | return TRUE; | |
478 | ||
479 | entry = vm_map_to_entry(map); | |
480 | next = entry->vme_next; | |
481 | while (trunc_page_32(next->vme_start) == trunc_page_32(entry->vme_end) || | |
482 | (trunc_page_32(next->vme_start) == trunc_page_32(entry->vme_start) && | |
483 | next != vm_map_to_entry(map))) { | |
484 | entry = next; | |
485 | next = entry->vme_next; | |
486 | if (entry == vm_map_to_entry(map)) | |
487 | break; | |
488 | } | |
489 | if (map->first_free != entry) { | |
490 | printf("Bad first_free for map 0x%x: 0x%x should be 0x%x\n", | |
491 | map, map->first_free, entry); | |
492 | return FALSE; | |
493 | } | |
494 | return TRUE; | |
495 | } | |
496 | ||
497 | /* | |
498 | * UPDATE_FIRST_FREE: | |
499 | * | |
500 | * Updates the map->first_free pointer to the | |
501 | * entry immediately before the first hole in the map. | |
502 | * The map should be locked. | |
503 | */ | |
504 | #define UPDATE_FIRST_FREE(map, new_first_free) \ | |
505 | MACRO_BEGIN \ | |
506 | vm_map_t UFF_map; \ | |
507 | vm_map_entry_t UFF_first_free; \ | |
508 | vm_map_entry_t UFF_next_entry; \ | |
509 | UFF_map = (map); \ | |
510 | UFF_first_free = (new_first_free); \ | |
511 | UFF_next_entry = UFF_first_free->vme_next; \ | |
512 | while (trunc_page_32(UFF_next_entry->vme_start) == \ | |
513 | trunc_page_32(UFF_first_free->vme_end) || \ | |
514 | (trunc_page_32(UFF_next_entry->vme_start) == \ | |
515 | trunc_page_32(UFF_first_free->vme_start) && \ | |
516 | UFF_next_entry != vm_map_to_entry(UFF_map))) { \ | |
517 | UFF_first_free = UFF_next_entry; \ | |
518 | UFF_next_entry = UFF_first_free->vme_next; \ | |
519 | if (UFF_first_free == vm_map_to_entry(UFF_map)) \ | |
520 | break; \ | |
521 | } \ | |
522 | UFF_map->first_free = UFF_first_free; \ | |
523 | assert(first_free_is_valid(UFF_map)); \ | |
524 | MACRO_END | |
525 | ||
526 | /* | |
527 | * vm_map_entry_{un,}link: | |
528 | * | |
529 | * Insert/remove entries from maps (or map copies). | |
530 | */ | |
531 | #define vm_map_entry_link(map, after_where, entry) \ | |
532 | MACRO_BEGIN \ | |
533 | vm_map_t VMEL_map; \ | |
534 | vm_map_entry_t VMEL_entry; \ | |
535 | VMEL_map = (map); \ | |
536 | VMEL_entry = (entry); \ | |
537 | _vm_map_entry_link(&VMEL_map->hdr, after_where, VMEL_entry); \ | |
538 | UPDATE_FIRST_FREE(VMEL_map, VMEL_map->first_free); \ | |
539 | MACRO_END | |
540 | ||
541 | ||
542 | #define vm_map_copy_entry_link(copy, after_where, entry) \ | |
543 | _vm_map_entry_link(&(copy)->cpy_hdr, after_where, (entry)) | |
544 | ||
545 | #define _vm_map_entry_link(hdr, after_where, entry) \ | |
546 | MACRO_BEGIN \ | |
547 | (hdr)->nentries++; \ | |
548 | (entry)->vme_prev = (after_where); \ | |
549 | (entry)->vme_next = (after_where)->vme_next; \ | |
550 | (entry)->vme_prev->vme_next = (entry)->vme_next->vme_prev = (entry); \ | |
551 | MACRO_END | |
552 | ||
553 | #define vm_map_entry_unlink(map, entry) \ | |
554 | MACRO_BEGIN \ | |
555 | vm_map_t VMEU_map; \ | |
556 | vm_map_entry_t VMEU_entry; \ | |
557 | vm_map_entry_t VMEU_first_free; \ | |
558 | VMEU_map = (map); \ | |
559 | VMEU_entry = (entry); \ | |
560 | if (VMEU_entry->vme_start <= VMEU_map->first_free->vme_start) \ | |
561 | VMEU_first_free = VMEU_entry->vme_prev; \ | |
562 | else \ | |
563 | VMEU_first_free = VMEU_map->first_free; \ | |
564 | _vm_map_entry_unlink(&VMEU_map->hdr, VMEU_entry); \ | |
565 | UPDATE_FIRST_FREE(VMEU_map, VMEU_first_free); \ | |
566 | MACRO_END | |
567 | ||
568 | #define vm_map_copy_entry_unlink(copy, entry) \ | |
569 | _vm_map_entry_unlink(&(copy)->cpy_hdr, (entry)) | |
570 | ||
571 | #define _vm_map_entry_unlink(hdr, entry) \ | |
572 | MACRO_BEGIN \ | |
573 | (hdr)->nentries--; \ | |
574 | (entry)->vme_next->vme_prev = (entry)->vme_prev; \ | |
575 | (entry)->vme_prev->vme_next = (entry)->vme_next; \ | |
576 | MACRO_END | |
577 | ||
578 | #if MACH_ASSERT && TASK_SWAPPER | |
579 | /* | |
580 | * vm_map_res_reference: | |
581 | * | |
582 | * Adds another valid residence count to the given map. | |
583 | * | |
584 | * Map is locked so this function can be called from | |
585 | * vm_map_swapin. | |
586 | * | |
587 | */ | |
588 | void vm_map_res_reference(register vm_map_t map) | |
589 | { | |
590 | /* assert map is locked */ | |
591 | assert(map->res_count >= 0); | |
592 | assert(map->ref_count >= map->res_count); | |
593 | if (map->res_count == 0) { | |
594 | mutex_unlock(&map->s_lock); | |
595 | vm_map_lock(map); | |
596 | vm_map_swapin(map); | |
597 | mutex_lock(&map->s_lock); | |
598 | ++map->res_count; | |
599 | vm_map_unlock(map); | |
600 | } else | |
601 | ++map->res_count; | |
602 | } | |
603 | ||
604 | /* | |
605 | * vm_map_reference_swap: | |
606 | * | |
607 | * Adds valid reference and residence counts to the given map. | |
608 | * | |
609 | * The map may not be in memory (i.e. zero residence count). | |
610 | * | |
611 | */ | |
612 | void vm_map_reference_swap(register vm_map_t map) | |
613 | { | |
614 | assert(map != VM_MAP_NULL); | |
615 | mutex_lock(&map->s_lock); | |
616 | assert(map->res_count >= 0); | |
617 | assert(map->ref_count >= map->res_count); | |
618 | map->ref_count++; | |
619 | vm_map_res_reference(map); | |
620 | mutex_unlock(&map->s_lock); | |
621 | } | |
622 | ||
623 | /* | |
624 | * vm_map_res_deallocate: | |
625 | * | |
626 | * Decrement residence count on a map; possibly causing swapout. | |
627 | * | |
628 | * The map must be in memory (i.e. non-zero residence count). | |
629 | * | |
630 | * The map is locked, so this function is callable from vm_map_deallocate. | |
631 | * | |
632 | */ | |
633 | void vm_map_res_deallocate(register vm_map_t map) | |
634 | { | |
635 | assert(map->res_count > 0); | |
636 | if (--map->res_count == 0) { | |
637 | mutex_unlock(&map->s_lock); | |
638 | vm_map_lock(map); | |
639 | vm_map_swapout(map); | |
640 | vm_map_unlock(map); | |
641 | mutex_lock(&map->s_lock); | |
642 | } | |
643 | assert(map->ref_count >= map->res_count); | |
644 | } | |
645 | #endif /* MACH_ASSERT && TASK_SWAPPER */ | |
646 | ||
647 | /* | |
648 | * vm_map_destroy: | |
649 | * | |
650 | * Actually destroy a map. | |
651 | */ | |
652 | void | |
653 | vm_map_destroy( | |
654 | register vm_map_t map) | |
655 | { | |
656 | vm_map_lock(map); | |
657 | (void) vm_map_delete(map, map->min_offset, | |
658 | map->max_offset, VM_MAP_NO_FLAGS); | |
659 | vm_map_unlock(map); | |
660 | ||
661 | if(map->pmap) | |
662 | pmap_destroy(map->pmap); | |
663 | ||
664 | zfree(vm_map_zone, (vm_offset_t) map); | |
665 | } | |
666 | ||
667 | #if TASK_SWAPPER | |
668 | /* | |
669 | * vm_map_swapin/vm_map_swapout | |
670 | * | |
671 | * Swap a map in and out, either referencing or releasing its resources. | |
672 | * These functions are internal use only; however, they must be exported | |
673 | * because they may be called from macros, which are exported. | |
674 | * | |
675 | * In the case of swapout, there could be races on the residence count, | |
676 | * so if the residence count is up, we return, assuming that a | |
677 | * vm_map_deallocate() call in the near future will bring us back. | |
678 | * | |
679 | * Locking: | |
680 | * -- We use the map write lock for synchronization among races. | |
681 | * -- The map write lock, and not the simple s_lock, protects the | |
682 | * swap state of the map. | |
683 | * -- If a map entry is a share map, then we hold both locks, in | |
684 | * hierarchical order. | |
685 | * | |
686 | * Synchronization Notes: | |
687 | * 1) If a vm_map_swapin() call happens while swapout in progress, it | |
688 | * will block on the map lock and proceed when swapout is through. | |
689 | * 2) A vm_map_reference() call at this time is illegal, and will | |
690 | * cause a panic. vm_map_reference() is only allowed on resident | |
691 | * maps, since it refuses to block. | |
692 | * 3) A vm_map_swapin() call during a swapin will block, and | |
693 | * proceeed when the first swapin is done, turning into a nop. | |
694 | * This is the reason the res_count is not incremented until | |
695 | * after the swapin is complete. | |
696 | * 4) There is a timing hole after the checks of the res_count, before | |
697 | * the map lock is taken, during which a swapin may get the lock | |
698 | * before a swapout about to happen. If this happens, the swapin | |
699 | * will detect the state and increment the reference count, causing | |
700 | * the swapout to be a nop, thereby delaying it until a later | |
701 | * vm_map_deallocate. If the swapout gets the lock first, then | |
702 | * the swapin will simply block until the swapout is done, and | |
703 | * then proceed. | |
704 | * | |
705 | * Because vm_map_swapin() is potentially an expensive operation, it | |
706 | * should be used with caution. | |
707 | * | |
708 | * Invariants: | |
709 | * 1) A map with a residence count of zero is either swapped, or | |
710 | * being swapped. | |
711 | * 2) A map with a non-zero residence count is either resident, | |
712 | * or being swapped in. | |
713 | */ | |
714 | ||
715 | int vm_map_swap_enable = 1; | |
716 | ||
717 | void vm_map_swapin (vm_map_t map) | |
718 | { | |
719 | register vm_map_entry_t entry; | |
720 | ||
721 | if (!vm_map_swap_enable) /* debug */ | |
722 | return; | |
723 | ||
724 | /* | |
725 | * Map is locked | |
726 | * First deal with various races. | |
727 | */ | |
728 | if (map->sw_state == MAP_SW_IN) | |
729 | /* | |
730 | * we raced with swapout and won. Returning will incr. | |
731 | * the res_count, turning the swapout into a nop. | |
732 | */ | |
733 | return; | |
734 | ||
735 | /* | |
736 | * The residence count must be zero. If we raced with another | |
737 | * swapin, the state would have been IN; if we raced with a | |
738 | * swapout (after another competing swapin), we must have lost | |
739 | * the race to get here (see above comment), in which case | |
740 | * res_count is still 0. | |
741 | */ | |
742 | assert(map->res_count == 0); | |
743 | ||
744 | /* | |
745 | * There are no intermediate states of a map going out or | |
746 | * coming in, since the map is locked during the transition. | |
747 | */ | |
748 | assert(map->sw_state == MAP_SW_OUT); | |
749 | ||
750 | /* | |
751 | * We now operate upon each map entry. If the entry is a sub- | |
752 | * or share-map, we call vm_map_res_reference upon it. | |
753 | * If the entry is an object, we call vm_object_res_reference | |
754 | * (this may iterate through the shadow chain). | |
755 | * Note that we hold the map locked the entire time, | |
756 | * even if we get back here via a recursive call in | |
757 | * vm_map_res_reference. | |
758 | */ | |
759 | entry = vm_map_first_entry(map); | |
760 | ||
761 | while (entry != vm_map_to_entry(map)) { | |
762 | if (entry->object.vm_object != VM_OBJECT_NULL) { | |
763 | if (entry->is_sub_map) { | |
764 | vm_map_t lmap = entry->object.sub_map; | |
765 | mutex_lock(&lmap->s_lock); | |
766 | vm_map_res_reference(lmap); | |
767 | mutex_unlock(&lmap->s_lock); | |
768 | } else { | |
769 | vm_object_t object = entry->object.vm_object; | |
770 | vm_object_lock(object); | |
771 | /* | |
772 | * This call may iterate through the | |
773 | * shadow chain. | |
774 | */ | |
775 | vm_object_res_reference(object); | |
776 | vm_object_unlock(object); | |
777 | } | |
778 | } | |
779 | entry = entry->vme_next; | |
780 | } | |
781 | assert(map->sw_state == MAP_SW_OUT); | |
782 | map->sw_state = MAP_SW_IN; | |
783 | } | |
784 | ||
785 | void vm_map_swapout(vm_map_t map) | |
786 | { | |
787 | register vm_map_entry_t entry; | |
788 | ||
789 | /* | |
790 | * Map is locked | |
791 | * First deal with various races. | |
792 | * If we raced with a swapin and lost, the residence count | |
793 | * will have been incremented to 1, and we simply return. | |
794 | */ | |
795 | mutex_lock(&map->s_lock); | |
796 | if (map->res_count != 0) { | |
797 | mutex_unlock(&map->s_lock); | |
798 | return; | |
799 | } | |
800 | mutex_unlock(&map->s_lock); | |
801 | ||
802 | /* | |
803 | * There are no intermediate states of a map going out or | |
804 | * coming in, since the map is locked during the transition. | |
805 | */ | |
806 | assert(map->sw_state == MAP_SW_IN); | |
807 | ||
808 | if (!vm_map_swap_enable) | |
809 | return; | |
810 | ||
811 | /* | |
812 | * We now operate upon each map entry. If the entry is a sub- | |
813 | * or share-map, we call vm_map_res_deallocate upon it. | |
814 | * If the entry is an object, we call vm_object_res_deallocate | |
815 | * (this may iterate through the shadow chain). | |
816 | * Note that we hold the map locked the entire time, | |
817 | * even if we get back here via a recursive call in | |
818 | * vm_map_res_deallocate. | |
819 | */ | |
820 | entry = vm_map_first_entry(map); | |
821 | ||
822 | while (entry != vm_map_to_entry(map)) { | |
823 | if (entry->object.vm_object != VM_OBJECT_NULL) { | |
824 | if (entry->is_sub_map) { | |
825 | vm_map_t lmap = entry->object.sub_map; | |
826 | mutex_lock(&lmap->s_lock); | |
827 | vm_map_res_deallocate(lmap); | |
828 | mutex_unlock(&lmap->s_lock); | |
829 | } else { | |
830 | vm_object_t object = entry->object.vm_object; | |
831 | vm_object_lock(object); | |
832 | /* | |
833 | * This call may take a long time, | |
834 | * since it could actively push | |
835 | * out pages (if we implement it | |
836 | * that way). | |
837 | */ | |
838 | vm_object_res_deallocate(object); | |
839 | vm_object_unlock(object); | |
840 | } | |
841 | } | |
842 | entry = entry->vme_next; | |
843 | } | |
844 | assert(map->sw_state == MAP_SW_IN); | |
845 | map->sw_state = MAP_SW_OUT; | |
846 | } | |
847 | ||
848 | #endif /* TASK_SWAPPER */ | |
849 | ||
850 | ||
851 | /* | |
852 | * SAVE_HINT: | |
853 | * | |
854 | * Saves the specified entry as the hint for | |
855 | * future lookups. Performs necessary interlocks. | |
856 | */ | |
857 | #define SAVE_HINT(map,value) \ | |
858 | mutex_lock(&(map)->s_lock); \ | |
859 | (map)->hint = (value); \ | |
860 | mutex_unlock(&(map)->s_lock); | |
861 | ||
862 | /* | |
863 | * vm_map_lookup_entry: [ internal use only ] | |
864 | * | |
865 | * Finds the map entry containing (or | |
866 | * immediately preceding) the specified address | |
867 | * in the given map; the entry is returned | |
868 | * in the "entry" parameter. The boolean | |
869 | * result indicates whether the address is | |
870 | * actually contained in the map. | |
871 | */ | |
872 | boolean_t | |
873 | vm_map_lookup_entry( | |
874 | register vm_map_t map, | |
875 | register vm_offset_t address, | |
876 | vm_map_entry_t *entry) /* OUT */ | |
877 | { | |
878 | register vm_map_entry_t cur; | |
879 | register vm_map_entry_t last; | |
880 | ||
881 | /* | |
882 | * Start looking either from the head of the | |
883 | * list, or from the hint. | |
884 | */ | |
885 | ||
886 | mutex_lock(&map->s_lock); | |
887 | cur = map->hint; | |
888 | mutex_unlock(&map->s_lock); | |
889 | ||
890 | if (cur == vm_map_to_entry(map)) | |
891 | cur = cur->vme_next; | |
892 | ||
893 | if (address >= cur->vme_start) { | |
894 | /* | |
895 | * Go from hint to end of list. | |
896 | * | |
897 | * But first, make a quick check to see if | |
898 | * we are already looking at the entry we | |
899 | * want (which is usually the case). | |
900 | * Note also that we don't need to save the hint | |
901 | * here... it is the same hint (unless we are | |
902 | * at the header, in which case the hint didn't | |
903 | * buy us anything anyway). | |
904 | */ | |
905 | last = vm_map_to_entry(map); | |
906 | if ((cur != last) && (cur->vme_end > address)) { | |
907 | *entry = cur; | |
908 | return(TRUE); | |
909 | } | |
910 | } | |
911 | else { | |
912 | /* | |
913 | * Go from start to hint, *inclusively* | |
914 | */ | |
915 | last = cur->vme_next; | |
916 | cur = vm_map_first_entry(map); | |
917 | } | |
918 | ||
919 | /* | |
920 | * Search linearly | |
921 | */ | |
922 | ||
923 | while (cur != last) { | |
924 | if (cur->vme_end > address) { | |
925 | if (address >= cur->vme_start) { | |
926 | /* | |
927 | * Save this lookup for future | |
928 | * hints, and return | |
929 | */ | |
930 | ||
931 | *entry = cur; | |
932 | SAVE_HINT(map, cur); | |
933 | return(TRUE); | |
934 | } | |
935 | break; | |
936 | } | |
937 | cur = cur->vme_next; | |
938 | } | |
939 | *entry = cur->vme_prev; | |
940 | SAVE_HINT(map, *entry); | |
941 | return(FALSE); | |
942 | } | |
943 | ||
944 | /* | |
945 | * Routine: vm_map_find_space | |
946 | * Purpose: | |
947 | * Allocate a range in the specified virtual address map, | |
948 | * returning the entry allocated for that range. | |
949 | * Used by kmem_alloc, etc. | |
950 | * | |
951 | * The map must be NOT be locked. It will be returned locked | |
952 | * on KERN_SUCCESS, unlocked on failure. | |
953 | * | |
954 | * If an entry is allocated, the object/offset fields | |
955 | * are initialized to zero. | |
956 | */ | |
957 | kern_return_t | |
958 | vm_map_find_space( | |
959 | register vm_map_t map, | |
960 | vm_offset_t *address, /* OUT */ | |
961 | vm_size_t size, | |
962 | vm_offset_t mask, | |
963 | vm_map_entry_t *o_entry) /* OUT */ | |
964 | { | |
965 | register vm_map_entry_t entry, new_entry; | |
966 | register vm_offset_t start; | |
967 | register vm_offset_t end; | |
968 | ||
969 | new_entry = vm_map_entry_create(map); | |
970 | ||
971 | /* | |
972 | * Look for the first possible address; if there's already | |
973 | * something at this address, we have to start after it. | |
974 | */ | |
975 | ||
976 | vm_map_lock(map); | |
977 | ||
978 | assert(first_free_is_valid(map)); | |
979 | if ((entry = map->first_free) == vm_map_to_entry(map)) | |
980 | start = map->min_offset; | |
981 | else | |
982 | start = entry->vme_end; | |
983 | ||
984 | /* | |
985 | * In any case, the "entry" always precedes | |
986 | * the proposed new region throughout the loop: | |
987 | */ | |
988 | ||
989 | while (TRUE) { | |
990 | register vm_map_entry_t next; | |
991 | ||
992 | /* | |
993 | * Find the end of the proposed new region. | |
994 | * Be sure we didn't go beyond the end, or | |
995 | * wrap around the address. | |
996 | */ | |
997 | ||
998 | end = ((start + mask) & ~mask); | |
999 | if (end < start) { | |
1000 | vm_map_entry_dispose(map, new_entry); | |
1001 | vm_map_unlock(map); | |
1002 | return(KERN_NO_SPACE); | |
1003 | } | |
1004 | start = end; | |
1005 | end += size; | |
1006 | ||
1007 | if ((end > map->max_offset) || (end < start)) { | |
1008 | vm_map_entry_dispose(map, new_entry); | |
1009 | vm_map_unlock(map); | |
1010 | return(KERN_NO_SPACE); | |
1011 | } | |
1012 | ||
1013 | /* | |
1014 | * If there are no more entries, we must win. | |
1015 | */ | |
1016 | ||
1017 | next = entry->vme_next; | |
1018 | if (next == vm_map_to_entry(map)) | |
1019 | break; | |
1020 | ||
1021 | /* | |
1022 | * If there is another entry, it must be | |
1023 | * after the end of the potential new region. | |
1024 | */ | |
1025 | ||
1026 | if (next->vme_start >= end) | |
1027 | break; | |
1028 | ||
1029 | /* | |
1030 | * Didn't fit -- move to the next entry. | |
1031 | */ | |
1032 | ||
1033 | entry = next; | |
1034 | start = entry->vme_end; | |
1035 | } | |
1036 | ||
1037 | /* | |
1038 | * At this point, | |
1039 | * "start" and "end" should define the endpoints of the | |
1040 | * available new range, and | |
1041 | * "entry" should refer to the region before the new | |
1042 | * range, and | |
1043 | * | |
1044 | * the map should be locked. | |
1045 | */ | |
1046 | ||
1047 | *address = start; | |
1048 | ||
1049 | new_entry->vme_start = start; | |
1050 | new_entry->vme_end = end; | |
1051 | assert(page_aligned(new_entry->vme_start)); | |
1052 | assert(page_aligned(new_entry->vme_end)); | |
1053 | ||
1054 | new_entry->is_shared = FALSE; | |
1055 | new_entry->is_sub_map = FALSE; | |
1056 | new_entry->use_pmap = FALSE; | |
1057 | new_entry->object.vm_object = VM_OBJECT_NULL; | |
1058 | new_entry->offset = (vm_object_offset_t) 0; | |
1059 | ||
1060 | new_entry->needs_copy = FALSE; | |
1061 | ||
1062 | new_entry->inheritance = VM_INHERIT_DEFAULT; | |
1063 | new_entry->protection = VM_PROT_DEFAULT; | |
1064 | new_entry->max_protection = VM_PROT_ALL; | |
1065 | new_entry->behavior = VM_BEHAVIOR_DEFAULT; | |
1066 | new_entry->wired_count = 0; | |
1067 | new_entry->user_wired_count = 0; | |
1068 | ||
1069 | new_entry->in_transition = FALSE; | |
1070 | new_entry->needs_wakeup = FALSE; | |
1071 | ||
1072 | /* | |
1073 | * Insert the new entry into the list | |
1074 | */ | |
1075 | ||
1076 | vm_map_entry_link(map, entry, new_entry); | |
1077 | ||
1078 | map->size += size; | |
1079 | ||
1080 | /* | |
1081 | * Update the lookup hint | |
1082 | */ | |
1083 | SAVE_HINT(map, new_entry); | |
1084 | ||
1085 | *o_entry = new_entry; | |
1086 | return(KERN_SUCCESS); | |
1087 | } | |
1088 | ||
1089 | int vm_map_pmap_enter_print = FALSE; | |
1090 | int vm_map_pmap_enter_enable = FALSE; | |
1091 | ||
1092 | /* | |
1093 | * Routine: vm_map_pmap_enter | |
1094 | * | |
1095 | * Description: | |
1096 | * Force pages from the specified object to be entered into | |
1097 | * the pmap at the specified address if they are present. | |
1098 | * As soon as a page not found in the object the scan ends. | |
1099 | * | |
1100 | * Returns: | |
1101 | * Nothing. | |
1102 | * | |
1103 | * In/out conditions: | |
1104 | * The source map should not be locked on entry. | |
1105 | */ | |
1106 | void | |
1107 | vm_map_pmap_enter( | |
1108 | vm_map_t map, | |
1109 | register vm_offset_t addr, | |
1110 | register vm_offset_t end_addr, | |
1111 | register vm_object_t object, | |
1112 | vm_object_offset_t offset, | |
1113 | vm_prot_t protection) | |
1114 | { | |
1115 | unsigned int cache_attr; | |
1116 | ||
1117 | if(map->pmap == 0) | |
1118 | return; | |
1119 | ||
1120 | while (addr < end_addr) { | |
1121 | register vm_page_t m; | |
1122 | ||
1123 | vm_object_lock(object); | |
1124 | vm_object_paging_begin(object); | |
1125 | ||
1126 | m = vm_page_lookup(object, offset); | |
1127 | if (m == VM_PAGE_NULL || m->busy || | |
1128 | (m->unusual && ( m->error || m->restart || m->absent || | |
1129 | protection & m->page_lock))) { | |
1130 | ||
1131 | vm_object_paging_end(object); | |
1132 | vm_object_unlock(object); | |
1133 | return; | |
1134 | } | |
1135 | ||
1136 | assert(!m->fictitious); /* XXX is this possible ??? */ | |
1137 | ||
1138 | if (vm_map_pmap_enter_print) { | |
1139 | printf("vm_map_pmap_enter:"); | |
1140 | printf("map: %x, addr: %x, object: %x, offset: %x\n", | |
1141 | map, addr, object, offset); | |
1142 | } | |
1143 | m->busy = TRUE; | |
1144 | ||
1145 | if (m->no_isync == TRUE) { | |
1146 | pmap_sync_caches_phys(m->phys_page); | |
1147 | m->no_isync = FALSE; | |
1148 | } | |
1149 | ||
1150 | cache_attr = ((unsigned int)object->wimg_bits) & VM_WIMG_MASK; | |
1151 | vm_object_unlock(object); | |
1152 | ||
1153 | PMAP_ENTER(map->pmap, addr, m, | |
1154 | protection, cache_attr, FALSE); | |
1155 | ||
1156 | vm_object_lock(object); | |
1157 | ||
1158 | PAGE_WAKEUP_DONE(m); | |
1159 | vm_page_lock_queues(); | |
1160 | if (!m->active && !m->inactive) | |
1161 | vm_page_activate(m); | |
1162 | vm_page_unlock_queues(); | |
1163 | vm_object_paging_end(object); | |
1164 | vm_object_unlock(object); | |
1165 | ||
1166 | offset += PAGE_SIZE_64; | |
1167 | addr += PAGE_SIZE; | |
1168 | } | |
1169 | } | |
1170 | ||
1171 | /* | |
1172 | * Routine: vm_map_enter | |
1173 | * | |
1174 | * Description: | |
1175 | * Allocate a range in the specified virtual address map. | |
1176 | * The resulting range will refer to memory defined by | |
1177 | * the given memory object and offset into that object. | |
1178 | * | |
1179 | * Arguments are as defined in the vm_map call. | |
1180 | */ | |
1181 | kern_return_t | |
1182 | vm_map_enter( | |
1183 | register vm_map_t map, | |
1184 | vm_offset_t *address, /* IN/OUT */ | |
1185 | vm_size_t size, | |
1186 | vm_offset_t mask, | |
1187 | int flags, | |
1188 | vm_object_t object, | |
1189 | vm_object_offset_t offset, | |
1190 | boolean_t needs_copy, | |
1191 | vm_prot_t cur_protection, | |
1192 | vm_prot_t max_protection, | |
1193 | vm_inherit_t inheritance) | |
1194 | { | |
1195 | vm_map_entry_t entry; | |
1196 | register vm_offset_t start; | |
1197 | register vm_offset_t end; | |
1198 | kern_return_t result = KERN_SUCCESS; | |
1199 | ||
1200 | boolean_t anywhere = VM_FLAGS_ANYWHERE & flags; | |
1201 | char alias; | |
1202 | ||
1203 | VM_GET_FLAGS_ALIAS(flags, alias); | |
1204 | ||
1205 | #define RETURN(value) { result = value; goto BailOut; } | |
1206 | ||
1207 | assert(page_aligned(*address)); | |
1208 | assert(page_aligned(size)); | |
1209 | StartAgain: ; | |
1210 | ||
1211 | start = *address; | |
1212 | ||
1213 | if (anywhere) { | |
1214 | vm_map_lock(map); | |
1215 | ||
1216 | /* | |
1217 | * Calculate the first possible address. | |
1218 | */ | |
1219 | ||
1220 | if (start < map->min_offset) | |
1221 | start = map->min_offset; | |
1222 | if (start > map->max_offset) | |
1223 | RETURN(KERN_NO_SPACE); | |
1224 | ||
1225 | /* | |
1226 | * Look for the first possible address; | |
1227 | * if there's already something at this | |
1228 | * address, we have to start after it. | |
1229 | */ | |
1230 | ||
1231 | assert(first_free_is_valid(map)); | |
1232 | if (start == map->min_offset) { | |
1233 | if ((entry = map->first_free) != vm_map_to_entry(map)) | |
1234 | start = entry->vme_end; | |
1235 | } else { | |
1236 | vm_map_entry_t tmp_entry; | |
1237 | if (vm_map_lookup_entry(map, start, &tmp_entry)) | |
1238 | start = tmp_entry->vme_end; | |
1239 | entry = tmp_entry; | |
1240 | } | |
1241 | ||
1242 | /* | |
1243 | * In any case, the "entry" always precedes | |
1244 | * the proposed new region throughout the | |
1245 | * loop: | |
1246 | */ | |
1247 | ||
1248 | while (TRUE) { | |
1249 | register vm_map_entry_t next; | |
1250 | ||
1251 | /* | |
1252 | * Find the end of the proposed new region. | |
1253 | * Be sure we didn't go beyond the end, or | |
1254 | * wrap around the address. | |
1255 | */ | |
1256 | ||
1257 | end = ((start + mask) & ~mask); | |
1258 | if (end < start) | |
1259 | RETURN(KERN_NO_SPACE); | |
1260 | start = end; | |
1261 | end += size; | |
1262 | ||
1263 | if ((end > map->max_offset) || (end < start)) { | |
1264 | if (map->wait_for_space) { | |
1265 | if (size <= (map->max_offset - | |
1266 | map->min_offset)) { | |
1267 | assert_wait((event_t)map, | |
1268 | THREAD_ABORTSAFE); | |
1269 | vm_map_unlock(map); | |
1270 | thread_block((void (*)(void))0); | |
1271 | goto StartAgain; | |
1272 | } | |
1273 | } | |
1274 | RETURN(KERN_NO_SPACE); | |
1275 | } | |
1276 | ||
1277 | /* | |
1278 | * If there are no more entries, we must win. | |
1279 | */ | |
1280 | ||
1281 | next = entry->vme_next; | |
1282 | if (next == vm_map_to_entry(map)) | |
1283 | break; | |
1284 | ||
1285 | /* | |
1286 | * If there is another entry, it must be | |
1287 | * after the end of the potential new region. | |
1288 | */ | |
1289 | ||
1290 | if (next->vme_start >= end) | |
1291 | break; | |
1292 | ||
1293 | /* | |
1294 | * Didn't fit -- move to the next entry. | |
1295 | */ | |
1296 | ||
1297 | entry = next; | |
1298 | start = entry->vme_end; | |
1299 | } | |
1300 | *address = start; | |
1301 | } else { | |
1302 | vm_map_entry_t temp_entry; | |
1303 | ||
1304 | /* | |
1305 | * Verify that: | |
1306 | * the address doesn't itself violate | |
1307 | * the mask requirement. | |
1308 | */ | |
1309 | ||
1310 | vm_map_lock(map); | |
1311 | if ((start & mask) != 0) | |
1312 | RETURN(KERN_NO_SPACE); | |
1313 | ||
1314 | /* | |
1315 | * ... the address is within bounds | |
1316 | */ | |
1317 | ||
1318 | end = start + size; | |
1319 | ||
1320 | if ((start < map->min_offset) || | |
1321 | (end > map->max_offset) || | |
1322 | (start >= end)) { | |
1323 | RETURN(KERN_INVALID_ADDRESS); | |
1324 | } | |
1325 | ||
1326 | /* | |
1327 | * ... the starting address isn't allocated | |
1328 | */ | |
1329 | ||
1330 | if (vm_map_lookup_entry(map, start, &temp_entry)) | |
1331 | RETURN(KERN_NO_SPACE); | |
1332 | ||
1333 | entry = temp_entry; | |
1334 | ||
1335 | /* | |
1336 | * ... the next region doesn't overlap the | |
1337 | * end point. | |
1338 | */ | |
1339 | ||
1340 | if ((entry->vme_next != vm_map_to_entry(map)) && | |
1341 | (entry->vme_next->vme_start < end)) | |
1342 | RETURN(KERN_NO_SPACE); | |
1343 | } | |
1344 | ||
1345 | /* | |
1346 | * At this point, | |
1347 | * "start" and "end" should define the endpoints of the | |
1348 | * available new range, and | |
1349 | * "entry" should refer to the region before the new | |
1350 | * range, and | |
1351 | * | |
1352 | * the map should be locked. | |
1353 | */ | |
1354 | ||
1355 | /* | |
1356 | * See whether we can avoid creating a new entry (and object) by | |
1357 | * extending one of our neighbors. [So far, we only attempt to | |
1358 | * extend from below.] | |
1359 | */ | |
1360 | ||
1361 | if ((object == VM_OBJECT_NULL) && | |
1362 | (entry != vm_map_to_entry(map)) && | |
1363 | (entry->vme_end == start) && | |
1364 | (!entry->is_shared) && | |
1365 | (!entry->is_sub_map) && | |
1366 | (entry->alias == alias) && | |
1367 | (entry->inheritance == inheritance) && | |
1368 | (entry->protection == cur_protection) && | |
1369 | (entry->max_protection == max_protection) && | |
1370 | (entry->behavior == VM_BEHAVIOR_DEFAULT) && | |
1371 | (entry->in_transition == 0) && | |
1372 | ((entry->vme_end - entry->vme_start) + size < NO_COALESCE_LIMIT) && | |
1373 | (entry->wired_count == 0)) { /* implies user_wired_count == 0 */ | |
1374 | if (vm_object_coalesce(entry->object.vm_object, | |
1375 | VM_OBJECT_NULL, | |
1376 | entry->offset, | |
1377 | (vm_object_offset_t) 0, | |
1378 | (vm_size_t)(entry->vme_end - entry->vme_start), | |
1379 | (vm_size_t)(end - entry->vme_end))) { | |
1380 | ||
1381 | /* | |
1382 | * Coalesced the two objects - can extend | |
1383 | * the previous map entry to include the | |
1384 | * new range. | |
1385 | */ | |
1386 | map->size += (end - entry->vme_end); | |
1387 | entry->vme_end = end; | |
1388 | UPDATE_FIRST_FREE(map, map->first_free); | |
1389 | RETURN(KERN_SUCCESS); | |
1390 | } | |
1391 | } | |
1392 | ||
1393 | /* | |
1394 | * Create a new entry | |
1395 | */ | |
1396 | ||
1397 | { /**/ | |
1398 | register vm_map_entry_t new_entry; | |
1399 | ||
1400 | new_entry = vm_map_entry_insert(map, entry, start, end, object, | |
1401 | offset, needs_copy, FALSE, FALSE, | |
1402 | cur_protection, max_protection, | |
1403 | VM_BEHAVIOR_DEFAULT, inheritance, 0); | |
1404 | new_entry->alias = alias; | |
1405 | vm_map_unlock(map); | |
1406 | ||
1407 | /* Wire down the new entry if the user | |
1408 | * requested all new map entries be wired. | |
1409 | */ | |
1410 | if (map->wiring_required) { | |
1411 | result = vm_map_wire(map, start, end, | |
1412 | new_entry->protection, TRUE); | |
1413 | return(result); | |
1414 | } | |
1415 | ||
1416 | if ((object != VM_OBJECT_NULL) && | |
1417 | (vm_map_pmap_enter_enable) && | |
1418 | (!anywhere) && | |
1419 | (!needs_copy) && | |
1420 | (size < (128*1024))) { | |
1421 | vm_map_pmap_enter(map, start, end, | |
1422 | object, offset, cur_protection); | |
1423 | } | |
1424 | ||
1425 | return(result); | |
1426 | } /**/ | |
1427 | ||
1428 | BailOut: ; | |
1429 | vm_map_unlock(map); | |
1430 | return(result); | |
1431 | ||
1432 | #undef RETURN | |
1433 | } | |
1434 | ||
1435 | /* | |
1436 | * vm_map_clip_start: [ internal use only ] | |
1437 | * | |
1438 | * Asserts that the given entry begins at or after | |
1439 | * the specified address; if necessary, | |
1440 | * it splits the entry into two. | |
1441 | */ | |
1442 | #ifndef i386 | |
1443 | #define vm_map_clip_start(map, entry, startaddr) \ | |
1444 | MACRO_BEGIN \ | |
1445 | vm_map_t VMCS_map; \ | |
1446 | vm_map_entry_t VMCS_entry; \ | |
1447 | vm_offset_t VMCS_startaddr; \ | |
1448 | VMCS_map = (map); \ | |
1449 | VMCS_entry = (entry); \ | |
1450 | VMCS_startaddr = (startaddr); \ | |
1451 | if (VMCS_startaddr > VMCS_entry->vme_start) { \ | |
1452 | if(entry->use_pmap) { \ | |
1453 | vm_offset_t pmap_base_addr; \ | |
1454 | \ | |
1455 | pmap_base_addr = 0xF0000000 & entry->vme_start; \ | |
1456 | pmap_unnest(map->pmap, (addr64_t)pmap_base_addr); \ | |
1457 | entry->use_pmap = FALSE; \ | |
1458 | } else if(entry->object.vm_object \ | |
1459 | && !entry->is_sub_map \ | |
1460 | && entry->object.vm_object->phys_contiguous) { \ | |
1461 | pmap_remove(map->pmap, \ | |
1462 | (addr64_t)(entry->vme_start), \ | |
1463 | (addr64_t)(entry->vme_end)); \ | |
1464 | } \ | |
1465 | _vm_map_clip_start(&VMCS_map->hdr,VMCS_entry,VMCS_startaddr);\ | |
1466 | } \ | |
1467 | UPDATE_FIRST_FREE(VMCS_map, VMCS_map->first_free); \ | |
1468 | MACRO_END | |
1469 | #else | |
1470 | #define vm_map_clip_start(map, entry, startaddr) \ | |
1471 | MACRO_BEGIN \ | |
1472 | vm_map_t VMCS_map; \ | |
1473 | vm_map_entry_t VMCS_entry; \ | |
1474 | vm_offset_t VMCS_startaddr; \ | |
1475 | VMCS_map = (map); \ | |
1476 | VMCS_entry = (entry); \ | |
1477 | VMCS_startaddr = (startaddr); \ | |
1478 | if (VMCS_startaddr > VMCS_entry->vme_start) { \ | |
1479 | _vm_map_clip_start(&VMCS_map->hdr,VMCS_entry,VMCS_startaddr);\ | |
1480 | } \ | |
1481 | UPDATE_FIRST_FREE(VMCS_map, VMCS_map->first_free); \ | |
1482 | MACRO_END | |
1483 | #endif | |
1484 | ||
1485 | #define vm_map_copy_clip_start(copy, entry, startaddr) \ | |
1486 | MACRO_BEGIN \ | |
1487 | if ((startaddr) > (entry)->vme_start) \ | |
1488 | _vm_map_clip_start(&(copy)->cpy_hdr,(entry),(startaddr)); \ | |
1489 | MACRO_END | |
1490 | ||
1491 | /* | |
1492 | * This routine is called only when it is known that | |
1493 | * the entry must be split. | |
1494 | */ | |
1495 | void | |
1496 | _vm_map_clip_start( | |
1497 | register struct vm_map_header *map_header, | |
1498 | register vm_map_entry_t entry, | |
1499 | register vm_offset_t start) | |
1500 | { | |
1501 | register vm_map_entry_t new_entry; | |
1502 | ||
1503 | /* | |
1504 | * Split off the front portion -- | |
1505 | * note that we must insert the new | |
1506 | * entry BEFORE this one, so that | |
1507 | * this entry has the specified starting | |
1508 | * address. | |
1509 | */ | |
1510 | ||
1511 | new_entry = _vm_map_entry_create(map_header); | |
1512 | vm_map_entry_copy_full(new_entry, entry); | |
1513 | ||
1514 | new_entry->vme_end = start; | |
1515 | entry->offset += (start - entry->vme_start); | |
1516 | entry->vme_start = start; | |
1517 | ||
1518 | _vm_map_entry_link(map_header, entry->vme_prev, new_entry); | |
1519 | ||
1520 | if (entry->is_sub_map) | |
1521 | vm_map_reference(new_entry->object.sub_map); | |
1522 | else | |
1523 | vm_object_reference(new_entry->object.vm_object); | |
1524 | } | |
1525 | ||
1526 | ||
1527 | /* | |
1528 | * vm_map_clip_end: [ internal use only ] | |
1529 | * | |
1530 | * Asserts that the given entry ends at or before | |
1531 | * the specified address; if necessary, | |
1532 | * it splits the entry into two. | |
1533 | */ | |
1534 | #ifndef i386 | |
1535 | #define vm_map_clip_end(map, entry, endaddr) \ | |
1536 | MACRO_BEGIN \ | |
1537 | vm_map_t VMCE_map; \ | |
1538 | vm_map_entry_t VMCE_entry; \ | |
1539 | vm_offset_t VMCE_endaddr; \ | |
1540 | VMCE_map = (map); \ | |
1541 | VMCE_entry = (entry); \ | |
1542 | VMCE_endaddr = (endaddr); \ | |
1543 | if (VMCE_endaddr < VMCE_entry->vme_end) { \ | |
1544 | if(entry->use_pmap) { \ | |
1545 | vm_offset_t pmap_base_addr; \ | |
1546 | \ | |
1547 | pmap_base_addr = 0xF0000000 & entry->vme_start; \ | |
1548 | pmap_unnest(map->pmap, (addr64_t)pmap_base_addr); \ | |
1549 | entry->use_pmap = FALSE; \ | |
1550 | } else if(entry->object.vm_object \ | |
1551 | && !entry->is_sub_map \ | |
1552 | && entry->object.vm_object->phys_contiguous) { \ | |
1553 | pmap_remove(map->pmap, \ | |
1554 | (addr64_t)(entry->vme_start), \ | |
1555 | (addr64_t)(entry->vme_end)); \ | |
1556 | } \ | |
1557 | _vm_map_clip_end(&VMCE_map->hdr,VMCE_entry,VMCE_endaddr); \ | |
1558 | } \ | |
1559 | UPDATE_FIRST_FREE(VMCE_map, VMCE_map->first_free); \ | |
1560 | MACRO_END | |
1561 | #else | |
1562 | #define vm_map_clip_end(map, entry, endaddr) \ | |
1563 | MACRO_BEGIN \ | |
1564 | vm_map_t VMCE_map; \ | |
1565 | vm_map_entry_t VMCE_entry; \ | |
1566 | vm_offset_t VMCE_endaddr; \ | |
1567 | VMCE_map = (map); \ | |
1568 | VMCE_entry = (entry); \ | |
1569 | VMCE_endaddr = (endaddr); \ | |
1570 | if (VMCE_endaddr < VMCE_entry->vme_end) { \ | |
1571 | _vm_map_clip_end(&VMCE_map->hdr,VMCE_entry,VMCE_endaddr); \ | |
1572 | } \ | |
1573 | UPDATE_FIRST_FREE(VMCE_map, VMCE_map->first_free); \ | |
1574 | MACRO_END | |
1575 | #endif | |
1576 | ||
1577 | #define vm_map_copy_clip_end(copy, entry, endaddr) \ | |
1578 | MACRO_BEGIN \ | |
1579 | if ((endaddr) < (entry)->vme_end) \ | |
1580 | _vm_map_clip_end(&(copy)->cpy_hdr,(entry),(endaddr)); \ | |
1581 | MACRO_END | |
1582 | ||
1583 | /* | |
1584 | * This routine is called only when it is known that | |
1585 | * the entry must be split. | |
1586 | */ | |
1587 | void | |
1588 | _vm_map_clip_end( | |
1589 | register struct vm_map_header *map_header, | |
1590 | register vm_map_entry_t entry, | |
1591 | register vm_offset_t end) | |
1592 | { | |
1593 | register vm_map_entry_t new_entry; | |
1594 | ||
1595 | /* | |
1596 | * Create a new entry and insert it | |
1597 | * AFTER the specified entry | |
1598 | */ | |
1599 | ||
1600 | new_entry = _vm_map_entry_create(map_header); | |
1601 | vm_map_entry_copy_full(new_entry, entry); | |
1602 | ||
1603 | new_entry->vme_start = entry->vme_end = end; | |
1604 | new_entry->offset += (end - entry->vme_start); | |
1605 | ||
1606 | _vm_map_entry_link(map_header, entry, new_entry); | |
1607 | ||
1608 | if (entry->is_sub_map) | |
1609 | vm_map_reference(new_entry->object.sub_map); | |
1610 | else | |
1611 | vm_object_reference(new_entry->object.vm_object); | |
1612 | } | |
1613 | ||
1614 | ||
1615 | /* | |
1616 | * VM_MAP_RANGE_CHECK: [ internal use only ] | |
1617 | * | |
1618 | * Asserts that the starting and ending region | |
1619 | * addresses fall within the valid range of the map. | |
1620 | */ | |
1621 | #define VM_MAP_RANGE_CHECK(map, start, end) \ | |
1622 | { \ | |
1623 | if (start < vm_map_min(map)) \ | |
1624 | start = vm_map_min(map); \ | |
1625 | if (end > vm_map_max(map)) \ | |
1626 | end = vm_map_max(map); \ | |
1627 | if (start > end) \ | |
1628 | start = end; \ | |
1629 | } | |
1630 | ||
1631 | /* | |
1632 | * vm_map_range_check: [ internal use only ] | |
1633 | * | |
1634 | * Check that the region defined by the specified start and | |
1635 | * end addresses are wholly contained within a single map | |
1636 | * entry or set of adjacent map entries of the spacified map, | |
1637 | * i.e. the specified region contains no unmapped space. | |
1638 | * If any or all of the region is unmapped, FALSE is returned. | |
1639 | * Otherwise, TRUE is returned and if the output argument 'entry' | |
1640 | * is not NULL it points to the map entry containing the start | |
1641 | * of the region. | |
1642 | * | |
1643 | * The map is locked for reading on entry and is left locked. | |
1644 | */ | |
1645 | boolean_t | |
1646 | vm_map_range_check( | |
1647 | register vm_map_t map, | |
1648 | register vm_offset_t start, | |
1649 | register vm_offset_t end, | |
1650 | vm_map_entry_t *entry) | |
1651 | { | |
1652 | vm_map_entry_t cur; | |
1653 | register vm_offset_t prev; | |
1654 | ||
1655 | /* | |
1656 | * Basic sanity checks first | |
1657 | */ | |
1658 | if (start < vm_map_min(map) || end > vm_map_max(map) || start > end) | |
1659 | return (FALSE); | |
1660 | ||
1661 | /* | |
1662 | * Check first if the region starts within a valid | |
1663 | * mapping for the map. | |
1664 | */ | |
1665 | if (!vm_map_lookup_entry(map, start, &cur)) | |
1666 | return (FALSE); | |
1667 | ||
1668 | /* | |
1669 | * Optimize for the case that the region is contained | |
1670 | * in a single map entry. | |
1671 | */ | |
1672 | if (entry != (vm_map_entry_t *) NULL) | |
1673 | *entry = cur; | |
1674 | if (end <= cur->vme_end) | |
1675 | return (TRUE); | |
1676 | ||
1677 | /* | |
1678 | * If the region is not wholly contained within a | |
1679 | * single entry, walk the entries looking for holes. | |
1680 | */ | |
1681 | prev = cur->vme_end; | |
1682 | cur = cur->vme_next; | |
1683 | while ((cur != vm_map_to_entry(map)) && (prev == cur->vme_start)) { | |
1684 | if (end <= cur->vme_end) | |
1685 | return (TRUE); | |
1686 | prev = cur->vme_end; | |
1687 | cur = cur->vme_next; | |
1688 | } | |
1689 | return (FALSE); | |
1690 | } | |
1691 | ||
1692 | /* | |
1693 | * vm_map_submap: [ kernel use only ] | |
1694 | * | |
1695 | * Mark the given range as handled by a subordinate map. | |
1696 | * | |
1697 | * This range must have been created with vm_map_find using | |
1698 | * the vm_submap_object, and no other operations may have been | |
1699 | * performed on this range prior to calling vm_map_submap. | |
1700 | * | |
1701 | * Only a limited number of operations can be performed | |
1702 | * within this rage after calling vm_map_submap: | |
1703 | * vm_fault | |
1704 | * [Don't try vm_map_copyin!] | |
1705 | * | |
1706 | * To remove a submapping, one must first remove the | |
1707 | * range from the superior map, and then destroy the | |
1708 | * submap (if desired). [Better yet, don't try it.] | |
1709 | */ | |
1710 | kern_return_t | |
1711 | vm_map_submap( | |
1712 | register vm_map_t map, | |
1713 | register vm_offset_t start, | |
1714 | register vm_offset_t end, | |
1715 | vm_map_t submap, | |
1716 | vm_offset_t offset, | |
1717 | boolean_t use_pmap) | |
1718 | { | |
1719 | vm_map_entry_t entry; | |
1720 | register kern_return_t result = KERN_INVALID_ARGUMENT; | |
1721 | register vm_object_t object; | |
1722 | ||
1723 | vm_map_lock(map); | |
1724 | ||
1725 | submap->mapped = TRUE; | |
1726 | ||
1727 | VM_MAP_RANGE_CHECK(map, start, end); | |
1728 | ||
1729 | if (vm_map_lookup_entry(map, start, &entry)) { | |
1730 | vm_map_clip_start(map, entry, start); | |
1731 | } | |
1732 | else | |
1733 | entry = entry->vme_next; | |
1734 | ||
1735 | if(entry == vm_map_to_entry(map)) { | |
1736 | vm_map_unlock(map); | |
1737 | return KERN_INVALID_ARGUMENT; | |
1738 | } | |
1739 | ||
1740 | vm_map_clip_end(map, entry, end); | |
1741 | ||
1742 | if ((entry->vme_start == start) && (entry->vme_end == end) && | |
1743 | (!entry->is_sub_map) && | |
1744 | ((object = entry->object.vm_object) == vm_submap_object) && | |
1745 | (object->resident_page_count == 0) && | |
1746 | (object->copy == VM_OBJECT_NULL) && | |
1747 | (object->shadow == VM_OBJECT_NULL) && | |
1748 | (!object->pager_created)) { | |
1749 | entry->offset = (vm_object_offset_t)offset; | |
1750 | entry->object.vm_object = VM_OBJECT_NULL; | |
1751 | vm_object_deallocate(object); | |
1752 | entry->is_sub_map = TRUE; | |
1753 | entry->object.sub_map = submap; | |
1754 | vm_map_reference(submap); | |
1755 | #ifndef i386 | |
1756 | if ((use_pmap) && (offset == 0)) { | |
1757 | /* nest if platform code will allow */ | |
1758 | if(submap->pmap == NULL) { | |
1759 | submap->pmap = pmap_create((vm_size_t) 0); | |
1760 | if(submap->pmap == PMAP_NULL) { | |
1761 | return(KERN_NO_SPACE); | |
1762 | } | |
1763 | } | |
1764 | result = pmap_nest(map->pmap, (entry->object.sub_map)->pmap, | |
1765 | (addr64_t)start, (addr64_t)start, (uint64_t)(end - start)); | |
1766 | if(result) | |
1767 | panic("vm_map_submap: pmap_nest failed, rc = %08X\n", result); | |
1768 | entry->use_pmap = TRUE; | |
1769 | } | |
1770 | #endif | |
1771 | #ifdef i386 | |
1772 | pmap_remove(map->pmap, (addr64_t)start, (addr64_t)end); | |
1773 | #endif | |
1774 | result = KERN_SUCCESS; | |
1775 | } | |
1776 | vm_map_unlock(map); | |
1777 | ||
1778 | return(result); | |
1779 | } | |
1780 | ||
1781 | /* | |
1782 | * vm_map_protect: | |
1783 | * | |
1784 | * Sets the protection of the specified address | |
1785 | * region in the target map. If "set_max" is | |
1786 | * specified, the maximum protection is to be set; | |
1787 | * otherwise, only the current protection is affected. | |
1788 | */ | |
1789 | kern_return_t | |
1790 | vm_map_protect( | |
1791 | register vm_map_t map, | |
1792 | register vm_offset_t start, | |
1793 | register vm_offset_t end, | |
1794 | register vm_prot_t new_prot, | |
1795 | register boolean_t set_max) | |
1796 | { | |
1797 | register vm_map_entry_t current; | |
1798 | register vm_offset_t prev; | |
1799 | vm_map_entry_t entry; | |
1800 | vm_prot_t new_max; | |
1801 | boolean_t clip; | |
1802 | ||
1803 | XPR(XPR_VM_MAP, | |
1804 | "vm_map_protect, 0x%X start 0x%X end 0x%X, new 0x%X %d", | |
1805 | (integer_t)map, start, end, new_prot, set_max); | |
1806 | ||
1807 | vm_map_lock(map); | |
1808 | ||
1809 | /* | |
1810 | * Lookup the entry. If it doesn't start in a valid | |
1811 | * entry, return an error. Remember if we need to | |
1812 | * clip the entry. We don't do it here because we don't | |
1813 | * want to make any changes until we've scanned the | |
1814 | * entire range below for address and protection | |
1815 | * violations. | |
1816 | */ | |
1817 | if (!(clip = vm_map_lookup_entry(map, start, &entry))) { | |
1818 | vm_map_unlock(map); | |
1819 | return(KERN_INVALID_ADDRESS); | |
1820 | } | |
1821 | ||
1822 | /* | |
1823 | * Make a first pass to check for protection and address | |
1824 | * violations. | |
1825 | */ | |
1826 | ||
1827 | current = entry; | |
1828 | prev = current->vme_start; | |
1829 | while ((current != vm_map_to_entry(map)) && | |
1830 | (current->vme_start < end)) { | |
1831 | ||
1832 | /* | |
1833 | * If there is a hole, return an error. | |
1834 | */ | |
1835 | if (current->vme_start != prev) { | |
1836 | vm_map_unlock(map); | |
1837 | return(KERN_INVALID_ADDRESS); | |
1838 | } | |
1839 | ||
1840 | new_max = current->max_protection; | |
1841 | if(new_prot & VM_PROT_COPY) { | |
1842 | new_max |= VM_PROT_WRITE; | |
1843 | if ((new_prot & (new_max | VM_PROT_COPY)) != new_prot) { | |
1844 | vm_map_unlock(map); | |
1845 | return(KERN_PROTECTION_FAILURE); | |
1846 | } | |
1847 | } else { | |
1848 | if ((new_prot & new_max) != new_prot) { | |
1849 | vm_map_unlock(map); | |
1850 | return(KERN_PROTECTION_FAILURE); | |
1851 | } | |
1852 | } | |
1853 | ||
1854 | prev = current->vme_end; | |
1855 | current = current->vme_next; | |
1856 | } | |
1857 | if (end > prev) { | |
1858 | vm_map_unlock(map); | |
1859 | return(KERN_INVALID_ADDRESS); | |
1860 | } | |
1861 | ||
1862 | /* | |
1863 | * Go back and fix up protections. | |
1864 | * Clip to start here if the range starts within | |
1865 | * the entry. | |
1866 | */ | |
1867 | ||
1868 | current = entry; | |
1869 | if (clip) { | |
1870 | vm_map_clip_start(map, entry, start); | |
1871 | } | |
1872 | while ((current != vm_map_to_entry(map)) && | |
1873 | (current->vme_start < end)) { | |
1874 | ||
1875 | vm_prot_t old_prot; | |
1876 | ||
1877 | vm_map_clip_end(map, current, end); | |
1878 | ||
1879 | old_prot = current->protection; | |
1880 | ||
1881 | if(new_prot & VM_PROT_COPY) { | |
1882 | /* caller is asking specifically to copy the */ | |
1883 | /* mapped data, this implies that max protection */ | |
1884 | /* will include write. Caller must be prepared */ | |
1885 | /* for loss of shared memory communication in the */ | |
1886 | /* target area after taking this step */ | |
1887 | current->needs_copy = TRUE; | |
1888 | current->max_protection |= VM_PROT_WRITE; | |
1889 | } | |
1890 | ||
1891 | if (set_max) | |
1892 | current->protection = | |
1893 | (current->max_protection = | |
1894 | new_prot & ~VM_PROT_COPY) & | |
1895 | old_prot; | |
1896 | else | |
1897 | current->protection = new_prot & ~VM_PROT_COPY; | |
1898 | ||
1899 | /* | |
1900 | * Update physical map if necessary. | |
1901 | * If the request is to turn off write protection, | |
1902 | * we won't do it for real (in pmap). This is because | |
1903 | * it would cause copy-on-write to fail. We've already | |
1904 | * set, the new protection in the map, so if a | |
1905 | * write-protect fault occurred, it will be fixed up | |
1906 | * properly, COW or not. | |
1907 | */ | |
1908 | /* the 256M hack for existing hardware limitations */ | |
1909 | if (current->protection != old_prot) { | |
1910 | if(current->is_sub_map && current->use_pmap) { | |
1911 | vm_offset_t pmap_base_addr; | |
1912 | vm_offset_t pmap_end_addr; | |
1913 | vm_map_entry_t local_entry; | |
1914 | ||
1915 | pmap_base_addr = 0xF0000000 & current->vme_start; | |
1916 | pmap_end_addr = (pmap_base_addr + 0x10000000) - 1; | |
1917 | #ifndef i386 | |
1918 | if(!vm_map_lookup_entry(map, | |
1919 | pmap_base_addr, &local_entry)) | |
1920 | panic("vm_map_protect: nested pmap area is missing"); | |
1921 | while ((local_entry != vm_map_to_entry(map)) && | |
1922 | (local_entry->vme_start < pmap_end_addr)) { | |
1923 | local_entry->use_pmap = FALSE; | |
1924 | local_entry = local_entry->vme_next; | |
1925 | } | |
1926 | pmap_unnest(map->pmap, (addr64_t)pmap_base_addr); | |
1927 | #endif | |
1928 | } | |
1929 | if (!(current->protection & VM_PROT_WRITE)) { | |
1930 | /* Look one level in we support nested pmaps */ | |
1931 | /* from mapped submaps which are direct entries */ | |
1932 | /* in our map */ | |
1933 | if(current->is_sub_map && current->use_pmap) { | |
1934 | pmap_protect(current->object.sub_map->pmap, | |
1935 | current->vme_start, | |
1936 | current->vme_end, | |
1937 | current->protection); | |
1938 | } else { | |
1939 | pmap_protect(map->pmap, current->vme_start, | |
1940 | current->vme_end, | |
1941 | current->protection); | |
1942 | } | |
1943 | } | |
1944 | } | |
1945 | current = current->vme_next; | |
1946 | } | |
1947 | ||
1948 | vm_map_unlock(map); | |
1949 | return(KERN_SUCCESS); | |
1950 | } | |
1951 | ||
1952 | /* | |
1953 | * vm_map_inherit: | |
1954 | * | |
1955 | * Sets the inheritance of the specified address | |
1956 | * range in the target map. Inheritance | |
1957 | * affects how the map will be shared with | |
1958 | * child maps at the time of vm_map_fork. | |
1959 | */ | |
1960 | kern_return_t | |
1961 | vm_map_inherit( | |
1962 | register vm_map_t map, | |
1963 | register vm_offset_t start, | |
1964 | register vm_offset_t end, | |
1965 | register vm_inherit_t new_inheritance) | |
1966 | { | |
1967 | register vm_map_entry_t entry; | |
1968 | vm_map_entry_t temp_entry; | |
1969 | ||
1970 | vm_map_lock(map); | |
1971 | ||
1972 | VM_MAP_RANGE_CHECK(map, start, end); | |
1973 | ||
1974 | if (vm_map_lookup_entry(map, start, &temp_entry)) { | |
1975 | entry = temp_entry; | |
1976 | vm_map_clip_start(map, entry, start); | |
1977 | } | |
1978 | else { | |
1979 | temp_entry = temp_entry->vme_next; | |
1980 | entry = temp_entry; | |
1981 | } | |
1982 | ||
1983 | /* first check entire range for submaps which can't support the */ | |
1984 | /* given inheritance. */ | |
1985 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { | |
1986 | if(entry->is_sub_map) { | |
1987 | if(new_inheritance == VM_INHERIT_COPY) | |
1988 | return(KERN_INVALID_ARGUMENT); | |
1989 | } | |
1990 | ||
1991 | entry = entry->vme_next; | |
1992 | } | |
1993 | ||
1994 | entry = temp_entry; | |
1995 | ||
1996 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { | |
1997 | vm_map_clip_end(map, entry, end); | |
1998 | ||
1999 | entry->inheritance = new_inheritance; | |
2000 | ||
2001 | entry = entry->vme_next; | |
2002 | } | |
2003 | ||
2004 | vm_map_unlock(map); | |
2005 | return(KERN_SUCCESS); | |
2006 | } | |
2007 | ||
2008 | /* | |
2009 | * vm_map_wire: | |
2010 | * | |
2011 | * Sets the pageability of the specified address range in the | |
2012 | * target map as wired. Regions specified as not pageable require | |
2013 | * locked-down physical memory and physical page maps. The | |
2014 | * access_type variable indicates types of accesses that must not | |
2015 | * generate page faults. This is checked against protection of | |
2016 | * memory being locked-down. | |
2017 | * | |
2018 | * The map must not be locked, but a reference must remain to the | |
2019 | * map throughout the call. | |
2020 | */ | |
2021 | kern_return_t | |
2022 | vm_map_wire_nested( | |
2023 | register vm_map_t map, | |
2024 | register vm_offset_t start, | |
2025 | register vm_offset_t end, | |
2026 | register vm_prot_t access_type, | |
2027 | boolean_t user_wire, | |
2028 | pmap_t map_pmap, | |
2029 | vm_offset_t pmap_addr) | |
2030 | { | |
2031 | register vm_map_entry_t entry; | |
2032 | struct vm_map_entry *first_entry, tmp_entry; | |
2033 | vm_map_t pmap_map; | |
2034 | register vm_offset_t s,e; | |
2035 | kern_return_t rc; | |
2036 | boolean_t need_wakeup; | |
2037 | boolean_t main_map = FALSE; | |
2038 | wait_interrupt_t interruptible_state; | |
2039 | thread_t cur_thread; | |
2040 | unsigned int last_timestamp; | |
2041 | vm_size_t size; | |
2042 | ||
2043 | vm_map_lock(map); | |
2044 | if(map_pmap == NULL) | |
2045 | main_map = TRUE; | |
2046 | last_timestamp = map->timestamp; | |
2047 | ||
2048 | VM_MAP_RANGE_CHECK(map, start, end); | |
2049 | assert(page_aligned(start)); | |
2050 | assert(page_aligned(end)); | |
2051 | if (start == end) { | |
2052 | /* We wired what the caller asked for, zero pages */ | |
2053 | vm_map_unlock(map); | |
2054 | return KERN_SUCCESS; | |
2055 | } | |
2056 | ||
2057 | if (vm_map_lookup_entry(map, start, &first_entry)) { | |
2058 | entry = first_entry; | |
2059 | /* vm_map_clip_start will be done later. */ | |
2060 | } else { | |
2061 | /* Start address is not in map */ | |
2062 | vm_map_unlock(map); | |
2063 | return(KERN_INVALID_ADDRESS); | |
2064 | } | |
2065 | ||
2066 | s=start; | |
2067 | need_wakeup = FALSE; | |
2068 | cur_thread = current_thread(); | |
2069 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { | |
2070 | /* | |
2071 | * If another thread is wiring/unwiring this entry then | |
2072 | * block after informing other thread to wake us up. | |
2073 | */ | |
2074 | if (entry->in_transition) { | |
2075 | wait_result_t wait_result; | |
2076 | ||
2077 | /* | |
2078 | * We have not clipped the entry. Make sure that | |
2079 | * the start address is in range so that the lookup | |
2080 | * below will succeed. | |
2081 | */ | |
2082 | s = entry->vme_start < start? start: entry->vme_start; | |
2083 | ||
2084 | entry->needs_wakeup = TRUE; | |
2085 | ||
2086 | /* | |
2087 | * wake up anybody waiting on entries that we have | |
2088 | * already wired. | |
2089 | */ | |
2090 | if (need_wakeup) { | |
2091 | vm_map_entry_wakeup(map); | |
2092 | need_wakeup = FALSE; | |
2093 | } | |
2094 | /* | |
2095 | * User wiring is interruptible | |
2096 | */ | |
2097 | wait_result = vm_map_entry_wait(map, | |
2098 | (user_wire) ? THREAD_ABORTSAFE : | |
2099 | THREAD_UNINT); | |
2100 | if (user_wire && wait_result == THREAD_INTERRUPTED) { | |
2101 | /* | |
2102 | * undo the wirings we have done so far | |
2103 | * We do not clear the needs_wakeup flag, | |
2104 | * because we cannot tell if we were the | |
2105 | * only one waiting. | |
2106 | */ | |
2107 | vm_map_unlock(map); | |
2108 | vm_map_unwire(map, start, s, user_wire); | |
2109 | return(KERN_FAILURE); | |
2110 | } | |
2111 | ||
2112 | /* | |
2113 | * Cannot avoid a lookup here. reset timestamp. | |
2114 | */ | |
2115 | last_timestamp = map->timestamp; | |
2116 | ||
2117 | /* | |
2118 | * The entry could have been clipped, look it up again. | |
2119 | * Worse that can happen is, it may not exist anymore. | |
2120 | */ | |
2121 | if (!vm_map_lookup_entry(map, s, &first_entry)) { | |
2122 | if (!user_wire) | |
2123 | panic("vm_map_wire: re-lookup failed"); | |
2124 | ||
2125 | /* | |
2126 | * User: undo everything upto the previous | |
2127 | * entry. let vm_map_unwire worry about | |
2128 | * checking the validity of the range. | |
2129 | */ | |
2130 | vm_map_unlock(map); | |
2131 | vm_map_unwire(map, start, s, user_wire); | |
2132 | return(KERN_FAILURE); | |
2133 | } | |
2134 | entry = first_entry; | |
2135 | continue; | |
2136 | } | |
2137 | ||
2138 | if(entry->is_sub_map) { | |
2139 | vm_offset_t sub_start; | |
2140 | vm_offset_t sub_end; | |
2141 | vm_offset_t local_start; | |
2142 | vm_offset_t local_end; | |
2143 | pmap_t pmap; | |
2144 | ||
2145 | vm_map_clip_start(map, entry, start); | |
2146 | vm_map_clip_end(map, entry, end); | |
2147 | ||
2148 | sub_start = entry->offset; | |
2149 | sub_end = entry->vme_end - entry->vme_start; | |
2150 | sub_end += entry->offset; | |
2151 | ||
2152 | local_end = entry->vme_end; | |
2153 | if(map_pmap == NULL) { | |
2154 | if(entry->use_pmap) { | |
2155 | pmap = entry->object.sub_map->pmap; | |
2156 | /* ppc implementation requires that */ | |
2157 | /* submaps pmap address ranges line */ | |
2158 | /* up with parent map */ | |
2159 | #ifdef notdef | |
2160 | pmap_addr = sub_start; | |
2161 | #endif | |
2162 | pmap_addr = start; | |
2163 | } else { | |
2164 | pmap = map->pmap; | |
2165 | pmap_addr = start; | |
2166 | } | |
2167 | if (entry->wired_count) { | |
2168 | if (entry->wired_count | |
2169 | >= MAX_WIRE_COUNT) | |
2170 | panic("vm_map_wire: too many wirings"); | |
2171 | ||
2172 | if (user_wire && | |
2173 | entry->user_wired_count | |
2174 | >= MAX_WIRE_COUNT) { | |
2175 | vm_map_unlock(map); | |
2176 | vm_map_unwire(map, start, | |
2177 | entry->vme_start, user_wire); | |
2178 | return(KERN_FAILURE); | |
2179 | } | |
2180 | if(user_wire) | |
2181 | entry->user_wired_count++; | |
2182 | if((!user_wire) || | |
2183 | (entry->user_wired_count == 0)) | |
2184 | entry->wired_count++; | |
2185 | entry = entry->vme_next; | |
2186 | continue; | |
2187 | ||
2188 | } else { | |
2189 | vm_object_t object; | |
2190 | vm_object_offset_t offset_hi; | |
2191 | vm_object_offset_t offset_lo; | |
2192 | vm_object_offset_t offset; | |
2193 | vm_prot_t prot; | |
2194 | boolean_t wired; | |
2195 | vm_behavior_t behavior; | |
2196 | vm_map_entry_t local_entry; | |
2197 | vm_map_version_t version; | |
2198 | vm_map_t lookup_map; | |
2199 | ||
2200 | /* call vm_map_lookup_locked to */ | |
2201 | /* cause any needs copy to be */ | |
2202 | /* evaluated */ | |
2203 | local_start = entry->vme_start; | |
2204 | lookup_map = map; | |
2205 | vm_map_lock_write_to_read(map); | |
2206 | if(vm_map_lookup_locked( | |
2207 | &lookup_map, local_start, | |
2208 | access_type, | |
2209 | &version, &object, | |
2210 | &offset, &prot, &wired, | |
2211 | &behavior, &offset_lo, | |
2212 | &offset_hi, &pmap_map)) { | |
2213 | ||
2214 | vm_map_unlock(lookup_map); | |
2215 | vm_map_unwire(map, start, | |
2216 | entry->vme_start, user_wire); | |
2217 | return(KERN_FAILURE); | |
2218 | } | |
2219 | if(pmap_map != lookup_map) | |
2220 | vm_map_unlock(pmap_map); | |
2221 | vm_map_unlock_read(lookup_map); | |
2222 | vm_map_lock(map); | |
2223 | vm_object_unlock(object); | |
2224 | ||
2225 | if (!vm_map_lookup_entry(map, | |
2226 | local_start, &local_entry)) { | |
2227 | vm_map_unlock(map); | |
2228 | vm_map_unwire(map, start, | |
2229 | entry->vme_start, user_wire); | |
2230 | return(KERN_FAILURE); | |
2231 | } | |
2232 | /* did we have a change of type? */ | |
2233 | if (!local_entry->is_sub_map) { | |
2234 | last_timestamp = map->timestamp; | |
2235 | continue; | |
2236 | } | |
2237 | entry = local_entry; | |
2238 | if (user_wire) | |
2239 | entry->user_wired_count++; | |
2240 | if((!user_wire) || | |
2241 | (entry->user_wired_count == 1)) | |
2242 | entry->wired_count++; | |
2243 | ||
2244 | entry->in_transition = TRUE; | |
2245 | ||
2246 | vm_map_unlock(map); | |
2247 | rc = vm_map_wire_nested( | |
2248 | entry->object.sub_map, | |
2249 | sub_start, sub_end, | |
2250 | access_type, | |
2251 | user_wire, pmap, pmap_addr); | |
2252 | vm_map_lock(map); | |
2253 | } | |
2254 | } else { | |
2255 | local_start = entry->vme_start; | |
2256 | if (user_wire) | |
2257 | entry->user_wired_count++; | |
2258 | if((!user_wire) || | |
2259 | (entry->user_wired_count == 1)) | |
2260 | entry->wired_count++; | |
2261 | vm_map_unlock(map); | |
2262 | rc = vm_map_wire_nested(entry->object.sub_map, | |
2263 | sub_start, sub_end, | |
2264 | access_type, | |
2265 | user_wire, pmap, pmap_addr); | |
2266 | vm_map_lock(map); | |
2267 | } | |
2268 | s = entry->vme_start; | |
2269 | e = entry->vme_end; | |
2270 | ||
2271 | /* | |
2272 | * Find the entry again. It could have been clipped | |
2273 | * after we unlocked the map. | |
2274 | */ | |
2275 | if (!vm_map_lookup_entry(map, local_start, | |
2276 | &first_entry)) | |
2277 | panic("vm_map_wire: re-lookup failed"); | |
2278 | entry = first_entry; | |
2279 | ||
2280 | last_timestamp = map->timestamp; | |
2281 | while ((entry != vm_map_to_entry(map)) && | |
2282 | (entry->vme_start < e)) { | |
2283 | assert(entry->in_transition); | |
2284 | entry->in_transition = FALSE; | |
2285 | if (entry->needs_wakeup) { | |
2286 | entry->needs_wakeup = FALSE; | |
2287 | need_wakeup = TRUE; | |
2288 | } | |
2289 | if (rc != KERN_SUCCESS) {/* from vm_*_wire */ | |
2290 | if (user_wire) | |
2291 | entry->user_wired_count--; | |
2292 | if ((!user_wire) || | |
2293 | (entry->user_wired_count == 0)) | |
2294 | entry->wired_count--; | |
2295 | } | |
2296 | entry = entry->vme_next; | |
2297 | } | |
2298 | if (rc != KERN_SUCCESS) { /* from vm_*_wire */ | |
2299 | vm_map_unlock(map); | |
2300 | if (need_wakeup) | |
2301 | vm_map_entry_wakeup(map); | |
2302 | /* | |
2303 | * undo everything upto the previous entry. | |
2304 | */ | |
2305 | (void)vm_map_unwire(map, start, s, user_wire); | |
2306 | return rc; | |
2307 | } | |
2308 | continue; | |
2309 | } | |
2310 | ||
2311 | /* | |
2312 | * If this entry is already wired then increment | |
2313 | * the appropriate wire reference count. | |
2314 | */ | |
2315 | if (entry->wired_count) { | |
2316 | /* sanity check: wired_count is a short */ | |
2317 | if (entry->wired_count >= MAX_WIRE_COUNT) | |
2318 | panic("vm_map_wire: too many wirings"); | |
2319 | ||
2320 | if (user_wire && | |
2321 | entry->user_wired_count >= MAX_WIRE_COUNT) { | |
2322 | vm_map_unlock(map); | |
2323 | vm_map_unwire(map, start, | |
2324 | entry->vme_start, user_wire); | |
2325 | return(KERN_FAILURE); | |
2326 | } | |
2327 | /* | |
2328 | * entry is already wired down, get our reference | |
2329 | * after clipping to our range. | |
2330 | */ | |
2331 | vm_map_clip_start(map, entry, start); | |
2332 | vm_map_clip_end(map, entry, end); | |
2333 | if (user_wire) | |
2334 | entry->user_wired_count++; | |
2335 | if ((!user_wire) || (entry->user_wired_count == 1)) | |
2336 | entry->wired_count++; | |
2337 | ||
2338 | entry = entry->vme_next; | |
2339 | continue; | |
2340 | } | |
2341 | ||
2342 | /* | |
2343 | * Unwired entry or wire request transmitted via submap | |
2344 | */ | |
2345 | ||
2346 | ||
2347 | /* | |
2348 | * Perform actions of vm_map_lookup that need the write | |
2349 | * lock on the map: create a shadow object for a | |
2350 | * copy-on-write region, or an object for a zero-fill | |
2351 | * region. | |
2352 | */ | |
2353 | size = entry->vme_end - entry->vme_start; | |
2354 | /* | |
2355 | * If wiring a copy-on-write page, we need to copy it now | |
2356 | * even if we're only (currently) requesting read access. | |
2357 | * This is aggressive, but once it's wired we can't move it. | |
2358 | */ | |
2359 | if (entry->needs_copy) { | |
2360 | vm_object_shadow(&entry->object.vm_object, | |
2361 | &entry->offset, size); | |
2362 | entry->needs_copy = FALSE; | |
2363 | } else if (entry->object.vm_object == VM_OBJECT_NULL) { | |
2364 | entry->object.vm_object = vm_object_allocate(size); | |
2365 | entry->offset = (vm_object_offset_t)0; | |
2366 | } | |
2367 | ||
2368 | vm_map_clip_start(map, entry, start); | |
2369 | vm_map_clip_end(map, entry, end); | |
2370 | ||
2371 | s = entry->vme_start; | |
2372 | e = entry->vme_end; | |
2373 | ||
2374 | /* | |
2375 | * Check for holes and protection mismatch. | |
2376 | * Holes: Next entry should be contiguous unless this | |
2377 | * is the end of the region. | |
2378 | * Protection: Access requested must be allowed, unless | |
2379 | * wiring is by protection class | |
2380 | */ | |
2381 | if ((((entry->vme_end < end) && | |
2382 | ((entry->vme_next == vm_map_to_entry(map)) || | |
2383 | (entry->vme_next->vme_start > entry->vme_end))) || | |
2384 | ((entry->protection & access_type) != access_type))) { | |
2385 | /* | |
2386 | * Found a hole or protection problem. | |
2387 | * Unwire the region we wired so far. | |
2388 | */ | |
2389 | if (start != entry->vme_start) { | |
2390 | vm_map_unlock(map); | |
2391 | vm_map_unwire(map, start, s, user_wire); | |
2392 | } else { | |
2393 | vm_map_unlock(map); | |
2394 | } | |
2395 | return((entry->protection&access_type) != access_type? | |
2396 | KERN_PROTECTION_FAILURE: KERN_INVALID_ADDRESS); | |
2397 | } | |
2398 | ||
2399 | assert(entry->wired_count == 0 && entry->user_wired_count == 0); | |
2400 | ||
2401 | if (user_wire) | |
2402 | entry->user_wired_count++; | |
2403 | if ((!user_wire) || (entry->user_wired_count == 1)) | |
2404 | entry->wired_count++; | |
2405 | ||
2406 | entry->in_transition = TRUE; | |
2407 | ||
2408 | /* | |
2409 | * This entry might get split once we unlock the map. | |
2410 | * In vm_fault_wire(), we need the current range as | |
2411 | * defined by this entry. In order for this to work | |
2412 | * along with a simultaneous clip operation, we make a | |
2413 | * temporary copy of this entry and use that for the | |
2414 | * wiring. Note that the underlying objects do not | |
2415 | * change during a clip. | |
2416 | */ | |
2417 | tmp_entry = *entry; | |
2418 | ||
2419 | /* | |
2420 | * The in_transition state guarentees that the entry | |
2421 | * (or entries for this range, if split occured) will be | |
2422 | * there when the map lock is acquired for the second time. | |
2423 | */ | |
2424 | vm_map_unlock(map); | |
2425 | ||
2426 | if (!user_wire && cur_thread != THREAD_NULL) | |
2427 | interruptible_state = thread_interrupt_level(THREAD_UNINT); | |
2428 | ||
2429 | if(map_pmap) | |
2430 | rc = vm_fault_wire(map, | |
2431 | &tmp_entry, map_pmap, pmap_addr); | |
2432 | else | |
2433 | rc = vm_fault_wire(map, | |
2434 | &tmp_entry, map->pmap, | |
2435 | tmp_entry.vme_start); | |
2436 | ||
2437 | if (!user_wire && cur_thread != THREAD_NULL) | |
2438 | thread_interrupt_level(interruptible_state); | |
2439 | ||
2440 | vm_map_lock(map); | |
2441 | ||
2442 | if (last_timestamp+1 != map->timestamp) { | |
2443 | /* | |
2444 | * Find the entry again. It could have been clipped | |
2445 | * after we unlocked the map. | |
2446 | */ | |
2447 | if (!vm_map_lookup_entry(map, tmp_entry.vme_start, | |
2448 | &first_entry)) | |
2449 | panic("vm_map_wire: re-lookup failed"); | |
2450 | ||
2451 | entry = first_entry; | |
2452 | } | |
2453 | ||
2454 | last_timestamp = map->timestamp; | |
2455 | ||
2456 | while ((entry != vm_map_to_entry(map)) && | |
2457 | (entry->vme_start < tmp_entry.vme_end)) { | |
2458 | assert(entry->in_transition); | |
2459 | entry->in_transition = FALSE; | |
2460 | if (entry->needs_wakeup) { | |
2461 | entry->needs_wakeup = FALSE; | |
2462 | need_wakeup = TRUE; | |
2463 | } | |
2464 | if (rc != KERN_SUCCESS) { /* from vm_*_wire */ | |
2465 | if (user_wire) | |
2466 | entry->user_wired_count--; | |
2467 | if ((!user_wire) || | |
2468 | (entry->user_wired_count == 0)) | |
2469 | entry->wired_count--; | |
2470 | } | |
2471 | entry = entry->vme_next; | |
2472 | } | |
2473 | ||
2474 | if (rc != KERN_SUCCESS) { /* from vm_*_wire */ | |
2475 | vm_map_unlock(map); | |
2476 | if (need_wakeup) | |
2477 | vm_map_entry_wakeup(map); | |
2478 | /* | |
2479 | * undo everything upto the previous entry. | |
2480 | */ | |
2481 | (void)vm_map_unwire(map, start, s, user_wire); | |
2482 | return rc; | |
2483 | } | |
2484 | } /* end while loop through map entries */ | |
2485 | vm_map_unlock(map); | |
2486 | ||
2487 | /* | |
2488 | * wake up anybody waiting on entries we wired. | |
2489 | */ | |
2490 | if (need_wakeup) | |
2491 | vm_map_entry_wakeup(map); | |
2492 | ||
2493 | return(KERN_SUCCESS); | |
2494 | ||
2495 | } | |
2496 | ||
2497 | kern_return_t | |
2498 | vm_map_wire( | |
2499 | register vm_map_t map, | |
2500 | register vm_offset_t start, | |
2501 | register vm_offset_t end, | |
2502 | register vm_prot_t access_type, | |
2503 | boolean_t user_wire) | |
2504 | { | |
2505 | ||
2506 | kern_return_t kret; | |
2507 | ||
2508 | #ifdef ppc | |
2509 | /* | |
2510 | * the calls to mapping_prealloc and mapping_relpre | |
2511 | * (along with the VM_MAP_RANGE_CHECK to insure a | |
2512 | * resonable range was passed in) are | |
2513 | * currently necessary because | |
2514 | * we haven't enabled kernel pre-emption | |
2515 | * and/or the pmap_enter cannot purge and re-use | |
2516 | * existing mappings | |
2517 | */ | |
2518 | VM_MAP_RANGE_CHECK(map, start, end); | |
2519 | mapping_prealloc(end - start); | |
2520 | #endif | |
2521 | kret = vm_map_wire_nested(map, start, end, access_type, | |
2522 | user_wire, (pmap_t)NULL, 0); | |
2523 | #ifdef ppc | |
2524 | mapping_relpre(); | |
2525 | #endif | |
2526 | return kret; | |
2527 | } | |
2528 | ||
2529 | /* | |
2530 | * vm_map_unwire: | |
2531 | * | |
2532 | * Sets the pageability of the specified address range in the target | |
2533 | * as pageable. Regions specified must have been wired previously. | |
2534 | * | |
2535 | * The map must not be locked, but a reference must remain to the map | |
2536 | * throughout the call. | |
2537 | * | |
2538 | * Kernel will panic on failures. User unwire ignores holes and | |
2539 | * unwired and intransition entries to avoid losing memory by leaving | |
2540 | * it unwired. | |
2541 | */ | |
2542 | kern_return_t | |
2543 | vm_map_unwire_nested( | |
2544 | register vm_map_t map, | |
2545 | register vm_offset_t start, | |
2546 | register vm_offset_t end, | |
2547 | boolean_t user_wire, | |
2548 | pmap_t map_pmap, | |
2549 | vm_offset_t pmap_addr) | |
2550 | { | |
2551 | register vm_map_entry_t entry; | |
2552 | struct vm_map_entry *first_entry, tmp_entry; | |
2553 | boolean_t need_wakeup; | |
2554 | boolean_t main_map = FALSE; | |
2555 | unsigned int last_timestamp; | |
2556 | ||
2557 | vm_map_lock(map); | |
2558 | if(map_pmap == NULL) | |
2559 | main_map = TRUE; | |
2560 | last_timestamp = map->timestamp; | |
2561 | ||
2562 | VM_MAP_RANGE_CHECK(map, start, end); | |
2563 | assert(page_aligned(start)); | |
2564 | assert(page_aligned(end)); | |
2565 | ||
2566 | if (vm_map_lookup_entry(map, start, &first_entry)) { | |
2567 | entry = first_entry; | |
2568 | /* vm_map_clip_start will be done later. */ | |
2569 | } | |
2570 | else { | |
2571 | /* Start address is not in map. */ | |
2572 | vm_map_unlock(map); | |
2573 | return(KERN_INVALID_ADDRESS); | |
2574 | } | |
2575 | ||
2576 | need_wakeup = FALSE; | |
2577 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { | |
2578 | if (entry->in_transition) { | |
2579 | /* | |
2580 | * 1) | |
2581 | * Another thread is wiring down this entry. Note | |
2582 | * that if it is not for the other thread we would | |
2583 | * be unwiring an unwired entry. This is not | |
2584 | * permitted. If we wait, we will be unwiring memory | |
2585 | * we did not wire. | |
2586 | * | |
2587 | * 2) | |
2588 | * Another thread is unwiring this entry. We did not | |
2589 | * have a reference to it, because if we did, this | |
2590 | * entry will not be getting unwired now. | |
2591 | */ | |
2592 | if (!user_wire) | |
2593 | panic("vm_map_unwire: in_transition entry"); | |
2594 | ||
2595 | entry = entry->vme_next; | |
2596 | continue; | |
2597 | } | |
2598 | ||
2599 | if(entry->is_sub_map) { | |
2600 | vm_offset_t sub_start; | |
2601 | vm_offset_t sub_end; | |
2602 | vm_offset_t local_end; | |
2603 | pmap_t pmap; | |
2604 | ||
2605 | ||
2606 | vm_map_clip_start(map, entry, start); | |
2607 | vm_map_clip_end(map, entry, end); | |
2608 | ||
2609 | sub_start = entry->offset; | |
2610 | sub_end = entry->vme_end - entry->vme_start; | |
2611 | sub_end += entry->offset; | |
2612 | local_end = entry->vme_end; | |
2613 | if(map_pmap == NULL) { | |
2614 | if(entry->use_pmap) { | |
2615 | pmap = entry->object.sub_map->pmap; | |
2616 | pmap_addr = sub_start; | |
2617 | } else { | |
2618 | pmap = map->pmap; | |
2619 | pmap_addr = start; | |
2620 | } | |
2621 | if (entry->wired_count == 0 || | |
2622 | (user_wire && entry->user_wired_count == 0)) { | |
2623 | if (!user_wire) | |
2624 | panic("vm_map_unwire: entry is unwired"); | |
2625 | entry = entry->vme_next; | |
2626 | continue; | |
2627 | } | |
2628 | ||
2629 | /* | |
2630 | * Check for holes | |
2631 | * Holes: Next entry should be contiguous unless | |
2632 | * this is the end of the region. | |
2633 | */ | |
2634 | if (((entry->vme_end < end) && | |
2635 | ((entry->vme_next == vm_map_to_entry(map)) || | |
2636 | (entry->vme_next->vme_start | |
2637 | > entry->vme_end)))) { | |
2638 | if (!user_wire) | |
2639 | panic("vm_map_unwire: non-contiguous region"); | |
2640 | /* | |
2641 | entry = entry->vme_next; | |
2642 | continue; | |
2643 | */ | |
2644 | } | |
2645 | ||
2646 | if (!user_wire || (--entry->user_wired_count == 0)) | |
2647 | entry->wired_count--; | |
2648 | ||
2649 | if (entry->wired_count != 0) { | |
2650 | entry = entry->vme_next; | |
2651 | continue; | |
2652 | } | |
2653 | ||
2654 | entry->in_transition = TRUE; | |
2655 | tmp_entry = *entry;/* see comment in vm_map_wire() */ | |
2656 | ||
2657 | /* | |
2658 | * We can unlock the map now. The in_transition state | |
2659 | * guarantees existance of the entry. | |
2660 | */ | |
2661 | vm_map_unlock(map); | |
2662 | vm_map_unwire_nested(entry->object.sub_map, | |
2663 | sub_start, sub_end, user_wire, pmap, pmap_addr); | |
2664 | vm_map_lock(map); | |
2665 | ||
2666 | if (last_timestamp+1 != map->timestamp) { | |
2667 | /* | |
2668 | * Find the entry again. It could have been | |
2669 | * clipped or deleted after we unlocked the map. | |
2670 | */ | |
2671 | if (!vm_map_lookup_entry(map, | |
2672 | tmp_entry.vme_start, | |
2673 | &first_entry)) { | |
2674 | if (!user_wire) | |
2675 | panic("vm_map_unwire: re-lookup failed"); | |
2676 | entry = first_entry->vme_next; | |
2677 | } else | |
2678 | entry = first_entry; | |
2679 | } | |
2680 | last_timestamp = map->timestamp; | |
2681 | ||
2682 | /* | |
2683 | * clear transition bit for all constituent entries | |
2684 | * that were in the original entry (saved in | |
2685 | * tmp_entry). Also check for waiters. | |
2686 | */ | |
2687 | while ((entry != vm_map_to_entry(map)) && | |
2688 | (entry->vme_start < tmp_entry.vme_end)) { | |
2689 | assert(entry->in_transition); | |
2690 | entry->in_transition = FALSE; | |
2691 | if (entry->needs_wakeup) { | |
2692 | entry->needs_wakeup = FALSE; | |
2693 | need_wakeup = TRUE; | |
2694 | } | |
2695 | entry = entry->vme_next; | |
2696 | } | |
2697 | continue; | |
2698 | } else { | |
2699 | vm_map_unlock(map); | |
2700 | vm_map_unwire_nested(entry->object.sub_map, | |
2701 | sub_start, sub_end, user_wire, pmap, pmap_addr); | |
2702 | vm_map_lock(map); | |
2703 | ||
2704 | if (last_timestamp+1 != map->timestamp) { | |
2705 | /* | |
2706 | * Find the entry again. It could have been | |
2707 | * clipped or deleted after we unlocked the map. | |
2708 | */ | |
2709 | if (!vm_map_lookup_entry(map, | |
2710 | tmp_entry.vme_start, | |
2711 | &first_entry)) { | |
2712 | if (!user_wire) | |
2713 | panic("vm_map_unwire: re-lookup failed"); | |
2714 | entry = first_entry->vme_next; | |
2715 | } else | |
2716 | entry = first_entry; | |
2717 | } | |
2718 | last_timestamp = map->timestamp; | |
2719 | } | |
2720 | } | |
2721 | ||
2722 | ||
2723 | if ((entry->wired_count == 0) || | |
2724 | (user_wire && entry->user_wired_count == 0)) { | |
2725 | if (!user_wire) | |
2726 | panic("vm_map_unwire: entry is unwired"); | |
2727 | ||
2728 | entry = entry->vme_next; | |
2729 | continue; | |
2730 | } | |
2731 | ||
2732 | assert(entry->wired_count > 0 && | |
2733 | (!user_wire || entry->user_wired_count > 0)); | |
2734 | ||
2735 | vm_map_clip_start(map, entry, start); | |
2736 | vm_map_clip_end(map, entry, end); | |
2737 | ||
2738 | /* | |
2739 | * Check for holes | |
2740 | * Holes: Next entry should be contiguous unless | |
2741 | * this is the end of the region. | |
2742 | */ | |
2743 | if (((entry->vme_end < end) && | |
2744 | ((entry->vme_next == vm_map_to_entry(map)) || | |
2745 | (entry->vme_next->vme_start > entry->vme_end)))) { | |
2746 | ||
2747 | if (!user_wire) | |
2748 | panic("vm_map_unwire: non-contiguous region"); | |
2749 | entry = entry->vme_next; | |
2750 | continue; | |
2751 | } | |
2752 | ||
2753 | if (!user_wire || (--entry->user_wired_count == 0)) | |
2754 | entry->wired_count--; | |
2755 | ||
2756 | if (entry->wired_count != 0) { | |
2757 | entry = entry->vme_next; | |
2758 | continue; | |
2759 | } | |
2760 | ||
2761 | entry->in_transition = TRUE; | |
2762 | tmp_entry = *entry; /* see comment in vm_map_wire() */ | |
2763 | ||
2764 | /* | |
2765 | * We can unlock the map now. The in_transition state | |
2766 | * guarantees existance of the entry. | |
2767 | */ | |
2768 | vm_map_unlock(map); | |
2769 | if(map_pmap) { | |
2770 | vm_fault_unwire(map, | |
2771 | &tmp_entry, FALSE, map_pmap, pmap_addr); | |
2772 | } else { | |
2773 | vm_fault_unwire(map, | |
2774 | &tmp_entry, FALSE, map->pmap, | |
2775 | tmp_entry.vme_start); | |
2776 | } | |
2777 | vm_map_lock(map); | |
2778 | ||
2779 | if (last_timestamp+1 != map->timestamp) { | |
2780 | /* | |
2781 | * Find the entry again. It could have been clipped | |
2782 | * or deleted after we unlocked the map. | |
2783 | */ | |
2784 | if (!vm_map_lookup_entry(map, tmp_entry.vme_start, | |
2785 | &first_entry)) { | |
2786 | if (!user_wire) | |
2787 | panic("vm_map_unwire: re-lookup failed"); | |
2788 | entry = first_entry->vme_next; | |
2789 | } else | |
2790 | entry = first_entry; | |
2791 | } | |
2792 | last_timestamp = map->timestamp; | |
2793 | ||
2794 | /* | |
2795 | * clear transition bit for all constituent entries that | |
2796 | * were in the original entry (saved in tmp_entry). Also | |
2797 | * check for waiters. | |
2798 | */ | |
2799 | while ((entry != vm_map_to_entry(map)) && | |
2800 | (entry->vme_start < tmp_entry.vme_end)) { | |
2801 | assert(entry->in_transition); | |
2802 | entry->in_transition = FALSE; | |
2803 | if (entry->needs_wakeup) { | |
2804 | entry->needs_wakeup = FALSE; | |
2805 | need_wakeup = TRUE; | |
2806 | } | |
2807 | entry = entry->vme_next; | |
2808 | } | |
2809 | } | |
2810 | vm_map_unlock(map); | |
2811 | /* | |
2812 | * wake up anybody waiting on entries that we have unwired. | |
2813 | */ | |
2814 | if (need_wakeup) | |
2815 | vm_map_entry_wakeup(map); | |
2816 | return(KERN_SUCCESS); | |
2817 | ||
2818 | } | |
2819 | ||
2820 | kern_return_t | |
2821 | vm_map_unwire( | |
2822 | register vm_map_t map, | |
2823 | register vm_offset_t start, | |
2824 | register vm_offset_t end, | |
2825 | boolean_t user_wire) | |
2826 | { | |
2827 | return vm_map_unwire_nested(map, start, end, | |
2828 | user_wire, (pmap_t)NULL, 0); | |
2829 | } | |
2830 | ||
2831 | ||
2832 | /* | |
2833 | * vm_map_entry_delete: [ internal use only ] | |
2834 | * | |
2835 | * Deallocate the given entry from the target map. | |
2836 | */ | |
2837 | void | |
2838 | vm_map_entry_delete( | |
2839 | register vm_map_t map, | |
2840 | register vm_map_entry_t entry) | |
2841 | { | |
2842 | register vm_offset_t s, e; | |
2843 | register vm_object_t object; | |
2844 | register vm_map_t submap; | |
2845 | extern vm_object_t kernel_object; | |
2846 | ||
2847 | s = entry->vme_start; | |
2848 | e = entry->vme_end; | |
2849 | assert(page_aligned(s)); | |
2850 | assert(page_aligned(e)); | |
2851 | assert(entry->wired_count == 0); | |
2852 | assert(entry->user_wired_count == 0); | |
2853 | ||
2854 | if (entry->is_sub_map) { | |
2855 | object = NULL; | |
2856 | submap = entry->object.sub_map; | |
2857 | } else { | |
2858 | submap = NULL; | |
2859 | object = entry->object.vm_object; | |
2860 | } | |
2861 | ||
2862 | vm_map_entry_unlink(map, entry); | |
2863 | map->size -= e - s; | |
2864 | ||
2865 | vm_map_entry_dispose(map, entry); | |
2866 | ||
2867 | vm_map_unlock(map); | |
2868 | /* | |
2869 | * Deallocate the object only after removing all | |
2870 | * pmap entries pointing to its pages. | |
2871 | */ | |
2872 | if (submap) | |
2873 | vm_map_deallocate(submap); | |
2874 | else | |
2875 | vm_object_deallocate(object); | |
2876 | ||
2877 | } | |
2878 | ||
2879 | void | |
2880 | vm_map_submap_pmap_clean( | |
2881 | vm_map_t map, | |
2882 | vm_offset_t start, | |
2883 | vm_offset_t end, | |
2884 | vm_map_t sub_map, | |
2885 | vm_offset_t offset) | |
2886 | { | |
2887 | vm_offset_t submap_start; | |
2888 | vm_offset_t submap_end; | |
2889 | vm_offset_t addr; | |
2890 | vm_size_t remove_size; | |
2891 | vm_map_entry_t entry; | |
2892 | ||
2893 | submap_end = offset + (end - start); | |
2894 | submap_start = offset; | |
2895 | if(vm_map_lookup_entry(sub_map, offset, &entry)) { | |
2896 | ||
2897 | remove_size = (entry->vme_end - entry->vme_start); | |
2898 | if(offset > entry->vme_start) | |
2899 | remove_size -= offset - entry->vme_start; | |
2900 | ||
2901 | ||
2902 | if(submap_end < entry->vme_end) { | |
2903 | remove_size -= | |
2904 | entry->vme_end - submap_end; | |
2905 | } | |
2906 | if(entry->is_sub_map) { | |
2907 | vm_map_submap_pmap_clean( | |
2908 | sub_map, | |
2909 | start, | |
2910 | start + remove_size, | |
2911 | entry->object.sub_map, | |
2912 | entry->offset); | |
2913 | } else { | |
2914 | ||
2915 | if((map->mapped) && (map->ref_count) | |
2916 | && (entry->object.vm_object != NULL)) { | |
2917 | vm_object_pmap_protect( | |
2918 | entry->object.vm_object, | |
2919 | entry->offset, | |
2920 | remove_size, | |
2921 | PMAP_NULL, | |
2922 | entry->vme_start, | |
2923 | VM_PROT_NONE); | |
2924 | } else { | |
2925 | pmap_remove(map->pmap, | |
2926 | (addr64_t)start, | |
2927 | (addr64_t)(start + remove_size)); | |
2928 | } | |
2929 | } | |
2930 | } | |
2931 | ||
2932 | entry = entry->vme_next; | |
2933 | ||
2934 | while((entry != vm_map_to_entry(sub_map)) | |
2935 | && (entry->vme_start < submap_end)) { | |
2936 | remove_size = (entry->vme_end - entry->vme_start); | |
2937 | if(submap_end < entry->vme_end) { | |
2938 | remove_size -= entry->vme_end - submap_end; | |
2939 | } | |
2940 | if(entry->is_sub_map) { | |
2941 | vm_map_submap_pmap_clean( | |
2942 | sub_map, | |
2943 | (start + entry->vme_start) - offset, | |
2944 | ((start + entry->vme_start) - offset) + remove_size, | |
2945 | entry->object.sub_map, | |
2946 | entry->offset); | |
2947 | } else { | |
2948 | if((map->mapped) && (map->ref_count) | |
2949 | && (entry->object.vm_object != NULL)) { | |
2950 | vm_object_pmap_protect( | |
2951 | entry->object.vm_object, | |
2952 | entry->offset, | |
2953 | remove_size, | |
2954 | PMAP_NULL, | |
2955 | entry->vme_start, | |
2956 | VM_PROT_NONE); | |
2957 | } else { | |
2958 | pmap_remove(map->pmap, | |
2959 | (addr64_t)((start + entry->vme_start) | |
2960 | - offset), | |
2961 | (addr64_t)(((start + entry->vme_start) | |
2962 | - offset) + remove_size)); | |
2963 | } | |
2964 | } | |
2965 | entry = entry->vme_next; | |
2966 | } | |
2967 | return; | |
2968 | } | |
2969 | ||
2970 | /* | |
2971 | * vm_map_delete: [ internal use only ] | |
2972 | * | |
2973 | * Deallocates the given address range from the target map. | |
2974 | * Removes all user wirings. Unwires one kernel wiring if | |
2975 | * VM_MAP_REMOVE_KUNWIRE is set. Waits for kernel wirings to go | |
2976 | * away if VM_MAP_REMOVE_WAIT_FOR_KWIRE is set. Sleeps | |
2977 | * interruptibly if VM_MAP_REMOVE_INTERRUPTIBLE is set. | |
2978 | * | |
2979 | * This routine is called with map locked and leaves map locked. | |
2980 | */ | |
2981 | kern_return_t | |
2982 | vm_map_delete( | |
2983 | register vm_map_t map, | |
2984 | vm_offset_t start, | |
2985 | register vm_offset_t end, | |
2986 | int flags) | |
2987 | { | |
2988 | vm_map_entry_t entry, next; | |
2989 | struct vm_map_entry *first_entry, tmp_entry; | |
2990 | register vm_offset_t s, e; | |
2991 | register vm_object_t object; | |
2992 | boolean_t need_wakeup; | |
2993 | unsigned int last_timestamp = ~0; /* unlikely value */ | |
2994 | int interruptible; | |
2995 | extern vm_map_t kernel_map; | |
2996 | ||
2997 | interruptible = (flags & VM_MAP_REMOVE_INTERRUPTIBLE) ? | |
2998 | THREAD_ABORTSAFE : THREAD_UNINT; | |
2999 | ||
3000 | /* | |
3001 | * All our DMA I/O operations in IOKit are currently done by | |
3002 | * wiring through the map entries of the task requesting the I/O. | |
3003 | * Because of this, we must always wait for kernel wirings | |
3004 | * to go away on the entries before deleting them. | |
3005 | * | |
3006 | * Any caller who wants to actually remove a kernel wiring | |
3007 | * should explicitly set the VM_MAP_REMOVE_KUNWIRE flag to | |
3008 | * properly remove one wiring instead of blasting through | |
3009 | * them all. | |
3010 | */ | |
3011 | flags |= VM_MAP_REMOVE_WAIT_FOR_KWIRE; | |
3012 | ||
3013 | /* | |
3014 | * Find the start of the region, and clip it | |
3015 | */ | |
3016 | if (vm_map_lookup_entry(map, start, &first_entry)) { | |
3017 | entry = first_entry; | |
3018 | vm_map_clip_start(map, entry, start); | |
3019 | ||
3020 | /* | |
3021 | * Fix the lookup hint now, rather than each | |
3022 | * time through the loop. | |
3023 | */ | |
3024 | SAVE_HINT(map, entry->vme_prev); | |
3025 | } else { | |
3026 | entry = first_entry->vme_next; | |
3027 | } | |
3028 | ||
3029 | need_wakeup = FALSE; | |
3030 | /* | |
3031 | * Step through all entries in this region | |
3032 | */ | |
3033 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { | |
3034 | ||
3035 | vm_map_clip_end(map, entry, end); | |
3036 | if (entry->in_transition) { | |
3037 | wait_result_t wait_result; | |
3038 | ||
3039 | /* | |
3040 | * Another thread is wiring/unwiring this entry. | |
3041 | * Let the other thread know we are waiting. | |
3042 | */ | |
3043 | s = entry->vme_start; | |
3044 | entry->needs_wakeup = TRUE; | |
3045 | ||
3046 | /* | |
3047 | * wake up anybody waiting on entries that we have | |
3048 | * already unwired/deleted. | |
3049 | */ | |
3050 | if (need_wakeup) { | |
3051 | vm_map_entry_wakeup(map); | |
3052 | need_wakeup = FALSE; | |
3053 | } | |
3054 | ||
3055 | wait_result = vm_map_entry_wait(map, interruptible); | |
3056 | ||
3057 | if (interruptible && | |
3058 | wait_result == THREAD_INTERRUPTED) { | |
3059 | /* | |
3060 | * We do not clear the needs_wakeup flag, | |
3061 | * since we cannot tell if we were the only one. | |
3062 | */ | |
3063 | vm_map_unlock(map); | |
3064 | return KERN_ABORTED; | |
3065 | } | |
3066 | ||
3067 | /* | |
3068 | * The entry could have been clipped or it | |
3069 | * may not exist anymore. Look it up again. | |
3070 | */ | |
3071 | if (!vm_map_lookup_entry(map, s, &first_entry)) { | |
3072 | assert((map != kernel_map) && | |
3073 | (!entry->is_sub_map)); | |
3074 | /* | |
3075 | * User: use the next entry | |
3076 | */ | |
3077 | entry = first_entry->vme_next; | |
3078 | } else { | |
3079 | entry = first_entry; | |
3080 | SAVE_HINT(map, entry->vme_prev); | |
3081 | } | |
3082 | last_timestamp = map->timestamp; | |
3083 | continue; | |
3084 | } /* end in_transition */ | |
3085 | ||
3086 | if (entry->wired_count) { | |
3087 | /* | |
3088 | * Remove a kernel wiring if requested or if | |
3089 | * there are user wirings. | |
3090 | */ | |
3091 | if ((flags & VM_MAP_REMOVE_KUNWIRE) || | |
3092 | (entry->user_wired_count > 0)) | |
3093 | entry->wired_count--; | |
3094 | ||
3095 | /* remove all user wire references */ | |
3096 | entry->user_wired_count = 0; | |
3097 | ||
3098 | if (entry->wired_count != 0) { | |
3099 | assert((map != kernel_map) && | |
3100 | (!entry->is_sub_map)); | |
3101 | /* | |
3102 | * Cannot continue. Typical case is when | |
3103 | * a user thread has physical io pending on | |
3104 | * on this page. Either wait for the | |
3105 | * kernel wiring to go away or return an | |
3106 | * error. | |
3107 | */ | |
3108 | if (flags & VM_MAP_REMOVE_WAIT_FOR_KWIRE) { | |
3109 | wait_result_t wait_result; | |
3110 | ||
3111 | s = entry->vme_start; | |
3112 | entry->needs_wakeup = TRUE; | |
3113 | wait_result = vm_map_entry_wait(map, | |
3114 | interruptible); | |
3115 | ||
3116 | if (interruptible && | |
3117 | wait_result == THREAD_INTERRUPTED) { | |
3118 | /* | |
3119 | * We do not clear the | |
3120 | * needs_wakeup flag, since we | |
3121 | * cannot tell if we were the | |
3122 | * only one. | |
3123 | */ | |
3124 | vm_map_unlock(map); | |
3125 | return KERN_ABORTED; | |
3126 | } | |
3127 | ||
3128 | /* | |
3129 | * The entry could have been clipped or | |
3130 | * it may not exist anymore. Look it | |
3131 | * up again. | |
3132 | */ | |
3133 | if (!vm_map_lookup_entry(map, s, | |
3134 | &first_entry)) { | |
3135 | assert((map != kernel_map) && | |
3136 | (!entry->is_sub_map)); | |
3137 | /* | |
3138 | * User: use the next entry | |
3139 | */ | |
3140 | entry = first_entry->vme_next; | |
3141 | } else { | |
3142 | entry = first_entry; | |
3143 | SAVE_HINT(map, entry->vme_prev); | |
3144 | } | |
3145 | last_timestamp = map->timestamp; | |
3146 | continue; | |
3147 | } | |
3148 | else { | |
3149 | return KERN_FAILURE; | |
3150 | } | |
3151 | } | |
3152 | ||
3153 | entry->in_transition = TRUE; | |
3154 | /* | |
3155 | * copy current entry. see comment in vm_map_wire() | |
3156 | */ | |
3157 | tmp_entry = *entry; | |
3158 | s = entry->vme_start; | |
3159 | e = entry->vme_end; | |
3160 | ||
3161 | /* | |
3162 | * We can unlock the map now. The in_transition | |
3163 | * state guarentees existance of the entry. | |
3164 | */ | |
3165 | vm_map_unlock(map); | |
3166 | vm_fault_unwire(map, &tmp_entry, | |
3167 | tmp_entry.object.vm_object == kernel_object, | |
3168 | map->pmap, tmp_entry.vme_start); | |
3169 | vm_map_lock(map); | |
3170 | ||
3171 | if (last_timestamp+1 != map->timestamp) { | |
3172 | /* | |
3173 | * Find the entry again. It could have | |
3174 | * been clipped after we unlocked the map. | |
3175 | */ | |
3176 | if (!vm_map_lookup_entry(map, s, &first_entry)){ | |
3177 | assert((map != kernel_map) && | |
3178 | (!entry->is_sub_map)); | |
3179 | first_entry = first_entry->vme_next; | |
3180 | } else { | |
3181 | SAVE_HINT(map, entry->vme_prev); | |
3182 | } | |
3183 | } else { | |
3184 | SAVE_HINT(map, entry->vme_prev); | |
3185 | first_entry = entry; | |
3186 | } | |
3187 | ||
3188 | last_timestamp = map->timestamp; | |
3189 | ||
3190 | entry = first_entry; | |
3191 | while ((entry != vm_map_to_entry(map)) && | |
3192 | (entry->vme_start < tmp_entry.vme_end)) { | |
3193 | assert(entry->in_transition); | |
3194 | entry->in_transition = FALSE; | |
3195 | if (entry->needs_wakeup) { | |
3196 | entry->needs_wakeup = FALSE; | |
3197 | need_wakeup = TRUE; | |
3198 | } | |
3199 | entry = entry->vme_next; | |
3200 | } | |
3201 | /* | |
3202 | * We have unwired the entry(s). Go back and | |
3203 | * delete them. | |
3204 | */ | |
3205 | entry = first_entry; | |
3206 | continue; | |
3207 | } | |
3208 | ||
3209 | /* entry is unwired */ | |
3210 | assert(entry->wired_count == 0); | |
3211 | assert(entry->user_wired_count == 0); | |
3212 | ||
3213 | if ((!entry->is_sub_map && | |
3214 | entry->object.vm_object != kernel_object) || | |
3215 | entry->is_sub_map) { | |
3216 | if(entry->is_sub_map) { | |
3217 | if(entry->use_pmap) { | |
3218 | #ifndef i386 | |
3219 | pmap_unnest(map->pmap, (addr64_t)entry->vme_start); | |
3220 | #endif | |
3221 | if((map->mapped) && (map->ref_count)) { | |
3222 | /* clean up parent map/maps */ | |
3223 | vm_map_submap_pmap_clean( | |
3224 | map, entry->vme_start, | |
3225 | entry->vme_end, | |
3226 | entry->object.sub_map, | |
3227 | entry->offset); | |
3228 | } | |
3229 | } else { | |
3230 | vm_map_submap_pmap_clean( | |
3231 | map, entry->vme_start, entry->vme_end, | |
3232 | entry->object.sub_map, | |
3233 | entry->offset); | |
3234 | } | |
3235 | } else { | |
3236 | if((map->mapped) && (map->ref_count)) { | |
3237 | vm_object_pmap_protect( | |
3238 | entry->object.vm_object, | |
3239 | entry->offset, | |
3240 | entry->vme_end - entry->vme_start, | |
3241 | PMAP_NULL, | |
3242 | entry->vme_start, | |
3243 | VM_PROT_NONE); | |
3244 | } else { | |
3245 | pmap_remove(map->pmap, | |
3246 | (addr64_t)(entry->vme_start), | |
3247 | (addr64_t)(entry->vme_end)); | |
3248 | } | |
3249 | } | |
3250 | } | |
3251 | ||
3252 | next = entry->vme_next; | |
3253 | s = next->vme_start; | |
3254 | last_timestamp = map->timestamp; | |
3255 | vm_map_entry_delete(map, entry); | |
3256 | /* vm_map_entry_delete unlocks the map */ | |
3257 | vm_map_lock(map); | |
3258 | entry = next; | |
3259 | ||
3260 | if(entry == vm_map_to_entry(map)) { | |
3261 | break; | |
3262 | } | |
3263 | if (last_timestamp+1 != map->timestamp) { | |
3264 | /* | |
3265 | * we are responsible for deleting everything | |
3266 | * from the give space, if someone has interfered | |
3267 | * we pick up where we left off, back fills should | |
3268 | * be all right for anyone except map_delete and | |
3269 | * we have to assume that the task has been fully | |
3270 | * disabled before we get here | |
3271 | */ | |
3272 | if (!vm_map_lookup_entry(map, s, &entry)){ | |
3273 | entry = entry->vme_next; | |
3274 | } else { | |
3275 | SAVE_HINT(map, entry->vme_prev); | |
3276 | } | |
3277 | /* | |
3278 | * others can not only allocate behind us, we can | |
3279 | * also see coalesce while we don't have the map lock | |
3280 | */ | |
3281 | if(entry == vm_map_to_entry(map)) { | |
3282 | break; | |
3283 | } | |
3284 | vm_map_clip_start(map, entry, s); | |
3285 | } | |
3286 | last_timestamp = map->timestamp; | |
3287 | } | |
3288 | ||
3289 | if (map->wait_for_space) | |
3290 | thread_wakeup((event_t) map); | |
3291 | /* | |
3292 | * wake up anybody waiting on entries that we have already deleted. | |
3293 | */ | |
3294 | if (need_wakeup) | |
3295 | vm_map_entry_wakeup(map); | |
3296 | ||
3297 | return KERN_SUCCESS; | |
3298 | } | |
3299 | ||
3300 | /* | |
3301 | * vm_map_remove: | |
3302 | * | |
3303 | * Remove the given address range from the target map. | |
3304 | * This is the exported form of vm_map_delete. | |
3305 | */ | |
3306 | kern_return_t | |
3307 | vm_map_remove( | |
3308 | register vm_map_t map, | |
3309 | register vm_offset_t start, | |
3310 | register vm_offset_t end, | |
3311 | register boolean_t flags) | |
3312 | { | |
3313 | register kern_return_t result; | |
3314 | boolean_t funnel_set = FALSE; | |
3315 | funnel_t *curflock; | |
3316 | thread_t cur_thread; | |
3317 | ||
3318 | cur_thread = current_thread(); | |
3319 | ||
3320 | if ((cur_thread->funnel_state & TH_FN_OWNED) == TH_FN_OWNED) { | |
3321 | funnel_set = TRUE; | |
3322 | curflock = cur_thread->funnel_lock; | |
3323 | thread_funnel_set( curflock , FALSE); | |
3324 | } | |
3325 | vm_map_lock(map); | |
3326 | VM_MAP_RANGE_CHECK(map, start, end); | |
3327 | result = vm_map_delete(map, start, end, flags); | |
3328 | vm_map_unlock(map); | |
3329 | if (funnel_set) { | |
3330 | thread_funnel_set( curflock, TRUE); | |
3331 | funnel_set = FALSE; | |
3332 | } | |
3333 | return(result); | |
3334 | } | |
3335 | ||
3336 | ||
3337 | /* | |
3338 | * Routine: vm_map_copy_discard | |
3339 | * | |
3340 | * Description: | |
3341 | * Dispose of a map copy object (returned by | |
3342 | * vm_map_copyin). | |
3343 | */ | |
3344 | void | |
3345 | vm_map_copy_discard( | |
3346 | vm_map_copy_t copy) | |
3347 | { | |
3348 | TR_DECL("vm_map_copy_discard"); | |
3349 | ||
3350 | /* tr3("enter: copy 0x%x type %d", copy, copy->type);*/ | |
3351 | free_next_copy: | |
3352 | if (copy == VM_MAP_COPY_NULL) | |
3353 | return; | |
3354 | ||
3355 | switch (copy->type) { | |
3356 | case VM_MAP_COPY_ENTRY_LIST: | |
3357 | while (vm_map_copy_first_entry(copy) != | |
3358 | vm_map_copy_to_entry(copy)) { | |
3359 | vm_map_entry_t entry = vm_map_copy_first_entry(copy); | |
3360 | ||
3361 | vm_map_copy_entry_unlink(copy, entry); | |
3362 | vm_object_deallocate(entry->object.vm_object); | |
3363 | vm_map_copy_entry_dispose(copy, entry); | |
3364 | } | |
3365 | break; | |
3366 | case VM_MAP_COPY_OBJECT: | |
3367 | vm_object_deallocate(copy->cpy_object); | |
3368 | break; | |
3369 | case VM_MAP_COPY_KERNEL_BUFFER: | |
3370 | ||
3371 | /* | |
3372 | * The vm_map_copy_t and possibly the data buffer were | |
3373 | * allocated by a single call to kalloc(), i.e. the | |
3374 | * vm_map_copy_t was not allocated out of the zone. | |
3375 | */ | |
3376 | kfree((vm_offset_t) copy, copy->cpy_kalloc_size); | |
3377 | return; | |
3378 | } | |
3379 | zfree(vm_map_copy_zone, (vm_offset_t) copy); | |
3380 | } | |
3381 | ||
3382 | /* | |
3383 | * Routine: vm_map_copy_copy | |
3384 | * | |
3385 | * Description: | |
3386 | * Move the information in a map copy object to | |
3387 | * a new map copy object, leaving the old one | |
3388 | * empty. | |
3389 | * | |
3390 | * This is used by kernel routines that need | |
3391 | * to look at out-of-line data (in copyin form) | |
3392 | * before deciding whether to return SUCCESS. | |
3393 | * If the routine returns FAILURE, the original | |
3394 | * copy object will be deallocated; therefore, | |
3395 | * these routines must make a copy of the copy | |
3396 | * object and leave the original empty so that | |
3397 | * deallocation will not fail. | |
3398 | */ | |
3399 | vm_map_copy_t | |
3400 | vm_map_copy_copy( | |
3401 | vm_map_copy_t copy) | |
3402 | { | |
3403 | vm_map_copy_t new_copy; | |
3404 | ||
3405 | if (copy == VM_MAP_COPY_NULL) | |
3406 | return VM_MAP_COPY_NULL; | |
3407 | ||
3408 | /* | |
3409 | * Allocate a new copy object, and copy the information | |
3410 | * from the old one into it. | |
3411 | */ | |
3412 | ||
3413 | new_copy = (vm_map_copy_t) zalloc(vm_map_copy_zone); | |
3414 | *new_copy = *copy; | |
3415 | ||
3416 | if (copy->type == VM_MAP_COPY_ENTRY_LIST) { | |
3417 | /* | |
3418 | * The links in the entry chain must be | |
3419 | * changed to point to the new copy object. | |
3420 | */ | |
3421 | vm_map_copy_first_entry(copy)->vme_prev | |
3422 | = vm_map_copy_to_entry(new_copy); | |
3423 | vm_map_copy_last_entry(copy)->vme_next | |
3424 | = vm_map_copy_to_entry(new_copy); | |
3425 | } | |
3426 | ||
3427 | /* | |
3428 | * Change the old copy object into one that contains | |
3429 | * nothing to be deallocated. | |
3430 | */ | |
3431 | copy->type = VM_MAP_COPY_OBJECT; | |
3432 | copy->cpy_object = VM_OBJECT_NULL; | |
3433 | ||
3434 | /* | |
3435 | * Return the new object. | |
3436 | */ | |
3437 | return new_copy; | |
3438 | } | |
3439 | ||
3440 | kern_return_t | |
3441 | vm_map_overwrite_submap_recurse( | |
3442 | vm_map_t dst_map, | |
3443 | vm_offset_t dst_addr, | |
3444 | vm_size_t dst_size) | |
3445 | { | |
3446 | vm_offset_t dst_end; | |
3447 | vm_map_entry_t tmp_entry; | |
3448 | vm_map_entry_t entry; | |
3449 | kern_return_t result; | |
3450 | boolean_t encountered_sub_map = FALSE; | |
3451 | ||
3452 | ||
3453 | ||
3454 | /* | |
3455 | * Verify that the destination is all writeable | |
3456 | * initially. We have to trunc the destination | |
3457 | * address and round the copy size or we'll end up | |
3458 | * splitting entries in strange ways. | |
3459 | */ | |
3460 | ||
3461 | dst_end = round_page_32(dst_addr + dst_size); | |
3462 | vm_map_lock(dst_map); | |
3463 | ||
3464 | start_pass_1: | |
3465 | if (!vm_map_lookup_entry(dst_map, dst_addr, &tmp_entry)) { | |
3466 | vm_map_unlock(dst_map); | |
3467 | return(KERN_INVALID_ADDRESS); | |
3468 | } | |
3469 | ||
3470 | vm_map_clip_start(dst_map, tmp_entry, trunc_page_32(dst_addr)); | |
3471 | ||
3472 | for (entry = tmp_entry;;) { | |
3473 | vm_map_entry_t next; | |
3474 | ||
3475 | next = entry->vme_next; | |
3476 | while(entry->is_sub_map) { | |
3477 | vm_offset_t sub_start; | |
3478 | vm_offset_t sub_end; | |
3479 | vm_offset_t local_end; | |
3480 | ||
3481 | if (entry->in_transition) { | |
3482 | /* | |
3483 | * Say that we are waiting, and wait for entry. | |
3484 | */ | |
3485 | entry->needs_wakeup = TRUE; | |
3486 | vm_map_entry_wait(dst_map, THREAD_UNINT); | |
3487 | ||
3488 | goto start_pass_1; | |
3489 | } | |
3490 | ||
3491 | encountered_sub_map = TRUE; | |
3492 | sub_start = entry->offset; | |
3493 | ||
3494 | if(entry->vme_end < dst_end) | |
3495 | sub_end = entry->vme_end; | |
3496 | else | |
3497 | sub_end = dst_end; | |
3498 | sub_end -= entry->vme_start; | |
3499 | sub_end += entry->offset; | |
3500 | local_end = entry->vme_end; | |
3501 | vm_map_unlock(dst_map); | |
3502 | ||
3503 | result = vm_map_overwrite_submap_recurse( | |
3504 | entry->object.sub_map, | |
3505 | sub_start, | |
3506 | sub_end - sub_start); | |
3507 | ||
3508 | if(result != KERN_SUCCESS) | |
3509 | return result; | |
3510 | if (dst_end <= entry->vme_end) | |
3511 | return KERN_SUCCESS; | |
3512 | vm_map_lock(dst_map); | |
3513 | if(!vm_map_lookup_entry(dst_map, local_end, | |
3514 | &tmp_entry)) { | |
3515 | vm_map_unlock(dst_map); | |
3516 | return(KERN_INVALID_ADDRESS); | |
3517 | } | |
3518 | entry = tmp_entry; | |
3519 | next = entry->vme_next; | |
3520 | } | |
3521 | ||
3522 | if ( ! (entry->protection & VM_PROT_WRITE)) { | |
3523 | vm_map_unlock(dst_map); | |
3524 | return(KERN_PROTECTION_FAILURE); | |
3525 | } | |
3526 | ||
3527 | /* | |
3528 | * If the entry is in transition, we must wait | |
3529 | * for it to exit that state. Anything could happen | |
3530 | * when we unlock the map, so start over. | |
3531 | */ | |
3532 | if (entry->in_transition) { | |
3533 | ||
3534 | /* | |
3535 | * Say that we are waiting, and wait for entry. | |
3536 | */ | |
3537 | entry->needs_wakeup = TRUE; | |
3538 | vm_map_entry_wait(dst_map, THREAD_UNINT); | |
3539 | ||
3540 | goto start_pass_1; | |
3541 | } | |
3542 | ||
3543 | /* | |
3544 | * our range is contained completely within this map entry | |
3545 | */ | |
3546 | if (dst_end <= entry->vme_end) { | |
3547 | vm_map_unlock(dst_map); | |
3548 | return KERN_SUCCESS; | |
3549 | } | |
3550 | /* | |
3551 | * check that range specified is contiguous region | |
3552 | */ | |
3553 | if ((next == vm_map_to_entry(dst_map)) || | |
3554 | (next->vme_start != entry->vme_end)) { | |
3555 | vm_map_unlock(dst_map); | |
3556 | return(KERN_INVALID_ADDRESS); | |
3557 | } | |
3558 | ||
3559 | /* | |
3560 | * Check for permanent objects in the destination. | |
3561 | */ | |
3562 | if ((entry->object.vm_object != VM_OBJECT_NULL) && | |
3563 | ((!entry->object.vm_object->internal) || | |
3564 | (entry->object.vm_object->true_share))) { | |
3565 | if(encountered_sub_map) { | |
3566 | vm_map_unlock(dst_map); | |
3567 | return(KERN_FAILURE); | |
3568 | } | |
3569 | } | |
3570 | ||
3571 | ||
3572 | entry = next; | |
3573 | }/* for */ | |
3574 | vm_map_unlock(dst_map); | |
3575 | return(KERN_SUCCESS); | |
3576 | } | |
3577 | ||
3578 | /* | |
3579 | * Routine: vm_map_copy_overwrite | |
3580 | * | |
3581 | * Description: | |
3582 | * Copy the memory described by the map copy | |
3583 | * object (copy; returned by vm_map_copyin) onto | |
3584 | * the specified destination region (dst_map, dst_addr). | |
3585 | * The destination must be writeable. | |
3586 | * | |
3587 | * Unlike vm_map_copyout, this routine actually | |
3588 | * writes over previously-mapped memory. If the | |
3589 | * previous mapping was to a permanent (user-supplied) | |
3590 | * memory object, it is preserved. | |
3591 | * | |
3592 | * The attributes (protection and inheritance) of the | |
3593 | * destination region are preserved. | |
3594 | * | |
3595 | * If successful, consumes the copy object. | |
3596 | * Otherwise, the caller is responsible for it. | |
3597 | * | |
3598 | * Implementation notes: | |
3599 | * To overwrite aligned temporary virtual memory, it is | |
3600 | * sufficient to remove the previous mapping and insert | |
3601 | * the new copy. This replacement is done either on | |
3602 | * the whole region (if no permanent virtual memory | |
3603 | * objects are embedded in the destination region) or | |
3604 | * in individual map entries. | |
3605 | * | |
3606 | * To overwrite permanent virtual memory , it is necessary | |
3607 | * to copy each page, as the external memory management | |
3608 | * interface currently does not provide any optimizations. | |
3609 | * | |
3610 | * Unaligned memory also has to be copied. It is possible | |
3611 | * to use 'vm_trickery' to copy the aligned data. This is | |
3612 | * not done but not hard to implement. | |
3613 | * | |
3614 | * Once a page of permanent memory has been overwritten, | |
3615 | * it is impossible to interrupt this function; otherwise, | |
3616 | * the call would be neither atomic nor location-independent. | |
3617 | * The kernel-state portion of a user thread must be | |
3618 | * interruptible. | |
3619 | * | |
3620 | * It may be expensive to forward all requests that might | |
3621 | * overwrite permanent memory (vm_write, vm_copy) to | |
3622 | * uninterruptible kernel threads. This routine may be | |
3623 | * called by interruptible threads; however, success is | |
3624 | * not guaranteed -- if the request cannot be performed | |
3625 | * atomically and interruptibly, an error indication is | |
3626 | * returned. | |
3627 | */ | |
3628 | ||
3629 | kern_return_t | |
3630 | vm_map_copy_overwrite_nested( | |
3631 | vm_map_t dst_map, | |
3632 | vm_offset_t dst_addr, | |
3633 | vm_map_copy_t copy, | |
3634 | boolean_t interruptible, | |
3635 | pmap_t pmap) | |
3636 | { | |
3637 | vm_offset_t dst_end; | |
3638 | vm_map_entry_t tmp_entry; | |
3639 | vm_map_entry_t entry; | |
3640 | kern_return_t kr; | |
3641 | boolean_t aligned = TRUE; | |
3642 | boolean_t contains_permanent_objects = FALSE; | |
3643 | boolean_t encountered_sub_map = FALSE; | |
3644 | vm_offset_t base_addr; | |
3645 | vm_size_t copy_size; | |
3646 | vm_size_t total_size; | |
3647 | ||
3648 | ||
3649 | /* | |
3650 | * Check for null copy object. | |
3651 | */ | |
3652 | ||
3653 | if (copy == VM_MAP_COPY_NULL) | |
3654 | return(KERN_SUCCESS); | |
3655 | ||
3656 | /* | |
3657 | * Check for special kernel buffer allocated | |
3658 | * by new_ipc_kmsg_copyin. | |
3659 | */ | |
3660 | ||
3661 | if (copy->type == VM_MAP_COPY_KERNEL_BUFFER) { | |
3662 | return(vm_map_copyout_kernel_buffer( | |
3663 | dst_map, &dst_addr, | |
3664 | copy, TRUE)); | |
3665 | } | |
3666 | ||
3667 | /* | |
3668 | * Only works for entry lists at the moment. Will | |
3669 | * support page lists later. | |
3670 | */ | |
3671 | ||
3672 | assert(copy->type == VM_MAP_COPY_ENTRY_LIST); | |
3673 | ||
3674 | if (copy->size == 0) { | |
3675 | vm_map_copy_discard(copy); | |
3676 | return(KERN_SUCCESS); | |
3677 | } | |
3678 | ||
3679 | /* | |
3680 | * Verify that the destination is all writeable | |
3681 | * initially. We have to trunc the destination | |
3682 | * address and round the copy size or we'll end up | |
3683 | * splitting entries in strange ways. | |
3684 | */ | |
3685 | ||
3686 | if (!page_aligned(copy->size) || | |
3687 | !page_aligned (copy->offset) || | |
3688 | !page_aligned (dst_addr)) | |
3689 | { | |
3690 | aligned = FALSE; | |
3691 | dst_end = round_page_32(dst_addr + copy->size); | |
3692 | } else { | |
3693 | dst_end = dst_addr + copy->size; | |
3694 | } | |
3695 | ||
3696 | vm_map_lock(dst_map); | |
3697 | ||
3698 | start_pass_1: | |
3699 | if (!vm_map_lookup_entry(dst_map, dst_addr, &tmp_entry)) { | |
3700 | vm_map_unlock(dst_map); | |
3701 | return(KERN_INVALID_ADDRESS); | |
3702 | } | |
3703 | vm_map_clip_start(dst_map, tmp_entry, trunc_page_32(dst_addr)); | |
3704 | for (entry = tmp_entry;;) { | |
3705 | vm_map_entry_t next = entry->vme_next; | |
3706 | ||
3707 | while(entry->is_sub_map) { | |
3708 | vm_offset_t sub_start; | |
3709 | vm_offset_t sub_end; | |
3710 | vm_offset_t local_end; | |
3711 | ||
3712 | if (entry->in_transition) { | |
3713 | ||
3714 | /* | |
3715 | * Say that we are waiting, and wait for entry. | |
3716 | */ | |
3717 | entry->needs_wakeup = TRUE; | |
3718 | vm_map_entry_wait(dst_map, THREAD_UNINT); | |
3719 | ||
3720 | goto start_pass_1; | |
3721 | } | |
3722 | ||
3723 | local_end = entry->vme_end; | |
3724 | if (!(entry->needs_copy)) { | |
3725 | /* if needs_copy we are a COW submap */ | |
3726 | /* in such a case we just replace so */ | |
3727 | /* there is no need for the follow- */ | |
3728 | /* ing check. */ | |
3729 | encountered_sub_map = TRUE; | |
3730 | sub_start = entry->offset; | |
3731 | ||
3732 | if(entry->vme_end < dst_end) | |
3733 | sub_end = entry->vme_end; | |
3734 | else | |
3735 | sub_end = dst_end; | |
3736 | sub_end -= entry->vme_start; | |
3737 | sub_end += entry->offset; | |
3738 | vm_map_unlock(dst_map); | |
3739 | ||
3740 | kr = vm_map_overwrite_submap_recurse( | |
3741 | entry->object.sub_map, | |
3742 | sub_start, | |
3743 | sub_end - sub_start); | |
3744 | if(kr != KERN_SUCCESS) | |
3745 | return kr; | |
3746 | vm_map_lock(dst_map); | |
3747 | } | |
3748 | ||
3749 | if (dst_end <= entry->vme_end) | |
3750 | goto start_overwrite; | |
3751 | if(!vm_map_lookup_entry(dst_map, local_end, | |
3752 | &entry)) { | |
3753 | vm_map_unlock(dst_map); | |
3754 | return(KERN_INVALID_ADDRESS); | |
3755 | } | |
3756 | next = entry->vme_next; | |
3757 | } | |
3758 | ||
3759 | if ( ! (entry->protection & VM_PROT_WRITE)) { | |
3760 | vm_map_unlock(dst_map); | |
3761 | return(KERN_PROTECTION_FAILURE); | |
3762 | } | |
3763 | ||
3764 | /* | |
3765 | * If the entry is in transition, we must wait | |
3766 | * for it to exit that state. Anything could happen | |
3767 | * when we unlock the map, so start over. | |
3768 | */ | |
3769 | if (entry->in_transition) { | |
3770 | ||
3771 | /* | |
3772 | * Say that we are waiting, and wait for entry. | |
3773 | */ | |
3774 | entry->needs_wakeup = TRUE; | |
3775 | vm_map_entry_wait(dst_map, THREAD_UNINT); | |
3776 | ||
3777 | goto start_pass_1; | |
3778 | } | |
3779 | ||
3780 | /* | |
3781 | * our range is contained completely within this map entry | |
3782 | */ | |
3783 | if (dst_end <= entry->vme_end) | |
3784 | break; | |
3785 | /* | |
3786 | * check that range specified is contiguous region | |
3787 | */ | |
3788 | if ((next == vm_map_to_entry(dst_map)) || | |
3789 | (next->vme_start != entry->vme_end)) { | |
3790 | vm_map_unlock(dst_map); | |
3791 | return(KERN_INVALID_ADDRESS); | |
3792 | } | |
3793 | ||
3794 | ||
3795 | /* | |
3796 | * Check for permanent objects in the destination. | |
3797 | */ | |
3798 | if ((entry->object.vm_object != VM_OBJECT_NULL) && | |
3799 | ((!entry->object.vm_object->internal) || | |
3800 | (entry->object.vm_object->true_share))) { | |
3801 | contains_permanent_objects = TRUE; | |
3802 | } | |
3803 | ||
3804 | entry = next; | |
3805 | }/* for */ | |
3806 | ||
3807 | start_overwrite: | |
3808 | /* | |
3809 | * If there are permanent objects in the destination, then | |
3810 | * the copy cannot be interrupted. | |
3811 | */ | |
3812 | ||
3813 | if (interruptible && contains_permanent_objects) { | |
3814 | vm_map_unlock(dst_map); | |
3815 | return(KERN_FAILURE); /* XXX */ | |
3816 | } | |
3817 | ||
3818 | /* | |
3819 | * | |
3820 | * Make a second pass, overwriting the data | |
3821 | * At the beginning of each loop iteration, | |
3822 | * the next entry to be overwritten is "tmp_entry" | |
3823 | * (initially, the value returned from the lookup above), | |
3824 | * and the starting address expected in that entry | |
3825 | * is "start". | |
3826 | */ | |
3827 | ||
3828 | total_size = copy->size; | |
3829 | if(encountered_sub_map) { | |
3830 | copy_size = 0; | |
3831 | /* re-calculate tmp_entry since we've had the map */ | |
3832 | /* unlocked */ | |
3833 | if (!vm_map_lookup_entry( dst_map, dst_addr, &tmp_entry)) { | |
3834 | vm_map_unlock(dst_map); | |
3835 | return(KERN_INVALID_ADDRESS); | |
3836 | } | |
3837 | } else { | |
3838 | copy_size = copy->size; | |
3839 | } | |
3840 | ||
3841 | base_addr = dst_addr; | |
3842 | while(TRUE) { | |
3843 | /* deconstruct the copy object and do in parts */ | |
3844 | /* only in sub_map, interruptable case */ | |
3845 | vm_map_entry_t copy_entry; | |
3846 | vm_map_entry_t previous_prev; | |
3847 | vm_map_entry_t next_copy; | |
3848 | int nentries; | |
3849 | int remaining_entries; | |
3850 | int new_offset; | |
3851 | ||
3852 | for (entry = tmp_entry; copy_size == 0;) { | |
3853 | vm_map_entry_t next; | |
3854 | ||
3855 | next = entry->vme_next; | |
3856 | ||
3857 | /* tmp_entry and base address are moved along */ | |
3858 | /* each time we encounter a sub-map. Otherwise */ | |
3859 | /* entry can outpase tmp_entry, and the copy_size */ | |
3860 | /* may reflect the distance between them */ | |
3861 | /* if the current entry is found to be in transition */ | |
3862 | /* we will start over at the beginning or the last */ | |
3863 | /* encounter of a submap as dictated by base_addr */ | |
3864 | /* we will zero copy_size accordingly. */ | |
3865 | if (entry->in_transition) { | |
3866 | /* | |
3867 | * Say that we are waiting, and wait for entry. | |
3868 | */ | |
3869 | entry->needs_wakeup = TRUE; | |
3870 | vm_map_entry_wait(dst_map, THREAD_UNINT); | |
3871 | ||
3872 | if(!vm_map_lookup_entry(dst_map, base_addr, | |
3873 | &tmp_entry)) { | |
3874 | vm_map_unlock(dst_map); | |
3875 | return(KERN_INVALID_ADDRESS); | |
3876 | } | |
3877 | copy_size = 0; | |
3878 | entry = tmp_entry; | |
3879 | continue; | |
3880 | } | |
3881 | if(entry->is_sub_map) { | |
3882 | vm_offset_t sub_start; | |
3883 | vm_offset_t sub_end; | |
3884 | vm_offset_t local_end; | |
3885 | ||
3886 | if (entry->needs_copy) { | |
3887 | /* if this is a COW submap */ | |
3888 | /* just back the range with a */ | |
3889 | /* anonymous entry */ | |
3890 | if(entry->vme_end < dst_end) | |
3891 | sub_end = entry->vme_end; | |
3892 | else | |
3893 | sub_end = dst_end; | |
3894 | if(entry->vme_start < base_addr) | |
3895 | sub_start = base_addr; | |
3896 | else | |
3897 | sub_start = entry->vme_start; | |
3898 | vm_map_clip_end( | |
3899 | dst_map, entry, sub_end); | |
3900 | vm_map_clip_start( | |
3901 | dst_map, entry, sub_start); | |
3902 | entry->is_sub_map = FALSE; | |
3903 | vm_map_deallocate( | |
3904 | entry->object.sub_map); | |
3905 | entry->object.sub_map = NULL; | |
3906 | entry->is_shared = FALSE; | |
3907 | entry->needs_copy = FALSE; | |
3908 | entry->offset = 0; | |
3909 | entry->protection = VM_PROT_ALL; | |
3910 | entry->max_protection = VM_PROT_ALL; | |
3911 | entry->wired_count = 0; | |
3912 | entry->user_wired_count = 0; | |
3913 | if(entry->inheritance | |
3914 | == VM_INHERIT_SHARE) | |
3915 | entry->inheritance = VM_INHERIT_COPY; | |
3916 | continue; | |
3917 | } | |
3918 | /* first take care of any non-sub_map */ | |
3919 | /* entries to send */ | |
3920 | if(base_addr < entry->vme_start) { | |
3921 | /* stuff to send */ | |
3922 | copy_size = | |
3923 | entry->vme_start - base_addr; | |
3924 | break; | |
3925 | } | |
3926 | sub_start = entry->offset; | |
3927 | ||
3928 | if(entry->vme_end < dst_end) | |
3929 | sub_end = entry->vme_end; | |
3930 | else | |
3931 | sub_end = dst_end; | |
3932 | sub_end -= entry->vme_start; | |
3933 | sub_end += entry->offset; | |
3934 | local_end = entry->vme_end; | |
3935 | vm_map_unlock(dst_map); | |
3936 | copy_size = sub_end - sub_start; | |
3937 | ||
3938 | /* adjust the copy object */ | |
3939 | if (total_size > copy_size) { | |
3940 | vm_size_t local_size = 0; | |
3941 | vm_size_t entry_size; | |
3942 | ||
3943 | nentries = 1; | |
3944 | new_offset = copy->offset; | |
3945 | copy_entry = vm_map_copy_first_entry(copy); | |
3946 | while(copy_entry != | |
3947 | vm_map_copy_to_entry(copy)){ | |
3948 | entry_size = copy_entry->vme_end - | |
3949 | copy_entry->vme_start; | |
3950 | if((local_size < copy_size) && | |
3951 | ((local_size + entry_size) | |
3952 | >= copy_size)) { | |
3953 | vm_map_copy_clip_end(copy, | |
3954 | copy_entry, | |
3955 | copy_entry->vme_start + | |
3956 | (copy_size - local_size)); | |
3957 | entry_size = copy_entry->vme_end - | |
3958 | copy_entry->vme_start; | |
3959 | local_size += entry_size; | |
3960 | new_offset += entry_size; | |
3961 | } | |
3962 | if(local_size >= copy_size) { | |
3963 | next_copy = copy_entry->vme_next; | |
3964 | copy_entry->vme_next = | |
3965 | vm_map_copy_to_entry(copy); | |
3966 | previous_prev = | |
3967 | copy->cpy_hdr.links.prev; | |
3968 | copy->cpy_hdr.links.prev = copy_entry; | |
3969 | copy->size = copy_size; | |
3970 | remaining_entries = | |
3971 | copy->cpy_hdr.nentries; | |
3972 | remaining_entries -= nentries; | |
3973 | copy->cpy_hdr.nentries = nentries; | |
3974 | break; | |
3975 | } else { | |
3976 | local_size += entry_size; | |
3977 | new_offset += entry_size; | |
3978 | nentries++; | |
3979 | } | |
3980 | copy_entry = copy_entry->vme_next; | |
3981 | } | |
3982 | } | |
3983 | ||
3984 | if((entry->use_pmap) && (pmap == NULL)) { | |
3985 | kr = vm_map_copy_overwrite_nested( | |
3986 | entry->object.sub_map, | |
3987 | sub_start, | |
3988 | copy, | |
3989 | interruptible, | |
3990 | entry->object.sub_map->pmap); | |
3991 | } else if (pmap != NULL) { | |
3992 | kr = vm_map_copy_overwrite_nested( | |
3993 | entry->object.sub_map, | |
3994 | sub_start, | |
3995 | copy, | |
3996 | interruptible, pmap); | |
3997 | } else { | |
3998 | kr = vm_map_copy_overwrite_nested( | |
3999 | entry->object.sub_map, | |
4000 | sub_start, | |
4001 | copy, | |
4002 | interruptible, | |
4003 | dst_map->pmap); | |
4004 | } | |
4005 | if(kr != KERN_SUCCESS) { | |
4006 | if(next_copy != NULL) { | |
4007 | copy->cpy_hdr.nentries += | |
4008 | remaining_entries; | |
4009 | copy->cpy_hdr.links.prev->vme_next = | |
4010 | next_copy; | |
4011 | copy->cpy_hdr.links.prev | |
4012 | = previous_prev; | |
4013 | copy->size = total_size; | |
4014 | } | |
4015 | return kr; | |
4016 | } | |
4017 | if (dst_end <= local_end) { | |
4018 | return(KERN_SUCCESS); | |
4019 | } | |
4020 | /* otherwise copy no longer exists, it was */ | |
4021 | /* destroyed after successful copy_overwrite */ | |
4022 | copy = (vm_map_copy_t) | |
4023 | zalloc(vm_map_copy_zone); | |
4024 | vm_map_copy_first_entry(copy) = | |
4025 | vm_map_copy_last_entry(copy) = | |
4026 | vm_map_copy_to_entry(copy); | |
4027 | copy->type = VM_MAP_COPY_ENTRY_LIST; | |
4028 | copy->offset = new_offset; | |
4029 | ||
4030 | total_size -= copy_size; | |
4031 | copy_size = 0; | |
4032 | /* put back remainder of copy in container */ | |
4033 | if(next_copy != NULL) { | |
4034 | copy->cpy_hdr.nentries = remaining_entries; | |
4035 | copy->cpy_hdr.links.next = next_copy; | |
4036 | copy->cpy_hdr.links.prev = previous_prev; | |
4037 | copy->size = total_size; | |
4038 | next_copy->vme_prev = | |
4039 | vm_map_copy_to_entry(copy); | |
4040 | next_copy = NULL; | |
4041 | } | |
4042 | base_addr = local_end; | |
4043 | vm_map_lock(dst_map); | |
4044 | if(!vm_map_lookup_entry(dst_map, | |
4045 | local_end, &tmp_entry)) { | |
4046 | vm_map_unlock(dst_map); | |
4047 | return(KERN_INVALID_ADDRESS); | |
4048 | } | |
4049 | entry = tmp_entry; | |
4050 | continue; | |
4051 | } | |
4052 | if (dst_end <= entry->vme_end) { | |
4053 | copy_size = dst_end - base_addr; | |
4054 | break; | |
4055 | } | |
4056 | ||
4057 | if ((next == vm_map_to_entry(dst_map)) || | |
4058 | (next->vme_start != entry->vme_end)) { | |
4059 | vm_map_unlock(dst_map); | |
4060 | return(KERN_INVALID_ADDRESS); | |
4061 | } | |
4062 | ||
4063 | entry = next; | |
4064 | }/* for */ | |
4065 | ||
4066 | next_copy = NULL; | |
4067 | nentries = 1; | |
4068 | ||
4069 | /* adjust the copy object */ | |
4070 | if (total_size > copy_size) { | |
4071 | vm_size_t local_size = 0; | |
4072 | vm_size_t entry_size; | |
4073 | ||
4074 | new_offset = copy->offset; | |
4075 | copy_entry = vm_map_copy_first_entry(copy); | |
4076 | while(copy_entry != vm_map_copy_to_entry(copy)) { | |
4077 | entry_size = copy_entry->vme_end - | |
4078 | copy_entry->vme_start; | |
4079 | if((local_size < copy_size) && | |
4080 | ((local_size + entry_size) | |
4081 | >= copy_size)) { | |
4082 | vm_map_copy_clip_end(copy, copy_entry, | |
4083 | copy_entry->vme_start + | |
4084 | (copy_size - local_size)); | |
4085 | entry_size = copy_entry->vme_end - | |
4086 | copy_entry->vme_start; | |
4087 | local_size += entry_size; | |
4088 | new_offset += entry_size; | |
4089 | } | |
4090 | if(local_size >= copy_size) { | |
4091 | next_copy = copy_entry->vme_next; | |
4092 | copy_entry->vme_next = | |
4093 | vm_map_copy_to_entry(copy); | |
4094 | previous_prev = | |
4095 | copy->cpy_hdr.links.prev; | |
4096 | copy->cpy_hdr.links.prev = copy_entry; | |
4097 | copy->size = copy_size; | |
4098 | remaining_entries = | |
4099 | copy->cpy_hdr.nentries; | |
4100 | remaining_entries -= nentries; | |
4101 | copy->cpy_hdr.nentries = nentries; | |
4102 | break; | |
4103 | } else { | |
4104 | local_size += entry_size; | |
4105 | new_offset += entry_size; | |
4106 | nentries++; | |
4107 | } | |
4108 | copy_entry = copy_entry->vme_next; | |
4109 | } | |
4110 | } | |
4111 | ||
4112 | if (aligned) { | |
4113 | pmap_t local_pmap; | |
4114 | ||
4115 | if(pmap) | |
4116 | local_pmap = pmap; | |
4117 | else | |
4118 | local_pmap = dst_map->pmap; | |
4119 | ||
4120 | if ((kr = vm_map_copy_overwrite_aligned( | |
4121 | dst_map, tmp_entry, copy, | |
4122 | base_addr, local_pmap)) != KERN_SUCCESS) { | |
4123 | if(next_copy != NULL) { | |
4124 | copy->cpy_hdr.nentries += | |
4125 | remaining_entries; | |
4126 | copy->cpy_hdr.links.prev->vme_next = | |
4127 | next_copy; | |
4128 | copy->cpy_hdr.links.prev = | |
4129 | previous_prev; | |
4130 | copy->size += copy_size; | |
4131 | } | |
4132 | return kr; | |
4133 | } | |
4134 | vm_map_unlock(dst_map); | |
4135 | } else { | |
4136 | /* | |
4137 | * Performance gain: | |
4138 | * | |
4139 | * if the copy and dst address are misaligned but the same | |
4140 | * offset within the page we can copy_not_aligned the | |
4141 | * misaligned parts and copy aligned the rest. If they are | |
4142 | * aligned but len is unaligned we simply need to copy | |
4143 | * the end bit unaligned. We'll need to split the misaligned | |
4144 | * bits of the region in this case ! | |
4145 | */ | |
4146 | /* ALWAYS UNLOCKS THE dst_map MAP */ | |
4147 | if ((kr = vm_map_copy_overwrite_unaligned( dst_map, | |
4148 | tmp_entry, copy, base_addr)) != KERN_SUCCESS) { | |
4149 | if(next_copy != NULL) { | |
4150 | copy->cpy_hdr.nentries += | |
4151 | remaining_entries; | |
4152 | copy->cpy_hdr.links.prev->vme_next = | |
4153 | next_copy; | |
4154 | copy->cpy_hdr.links.prev = | |
4155 | previous_prev; | |
4156 | copy->size += copy_size; | |
4157 | } | |
4158 | return kr; | |
4159 | } | |
4160 | } | |
4161 | total_size -= copy_size; | |
4162 | if(total_size == 0) | |
4163 | break; | |
4164 | base_addr += copy_size; | |
4165 | copy_size = 0; | |
4166 | copy->offset = new_offset; | |
4167 | if(next_copy != NULL) { | |
4168 | copy->cpy_hdr.nentries = remaining_entries; | |
4169 | copy->cpy_hdr.links.next = next_copy; | |
4170 | copy->cpy_hdr.links.prev = previous_prev; | |
4171 | next_copy->vme_prev = vm_map_copy_to_entry(copy); | |
4172 | copy->size = total_size; | |
4173 | } | |
4174 | vm_map_lock(dst_map); | |
4175 | while(TRUE) { | |
4176 | if (!vm_map_lookup_entry(dst_map, | |
4177 | base_addr, &tmp_entry)) { | |
4178 | vm_map_unlock(dst_map); | |
4179 | return(KERN_INVALID_ADDRESS); | |
4180 | } | |
4181 | if (tmp_entry->in_transition) { | |
4182 | entry->needs_wakeup = TRUE; | |
4183 | vm_map_entry_wait(dst_map, THREAD_UNINT); | |
4184 | } else { | |
4185 | break; | |
4186 | } | |
4187 | } | |
4188 | vm_map_clip_start(dst_map, tmp_entry, trunc_page_32(base_addr)); | |
4189 | ||
4190 | entry = tmp_entry; | |
4191 | } /* while */ | |
4192 | ||
4193 | /* | |
4194 | * Throw away the vm_map_copy object | |
4195 | */ | |
4196 | vm_map_copy_discard(copy); | |
4197 | ||
4198 | return(KERN_SUCCESS); | |
4199 | }/* vm_map_copy_overwrite */ | |
4200 | ||
4201 | kern_return_t | |
4202 | vm_map_copy_overwrite( | |
4203 | vm_map_t dst_map, | |
4204 | vm_offset_t dst_addr, | |
4205 | vm_map_copy_t copy, | |
4206 | boolean_t interruptible) | |
4207 | { | |
4208 | return vm_map_copy_overwrite_nested( | |
4209 | dst_map, dst_addr, copy, interruptible, (pmap_t) NULL); | |
4210 | } | |
4211 | ||
4212 | ||
4213 | /* | |
4214 | * Routine: vm_map_copy_overwrite_unaligned | |
4215 | * | |
4216 | * Decription: | |
4217 | * Physically copy unaligned data | |
4218 | * | |
4219 | * Implementation: | |
4220 | * Unaligned parts of pages have to be physically copied. We use | |
4221 | * a modified form of vm_fault_copy (which understands none-aligned | |
4222 | * page offsets and sizes) to do the copy. We attempt to copy as | |
4223 | * much memory in one go as possibly, however vm_fault_copy copies | |
4224 | * within 1 memory object so we have to find the smaller of "amount left" | |
4225 | * "source object data size" and "target object data size". With | |
4226 | * unaligned data we don't need to split regions, therefore the source | |
4227 | * (copy) object should be one map entry, the target range may be split | |
4228 | * over multiple map entries however. In any event we are pessimistic | |
4229 | * about these assumptions. | |
4230 | * | |
4231 | * Assumptions: | |
4232 | * dst_map is locked on entry and is return locked on success, | |
4233 | * unlocked on error. | |
4234 | */ | |
4235 | ||
4236 | kern_return_t | |
4237 | vm_map_copy_overwrite_unaligned( | |
4238 | vm_map_t dst_map, | |
4239 | vm_map_entry_t entry, | |
4240 | vm_map_copy_t copy, | |
4241 | vm_offset_t start) | |
4242 | { | |
4243 | vm_map_entry_t copy_entry = vm_map_copy_first_entry(copy); | |
4244 | vm_map_version_t version; | |
4245 | vm_object_t dst_object; | |
4246 | vm_object_offset_t dst_offset; | |
4247 | vm_object_offset_t src_offset; | |
4248 | vm_object_offset_t entry_offset; | |
4249 | vm_offset_t entry_end; | |
4250 | vm_size_t src_size, | |
4251 | dst_size, | |
4252 | copy_size, | |
4253 | amount_left; | |
4254 | kern_return_t kr = KERN_SUCCESS; | |
4255 | ||
4256 | vm_map_lock_write_to_read(dst_map); | |
4257 | ||
4258 | src_offset = copy->offset - trunc_page_64(copy->offset); | |
4259 | amount_left = copy->size; | |
4260 | /* | |
4261 | * unaligned so we never clipped this entry, we need the offset into | |
4262 | * the vm_object not just the data. | |
4263 | */ | |
4264 | while (amount_left > 0) { | |
4265 | ||
4266 | if (entry == vm_map_to_entry(dst_map)) { | |
4267 | vm_map_unlock_read(dst_map); | |
4268 | return KERN_INVALID_ADDRESS; | |
4269 | } | |
4270 | ||
4271 | /* "start" must be within the current map entry */ | |
4272 | assert ((start>=entry->vme_start) && (start<entry->vme_end)); | |
4273 | ||
4274 | dst_offset = start - entry->vme_start; | |
4275 | ||
4276 | dst_size = entry->vme_end - start; | |
4277 | ||
4278 | src_size = copy_entry->vme_end - | |
4279 | (copy_entry->vme_start + src_offset); | |
4280 | ||
4281 | if (dst_size < src_size) { | |
4282 | /* | |
4283 | * we can only copy dst_size bytes before | |
4284 | * we have to get the next destination entry | |
4285 | */ | |
4286 | copy_size = dst_size; | |
4287 | } else { | |
4288 | /* | |
4289 | * we can only copy src_size bytes before | |
4290 | * we have to get the next source copy entry | |
4291 | */ | |
4292 | copy_size = src_size; | |
4293 | } | |
4294 | ||
4295 | if (copy_size > amount_left) { | |
4296 | copy_size = amount_left; | |
4297 | } | |
4298 | /* | |
4299 | * Entry needs copy, create a shadow shadow object for | |
4300 | * Copy on write region. | |
4301 | */ | |
4302 | if (entry->needs_copy && | |
4303 | ((entry->protection & VM_PROT_WRITE) != 0)) | |
4304 | { | |
4305 | if (vm_map_lock_read_to_write(dst_map)) { | |
4306 | vm_map_lock_read(dst_map); | |
4307 | goto RetryLookup; | |
4308 | } | |
4309 | vm_object_shadow(&entry->object.vm_object, | |
4310 | &entry->offset, | |
4311 | (vm_size_t)(entry->vme_end | |
4312 | - entry->vme_start)); | |
4313 | entry->needs_copy = FALSE; | |
4314 | vm_map_lock_write_to_read(dst_map); | |
4315 | } | |
4316 | dst_object = entry->object.vm_object; | |
4317 | /* | |
4318 | * unlike with the virtual (aligned) copy we're going | |
4319 | * to fault on it therefore we need a target object. | |
4320 | */ | |
4321 | if (dst_object == VM_OBJECT_NULL) { | |
4322 | if (vm_map_lock_read_to_write(dst_map)) { | |
4323 | vm_map_lock_read(dst_map); | |
4324 | goto RetryLookup; | |
4325 | } | |
4326 | dst_object = vm_object_allocate((vm_size_t) | |
4327 | entry->vme_end - entry->vme_start); | |
4328 | entry->object.vm_object = dst_object; | |
4329 | entry->offset = 0; | |
4330 | vm_map_lock_write_to_read(dst_map); | |
4331 | } | |
4332 | /* | |
4333 | * Take an object reference and unlock map. The "entry" may | |
4334 | * disappear or change when the map is unlocked. | |
4335 | */ | |
4336 | vm_object_reference(dst_object); | |
4337 | version.main_timestamp = dst_map->timestamp; | |
4338 | entry_offset = entry->offset; | |
4339 | entry_end = entry->vme_end; | |
4340 | vm_map_unlock_read(dst_map); | |
4341 | /* | |
4342 | * Copy as much as possible in one pass | |
4343 | */ | |
4344 | kr = vm_fault_copy( | |
4345 | copy_entry->object.vm_object, | |
4346 | copy_entry->offset + src_offset, | |
4347 | ©_size, | |
4348 | dst_object, | |
4349 | entry_offset + dst_offset, | |
4350 | dst_map, | |
4351 | &version, | |
4352 | THREAD_UNINT ); | |
4353 | ||
4354 | start += copy_size; | |
4355 | src_offset += copy_size; | |
4356 | amount_left -= copy_size; | |
4357 | /* | |
4358 | * Release the object reference | |
4359 | */ | |
4360 | vm_object_deallocate(dst_object); | |
4361 | /* | |
4362 | * If a hard error occurred, return it now | |
4363 | */ | |
4364 | if (kr != KERN_SUCCESS) | |
4365 | return kr; | |
4366 | ||
4367 | if ((copy_entry->vme_start + src_offset) == copy_entry->vme_end | |
4368 | || amount_left == 0) | |
4369 | { | |
4370 | /* | |
4371 | * all done with this copy entry, dispose. | |
4372 | */ | |
4373 | vm_map_copy_entry_unlink(copy, copy_entry); | |
4374 | vm_object_deallocate(copy_entry->object.vm_object); | |
4375 | vm_map_copy_entry_dispose(copy, copy_entry); | |
4376 | ||
4377 | if ((copy_entry = vm_map_copy_first_entry(copy)) | |
4378 | == vm_map_copy_to_entry(copy) && amount_left) { | |
4379 | /* | |
4380 | * not finished copying but run out of source | |
4381 | */ | |
4382 | return KERN_INVALID_ADDRESS; | |
4383 | } | |
4384 | src_offset = 0; | |
4385 | } | |
4386 | ||
4387 | if (amount_left == 0) | |
4388 | return KERN_SUCCESS; | |
4389 | ||
4390 | vm_map_lock_read(dst_map); | |
4391 | if (version.main_timestamp == dst_map->timestamp) { | |
4392 | if (start == entry_end) { | |
4393 | /* | |
4394 | * destination region is split. Use the version | |
4395 | * information to avoid a lookup in the normal | |
4396 | * case. | |
4397 | */ | |
4398 | entry = entry->vme_next; | |
4399 | /* | |
4400 | * should be contiguous. Fail if we encounter | |
4401 | * a hole in the destination. | |
4402 | */ | |
4403 | if (start != entry->vme_start) { | |
4404 | vm_map_unlock_read(dst_map); | |
4405 | return KERN_INVALID_ADDRESS ; | |
4406 | } | |
4407 | } | |
4408 | } else { | |
4409 | /* | |
4410 | * Map version check failed. | |
4411 | * we must lookup the entry because somebody | |
4412 | * might have changed the map behind our backs. | |
4413 | */ | |
4414 | RetryLookup: | |
4415 | if (!vm_map_lookup_entry(dst_map, start, &entry)) | |
4416 | { | |
4417 | vm_map_unlock_read(dst_map); | |
4418 | return KERN_INVALID_ADDRESS ; | |
4419 | } | |
4420 | } | |
4421 | }/* while */ | |
4422 | ||
4423 | /* NOTREACHED ?? */ | |
4424 | vm_map_unlock_read(dst_map); | |
4425 | ||
4426 | return KERN_SUCCESS; | |
4427 | }/* vm_map_copy_overwrite_unaligned */ | |
4428 | ||
4429 | /* | |
4430 | * Routine: vm_map_copy_overwrite_aligned | |
4431 | * | |
4432 | * Description: | |
4433 | * Does all the vm_trickery possible for whole pages. | |
4434 | * | |
4435 | * Implementation: | |
4436 | * | |
4437 | * If there are no permanent objects in the destination, | |
4438 | * and the source and destination map entry zones match, | |
4439 | * and the destination map entry is not shared, | |
4440 | * then the map entries can be deleted and replaced | |
4441 | * with those from the copy. The following code is the | |
4442 | * basic idea of what to do, but there are lots of annoying | |
4443 | * little details about getting protection and inheritance | |
4444 | * right. Should add protection, inheritance, and sharing checks | |
4445 | * to the above pass and make sure that no wiring is involved. | |
4446 | */ | |
4447 | ||
4448 | kern_return_t | |
4449 | vm_map_copy_overwrite_aligned( | |
4450 | vm_map_t dst_map, | |
4451 | vm_map_entry_t tmp_entry, | |
4452 | vm_map_copy_t copy, | |
4453 | vm_offset_t start, | |
4454 | pmap_t pmap) | |
4455 | { | |
4456 | vm_object_t object; | |
4457 | vm_map_entry_t copy_entry; | |
4458 | vm_size_t copy_size; | |
4459 | vm_size_t size; | |
4460 | vm_map_entry_t entry; | |
4461 | ||
4462 | while ((copy_entry = vm_map_copy_first_entry(copy)) | |
4463 | != vm_map_copy_to_entry(copy)) | |
4464 | { | |
4465 | copy_size = (copy_entry->vme_end - copy_entry->vme_start); | |
4466 | ||
4467 | entry = tmp_entry; | |
4468 | if (entry == vm_map_to_entry(dst_map)) { | |
4469 | vm_map_unlock(dst_map); | |
4470 | return KERN_INVALID_ADDRESS; | |
4471 | } | |
4472 | size = (entry->vme_end - entry->vme_start); | |
4473 | /* | |
4474 | * Make sure that no holes popped up in the | |
4475 | * address map, and that the protection is | |
4476 | * still valid, in case the map was unlocked | |
4477 | * earlier. | |
4478 | */ | |
4479 | ||
4480 | if ((entry->vme_start != start) || ((entry->is_sub_map) | |
4481 | && !entry->needs_copy)) { | |
4482 | vm_map_unlock(dst_map); | |
4483 | return(KERN_INVALID_ADDRESS); | |
4484 | } | |
4485 | assert(entry != vm_map_to_entry(dst_map)); | |
4486 | ||
4487 | /* | |
4488 | * Check protection again | |
4489 | */ | |
4490 | ||
4491 | if ( ! (entry->protection & VM_PROT_WRITE)) { | |
4492 | vm_map_unlock(dst_map); | |
4493 | return(KERN_PROTECTION_FAILURE); | |
4494 | } | |
4495 | ||
4496 | /* | |
4497 | * Adjust to source size first | |
4498 | */ | |
4499 | ||
4500 | if (copy_size < size) { | |
4501 | vm_map_clip_end(dst_map, entry, entry->vme_start + copy_size); | |
4502 | size = copy_size; | |
4503 | } | |
4504 | ||
4505 | /* | |
4506 | * Adjust to destination size | |
4507 | */ | |
4508 | ||
4509 | if (size < copy_size) { | |
4510 | vm_map_copy_clip_end(copy, copy_entry, | |
4511 | copy_entry->vme_start + size); | |
4512 | copy_size = size; | |
4513 | } | |
4514 | ||
4515 | assert((entry->vme_end - entry->vme_start) == size); | |
4516 | assert((tmp_entry->vme_end - tmp_entry->vme_start) == size); | |
4517 | assert((copy_entry->vme_end - copy_entry->vme_start) == size); | |
4518 | ||
4519 | /* | |
4520 | * If the destination contains temporary unshared memory, | |
4521 | * we can perform the copy by throwing it away and | |
4522 | * installing the source data. | |
4523 | */ | |
4524 | ||
4525 | object = entry->object.vm_object; | |
4526 | if ((!entry->is_shared && | |
4527 | ((object == VM_OBJECT_NULL) || | |
4528 | (object->internal && !object->true_share))) || | |
4529 | entry->needs_copy) { | |
4530 | vm_object_t old_object = entry->object.vm_object; | |
4531 | vm_object_offset_t old_offset = entry->offset; | |
4532 | vm_object_offset_t offset; | |
4533 | ||
4534 | /* | |
4535 | * Ensure that the source and destination aren't | |
4536 | * identical | |
4537 | */ | |
4538 | if (old_object == copy_entry->object.vm_object && | |
4539 | old_offset == copy_entry->offset) { | |
4540 | vm_map_copy_entry_unlink(copy, copy_entry); | |
4541 | vm_map_copy_entry_dispose(copy, copy_entry); | |
4542 | ||
4543 | if (old_object != VM_OBJECT_NULL) | |
4544 | vm_object_deallocate(old_object); | |
4545 | ||
4546 | start = tmp_entry->vme_end; | |
4547 | tmp_entry = tmp_entry->vme_next; | |
4548 | continue; | |
4549 | } | |
4550 | ||
4551 | if (old_object != VM_OBJECT_NULL) { | |
4552 | if(entry->is_sub_map) { | |
4553 | if(entry->use_pmap) { | |
4554 | #ifndef i386 | |
4555 | pmap_unnest(dst_map->pmap, | |
4556 | entry->vme_start, | |
4557 | entry->vme_end | |
4558 | - entry->vme_start); | |
4559 | #endif | |
4560 | if(dst_map->mapped) { | |
4561 | /* clean up parent */ | |
4562 | /* map/maps */ | |
4563 | vm_map_submap_pmap_clean( | |
4564 | dst_map, entry->vme_start, | |
4565 | entry->vme_end, | |
4566 | entry->object.sub_map, | |
4567 | entry->offset); | |
4568 | } | |
4569 | } else { | |
4570 | vm_map_submap_pmap_clean( | |
4571 | dst_map, entry->vme_start, | |
4572 | entry->vme_end, | |
4573 | entry->object.sub_map, | |
4574 | entry->offset); | |
4575 | } | |
4576 | vm_map_deallocate( | |
4577 | entry->object.sub_map); | |
4578 | } else { | |
4579 | if(dst_map->mapped) { | |
4580 | vm_object_pmap_protect( | |
4581 | entry->object.vm_object, | |
4582 | entry->offset, | |
4583 | entry->vme_end | |
4584 | - entry->vme_start, | |
4585 | PMAP_NULL, | |
4586 | entry->vme_start, | |
4587 | VM_PROT_NONE); | |
4588 | } else { | |
4589 | pmap_remove(dst_map->pmap, | |
4590 | (addr64_t)(entry->vme_start), | |
4591 | (addr64_t)(entry->vme_end)); | |
4592 | } | |
4593 | vm_object_deallocate(old_object); | |
4594 | } | |
4595 | } | |
4596 | ||
4597 | entry->is_sub_map = FALSE; | |
4598 | entry->object = copy_entry->object; | |
4599 | object = entry->object.vm_object; | |
4600 | entry->needs_copy = copy_entry->needs_copy; | |
4601 | entry->wired_count = 0; | |
4602 | entry->user_wired_count = 0; | |
4603 | offset = entry->offset = copy_entry->offset; | |
4604 | ||
4605 | vm_map_copy_entry_unlink(copy, copy_entry); | |
4606 | vm_map_copy_entry_dispose(copy, copy_entry); | |
4607 | #if BAD_OPTIMIZATION | |
4608 | /* | |
4609 | * if we turn this optimization back on | |
4610 | * we need to revisit our use of pmap mappings | |
4611 | * large copies will cause us to run out and panic | |
4612 | * this optimization only saved on average 2 us per page if ALL | |
4613 | * the pages in the source were currently mapped | |
4614 | * and ALL the pages in the dest were touched, if there were fewer | |
4615 | * than 2/3 of the pages touched, this optimization actually cost more cycles | |
4616 | */ | |
4617 | ||
4618 | /* | |
4619 | * Try to aggressively enter physical mappings | |
4620 | * (but avoid uninstantiated objects) | |
4621 | */ | |
4622 | if (object != VM_OBJECT_NULL) { | |
4623 | vm_offset_t va = entry->vme_start; | |
4624 | ||
4625 | while (va < entry->vme_end) { | |
4626 | register vm_page_t m; | |
4627 | vm_prot_t prot; | |
4628 | ||
4629 | /* | |
4630 | * Look for the page in the top object | |
4631 | */ | |
4632 | prot = entry->protection; | |
4633 | vm_object_lock(object); | |
4634 | vm_object_paging_begin(object); | |
4635 | ||
4636 | if ((m = vm_page_lookup(object,offset)) != | |
4637 | VM_PAGE_NULL && !m->busy && | |
4638 | !m->fictitious && | |
4639 | (!m->unusual || (!m->error && | |
4640 | !m->restart && !m->absent && | |
4641 | (prot & m->page_lock) == 0))) { | |
4642 | ||
4643 | m->busy = TRUE; | |
4644 | vm_object_unlock(object); | |
4645 | ||
4646 | /* | |
4647 | * Honor COW obligations | |
4648 | */ | |
4649 | if (entry->needs_copy) | |
4650 | prot &= ~VM_PROT_WRITE; | |
4651 | /* It is our policy to require */ | |
4652 | /* explicit sync from anyone */ | |
4653 | /* writing code and then */ | |
4654 | /* a pc to execute it. */ | |
4655 | /* No isync here */ | |
4656 | ||
4657 | PMAP_ENTER(pmap, va, m, prot, | |
4658 | ((unsigned int) | |
4659 | (m->object->wimg_bits)) | |
4660 | & VM_WIMG_MASK, | |
4661 | FALSE); | |
4662 | ||
4663 | vm_object_lock(object); | |
4664 | vm_page_lock_queues(); | |
4665 | if (!m->active && !m->inactive) | |
4666 | vm_page_activate(m); | |
4667 | vm_page_unlock_queues(); | |
4668 | PAGE_WAKEUP_DONE(m); | |
4669 | } | |
4670 | vm_object_paging_end(object); | |
4671 | vm_object_unlock(object); | |
4672 | ||
4673 | offset += PAGE_SIZE_64; | |
4674 | va += PAGE_SIZE; | |
4675 | } /* end while (va < entry->vme_end) */ | |
4676 | } /* end if (object) */ | |
4677 | #endif | |
4678 | /* | |
4679 | * Set up for the next iteration. The map | |
4680 | * has not been unlocked, so the next | |
4681 | * address should be at the end of this | |
4682 | * entry, and the next map entry should be | |
4683 | * the one following it. | |
4684 | */ | |
4685 | ||
4686 | start = tmp_entry->vme_end; | |
4687 | tmp_entry = tmp_entry->vme_next; | |
4688 | } else { | |
4689 | vm_map_version_t version; | |
4690 | vm_object_t dst_object = entry->object.vm_object; | |
4691 | vm_object_offset_t dst_offset = entry->offset; | |
4692 | kern_return_t r; | |
4693 | ||
4694 | /* | |
4695 | * Take an object reference, and record | |
4696 | * the map version information so that the | |
4697 | * map can be safely unlocked. | |
4698 | */ | |
4699 | ||
4700 | vm_object_reference(dst_object); | |
4701 | ||
4702 | /* account for unlock bumping up timestamp */ | |
4703 | version.main_timestamp = dst_map->timestamp + 1; | |
4704 | ||
4705 | vm_map_unlock(dst_map); | |
4706 | ||
4707 | /* | |
4708 | * Copy as much as possible in one pass | |
4709 | */ | |
4710 | ||
4711 | copy_size = size; | |
4712 | r = vm_fault_copy( | |
4713 | copy_entry->object.vm_object, | |
4714 | copy_entry->offset, | |
4715 | ©_size, | |
4716 | dst_object, | |
4717 | dst_offset, | |
4718 | dst_map, | |
4719 | &version, | |
4720 | THREAD_UNINT ); | |
4721 | ||
4722 | /* | |
4723 | * Release the object reference | |
4724 | */ | |
4725 | ||
4726 | vm_object_deallocate(dst_object); | |
4727 | ||
4728 | /* | |
4729 | * If a hard error occurred, return it now | |
4730 | */ | |
4731 | ||
4732 | if (r != KERN_SUCCESS) | |
4733 | return(r); | |
4734 | ||
4735 | if (copy_size != 0) { | |
4736 | /* | |
4737 | * Dispose of the copied region | |
4738 | */ | |
4739 | ||
4740 | vm_map_copy_clip_end(copy, copy_entry, | |
4741 | copy_entry->vme_start + copy_size); | |
4742 | vm_map_copy_entry_unlink(copy, copy_entry); | |
4743 | vm_object_deallocate(copy_entry->object.vm_object); | |
4744 | vm_map_copy_entry_dispose(copy, copy_entry); | |
4745 | } | |
4746 | ||
4747 | /* | |
4748 | * Pick up in the destination map where we left off. | |
4749 | * | |
4750 | * Use the version information to avoid a lookup | |
4751 | * in the normal case. | |
4752 | */ | |
4753 | ||
4754 | start += copy_size; | |
4755 | vm_map_lock(dst_map); | |
4756 | if (version.main_timestamp == dst_map->timestamp) { | |
4757 | /* We can safely use saved tmp_entry value */ | |
4758 | ||
4759 | vm_map_clip_end(dst_map, tmp_entry, start); | |
4760 | tmp_entry = tmp_entry->vme_next; | |
4761 | } else { | |
4762 | /* Must do lookup of tmp_entry */ | |
4763 | ||
4764 | if (!vm_map_lookup_entry(dst_map, start, &tmp_entry)) { | |
4765 | vm_map_unlock(dst_map); | |
4766 | return(KERN_INVALID_ADDRESS); | |
4767 | } | |
4768 | vm_map_clip_start(dst_map, tmp_entry, start); | |
4769 | } | |
4770 | } | |
4771 | }/* while */ | |
4772 | ||
4773 | return(KERN_SUCCESS); | |
4774 | }/* vm_map_copy_overwrite_aligned */ | |
4775 | ||
4776 | /* | |
4777 | * Routine: vm_map_copyin_kernel_buffer | |
4778 | * | |
4779 | * Description: | |
4780 | * Copy in data to a kernel buffer from space in the | |
4781 | * source map. The original space may be otpionally | |
4782 | * deallocated. | |
4783 | * | |
4784 | * If successful, returns a new copy object. | |
4785 | */ | |
4786 | kern_return_t | |
4787 | vm_map_copyin_kernel_buffer( | |
4788 | vm_map_t src_map, | |
4789 | vm_offset_t src_addr, | |
4790 | vm_size_t len, | |
4791 | boolean_t src_destroy, | |
4792 | vm_map_copy_t *copy_result) | |
4793 | { | |
4794 | boolean_t flags; | |
4795 | vm_map_copy_t copy; | |
4796 | vm_size_t kalloc_size = sizeof(struct vm_map_copy) + len; | |
4797 | ||
4798 | copy = (vm_map_copy_t) kalloc(kalloc_size); | |
4799 | if (copy == VM_MAP_COPY_NULL) { | |
4800 | return KERN_RESOURCE_SHORTAGE; | |
4801 | } | |
4802 | copy->type = VM_MAP_COPY_KERNEL_BUFFER; | |
4803 | copy->size = len; | |
4804 | copy->offset = 0; | |
4805 | copy->cpy_kdata = (vm_offset_t) (copy + 1); | |
4806 | copy->cpy_kalloc_size = kalloc_size; | |
4807 | ||
4808 | if (src_map == kernel_map) { | |
4809 | bcopy((char *)src_addr, (char *)copy->cpy_kdata, len); | |
4810 | flags = VM_MAP_REMOVE_KUNWIRE | VM_MAP_REMOVE_WAIT_FOR_KWIRE | | |
4811 | VM_MAP_REMOVE_INTERRUPTIBLE; | |
4812 | } else { | |
4813 | kern_return_t kr; | |
4814 | kr = copyinmap(src_map, src_addr, copy->cpy_kdata, len); | |
4815 | if (kr != KERN_SUCCESS) { | |
4816 | kfree((vm_offset_t)copy, kalloc_size); | |
4817 | return kr; | |
4818 | } | |
4819 | flags = VM_MAP_REMOVE_WAIT_FOR_KWIRE | | |
4820 | VM_MAP_REMOVE_INTERRUPTIBLE; | |
4821 | } | |
4822 | if (src_destroy) { | |
4823 | (void) vm_map_remove(src_map, trunc_page_32(src_addr), | |
4824 | round_page_32(src_addr + len), | |
4825 | flags); | |
4826 | } | |
4827 | *copy_result = copy; | |
4828 | return KERN_SUCCESS; | |
4829 | } | |
4830 | ||
4831 | /* | |
4832 | * Routine: vm_map_copyout_kernel_buffer | |
4833 | * | |
4834 | * Description: | |
4835 | * Copy out data from a kernel buffer into space in the | |
4836 | * destination map. The space may be otpionally dynamically | |
4837 | * allocated. | |
4838 | * | |
4839 | * If successful, consumes the copy object. | |
4840 | * Otherwise, the caller is responsible for it. | |
4841 | */ | |
4842 | kern_return_t | |
4843 | vm_map_copyout_kernel_buffer( | |
4844 | vm_map_t map, | |
4845 | vm_offset_t *addr, /* IN/OUT */ | |
4846 | vm_map_copy_t copy, | |
4847 | boolean_t overwrite) | |
4848 | { | |
4849 | kern_return_t kr = KERN_SUCCESS; | |
4850 | thread_act_t thr_act = current_act(); | |
4851 | ||
4852 | if (!overwrite) { | |
4853 | ||
4854 | /* | |
4855 | * Allocate space in the target map for the data | |
4856 | */ | |
4857 | *addr = 0; | |
4858 | kr = vm_map_enter(map, | |
4859 | addr, | |
4860 | round_page_32(copy->size), | |
4861 | (vm_offset_t) 0, | |
4862 | TRUE, | |
4863 | VM_OBJECT_NULL, | |
4864 | (vm_object_offset_t) 0, | |
4865 | FALSE, | |
4866 | VM_PROT_DEFAULT, | |
4867 | VM_PROT_ALL, | |
4868 | VM_INHERIT_DEFAULT); | |
4869 | if (kr != KERN_SUCCESS) | |
4870 | return(kr); | |
4871 | } | |
4872 | ||
4873 | /* | |
4874 | * Copyout the data from the kernel buffer to the target map. | |
4875 | */ | |
4876 | if (thr_act->map == map) { | |
4877 | ||
4878 | /* | |
4879 | * If the target map is the current map, just do | |
4880 | * the copy. | |
4881 | */ | |
4882 | if (copyout((char *)copy->cpy_kdata, (char *)*addr, | |
4883 | copy->size)) { | |
4884 | return(KERN_INVALID_ADDRESS); | |
4885 | } | |
4886 | } | |
4887 | else { | |
4888 | vm_map_t oldmap; | |
4889 | ||
4890 | /* | |
4891 | * If the target map is another map, assume the | |
4892 | * target's address space identity for the duration | |
4893 | * of the copy. | |
4894 | */ | |
4895 | vm_map_reference(map); | |
4896 | oldmap = vm_map_switch(map); | |
4897 | ||
4898 | if (copyout((char *)copy->cpy_kdata, (char *)*addr, | |
4899 | copy->size)) { | |
4900 | return(KERN_INVALID_ADDRESS); | |
4901 | } | |
4902 | ||
4903 | (void) vm_map_switch(oldmap); | |
4904 | vm_map_deallocate(map); | |
4905 | } | |
4906 | ||
4907 | kfree((vm_offset_t)copy, copy->cpy_kalloc_size); | |
4908 | ||
4909 | return(kr); | |
4910 | } | |
4911 | ||
4912 | /* | |
4913 | * Macro: vm_map_copy_insert | |
4914 | * | |
4915 | * Description: | |
4916 | * Link a copy chain ("copy") into a map at the | |
4917 | * specified location (after "where"). | |
4918 | * Side effects: | |
4919 | * The copy chain is destroyed. | |
4920 | * Warning: | |
4921 | * The arguments are evaluated multiple times. | |
4922 | */ | |
4923 | #define vm_map_copy_insert(map, where, copy) \ | |
4924 | MACRO_BEGIN \ | |
4925 | vm_map_t VMCI_map; \ | |
4926 | vm_map_entry_t VMCI_where; \ | |
4927 | vm_map_copy_t VMCI_copy; \ | |
4928 | VMCI_map = (map); \ | |
4929 | VMCI_where = (where); \ | |
4930 | VMCI_copy = (copy); \ | |
4931 | ((VMCI_where->vme_next)->vme_prev = vm_map_copy_last_entry(VMCI_copy))\ | |
4932 | ->vme_next = (VMCI_where->vme_next); \ | |
4933 | ((VMCI_where)->vme_next = vm_map_copy_first_entry(VMCI_copy)) \ | |
4934 | ->vme_prev = VMCI_where; \ | |
4935 | VMCI_map->hdr.nentries += VMCI_copy->cpy_hdr.nentries; \ | |
4936 | UPDATE_FIRST_FREE(VMCI_map, VMCI_map->first_free); \ | |
4937 | zfree(vm_map_copy_zone, (vm_offset_t) VMCI_copy); \ | |
4938 | MACRO_END | |
4939 | ||
4940 | /* | |
4941 | * Routine: vm_map_copyout | |
4942 | * | |
4943 | * Description: | |
4944 | * Copy out a copy chain ("copy") into newly-allocated | |
4945 | * space in the destination map. | |
4946 | * | |
4947 | * If successful, consumes the copy object. | |
4948 | * Otherwise, the caller is responsible for it. | |
4949 | */ | |
4950 | kern_return_t | |
4951 | vm_map_copyout( | |
4952 | register vm_map_t dst_map, | |
4953 | vm_offset_t *dst_addr, /* OUT */ | |
4954 | register vm_map_copy_t copy) | |
4955 | { | |
4956 | vm_size_t size; | |
4957 | vm_size_t adjustment; | |
4958 | vm_offset_t start; | |
4959 | vm_object_offset_t vm_copy_start; | |
4960 | vm_map_entry_t last; | |
4961 | register | |
4962 | vm_map_entry_t entry; | |
4963 | ||
4964 | /* | |
4965 | * Check for null copy object. | |
4966 | */ | |
4967 | ||
4968 | if (copy == VM_MAP_COPY_NULL) { | |
4969 | *dst_addr = 0; | |
4970 | return(KERN_SUCCESS); | |
4971 | } | |
4972 | ||
4973 | /* | |
4974 | * Check for special copy object, created | |
4975 | * by vm_map_copyin_object. | |
4976 | */ | |
4977 | ||
4978 | if (copy->type == VM_MAP_COPY_OBJECT) { | |
4979 | vm_object_t object = copy->cpy_object; | |
4980 | kern_return_t kr; | |
4981 | vm_object_offset_t offset; | |
4982 | ||
4983 | offset = trunc_page_64(copy->offset); | |
4984 | size = round_page_32(copy->size + | |
4985 | (vm_size_t)(copy->offset - offset)); | |
4986 | *dst_addr = 0; | |
4987 | kr = vm_map_enter(dst_map, dst_addr, size, | |
4988 | (vm_offset_t) 0, TRUE, | |
4989 | object, offset, FALSE, | |
4990 | VM_PROT_DEFAULT, VM_PROT_ALL, | |
4991 | VM_INHERIT_DEFAULT); | |
4992 | if (kr != KERN_SUCCESS) | |
4993 | return(kr); | |
4994 | /* Account for non-pagealigned copy object */ | |
4995 | *dst_addr += (vm_offset_t)(copy->offset - offset); | |
4996 | zfree(vm_map_copy_zone, (vm_offset_t) copy); | |
4997 | return(KERN_SUCCESS); | |
4998 | } | |
4999 | ||
5000 | /* | |
5001 | * Check for special kernel buffer allocated | |
5002 | * by new_ipc_kmsg_copyin. | |
5003 | */ | |
5004 | ||
5005 | if (copy->type == VM_MAP_COPY_KERNEL_BUFFER) { | |
5006 | return(vm_map_copyout_kernel_buffer(dst_map, dst_addr, | |
5007 | copy, FALSE)); | |
5008 | } | |
5009 | ||
5010 | /* | |
5011 | * Find space for the data | |
5012 | */ | |
5013 | ||
5014 | vm_copy_start = trunc_page_64(copy->offset); | |
5015 | size = round_page_32((vm_size_t)copy->offset + copy->size) | |
5016 | - vm_copy_start; | |
5017 | ||
5018 | StartAgain: ; | |
5019 | ||
5020 | vm_map_lock(dst_map); | |
5021 | assert(first_free_is_valid(dst_map)); | |
5022 | start = ((last = dst_map->first_free) == vm_map_to_entry(dst_map)) ? | |
5023 | vm_map_min(dst_map) : last->vme_end; | |
5024 | ||
5025 | while (TRUE) { | |
5026 | vm_map_entry_t next = last->vme_next; | |
5027 | vm_offset_t end = start + size; | |
5028 | ||
5029 | if ((end > dst_map->max_offset) || (end < start)) { | |
5030 | if (dst_map->wait_for_space) { | |
5031 | if (size <= (dst_map->max_offset - dst_map->min_offset)) { | |
5032 | assert_wait((event_t) dst_map, | |
5033 | THREAD_INTERRUPTIBLE); | |
5034 | vm_map_unlock(dst_map); | |
5035 | thread_block((void (*)(void))0); | |
5036 | goto StartAgain; | |
5037 | } | |
5038 | } | |
5039 | vm_map_unlock(dst_map); | |
5040 | return(KERN_NO_SPACE); | |
5041 | } | |
5042 | ||
5043 | if ((next == vm_map_to_entry(dst_map)) || | |
5044 | (next->vme_start >= end)) | |
5045 | break; | |
5046 | ||
5047 | last = next; | |
5048 | start = last->vme_end; | |
5049 | } | |
5050 | ||
5051 | /* | |
5052 | * Since we're going to just drop the map | |
5053 | * entries from the copy into the destination | |
5054 | * map, they must come from the same pool. | |
5055 | */ | |
5056 | ||
5057 | if (copy->cpy_hdr.entries_pageable != dst_map->hdr.entries_pageable) { | |
5058 | /* | |
5059 | * Mismatches occur when dealing with the default | |
5060 | * pager. | |
5061 | */ | |
5062 | zone_t old_zone; | |
5063 | vm_map_entry_t next, new; | |
5064 | ||
5065 | /* | |
5066 | * Find the zone that the copies were allocated from | |
5067 | */ | |
5068 | old_zone = (copy->cpy_hdr.entries_pageable) | |
5069 | ? vm_map_entry_zone | |
5070 | : vm_map_kentry_zone; | |
5071 | entry = vm_map_copy_first_entry(copy); | |
5072 | ||
5073 | /* | |
5074 | * Reinitialize the copy so that vm_map_copy_entry_link | |
5075 | * will work. | |
5076 | */ | |
5077 | copy->cpy_hdr.nentries = 0; | |
5078 | copy->cpy_hdr.entries_pageable = dst_map->hdr.entries_pageable; | |
5079 | vm_map_copy_first_entry(copy) = | |
5080 | vm_map_copy_last_entry(copy) = | |
5081 | vm_map_copy_to_entry(copy); | |
5082 | ||
5083 | /* | |
5084 | * Copy each entry. | |
5085 | */ | |
5086 | while (entry != vm_map_copy_to_entry(copy)) { | |
5087 | new = vm_map_copy_entry_create(copy); | |
5088 | vm_map_entry_copy_full(new, entry); | |
5089 | new->use_pmap = FALSE; /* clr address space specifics */ | |
5090 | vm_map_copy_entry_link(copy, | |
5091 | vm_map_copy_last_entry(copy), | |
5092 | new); | |
5093 | next = entry->vme_next; | |
5094 | zfree(old_zone, (vm_offset_t) entry); | |
5095 | entry = next; | |
5096 | } | |
5097 | } | |
5098 | ||
5099 | /* | |
5100 | * Adjust the addresses in the copy chain, and | |
5101 | * reset the region attributes. | |
5102 | */ | |
5103 | ||
5104 | adjustment = start - vm_copy_start; | |
5105 | for (entry = vm_map_copy_first_entry(copy); | |
5106 | entry != vm_map_copy_to_entry(copy); | |
5107 | entry = entry->vme_next) { | |
5108 | entry->vme_start += adjustment; | |
5109 | entry->vme_end += adjustment; | |
5110 | ||
5111 | entry->inheritance = VM_INHERIT_DEFAULT; | |
5112 | entry->protection = VM_PROT_DEFAULT; | |
5113 | entry->max_protection = VM_PROT_ALL; | |
5114 | entry->behavior = VM_BEHAVIOR_DEFAULT; | |
5115 | ||
5116 | /* | |
5117 | * If the entry is now wired, | |
5118 | * map the pages into the destination map. | |
5119 | */ | |
5120 | if (entry->wired_count != 0) { | |
5121 | register vm_offset_t va; | |
5122 | vm_object_offset_t offset; | |
5123 | register vm_object_t object; | |
5124 | ||
5125 | object = entry->object.vm_object; | |
5126 | offset = entry->offset; | |
5127 | va = entry->vme_start; | |
5128 | ||
5129 | pmap_pageable(dst_map->pmap, | |
5130 | entry->vme_start, | |
5131 | entry->vme_end, | |
5132 | TRUE); | |
5133 | ||
5134 | while (va < entry->vme_end) { | |
5135 | register vm_page_t m; | |
5136 | ||
5137 | /* | |
5138 | * Look up the page in the object. | |
5139 | * Assert that the page will be found in the | |
5140 | * top object: | |
5141 | * either | |
5142 | * the object was newly created by | |
5143 | * vm_object_copy_slowly, and has | |
5144 | * copies of all of the pages from | |
5145 | * the source object | |
5146 | * or | |
5147 | * the object was moved from the old | |
5148 | * map entry; because the old map | |
5149 | * entry was wired, all of the pages | |
5150 | * were in the top-level object. | |
5151 | * (XXX not true if we wire pages for | |
5152 | * reading) | |
5153 | */ | |
5154 | vm_object_lock(object); | |
5155 | vm_object_paging_begin(object); | |
5156 | ||
5157 | m = vm_page_lookup(object, offset); | |
5158 | if (m == VM_PAGE_NULL || m->wire_count == 0 || | |
5159 | m->absent) | |
5160 | panic("vm_map_copyout: wiring 0x%x", m); | |
5161 | ||
5162 | m->busy = TRUE; | |
5163 | vm_object_unlock(object); | |
5164 | ||
5165 | PMAP_ENTER(dst_map->pmap, va, m, entry->protection, | |
5166 | ((unsigned int) | |
5167 | (m->object->wimg_bits)) | |
5168 | & VM_WIMG_MASK, | |
5169 | TRUE); | |
5170 | ||
5171 | vm_object_lock(object); | |
5172 | PAGE_WAKEUP_DONE(m); | |
5173 | /* the page is wired, so we don't have to activate */ | |
5174 | vm_object_paging_end(object); | |
5175 | vm_object_unlock(object); | |
5176 | ||
5177 | offset += PAGE_SIZE_64; | |
5178 | va += PAGE_SIZE; | |
5179 | } | |
5180 | } | |
5181 | else if (size <= vm_map_aggressive_enter_max) { | |
5182 | ||
5183 | register vm_offset_t va; | |
5184 | vm_object_offset_t offset; | |
5185 | register vm_object_t object; | |
5186 | vm_prot_t prot; | |
5187 | ||
5188 | object = entry->object.vm_object; | |
5189 | if (object != VM_OBJECT_NULL) { | |
5190 | ||
5191 | offset = entry->offset; | |
5192 | va = entry->vme_start; | |
5193 | while (va < entry->vme_end) { | |
5194 | register vm_page_t m; | |
5195 | ||
5196 | /* | |
5197 | * Look up the page in the object. | |
5198 | * Assert that the page will be found | |
5199 | * in the top object if at all... | |
5200 | */ | |
5201 | vm_object_lock(object); | |
5202 | vm_object_paging_begin(object); | |
5203 | ||
5204 | if (((m = vm_page_lookup(object, | |
5205 | offset)) | |
5206 | != VM_PAGE_NULL) && | |
5207 | !m->busy && !m->fictitious && | |
5208 | !m->absent && !m->error) { | |
5209 | m->busy = TRUE; | |
5210 | vm_object_unlock(object); | |
5211 | ||
5212 | /* honor cow obligations */ | |
5213 | prot = entry->protection; | |
5214 | if (entry->needs_copy) | |
5215 | prot &= ~VM_PROT_WRITE; | |
5216 | ||
5217 | PMAP_ENTER(dst_map->pmap, va, | |
5218 | m, prot, | |
5219 | ((unsigned int) | |
5220 | (m->object->wimg_bits)) | |
5221 | & VM_WIMG_MASK, | |
5222 | FALSE); | |
5223 | ||
5224 | vm_object_lock(object); | |
5225 | vm_page_lock_queues(); | |
5226 | if (!m->active && !m->inactive) | |
5227 | vm_page_activate(m); | |
5228 | vm_page_unlock_queues(); | |
5229 | PAGE_WAKEUP_DONE(m); | |
5230 | } | |
5231 | vm_object_paging_end(object); | |
5232 | vm_object_unlock(object); | |
5233 | ||
5234 | offset += PAGE_SIZE_64; | |
5235 | va += PAGE_SIZE; | |
5236 | } | |
5237 | } | |
5238 | } | |
5239 | } | |
5240 | ||
5241 | /* | |
5242 | * Correct the page alignment for the result | |
5243 | */ | |
5244 | ||
5245 | *dst_addr = start + (copy->offset - vm_copy_start); | |
5246 | ||
5247 | /* | |
5248 | * Update the hints and the map size | |
5249 | */ | |
5250 | ||
5251 | SAVE_HINT(dst_map, vm_map_copy_last_entry(copy)); | |
5252 | ||
5253 | dst_map->size += size; | |
5254 | ||
5255 | /* | |
5256 | * Link in the copy | |
5257 | */ | |
5258 | ||
5259 | vm_map_copy_insert(dst_map, last, copy); | |
5260 | ||
5261 | vm_map_unlock(dst_map); | |
5262 | ||
5263 | /* | |
5264 | * XXX If wiring_required, call vm_map_pageable | |
5265 | */ | |
5266 | ||
5267 | return(KERN_SUCCESS); | |
5268 | } | |
5269 | ||
5270 | boolean_t vm_map_aggressive_enter; /* not used yet */ | |
5271 | ||
5272 | ||
5273 | /* | |
5274 | * Routine: vm_map_copyin | |
5275 | * | |
5276 | * Description: | |
5277 | * Copy the specified region (src_addr, len) from the | |
5278 | * source address space (src_map), possibly removing | |
5279 | * the region from the source address space (src_destroy). | |
5280 | * | |
5281 | * Returns: | |
5282 | * A vm_map_copy_t object (copy_result), suitable for | |
5283 | * insertion into another address space (using vm_map_copyout), | |
5284 | * copying over another address space region (using | |
5285 | * vm_map_copy_overwrite). If the copy is unused, it | |
5286 | * should be destroyed (using vm_map_copy_discard). | |
5287 | * | |
5288 | * In/out conditions: | |
5289 | * The source map should not be locked on entry. | |
5290 | */ | |
5291 | ||
5292 | typedef struct submap_map { | |
5293 | vm_map_t parent_map; | |
5294 | vm_offset_t base_start; | |
5295 | vm_offset_t base_end; | |
5296 | struct submap_map *next; | |
5297 | } submap_map_t; | |
5298 | ||
5299 | kern_return_t | |
5300 | vm_map_copyin_common( | |
5301 | vm_map_t src_map, | |
5302 | vm_offset_t src_addr, | |
5303 | vm_size_t len, | |
5304 | boolean_t src_destroy, | |
5305 | boolean_t src_volatile, | |
5306 | vm_map_copy_t *copy_result, /* OUT */ | |
5307 | boolean_t use_maxprot) | |
5308 | { | |
5309 | extern int msg_ool_size_small; | |
5310 | ||
5311 | vm_map_entry_t tmp_entry; /* Result of last map lookup -- | |
5312 | * in multi-level lookup, this | |
5313 | * entry contains the actual | |
5314 | * vm_object/offset. | |
5315 | */ | |
5316 | register | |
5317 | vm_map_entry_t new_entry = VM_MAP_ENTRY_NULL; /* Map entry for copy */ | |
5318 | ||
5319 | vm_offset_t src_start; /* Start of current entry -- | |
5320 | * where copy is taking place now | |
5321 | */ | |
5322 | vm_offset_t src_end; /* End of entire region to be | |
5323 | * copied */ | |
5324 | vm_offset_t base_start; /* submap fields to save offsets */ | |
5325 | /* in original map */ | |
5326 | vm_offset_t base_end; | |
5327 | vm_map_t base_map=src_map; | |
5328 | vm_map_entry_t base_entry; | |
5329 | boolean_t map_share=FALSE; | |
5330 | submap_map_t *parent_maps = NULL; | |
5331 | ||
5332 | register | |
5333 | vm_map_copy_t copy; /* Resulting copy */ | |
5334 | vm_offset_t copy_addr; | |
5335 | ||
5336 | /* | |
5337 | * Check for copies of zero bytes. | |
5338 | */ | |
5339 | ||
5340 | if (len == 0) { | |
5341 | *copy_result = VM_MAP_COPY_NULL; | |
5342 | return(KERN_SUCCESS); | |
5343 | } | |
5344 | ||
5345 | /* | |
5346 | * If the copy is sufficiently small, use a kernel buffer instead | |
5347 | * of making a virtual copy. The theory being that the cost of | |
5348 | * setting up VM (and taking C-O-W faults) dominates the copy costs | |
5349 | * for small regions. | |
5350 | */ | |
5351 | if ((len < msg_ool_size_small) && !use_maxprot) | |
5352 | return vm_map_copyin_kernel_buffer(src_map, src_addr, len, | |
5353 | src_destroy, copy_result); | |
5354 | ||
5355 | /* | |
5356 | * Compute start and end of region | |
5357 | */ | |
5358 | ||
5359 | src_start = trunc_page_32(src_addr); | |
5360 | src_end = round_page_32(src_addr + len); | |
5361 | ||
5362 | XPR(XPR_VM_MAP, "vm_map_copyin_common map 0x%x addr 0x%x len 0x%x dest %d\n", (natural_t)src_map, src_addr, len, src_destroy, 0); | |
5363 | ||
5364 | /* | |
5365 | * Check that the end address doesn't overflow | |
5366 | */ | |
5367 | ||
5368 | if (src_end <= src_start) | |
5369 | if ((src_end < src_start) || (src_start != 0)) | |
5370 | return(KERN_INVALID_ADDRESS); | |
5371 | ||
5372 | /* | |
5373 | * Allocate a header element for the list. | |
5374 | * | |
5375 | * Use the start and end in the header to | |
5376 | * remember the endpoints prior to rounding. | |
5377 | */ | |
5378 | ||
5379 | copy = (vm_map_copy_t) zalloc(vm_map_copy_zone); | |
5380 | vm_map_copy_first_entry(copy) = | |
5381 | vm_map_copy_last_entry(copy) = vm_map_copy_to_entry(copy); | |
5382 | copy->type = VM_MAP_COPY_ENTRY_LIST; | |
5383 | copy->cpy_hdr.nentries = 0; | |
5384 | copy->cpy_hdr.entries_pageable = TRUE; | |
5385 | ||
5386 | copy->offset = src_addr; | |
5387 | copy->size = len; | |
5388 | ||
5389 | new_entry = vm_map_copy_entry_create(copy); | |
5390 | ||
5391 | #define RETURN(x) \ | |
5392 | MACRO_BEGIN \ | |
5393 | vm_map_unlock(src_map); \ | |
5394 | if(src_map != base_map) \ | |
5395 | vm_map_deallocate(src_map); \ | |
5396 | if (new_entry != VM_MAP_ENTRY_NULL) \ | |
5397 | vm_map_copy_entry_dispose(copy,new_entry); \ | |
5398 | vm_map_copy_discard(copy); \ | |
5399 | { \ | |
5400 | submap_map_t *ptr; \ | |
5401 | \ | |
5402 | for(ptr = parent_maps; ptr != NULL; ptr = parent_maps) { \ | |
5403 | parent_maps=parent_maps->next; \ | |
5404 | if (ptr->parent_map != base_map) \ | |
5405 | vm_map_deallocate(ptr->parent_map); \ | |
5406 | kfree((vm_offset_t)ptr, sizeof(submap_map_t)); \ | |
5407 | } \ | |
5408 | } \ | |
5409 | MACRO_RETURN(x); \ | |
5410 | MACRO_END | |
5411 | ||
5412 | /* | |
5413 | * Find the beginning of the region. | |
5414 | */ | |
5415 | ||
5416 | vm_map_lock(src_map); | |
5417 | ||
5418 | if (!vm_map_lookup_entry(src_map, src_start, &tmp_entry)) | |
5419 | RETURN(KERN_INVALID_ADDRESS); | |
5420 | if(!tmp_entry->is_sub_map) { | |
5421 | vm_map_clip_start(src_map, tmp_entry, src_start); | |
5422 | } | |
5423 | /* set for later submap fix-up */ | |
5424 | copy_addr = src_start; | |
5425 | ||
5426 | /* | |
5427 | * Go through entries until we get to the end. | |
5428 | */ | |
5429 | ||
5430 | while (TRUE) { | |
5431 | register | |
5432 | vm_map_entry_t src_entry = tmp_entry; /* Top-level entry */ | |
5433 | vm_size_t src_size; /* Size of source | |
5434 | * map entry (in both | |
5435 | * maps) | |
5436 | */ | |
5437 | ||
5438 | register | |
5439 | vm_object_t src_object; /* Object to copy */ | |
5440 | vm_object_offset_t src_offset; | |
5441 | ||
5442 | boolean_t src_needs_copy; /* Should source map | |
5443 | * be made read-only | |
5444 | * for copy-on-write? | |
5445 | */ | |
5446 | ||
5447 | boolean_t new_entry_needs_copy; /* Will new entry be COW? */ | |
5448 | ||
5449 | boolean_t was_wired; /* Was source wired? */ | |
5450 | vm_map_version_t version; /* Version before locks | |
5451 | * dropped to make copy | |
5452 | */ | |
5453 | kern_return_t result; /* Return value from | |
5454 | * copy_strategically. | |
5455 | */ | |
5456 | while(tmp_entry->is_sub_map) { | |
5457 | vm_size_t submap_len; | |
5458 | submap_map_t *ptr; | |
5459 | ||
5460 | ptr = (submap_map_t *)kalloc(sizeof(submap_map_t)); | |
5461 | ptr->next = parent_maps; | |
5462 | parent_maps = ptr; | |
5463 | ptr->parent_map = src_map; | |
5464 | ptr->base_start = src_start; | |
5465 | ptr->base_end = src_end; | |
5466 | submap_len = tmp_entry->vme_end - src_start; | |
5467 | if(submap_len > (src_end-src_start)) | |
5468 | submap_len = src_end-src_start; | |
5469 | ptr->base_start += submap_len; | |
5470 | ||
5471 | src_start -= tmp_entry->vme_start; | |
5472 | src_start += tmp_entry->offset; | |
5473 | src_end = src_start + submap_len; | |
5474 | src_map = tmp_entry->object.sub_map; | |
5475 | vm_map_lock(src_map); | |
5476 | /* keep an outstanding reference for all maps in */ | |
5477 | /* the parents tree except the base map */ | |
5478 | vm_map_reference(src_map); | |
5479 | vm_map_unlock(ptr->parent_map); | |
5480 | if (!vm_map_lookup_entry( | |
5481 | src_map, src_start, &tmp_entry)) | |
5482 | RETURN(KERN_INVALID_ADDRESS); | |
5483 | map_share = TRUE; | |
5484 | if(!tmp_entry->is_sub_map) | |
5485 | vm_map_clip_start(src_map, tmp_entry, src_start); | |
5486 | src_entry = tmp_entry; | |
5487 | } | |
5488 | if ((tmp_entry->object.vm_object != VM_OBJECT_NULL) && | |
5489 | (tmp_entry->object.vm_object->phys_contiguous)) { | |
5490 | /* This is not, supported for now.In future */ | |
5491 | /* we will need to detect the phys_contig */ | |
5492 | /* condition and then upgrade copy_slowly */ | |
5493 | /* to do physical copy from the device mem */ | |
5494 | /* based object. We can piggy-back off of */ | |
5495 | /* the was wired boolean to set-up the */ | |
5496 | /* proper handling */ | |
5497 | RETURN(KERN_PROTECTION_FAILURE); | |
5498 | } | |
5499 | /* | |
5500 | * Create a new address map entry to hold the result. | |
5501 | * Fill in the fields from the appropriate source entries. | |
5502 | * We must unlock the source map to do this if we need | |
5503 | * to allocate a map entry. | |
5504 | */ | |
5505 | if (new_entry == VM_MAP_ENTRY_NULL) { | |
5506 | version.main_timestamp = src_map->timestamp; | |
5507 | vm_map_unlock(src_map); | |
5508 | ||
5509 | new_entry = vm_map_copy_entry_create(copy); | |
5510 | ||
5511 | vm_map_lock(src_map); | |
5512 | if ((version.main_timestamp + 1) != src_map->timestamp) { | |
5513 | if (!vm_map_lookup_entry(src_map, src_start, | |
5514 | &tmp_entry)) { | |
5515 | RETURN(KERN_INVALID_ADDRESS); | |
5516 | } | |
5517 | vm_map_clip_start(src_map, tmp_entry, src_start); | |
5518 | continue; /* restart w/ new tmp_entry */ | |
5519 | } | |
5520 | } | |
5521 | ||
5522 | /* | |
5523 | * Verify that the region can be read. | |
5524 | */ | |
5525 | if (((src_entry->protection & VM_PROT_READ) == VM_PROT_NONE && | |
5526 | !use_maxprot) || | |
5527 | (src_entry->max_protection & VM_PROT_READ) == 0) | |
5528 | RETURN(KERN_PROTECTION_FAILURE); | |
5529 | ||
5530 | /* | |
5531 | * Clip against the endpoints of the entire region. | |
5532 | */ | |
5533 | ||
5534 | vm_map_clip_end(src_map, src_entry, src_end); | |
5535 | ||
5536 | src_size = src_entry->vme_end - src_start; | |
5537 | src_object = src_entry->object.vm_object; | |
5538 | src_offset = src_entry->offset; | |
5539 | was_wired = (src_entry->wired_count != 0); | |
5540 | ||
5541 | vm_map_entry_copy(new_entry, src_entry); | |
5542 | new_entry->use_pmap = FALSE; /* clr address space specifics */ | |
5543 | ||
5544 | /* | |
5545 | * Attempt non-blocking copy-on-write optimizations. | |
5546 | */ | |
5547 | ||
5548 | if (src_destroy && | |
5549 | (src_object == VM_OBJECT_NULL || | |
5550 | (src_object->internal && !src_object->true_share | |
5551 | && !map_share))) { | |
5552 | /* | |
5553 | * If we are destroying the source, and the object | |
5554 | * is internal, we can move the object reference | |
5555 | * from the source to the copy. The copy is | |
5556 | * copy-on-write only if the source is. | |
5557 | * We make another reference to the object, because | |
5558 | * destroying the source entry will deallocate it. | |
5559 | */ | |
5560 | vm_object_reference(src_object); | |
5561 | ||
5562 | /* | |
5563 | * Copy is always unwired. vm_map_copy_entry | |
5564 | * set its wired count to zero. | |
5565 | */ | |
5566 | ||
5567 | goto CopySuccessful; | |
5568 | } | |
5569 | ||
5570 | ||
5571 | RestartCopy: | |
5572 | XPR(XPR_VM_MAP, "vm_map_copyin_common src_obj 0x%x ent 0x%x obj 0x%x was_wired %d\n", | |
5573 | src_object, new_entry, new_entry->object.vm_object, | |
5574 | was_wired, 0); | |
5575 | if ((src_object == VM_OBJECT_NULL || | |
5576 | (!was_wired && !map_share && !tmp_entry->is_shared)) && | |
5577 | vm_object_copy_quickly( | |
5578 | &new_entry->object.vm_object, | |
5579 | src_offset, | |
5580 | src_size, | |
5581 | &src_needs_copy, | |
5582 | &new_entry_needs_copy)) { | |
5583 | ||
5584 | new_entry->needs_copy = new_entry_needs_copy; | |
5585 | ||
5586 | /* | |
5587 | * Handle copy-on-write obligations | |
5588 | */ | |
5589 | ||
5590 | if (src_needs_copy && !tmp_entry->needs_copy) { | |
5591 | vm_object_pmap_protect( | |
5592 | src_object, | |
5593 | src_offset, | |
5594 | src_size, | |
5595 | (src_entry->is_shared ? | |
5596 | PMAP_NULL | |
5597 | : src_map->pmap), | |
5598 | src_entry->vme_start, | |
5599 | src_entry->protection & | |
5600 | ~VM_PROT_WRITE); | |
5601 | tmp_entry->needs_copy = TRUE; | |
5602 | } | |
5603 | ||
5604 | /* | |
5605 | * The map has never been unlocked, so it's safe | |
5606 | * to move to the next entry rather than doing | |
5607 | * another lookup. | |
5608 | */ | |
5609 | ||
5610 | goto CopySuccessful; | |
5611 | } | |
5612 | ||
5613 | /* | |
5614 | * Take an object reference, so that we may | |
5615 | * release the map lock(s). | |
5616 | */ | |
5617 | ||
5618 | assert(src_object != VM_OBJECT_NULL); | |
5619 | vm_object_reference(src_object); | |
5620 | ||
5621 | /* | |
5622 | * Record the timestamp for later verification. | |
5623 | * Unlock the map. | |
5624 | */ | |
5625 | ||
5626 | version.main_timestamp = src_map->timestamp; | |
5627 | vm_map_unlock(src_map); /* Increments timestamp once! */ | |
5628 | ||
5629 | /* | |
5630 | * Perform the copy | |
5631 | */ | |
5632 | ||
5633 | if (was_wired) { | |
5634 | CopySlowly: | |
5635 | vm_object_lock(src_object); | |
5636 | result = vm_object_copy_slowly( | |
5637 | src_object, | |
5638 | src_offset, | |
5639 | src_size, | |
5640 | THREAD_UNINT, | |
5641 | &new_entry->object.vm_object); | |
5642 | new_entry->offset = 0; | |
5643 | new_entry->needs_copy = FALSE; | |
5644 | ||
5645 | } | |
5646 | else if (src_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC && | |
5647 | (tmp_entry->is_shared || map_share)) { | |
5648 | vm_object_t new_object; | |
5649 | ||
5650 | vm_object_lock(src_object); | |
5651 | new_object = vm_object_copy_delayed( | |
5652 | src_object, | |
5653 | src_offset, | |
5654 | src_size); | |
5655 | if (new_object == VM_OBJECT_NULL) | |
5656 | goto CopySlowly; | |
5657 | ||
5658 | new_entry->object.vm_object = new_object; | |
5659 | new_entry->needs_copy = TRUE; | |
5660 | result = KERN_SUCCESS; | |
5661 | ||
5662 | } else { | |
5663 | result = vm_object_copy_strategically(src_object, | |
5664 | src_offset, | |
5665 | src_size, | |
5666 | &new_entry->object.vm_object, | |
5667 | &new_entry->offset, | |
5668 | &new_entry_needs_copy); | |
5669 | ||
5670 | new_entry->needs_copy = new_entry_needs_copy; | |
5671 | } | |
5672 | ||
5673 | if (result != KERN_SUCCESS && | |
5674 | result != KERN_MEMORY_RESTART_COPY) { | |
5675 | vm_map_lock(src_map); | |
5676 | RETURN(result); | |
5677 | } | |
5678 | ||
5679 | /* | |
5680 | * Throw away the extra reference | |
5681 | */ | |
5682 | ||
5683 | vm_object_deallocate(src_object); | |
5684 | ||
5685 | /* | |
5686 | * Verify that the map has not substantially | |
5687 | * changed while the copy was being made. | |
5688 | */ | |
5689 | ||
5690 | vm_map_lock(src_map); | |
5691 | ||
5692 | if ((version.main_timestamp + 1) == src_map->timestamp) | |
5693 | goto VerificationSuccessful; | |
5694 | ||
5695 | /* | |
5696 | * Simple version comparison failed. | |
5697 | * | |
5698 | * Retry the lookup and verify that the | |
5699 | * same object/offset are still present. | |
5700 | * | |
5701 | * [Note: a memory manager that colludes with | |
5702 | * the calling task can detect that we have | |
5703 | * cheated. While the map was unlocked, the | |
5704 | * mapping could have been changed and restored.] | |
5705 | */ | |
5706 | ||
5707 | if (!vm_map_lookup_entry(src_map, src_start, &tmp_entry)) { | |
5708 | RETURN(KERN_INVALID_ADDRESS); | |
5709 | } | |
5710 | ||
5711 | src_entry = tmp_entry; | |
5712 | vm_map_clip_start(src_map, src_entry, src_start); | |
5713 | ||
5714 | if ((src_entry->protection & VM_PROT_READ == VM_PROT_NONE && | |
5715 | !use_maxprot) || | |
5716 | src_entry->max_protection & VM_PROT_READ == 0) | |
5717 | goto VerificationFailed; | |
5718 | ||
5719 | if (src_entry->vme_end < new_entry->vme_end) | |
5720 | src_size = (new_entry->vme_end = src_entry->vme_end) - src_start; | |
5721 | ||
5722 | if ((src_entry->object.vm_object != src_object) || | |
5723 | (src_entry->offset != src_offset) ) { | |
5724 | ||
5725 | /* | |
5726 | * Verification failed. | |
5727 | * | |
5728 | * Start over with this top-level entry. | |
5729 | */ | |
5730 | ||
5731 | VerificationFailed: ; | |
5732 | ||
5733 | vm_object_deallocate(new_entry->object.vm_object); | |
5734 | tmp_entry = src_entry; | |
5735 | continue; | |
5736 | } | |
5737 | ||
5738 | /* | |
5739 | * Verification succeeded. | |
5740 | */ | |
5741 | ||
5742 | VerificationSuccessful: ; | |
5743 | ||
5744 | if (result == KERN_MEMORY_RESTART_COPY) | |
5745 | goto RestartCopy; | |
5746 | ||
5747 | /* | |
5748 | * Copy succeeded. | |
5749 | */ | |
5750 | ||
5751 | CopySuccessful: ; | |
5752 | ||
5753 | /* | |
5754 | * Link in the new copy entry. | |
5755 | */ | |
5756 | ||
5757 | vm_map_copy_entry_link(copy, vm_map_copy_last_entry(copy), | |
5758 | new_entry); | |
5759 | ||
5760 | /* | |
5761 | * Determine whether the entire region | |
5762 | * has been copied. | |
5763 | */ | |
5764 | src_start = new_entry->vme_end; | |
5765 | new_entry = VM_MAP_ENTRY_NULL; | |
5766 | while ((src_start >= src_end) && (src_end != 0)) { | |
5767 | if (src_map != base_map) { | |
5768 | submap_map_t *ptr; | |
5769 | ||
5770 | ptr = parent_maps; | |
5771 | assert(ptr != NULL); | |
5772 | parent_maps = parent_maps->next; | |
5773 | vm_map_unlock(src_map); | |
5774 | vm_map_deallocate(src_map); | |
5775 | vm_map_lock(ptr->parent_map); | |
5776 | src_map = ptr->parent_map; | |
5777 | src_start = ptr->base_start; | |
5778 | src_end = ptr->base_end; | |
5779 | if ((src_end > src_start) && | |
5780 | !vm_map_lookup_entry( | |
5781 | src_map, src_start, &tmp_entry)) | |
5782 | RETURN(KERN_INVALID_ADDRESS); | |
5783 | kfree((vm_offset_t)ptr, sizeof(submap_map_t)); | |
5784 | if(parent_maps == NULL) | |
5785 | map_share = FALSE; | |
5786 | src_entry = tmp_entry->vme_prev; | |
5787 | } else | |
5788 | break; | |
5789 | } | |
5790 | if ((src_start >= src_end) && (src_end != 0)) | |
5791 | break; | |
5792 | ||
5793 | /* | |
5794 | * Verify that there are no gaps in the region | |
5795 | */ | |
5796 | ||
5797 | tmp_entry = src_entry->vme_next; | |
5798 | if ((tmp_entry->vme_start != src_start) || | |
5799 | (tmp_entry == vm_map_to_entry(src_map))) | |
5800 | RETURN(KERN_INVALID_ADDRESS); | |
5801 | } | |
5802 | ||
5803 | /* | |
5804 | * If the source should be destroyed, do it now, since the | |
5805 | * copy was successful. | |
5806 | */ | |
5807 | if (src_destroy) { | |
5808 | (void) vm_map_delete(src_map, | |
5809 | trunc_page_32(src_addr), | |
5810 | src_end, | |
5811 | (src_map == kernel_map) ? | |
5812 | VM_MAP_REMOVE_KUNWIRE : | |
5813 | VM_MAP_NO_FLAGS); | |
5814 | } | |
5815 | ||
5816 | vm_map_unlock(src_map); | |
5817 | ||
5818 | /* Fix-up start and end points in copy. This is necessary */ | |
5819 | /* when the various entries in the copy object were picked */ | |
5820 | /* up from different sub-maps */ | |
5821 | ||
5822 | tmp_entry = vm_map_copy_first_entry(copy); | |
5823 | while (tmp_entry != vm_map_copy_to_entry(copy)) { | |
5824 | tmp_entry->vme_end = copy_addr + | |
5825 | (tmp_entry->vme_end - tmp_entry->vme_start); | |
5826 | tmp_entry->vme_start = copy_addr; | |
5827 | copy_addr += tmp_entry->vme_end - tmp_entry->vme_start; | |
5828 | tmp_entry = (struct vm_map_entry *)tmp_entry->vme_next; | |
5829 | } | |
5830 | ||
5831 | *copy_result = copy; | |
5832 | return(KERN_SUCCESS); | |
5833 | ||
5834 | #undef RETURN | |
5835 | } | |
5836 | ||
5837 | /* | |
5838 | * vm_map_copyin_object: | |
5839 | * | |
5840 | * Create a copy object from an object. | |
5841 | * Our caller donates an object reference. | |
5842 | */ | |
5843 | ||
5844 | kern_return_t | |
5845 | vm_map_copyin_object( | |
5846 | vm_object_t object, | |
5847 | vm_object_offset_t offset, /* offset of region in object */ | |
5848 | vm_object_size_t size, /* size of region in object */ | |
5849 | vm_map_copy_t *copy_result) /* OUT */ | |
5850 | { | |
5851 | vm_map_copy_t copy; /* Resulting copy */ | |
5852 | ||
5853 | /* | |
5854 | * We drop the object into a special copy object | |
5855 | * that contains the object directly. | |
5856 | */ | |
5857 | ||
5858 | copy = (vm_map_copy_t) zalloc(vm_map_copy_zone); | |
5859 | copy->type = VM_MAP_COPY_OBJECT; | |
5860 | copy->cpy_object = object; | |
5861 | copy->cpy_index = 0; | |
5862 | copy->offset = offset; | |
5863 | copy->size = size; | |
5864 | ||
5865 | *copy_result = copy; | |
5866 | return(KERN_SUCCESS); | |
5867 | } | |
5868 | ||
5869 | void | |
5870 | vm_map_fork_share( | |
5871 | vm_map_t old_map, | |
5872 | vm_map_entry_t old_entry, | |
5873 | vm_map_t new_map) | |
5874 | { | |
5875 | vm_object_t object; | |
5876 | vm_map_entry_t new_entry; | |
5877 | kern_return_t result; | |
5878 | ||
5879 | /* | |
5880 | * New sharing code. New map entry | |
5881 | * references original object. Internal | |
5882 | * objects use asynchronous copy algorithm for | |
5883 | * future copies. First make sure we have | |
5884 | * the right object. If we need a shadow, | |
5885 | * or someone else already has one, then | |
5886 | * make a new shadow and share it. | |
5887 | */ | |
5888 | ||
5889 | object = old_entry->object.vm_object; | |
5890 | if (old_entry->is_sub_map) { | |
5891 | assert(old_entry->wired_count == 0); | |
5892 | #ifndef i386 | |
5893 | if(old_entry->use_pmap) { | |
5894 | result = pmap_nest(new_map->pmap, | |
5895 | (old_entry->object.sub_map)->pmap, | |
5896 | (addr64_t)old_entry->vme_start, | |
5897 | (addr64_t)old_entry->vme_start, | |
5898 | (uint64_t)(old_entry->vme_end - old_entry->vme_start)); | |
5899 | if(result) | |
5900 | panic("vm_map_fork_share: pmap_nest failed!"); | |
5901 | } | |
5902 | #endif | |
5903 | } else if (object == VM_OBJECT_NULL) { | |
5904 | object = vm_object_allocate((vm_size_t)(old_entry->vme_end - | |
5905 | old_entry->vme_start)); | |
5906 | old_entry->offset = 0; | |
5907 | old_entry->object.vm_object = object; | |
5908 | assert(!old_entry->needs_copy); | |
5909 | } else if (object->copy_strategy != | |
5910 | MEMORY_OBJECT_COPY_SYMMETRIC) { | |
5911 | ||
5912 | /* | |
5913 | * We are already using an asymmetric | |
5914 | * copy, and therefore we already have | |
5915 | * the right object. | |
5916 | */ | |
5917 | ||
5918 | assert(! old_entry->needs_copy); | |
5919 | } | |
5920 | else if (old_entry->needs_copy || /* case 1 */ | |
5921 | object->shadowed || /* case 2 */ | |
5922 | (!object->true_share && /* case 3 */ | |
5923 | !old_entry->is_shared && | |
5924 | (object->size > | |
5925 | (vm_size_t)(old_entry->vme_end - | |
5926 | old_entry->vme_start)))) { | |
5927 | ||
5928 | /* | |
5929 | * We need to create a shadow. | |
5930 | * There are three cases here. | |
5931 | * In the first case, we need to | |
5932 | * complete a deferred symmetrical | |
5933 | * copy that we participated in. | |
5934 | * In the second and third cases, | |
5935 | * we need to create the shadow so | |
5936 | * that changes that we make to the | |
5937 | * object do not interfere with | |
5938 | * any symmetrical copies which | |
5939 | * have occured (case 2) or which | |
5940 | * might occur (case 3). | |
5941 | * | |
5942 | * The first case is when we had | |
5943 | * deferred shadow object creation | |
5944 | * via the entry->needs_copy mechanism. | |
5945 | * This mechanism only works when | |
5946 | * only one entry points to the source | |
5947 | * object, and we are about to create | |
5948 | * a second entry pointing to the | |
5949 | * same object. The problem is that | |
5950 | * there is no way of mapping from | |
5951 | * an object to the entries pointing | |
5952 | * to it. (Deferred shadow creation | |
5953 | * works with one entry because occurs | |
5954 | * at fault time, and we walk from the | |
5955 | * entry to the object when handling | |
5956 | * the fault.) | |
5957 | * | |
5958 | * The second case is when the object | |
5959 | * to be shared has already been copied | |
5960 | * with a symmetric copy, but we point | |
5961 | * directly to the object without | |
5962 | * needs_copy set in our entry. (This | |
5963 | * can happen because different ranges | |
5964 | * of an object can be pointed to by | |
5965 | * different entries. In particular, | |
5966 | * a single entry pointing to an object | |
5967 | * can be split by a call to vm_inherit, | |
5968 | * which, combined with task_create, can | |
5969 | * result in the different entries | |
5970 | * having different needs_copy values.) | |
5971 | * The shadowed flag in the object allows | |
5972 | * us to detect this case. The problem | |
5973 | * with this case is that if this object | |
5974 | * has or will have shadows, then we | |
5975 | * must not perform an asymmetric copy | |
5976 | * of this object, since such a copy | |
5977 | * allows the object to be changed, which | |
5978 | * will break the previous symmetrical | |
5979 | * copies (which rely upon the object | |
5980 | * not changing). In a sense, the shadowed | |
5981 | * flag says "don't change this object". | |
5982 | * We fix this by creating a shadow | |
5983 | * object for this object, and sharing | |
5984 | * that. This works because we are free | |
5985 | * to change the shadow object (and thus | |
5986 | * to use an asymmetric copy strategy); | |
5987 | * this is also semantically correct, | |
5988 | * since this object is temporary, and | |
5989 | * therefore a copy of the object is | |
5990 | * as good as the object itself. (This | |
5991 | * is not true for permanent objects, | |
5992 | * since the pager needs to see changes, | |
5993 | * which won't happen if the changes | |
5994 | * are made to a copy.) | |
5995 | * | |
5996 | * The third case is when the object | |
5997 | * to be shared has parts sticking | |
5998 | * outside of the entry we're working | |
5999 | * with, and thus may in the future | |
6000 | * be subject to a symmetrical copy. | |
6001 | * (This is a preemptive version of | |
6002 | * case 2.) | |
6003 | */ | |
6004 | ||
6005 | assert(!(object->shadowed && old_entry->is_shared)); | |
6006 | vm_object_shadow(&old_entry->object.vm_object, | |
6007 | &old_entry->offset, | |
6008 | (vm_size_t) (old_entry->vme_end - | |
6009 | old_entry->vme_start)); | |
6010 | ||
6011 | /* | |
6012 | * If we're making a shadow for other than | |
6013 | * copy on write reasons, then we have | |
6014 | * to remove write permission. | |
6015 | */ | |
6016 | ||
6017 | if (!old_entry->needs_copy && | |
6018 | (old_entry->protection & VM_PROT_WRITE)) { | |
6019 | if(old_map->mapped) { | |
6020 | vm_object_pmap_protect( | |
6021 | old_entry->object.vm_object, | |
6022 | old_entry->offset, | |
6023 | (old_entry->vme_end - | |
6024 | old_entry->vme_start), | |
6025 | PMAP_NULL, | |
6026 | old_entry->vme_start, | |
6027 | old_entry->protection & ~VM_PROT_WRITE); | |
6028 | } else { | |
6029 | pmap_protect(old_map->pmap, | |
6030 | old_entry->vme_start, | |
6031 | old_entry->vme_end, | |
6032 | old_entry->protection & ~VM_PROT_WRITE); | |
6033 | } | |
6034 | } | |
6035 | ||
6036 | old_entry->needs_copy = FALSE; | |
6037 | object = old_entry->object.vm_object; | |
6038 | } | |
6039 | ||
6040 | /* | |
6041 | * If object was using a symmetric copy strategy, | |
6042 | * change its copy strategy to the default | |
6043 | * asymmetric copy strategy, which is copy_delay | |
6044 | * in the non-norma case and copy_call in the | |
6045 | * norma case. Bump the reference count for the | |
6046 | * new entry. | |
6047 | */ | |
6048 | ||
6049 | if(old_entry->is_sub_map) { | |
6050 | vm_map_lock(old_entry->object.sub_map); | |
6051 | vm_map_reference(old_entry->object.sub_map); | |
6052 | vm_map_unlock(old_entry->object.sub_map); | |
6053 | } else { | |
6054 | vm_object_lock(object); | |
6055 | object->ref_count++; | |
6056 | vm_object_res_reference(object); | |
6057 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { | |
6058 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
6059 | } | |
6060 | vm_object_unlock(object); | |
6061 | } | |
6062 | ||
6063 | /* | |
6064 | * Clone the entry, using object ref from above. | |
6065 | * Mark both entries as shared. | |
6066 | */ | |
6067 | ||
6068 | new_entry = vm_map_entry_create(new_map); | |
6069 | vm_map_entry_copy(new_entry, old_entry); | |
6070 | old_entry->is_shared = TRUE; | |
6071 | new_entry->is_shared = TRUE; | |
6072 | ||
6073 | /* | |
6074 | * Insert the entry into the new map -- we | |
6075 | * know we're inserting at the end of the new | |
6076 | * map. | |
6077 | */ | |
6078 | ||
6079 | vm_map_entry_link(new_map, vm_map_last_entry(new_map), new_entry); | |
6080 | ||
6081 | /* | |
6082 | * Update the physical map | |
6083 | */ | |
6084 | ||
6085 | if (old_entry->is_sub_map) { | |
6086 | /* Bill Angell pmap support goes here */ | |
6087 | } else { | |
6088 | pmap_copy(new_map->pmap, old_map->pmap, new_entry->vme_start, | |
6089 | old_entry->vme_end - old_entry->vme_start, | |
6090 | old_entry->vme_start); | |
6091 | } | |
6092 | } | |
6093 | ||
6094 | boolean_t | |
6095 | vm_map_fork_copy( | |
6096 | vm_map_t old_map, | |
6097 | vm_map_entry_t *old_entry_p, | |
6098 | vm_map_t new_map) | |
6099 | { | |
6100 | vm_map_entry_t old_entry = *old_entry_p; | |
6101 | vm_size_t entry_size = old_entry->vme_end - old_entry->vme_start; | |
6102 | vm_offset_t start = old_entry->vme_start; | |
6103 | vm_map_copy_t copy; | |
6104 | vm_map_entry_t last = vm_map_last_entry(new_map); | |
6105 | ||
6106 | vm_map_unlock(old_map); | |
6107 | /* | |
6108 | * Use maxprot version of copyin because we | |
6109 | * care about whether this memory can ever | |
6110 | * be accessed, not just whether it's accessible | |
6111 | * right now. | |
6112 | */ | |
6113 | if (vm_map_copyin_maxprot(old_map, start, entry_size, FALSE, ©) | |
6114 | != KERN_SUCCESS) { | |
6115 | /* | |
6116 | * The map might have changed while it | |
6117 | * was unlocked, check it again. Skip | |
6118 | * any blank space or permanently | |
6119 | * unreadable region. | |
6120 | */ | |
6121 | vm_map_lock(old_map); | |
6122 | if (!vm_map_lookup_entry(old_map, start, &last) || | |
6123 | last->max_protection & VM_PROT_READ == | |
6124 | VM_PROT_NONE) { | |
6125 | last = last->vme_next; | |
6126 | } | |
6127 | *old_entry_p = last; | |
6128 | ||
6129 | /* | |
6130 | * XXX For some error returns, want to | |
6131 | * XXX skip to the next element. Note | |
6132 | * that INVALID_ADDRESS and | |
6133 | * PROTECTION_FAILURE are handled above. | |
6134 | */ | |
6135 | ||
6136 | return FALSE; | |
6137 | } | |
6138 | ||
6139 | /* | |
6140 | * Insert the copy into the new map | |
6141 | */ | |
6142 | ||
6143 | vm_map_copy_insert(new_map, last, copy); | |
6144 | ||
6145 | /* | |
6146 | * Pick up the traversal at the end of | |
6147 | * the copied region. | |
6148 | */ | |
6149 | ||
6150 | vm_map_lock(old_map); | |
6151 | start += entry_size; | |
6152 | if (! vm_map_lookup_entry(old_map, start, &last)) { | |
6153 | last = last->vme_next; | |
6154 | } else { | |
6155 | vm_map_clip_start(old_map, last, start); | |
6156 | } | |
6157 | *old_entry_p = last; | |
6158 | ||
6159 | return TRUE; | |
6160 | } | |
6161 | ||
6162 | /* | |
6163 | * vm_map_fork: | |
6164 | * | |
6165 | * Create and return a new map based on the old | |
6166 | * map, according to the inheritance values on the | |
6167 | * regions in that map. | |
6168 | * | |
6169 | * The source map must not be locked. | |
6170 | */ | |
6171 | vm_map_t | |
6172 | vm_map_fork( | |
6173 | vm_map_t old_map) | |
6174 | { | |
6175 | pmap_t new_pmap = pmap_create((vm_size_t) 0); | |
6176 | vm_map_t new_map; | |
6177 | vm_map_entry_t old_entry; | |
6178 | vm_size_t new_size = 0, entry_size; | |
6179 | vm_map_entry_t new_entry; | |
6180 | boolean_t src_needs_copy; | |
6181 | boolean_t new_entry_needs_copy; | |
6182 | ||
6183 | vm_map_reference_swap(old_map); | |
6184 | vm_map_lock(old_map); | |
6185 | ||
6186 | new_map = vm_map_create(new_pmap, | |
6187 | old_map->min_offset, | |
6188 | old_map->max_offset, | |
6189 | old_map->hdr.entries_pageable); | |
6190 | ||
6191 | for ( | |
6192 | old_entry = vm_map_first_entry(old_map); | |
6193 | old_entry != vm_map_to_entry(old_map); | |
6194 | ) { | |
6195 | ||
6196 | entry_size = old_entry->vme_end - old_entry->vme_start; | |
6197 | ||
6198 | switch (old_entry->inheritance) { | |
6199 | case VM_INHERIT_NONE: | |
6200 | break; | |
6201 | ||
6202 | case VM_INHERIT_SHARE: | |
6203 | vm_map_fork_share(old_map, old_entry, new_map); | |
6204 | new_size += entry_size; | |
6205 | break; | |
6206 | ||
6207 | case VM_INHERIT_COPY: | |
6208 | ||
6209 | /* | |
6210 | * Inline the copy_quickly case; | |
6211 | * upon failure, fall back on call | |
6212 | * to vm_map_fork_copy. | |
6213 | */ | |
6214 | ||
6215 | if(old_entry->is_sub_map) | |
6216 | break; | |
6217 | if ((old_entry->wired_count != 0) || | |
6218 | ((old_entry->object.vm_object != NULL) && | |
6219 | (old_entry->object.vm_object->true_share))) { | |
6220 | goto slow_vm_map_fork_copy; | |
6221 | } | |
6222 | ||
6223 | new_entry = vm_map_entry_create(new_map); | |
6224 | vm_map_entry_copy(new_entry, old_entry); | |
6225 | /* clear address space specifics */ | |
6226 | new_entry->use_pmap = FALSE; | |
6227 | ||
6228 | if (! vm_object_copy_quickly( | |
6229 | &new_entry->object.vm_object, | |
6230 | old_entry->offset, | |
6231 | (old_entry->vme_end - | |
6232 | old_entry->vme_start), | |
6233 | &src_needs_copy, | |
6234 | &new_entry_needs_copy)) { | |
6235 | vm_map_entry_dispose(new_map, new_entry); | |
6236 | goto slow_vm_map_fork_copy; | |
6237 | } | |
6238 | ||
6239 | /* | |
6240 | * Handle copy-on-write obligations | |
6241 | */ | |
6242 | ||
6243 | if (src_needs_copy && !old_entry->needs_copy) { | |
6244 | vm_object_pmap_protect( | |
6245 | old_entry->object.vm_object, | |
6246 | old_entry->offset, | |
6247 | (old_entry->vme_end - | |
6248 | old_entry->vme_start), | |
6249 | ((old_entry->is_shared | |
6250 | || old_map->mapped) | |
6251 | ? PMAP_NULL : | |
6252 | old_map->pmap), | |
6253 | old_entry->vme_start, | |
6254 | old_entry->protection & ~VM_PROT_WRITE); | |
6255 | ||
6256 | old_entry->needs_copy = TRUE; | |
6257 | } | |
6258 | new_entry->needs_copy = new_entry_needs_copy; | |
6259 | ||
6260 | /* | |
6261 | * Insert the entry at the end | |
6262 | * of the map. | |
6263 | */ | |
6264 | ||
6265 | vm_map_entry_link(new_map, vm_map_last_entry(new_map), | |
6266 | new_entry); | |
6267 | new_size += entry_size; | |
6268 | break; | |
6269 | ||
6270 | slow_vm_map_fork_copy: | |
6271 | if (vm_map_fork_copy(old_map, &old_entry, new_map)) { | |
6272 | new_size += entry_size; | |
6273 | } | |
6274 | continue; | |
6275 | } | |
6276 | old_entry = old_entry->vme_next; | |
6277 | } | |
6278 | ||
6279 | new_map->size = new_size; | |
6280 | vm_map_unlock(old_map); | |
6281 | vm_map_deallocate(old_map); | |
6282 | ||
6283 | return(new_map); | |
6284 | } | |
6285 | ||
6286 | ||
6287 | /* | |
6288 | * vm_map_lookup_locked: | |
6289 | * | |
6290 | * Finds the VM object, offset, and | |
6291 | * protection for a given virtual address in the | |
6292 | * specified map, assuming a page fault of the | |
6293 | * type specified. | |
6294 | * | |
6295 | * Returns the (object, offset, protection) for | |
6296 | * this address, whether it is wired down, and whether | |
6297 | * this map has the only reference to the data in question. | |
6298 | * In order to later verify this lookup, a "version" | |
6299 | * is returned. | |
6300 | * | |
6301 | * The map MUST be locked by the caller and WILL be | |
6302 | * locked on exit. In order to guarantee the | |
6303 | * existence of the returned object, it is returned | |
6304 | * locked. | |
6305 | * | |
6306 | * If a lookup is requested with "write protection" | |
6307 | * specified, the map may be changed to perform virtual | |
6308 | * copying operations, although the data referenced will | |
6309 | * remain the same. | |
6310 | */ | |
6311 | kern_return_t | |
6312 | vm_map_lookup_locked( | |
6313 | vm_map_t *var_map, /* IN/OUT */ | |
6314 | register vm_offset_t vaddr, | |
6315 | register vm_prot_t fault_type, | |
6316 | vm_map_version_t *out_version, /* OUT */ | |
6317 | vm_object_t *object, /* OUT */ | |
6318 | vm_object_offset_t *offset, /* OUT */ | |
6319 | vm_prot_t *out_prot, /* OUT */ | |
6320 | boolean_t *wired, /* OUT */ | |
6321 | int *behavior, /* OUT */ | |
6322 | vm_object_offset_t *lo_offset, /* OUT */ | |
6323 | vm_object_offset_t *hi_offset, /* OUT */ | |
6324 | vm_map_t *pmap_map) | |
6325 | { | |
6326 | vm_map_entry_t entry; | |
6327 | register vm_map_t map = *var_map; | |
6328 | vm_map_t old_map = *var_map; | |
6329 | vm_map_t cow_sub_map_parent = VM_MAP_NULL; | |
6330 | vm_offset_t cow_parent_vaddr; | |
6331 | vm_offset_t old_start; | |
6332 | vm_offset_t old_end; | |
6333 | register vm_prot_t prot; | |
6334 | ||
6335 | *pmap_map = map; | |
6336 | RetryLookup: ; | |
6337 | ||
6338 | /* | |
6339 | * If the map has an interesting hint, try it before calling | |
6340 | * full blown lookup routine. | |
6341 | */ | |
6342 | ||
6343 | mutex_lock(&map->s_lock); | |
6344 | entry = map->hint; | |
6345 | mutex_unlock(&map->s_lock); | |
6346 | ||
6347 | if ((entry == vm_map_to_entry(map)) || | |
6348 | (vaddr < entry->vme_start) || (vaddr >= entry->vme_end)) { | |
6349 | vm_map_entry_t tmp_entry; | |
6350 | ||
6351 | /* | |
6352 | * Entry was either not a valid hint, or the vaddr | |
6353 | * was not contained in the entry, so do a full lookup. | |
6354 | */ | |
6355 | if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { | |
6356 | if((cow_sub_map_parent) && (cow_sub_map_parent != map)) | |
6357 | vm_map_unlock(cow_sub_map_parent); | |
6358 | if((*pmap_map != map) | |
6359 | && (*pmap_map != cow_sub_map_parent)) | |
6360 | vm_map_unlock(*pmap_map); | |
6361 | return KERN_INVALID_ADDRESS; | |
6362 | } | |
6363 | ||
6364 | entry = tmp_entry; | |
6365 | } | |
6366 | if(map == old_map) { | |
6367 | old_start = entry->vme_start; | |
6368 | old_end = entry->vme_end; | |
6369 | } | |
6370 | ||
6371 | /* | |
6372 | * Handle submaps. Drop lock on upper map, submap is | |
6373 | * returned locked. | |
6374 | */ | |
6375 | ||
6376 | submap_recurse: | |
6377 | if (entry->is_sub_map) { | |
6378 | vm_offset_t local_vaddr; | |
6379 | vm_offset_t end_delta; | |
6380 | vm_offset_t start_delta; | |
6381 | vm_offset_t object_start_delta; | |
6382 | vm_map_entry_t submap_entry; | |
6383 | boolean_t mapped_needs_copy=FALSE; | |
6384 | ||
6385 | local_vaddr = vaddr; | |
6386 | ||
6387 | if ((!entry->needs_copy) && (entry->use_pmap)) { | |
6388 | /* if pmap_map equals map we unlock below */ | |
6389 | if ((*pmap_map != map) && | |
6390 | (*pmap_map != cow_sub_map_parent)) | |
6391 | vm_map_unlock(*pmap_map); | |
6392 | *pmap_map = entry->object.sub_map; | |
6393 | } | |
6394 | ||
6395 | if(entry->needs_copy) { | |
6396 | if (!mapped_needs_copy) { | |
6397 | if (vm_map_lock_read_to_write(map)) { | |
6398 | vm_map_lock_read(map); | |
6399 | if(*pmap_map == entry->object.sub_map) | |
6400 | *pmap_map = map; | |
6401 | goto RetryLookup; | |
6402 | } | |
6403 | vm_map_lock_read(entry->object.sub_map); | |
6404 | cow_sub_map_parent = map; | |
6405 | /* reset base to map before cow object */ | |
6406 | /* this is the map which will accept */ | |
6407 | /* the new cow object */ | |
6408 | old_start = entry->vme_start; | |
6409 | old_end = entry->vme_end; | |
6410 | cow_parent_vaddr = vaddr; | |
6411 | mapped_needs_copy = TRUE; | |
6412 | } else { | |
6413 | vm_map_lock_read(entry->object.sub_map); | |
6414 | if((cow_sub_map_parent != map) && | |
6415 | (*pmap_map != map)) | |
6416 | vm_map_unlock(map); | |
6417 | } | |
6418 | } else { | |
6419 | vm_map_lock_read(entry->object.sub_map); | |
6420 | /* leave map locked if it is a target */ | |
6421 | /* cow sub_map above otherwise, just */ | |
6422 | /* follow the maps down to the object */ | |
6423 | /* here we unlock knowing we are not */ | |
6424 | /* revisiting the map. */ | |
6425 | if((*pmap_map != map) && (map != cow_sub_map_parent)) | |
6426 | vm_map_unlock_read(map); | |
6427 | } | |
6428 | ||
6429 | *var_map = map = entry->object.sub_map; | |
6430 | ||
6431 | /* calculate the offset in the submap for vaddr */ | |
6432 | local_vaddr = (local_vaddr - entry->vme_start) + entry->offset; | |
6433 | ||
6434 | RetrySubMap: | |
6435 | if(!vm_map_lookup_entry(map, local_vaddr, &submap_entry)) { | |
6436 | if((cow_sub_map_parent) && (cow_sub_map_parent != map)){ | |
6437 | vm_map_unlock(cow_sub_map_parent); | |
6438 | } | |
6439 | if((*pmap_map != map) | |
6440 | && (*pmap_map != cow_sub_map_parent)) { | |
6441 | vm_map_unlock(*pmap_map); | |
6442 | } | |
6443 | *pmap_map = map; | |
6444 | return KERN_INVALID_ADDRESS; | |
6445 | } | |
6446 | /* find the attenuated shadow of the underlying object */ | |
6447 | /* on our target map */ | |
6448 | ||
6449 | /* in english the submap object may extend beyond the */ | |
6450 | /* region mapped by the entry or, may only fill a portion */ | |
6451 | /* of it. For our purposes, we only care if the object */ | |
6452 | /* doesn't fill. In this case the area which will */ | |
6453 | /* ultimately be clipped in the top map will only need */ | |
6454 | /* to be as big as the portion of the underlying entry */ | |
6455 | /* which is mapped */ | |
6456 | start_delta = submap_entry->vme_start > entry->offset ? | |
6457 | submap_entry->vme_start - entry->offset : 0; | |
6458 | ||
6459 | end_delta = | |
6460 | (entry->offset + start_delta + (old_end - old_start)) <= | |
6461 | submap_entry->vme_end ? | |
6462 | 0 : (entry->offset + | |
6463 | (old_end - old_start)) | |
6464 | - submap_entry->vme_end; | |
6465 | ||
6466 | old_start += start_delta; | |
6467 | old_end -= end_delta; | |
6468 | ||
6469 | if(submap_entry->is_sub_map) { | |
6470 | entry = submap_entry; | |
6471 | vaddr = local_vaddr; | |
6472 | goto submap_recurse; | |
6473 | } | |
6474 | ||
6475 | if(((fault_type & VM_PROT_WRITE) && cow_sub_map_parent)) { | |
6476 | ||
6477 | vm_object_t copy_object; | |
6478 | vm_offset_t local_start; | |
6479 | vm_offset_t local_end; | |
6480 | boolean_t copied_slowly = FALSE; | |
6481 | ||
6482 | if (vm_map_lock_read_to_write(map)) { | |
6483 | vm_map_lock_read(map); | |
6484 | old_start -= start_delta; | |
6485 | old_end += end_delta; | |
6486 | goto RetrySubMap; | |
6487 | } | |
6488 | ||
6489 | ||
6490 | if (submap_entry->object.vm_object == VM_OBJECT_NULL) { | |
6491 | submap_entry->object.vm_object = | |
6492 | vm_object_allocate( | |
6493 | (vm_size_t) | |
6494 | (submap_entry->vme_end | |
6495 | - submap_entry->vme_start)); | |
6496 | submap_entry->offset = 0; | |
6497 | } | |
6498 | local_start = local_vaddr - | |
6499 | (cow_parent_vaddr - old_start); | |
6500 | local_end = local_vaddr + | |
6501 | (old_end - cow_parent_vaddr); | |
6502 | vm_map_clip_start(map, submap_entry, local_start); | |
6503 | vm_map_clip_end(map, submap_entry, local_end); | |
6504 | ||
6505 | /* This is the COW case, lets connect */ | |
6506 | /* an entry in our space to the underlying */ | |
6507 | /* object in the submap, bypassing the */ | |
6508 | /* submap. */ | |
6509 | ||
6510 | ||
6511 | if(submap_entry->wired_count != 0) { | |
6512 | vm_object_lock( | |
6513 | submap_entry->object.vm_object); | |
6514 | vm_object_copy_slowly( | |
6515 | submap_entry->object.vm_object, | |
6516 | submap_entry->offset, | |
6517 | submap_entry->vme_end - | |
6518 | submap_entry->vme_start, | |
6519 | FALSE, | |
6520 | ©_object); | |
6521 | copied_slowly = TRUE; | |
6522 | } else { | |
6523 | ||
6524 | /* set up shadow object */ | |
6525 | copy_object = submap_entry->object.vm_object; | |
6526 | vm_object_reference(copy_object); | |
6527 | submap_entry->object.vm_object->shadowed = TRUE; | |
6528 | submap_entry->needs_copy = TRUE; | |
6529 | vm_object_pmap_protect( | |
6530 | submap_entry->object.vm_object, | |
6531 | submap_entry->offset, | |
6532 | submap_entry->vme_end - | |
6533 | submap_entry->vme_start, | |
6534 | (submap_entry->is_shared | |
6535 | || map->mapped) ? | |
6536 | PMAP_NULL : map->pmap, | |
6537 | submap_entry->vme_start, | |
6538 | submap_entry->protection & | |
6539 | ~VM_PROT_WRITE); | |
6540 | } | |
6541 | ||
6542 | ||
6543 | /* This works diffently than the */ | |
6544 | /* normal submap case. We go back */ | |
6545 | /* to the parent of the cow map and*/ | |
6546 | /* clip out the target portion of */ | |
6547 | /* the sub_map, substituting the */ | |
6548 | /* new copy object, */ | |
6549 | ||
6550 | vm_map_unlock(map); | |
6551 | local_start = old_start; | |
6552 | local_end = old_end; | |
6553 | map = cow_sub_map_parent; | |
6554 | *var_map = cow_sub_map_parent; | |
6555 | vaddr = cow_parent_vaddr; | |
6556 | cow_sub_map_parent = NULL; | |
6557 | ||
6558 | if(!vm_map_lookup_entry(map, | |
6559 | vaddr, &entry)) { | |
6560 | vm_object_deallocate( | |
6561 | copy_object); | |
6562 | vm_map_lock_write_to_read(map); | |
6563 | return KERN_INVALID_ADDRESS; | |
6564 | } | |
6565 | ||
6566 | /* clip out the portion of space */ | |
6567 | /* mapped by the sub map which */ | |
6568 | /* corresponds to the underlying */ | |
6569 | /* object */ | |
6570 | vm_map_clip_start(map, entry, local_start); | |
6571 | vm_map_clip_end(map, entry, local_end); | |
6572 | ||
6573 | ||
6574 | /* substitute copy object for */ | |
6575 | /* shared map entry */ | |
6576 | vm_map_deallocate(entry->object.sub_map); | |
6577 | entry->is_sub_map = FALSE; | |
6578 | entry->object.vm_object = copy_object; | |
6579 | ||
6580 | entry->protection |= VM_PROT_WRITE; | |
6581 | entry->max_protection |= VM_PROT_WRITE; | |
6582 | if(copied_slowly) { | |
6583 | entry->offset = 0; | |
6584 | entry->needs_copy = FALSE; | |
6585 | entry->is_shared = FALSE; | |
6586 | } else { | |
6587 | entry->offset = submap_entry->offset; | |
6588 | entry->needs_copy = TRUE; | |
6589 | if(entry->inheritance == VM_INHERIT_SHARE) | |
6590 | entry->inheritance = VM_INHERIT_COPY; | |
6591 | if (map != old_map) | |
6592 | entry->is_shared = TRUE; | |
6593 | } | |
6594 | if(entry->inheritance == VM_INHERIT_SHARE) | |
6595 | entry->inheritance = VM_INHERIT_COPY; | |
6596 | ||
6597 | vm_map_lock_write_to_read(map); | |
6598 | } else { | |
6599 | if((cow_sub_map_parent) | |
6600 | && (cow_sub_map_parent != *pmap_map) | |
6601 | && (cow_sub_map_parent != map)) { | |
6602 | vm_map_unlock(cow_sub_map_parent); | |
6603 | } | |
6604 | entry = submap_entry; | |
6605 | vaddr = local_vaddr; | |
6606 | } | |
6607 | } | |
6608 | ||
6609 | /* | |
6610 | * Check whether this task is allowed to have | |
6611 | * this page. | |
6612 | */ | |
6613 | ||
6614 | prot = entry->protection; | |
6615 | if ((fault_type & (prot)) != fault_type) { | |
6616 | if (*pmap_map != map) { | |
6617 | vm_map_unlock(*pmap_map); | |
6618 | } | |
6619 | *pmap_map = map; | |
6620 | return KERN_PROTECTION_FAILURE; | |
6621 | } | |
6622 | ||
6623 | /* | |
6624 | * If this page is not pageable, we have to get | |
6625 | * it for all possible accesses. | |
6626 | */ | |
6627 | ||
6628 | if (*wired = (entry->wired_count != 0)) | |
6629 | prot = fault_type = entry->protection; | |
6630 | ||
6631 | /* | |
6632 | * If the entry was copy-on-write, we either ... | |
6633 | */ | |
6634 | ||
6635 | if (entry->needs_copy) { | |
6636 | /* | |
6637 | * If we want to write the page, we may as well | |
6638 | * handle that now since we've got the map locked. | |
6639 | * | |
6640 | * If we don't need to write the page, we just | |
6641 | * demote the permissions allowed. | |
6642 | */ | |
6643 | ||
6644 | if (fault_type & VM_PROT_WRITE || *wired) { | |
6645 | /* | |
6646 | * Make a new object, and place it in the | |
6647 | * object chain. Note that no new references | |
6648 | * have appeared -- one just moved from the | |
6649 | * map to the new object. | |
6650 | */ | |
6651 | ||
6652 | if (vm_map_lock_read_to_write(map)) { | |
6653 | vm_map_lock_read(map); | |
6654 | goto RetryLookup; | |
6655 | } | |
6656 | vm_object_shadow(&entry->object.vm_object, | |
6657 | &entry->offset, | |
6658 | (vm_size_t) (entry->vme_end - | |
6659 | entry->vme_start)); | |
6660 | ||
6661 | entry->object.vm_object->shadowed = TRUE; | |
6662 | entry->needs_copy = FALSE; | |
6663 | vm_map_lock_write_to_read(map); | |
6664 | } | |
6665 | else { | |
6666 | /* | |
6667 | * We're attempting to read a copy-on-write | |
6668 | * page -- don't allow writes. | |
6669 | */ | |
6670 | ||
6671 | prot &= (~VM_PROT_WRITE); | |
6672 | } | |
6673 | } | |
6674 | ||
6675 | /* | |
6676 | * Create an object if necessary. | |
6677 | */ | |
6678 | if (entry->object.vm_object == VM_OBJECT_NULL) { | |
6679 | ||
6680 | if (vm_map_lock_read_to_write(map)) { | |
6681 | vm_map_lock_read(map); | |
6682 | goto RetryLookup; | |
6683 | } | |
6684 | ||
6685 | entry->object.vm_object = vm_object_allocate( | |
6686 | (vm_size_t)(entry->vme_end - entry->vme_start)); | |
6687 | entry->offset = 0; | |
6688 | vm_map_lock_write_to_read(map); | |
6689 | } | |
6690 | ||
6691 | /* | |
6692 | * Return the object/offset from this entry. If the entry | |
6693 | * was copy-on-write or empty, it has been fixed up. Also | |
6694 | * return the protection. | |
6695 | */ | |
6696 | ||
6697 | *offset = (vaddr - entry->vme_start) + entry->offset; | |
6698 | *object = entry->object.vm_object; | |
6699 | *out_prot = prot; | |
6700 | *behavior = entry->behavior; | |
6701 | *lo_offset = entry->offset; | |
6702 | *hi_offset = (entry->vme_end - entry->vme_start) + entry->offset; | |
6703 | ||
6704 | /* | |
6705 | * Lock the object to prevent it from disappearing | |
6706 | */ | |
6707 | ||
6708 | vm_object_lock(*object); | |
6709 | ||
6710 | /* | |
6711 | * Save the version number | |
6712 | */ | |
6713 | ||
6714 | out_version->main_timestamp = map->timestamp; | |
6715 | ||
6716 | return KERN_SUCCESS; | |
6717 | } | |
6718 | ||
6719 | ||
6720 | /* | |
6721 | * vm_map_verify: | |
6722 | * | |
6723 | * Verifies that the map in question has not changed | |
6724 | * since the given version. If successful, the map | |
6725 | * will not change until vm_map_verify_done() is called. | |
6726 | */ | |
6727 | boolean_t | |
6728 | vm_map_verify( | |
6729 | register vm_map_t map, | |
6730 | register vm_map_version_t *version) /* REF */ | |
6731 | { | |
6732 | boolean_t result; | |
6733 | ||
6734 | vm_map_lock_read(map); | |
6735 | result = (map->timestamp == version->main_timestamp); | |
6736 | ||
6737 | if (!result) | |
6738 | vm_map_unlock_read(map); | |
6739 | ||
6740 | return(result); | |
6741 | } | |
6742 | ||
6743 | /* | |
6744 | * vm_map_verify_done: | |
6745 | * | |
6746 | * Releases locks acquired by a vm_map_verify. | |
6747 | * | |
6748 | * This is now a macro in vm/vm_map.h. It does a | |
6749 | * vm_map_unlock_read on the map. | |
6750 | */ | |
6751 | ||
6752 | ||
6753 | /* | |
6754 | * vm_region: | |
6755 | * | |
6756 | * User call to obtain information about a region in | |
6757 | * a task's address map. Currently, only one flavor is | |
6758 | * supported. | |
6759 | * | |
6760 | * XXX The reserved and behavior fields cannot be filled | |
6761 | * in until the vm merge from the IK is completed, and | |
6762 | * vm_reserve is implemented. | |
6763 | * | |
6764 | * XXX Dependency: syscall_vm_region() also supports only one flavor. | |
6765 | */ | |
6766 | ||
6767 | kern_return_t | |
6768 | vm_region( | |
6769 | vm_map_t map, | |
6770 | vm_offset_t *address, /* IN/OUT */ | |
6771 | vm_size_t *size, /* OUT */ | |
6772 | vm_region_flavor_t flavor, /* IN */ | |
6773 | vm_region_info_t info, /* OUT */ | |
6774 | mach_msg_type_number_t *count, /* IN/OUT */ | |
6775 | ipc_port_t *object_name) /* OUT */ | |
6776 | { | |
6777 | vm_map_entry_t tmp_entry; | |
6778 | register | |
6779 | vm_map_entry_t entry; | |
6780 | register | |
6781 | vm_offset_t start; | |
6782 | vm_region_basic_info_t basic; | |
6783 | vm_region_extended_info_t extended; | |
6784 | vm_region_top_info_t top; | |
6785 | ||
6786 | if (map == VM_MAP_NULL) | |
6787 | return(KERN_INVALID_ARGUMENT); | |
6788 | ||
6789 | switch (flavor) { | |
6790 | ||
6791 | case VM_REGION_BASIC_INFO: | |
6792 | { | |
6793 | if (*count < VM_REGION_BASIC_INFO_COUNT) | |
6794 | return(KERN_INVALID_ARGUMENT); | |
6795 | ||
6796 | basic = (vm_region_basic_info_t) info; | |
6797 | *count = VM_REGION_BASIC_INFO_COUNT; | |
6798 | ||
6799 | vm_map_lock_read(map); | |
6800 | ||
6801 | start = *address; | |
6802 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
6803 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { | |
6804 | vm_map_unlock_read(map); | |
6805 | return(KERN_INVALID_ADDRESS); | |
6806 | } | |
6807 | } else { | |
6808 | entry = tmp_entry; | |
6809 | } | |
6810 | ||
6811 | start = entry->vme_start; | |
6812 | ||
6813 | basic->offset = entry->offset; | |
6814 | basic->protection = entry->protection; | |
6815 | basic->inheritance = entry->inheritance; | |
6816 | basic->max_protection = entry->max_protection; | |
6817 | basic->behavior = entry->behavior; | |
6818 | basic->user_wired_count = entry->user_wired_count; | |
6819 | basic->reserved = entry->is_sub_map; | |
6820 | *address = start; | |
6821 | *size = (entry->vme_end - start); | |
6822 | ||
6823 | if (object_name) *object_name = IP_NULL; | |
6824 | if (entry->is_sub_map) { | |
6825 | basic->shared = FALSE; | |
6826 | } else { | |
6827 | basic->shared = entry->is_shared; | |
6828 | } | |
6829 | ||
6830 | vm_map_unlock_read(map); | |
6831 | return(KERN_SUCCESS); | |
6832 | } | |
6833 | case VM_REGION_EXTENDED_INFO: | |
6834 | { | |
6835 | ||
6836 | if (*count < VM_REGION_EXTENDED_INFO_COUNT) | |
6837 | return(KERN_INVALID_ARGUMENT); | |
6838 | ||
6839 | extended = (vm_region_extended_info_t) info; | |
6840 | *count = VM_REGION_EXTENDED_INFO_COUNT; | |
6841 | ||
6842 | vm_map_lock_read(map); | |
6843 | ||
6844 | start = *address; | |
6845 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
6846 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { | |
6847 | vm_map_unlock_read(map); | |
6848 | return(KERN_INVALID_ADDRESS); | |
6849 | } | |
6850 | } else { | |
6851 | entry = tmp_entry; | |
6852 | } | |
6853 | start = entry->vme_start; | |
6854 | ||
6855 | extended->protection = entry->protection; | |
6856 | extended->user_tag = entry->alias; | |
6857 | extended->pages_resident = 0; | |
6858 | extended->pages_swapped_out = 0; | |
6859 | extended->pages_shared_now_private = 0; | |
6860 | extended->pages_dirtied = 0; | |
6861 | extended->external_pager = 0; | |
6862 | extended->shadow_depth = 0; | |
6863 | ||
6864 | vm_region_walk(entry, extended, entry->offset, entry->vme_end - start, map, start); | |
6865 | ||
6866 | if (extended->external_pager && extended->ref_count == 2 && extended->share_mode == SM_SHARED) | |
6867 | extended->share_mode = SM_PRIVATE; | |
6868 | ||
6869 | if (object_name) | |
6870 | *object_name = IP_NULL; | |
6871 | *address = start; | |
6872 | *size = (entry->vme_end - start); | |
6873 | ||
6874 | vm_map_unlock_read(map); | |
6875 | return(KERN_SUCCESS); | |
6876 | } | |
6877 | case VM_REGION_TOP_INFO: | |
6878 | { | |
6879 | ||
6880 | if (*count < VM_REGION_TOP_INFO_COUNT) | |
6881 | return(KERN_INVALID_ARGUMENT); | |
6882 | ||
6883 | top = (vm_region_top_info_t) info; | |
6884 | *count = VM_REGION_TOP_INFO_COUNT; | |
6885 | ||
6886 | vm_map_lock_read(map); | |
6887 | ||
6888 | start = *address; | |
6889 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
6890 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { | |
6891 | vm_map_unlock_read(map); | |
6892 | return(KERN_INVALID_ADDRESS); | |
6893 | } | |
6894 | } else { | |
6895 | entry = tmp_entry; | |
6896 | ||
6897 | } | |
6898 | start = entry->vme_start; | |
6899 | ||
6900 | top->private_pages_resident = 0; | |
6901 | top->shared_pages_resident = 0; | |
6902 | ||
6903 | vm_region_top_walk(entry, top); | |
6904 | ||
6905 | if (object_name) | |
6906 | *object_name = IP_NULL; | |
6907 | *address = start; | |
6908 | *size = (entry->vme_end - start); | |
6909 | ||
6910 | vm_map_unlock_read(map); | |
6911 | return(KERN_SUCCESS); | |
6912 | } | |
6913 | default: | |
6914 | return(KERN_INVALID_ARGUMENT); | |
6915 | } | |
6916 | } | |
6917 | ||
6918 | /* | |
6919 | * vm_region_recurse: A form of vm_region which follows the | |
6920 | * submaps in a target map | |
6921 | * | |
6922 | */ | |
6923 | ||
6924 | kern_return_t | |
6925 | vm_region_recurse( | |
6926 | vm_map_t map, | |
6927 | vm_offset_t *address, /* IN/OUT */ | |
6928 | vm_size_t *size, /* OUT */ | |
6929 | natural_t *nesting_depth, /* IN/OUT */ | |
6930 | vm_region_recurse_info_t info, /* IN/OUT */ | |
6931 | mach_msg_type_number_t *count) /* IN/OUT */ | |
6932 | { | |
6933 | vm_map_entry_t tmp_entry; | |
6934 | register | |
6935 | vm_map_entry_t entry; | |
6936 | register | |
6937 | vm_offset_t start; | |
6938 | ||
6939 | unsigned int recurse_count; | |
6940 | vm_map_t submap; | |
6941 | vm_map_t base_map; | |
6942 | vm_map_entry_t base_entry; | |
6943 | vm_offset_t base_next; | |
6944 | vm_offset_t base_addr; | |
6945 | vm_offset_t baddr_start_delta; | |
6946 | vm_region_submap_info_t submap_info; | |
6947 | vm_region_extended_info_data_t extended; | |
6948 | ||
6949 | if (map == VM_MAP_NULL) | |
6950 | return(KERN_INVALID_ARGUMENT); | |
6951 | ||
6952 | submap_info = (vm_region_submap_info_t) info; | |
6953 | *count = VM_REGION_SUBMAP_INFO_COUNT; | |
6954 | ||
6955 | if (*count < VM_REGION_SUBMAP_INFO_COUNT) | |
6956 | return(KERN_INVALID_ARGUMENT); | |
6957 | ||
6958 | start = *address; | |
6959 | base_map = map; | |
6960 | recurse_count = *nesting_depth; | |
6961 | ||
6962 | LOOKUP_NEXT_BASE_ENTRY: | |
6963 | vm_map_lock_read(map); | |
6964 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
6965 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { | |
6966 | vm_map_unlock_read(map); | |
6967 | return(KERN_INVALID_ADDRESS); | |
6968 | } | |
6969 | } else { | |
6970 | entry = tmp_entry; | |
6971 | } | |
6972 | *size = entry->vme_end - entry->vme_start; | |
6973 | start = entry->vme_start; | |
6974 | base_addr = start; | |
6975 | baddr_start_delta = *address - start; | |
6976 | base_next = entry->vme_end; | |
6977 | base_entry = entry; | |
6978 | ||
6979 | while(entry->is_sub_map && recurse_count) { | |
6980 | recurse_count--; | |
6981 | vm_map_lock_read(entry->object.sub_map); | |
6982 | ||
6983 | ||
6984 | if(entry == base_entry) { | |
6985 | start = entry->offset; | |
6986 | start += *address - entry->vme_start; | |
6987 | } | |
6988 | ||
6989 | submap = entry->object.sub_map; | |
6990 | vm_map_unlock_read(map); | |
6991 | map = submap; | |
6992 | ||
6993 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
6994 | if ((entry = tmp_entry->vme_next) | |
6995 | == vm_map_to_entry(map)) { | |
6996 | vm_map_unlock_read(map); | |
6997 | map = base_map; | |
6998 | start = base_next; | |
6999 | recurse_count = 0; | |
7000 | *nesting_depth = 0; | |
7001 | goto LOOKUP_NEXT_BASE_ENTRY; | |
7002 | } | |
7003 | } else { | |
7004 | entry = tmp_entry; | |
7005 | ||
7006 | } | |
7007 | if(start <= entry->vme_start) { | |
7008 | vm_offset_t old_start = start; | |
7009 | if(baddr_start_delta) { | |
7010 | base_addr += (baddr_start_delta); | |
7011 | *size -= baddr_start_delta; | |
7012 | baddr_start_delta = 0; | |
7013 | } | |
7014 | if(base_next <= | |
7015 | (base_addr += (entry->vme_start - start))) { | |
7016 | vm_map_unlock_read(map); | |
7017 | map = base_map; | |
7018 | start = base_next; | |
7019 | recurse_count = 0; | |
7020 | *nesting_depth = 0; | |
7021 | goto LOOKUP_NEXT_BASE_ENTRY; | |
7022 | } | |
7023 | *size -= entry->vme_start - start; | |
7024 | if (*size > (entry->vme_end - entry->vme_start)) { | |
7025 | *size = entry->vme_end - entry->vme_start; | |
7026 | } | |
7027 | start = 0; | |
7028 | } else { | |
7029 | if(baddr_start_delta) { | |
7030 | if((start - entry->vme_start) | |
7031 | < baddr_start_delta) { | |
7032 | base_addr += start - entry->vme_start; | |
7033 | *size -= start - entry->vme_start; | |
7034 | } else { | |
7035 | base_addr += baddr_start_delta; | |
7036 | *size += baddr_start_delta; | |
7037 | } | |
7038 | baddr_start_delta = 0; | |
7039 | } | |
7040 | base_addr += entry->vme_start; | |
7041 | if(base_addr >= base_next) { | |
7042 | vm_map_unlock_read(map); | |
7043 | map = base_map; | |
7044 | start = base_next; | |
7045 | recurse_count = 0; | |
7046 | *nesting_depth = 0; | |
7047 | goto LOOKUP_NEXT_BASE_ENTRY; | |
7048 | } | |
7049 | if (*size > (entry->vme_end - start)) | |
7050 | *size = entry->vme_end - start; | |
7051 | ||
7052 | start = entry->vme_start - start; | |
7053 | } | |
7054 | ||
7055 | start += entry->offset; | |
7056 | ||
7057 | } | |
7058 | *nesting_depth -= recurse_count; | |
7059 | if(entry != base_entry) { | |
7060 | start = entry->vme_start + (start - entry->offset); | |
7061 | } | |
7062 | ||
7063 | ||
7064 | submap_info->user_tag = entry->alias; | |
7065 | submap_info->offset = entry->offset; | |
7066 | submap_info->protection = entry->protection; | |
7067 | submap_info->inheritance = entry->inheritance; | |
7068 | submap_info->max_protection = entry->max_protection; | |
7069 | submap_info->behavior = entry->behavior; | |
7070 | submap_info->user_wired_count = entry->user_wired_count; | |
7071 | submap_info->is_submap = entry->is_sub_map; | |
7072 | submap_info->object_id = (vm_offset_t)entry->object.vm_object; | |
7073 | *address = base_addr; | |
7074 | ||
7075 | ||
7076 | extended.pages_resident = 0; | |
7077 | extended.pages_swapped_out = 0; | |
7078 | extended.pages_shared_now_private = 0; | |
7079 | extended.pages_dirtied = 0; | |
7080 | extended.external_pager = 0; | |
7081 | extended.shadow_depth = 0; | |
7082 | ||
7083 | if(!entry->is_sub_map) { | |
7084 | vm_region_walk(entry, &extended, entry->offset, | |
7085 | entry->vme_end - start, map, start); | |
7086 | submap_info->share_mode = extended.share_mode; | |
7087 | if (extended.external_pager && extended.ref_count == 2 | |
7088 | && extended.share_mode == SM_SHARED) | |
7089 | submap_info->share_mode = SM_PRIVATE; | |
7090 | submap_info->ref_count = extended.ref_count; | |
7091 | } else { | |
7092 | if(entry->use_pmap) | |
7093 | submap_info->share_mode = SM_TRUESHARED; | |
7094 | else | |
7095 | submap_info->share_mode = SM_PRIVATE; | |
7096 | submap_info->ref_count = entry->object.sub_map->ref_count; | |
7097 | } | |
7098 | ||
7099 | submap_info->pages_resident = extended.pages_resident; | |
7100 | submap_info->pages_swapped_out = extended.pages_swapped_out; | |
7101 | submap_info->pages_shared_now_private = | |
7102 | extended.pages_shared_now_private; | |
7103 | submap_info->pages_dirtied = extended.pages_dirtied; | |
7104 | submap_info->external_pager = extended.external_pager; | |
7105 | submap_info->shadow_depth = extended.shadow_depth; | |
7106 | ||
7107 | vm_map_unlock_read(map); | |
7108 | return(KERN_SUCCESS); | |
7109 | } | |
7110 | ||
7111 | /* | |
7112 | * TEMPORARYTEMPORARYTEMPORARYTEMPORARYTEMPORARYTEMPORARY | |
7113 | * Goes away after regular vm_region_recurse function migrates to | |
7114 | * 64 bits | |
7115 | * vm_region_recurse: A form of vm_region which follows the | |
7116 | * submaps in a target map | |
7117 | * | |
7118 | */ | |
7119 | ||
7120 | kern_return_t | |
7121 | vm_region_recurse_64( | |
7122 | vm_map_t map, | |
7123 | vm_offset_t *address, /* IN/OUT */ | |
7124 | vm_size_t *size, /* OUT */ | |
7125 | natural_t *nesting_depth, /* IN/OUT */ | |
7126 | vm_region_recurse_info_t info, /* IN/OUT */ | |
7127 | mach_msg_type_number_t *count) /* IN/OUT */ | |
7128 | { | |
7129 | vm_map_entry_t tmp_entry; | |
7130 | register | |
7131 | vm_map_entry_t entry; | |
7132 | register | |
7133 | vm_offset_t start; | |
7134 | ||
7135 | unsigned int recurse_count; | |
7136 | vm_map_t submap; | |
7137 | vm_map_t base_map; | |
7138 | vm_map_entry_t base_entry; | |
7139 | vm_offset_t base_next; | |
7140 | vm_offset_t base_addr; | |
7141 | vm_offset_t baddr_start_delta; | |
7142 | vm_region_submap_info_64_t submap_info; | |
7143 | vm_region_extended_info_data_t extended; | |
7144 | ||
7145 | if (map == VM_MAP_NULL) | |
7146 | return(KERN_INVALID_ARGUMENT); | |
7147 | ||
7148 | submap_info = (vm_region_submap_info_64_t) info; | |
7149 | *count = VM_REGION_SUBMAP_INFO_COUNT; | |
7150 | ||
7151 | if (*count < VM_REGION_SUBMAP_INFO_COUNT) | |
7152 | return(KERN_INVALID_ARGUMENT); | |
7153 | ||
7154 | start = *address; | |
7155 | base_map = map; | |
7156 | recurse_count = *nesting_depth; | |
7157 | ||
7158 | LOOKUP_NEXT_BASE_ENTRY: | |
7159 | vm_map_lock_read(map); | |
7160 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
7161 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { | |
7162 | vm_map_unlock_read(map); | |
7163 | return(KERN_INVALID_ADDRESS); | |
7164 | } | |
7165 | } else { | |
7166 | entry = tmp_entry; | |
7167 | } | |
7168 | *size = entry->vme_end - entry->vme_start; | |
7169 | start = entry->vme_start; | |
7170 | base_addr = start; | |
7171 | baddr_start_delta = *address - start; | |
7172 | base_next = entry->vme_end; | |
7173 | base_entry = entry; | |
7174 | ||
7175 | while(entry->is_sub_map && recurse_count) { | |
7176 | recurse_count--; | |
7177 | vm_map_lock_read(entry->object.sub_map); | |
7178 | ||
7179 | ||
7180 | if(entry == base_entry) { | |
7181 | start = entry->offset; | |
7182 | start += *address - entry->vme_start; | |
7183 | } | |
7184 | ||
7185 | submap = entry->object.sub_map; | |
7186 | vm_map_unlock_read(map); | |
7187 | map = submap; | |
7188 | ||
7189 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
7190 | if ((entry = tmp_entry->vme_next) | |
7191 | == vm_map_to_entry(map)) { | |
7192 | vm_map_unlock_read(map); | |
7193 | map = base_map; | |
7194 | start = base_next; | |
7195 | recurse_count = 0; | |
7196 | *nesting_depth = 0; | |
7197 | goto LOOKUP_NEXT_BASE_ENTRY; | |
7198 | } | |
7199 | } else { | |
7200 | entry = tmp_entry; | |
7201 | ||
7202 | } | |
7203 | if(start <= entry->vme_start) { | |
7204 | vm_offset_t old_start = start; | |
7205 | if(baddr_start_delta) { | |
7206 | base_addr += (baddr_start_delta); | |
7207 | *size -= baddr_start_delta; | |
7208 | baddr_start_delta = 0; | |
7209 | } | |
7210 | if(base_next <= | |
7211 | (base_addr += (entry->vme_start - start))) { | |
7212 | vm_map_unlock_read(map); | |
7213 | map = base_map; | |
7214 | start = base_next; | |
7215 | recurse_count = 0; | |
7216 | *nesting_depth = 0; | |
7217 | goto LOOKUP_NEXT_BASE_ENTRY; | |
7218 | } | |
7219 | *size -= entry->vme_start - start; | |
7220 | if (*size > (entry->vme_end - entry->vme_start)) { | |
7221 | *size = entry->vme_end - entry->vme_start; | |
7222 | } | |
7223 | start = 0; | |
7224 | } else { | |
7225 | if(baddr_start_delta) { | |
7226 | if((start - entry->vme_start) | |
7227 | < baddr_start_delta) { | |
7228 | base_addr += start - entry->vme_start; | |
7229 | *size -= start - entry->vme_start; | |
7230 | } else { | |
7231 | base_addr += baddr_start_delta; | |
7232 | *size += baddr_start_delta; | |
7233 | } | |
7234 | baddr_start_delta = 0; | |
7235 | } | |
7236 | base_addr += entry->vme_start; | |
7237 | if(base_addr >= base_next) { | |
7238 | vm_map_unlock_read(map); | |
7239 | map = base_map; | |
7240 | start = base_next; | |
7241 | recurse_count = 0; | |
7242 | *nesting_depth = 0; | |
7243 | goto LOOKUP_NEXT_BASE_ENTRY; | |
7244 | } | |
7245 | if (*size > (entry->vme_end - start)) | |
7246 | *size = entry->vme_end - start; | |
7247 | ||
7248 | start = entry->vme_start - start; | |
7249 | } | |
7250 | ||
7251 | start += entry->offset; | |
7252 | ||
7253 | } | |
7254 | *nesting_depth -= recurse_count; | |
7255 | if(entry != base_entry) { | |
7256 | start = entry->vme_start + (start - entry->offset); | |
7257 | } | |
7258 | ||
7259 | ||
7260 | submap_info->user_tag = entry->alias; | |
7261 | submap_info->offset = entry->offset; | |
7262 | submap_info->protection = entry->protection; | |
7263 | submap_info->inheritance = entry->inheritance; | |
7264 | submap_info->max_protection = entry->max_protection; | |
7265 | submap_info->behavior = entry->behavior; | |
7266 | submap_info->user_wired_count = entry->user_wired_count; | |
7267 | submap_info->is_submap = entry->is_sub_map; | |
7268 | submap_info->object_id = (vm_offset_t)entry->object.vm_object; | |
7269 | *address = base_addr; | |
7270 | ||
7271 | ||
7272 | extended.pages_resident = 0; | |
7273 | extended.pages_swapped_out = 0; | |
7274 | extended.pages_shared_now_private = 0; | |
7275 | extended.pages_dirtied = 0; | |
7276 | extended.external_pager = 0; | |
7277 | extended.shadow_depth = 0; | |
7278 | ||
7279 | if(!entry->is_sub_map) { | |
7280 | vm_region_walk(entry, &extended, entry->offset, | |
7281 | entry->vme_end - start, map, start); | |
7282 | submap_info->share_mode = extended.share_mode; | |
7283 | if (extended.external_pager && extended.ref_count == 2 | |
7284 | && extended.share_mode == SM_SHARED) | |
7285 | submap_info->share_mode = SM_PRIVATE; | |
7286 | submap_info->ref_count = extended.ref_count; | |
7287 | } else { | |
7288 | if(entry->use_pmap) | |
7289 | submap_info->share_mode = SM_TRUESHARED; | |
7290 | else | |
7291 | submap_info->share_mode = SM_PRIVATE; | |
7292 | submap_info->ref_count = entry->object.sub_map->ref_count; | |
7293 | } | |
7294 | ||
7295 | submap_info->pages_resident = extended.pages_resident; | |
7296 | submap_info->pages_swapped_out = extended.pages_swapped_out; | |
7297 | submap_info->pages_shared_now_private = | |
7298 | extended.pages_shared_now_private; | |
7299 | submap_info->pages_dirtied = extended.pages_dirtied; | |
7300 | submap_info->external_pager = extended.external_pager; | |
7301 | submap_info->shadow_depth = extended.shadow_depth; | |
7302 | ||
7303 | vm_map_unlock_read(map); | |
7304 | return(KERN_SUCCESS); | |
7305 | } | |
7306 | ||
7307 | ||
7308 | /* | |
7309 | * TEMPORARYTEMPORARYTEMPORARYTEMPORARYTEMPORARYTEMPORARY | |
7310 | * Goes away after regular vm_region function migrates to | |
7311 | * 64 bits | |
7312 | */ | |
7313 | ||
7314 | ||
7315 | kern_return_t | |
7316 | vm_region_64( | |
7317 | vm_map_t map, | |
7318 | vm_offset_t *address, /* IN/OUT */ | |
7319 | vm_size_t *size, /* OUT */ | |
7320 | vm_region_flavor_t flavor, /* IN */ | |
7321 | vm_region_info_t info, /* OUT */ | |
7322 | mach_msg_type_number_t *count, /* IN/OUT */ | |
7323 | ipc_port_t *object_name) /* OUT */ | |
7324 | { | |
7325 | vm_map_entry_t tmp_entry; | |
7326 | register | |
7327 | vm_map_entry_t entry; | |
7328 | register | |
7329 | vm_offset_t start; | |
7330 | vm_region_basic_info_64_t basic; | |
7331 | vm_region_extended_info_t extended; | |
7332 | vm_region_top_info_t top; | |
7333 | ||
7334 | if (map == VM_MAP_NULL) | |
7335 | return(KERN_INVALID_ARGUMENT); | |
7336 | ||
7337 | switch (flavor) { | |
7338 | ||
7339 | case VM_REGION_BASIC_INFO: | |
7340 | { | |
7341 | if (*count < VM_REGION_BASIC_INFO_COUNT) | |
7342 | return(KERN_INVALID_ARGUMENT); | |
7343 | ||
7344 | basic = (vm_region_basic_info_64_t) info; | |
7345 | *count = VM_REGION_BASIC_INFO_COUNT; | |
7346 | ||
7347 | vm_map_lock_read(map); | |
7348 | ||
7349 | start = *address; | |
7350 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
7351 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { | |
7352 | vm_map_unlock_read(map); | |
7353 | return(KERN_INVALID_ADDRESS); | |
7354 | } | |
7355 | } else { | |
7356 | entry = tmp_entry; | |
7357 | } | |
7358 | ||
7359 | start = entry->vme_start; | |
7360 | ||
7361 | basic->offset = entry->offset; | |
7362 | basic->protection = entry->protection; | |
7363 | basic->inheritance = entry->inheritance; | |
7364 | basic->max_protection = entry->max_protection; | |
7365 | basic->behavior = entry->behavior; | |
7366 | basic->user_wired_count = entry->user_wired_count; | |
7367 | basic->reserved = entry->is_sub_map; | |
7368 | *address = start; | |
7369 | *size = (entry->vme_end - start); | |
7370 | ||
7371 | if (object_name) *object_name = IP_NULL; | |
7372 | if (entry->is_sub_map) { | |
7373 | basic->shared = FALSE; | |
7374 | } else { | |
7375 | basic->shared = entry->is_shared; | |
7376 | } | |
7377 | ||
7378 | vm_map_unlock_read(map); | |
7379 | return(KERN_SUCCESS); | |
7380 | } | |
7381 | case VM_REGION_EXTENDED_INFO: | |
7382 | { | |
7383 | ||
7384 | if (*count < VM_REGION_EXTENDED_INFO_COUNT) | |
7385 | return(KERN_INVALID_ARGUMENT); | |
7386 | ||
7387 | extended = (vm_region_extended_info_t) info; | |
7388 | *count = VM_REGION_EXTENDED_INFO_COUNT; | |
7389 | ||
7390 | vm_map_lock_read(map); | |
7391 | ||
7392 | start = *address; | |
7393 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
7394 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { | |
7395 | vm_map_unlock_read(map); | |
7396 | return(KERN_INVALID_ADDRESS); | |
7397 | } | |
7398 | } else { | |
7399 | entry = tmp_entry; | |
7400 | } | |
7401 | start = entry->vme_start; | |
7402 | ||
7403 | extended->protection = entry->protection; | |
7404 | extended->user_tag = entry->alias; | |
7405 | extended->pages_resident = 0; | |
7406 | extended->pages_swapped_out = 0; | |
7407 | extended->pages_shared_now_private = 0; | |
7408 | extended->pages_dirtied = 0; | |
7409 | extended->external_pager = 0; | |
7410 | extended->shadow_depth = 0; | |
7411 | ||
7412 | vm_region_walk(entry, extended, entry->offset, entry->vme_end - start, map, start); | |
7413 | ||
7414 | if (extended->external_pager && extended->ref_count == 2 && extended->share_mode == SM_SHARED) | |
7415 | extended->share_mode = SM_PRIVATE; | |
7416 | ||
7417 | if (object_name) | |
7418 | *object_name = IP_NULL; | |
7419 | *address = start; | |
7420 | *size = (entry->vme_end - start); | |
7421 | ||
7422 | vm_map_unlock_read(map); | |
7423 | return(KERN_SUCCESS); | |
7424 | } | |
7425 | case VM_REGION_TOP_INFO: | |
7426 | { | |
7427 | ||
7428 | if (*count < VM_REGION_TOP_INFO_COUNT) | |
7429 | return(KERN_INVALID_ARGUMENT); | |
7430 | ||
7431 | top = (vm_region_top_info_t) info; | |
7432 | *count = VM_REGION_TOP_INFO_COUNT; | |
7433 | ||
7434 | vm_map_lock_read(map); | |
7435 | ||
7436 | start = *address; | |
7437 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
7438 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { | |
7439 | vm_map_unlock_read(map); | |
7440 | return(KERN_INVALID_ADDRESS); | |
7441 | } | |
7442 | } else { | |
7443 | entry = tmp_entry; | |
7444 | ||
7445 | } | |
7446 | start = entry->vme_start; | |
7447 | ||
7448 | top->private_pages_resident = 0; | |
7449 | top->shared_pages_resident = 0; | |
7450 | ||
7451 | vm_region_top_walk(entry, top); | |
7452 | ||
7453 | if (object_name) | |
7454 | *object_name = IP_NULL; | |
7455 | *address = start; | |
7456 | *size = (entry->vme_end - start); | |
7457 | ||
7458 | vm_map_unlock_read(map); | |
7459 | return(KERN_SUCCESS); | |
7460 | } | |
7461 | default: | |
7462 | return(KERN_INVALID_ARGUMENT); | |
7463 | } | |
7464 | } | |
7465 | ||
7466 | void | |
7467 | vm_region_top_walk( | |
7468 | vm_map_entry_t entry, | |
7469 | vm_region_top_info_t top) | |
7470 | { | |
7471 | register struct vm_object *obj, *tmp_obj; | |
7472 | register int ref_count; | |
7473 | ||
7474 | if (entry->object.vm_object == 0 || entry->is_sub_map) { | |
7475 | top->share_mode = SM_EMPTY; | |
7476 | top->ref_count = 0; | |
7477 | top->obj_id = 0; | |
7478 | return; | |
7479 | } | |
7480 | { | |
7481 | obj = entry->object.vm_object; | |
7482 | ||
7483 | vm_object_lock(obj); | |
7484 | ||
7485 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) | |
7486 | ref_count--; | |
7487 | ||
7488 | if (obj->shadow) { | |
7489 | if (ref_count == 1) | |
7490 | top->private_pages_resident = obj->resident_page_count; | |
7491 | else | |
7492 | top->shared_pages_resident = obj->resident_page_count; | |
7493 | top->ref_count = ref_count; | |
7494 | top->share_mode = SM_COW; | |
7495 | ||
7496 | while (tmp_obj = obj->shadow) { | |
7497 | vm_object_lock(tmp_obj); | |
7498 | vm_object_unlock(obj); | |
7499 | obj = tmp_obj; | |
7500 | ||
7501 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) | |
7502 | ref_count--; | |
7503 | ||
7504 | top->shared_pages_resident += obj->resident_page_count; | |
7505 | top->ref_count += ref_count - 1; | |
7506 | } | |
7507 | } else { | |
7508 | if (entry->needs_copy) { | |
7509 | top->share_mode = SM_COW; | |
7510 | top->shared_pages_resident = obj->resident_page_count; | |
7511 | } else { | |
7512 | if (ref_count == 1 || | |
7513 | (ref_count == 2 && !(obj->pager_trusted) && !(obj->internal))) { | |
7514 | top->share_mode = SM_PRIVATE; | |
7515 | top->private_pages_resident = obj->resident_page_count; | |
7516 | } else { | |
7517 | top->share_mode = SM_SHARED; | |
7518 | top->shared_pages_resident = obj->resident_page_count; | |
7519 | } | |
7520 | } | |
7521 | top->ref_count = ref_count; | |
7522 | } | |
7523 | top->obj_id = (int)obj; | |
7524 | ||
7525 | vm_object_unlock(obj); | |
7526 | } | |
7527 | } | |
7528 | ||
7529 | void | |
7530 | vm_region_walk( | |
7531 | vm_map_entry_t entry, | |
7532 | vm_region_extended_info_t extended, | |
7533 | vm_object_offset_t offset, | |
7534 | vm_offset_t range, | |
7535 | vm_map_t map, | |
7536 | vm_offset_t va) | |
7537 | { | |
7538 | register struct vm_object *obj, *tmp_obj; | |
7539 | register vm_offset_t last_offset; | |
7540 | register int i; | |
7541 | register int ref_count; | |
7542 | void vm_region_look_for_page(); | |
7543 | ||
7544 | if ((entry->object.vm_object == 0) || | |
7545 | (entry->is_sub_map) || | |
7546 | (entry->object.vm_object->phys_contiguous)) { | |
7547 | extended->share_mode = SM_EMPTY; | |
7548 | extended->ref_count = 0; | |
7549 | return; | |
7550 | } | |
7551 | { | |
7552 | obj = entry->object.vm_object; | |
7553 | ||
7554 | vm_object_lock(obj); | |
7555 | ||
7556 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) | |
7557 | ref_count--; | |
7558 | ||
7559 | for (last_offset = offset + range; offset < last_offset; offset += PAGE_SIZE_64, va += PAGE_SIZE) | |
7560 | vm_region_look_for_page(obj, extended, offset, ref_count, 0, map, va); | |
7561 | ||
7562 | if (extended->shadow_depth || entry->needs_copy) | |
7563 | extended->share_mode = SM_COW; | |
7564 | else { | |
7565 | if (ref_count == 1) | |
7566 | extended->share_mode = SM_PRIVATE; | |
7567 | else { | |
7568 | if (obj->true_share) | |
7569 | extended->share_mode = SM_TRUESHARED; | |
7570 | else | |
7571 | extended->share_mode = SM_SHARED; | |
7572 | } | |
7573 | } | |
7574 | extended->ref_count = ref_count - extended->shadow_depth; | |
7575 | ||
7576 | for (i = 0; i < extended->shadow_depth; i++) { | |
7577 | if ((tmp_obj = obj->shadow) == 0) | |
7578 | break; | |
7579 | vm_object_lock(tmp_obj); | |
7580 | vm_object_unlock(obj); | |
7581 | ||
7582 | if ((ref_count = tmp_obj->ref_count) > 1 && tmp_obj->paging_in_progress) | |
7583 | ref_count--; | |
7584 | ||
7585 | extended->ref_count += ref_count; | |
7586 | obj = tmp_obj; | |
7587 | } | |
7588 | vm_object_unlock(obj); | |
7589 | ||
7590 | if (extended->share_mode == SM_SHARED) { | |
7591 | register vm_map_entry_t cur; | |
7592 | register vm_map_entry_t last; | |
7593 | int my_refs; | |
7594 | ||
7595 | obj = entry->object.vm_object; | |
7596 | last = vm_map_to_entry(map); | |
7597 | my_refs = 0; | |
7598 | ||
7599 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) | |
7600 | ref_count--; | |
7601 | for (cur = vm_map_first_entry(map); cur != last; cur = cur->vme_next) | |
7602 | my_refs += vm_region_count_obj_refs(cur, obj); | |
7603 | ||
7604 | if (my_refs == ref_count) | |
7605 | extended->share_mode = SM_PRIVATE_ALIASED; | |
7606 | else if (my_refs > 1) | |
7607 | extended->share_mode = SM_SHARED_ALIASED; | |
7608 | } | |
7609 | } | |
7610 | } | |
7611 | ||
7612 | ||
7613 | /* object is locked on entry and locked on return */ | |
7614 | ||
7615 | ||
7616 | void | |
7617 | vm_region_look_for_page( | |
7618 | vm_object_t object, | |
7619 | vm_region_extended_info_t extended, | |
7620 | vm_object_offset_t offset, | |
7621 | int max_refcnt, | |
7622 | int depth, | |
7623 | vm_map_t map, | |
7624 | vm_offset_t va) | |
7625 | { | |
7626 | register vm_page_t p; | |
7627 | register vm_object_t shadow; | |
7628 | register int ref_count; | |
7629 | vm_object_t caller_object; | |
7630 | ||
7631 | shadow = object->shadow; | |
7632 | caller_object = object; | |
7633 | ||
7634 | ||
7635 | while (TRUE) { | |
7636 | ||
7637 | if ( !(object->pager_trusted) && !(object->internal)) | |
7638 | extended->external_pager = 1; | |
7639 | ||
7640 | if ((p = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { | |
7641 | if (shadow && (max_refcnt == 1)) | |
7642 | extended->pages_shared_now_private++; | |
7643 | ||
7644 | if (!p->fictitious && | |
7645 | (p->dirty || pmap_is_modified(p->phys_page))) | |
7646 | extended->pages_dirtied++; | |
7647 | extended->pages_resident++; | |
7648 | ||
7649 | if(object != caller_object) | |
7650 | vm_object_unlock(object); | |
7651 | ||
7652 | return; | |
7653 | } | |
7654 | if (object->existence_map) { | |
7655 | if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_EXISTS) { | |
7656 | ||
7657 | extended->pages_swapped_out++; | |
7658 | ||
7659 | if(object != caller_object) | |
7660 | vm_object_unlock(object); | |
7661 | ||
7662 | return; | |
7663 | } | |
7664 | } | |
7665 | if (shadow) { | |
7666 | vm_object_lock(shadow); | |
7667 | ||
7668 | if ((ref_count = shadow->ref_count) > 1 && shadow->paging_in_progress) | |
7669 | ref_count--; | |
7670 | ||
7671 | if (++depth > extended->shadow_depth) | |
7672 | extended->shadow_depth = depth; | |
7673 | ||
7674 | if (ref_count > max_refcnt) | |
7675 | max_refcnt = ref_count; | |
7676 | ||
7677 | if(object != caller_object) | |
7678 | vm_object_unlock(object); | |
7679 | ||
7680 | object = shadow; | |
7681 | shadow = object->shadow; | |
7682 | offset = offset + object->shadow_offset; | |
7683 | continue; | |
7684 | } | |
7685 | if(object != caller_object) | |
7686 | vm_object_unlock(object); | |
7687 | break; | |
7688 | } | |
7689 | } | |
7690 | ||
7691 | ||
7692 | vm_region_count_obj_refs( | |
7693 | vm_map_entry_t entry, | |
7694 | vm_object_t object) | |
7695 | { | |
7696 | register int ref_count; | |
7697 | register vm_object_t chk_obj; | |
7698 | register vm_object_t tmp_obj; | |
7699 | ||
7700 | if (entry->object.vm_object == 0) | |
7701 | return(0); | |
7702 | ||
7703 | if (entry->is_sub_map) | |
7704 | return(0); | |
7705 | else { | |
7706 | ref_count = 0; | |
7707 | ||
7708 | chk_obj = entry->object.vm_object; | |
7709 | vm_object_lock(chk_obj); | |
7710 | ||
7711 | while (chk_obj) { | |
7712 | if (chk_obj == object) | |
7713 | ref_count++; | |
7714 | if (tmp_obj = chk_obj->shadow) | |
7715 | vm_object_lock(tmp_obj); | |
7716 | vm_object_unlock(chk_obj); | |
7717 | ||
7718 | chk_obj = tmp_obj; | |
7719 | } | |
7720 | } | |
7721 | return(ref_count); | |
7722 | } | |
7723 | ||
7724 | ||
7725 | /* | |
7726 | * Routine: vm_map_simplify | |
7727 | * | |
7728 | * Description: | |
7729 | * Attempt to simplify the map representation in | |
7730 | * the vicinity of the given starting address. | |
7731 | * Note: | |
7732 | * This routine is intended primarily to keep the | |
7733 | * kernel maps more compact -- they generally don't | |
7734 | * benefit from the "expand a map entry" technology | |
7735 | * at allocation time because the adjacent entry | |
7736 | * is often wired down. | |
7737 | */ | |
7738 | void | |
7739 | vm_map_simplify( | |
7740 | vm_map_t map, | |
7741 | vm_offset_t start) | |
7742 | { | |
7743 | vm_map_entry_t this_entry; | |
7744 | vm_map_entry_t prev_entry; | |
7745 | vm_map_entry_t next_entry; | |
7746 | ||
7747 | vm_map_lock(map); | |
7748 | if ( | |
7749 | (vm_map_lookup_entry(map, start, &this_entry)) && | |
7750 | ((prev_entry = this_entry->vme_prev) != vm_map_to_entry(map)) && | |
7751 | ||
7752 | (prev_entry->vme_end == this_entry->vme_start) && | |
7753 | ||
7754 | (prev_entry->is_shared == FALSE) && | |
7755 | (prev_entry->is_sub_map == FALSE) && | |
7756 | ||
7757 | (this_entry->is_shared == FALSE) && | |
7758 | (this_entry->is_sub_map == FALSE) && | |
7759 | ||
7760 | (prev_entry->inheritance == this_entry->inheritance) && | |
7761 | (prev_entry->protection == this_entry->protection) && | |
7762 | (prev_entry->max_protection == this_entry->max_protection) && | |
7763 | (prev_entry->behavior == this_entry->behavior) && | |
7764 | (prev_entry->wired_count == this_entry->wired_count) && | |
7765 | (prev_entry->user_wired_count == this_entry->user_wired_count)&& | |
7766 | (prev_entry->in_transition == FALSE) && | |
7767 | (this_entry->in_transition == FALSE) && | |
7768 | ||
7769 | (prev_entry->needs_copy == this_entry->needs_copy) && | |
7770 | ||
7771 | (prev_entry->object.vm_object == this_entry->object.vm_object)&& | |
7772 | ((prev_entry->offset + | |
7773 | (prev_entry->vme_end - prev_entry->vme_start)) | |
7774 | == this_entry->offset) | |
7775 | ) { | |
7776 | SAVE_HINT(map, prev_entry); | |
7777 | vm_map_entry_unlink(map, this_entry); | |
7778 | prev_entry->vme_end = this_entry->vme_end; | |
7779 | UPDATE_FIRST_FREE(map, map->first_free); | |
7780 | vm_object_deallocate(this_entry->object.vm_object); | |
7781 | vm_map_entry_dispose(map, this_entry); | |
7782 | counter(c_vm_map_simplified_lower++); | |
7783 | } | |
7784 | if ( | |
7785 | (vm_map_lookup_entry(map, start, &this_entry)) && | |
7786 | ((next_entry = this_entry->vme_next) != vm_map_to_entry(map)) && | |
7787 | ||
7788 | (next_entry->vme_start == this_entry->vme_end) && | |
7789 | ||
7790 | (next_entry->is_shared == FALSE) && | |
7791 | (next_entry->is_sub_map == FALSE) && | |
7792 | ||
7793 | (next_entry->is_shared == FALSE) && | |
7794 | (next_entry->is_sub_map == FALSE) && | |
7795 | ||
7796 | (next_entry->inheritance == this_entry->inheritance) && | |
7797 | (next_entry->protection == this_entry->protection) && | |
7798 | (next_entry->max_protection == this_entry->max_protection) && | |
7799 | (next_entry->behavior == this_entry->behavior) && | |
7800 | (next_entry->wired_count == this_entry->wired_count) && | |
7801 | (next_entry->user_wired_count == this_entry->user_wired_count)&& | |
7802 | (this_entry->in_transition == FALSE) && | |
7803 | (next_entry->in_transition == FALSE) && | |
7804 | ||
7805 | (next_entry->needs_copy == this_entry->needs_copy) && | |
7806 | ||
7807 | (next_entry->object.vm_object == this_entry->object.vm_object)&& | |
7808 | ((this_entry->offset + | |
7809 | (this_entry->vme_end - this_entry->vme_start)) | |
7810 | == next_entry->offset) | |
7811 | ) { | |
7812 | vm_map_entry_unlink(map, next_entry); | |
7813 | this_entry->vme_end = next_entry->vme_end; | |
7814 | UPDATE_FIRST_FREE(map, map->first_free); | |
7815 | vm_object_deallocate(next_entry->object.vm_object); | |
7816 | vm_map_entry_dispose(map, next_entry); | |
7817 | counter(c_vm_map_simplified_upper++); | |
7818 | } | |
7819 | counter(c_vm_map_simplify_called++); | |
7820 | vm_map_unlock(map); | |
7821 | } | |
7822 | ||
7823 | ||
7824 | /* | |
7825 | * Routine: vm_map_machine_attribute | |
7826 | * Purpose: | |
7827 | * Provide machine-specific attributes to mappings, | |
7828 | * such as cachability etc. for machines that provide | |
7829 | * them. NUMA architectures and machines with big/strange | |
7830 | * caches will use this. | |
7831 | * Note: | |
7832 | * Responsibilities for locking and checking are handled here, | |
7833 | * everything else in the pmap module. If any non-volatile | |
7834 | * information must be kept, the pmap module should handle | |
7835 | * it itself. [This assumes that attributes do not | |
7836 | * need to be inherited, which seems ok to me] | |
7837 | */ | |
7838 | kern_return_t | |
7839 | vm_map_machine_attribute( | |
7840 | vm_map_t map, | |
7841 | vm_offset_t address, | |
7842 | vm_size_t size, | |
7843 | vm_machine_attribute_t attribute, | |
7844 | vm_machine_attribute_val_t* value) /* IN/OUT */ | |
7845 | { | |
7846 | kern_return_t ret; | |
7847 | vm_size_t sync_size; | |
7848 | vm_offset_t start; | |
7849 | vm_map_entry_t entry; | |
7850 | ||
7851 | if (address < vm_map_min(map) || | |
7852 | (address + size) > vm_map_max(map)) | |
7853 | return KERN_INVALID_ADDRESS; | |
7854 | ||
7855 | vm_map_lock(map); | |
7856 | ||
7857 | if (attribute != MATTR_CACHE) { | |
7858 | /* If we don't have to find physical addresses, we */ | |
7859 | /* don't have to do an explicit traversal here. */ | |
7860 | ret = pmap_attribute(map->pmap, | |
7861 | address, size, attribute, value); | |
7862 | vm_map_unlock(map); | |
7863 | return ret; | |
7864 | } | |
7865 | ||
7866 | /* Get the starting address */ | |
7867 | start = trunc_page_32(address); | |
7868 | /* Figure how much memory we need to flush (in page increments) */ | |
7869 | sync_size = round_page_32(start + size) - start; | |
7870 | ||
7871 | ||
7872 | ret = KERN_SUCCESS; /* Assume it all worked */ | |
7873 | ||
7874 | while(sync_size) { | |
7875 | if (vm_map_lookup_entry(map, start, &entry)) { | |
7876 | vm_size_t sub_size; | |
7877 | if((entry->vme_end - start) > sync_size) { | |
7878 | sub_size = sync_size; | |
7879 | sync_size = 0; | |
7880 | } else { | |
7881 | sub_size = entry->vme_end - start; | |
7882 | sync_size -= sub_size; | |
7883 | } | |
7884 | if(entry->is_sub_map) { | |
7885 | vm_map_machine_attribute( | |
7886 | entry->object.sub_map, | |
7887 | (start - entry->vme_start) | |
7888 | + entry->offset, | |
7889 | sub_size, | |
7890 | attribute, value); | |
7891 | } else { | |
7892 | if(entry->object.vm_object) { | |
7893 | vm_page_t m; | |
7894 | vm_object_t object; | |
7895 | vm_object_t base_object; | |
7896 | vm_object_offset_t offset; | |
7897 | vm_object_offset_t base_offset; | |
7898 | vm_size_t range; | |
7899 | range = sub_size; | |
7900 | offset = (start - entry->vme_start) | |
7901 | + entry->offset; | |
7902 | base_offset = offset; | |
7903 | object = entry->object.vm_object; | |
7904 | base_object = object; | |
7905 | while(range) { | |
7906 | m = vm_page_lookup( | |
7907 | object, offset); | |
7908 | if(m && !m->fictitious) { | |
7909 | ||
7910 | ret = | |
7911 | pmap_attribute_cache_sync( | |
7912 | m->phys_page, | |
7913 | PAGE_SIZE, | |
7914 | attribute, value); | |
7915 | } else if (object->shadow) { | |
7916 | offset = offset + | |
7917 | object->shadow_offset; | |
7918 | object = object->shadow; | |
7919 | continue; | |
7920 | } | |
7921 | range -= PAGE_SIZE; | |
7922 | /* Bump to the next page */ | |
7923 | base_offset += PAGE_SIZE; | |
7924 | offset = base_offset; | |
7925 | object = base_object; | |
7926 | ||
7927 | } | |
7928 | } | |
7929 | } | |
7930 | start += sub_size; | |
7931 | } else { | |
7932 | vm_map_unlock(map); | |
7933 | return KERN_FAILURE; | |
7934 | } | |
7935 | ||
7936 | } | |
7937 | ||
7938 | vm_map_unlock(map); | |
7939 | ||
7940 | return ret; | |
7941 | } | |
7942 | ||
7943 | /* | |
7944 | * vm_map_behavior_set: | |
7945 | * | |
7946 | * Sets the paging reference behavior of the specified address | |
7947 | * range in the target map. Paging reference behavior affects | |
7948 | * how pagein operations resulting from faults on the map will be | |
7949 | * clustered. | |
7950 | */ | |
7951 | kern_return_t | |
7952 | vm_map_behavior_set( | |
7953 | vm_map_t map, | |
7954 | vm_offset_t start, | |
7955 | vm_offset_t end, | |
7956 | vm_behavior_t new_behavior) | |
7957 | { | |
7958 | register vm_map_entry_t entry; | |
7959 | vm_map_entry_t temp_entry; | |
7960 | ||
7961 | XPR(XPR_VM_MAP, | |
7962 | "vm_map_behavior_set, 0x%X start 0x%X end 0x%X behavior %d", | |
7963 | (integer_t)map, start, end, new_behavior, 0); | |
7964 | ||
7965 | switch (new_behavior) { | |
7966 | case VM_BEHAVIOR_DEFAULT: | |
7967 | case VM_BEHAVIOR_RANDOM: | |
7968 | case VM_BEHAVIOR_SEQUENTIAL: | |
7969 | case VM_BEHAVIOR_RSEQNTL: | |
7970 | break; | |
7971 | case VM_BEHAVIOR_WILLNEED: | |
7972 | case VM_BEHAVIOR_DONTNEED: | |
7973 | new_behavior = VM_BEHAVIOR_DEFAULT; | |
7974 | break; | |
7975 | default: | |
7976 | return(KERN_INVALID_ARGUMENT); | |
7977 | } | |
7978 | ||
7979 | vm_map_lock(map); | |
7980 | ||
7981 | /* | |
7982 | * The entire address range must be valid for the map. | |
7983 | * Note that vm_map_range_check() does a | |
7984 | * vm_map_lookup_entry() internally and returns the | |
7985 | * entry containing the start of the address range if | |
7986 | * the entire range is valid. | |
7987 | */ | |
7988 | if (vm_map_range_check(map, start, end, &temp_entry)) { | |
7989 | entry = temp_entry; | |
7990 | vm_map_clip_start(map, entry, start); | |
7991 | } | |
7992 | else { | |
7993 | vm_map_unlock(map); | |
7994 | return(KERN_INVALID_ADDRESS); | |
7995 | } | |
7996 | ||
7997 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { | |
7998 | vm_map_clip_end(map, entry, end); | |
7999 | ||
8000 | entry->behavior = new_behavior; | |
8001 | ||
8002 | entry = entry->vme_next; | |
8003 | } | |
8004 | ||
8005 | vm_map_unlock(map); | |
8006 | return(KERN_SUCCESS); | |
8007 | } | |
8008 | ||
8009 | ||
8010 | #include <mach_kdb.h> | |
8011 | #if MACH_KDB | |
8012 | #include <ddb/db_output.h> | |
8013 | #include <vm/vm_print.h> | |
8014 | ||
8015 | #define printf db_printf | |
8016 | ||
8017 | /* | |
8018 | * Forward declarations for internal functions. | |
8019 | */ | |
8020 | extern void vm_map_links_print( | |
8021 | struct vm_map_links *links); | |
8022 | ||
8023 | extern void vm_map_header_print( | |
8024 | struct vm_map_header *header); | |
8025 | ||
8026 | extern void vm_map_entry_print( | |
8027 | vm_map_entry_t entry); | |
8028 | ||
8029 | extern void vm_follow_entry( | |
8030 | vm_map_entry_t entry); | |
8031 | ||
8032 | extern void vm_follow_map( | |
8033 | vm_map_t map); | |
8034 | ||
8035 | /* | |
8036 | * vm_map_links_print: [ debug ] | |
8037 | */ | |
8038 | void | |
8039 | vm_map_links_print( | |
8040 | struct vm_map_links *links) | |
8041 | { | |
8042 | iprintf("prev = %08X next = %08X start = %08X end = %08X\n", | |
8043 | links->prev, | |
8044 | links->next, | |
8045 | links->start, | |
8046 | links->end); | |
8047 | } | |
8048 | ||
8049 | /* | |
8050 | * vm_map_header_print: [ debug ] | |
8051 | */ | |
8052 | void | |
8053 | vm_map_header_print( | |
8054 | struct vm_map_header *header) | |
8055 | { | |
8056 | vm_map_links_print(&header->links); | |
8057 | iprintf("nentries = %08X, %sentries_pageable\n", | |
8058 | header->nentries, | |
8059 | (header->entries_pageable ? "" : "!")); | |
8060 | } | |
8061 | ||
8062 | /* | |
8063 | * vm_follow_entry: [ debug ] | |
8064 | */ | |
8065 | void | |
8066 | vm_follow_entry( | |
8067 | vm_map_entry_t entry) | |
8068 | { | |
8069 | extern int db_indent; | |
8070 | int shadows; | |
8071 | ||
8072 | iprintf("map entry %08X\n", entry); | |
8073 | ||
8074 | db_indent += 2; | |
8075 | ||
8076 | shadows = vm_follow_object(entry->object.vm_object); | |
8077 | iprintf("Total objects : %d\n",shadows); | |
8078 | ||
8079 | db_indent -= 2; | |
8080 | } | |
8081 | ||
8082 | /* | |
8083 | * vm_map_entry_print: [ debug ] | |
8084 | */ | |
8085 | void | |
8086 | vm_map_entry_print( | |
8087 | register vm_map_entry_t entry) | |
8088 | { | |
8089 | extern int db_indent; | |
8090 | static char *inheritance_name[4] = { "share", "copy", "none", "?"}; | |
8091 | static char *behavior_name[4] = { "dflt", "rand", "seqtl", "rseqntl" }; | |
8092 | ||
8093 | iprintf("map entry %08X n", entry); | |
8094 | ||
8095 | db_indent += 2; | |
8096 | ||
8097 | vm_map_links_print(&entry->links); | |
8098 | ||
8099 | iprintf("start = %08X end = %08X, prot=%x/%x/%s\n", | |
8100 | entry->vme_start, | |
8101 | entry->vme_end, | |
8102 | entry->protection, | |
8103 | entry->max_protection, | |
8104 | inheritance_name[(entry->inheritance & 0x3)]); | |
8105 | ||
8106 | iprintf("behavior = %s, wired_count = %d, user_wired_count = %d\n", | |
8107 | behavior_name[(entry->behavior & 0x3)], | |
8108 | entry->wired_count, | |
8109 | entry->user_wired_count); | |
8110 | iprintf("%sin_transition, %sneeds_wakeup\n", | |
8111 | (entry->in_transition ? "" : "!"), | |
8112 | (entry->needs_wakeup ? "" : "!")); | |
8113 | ||
8114 | if (entry->is_sub_map) { | |
8115 | iprintf("submap = %08X - offset=%08X\n", | |
8116 | entry->object.sub_map, | |
8117 | entry->offset); | |
8118 | } else { | |
8119 | iprintf("object=%08X, offset=%08X, ", | |
8120 | entry->object.vm_object, | |
8121 | entry->offset); | |
8122 | printf("%sis_shared, %sneeds_copy\n", | |
8123 | (entry->is_shared ? "" : "!"), | |
8124 | (entry->needs_copy ? "" : "!")); | |
8125 | } | |
8126 | ||
8127 | db_indent -= 2; | |
8128 | } | |
8129 | ||
8130 | /* | |
8131 | * vm_follow_map: [ debug ] | |
8132 | */ | |
8133 | void | |
8134 | vm_follow_map( | |
8135 | vm_map_t map) | |
8136 | { | |
8137 | register vm_map_entry_t entry; | |
8138 | extern int db_indent; | |
8139 | ||
8140 | iprintf("task map %08X\n", map); | |
8141 | ||
8142 | db_indent += 2; | |
8143 | ||
8144 | for (entry = vm_map_first_entry(map); | |
8145 | entry && entry != vm_map_to_entry(map); | |
8146 | entry = entry->vme_next) { | |
8147 | vm_follow_entry(entry); | |
8148 | } | |
8149 | ||
8150 | db_indent -= 2; | |
8151 | } | |
8152 | ||
8153 | /* | |
8154 | * vm_map_print: [ debug ] | |
8155 | */ | |
8156 | void | |
8157 | vm_map_print( | |
8158 | db_addr_t inmap) | |
8159 | { | |
8160 | register vm_map_entry_t entry; | |
8161 | vm_map_t map; | |
8162 | extern int db_indent; | |
8163 | char *swstate; | |
8164 | ||
8165 | map = (vm_map_t)inmap; /* Make sure we have the right type */ | |
8166 | ||
8167 | iprintf("task map %08X\n", map); | |
8168 | ||
8169 | db_indent += 2; | |
8170 | ||
8171 | vm_map_header_print(&map->hdr); | |
8172 | ||
8173 | iprintf("pmap = %08X, size = %08X, ref = %d, hint = %08X, first_free = %08X\n", | |
8174 | map->pmap, | |
8175 | map->size, | |
8176 | map->ref_count, | |
8177 | map->hint, | |
8178 | map->first_free); | |
8179 | ||
8180 | iprintf("%swait_for_space, %swiring_required, timestamp = %d\n", | |
8181 | (map->wait_for_space ? "" : "!"), | |
8182 | (map->wiring_required ? "" : "!"), | |
8183 | map->timestamp); | |
8184 | ||
8185 | #if TASK_SWAPPER | |
8186 | switch (map->sw_state) { | |
8187 | case MAP_SW_IN: | |
8188 | swstate = "SW_IN"; | |
8189 | break; | |
8190 | case MAP_SW_OUT: | |
8191 | swstate = "SW_OUT"; | |
8192 | break; | |
8193 | default: | |
8194 | swstate = "????"; | |
8195 | break; | |
8196 | } | |
8197 | iprintf("res = %d, sw_state = %s\n", map->res_count, swstate); | |
8198 | #endif /* TASK_SWAPPER */ | |
8199 | ||
8200 | for (entry = vm_map_first_entry(map); | |
8201 | entry && entry != vm_map_to_entry(map); | |
8202 | entry = entry->vme_next) { | |
8203 | vm_map_entry_print(entry); | |
8204 | } | |
8205 | ||
8206 | db_indent -= 2; | |
8207 | } | |
8208 | ||
8209 | /* | |
8210 | * Routine: vm_map_copy_print | |
8211 | * Purpose: | |
8212 | * Pretty-print a copy object for ddb. | |
8213 | */ | |
8214 | ||
8215 | void | |
8216 | vm_map_copy_print( | |
8217 | db_addr_t incopy) | |
8218 | { | |
8219 | extern int db_indent; | |
8220 | vm_map_copy_t copy; | |
8221 | int i, npages; | |
8222 | vm_map_entry_t entry; | |
8223 | ||
8224 | copy = (vm_map_copy_t)incopy; /* Make sure we have the right type */ | |
8225 | ||
8226 | printf("copy object 0x%x\n", copy); | |
8227 | ||
8228 | db_indent += 2; | |
8229 | ||
8230 | iprintf("type=%d", copy->type); | |
8231 | switch (copy->type) { | |
8232 | case VM_MAP_COPY_ENTRY_LIST: | |
8233 | printf("[entry_list]"); | |
8234 | break; | |
8235 | ||
8236 | case VM_MAP_COPY_OBJECT: | |
8237 | printf("[object]"); | |
8238 | break; | |
8239 | ||
8240 | case VM_MAP_COPY_KERNEL_BUFFER: | |
8241 | printf("[kernel_buffer]"); | |
8242 | break; | |
8243 | ||
8244 | default: | |
8245 | printf("[bad type]"); | |
8246 | break; | |
8247 | } | |
8248 | printf(", offset=0x%x", copy->offset); | |
8249 | printf(", size=0x%x\n", copy->size); | |
8250 | ||
8251 | switch (copy->type) { | |
8252 | case VM_MAP_COPY_ENTRY_LIST: | |
8253 | vm_map_header_print(©->cpy_hdr); | |
8254 | for (entry = vm_map_copy_first_entry(copy); | |
8255 | entry && entry != vm_map_copy_to_entry(copy); | |
8256 | entry = entry->vme_next) { | |
8257 | vm_map_entry_print(entry); | |
8258 | } | |
8259 | break; | |
8260 | ||
8261 | case VM_MAP_COPY_OBJECT: | |
8262 | iprintf("object=0x%x\n", copy->cpy_object); | |
8263 | break; | |
8264 | ||
8265 | case VM_MAP_COPY_KERNEL_BUFFER: | |
8266 | iprintf("kernel buffer=0x%x", copy->cpy_kdata); | |
8267 | printf(", kalloc_size=0x%x\n", copy->cpy_kalloc_size); | |
8268 | break; | |
8269 | ||
8270 | } | |
8271 | ||
8272 | db_indent -=2; | |
8273 | } | |
8274 | ||
8275 | /* | |
8276 | * db_vm_map_total_size(map) [ debug ] | |
8277 | * | |
8278 | * return the total virtual size (in bytes) of the map | |
8279 | */ | |
8280 | vm_size_t | |
8281 | db_vm_map_total_size( | |
8282 | db_addr_t inmap) | |
8283 | { | |
8284 | vm_map_entry_t entry; | |
8285 | vm_size_t total; | |
8286 | vm_map_t map; | |
8287 | ||
8288 | map = (vm_map_t)inmap; /* Make sure we have the right type */ | |
8289 | ||
8290 | total = 0; | |
8291 | for (entry = vm_map_first_entry(map); | |
8292 | entry != vm_map_to_entry(map); | |
8293 | entry = entry->vme_next) { | |
8294 | total += entry->vme_end - entry->vme_start; | |
8295 | } | |
8296 | ||
8297 | return total; | |
8298 | } | |
8299 | ||
8300 | #endif /* MACH_KDB */ | |
8301 | ||
8302 | /* | |
8303 | * Routine: vm_map_entry_insert | |
8304 | * | |
8305 | * Descritpion: This routine inserts a new vm_entry in a locked map. | |
8306 | */ | |
8307 | vm_map_entry_t | |
8308 | vm_map_entry_insert( | |
8309 | vm_map_t map, | |
8310 | vm_map_entry_t insp_entry, | |
8311 | vm_offset_t start, | |
8312 | vm_offset_t end, | |
8313 | vm_object_t object, | |
8314 | vm_object_offset_t offset, | |
8315 | boolean_t needs_copy, | |
8316 | boolean_t is_shared, | |
8317 | boolean_t in_transition, | |
8318 | vm_prot_t cur_protection, | |
8319 | vm_prot_t max_protection, | |
8320 | vm_behavior_t behavior, | |
8321 | vm_inherit_t inheritance, | |
8322 | unsigned wired_count) | |
8323 | { | |
8324 | vm_map_entry_t new_entry; | |
8325 | ||
8326 | assert(insp_entry != (vm_map_entry_t)0); | |
8327 | ||
8328 | new_entry = vm_map_entry_create(map); | |
8329 | ||
8330 | new_entry->vme_start = start; | |
8331 | new_entry->vme_end = end; | |
8332 | assert(page_aligned(new_entry->vme_start)); | |
8333 | assert(page_aligned(new_entry->vme_end)); | |
8334 | ||
8335 | new_entry->object.vm_object = object; | |
8336 | new_entry->offset = offset; | |
8337 | new_entry->is_shared = is_shared; | |
8338 | new_entry->is_sub_map = FALSE; | |
8339 | new_entry->needs_copy = needs_copy; | |
8340 | new_entry->in_transition = in_transition; | |
8341 | new_entry->needs_wakeup = FALSE; | |
8342 | new_entry->inheritance = inheritance; | |
8343 | new_entry->protection = cur_protection; | |
8344 | new_entry->max_protection = max_protection; | |
8345 | new_entry->behavior = behavior; | |
8346 | new_entry->wired_count = wired_count; | |
8347 | new_entry->user_wired_count = 0; | |
8348 | new_entry->use_pmap = FALSE; | |
8349 | ||
8350 | /* | |
8351 | * Insert the new entry into the list. | |
8352 | */ | |
8353 | ||
8354 | vm_map_entry_link(map, insp_entry, new_entry); | |
8355 | map->size += end - start; | |
8356 | ||
8357 | /* | |
8358 | * Update the free space hint and the lookup hint. | |
8359 | */ | |
8360 | ||
8361 | SAVE_HINT(map, new_entry); | |
8362 | return new_entry; | |
8363 | } | |
8364 | ||
8365 | /* | |
8366 | * Routine: vm_remap_extract | |
8367 | * | |
8368 | * Descritpion: This routine returns a vm_entry list from a map. | |
8369 | */ | |
8370 | kern_return_t | |
8371 | vm_remap_extract( | |
8372 | vm_map_t map, | |
8373 | vm_offset_t addr, | |
8374 | vm_size_t size, | |
8375 | boolean_t copy, | |
8376 | struct vm_map_header *map_header, | |
8377 | vm_prot_t *cur_protection, | |
8378 | vm_prot_t *max_protection, | |
8379 | /* What, no behavior? */ | |
8380 | vm_inherit_t inheritance, | |
8381 | boolean_t pageable) | |
8382 | { | |
8383 | kern_return_t result; | |
8384 | vm_size_t mapped_size; | |
8385 | vm_size_t tmp_size; | |
8386 | vm_map_entry_t src_entry; /* result of last map lookup */ | |
8387 | vm_map_entry_t new_entry; | |
8388 | vm_object_offset_t offset; | |
8389 | vm_offset_t map_address; | |
8390 | vm_offset_t src_start; /* start of entry to map */ | |
8391 | vm_offset_t src_end; /* end of region to be mapped */ | |
8392 | vm_object_t object; | |
8393 | vm_map_version_t version; | |
8394 | boolean_t src_needs_copy; | |
8395 | boolean_t new_entry_needs_copy; | |
8396 | ||
8397 | assert(map != VM_MAP_NULL); | |
8398 | assert(size != 0 && size == round_page_32(size)); | |
8399 | assert(inheritance == VM_INHERIT_NONE || | |
8400 | inheritance == VM_INHERIT_COPY || | |
8401 | inheritance == VM_INHERIT_SHARE); | |
8402 | ||
8403 | /* | |
8404 | * Compute start and end of region. | |
8405 | */ | |
8406 | src_start = trunc_page_32(addr); | |
8407 | src_end = round_page_32(src_start + size); | |
8408 | ||
8409 | /* | |
8410 | * Initialize map_header. | |
8411 | */ | |
8412 | map_header->links.next = (struct vm_map_entry *)&map_header->links; | |
8413 | map_header->links.prev = (struct vm_map_entry *)&map_header->links; | |
8414 | map_header->nentries = 0; | |
8415 | map_header->entries_pageable = pageable; | |
8416 | ||
8417 | *cur_protection = VM_PROT_ALL; | |
8418 | *max_protection = VM_PROT_ALL; | |
8419 | ||
8420 | map_address = 0; | |
8421 | mapped_size = 0; | |
8422 | result = KERN_SUCCESS; | |
8423 | ||
8424 | /* | |
8425 | * The specified source virtual space might correspond to | |
8426 | * multiple map entries, need to loop on them. | |
8427 | */ | |
8428 | vm_map_lock(map); | |
8429 | while (mapped_size != size) { | |
8430 | vm_size_t entry_size; | |
8431 | ||
8432 | /* | |
8433 | * Find the beginning of the region. | |
8434 | */ | |
8435 | if (! vm_map_lookup_entry(map, src_start, &src_entry)) { | |
8436 | result = KERN_INVALID_ADDRESS; | |
8437 | break; | |
8438 | } | |
8439 | ||
8440 | if (src_start < src_entry->vme_start || | |
8441 | (mapped_size && src_start != src_entry->vme_start)) { | |
8442 | result = KERN_INVALID_ADDRESS; | |
8443 | break; | |
8444 | } | |
8445 | ||
8446 | if(src_entry->is_sub_map) { | |
8447 | result = KERN_INVALID_ADDRESS; | |
8448 | break; | |
8449 | } | |
8450 | ||
8451 | tmp_size = size - mapped_size; | |
8452 | if (src_end > src_entry->vme_end) | |
8453 | tmp_size -= (src_end - src_entry->vme_end); | |
8454 | ||
8455 | entry_size = (vm_size_t)(src_entry->vme_end - | |
8456 | src_entry->vme_start); | |
8457 | ||
8458 | if(src_entry->is_sub_map) { | |
8459 | vm_map_reference(src_entry->object.sub_map); | |
8460 | } else { | |
8461 | object = src_entry->object.vm_object; | |
8462 | ||
8463 | if (object == VM_OBJECT_NULL) { | |
8464 | object = vm_object_allocate(entry_size); | |
8465 | src_entry->offset = 0; | |
8466 | src_entry->object.vm_object = object; | |
8467 | } else if (object->copy_strategy != | |
8468 | MEMORY_OBJECT_COPY_SYMMETRIC) { | |
8469 | /* | |
8470 | * We are already using an asymmetric | |
8471 | * copy, and therefore we already have | |
8472 | * the right object. | |
8473 | */ | |
8474 | assert(!src_entry->needs_copy); | |
8475 | } else if (src_entry->needs_copy || object->shadowed || | |
8476 | (object->internal && !object->true_share && | |
8477 | !src_entry->is_shared && | |
8478 | object->size > entry_size)) { | |
8479 | ||
8480 | vm_object_shadow(&src_entry->object.vm_object, | |
8481 | &src_entry->offset, | |
8482 | entry_size); | |
8483 | ||
8484 | if (!src_entry->needs_copy && | |
8485 | (src_entry->protection & VM_PROT_WRITE)) { | |
8486 | if(map->mapped) { | |
8487 | vm_object_pmap_protect( | |
8488 | src_entry->object.vm_object, | |
8489 | src_entry->offset, | |
8490 | entry_size, | |
8491 | PMAP_NULL, | |
8492 | src_entry->vme_start, | |
8493 | src_entry->protection & | |
8494 | ~VM_PROT_WRITE); | |
8495 | } else { | |
8496 | pmap_protect(vm_map_pmap(map), | |
8497 | src_entry->vme_start, | |
8498 | src_entry->vme_end, | |
8499 | src_entry->protection & | |
8500 | ~VM_PROT_WRITE); | |
8501 | } | |
8502 | } | |
8503 | ||
8504 | object = src_entry->object.vm_object; | |
8505 | src_entry->needs_copy = FALSE; | |
8506 | } | |
8507 | ||
8508 | ||
8509 | vm_object_lock(object); | |
8510 | object->ref_count++; /* object ref. for new entry */ | |
8511 | VM_OBJ_RES_INCR(object); | |
8512 | if (object->copy_strategy == | |
8513 | MEMORY_OBJECT_COPY_SYMMETRIC) { | |
8514 | object->copy_strategy = | |
8515 | MEMORY_OBJECT_COPY_DELAY; | |
8516 | } | |
8517 | vm_object_unlock(object); | |
8518 | } | |
8519 | ||
8520 | offset = src_entry->offset + (src_start - src_entry->vme_start); | |
8521 | ||
8522 | new_entry = _vm_map_entry_create(map_header); | |
8523 | vm_map_entry_copy(new_entry, src_entry); | |
8524 | new_entry->use_pmap = FALSE; /* clr address space specifics */ | |
8525 | ||
8526 | new_entry->vme_start = map_address; | |
8527 | new_entry->vme_end = map_address + tmp_size; | |
8528 | new_entry->inheritance = inheritance; | |
8529 | new_entry->offset = offset; | |
8530 | ||
8531 | /* | |
8532 | * The new region has to be copied now if required. | |
8533 | */ | |
8534 | RestartCopy: | |
8535 | if (!copy) { | |
8536 | src_entry->is_shared = TRUE; | |
8537 | new_entry->is_shared = TRUE; | |
8538 | if (!(new_entry->is_sub_map)) | |
8539 | new_entry->needs_copy = FALSE; | |
8540 | ||
8541 | } else if (src_entry->is_sub_map) { | |
8542 | /* make this a COW sub_map if not already */ | |
8543 | new_entry->needs_copy = TRUE; | |
8544 | } else if (src_entry->wired_count == 0 && | |
8545 | vm_object_copy_quickly(&new_entry->object.vm_object, | |
8546 | new_entry->offset, | |
8547 | (new_entry->vme_end - | |
8548 | new_entry->vme_start), | |
8549 | &src_needs_copy, | |
8550 | &new_entry_needs_copy)) { | |
8551 | ||
8552 | new_entry->needs_copy = new_entry_needs_copy; | |
8553 | new_entry->is_shared = FALSE; | |
8554 | ||
8555 | /* | |
8556 | * Handle copy_on_write semantics. | |
8557 | */ | |
8558 | if (src_needs_copy && !src_entry->needs_copy) { | |
8559 | vm_object_pmap_protect(object, | |
8560 | offset, | |
8561 | entry_size, | |
8562 | ((src_entry->is_shared | |
8563 | || map->mapped) ? | |
8564 | PMAP_NULL : map->pmap), | |
8565 | src_entry->vme_start, | |
8566 | src_entry->protection & | |
8567 | ~VM_PROT_WRITE); | |
8568 | ||
8569 | src_entry->needs_copy = TRUE; | |
8570 | } | |
8571 | /* | |
8572 | * Throw away the old object reference of the new entry. | |
8573 | */ | |
8574 | vm_object_deallocate(object); | |
8575 | ||
8576 | } else { | |
8577 | new_entry->is_shared = FALSE; | |
8578 | ||
8579 | /* | |
8580 | * The map can be safely unlocked since we | |
8581 | * already hold a reference on the object. | |
8582 | * | |
8583 | * Record the timestamp of the map for later | |
8584 | * verification, and unlock the map. | |
8585 | */ | |
8586 | version.main_timestamp = map->timestamp; | |
8587 | vm_map_unlock(map); /* Increments timestamp once! */ | |
8588 | ||
8589 | /* | |
8590 | * Perform the copy. | |
8591 | */ | |
8592 | if (src_entry->wired_count > 0) { | |
8593 | vm_object_lock(object); | |
8594 | result = vm_object_copy_slowly( | |
8595 | object, | |
8596 | offset, | |
8597 | entry_size, | |
8598 | THREAD_UNINT, | |
8599 | &new_entry->object.vm_object); | |
8600 | ||
8601 | new_entry->offset = 0; | |
8602 | new_entry->needs_copy = FALSE; | |
8603 | } else { | |
8604 | result = vm_object_copy_strategically( | |
8605 | object, | |
8606 | offset, | |
8607 | entry_size, | |
8608 | &new_entry->object.vm_object, | |
8609 | &new_entry->offset, | |
8610 | &new_entry_needs_copy); | |
8611 | ||
8612 | new_entry->needs_copy = new_entry_needs_copy; | |
8613 | } | |
8614 | ||
8615 | /* | |
8616 | * Throw away the old object reference of the new entry. | |
8617 | */ | |
8618 | vm_object_deallocate(object); | |
8619 | ||
8620 | if (result != KERN_SUCCESS && | |
8621 | result != KERN_MEMORY_RESTART_COPY) { | |
8622 | _vm_map_entry_dispose(map_header, new_entry); | |
8623 | break; | |
8624 | } | |
8625 | ||
8626 | /* | |
8627 | * Verify that the map has not substantially | |
8628 | * changed while the copy was being made. | |
8629 | */ | |
8630 | ||
8631 | vm_map_lock(map); | |
8632 | if (version.main_timestamp + 1 != map->timestamp) { | |
8633 | /* | |
8634 | * Simple version comparison failed. | |
8635 | * | |
8636 | * Retry the lookup and verify that the | |
8637 | * same object/offset are still present. | |
8638 | */ | |
8639 | vm_object_deallocate(new_entry-> | |
8640 | object.vm_object); | |
8641 | _vm_map_entry_dispose(map_header, new_entry); | |
8642 | if (result == KERN_MEMORY_RESTART_COPY) | |
8643 | result = KERN_SUCCESS; | |
8644 | continue; | |
8645 | } | |
8646 | ||
8647 | if (result == KERN_MEMORY_RESTART_COPY) { | |
8648 | vm_object_reference(object); | |
8649 | goto RestartCopy; | |
8650 | } | |
8651 | } | |
8652 | ||
8653 | _vm_map_entry_link(map_header, | |
8654 | map_header->links.prev, new_entry); | |
8655 | ||
8656 | *cur_protection &= src_entry->protection; | |
8657 | *max_protection &= src_entry->max_protection; | |
8658 | ||
8659 | map_address += tmp_size; | |
8660 | mapped_size += tmp_size; | |
8661 | src_start += tmp_size; | |
8662 | ||
8663 | } /* end while */ | |
8664 | ||
8665 | vm_map_unlock(map); | |
8666 | if (result != KERN_SUCCESS) { | |
8667 | /* | |
8668 | * Free all allocated elements. | |
8669 | */ | |
8670 | for (src_entry = map_header->links.next; | |
8671 | src_entry != (struct vm_map_entry *)&map_header->links; | |
8672 | src_entry = new_entry) { | |
8673 | new_entry = src_entry->vme_next; | |
8674 | _vm_map_entry_unlink(map_header, src_entry); | |
8675 | vm_object_deallocate(src_entry->object.vm_object); | |
8676 | _vm_map_entry_dispose(map_header, src_entry); | |
8677 | } | |
8678 | } | |
8679 | return result; | |
8680 | } | |
8681 | ||
8682 | /* | |
8683 | * Routine: vm_remap | |
8684 | * | |
8685 | * Map portion of a task's address space. | |
8686 | * Mapped region must not overlap more than | |
8687 | * one vm memory object. Protections and | |
8688 | * inheritance attributes remain the same | |
8689 | * as in the original task and are out parameters. | |
8690 | * Source and Target task can be identical | |
8691 | * Other attributes are identical as for vm_map() | |
8692 | */ | |
8693 | kern_return_t | |
8694 | vm_remap( | |
8695 | vm_map_t target_map, | |
8696 | vm_offset_t *address, | |
8697 | vm_size_t size, | |
8698 | vm_offset_t mask, | |
8699 | boolean_t anywhere, | |
8700 | vm_map_t src_map, | |
8701 | vm_offset_t memory_address, | |
8702 | boolean_t copy, | |
8703 | vm_prot_t *cur_protection, | |
8704 | vm_prot_t *max_protection, | |
8705 | vm_inherit_t inheritance) | |
8706 | { | |
8707 | kern_return_t result; | |
8708 | vm_map_entry_t entry; | |
8709 | vm_map_entry_t insp_entry; | |
8710 | vm_map_entry_t new_entry; | |
8711 | struct vm_map_header map_header; | |
8712 | ||
8713 | if (target_map == VM_MAP_NULL) | |
8714 | return KERN_INVALID_ARGUMENT; | |
8715 | ||
8716 | switch (inheritance) { | |
8717 | case VM_INHERIT_NONE: | |
8718 | case VM_INHERIT_COPY: | |
8719 | case VM_INHERIT_SHARE: | |
8720 | if (size != 0 && src_map != VM_MAP_NULL) | |
8721 | break; | |
8722 | /*FALL THRU*/ | |
8723 | default: | |
8724 | return KERN_INVALID_ARGUMENT; | |
8725 | } | |
8726 | ||
8727 | size = round_page_32(size); | |
8728 | ||
8729 | result = vm_remap_extract(src_map, memory_address, | |
8730 | size, copy, &map_header, | |
8731 | cur_protection, | |
8732 | max_protection, | |
8733 | inheritance, | |
8734 | target_map->hdr. | |
8735 | entries_pageable); | |
8736 | ||
8737 | if (result != KERN_SUCCESS) { | |
8738 | return result; | |
8739 | } | |
8740 | ||
8741 | /* | |
8742 | * Allocate/check a range of free virtual address | |
8743 | * space for the target | |
8744 | */ | |
8745 | *address = trunc_page_32(*address); | |
8746 | vm_map_lock(target_map); | |
8747 | result = vm_remap_range_allocate(target_map, address, size, | |
8748 | mask, anywhere, &insp_entry); | |
8749 | ||
8750 | for (entry = map_header.links.next; | |
8751 | entry != (struct vm_map_entry *)&map_header.links; | |
8752 | entry = new_entry) { | |
8753 | new_entry = entry->vme_next; | |
8754 | _vm_map_entry_unlink(&map_header, entry); | |
8755 | if (result == KERN_SUCCESS) { | |
8756 | entry->vme_start += *address; | |
8757 | entry->vme_end += *address; | |
8758 | vm_map_entry_link(target_map, insp_entry, entry); | |
8759 | insp_entry = entry; | |
8760 | } else { | |
8761 | if (!entry->is_sub_map) { | |
8762 | vm_object_deallocate(entry->object.vm_object); | |
8763 | } else { | |
8764 | vm_map_deallocate(entry->object.sub_map); | |
8765 | } | |
8766 | _vm_map_entry_dispose(&map_header, entry); | |
8767 | } | |
8768 | } | |
8769 | ||
8770 | if (result == KERN_SUCCESS) { | |
8771 | target_map->size += size; | |
8772 | SAVE_HINT(target_map, insp_entry); | |
8773 | } | |
8774 | vm_map_unlock(target_map); | |
8775 | ||
8776 | if (result == KERN_SUCCESS && target_map->wiring_required) | |
8777 | result = vm_map_wire(target_map, *address, | |
8778 | *address + size, *cur_protection, TRUE); | |
8779 | return result; | |
8780 | } | |
8781 | ||
8782 | /* | |
8783 | * Routine: vm_remap_range_allocate | |
8784 | * | |
8785 | * Description: | |
8786 | * Allocate a range in the specified virtual address map. | |
8787 | * returns the address and the map entry just before the allocated | |
8788 | * range | |
8789 | * | |
8790 | * Map must be locked. | |
8791 | */ | |
8792 | ||
8793 | kern_return_t | |
8794 | vm_remap_range_allocate( | |
8795 | vm_map_t map, | |
8796 | vm_offset_t *address, /* IN/OUT */ | |
8797 | vm_size_t size, | |
8798 | vm_offset_t mask, | |
8799 | boolean_t anywhere, | |
8800 | vm_map_entry_t *map_entry) /* OUT */ | |
8801 | { | |
8802 | register vm_map_entry_t entry; | |
8803 | register vm_offset_t start; | |
8804 | register vm_offset_t end; | |
8805 | kern_return_t result = KERN_SUCCESS; | |
8806 | ||
8807 | StartAgain: ; | |
8808 | ||
8809 | start = *address; | |
8810 | ||
8811 | if (anywhere) | |
8812 | { | |
8813 | /* | |
8814 | * Calculate the first possible address. | |
8815 | */ | |
8816 | ||
8817 | if (start < map->min_offset) | |
8818 | start = map->min_offset; | |
8819 | if (start > map->max_offset) | |
8820 | return(KERN_NO_SPACE); | |
8821 | ||
8822 | /* | |
8823 | * Look for the first possible address; | |
8824 | * if there's already something at this | |
8825 | * address, we have to start after it. | |
8826 | */ | |
8827 | ||
8828 | assert(first_free_is_valid(map)); | |
8829 | if (start == map->min_offset) { | |
8830 | if ((entry = map->first_free) != vm_map_to_entry(map)) | |
8831 | start = entry->vme_end; | |
8832 | } else { | |
8833 | vm_map_entry_t tmp_entry; | |
8834 | if (vm_map_lookup_entry(map, start, &tmp_entry)) | |
8835 | start = tmp_entry->vme_end; | |
8836 | entry = tmp_entry; | |
8837 | } | |
8838 | ||
8839 | /* | |
8840 | * In any case, the "entry" always precedes | |
8841 | * the proposed new region throughout the | |
8842 | * loop: | |
8843 | */ | |
8844 | ||
8845 | while (TRUE) { | |
8846 | register vm_map_entry_t next; | |
8847 | ||
8848 | /* | |
8849 | * Find the end of the proposed new region. | |
8850 | * Be sure we didn't go beyond the end, or | |
8851 | * wrap around the address. | |
8852 | */ | |
8853 | ||
8854 | end = ((start + mask) & ~mask); | |
8855 | if (end < start) | |
8856 | return(KERN_NO_SPACE); | |
8857 | start = end; | |
8858 | end += size; | |
8859 | ||
8860 | if ((end > map->max_offset) || (end < start)) { | |
8861 | if (map->wait_for_space) { | |
8862 | if (size <= (map->max_offset - | |
8863 | map->min_offset)) { | |
8864 | assert_wait((event_t) map, THREAD_INTERRUPTIBLE); | |
8865 | vm_map_unlock(map); | |
8866 | thread_block((void (*)(void))0); | |
8867 | vm_map_lock(map); | |
8868 | goto StartAgain; | |
8869 | } | |
8870 | } | |
8871 | ||
8872 | return(KERN_NO_SPACE); | |
8873 | } | |
8874 | ||
8875 | /* | |
8876 | * If there are no more entries, we must win. | |
8877 | */ | |
8878 | ||
8879 | next = entry->vme_next; | |
8880 | if (next == vm_map_to_entry(map)) | |
8881 | break; | |
8882 | ||
8883 | /* | |
8884 | * If there is another entry, it must be | |
8885 | * after the end of the potential new region. | |
8886 | */ | |
8887 | ||
8888 | if (next->vme_start >= end) | |
8889 | break; | |
8890 | ||
8891 | /* | |
8892 | * Didn't fit -- move to the next entry. | |
8893 | */ | |
8894 | ||
8895 | entry = next; | |
8896 | start = entry->vme_end; | |
8897 | } | |
8898 | *address = start; | |
8899 | } else { | |
8900 | vm_map_entry_t temp_entry; | |
8901 | ||
8902 | /* | |
8903 | * Verify that: | |
8904 | * the address doesn't itself violate | |
8905 | * the mask requirement. | |
8906 | */ | |
8907 | ||
8908 | if ((start & mask) != 0) | |
8909 | return(KERN_NO_SPACE); | |
8910 | ||
8911 | ||
8912 | /* | |
8913 | * ... the address is within bounds | |
8914 | */ | |
8915 | ||
8916 | end = start + size; | |
8917 | ||
8918 | if ((start < map->min_offset) || | |
8919 | (end > map->max_offset) || | |
8920 | (start >= end)) { | |
8921 | return(KERN_INVALID_ADDRESS); | |
8922 | } | |
8923 | ||
8924 | /* | |
8925 | * ... the starting address isn't allocated | |
8926 | */ | |
8927 | ||
8928 | if (vm_map_lookup_entry(map, start, &temp_entry)) | |
8929 | return(KERN_NO_SPACE); | |
8930 | ||
8931 | entry = temp_entry; | |
8932 | ||
8933 | /* | |
8934 | * ... the next region doesn't overlap the | |
8935 | * end point. | |
8936 | */ | |
8937 | ||
8938 | if ((entry->vme_next != vm_map_to_entry(map)) && | |
8939 | (entry->vme_next->vme_start < end)) | |
8940 | return(KERN_NO_SPACE); | |
8941 | } | |
8942 | *map_entry = entry; | |
8943 | return(KERN_SUCCESS); | |
8944 | } | |
8945 | ||
8946 | /* | |
8947 | * vm_map_switch: | |
8948 | * | |
8949 | * Set the address map for the current thr_act to the specified map | |
8950 | */ | |
8951 | ||
8952 | vm_map_t | |
8953 | vm_map_switch( | |
8954 | vm_map_t map) | |
8955 | { | |
8956 | int mycpu; | |
8957 | thread_act_t thr_act = current_act(); | |
8958 | vm_map_t oldmap = thr_act->map; | |
8959 | ||
8960 | mp_disable_preemption(); | |
8961 | mycpu = cpu_number(); | |
8962 | ||
8963 | /* | |
8964 | * Deactivate the current map and activate the requested map | |
8965 | */ | |
8966 | PMAP_SWITCH_USER(thr_act, map, mycpu); | |
8967 | ||
8968 | mp_enable_preemption(); | |
8969 | return(oldmap); | |
8970 | } | |
8971 | ||
8972 | ||
8973 | /* | |
8974 | * Routine: vm_map_write_user | |
8975 | * | |
8976 | * Description: | |
8977 | * Copy out data from a kernel space into space in the | |
8978 | * destination map. The space must already exist in the | |
8979 | * destination map. | |
8980 | * NOTE: This routine should only be called by threads | |
8981 | * which can block on a page fault. i.e. kernel mode user | |
8982 | * threads. | |
8983 | * | |
8984 | */ | |
8985 | kern_return_t | |
8986 | vm_map_write_user( | |
8987 | vm_map_t map, | |
8988 | vm_offset_t src_addr, | |
8989 | vm_offset_t dst_addr, | |
8990 | vm_size_t size) | |
8991 | { | |
8992 | thread_act_t thr_act = current_act(); | |
8993 | kern_return_t kr = KERN_SUCCESS; | |
8994 | ||
8995 | if(thr_act->map == map) { | |
8996 | if (copyout((char *)src_addr, (char *)dst_addr, size)) { | |
8997 | kr = KERN_INVALID_ADDRESS; | |
8998 | } | |
8999 | } else { | |
9000 | vm_map_t oldmap; | |
9001 | ||
9002 | /* take on the identity of the target map while doing */ | |
9003 | /* the transfer */ | |
9004 | ||
9005 | vm_map_reference(map); | |
9006 | oldmap = vm_map_switch(map); | |
9007 | if (copyout((char *)src_addr, (char *)dst_addr, size)) { | |
9008 | kr = KERN_INVALID_ADDRESS; | |
9009 | } | |
9010 | vm_map_switch(oldmap); | |
9011 | vm_map_deallocate(map); | |
9012 | } | |
9013 | return kr; | |
9014 | } | |
9015 | ||
9016 | /* | |
9017 | * Routine: vm_map_read_user | |
9018 | * | |
9019 | * Description: | |
9020 | * Copy in data from a user space source map into the | |
9021 | * kernel map. The space must already exist in the | |
9022 | * kernel map. | |
9023 | * NOTE: This routine should only be called by threads | |
9024 | * which can block on a page fault. i.e. kernel mode user | |
9025 | * threads. | |
9026 | * | |
9027 | */ | |
9028 | kern_return_t | |
9029 | vm_map_read_user( | |
9030 | vm_map_t map, | |
9031 | vm_offset_t src_addr, | |
9032 | vm_offset_t dst_addr, | |
9033 | vm_size_t size) | |
9034 | { | |
9035 | thread_act_t thr_act = current_act(); | |
9036 | kern_return_t kr = KERN_SUCCESS; | |
9037 | ||
9038 | if(thr_act->map == map) { | |
9039 | if (copyin((char *)src_addr, (char *)dst_addr, size)) { | |
9040 | kr = KERN_INVALID_ADDRESS; | |
9041 | } | |
9042 | } else { | |
9043 | vm_map_t oldmap; | |
9044 | ||
9045 | /* take on the identity of the target map while doing */ | |
9046 | /* the transfer */ | |
9047 | ||
9048 | vm_map_reference(map); | |
9049 | oldmap = vm_map_switch(map); | |
9050 | if (copyin((char *)src_addr, (char *)dst_addr, size)) { | |
9051 | kr = KERN_INVALID_ADDRESS; | |
9052 | } | |
9053 | vm_map_switch(oldmap); | |
9054 | vm_map_deallocate(map); | |
9055 | } | |
9056 | return kr; | |
9057 | } | |
9058 | ||
9059 | /* Takes existing source and destination sub-maps and clones the contents of */ | |
9060 | /* the source map */ | |
9061 | ||
9062 | kern_return_t | |
9063 | vm_region_clone( | |
9064 | ipc_port_t src_region, | |
9065 | ipc_port_t dst_region) | |
9066 | { | |
9067 | vm_named_entry_t src_object; | |
9068 | vm_named_entry_t dst_object; | |
9069 | vm_map_t src_map; | |
9070 | vm_map_t dst_map; | |
9071 | vm_offset_t addr; | |
9072 | vm_offset_t max_off; | |
9073 | vm_map_entry_t entry; | |
9074 | vm_map_entry_t new_entry; | |
9075 | vm_map_entry_t insert_point; | |
9076 | ||
9077 | src_object = (vm_named_entry_t)src_region->ip_kobject; | |
9078 | dst_object = (vm_named_entry_t)dst_region->ip_kobject; | |
9079 | if((!src_object->is_sub_map) || (!dst_object->is_sub_map)) { | |
9080 | return KERN_INVALID_ARGUMENT; | |
9081 | } | |
9082 | src_map = (vm_map_t)src_object->backing.map; | |
9083 | dst_map = (vm_map_t)dst_object->backing.map; | |
9084 | /* destination map is assumed to be unavailable to any other */ | |
9085 | /* activity. i.e. it is new */ | |
9086 | vm_map_lock(src_map); | |
9087 | if((src_map->min_offset != dst_map->min_offset) | |
9088 | || (src_map->max_offset != dst_map->max_offset)) { | |
9089 | vm_map_unlock(src_map); | |
9090 | return KERN_INVALID_ARGUMENT; | |
9091 | } | |
9092 | addr = src_map->min_offset; | |
9093 | vm_map_lookup_entry(dst_map, addr, &entry); | |
9094 | if(entry == vm_map_to_entry(dst_map)) { | |
9095 | entry = entry->vme_next; | |
9096 | } | |
9097 | if(entry == vm_map_to_entry(dst_map)) { | |
9098 | max_off = src_map->max_offset; | |
9099 | } else { | |
9100 | max_off = entry->vme_start; | |
9101 | } | |
9102 | vm_map_lookup_entry(src_map, addr, &entry); | |
9103 | if(entry == vm_map_to_entry(src_map)) { | |
9104 | entry = entry->vme_next; | |
9105 | } | |
9106 | vm_map_lookup_entry(dst_map, addr, &insert_point); | |
9107 | while((entry != vm_map_to_entry(src_map)) && | |
9108 | (entry->vme_end <= max_off)) { | |
9109 | addr = entry->vme_start; | |
9110 | new_entry = vm_map_entry_create(dst_map); | |
9111 | vm_map_entry_copy(new_entry, entry); | |
9112 | vm_map_entry_link(dst_map, insert_point, new_entry); | |
9113 | insert_point = new_entry; | |
9114 | if (entry->object.vm_object != VM_OBJECT_NULL) { | |
9115 | if (new_entry->is_sub_map) { | |
9116 | vm_map_reference(new_entry->object.sub_map); | |
9117 | } else { | |
9118 | vm_object_reference( | |
9119 | new_entry->object.vm_object); | |
9120 | } | |
9121 | } | |
9122 | dst_map->size += new_entry->vme_end - new_entry->vme_start; | |
9123 | entry = entry->vme_next; | |
9124 | } | |
9125 | vm_map_unlock(src_map); | |
9126 | return KERN_SUCCESS; | |
9127 | } | |
9128 | ||
9129 | /* | |
9130 | * Export routines to other components for the things we access locally through | |
9131 | * macros. | |
9132 | */ | |
9133 | #undef current_map | |
9134 | vm_map_t | |
9135 | current_map(void) | |
9136 | { | |
9137 | return (current_map_fast()); | |
9138 | } | |
9139 | ||
9140 | /* | |
9141 | * vm_map_check_protection: | |
9142 | * | |
9143 | * Assert that the target map allows the specified | |
9144 | * privilege on the entire address region given. | |
9145 | * The entire region must be allocated. | |
9146 | */ | |
9147 | boolean_t vm_map_check_protection(map, start, end, protection) | |
9148 | register vm_map_t map; | |
9149 | register vm_offset_t start; | |
9150 | register vm_offset_t end; | |
9151 | register vm_prot_t protection; | |
9152 | { | |
9153 | register vm_map_entry_t entry; | |
9154 | vm_map_entry_t tmp_entry; | |
9155 | ||
9156 | vm_map_lock(map); | |
9157 | ||
9158 | if (start < vm_map_min(map) || end > vm_map_max(map) || start > end) | |
9159 | { | |
9160 | vm_map_unlock(map); | |
9161 | return (FALSE); | |
9162 | } | |
9163 | ||
9164 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { | |
9165 | vm_map_unlock(map); | |
9166 | return(FALSE); | |
9167 | } | |
9168 | ||
9169 | entry = tmp_entry; | |
9170 | ||
9171 | while (start < end) { | |
9172 | if (entry == vm_map_to_entry(map)) { | |
9173 | vm_map_unlock(map); | |
9174 | return(FALSE); | |
9175 | } | |
9176 | ||
9177 | /* | |
9178 | * No holes allowed! | |
9179 | */ | |
9180 | ||
9181 | if (start < entry->vme_start) { | |
9182 | vm_map_unlock(map); | |
9183 | return(FALSE); | |
9184 | } | |
9185 | ||
9186 | /* | |
9187 | * Check protection associated with entry. | |
9188 | */ | |
9189 | ||
9190 | if ((entry->protection & protection) != protection) { | |
9191 | vm_map_unlock(map); | |
9192 | return(FALSE); | |
9193 | } | |
9194 | ||
9195 | /* go to next entry */ | |
9196 | ||
9197 | start = entry->vme_end; | |
9198 | entry = entry->vme_next; | |
9199 | } | |
9200 | vm_map_unlock(map); | |
9201 | return(TRUE); | |
9202 | } | |
9203 | ||
9204 | /* | |
9205 | * This routine is obsolete, but included for backward | |
9206 | * compatibility for older drivers. | |
9207 | */ | |
9208 | void | |
9209 | kernel_vm_map_reference( | |
9210 | vm_map_t map) | |
9211 | { | |
9212 | vm_map_reference(map); | |
9213 | } | |
9214 | ||
9215 | /* | |
9216 | * vm_map_reference: | |
9217 | * | |
9218 | * Most code internal to the osfmk will go through a | |
9219 | * macro defining this. This is always here for the | |
9220 | * use of other kernel components. | |
9221 | */ | |
9222 | #undef vm_map_reference | |
9223 | void | |
9224 | vm_map_reference( | |
9225 | register vm_map_t map) | |
9226 | { | |
9227 | if (map == VM_MAP_NULL) | |
9228 | return; | |
9229 | ||
9230 | mutex_lock(&map->s_lock); | |
9231 | #if TASK_SWAPPER | |
9232 | assert(map->res_count > 0); | |
9233 | assert(map->ref_count >= map->res_count); | |
9234 | map->res_count++; | |
9235 | #endif | |
9236 | map->ref_count++; | |
9237 | mutex_unlock(&map->s_lock); | |
9238 | } | |
9239 | ||
9240 | /* | |
9241 | * vm_map_deallocate: | |
9242 | * | |
9243 | * Removes a reference from the specified map, | |
9244 | * destroying it if no references remain. | |
9245 | * The map should not be locked. | |
9246 | */ | |
9247 | void | |
9248 | vm_map_deallocate( | |
9249 | register vm_map_t map) | |
9250 | { | |
9251 | unsigned int ref; | |
9252 | ||
9253 | if (map == VM_MAP_NULL) | |
9254 | return; | |
9255 | ||
9256 | mutex_lock(&map->s_lock); | |
9257 | ref = --map->ref_count; | |
9258 | if (ref > 0) { | |
9259 | vm_map_res_deallocate(map); | |
9260 | mutex_unlock(&map->s_lock); | |
9261 | return; | |
9262 | } | |
9263 | assert(map->ref_count == 0); | |
9264 | mutex_unlock(&map->s_lock); | |
9265 | ||
9266 | #if TASK_SWAPPER | |
9267 | /* | |
9268 | * The map residence count isn't decremented here because | |
9269 | * the vm_map_delete below will traverse the entire map, | |
9270 | * deleting entries, and the residence counts on objects | |
9271 | * and sharing maps will go away then. | |
9272 | */ | |
9273 | #endif | |
9274 | ||
9275 | vm_map_destroy(map); | |
9276 | } |