]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_object.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Virtual memory object module. | |
63 | */ | |
64 | ||
65 | #include <debug.h> | |
66 | #include <mach_pagemap.h> | |
67 | #include <task_swapper.h> | |
68 | ||
69 | #include <mach/mach_types.h> | |
70 | #include <mach/memory_object.h> | |
71 | #include <mach/memory_object_default.h> | |
72 | #include <mach/memory_object_control_server.h> | |
73 | #include <mach/vm_param.h> | |
74 | ||
75 | #include <mach/sdt.h> | |
76 | ||
77 | #include <ipc/ipc_types.h> | |
78 | #include <ipc/ipc_port.h> | |
79 | ||
80 | #include <kern/kern_types.h> | |
81 | #include <kern/assert.h> | |
82 | #include <kern/queue.h> | |
83 | #include <kern/xpr.h> | |
84 | #include <kern/kalloc.h> | |
85 | #include <kern/zalloc.h> | |
86 | #include <kern/host.h> | |
87 | #include <kern/host_statistics.h> | |
88 | #include <kern/processor.h> | |
89 | #include <kern/misc_protos.h> | |
90 | #include <kern/policy_internal.h> | |
91 | ||
92 | #include <vm/memory_object.h> | |
93 | #include <vm/vm_compressor_pager.h> | |
94 | #include <vm/vm_fault.h> | |
95 | #include <vm/vm_map.h> | |
96 | #include <vm/vm_object.h> | |
97 | #include <vm/vm_page.h> | |
98 | #include <vm/vm_pageout.h> | |
99 | #include <vm/vm_protos.h> | |
100 | #include <vm/vm_purgeable_internal.h> | |
101 | ||
102 | #include <vm/vm_compressor.h> | |
103 | ||
104 | #if CONFIG_PHANTOM_CACHE | |
105 | #include <vm/vm_phantom_cache.h> | |
106 | #endif | |
107 | ||
108 | boolean_t vm_object_collapse_compressor_allowed = TRUE; | |
109 | ||
110 | struct vm_counters vm_counters; | |
111 | ||
112 | #if VM_OBJECT_TRACKING | |
113 | boolean_t vm_object_tracking_inited = FALSE; | |
114 | btlog_t *vm_object_tracking_btlog; | |
115 | ||
116 | void | |
117 | vm_object_tracking_init(void) | |
118 | { | |
119 | int vm_object_tracking; | |
120 | ||
121 | vm_object_tracking = 1; | |
122 | PE_parse_boot_argn("vm_object_tracking", &vm_object_tracking, | |
123 | sizeof (vm_object_tracking)); | |
124 | ||
125 | if (vm_object_tracking) { | |
126 | vm_object_tracking_btlog = btlog_create( | |
127 | VM_OBJECT_TRACKING_NUM_RECORDS, | |
128 | VM_OBJECT_TRACKING_BTDEPTH, | |
129 | TRUE /* caller_will_remove_entries_for_element? */); | |
130 | assert(vm_object_tracking_btlog); | |
131 | vm_object_tracking_inited = TRUE; | |
132 | } | |
133 | } | |
134 | #endif /* VM_OBJECT_TRACKING */ | |
135 | ||
136 | /* | |
137 | * Virtual memory objects maintain the actual data | |
138 | * associated with allocated virtual memory. A given | |
139 | * page of memory exists within exactly one object. | |
140 | * | |
141 | * An object is only deallocated when all "references" | |
142 | * are given up. | |
143 | * | |
144 | * Associated with each object is a list of all resident | |
145 | * memory pages belonging to that object; this list is | |
146 | * maintained by the "vm_page" module, but locked by the object's | |
147 | * lock. | |
148 | * | |
149 | * Each object also records the memory object reference | |
150 | * that is used by the kernel to request and write | |
151 | * back data (the memory object, field "pager"), etc... | |
152 | * | |
153 | * Virtual memory objects are allocated to provide | |
154 | * zero-filled memory (vm_allocate) or map a user-defined | |
155 | * memory object into a virtual address space (vm_map). | |
156 | * | |
157 | * Virtual memory objects that refer to a user-defined | |
158 | * memory object are called "permanent", because all changes | |
159 | * made in virtual memory are reflected back to the | |
160 | * memory manager, which may then store it permanently. | |
161 | * Other virtual memory objects are called "temporary", | |
162 | * meaning that changes need be written back only when | |
163 | * necessary to reclaim pages, and that storage associated | |
164 | * with the object can be discarded once it is no longer | |
165 | * mapped. | |
166 | * | |
167 | * A permanent memory object may be mapped into more | |
168 | * than one virtual address space. Moreover, two threads | |
169 | * may attempt to make the first mapping of a memory | |
170 | * object concurrently. Only one thread is allowed to | |
171 | * complete this mapping; all others wait for the | |
172 | * "pager_initialized" field is asserted, indicating | |
173 | * that the first thread has initialized all of the | |
174 | * necessary fields in the virtual memory object structure. | |
175 | * | |
176 | * The kernel relies on a *default memory manager* to | |
177 | * provide backing storage for the zero-filled virtual | |
178 | * memory objects. The pager memory objects associated | |
179 | * with these temporary virtual memory objects are only | |
180 | * requested from the default memory manager when it | |
181 | * becomes necessary. Virtual memory objects | |
182 | * that depend on the default memory manager are called | |
183 | * "internal". The "pager_created" field is provided to | |
184 | * indicate whether these ports have ever been allocated. | |
185 | * | |
186 | * The kernel may also create virtual memory objects to | |
187 | * hold changed pages after a copy-on-write operation. | |
188 | * In this case, the virtual memory object (and its | |
189 | * backing storage -- its memory object) only contain | |
190 | * those pages that have been changed. The "shadow" | |
191 | * field refers to the virtual memory object that contains | |
192 | * the remainder of the contents. The "shadow_offset" | |
193 | * field indicates where in the "shadow" these contents begin. | |
194 | * The "copy" field refers to a virtual memory object | |
195 | * to which changed pages must be copied before changing | |
196 | * this object, in order to implement another form | |
197 | * of copy-on-write optimization. | |
198 | * | |
199 | * The virtual memory object structure also records | |
200 | * the attributes associated with its memory object. | |
201 | * The "pager_ready", "can_persist" and "copy_strategy" | |
202 | * fields represent those attributes. The "cached_list" | |
203 | * field is used in the implementation of the persistence | |
204 | * attribute. | |
205 | * | |
206 | * ZZZ Continue this comment. | |
207 | */ | |
208 | ||
209 | /* Forward declarations for internal functions. */ | |
210 | static kern_return_t vm_object_terminate( | |
211 | vm_object_t object); | |
212 | ||
213 | static kern_return_t vm_object_copy_call( | |
214 | vm_object_t src_object, | |
215 | vm_object_offset_t src_offset, | |
216 | vm_object_size_t size, | |
217 | vm_object_t *_result_object); | |
218 | ||
219 | static void vm_object_do_collapse( | |
220 | vm_object_t object, | |
221 | vm_object_t backing_object); | |
222 | ||
223 | static void vm_object_do_bypass( | |
224 | vm_object_t object, | |
225 | vm_object_t backing_object); | |
226 | ||
227 | static void vm_object_release_pager( | |
228 | memory_object_t pager); | |
229 | ||
230 | zone_t vm_object_zone; /* vm backing store zone */ | |
231 | ||
232 | /* | |
233 | * All wired-down kernel memory belongs to a single virtual | |
234 | * memory object (kernel_object) to avoid wasting data structures. | |
235 | */ | |
236 | static struct vm_object kernel_object_store __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); | |
237 | vm_object_t kernel_object; | |
238 | ||
239 | static struct vm_object compressor_object_store __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); | |
240 | vm_object_t compressor_object = &compressor_object_store; | |
241 | ||
242 | /* | |
243 | * The submap object is used as a placeholder for vm_map_submap | |
244 | * operations. The object is declared in vm_map.c because it | |
245 | * is exported by the vm_map module. The storage is declared | |
246 | * here because it must be initialized here. | |
247 | */ | |
248 | static struct vm_object vm_submap_object_store __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); | |
249 | ||
250 | /* | |
251 | * Virtual memory objects are initialized from | |
252 | * a template (see vm_object_allocate). | |
253 | * | |
254 | * When adding a new field to the virtual memory | |
255 | * object structure, be sure to add initialization | |
256 | * (see _vm_object_allocate()). | |
257 | */ | |
258 | static struct vm_object vm_object_template; | |
259 | ||
260 | unsigned int vm_page_purged_wired = 0; | |
261 | unsigned int vm_page_purged_busy = 0; | |
262 | unsigned int vm_page_purged_others = 0; | |
263 | ||
264 | static queue_head_t vm_object_cached_list; | |
265 | static uint32_t vm_object_cache_pages_freed = 0; | |
266 | static uint32_t vm_object_cache_pages_moved = 0; | |
267 | static uint32_t vm_object_cache_pages_skipped = 0; | |
268 | static uint32_t vm_object_cache_adds = 0; | |
269 | static uint32_t vm_object_cached_count = 0; | |
270 | static lck_mtx_t vm_object_cached_lock_data; | |
271 | static lck_mtx_ext_t vm_object_cached_lock_data_ext; | |
272 | ||
273 | static uint32_t vm_object_page_grab_failed = 0; | |
274 | static uint32_t vm_object_page_grab_skipped = 0; | |
275 | static uint32_t vm_object_page_grab_returned = 0; | |
276 | static uint32_t vm_object_page_grab_pmapped = 0; | |
277 | static uint32_t vm_object_page_grab_reactivations = 0; | |
278 | ||
279 | #define vm_object_cache_lock_spin() \ | |
280 | lck_mtx_lock_spin(&vm_object_cached_lock_data) | |
281 | #define vm_object_cache_unlock() \ | |
282 | lck_mtx_unlock(&vm_object_cached_lock_data) | |
283 | ||
284 | static void vm_object_cache_remove_locked(vm_object_t); | |
285 | ||
286 | ||
287 | static void vm_object_reap(vm_object_t object); | |
288 | static void vm_object_reap_async(vm_object_t object); | |
289 | static void vm_object_reaper_thread(void); | |
290 | ||
291 | static lck_mtx_t vm_object_reaper_lock_data; | |
292 | static lck_mtx_ext_t vm_object_reaper_lock_data_ext; | |
293 | ||
294 | static queue_head_t vm_object_reaper_queue; /* protected by vm_object_reaper_lock() */ | |
295 | unsigned int vm_object_reap_count = 0; | |
296 | unsigned int vm_object_reap_count_async = 0; | |
297 | ||
298 | #define vm_object_reaper_lock() \ | |
299 | lck_mtx_lock(&vm_object_reaper_lock_data) | |
300 | #define vm_object_reaper_lock_spin() \ | |
301 | lck_mtx_lock_spin(&vm_object_reaper_lock_data) | |
302 | #define vm_object_reaper_unlock() \ | |
303 | lck_mtx_unlock(&vm_object_reaper_lock_data) | |
304 | ||
305 | #if CONFIG_IOSCHED | |
306 | /* I/O Re-prioritization request list */ | |
307 | queue_head_t io_reprioritize_list; | |
308 | lck_spin_t io_reprioritize_list_lock; | |
309 | ||
310 | #define IO_REPRIORITIZE_LIST_LOCK() \ | |
311 | lck_spin_lock(&io_reprioritize_list_lock) | |
312 | #define IO_REPRIORITIZE_LIST_UNLOCK() \ | |
313 | lck_spin_unlock(&io_reprioritize_list_lock) | |
314 | ||
315 | #define MAX_IO_REPRIORITIZE_REQS 8192 | |
316 | zone_t io_reprioritize_req_zone; | |
317 | ||
318 | /* I/O Re-prioritization thread */ | |
319 | int io_reprioritize_wakeup = 0; | |
320 | static void io_reprioritize_thread(void *param __unused, wait_result_t wr __unused); | |
321 | ||
322 | #define IO_REPRIO_THREAD_WAKEUP() thread_wakeup((event_t)&io_reprioritize_wakeup) | |
323 | #define IO_REPRIO_THREAD_CONTINUATION() \ | |
324 | { \ | |
325 | assert_wait(&io_reprioritize_wakeup, THREAD_UNINT); \ | |
326 | thread_block(io_reprioritize_thread); \ | |
327 | } | |
328 | ||
329 | void vm_page_request_reprioritize(vm_object_t, uint64_t, uint32_t, int); | |
330 | void vm_page_handle_prio_inversion(vm_object_t, vm_page_t); | |
331 | void vm_decmp_upl_reprioritize(upl_t, int); | |
332 | #endif | |
333 | ||
334 | #if 0 | |
335 | #undef KERNEL_DEBUG | |
336 | #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT | |
337 | #endif | |
338 | ||
339 | ||
340 | /* | |
341 | * vm_object_allocate: | |
342 | * | |
343 | * Returns a new object with the given size. | |
344 | */ | |
345 | ||
346 | __private_extern__ void | |
347 | _vm_object_allocate( | |
348 | vm_object_size_t size, | |
349 | vm_object_t object) | |
350 | { | |
351 | XPR(XPR_VM_OBJECT, | |
352 | "vm_object_allocate, object 0x%X size 0x%X\n", | |
353 | object, size, 0,0,0); | |
354 | ||
355 | *object = vm_object_template; | |
356 | vm_page_queue_init(&object->memq); | |
357 | #if UPL_DEBUG || CONFIG_IOSCHED | |
358 | queue_init(&object->uplq); | |
359 | #endif | |
360 | vm_object_lock_init(object); | |
361 | object->vo_size = size; | |
362 | ||
363 | #if VM_OBJECT_TRACKING_OP_CREATED | |
364 | if (vm_object_tracking_inited) { | |
365 | void *bt[VM_OBJECT_TRACKING_BTDEPTH]; | |
366 | int numsaved = 0; | |
367 | ||
368 | numsaved = OSBacktrace(bt, VM_OBJECT_TRACKING_BTDEPTH); | |
369 | btlog_add_entry(vm_object_tracking_btlog, | |
370 | object, | |
371 | VM_OBJECT_TRACKING_OP_CREATED, | |
372 | bt, | |
373 | numsaved); | |
374 | } | |
375 | #endif /* VM_OBJECT_TRACKING_OP_CREATED */ | |
376 | } | |
377 | ||
378 | __private_extern__ vm_object_t | |
379 | vm_object_allocate( | |
380 | vm_object_size_t size) | |
381 | { | |
382 | vm_object_t object; | |
383 | ||
384 | object = (vm_object_t) zalloc(vm_object_zone); | |
385 | ||
386 | // dbgLog(object, size, 0, 2); /* (TEST/DEBUG) */ | |
387 | ||
388 | if (object != VM_OBJECT_NULL) | |
389 | _vm_object_allocate(size, object); | |
390 | ||
391 | return object; | |
392 | } | |
393 | ||
394 | ||
395 | lck_grp_t vm_object_lck_grp; | |
396 | lck_grp_t vm_object_cache_lck_grp; | |
397 | lck_grp_attr_t vm_object_lck_grp_attr; | |
398 | lck_attr_t vm_object_lck_attr; | |
399 | lck_attr_t kernel_object_lck_attr; | |
400 | lck_attr_t compressor_object_lck_attr; | |
401 | ||
402 | /* | |
403 | * vm_object_bootstrap: | |
404 | * | |
405 | * Initialize the VM objects module. | |
406 | */ | |
407 | __private_extern__ void | |
408 | vm_object_bootstrap(void) | |
409 | { | |
410 | vm_size_t vm_object_size; | |
411 | ||
412 | assert(sizeof (mo_ipc_object_bits_t) == sizeof (ipc_object_bits_t)); | |
413 | ||
414 | vm_object_size = (sizeof(struct vm_object) + (VM_PACKED_POINTER_ALIGNMENT-1)) & ~(VM_PACKED_POINTER_ALIGNMENT - 1); | |
415 | ||
416 | vm_object_zone = zinit(vm_object_size, | |
417 | round_page(512*1024), | |
418 | round_page(12*1024), | |
419 | "vm objects"); | |
420 | zone_change(vm_object_zone, Z_CALLERACCT, FALSE); /* don't charge caller */ | |
421 | zone_change(vm_object_zone, Z_NOENCRYPT, TRUE); | |
422 | zone_change(vm_object_zone, Z_ALIGNMENT_REQUIRED, TRUE); | |
423 | ||
424 | vm_object_init_lck_grp(); | |
425 | ||
426 | queue_init(&vm_object_cached_list); | |
427 | ||
428 | lck_mtx_init_ext(&vm_object_cached_lock_data, | |
429 | &vm_object_cached_lock_data_ext, | |
430 | &vm_object_cache_lck_grp, | |
431 | &vm_object_lck_attr); | |
432 | ||
433 | queue_init(&vm_object_reaper_queue); | |
434 | ||
435 | lck_mtx_init_ext(&vm_object_reaper_lock_data, | |
436 | &vm_object_reaper_lock_data_ext, | |
437 | &vm_object_lck_grp, | |
438 | &vm_object_lck_attr); | |
439 | ||
440 | ||
441 | /* | |
442 | * Fill in a template object, for quick initialization | |
443 | */ | |
444 | ||
445 | /* memq; Lock; init after allocation */ | |
446 | ||
447 | vm_object_template.memq.prev = 0; | |
448 | vm_object_template.memq.next = 0; | |
449 | #if 0 | |
450 | /* | |
451 | * We can't call vm_object_lock_init() here because that will | |
452 | * allocate some memory and VM is not fully initialized yet. | |
453 | * The lock will be initialized for each allocated object in | |
454 | * _vm_object_allocate(), so we don't need to initialize it in | |
455 | * the vm_object_template. | |
456 | */ | |
457 | vm_object_lock_init(&vm_object_template); | |
458 | #endif | |
459 | #if DEVELOPMENT || DEBUG | |
460 | vm_object_template.Lock_owner = 0; | |
461 | #endif | |
462 | vm_object_template.vo_size = 0; | |
463 | vm_object_template.memq_hint = VM_PAGE_NULL; | |
464 | vm_object_template.ref_count = 1; | |
465 | #if TASK_SWAPPER | |
466 | vm_object_template.res_count = 1; | |
467 | #endif /* TASK_SWAPPER */ | |
468 | vm_object_template.resident_page_count = 0; | |
469 | // static vm_object_template is zeroed | |
470 | // vm_object_template.wired_page_count = 0; | |
471 | vm_object_template.reusable_page_count = 0; | |
472 | vm_object_template.copy = VM_OBJECT_NULL; | |
473 | vm_object_template.shadow = VM_OBJECT_NULL; | |
474 | vm_object_template.vo_shadow_offset = (vm_object_offset_t) 0; | |
475 | vm_object_template.pager = MEMORY_OBJECT_NULL; | |
476 | vm_object_template.paging_offset = 0; | |
477 | vm_object_template.pager_control = MEMORY_OBJECT_CONTROL_NULL; | |
478 | vm_object_template.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC; | |
479 | vm_object_template.paging_in_progress = 0; | |
480 | #if __LP64__ | |
481 | vm_object_template.__object1_unused_bits = 0; | |
482 | #endif /* __LP64__ */ | |
483 | vm_object_template.activity_in_progress = 0; | |
484 | ||
485 | /* Begin bitfields */ | |
486 | vm_object_template.all_wanted = 0; /* all bits FALSE */ | |
487 | vm_object_template.pager_created = FALSE; | |
488 | vm_object_template.pager_initialized = FALSE; | |
489 | vm_object_template.pager_ready = FALSE; | |
490 | vm_object_template.pager_trusted = FALSE; | |
491 | vm_object_template.can_persist = FALSE; | |
492 | vm_object_template.internal = TRUE; | |
493 | vm_object_template.private = FALSE; | |
494 | vm_object_template.pageout = FALSE; | |
495 | vm_object_template.alive = TRUE; | |
496 | vm_object_template.purgable = VM_PURGABLE_DENY; | |
497 | vm_object_template.purgeable_when_ripe = FALSE; | |
498 | vm_object_template.purgeable_only_by_kernel = FALSE; | |
499 | vm_object_template.shadowed = FALSE; | |
500 | vm_object_template.true_share = FALSE; | |
501 | vm_object_template.terminating = FALSE; | |
502 | vm_object_template.named = FALSE; | |
503 | vm_object_template.shadow_severed = FALSE; | |
504 | vm_object_template.phys_contiguous = FALSE; | |
505 | vm_object_template.nophyscache = FALSE; | |
506 | /* End bitfields */ | |
507 | ||
508 | vm_object_template.cached_list.prev = NULL; | |
509 | vm_object_template.cached_list.next = NULL; | |
510 | ||
511 | vm_object_template.last_alloc = (vm_object_offset_t) 0; | |
512 | vm_object_template.sequential = (vm_object_offset_t) 0; | |
513 | vm_object_template.pages_created = 0; | |
514 | vm_object_template.pages_used = 0; | |
515 | vm_object_template.scan_collisions = 0; | |
516 | #if CONFIG_PHANTOM_CACHE | |
517 | vm_object_template.phantom_object_id = 0; | |
518 | #endif | |
519 | vm_object_template.cow_hint = ~(vm_offset_t)0; | |
520 | ||
521 | /* cache bitfields */ | |
522 | vm_object_template.wimg_bits = VM_WIMG_USE_DEFAULT; | |
523 | vm_object_template.set_cache_attr = FALSE; | |
524 | vm_object_template.object_slid = FALSE; | |
525 | vm_object_template.code_signed = FALSE; | |
526 | vm_object_template.transposed = FALSE; | |
527 | vm_object_template.mapping_in_progress = FALSE; | |
528 | vm_object_template.phantom_isssd = FALSE; | |
529 | vm_object_template.volatile_empty = FALSE; | |
530 | vm_object_template.volatile_fault = FALSE; | |
531 | vm_object_template.all_reusable = FALSE; | |
532 | vm_object_template.blocked_access = FALSE; | |
533 | vm_object_template.__object2_unused_bits = 0; | |
534 | #if CONFIG_IOSCHED || UPL_DEBUG | |
535 | vm_object_template.uplq.prev = NULL; | |
536 | vm_object_template.uplq.next = NULL; | |
537 | #endif /* UPL_DEBUG */ | |
538 | #ifdef VM_PIP_DEBUG | |
539 | bzero(&vm_object_template.pip_holders, | |
540 | sizeof (vm_object_template.pip_holders)); | |
541 | #endif /* VM_PIP_DEBUG */ | |
542 | ||
543 | vm_object_template.objq.next = NULL; | |
544 | vm_object_template.objq.prev = NULL; | |
545 | vm_object_template.task_objq.next = NULL; | |
546 | vm_object_template.task_objq.prev = NULL; | |
547 | ||
548 | vm_object_template.purgeable_queue_type = PURGEABLE_Q_TYPE_MAX; | |
549 | vm_object_template.purgeable_queue_group = 0; | |
550 | ||
551 | vm_object_template.vo_cache_ts = 0; | |
552 | ||
553 | vm_object_template.wire_tag = VM_KERN_MEMORY_NONE; | |
554 | ||
555 | vm_object_template.io_tracking = FALSE; | |
556 | ||
557 | #if CONFIG_SECLUDED_MEMORY | |
558 | vm_object_template.eligible_for_secluded = FALSE; | |
559 | vm_object_template.can_grab_secluded = FALSE; | |
560 | #else /* CONFIG_SECLUDED_MEMORY */ | |
561 | vm_object_template.__object3_unused_bits = 0; | |
562 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
563 | ||
564 | #if DEBUG | |
565 | bzero(&vm_object_template.purgeable_owner_bt[0], | |
566 | sizeof (vm_object_template.purgeable_owner_bt)); | |
567 | vm_object_template.vo_purgeable_volatilizer = NULL; | |
568 | bzero(&vm_object_template.purgeable_volatilizer_bt[0], | |
569 | sizeof (vm_object_template.purgeable_volatilizer_bt)); | |
570 | #endif /* DEBUG */ | |
571 | ||
572 | /* | |
573 | * Initialize the "kernel object" | |
574 | */ | |
575 | ||
576 | kernel_object = &kernel_object_store; | |
577 | ||
578 | /* | |
579 | * Note that in the following size specifications, we need to add 1 because | |
580 | * VM_MAX_KERNEL_ADDRESS (vm_last_addr) is a maximum address, not a size. | |
581 | */ | |
582 | ||
583 | _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, | |
584 | kernel_object); | |
585 | ||
586 | _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, | |
587 | compressor_object); | |
588 | kernel_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
589 | compressor_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
590 | kernel_object->no_tag_update = TRUE; | |
591 | ||
592 | /* | |
593 | * Initialize the "submap object". Make it as large as the | |
594 | * kernel object so that no limit is imposed on submap sizes. | |
595 | */ | |
596 | ||
597 | vm_submap_object = &vm_submap_object_store; | |
598 | _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, | |
599 | vm_submap_object); | |
600 | vm_submap_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
601 | ||
602 | /* | |
603 | * Create an "extra" reference to this object so that we never | |
604 | * try to deallocate it; zfree doesn't like to be called with | |
605 | * non-zone memory. | |
606 | */ | |
607 | vm_object_reference(vm_submap_object); | |
608 | } | |
609 | ||
610 | #if CONFIG_IOSCHED | |
611 | void | |
612 | vm_io_reprioritize_init(void) | |
613 | { | |
614 | kern_return_t result; | |
615 | thread_t thread = THREAD_NULL; | |
616 | ||
617 | /* Initialze the I/O reprioritization subsystem */ | |
618 | lck_spin_init(&io_reprioritize_list_lock, &vm_object_lck_grp, &vm_object_lck_attr); | |
619 | queue_init(&io_reprioritize_list); | |
620 | ||
621 | io_reprioritize_req_zone = zinit(sizeof(struct io_reprioritize_req), | |
622 | MAX_IO_REPRIORITIZE_REQS * sizeof(struct io_reprioritize_req), | |
623 | 4096, "io_reprioritize_req"); | |
624 | zone_change(io_reprioritize_req_zone, Z_COLLECT, FALSE); | |
625 | ||
626 | result = kernel_thread_start_priority(io_reprioritize_thread, NULL, 95 /* MAXPRI_KERNEL */, &thread); | |
627 | if (result == KERN_SUCCESS) { | |
628 | thread_deallocate(thread); | |
629 | } else { | |
630 | panic("Could not create io_reprioritize_thread"); | |
631 | } | |
632 | } | |
633 | #endif | |
634 | ||
635 | void | |
636 | vm_object_reaper_init(void) | |
637 | { | |
638 | kern_return_t kr; | |
639 | thread_t thread; | |
640 | ||
641 | kr = kernel_thread_start_priority( | |
642 | (thread_continue_t) vm_object_reaper_thread, | |
643 | NULL, | |
644 | BASEPRI_VM, | |
645 | &thread); | |
646 | if (kr != KERN_SUCCESS) { | |
647 | panic("failed to launch vm_object_reaper_thread kr=0x%x", kr); | |
648 | } | |
649 | thread_deallocate(thread); | |
650 | } | |
651 | ||
652 | __private_extern__ void | |
653 | vm_object_init(void) | |
654 | { | |
655 | /* | |
656 | * Finish initializing the kernel object. | |
657 | */ | |
658 | } | |
659 | ||
660 | ||
661 | __private_extern__ void | |
662 | vm_object_init_lck_grp(void) | |
663 | { | |
664 | /* | |
665 | * initialze the vm_object lock world | |
666 | */ | |
667 | lck_grp_attr_setdefault(&vm_object_lck_grp_attr); | |
668 | lck_grp_init(&vm_object_lck_grp, "vm_object", &vm_object_lck_grp_attr); | |
669 | lck_grp_init(&vm_object_cache_lck_grp, "vm_object_cache", &vm_object_lck_grp_attr); | |
670 | lck_attr_setdefault(&vm_object_lck_attr); | |
671 | lck_attr_setdefault(&kernel_object_lck_attr); | |
672 | lck_attr_cleardebug(&kernel_object_lck_attr); | |
673 | lck_attr_setdefault(&compressor_object_lck_attr); | |
674 | lck_attr_cleardebug(&compressor_object_lck_attr); | |
675 | } | |
676 | ||
677 | ||
678 | /* | |
679 | * vm_object_deallocate: | |
680 | * | |
681 | * Release a reference to the specified object, | |
682 | * gained either through a vm_object_allocate | |
683 | * or a vm_object_reference call. When all references | |
684 | * are gone, storage associated with this object | |
685 | * may be relinquished. | |
686 | * | |
687 | * No object may be locked. | |
688 | */ | |
689 | unsigned long vm_object_deallocate_shared_successes = 0; | |
690 | unsigned long vm_object_deallocate_shared_failures = 0; | |
691 | unsigned long vm_object_deallocate_shared_swap_failures = 0; | |
692 | ||
693 | __private_extern__ void | |
694 | vm_object_deallocate( | |
695 | vm_object_t object) | |
696 | { | |
697 | vm_object_t shadow = VM_OBJECT_NULL; | |
698 | ||
699 | // if(object)dbgLog(object, object->ref_count, object->can_persist, 3); /* (TEST/DEBUG) */ | |
700 | // else dbgLog(object, 0, 0, 3); /* (TEST/DEBUG) */ | |
701 | ||
702 | if (object == VM_OBJECT_NULL) | |
703 | return; | |
704 | ||
705 | if (object == kernel_object || object == compressor_object) { | |
706 | vm_object_lock_shared(object); | |
707 | ||
708 | OSAddAtomic(-1, &object->ref_count); | |
709 | ||
710 | if (object->ref_count == 0) { | |
711 | if (object == kernel_object) | |
712 | panic("vm_object_deallocate: losing kernel_object\n"); | |
713 | else | |
714 | panic("vm_object_deallocate: losing compressor_object\n"); | |
715 | } | |
716 | vm_object_unlock(object); | |
717 | return; | |
718 | } | |
719 | ||
720 | if (object->ref_count == 2 && | |
721 | object->named) { | |
722 | /* | |
723 | * This "named" object's reference count is about to | |
724 | * drop from 2 to 1: | |
725 | * we'll need to call memory_object_last_unmap(). | |
726 | */ | |
727 | } else if (object->ref_count == 2 && | |
728 | object->internal && | |
729 | object->shadow != VM_OBJECT_NULL) { | |
730 | /* | |
731 | * This internal object's reference count is about to | |
732 | * drop from 2 to 1 and it has a shadow object: | |
733 | * we'll want to try and collapse this object with its | |
734 | * shadow. | |
735 | */ | |
736 | } else if (object->ref_count >= 2) { | |
737 | UInt32 original_ref_count; | |
738 | volatile UInt32 *ref_count_p; | |
739 | Boolean atomic_swap; | |
740 | ||
741 | /* | |
742 | * The object currently looks like it is not being | |
743 | * kept alive solely by the reference we're about to release. | |
744 | * Let's try and release our reference without taking | |
745 | * all the locks we would need if we had to terminate the | |
746 | * object (cache lock + exclusive object lock). | |
747 | * Lock the object "shared" to make sure we don't race with | |
748 | * anyone holding it "exclusive". | |
749 | */ | |
750 | vm_object_lock_shared(object); | |
751 | ref_count_p = (volatile UInt32 *) &object->ref_count; | |
752 | original_ref_count = object->ref_count; | |
753 | /* | |
754 | * Test again as "ref_count" could have changed. | |
755 | * "named" shouldn't change. | |
756 | */ | |
757 | if (original_ref_count == 2 && | |
758 | object->named) { | |
759 | /* need to take slow path for m_o_last_unmap() */ | |
760 | atomic_swap = FALSE; | |
761 | } else if (original_ref_count == 2 && | |
762 | object->internal && | |
763 | object->shadow != VM_OBJECT_NULL) { | |
764 | /* need to take slow path for vm_object_collapse() */ | |
765 | atomic_swap = FALSE; | |
766 | } else if (original_ref_count < 2) { | |
767 | /* need to take slow path for vm_object_terminate() */ | |
768 | atomic_swap = FALSE; | |
769 | } else { | |
770 | /* try an atomic update with the shared lock */ | |
771 | atomic_swap = OSCompareAndSwap( | |
772 | original_ref_count, | |
773 | original_ref_count - 1, | |
774 | (UInt32 *) &object->ref_count); | |
775 | if (atomic_swap == FALSE) { | |
776 | vm_object_deallocate_shared_swap_failures++; | |
777 | /* fall back to the slow path... */ | |
778 | } | |
779 | } | |
780 | ||
781 | vm_object_unlock(object); | |
782 | ||
783 | if (atomic_swap) { | |
784 | /* | |
785 | * ref_count was updated atomically ! | |
786 | */ | |
787 | vm_object_deallocate_shared_successes++; | |
788 | return; | |
789 | } | |
790 | ||
791 | /* | |
792 | * Someone else updated the ref_count at the same | |
793 | * time and we lost the race. Fall back to the usual | |
794 | * slow but safe path... | |
795 | */ | |
796 | vm_object_deallocate_shared_failures++; | |
797 | } | |
798 | ||
799 | while (object != VM_OBJECT_NULL) { | |
800 | ||
801 | vm_object_lock(object); | |
802 | ||
803 | assert(object->ref_count > 0); | |
804 | ||
805 | /* | |
806 | * If the object has a named reference, and only | |
807 | * that reference would remain, inform the pager | |
808 | * about the last "mapping" reference going away. | |
809 | */ | |
810 | if ((object->ref_count == 2) && (object->named)) { | |
811 | memory_object_t pager = object->pager; | |
812 | ||
813 | /* Notify the Pager that there are no */ | |
814 | /* more mappers for this object */ | |
815 | ||
816 | if (pager != MEMORY_OBJECT_NULL) { | |
817 | vm_object_mapping_wait(object, THREAD_UNINT); | |
818 | vm_object_mapping_begin(object); | |
819 | vm_object_unlock(object); | |
820 | ||
821 | memory_object_last_unmap(pager); | |
822 | ||
823 | vm_object_lock(object); | |
824 | vm_object_mapping_end(object); | |
825 | } | |
826 | assert(object->ref_count > 0); | |
827 | } | |
828 | ||
829 | /* | |
830 | * Lose the reference. If other references | |
831 | * remain, then we are done, unless we need | |
832 | * to retry a cache trim. | |
833 | * If it is the last reference, then keep it | |
834 | * until any pending initialization is completed. | |
835 | */ | |
836 | ||
837 | /* if the object is terminating, it cannot go into */ | |
838 | /* the cache and we obviously should not call */ | |
839 | /* terminate again. */ | |
840 | ||
841 | if ((object->ref_count > 1) || object->terminating) { | |
842 | vm_object_lock_assert_exclusive(object); | |
843 | object->ref_count--; | |
844 | vm_object_res_deallocate(object); | |
845 | ||
846 | if (object->ref_count == 1 && | |
847 | object->shadow != VM_OBJECT_NULL) { | |
848 | /* | |
849 | * There's only one reference left on this | |
850 | * VM object. We can't tell if it's a valid | |
851 | * one (from a mapping for example) or if this | |
852 | * object is just part of a possibly stale and | |
853 | * useless shadow chain. | |
854 | * We would like to try and collapse it into | |
855 | * its parent, but we don't have any pointers | |
856 | * back to this parent object. | |
857 | * But we can try and collapse this object with | |
858 | * its own shadows, in case these are useless | |
859 | * too... | |
860 | * We can't bypass this object though, since we | |
861 | * don't know if this last reference on it is | |
862 | * meaningful or not. | |
863 | */ | |
864 | vm_object_collapse(object, 0, FALSE); | |
865 | } | |
866 | vm_object_unlock(object); | |
867 | return; | |
868 | } | |
869 | ||
870 | /* | |
871 | * We have to wait for initialization | |
872 | * before destroying or caching the object. | |
873 | */ | |
874 | ||
875 | if (object->pager_created && ! object->pager_initialized) { | |
876 | assert(! object->can_persist); | |
877 | vm_object_assert_wait(object, | |
878 | VM_OBJECT_EVENT_INITIALIZED, | |
879 | THREAD_UNINT); | |
880 | vm_object_unlock(object); | |
881 | ||
882 | thread_block(THREAD_CONTINUE_NULL); | |
883 | continue; | |
884 | } | |
885 | ||
886 | XPR(XPR_VM_OBJECT, | |
887 | "vm_o_deallocate: 0x%X res %d paging_ops %d thread 0x%p ref %d\n", | |
888 | object, object->resident_page_count, | |
889 | object->paging_in_progress, | |
890 | (void *)current_thread(),object->ref_count); | |
891 | ||
892 | VM_OBJ_RES_DECR(object); /* XXX ? */ | |
893 | /* | |
894 | * Terminate this object. If it had a shadow, | |
895 | * then deallocate it; otherwise, if we need | |
896 | * to retry a cache trim, do so now; otherwise, | |
897 | * we are done. "pageout" objects have a shadow, | |
898 | * but maintain a "paging reference" rather than | |
899 | * a normal reference. | |
900 | */ | |
901 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
902 | ||
903 | if (vm_object_terminate(object) != KERN_SUCCESS) { | |
904 | return; | |
905 | } | |
906 | if (shadow != VM_OBJECT_NULL) { | |
907 | object = shadow; | |
908 | continue; | |
909 | } | |
910 | return; | |
911 | } | |
912 | } | |
913 | ||
914 | ||
915 | ||
916 | vm_page_t | |
917 | vm_object_page_grab( | |
918 | vm_object_t object) | |
919 | { | |
920 | vm_page_t p, next_p; | |
921 | int p_limit = 0; | |
922 | int p_skipped = 0; | |
923 | ||
924 | vm_object_lock_assert_exclusive(object); | |
925 | ||
926 | next_p = (vm_page_t)vm_page_queue_first(&object->memq); | |
927 | p_limit = MIN(50, object->resident_page_count); | |
928 | ||
929 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next_p) && --p_limit > 0) { | |
930 | ||
931 | p = next_p; | |
932 | next_p = (vm_page_t)vm_page_queue_next(&next_p->listq); | |
933 | ||
934 | if (VM_PAGE_WIRED(p) || p->busy || p->cleaning || p->laundry || p->fictitious) | |
935 | goto move_page_in_obj; | |
936 | ||
937 | if (p->pmapped || p->dirty || p->precious) { | |
938 | vm_page_lockspin_queues(); | |
939 | ||
940 | if (p->pmapped) { | |
941 | int refmod_state; | |
942 | ||
943 | vm_object_page_grab_pmapped++; | |
944 | ||
945 | if (p->reference == FALSE || p->dirty == FALSE) { | |
946 | ||
947 | refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(p)); | |
948 | ||
949 | if (refmod_state & VM_MEM_REFERENCED) | |
950 | p->reference = TRUE; | |
951 | if (refmod_state & VM_MEM_MODIFIED) { | |
952 | SET_PAGE_DIRTY(p, FALSE); | |
953 | } | |
954 | } | |
955 | if (p->dirty == FALSE && p->precious == FALSE) { | |
956 | ||
957 | refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p)); | |
958 | ||
959 | if (refmod_state & VM_MEM_REFERENCED) | |
960 | p->reference = TRUE; | |
961 | if (refmod_state & VM_MEM_MODIFIED) { | |
962 | SET_PAGE_DIRTY(p, FALSE); | |
963 | } | |
964 | ||
965 | if (p->dirty == FALSE) | |
966 | goto take_page; | |
967 | } | |
968 | } | |
969 | if ((p->vm_page_q_state != VM_PAGE_ON_ACTIVE_Q) && p->reference == TRUE) { | |
970 | vm_page_activate(p); | |
971 | ||
972 | VM_STAT_INCR(reactivations); | |
973 | vm_object_page_grab_reactivations++; | |
974 | } | |
975 | vm_page_unlock_queues(); | |
976 | move_page_in_obj: | |
977 | vm_page_queue_remove(&object->memq, p, vm_page_t, listq); | |
978 | vm_page_queue_enter(&object->memq, p, vm_page_t, listq); | |
979 | ||
980 | p_skipped++; | |
981 | continue; | |
982 | } | |
983 | vm_page_lockspin_queues(); | |
984 | take_page: | |
985 | vm_page_free_prepare_queues(p); | |
986 | vm_object_page_grab_returned++; | |
987 | vm_object_page_grab_skipped += p_skipped; | |
988 | ||
989 | vm_page_unlock_queues(); | |
990 | ||
991 | vm_page_free_prepare_object(p, TRUE); | |
992 | ||
993 | return (p); | |
994 | } | |
995 | vm_object_page_grab_skipped += p_skipped; | |
996 | vm_object_page_grab_failed++; | |
997 | ||
998 | return (NULL); | |
999 | } | |
1000 | ||
1001 | ||
1002 | ||
1003 | #define EVICT_PREPARE_LIMIT 64 | |
1004 | #define EVICT_AGE 10 | |
1005 | ||
1006 | static clock_sec_t vm_object_cache_aging_ts = 0; | |
1007 | ||
1008 | static void | |
1009 | vm_object_cache_remove_locked( | |
1010 | vm_object_t object) | |
1011 | { | |
1012 | assert(object->purgable == VM_PURGABLE_DENY); | |
1013 | ||
1014 | queue_remove(&vm_object_cached_list, object, vm_object_t, cached_list); | |
1015 | object->cached_list.next = NULL; | |
1016 | object->cached_list.prev = NULL; | |
1017 | ||
1018 | vm_object_cached_count--; | |
1019 | } | |
1020 | ||
1021 | void | |
1022 | vm_object_cache_remove( | |
1023 | vm_object_t object) | |
1024 | { | |
1025 | vm_object_cache_lock_spin(); | |
1026 | ||
1027 | if (object->cached_list.next && | |
1028 | object->cached_list.prev) | |
1029 | vm_object_cache_remove_locked(object); | |
1030 | ||
1031 | vm_object_cache_unlock(); | |
1032 | } | |
1033 | ||
1034 | void | |
1035 | vm_object_cache_add( | |
1036 | vm_object_t object) | |
1037 | { | |
1038 | clock_sec_t sec; | |
1039 | clock_nsec_t nsec; | |
1040 | ||
1041 | assert(object->purgable == VM_PURGABLE_DENY); | |
1042 | ||
1043 | if (object->resident_page_count == 0) | |
1044 | return; | |
1045 | clock_get_system_nanotime(&sec, &nsec); | |
1046 | ||
1047 | vm_object_cache_lock_spin(); | |
1048 | ||
1049 | if (object->cached_list.next == NULL && | |
1050 | object->cached_list.prev == NULL) { | |
1051 | queue_enter(&vm_object_cached_list, object, vm_object_t, cached_list); | |
1052 | object->vo_cache_ts = sec + EVICT_AGE; | |
1053 | object->vo_cache_pages_to_scan = object->resident_page_count; | |
1054 | ||
1055 | vm_object_cached_count++; | |
1056 | vm_object_cache_adds++; | |
1057 | } | |
1058 | vm_object_cache_unlock(); | |
1059 | } | |
1060 | ||
1061 | int | |
1062 | vm_object_cache_evict( | |
1063 | int num_to_evict, | |
1064 | int max_objects_to_examine) | |
1065 | { | |
1066 | vm_object_t object = VM_OBJECT_NULL; | |
1067 | vm_object_t next_obj = VM_OBJECT_NULL; | |
1068 | vm_page_t local_free_q = VM_PAGE_NULL; | |
1069 | vm_page_t p; | |
1070 | vm_page_t next_p; | |
1071 | int object_cnt = 0; | |
1072 | vm_page_t ep_array[EVICT_PREPARE_LIMIT]; | |
1073 | int ep_count; | |
1074 | int ep_limit; | |
1075 | int ep_index; | |
1076 | int ep_freed = 0; | |
1077 | int ep_moved = 0; | |
1078 | uint32_t ep_skipped = 0; | |
1079 | clock_sec_t sec; | |
1080 | clock_nsec_t nsec; | |
1081 | ||
1082 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
1083 | /* | |
1084 | * do a couple of quick checks to see if it's | |
1085 | * worthwhile grabbing the lock | |
1086 | */ | |
1087 | if (queue_empty(&vm_object_cached_list)) { | |
1088 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
1089 | return (0); | |
1090 | } | |
1091 | clock_get_system_nanotime(&sec, &nsec); | |
1092 | ||
1093 | /* | |
1094 | * the object on the head of the queue has not | |
1095 | * yet sufficiently aged | |
1096 | */ | |
1097 | if (sec < vm_object_cache_aging_ts) { | |
1098 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
1099 | return (0); | |
1100 | } | |
1101 | /* | |
1102 | * don't need the queue lock to find | |
1103 | * and lock an object on the cached list | |
1104 | */ | |
1105 | vm_page_unlock_queues(); | |
1106 | ||
1107 | vm_object_cache_lock_spin(); | |
1108 | ||
1109 | for (;;) { | |
1110 | next_obj = (vm_object_t)queue_first(&vm_object_cached_list); | |
1111 | ||
1112 | while (!queue_end(&vm_object_cached_list, (queue_entry_t)next_obj) && object_cnt++ < max_objects_to_examine) { | |
1113 | ||
1114 | object = next_obj; | |
1115 | next_obj = (vm_object_t)queue_next(&next_obj->cached_list); | |
1116 | ||
1117 | assert(object->purgable == VM_PURGABLE_DENY); | |
1118 | assert(object->wired_page_count == 0); | |
1119 | ||
1120 | if (sec < object->vo_cache_ts) { | |
1121 | KERNEL_DEBUG(0x130020c, object, object->resident_page_count, object->vo_cache_ts, sec, 0); | |
1122 | ||
1123 | vm_object_cache_aging_ts = object->vo_cache_ts; | |
1124 | object = VM_OBJECT_NULL; | |
1125 | break; | |
1126 | } | |
1127 | if (!vm_object_lock_try_scan(object)) { | |
1128 | /* | |
1129 | * just skip over this guy for now... if we find | |
1130 | * an object to steal pages from, we'll revist in a bit... | |
1131 | * hopefully, the lock will have cleared | |
1132 | */ | |
1133 | KERNEL_DEBUG(0x13001f8, object, object->resident_page_count, 0, 0, 0); | |
1134 | ||
1135 | object = VM_OBJECT_NULL; | |
1136 | continue; | |
1137 | } | |
1138 | if (vm_page_queue_empty(&object->memq) || object->vo_cache_pages_to_scan == 0) { | |
1139 | /* | |
1140 | * this case really shouldn't happen, but it's not fatal | |
1141 | * so deal with it... if we don't remove the object from | |
1142 | * the list, we'll never move past it. | |
1143 | */ | |
1144 | KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1145 | ||
1146 | vm_object_cache_remove_locked(object); | |
1147 | vm_object_unlock(object); | |
1148 | object = VM_OBJECT_NULL; | |
1149 | continue; | |
1150 | } | |
1151 | /* | |
1152 | * we have a locked object with pages... | |
1153 | * time to start harvesting | |
1154 | */ | |
1155 | break; | |
1156 | } | |
1157 | vm_object_cache_unlock(); | |
1158 | ||
1159 | if (object == VM_OBJECT_NULL) | |
1160 | break; | |
1161 | ||
1162 | /* | |
1163 | * object is locked at this point and | |
1164 | * has resident pages | |
1165 | */ | |
1166 | next_p = (vm_page_t)vm_page_queue_first(&object->memq); | |
1167 | ||
1168 | /* | |
1169 | * break the page scan into 2 pieces to minimize the time spent | |
1170 | * behind the page queue lock... | |
1171 | * the list of pages on these unused objects is likely to be cold | |
1172 | * w/r to the cpu cache which increases the time to scan the list | |
1173 | * tenfold... and we may have a 'run' of pages we can't utilize that | |
1174 | * needs to be skipped over... | |
1175 | */ | |
1176 | if ((ep_limit = num_to_evict - (ep_freed + ep_moved)) > EVICT_PREPARE_LIMIT) | |
1177 | ep_limit = EVICT_PREPARE_LIMIT; | |
1178 | ep_count = 0; | |
1179 | ||
1180 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next_p) && object->vo_cache_pages_to_scan && ep_count < ep_limit) { | |
1181 | ||
1182 | p = next_p; | |
1183 | next_p = (vm_page_t)vm_page_queue_next(&next_p->listq); | |
1184 | ||
1185 | object->vo_cache_pages_to_scan--; | |
1186 | ||
1187 | if (VM_PAGE_WIRED(p) || p->busy || p->cleaning || p->laundry) { | |
1188 | vm_page_queue_remove(&object->memq, p, vm_page_t, listq); | |
1189 | vm_page_queue_enter(&object->memq, p, vm_page_t, listq); | |
1190 | ||
1191 | ep_skipped++; | |
1192 | continue; | |
1193 | } | |
1194 | if (p->wpmapped || p->dirty || p->precious) { | |
1195 | vm_page_queue_remove(&object->memq, p, vm_page_t, listq); | |
1196 | vm_page_queue_enter(&object->memq, p, vm_page_t, listq); | |
1197 | ||
1198 | pmap_clear_reference(VM_PAGE_GET_PHYS_PAGE(p)); | |
1199 | } | |
1200 | ep_array[ep_count++] = p; | |
1201 | } | |
1202 | KERNEL_DEBUG(0x13001f4 | DBG_FUNC_START, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1203 | ||
1204 | vm_page_lockspin_queues(); | |
1205 | ||
1206 | for (ep_index = 0; ep_index < ep_count; ep_index++) { | |
1207 | ||
1208 | p = ep_array[ep_index]; | |
1209 | ||
1210 | if (p->wpmapped || p->dirty || p->precious) { | |
1211 | p->reference = FALSE; | |
1212 | p->no_cache = FALSE; | |
1213 | ||
1214 | /* | |
1215 | * we've already filtered out pages that are in the laundry | |
1216 | * so if we get here, this page can't be on the pageout queue | |
1217 | */ | |
1218 | vm_page_queues_remove(p, FALSE); | |
1219 | vm_page_enqueue_inactive(p, TRUE); | |
1220 | ||
1221 | ep_moved++; | |
1222 | } else { | |
1223 | #if CONFIG_PHANTOM_CACHE | |
1224 | vm_phantom_cache_add_ghost(p); | |
1225 | #endif | |
1226 | vm_page_free_prepare_queues(p); | |
1227 | ||
1228 | assert(p->pageq.next == 0 && p->pageq.prev == 0); | |
1229 | /* | |
1230 | * Add this page to our list of reclaimed pages, | |
1231 | * to be freed later. | |
1232 | */ | |
1233 | p->snext = local_free_q; | |
1234 | local_free_q = p; | |
1235 | ||
1236 | ep_freed++; | |
1237 | } | |
1238 | } | |
1239 | vm_page_unlock_queues(); | |
1240 | ||
1241 | KERNEL_DEBUG(0x13001f4 | DBG_FUNC_END, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1242 | ||
1243 | if (local_free_q) { | |
1244 | vm_page_free_list(local_free_q, TRUE); | |
1245 | local_free_q = VM_PAGE_NULL; | |
1246 | } | |
1247 | if (object->vo_cache_pages_to_scan == 0) { | |
1248 | KERNEL_DEBUG(0x1300208, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1249 | ||
1250 | vm_object_cache_remove(object); | |
1251 | ||
1252 | KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1253 | } | |
1254 | /* | |
1255 | * done with this object | |
1256 | */ | |
1257 | vm_object_unlock(object); | |
1258 | object = VM_OBJECT_NULL; | |
1259 | ||
1260 | /* | |
1261 | * at this point, we are not holding any locks | |
1262 | */ | |
1263 | if ((ep_freed + ep_moved) >= num_to_evict) { | |
1264 | /* | |
1265 | * we've reached our target for the | |
1266 | * number of pages to evict | |
1267 | */ | |
1268 | break; | |
1269 | } | |
1270 | vm_object_cache_lock_spin(); | |
1271 | } | |
1272 | /* | |
1273 | * put the page queues lock back to the caller's | |
1274 | * idea of it | |
1275 | */ | |
1276 | vm_page_lock_queues(); | |
1277 | ||
1278 | vm_object_cache_pages_freed += ep_freed; | |
1279 | vm_object_cache_pages_moved += ep_moved; | |
1280 | vm_object_cache_pages_skipped += ep_skipped; | |
1281 | ||
1282 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, ep_freed, 0, 0, 0, 0); | |
1283 | return (ep_freed); | |
1284 | } | |
1285 | ||
1286 | /* | |
1287 | * Routine: vm_object_terminate | |
1288 | * Purpose: | |
1289 | * Free all resources associated with a vm_object. | |
1290 | * In/out conditions: | |
1291 | * Upon entry, the object must be locked, | |
1292 | * and the object must have exactly one reference. | |
1293 | * | |
1294 | * The shadow object reference is left alone. | |
1295 | * | |
1296 | * The object must be unlocked if its found that pages | |
1297 | * must be flushed to a backing object. If someone | |
1298 | * manages to map the object while it is being flushed | |
1299 | * the object is returned unlocked and unchanged. Otherwise, | |
1300 | * upon exit, the cache will be unlocked, and the | |
1301 | * object will cease to exist. | |
1302 | */ | |
1303 | static kern_return_t | |
1304 | vm_object_terminate( | |
1305 | vm_object_t object) | |
1306 | { | |
1307 | vm_object_t shadow_object; | |
1308 | ||
1309 | XPR(XPR_VM_OBJECT, "vm_object_terminate, object 0x%X ref %d\n", | |
1310 | object, object->ref_count, 0, 0, 0); | |
1311 | ||
1312 | vm_object_lock_assert_exclusive(object); | |
1313 | ||
1314 | if (!object->pageout && (!object->internal && object->can_persist) && | |
1315 | (object->pager != NULL || object->shadow_severed)) { | |
1316 | /* | |
1317 | * Clear pager_trusted bit so that the pages get yanked | |
1318 | * out of the object instead of cleaned in place. This | |
1319 | * prevents a deadlock in XMM and makes more sense anyway. | |
1320 | */ | |
1321 | object->pager_trusted = FALSE; | |
1322 | ||
1323 | vm_object_reap_pages(object, REAP_TERMINATE); | |
1324 | } | |
1325 | /* | |
1326 | * Make sure the object isn't already being terminated | |
1327 | */ | |
1328 | if (object->terminating) { | |
1329 | vm_object_lock_assert_exclusive(object); | |
1330 | object->ref_count--; | |
1331 | assert(object->ref_count > 0); | |
1332 | vm_object_unlock(object); | |
1333 | return KERN_FAILURE; | |
1334 | } | |
1335 | ||
1336 | /* | |
1337 | * Did somebody get a reference to the object while we were | |
1338 | * cleaning it? | |
1339 | */ | |
1340 | if (object->ref_count != 1) { | |
1341 | vm_object_lock_assert_exclusive(object); | |
1342 | object->ref_count--; | |
1343 | assert(object->ref_count > 0); | |
1344 | vm_object_res_deallocate(object); | |
1345 | vm_object_unlock(object); | |
1346 | return KERN_FAILURE; | |
1347 | } | |
1348 | ||
1349 | /* | |
1350 | * Make sure no one can look us up now. | |
1351 | */ | |
1352 | ||
1353 | object->terminating = TRUE; | |
1354 | object->alive = FALSE; | |
1355 | ||
1356 | if (!object->internal && | |
1357 | object->cached_list.next && | |
1358 | object->cached_list.prev) | |
1359 | vm_object_cache_remove(object); | |
1360 | ||
1361 | /* | |
1362 | * Detach the object from its shadow if we are the shadow's | |
1363 | * copy. The reference we hold on the shadow must be dropped | |
1364 | * by our caller. | |
1365 | */ | |
1366 | if (((shadow_object = object->shadow) != VM_OBJECT_NULL) && | |
1367 | !(object->pageout)) { | |
1368 | vm_object_lock(shadow_object); | |
1369 | if (shadow_object->copy == object) | |
1370 | shadow_object->copy = VM_OBJECT_NULL; | |
1371 | vm_object_unlock(shadow_object); | |
1372 | } | |
1373 | ||
1374 | if (object->paging_in_progress != 0 || | |
1375 | object->activity_in_progress != 0) { | |
1376 | /* | |
1377 | * There are still some paging_in_progress references | |
1378 | * on this object, meaning that there are some paging | |
1379 | * or other I/O operations in progress for this VM object. | |
1380 | * Such operations take some paging_in_progress references | |
1381 | * up front to ensure that the object doesn't go away, but | |
1382 | * they may also need to acquire a reference on the VM object, | |
1383 | * to map it in kernel space, for example. That means that | |
1384 | * they may end up releasing the last reference on the VM | |
1385 | * object, triggering its termination, while still holding | |
1386 | * paging_in_progress references. Waiting for these | |
1387 | * pending paging_in_progress references to go away here would | |
1388 | * deadlock. | |
1389 | * | |
1390 | * To avoid deadlocking, we'll let the vm_object_reaper_thread | |
1391 | * complete the VM object termination if it still holds | |
1392 | * paging_in_progress references at this point. | |
1393 | * | |
1394 | * No new paging_in_progress should appear now that the | |
1395 | * VM object is "terminating" and not "alive". | |
1396 | */ | |
1397 | vm_object_reap_async(object); | |
1398 | vm_object_unlock(object); | |
1399 | /* | |
1400 | * Return KERN_FAILURE to let the caller know that we | |
1401 | * haven't completed the termination and it can't drop this | |
1402 | * object's reference on its shadow object yet. | |
1403 | * The reaper thread will take care of that once it has | |
1404 | * completed this object's termination. | |
1405 | */ | |
1406 | return KERN_FAILURE; | |
1407 | } | |
1408 | /* | |
1409 | * complete the VM object termination | |
1410 | */ | |
1411 | vm_object_reap(object); | |
1412 | object = VM_OBJECT_NULL; | |
1413 | ||
1414 | /* | |
1415 | * the object lock was released by vm_object_reap() | |
1416 | * | |
1417 | * KERN_SUCCESS means that this object has been terminated | |
1418 | * and no longer needs its shadow object but still holds a | |
1419 | * reference on it. | |
1420 | * The caller is responsible for dropping that reference. | |
1421 | * We can't call vm_object_deallocate() here because that | |
1422 | * would create a recursion. | |
1423 | */ | |
1424 | return KERN_SUCCESS; | |
1425 | } | |
1426 | ||
1427 | ||
1428 | /* | |
1429 | * vm_object_reap(): | |
1430 | * | |
1431 | * Complete the termination of a VM object after it's been marked | |
1432 | * as "terminating" and "!alive" by vm_object_terminate(). | |
1433 | * | |
1434 | * The VM object must be locked by caller. | |
1435 | * The lock will be released on return and the VM object is no longer valid. | |
1436 | */ | |
1437 | ||
1438 | void | |
1439 | vm_object_reap( | |
1440 | vm_object_t object) | |
1441 | { | |
1442 | memory_object_t pager; | |
1443 | ||
1444 | vm_object_lock_assert_exclusive(object); | |
1445 | assert(object->paging_in_progress == 0); | |
1446 | assert(object->activity_in_progress == 0); | |
1447 | ||
1448 | vm_object_reap_count++; | |
1449 | ||
1450 | /* | |
1451 | * Disown this purgeable object to cleanup its owner's purgeable | |
1452 | * ledgers. We need to do this before disconnecting the object | |
1453 | * from its pager, to properly account for compressed pages. | |
1454 | */ | |
1455 | if (object->internal && | |
1456 | object->purgable != VM_PURGABLE_DENY) { | |
1457 | vm_purgeable_accounting(object, | |
1458 | object->purgable, | |
1459 | TRUE, /* disown */ | |
1460 | FALSE); /* task_objq locked? */ | |
1461 | } | |
1462 | ||
1463 | pager = object->pager; | |
1464 | object->pager = MEMORY_OBJECT_NULL; | |
1465 | ||
1466 | if (pager != MEMORY_OBJECT_NULL) | |
1467 | memory_object_control_disable(object->pager_control); | |
1468 | ||
1469 | object->ref_count--; | |
1470 | #if TASK_SWAPPER | |
1471 | assert(object->res_count == 0); | |
1472 | #endif /* TASK_SWAPPER */ | |
1473 | ||
1474 | assert (object->ref_count == 0); | |
1475 | ||
1476 | /* | |
1477 | * remove from purgeable queue if it's on | |
1478 | */ | |
1479 | if (object->internal) { | |
1480 | task_t owner; | |
1481 | ||
1482 | owner = object->vo_purgeable_owner; | |
1483 | ||
1484 | VM_OBJECT_UNWIRED(object); | |
1485 | ||
1486 | if (object->purgable == VM_PURGABLE_DENY) { | |
1487 | /* not purgeable: nothing to do */ | |
1488 | } else if (object->purgable == VM_PURGABLE_VOLATILE) { | |
1489 | purgeable_q_t queue; | |
1490 | ||
1491 | assert(object->vo_purgeable_owner == NULL); | |
1492 | ||
1493 | queue = vm_purgeable_object_remove(object); | |
1494 | assert(queue); | |
1495 | ||
1496 | if (object->purgeable_when_ripe) { | |
1497 | /* | |
1498 | * Must take page lock for this - | |
1499 | * using it to protect token queue | |
1500 | */ | |
1501 | vm_page_lock_queues(); | |
1502 | vm_purgeable_token_delete_first(queue); | |
1503 | ||
1504 | assert(queue->debug_count_objects>=0); | |
1505 | vm_page_unlock_queues(); | |
1506 | } | |
1507 | ||
1508 | /* | |
1509 | * Update "vm_page_purgeable_count" in bulk and mark | |
1510 | * object as VM_PURGABLE_EMPTY to avoid updating | |
1511 | * "vm_page_purgeable_count" again in vm_page_remove() | |
1512 | * when reaping the pages. | |
1513 | */ | |
1514 | unsigned int delta; | |
1515 | assert(object->resident_page_count >= | |
1516 | object->wired_page_count); | |
1517 | delta = (object->resident_page_count - | |
1518 | object->wired_page_count); | |
1519 | if (delta != 0) { | |
1520 | assert(vm_page_purgeable_count >= delta); | |
1521 | OSAddAtomic(-delta, | |
1522 | (SInt32 *)&vm_page_purgeable_count); | |
1523 | } | |
1524 | if (object->wired_page_count != 0) { | |
1525 | assert(vm_page_purgeable_wired_count >= | |
1526 | object->wired_page_count); | |
1527 | OSAddAtomic(-object->wired_page_count, | |
1528 | (SInt32 *)&vm_page_purgeable_wired_count); | |
1529 | } | |
1530 | object->purgable = VM_PURGABLE_EMPTY; | |
1531 | } | |
1532 | else if (object->purgable == VM_PURGABLE_NONVOLATILE || | |
1533 | object->purgable == VM_PURGABLE_EMPTY) { | |
1534 | /* remove from nonvolatile queue */ | |
1535 | assert(object->vo_purgeable_owner == TASK_NULL); | |
1536 | vm_purgeable_nonvolatile_dequeue(object); | |
1537 | } else { | |
1538 | panic("object %p in unexpected purgeable state 0x%x\n", | |
1539 | object, object->purgable); | |
1540 | } | |
1541 | if (object->transposed && | |
1542 | object->cached_list.next != NULL && | |
1543 | object->cached_list.prev == NULL) { | |
1544 | /* | |
1545 | * object->cached_list.next "points" to the | |
1546 | * object that was transposed with this object. | |
1547 | */ | |
1548 | } else { | |
1549 | assert(object->cached_list.next == NULL); | |
1550 | } | |
1551 | assert(object->cached_list.prev == NULL); | |
1552 | } | |
1553 | ||
1554 | if (object->pageout) { | |
1555 | /* | |
1556 | * free all remaining pages tabled on | |
1557 | * this object | |
1558 | * clean up it's shadow | |
1559 | */ | |
1560 | assert(object->shadow != VM_OBJECT_NULL); | |
1561 | ||
1562 | vm_pageout_object_terminate(object); | |
1563 | ||
1564 | } else if (object->resident_page_count) { | |
1565 | /* | |
1566 | * free all remaining pages tabled on | |
1567 | * this object | |
1568 | */ | |
1569 | vm_object_reap_pages(object, REAP_REAP); | |
1570 | } | |
1571 | assert(vm_page_queue_empty(&object->memq)); | |
1572 | assert(object->paging_in_progress == 0); | |
1573 | assert(object->activity_in_progress == 0); | |
1574 | assert(object->ref_count == 0); | |
1575 | ||
1576 | /* | |
1577 | * If the pager has not already been released by | |
1578 | * vm_object_destroy, we need to terminate it and | |
1579 | * release our reference to it here. | |
1580 | */ | |
1581 | if (pager != MEMORY_OBJECT_NULL) { | |
1582 | vm_object_unlock(object); | |
1583 | vm_object_release_pager(pager); | |
1584 | vm_object_lock(object); | |
1585 | } | |
1586 | ||
1587 | /* kick off anyone waiting on terminating */ | |
1588 | object->terminating = FALSE; | |
1589 | vm_object_paging_begin(object); | |
1590 | vm_object_paging_end(object); | |
1591 | vm_object_unlock(object); | |
1592 | ||
1593 | object->shadow = VM_OBJECT_NULL; | |
1594 | ||
1595 | #if VM_OBJECT_TRACKING | |
1596 | if (vm_object_tracking_inited) { | |
1597 | btlog_remove_entries_for_element(vm_object_tracking_btlog, | |
1598 | object); | |
1599 | } | |
1600 | #endif /* VM_OBJECT_TRACKING */ | |
1601 | ||
1602 | vm_object_lock_destroy(object); | |
1603 | /* | |
1604 | * Free the space for the object. | |
1605 | */ | |
1606 | zfree(vm_object_zone, object); | |
1607 | object = VM_OBJECT_NULL; | |
1608 | } | |
1609 | ||
1610 | ||
1611 | unsigned int vm_max_batch = 256; | |
1612 | ||
1613 | #define V_O_R_MAX_BATCH 128 | |
1614 | ||
1615 | #define BATCH_LIMIT(max) (vm_max_batch >= max ? max : vm_max_batch) | |
1616 | ||
1617 | ||
1618 | #define VM_OBJ_REAP_FREELIST(_local_free_q, do_disconnect) \ | |
1619 | MACRO_BEGIN \ | |
1620 | if (_local_free_q) { \ | |
1621 | if (do_disconnect) { \ | |
1622 | vm_page_t m; \ | |
1623 | for (m = _local_free_q; \ | |
1624 | m != VM_PAGE_NULL; \ | |
1625 | m = m->snext) { \ | |
1626 | if (m->pmapped) { \ | |
1627 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); \ | |
1628 | } \ | |
1629 | } \ | |
1630 | } \ | |
1631 | vm_page_free_list(_local_free_q, TRUE); \ | |
1632 | _local_free_q = VM_PAGE_NULL; \ | |
1633 | } \ | |
1634 | MACRO_END | |
1635 | ||
1636 | ||
1637 | void | |
1638 | vm_object_reap_pages( | |
1639 | vm_object_t object, | |
1640 | int reap_type) | |
1641 | { | |
1642 | vm_page_t p; | |
1643 | vm_page_t next; | |
1644 | vm_page_t local_free_q = VM_PAGE_NULL; | |
1645 | int loop_count; | |
1646 | boolean_t disconnect_on_release; | |
1647 | pmap_flush_context pmap_flush_context_storage; | |
1648 | ||
1649 | if (reap_type == REAP_DATA_FLUSH) { | |
1650 | /* | |
1651 | * We need to disconnect pages from all pmaps before | |
1652 | * releasing them to the free list | |
1653 | */ | |
1654 | disconnect_on_release = TRUE; | |
1655 | } else { | |
1656 | /* | |
1657 | * Either the caller has already disconnected the pages | |
1658 | * from all pmaps, or we disconnect them here as we add | |
1659 | * them to out local list of pages to be released. | |
1660 | * No need to re-disconnect them when we release the pages | |
1661 | * to the free list. | |
1662 | */ | |
1663 | disconnect_on_release = FALSE; | |
1664 | } | |
1665 | ||
1666 | restart_after_sleep: | |
1667 | if (vm_page_queue_empty(&object->memq)) | |
1668 | return; | |
1669 | loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH); | |
1670 | ||
1671 | if (reap_type == REAP_PURGEABLE) | |
1672 | pmap_flush_context_init(&pmap_flush_context_storage); | |
1673 | ||
1674 | vm_page_lockspin_queues(); | |
1675 | ||
1676 | next = (vm_page_t)vm_page_queue_first(&object->memq); | |
1677 | ||
1678 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next)) { | |
1679 | ||
1680 | p = next; | |
1681 | next = (vm_page_t)vm_page_queue_next(&next->listq); | |
1682 | ||
1683 | if (--loop_count == 0) { | |
1684 | ||
1685 | vm_page_unlock_queues(); | |
1686 | ||
1687 | if (local_free_q) { | |
1688 | ||
1689 | if (reap_type == REAP_PURGEABLE) { | |
1690 | pmap_flush(&pmap_flush_context_storage); | |
1691 | pmap_flush_context_init(&pmap_flush_context_storage); | |
1692 | } | |
1693 | /* | |
1694 | * Free the pages we reclaimed so far | |
1695 | * and take a little break to avoid | |
1696 | * hogging the page queue lock too long | |
1697 | */ | |
1698 | VM_OBJ_REAP_FREELIST(local_free_q, | |
1699 | disconnect_on_release); | |
1700 | } else | |
1701 | mutex_pause(0); | |
1702 | ||
1703 | loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH); | |
1704 | ||
1705 | vm_page_lockspin_queues(); | |
1706 | } | |
1707 | if (reap_type == REAP_DATA_FLUSH || reap_type == REAP_TERMINATE) { | |
1708 | ||
1709 | if (p->busy || p->cleaning) { | |
1710 | ||
1711 | vm_page_unlock_queues(); | |
1712 | /* | |
1713 | * free the pages reclaimed so far | |
1714 | */ | |
1715 | VM_OBJ_REAP_FREELIST(local_free_q, | |
1716 | disconnect_on_release); | |
1717 | ||
1718 | PAGE_SLEEP(object, p, THREAD_UNINT); | |
1719 | ||
1720 | goto restart_after_sleep; | |
1721 | } | |
1722 | if (p->laundry) | |
1723 | vm_pageout_steal_laundry(p, TRUE); | |
1724 | } | |
1725 | switch (reap_type) { | |
1726 | ||
1727 | case REAP_DATA_FLUSH: | |
1728 | if (VM_PAGE_WIRED(p)) { | |
1729 | /* | |
1730 | * this is an odd case... perhaps we should | |
1731 | * zero-fill this page since we're conceptually | |
1732 | * tossing its data at this point, but leaving | |
1733 | * it on the object to honor the 'wire' contract | |
1734 | */ | |
1735 | continue; | |
1736 | } | |
1737 | break; | |
1738 | ||
1739 | case REAP_PURGEABLE: | |
1740 | if (VM_PAGE_WIRED(p)) { | |
1741 | /* | |
1742 | * can't purge a wired page | |
1743 | */ | |
1744 | vm_page_purged_wired++; | |
1745 | continue; | |
1746 | } | |
1747 | if (p->laundry && !p->busy && !p->cleaning) | |
1748 | vm_pageout_steal_laundry(p, TRUE); | |
1749 | ||
1750 | if (p->cleaning || p->laundry || p->absent) { | |
1751 | /* | |
1752 | * page is being acted upon, | |
1753 | * so don't mess with it | |
1754 | */ | |
1755 | vm_page_purged_others++; | |
1756 | continue; | |
1757 | } | |
1758 | if (p->busy) { | |
1759 | /* | |
1760 | * We can't reclaim a busy page but we can | |
1761 | * make it more likely to be paged (it's not wired) to make | |
1762 | * sure that it gets considered by | |
1763 | * vm_pageout_scan() later. | |
1764 | */ | |
1765 | if (VM_PAGE_PAGEABLE(p)) | |
1766 | vm_page_deactivate(p); | |
1767 | vm_page_purged_busy++; | |
1768 | continue; | |
1769 | } | |
1770 | ||
1771 | assert(VM_PAGE_OBJECT(p) != kernel_object); | |
1772 | ||
1773 | /* | |
1774 | * we can discard this page... | |
1775 | */ | |
1776 | if (p->pmapped == TRUE) { | |
1777 | /* | |
1778 | * unmap the page | |
1779 | */ | |
1780 | pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(p), PMAP_OPTIONS_NOFLUSH | PMAP_OPTIONS_NOREFMOD, (void *)&pmap_flush_context_storage); | |
1781 | } | |
1782 | vm_page_purged_count++; | |
1783 | ||
1784 | break; | |
1785 | ||
1786 | case REAP_TERMINATE: | |
1787 | if (p->absent || p->private) { | |
1788 | /* | |
1789 | * For private pages, VM_PAGE_FREE just | |
1790 | * leaves the page structure around for | |
1791 | * its owner to clean up. For absent | |
1792 | * pages, the structure is returned to | |
1793 | * the appropriate pool. | |
1794 | */ | |
1795 | break; | |
1796 | } | |
1797 | if (p->fictitious) { | |
1798 | assert (VM_PAGE_GET_PHYS_PAGE(p) == vm_page_guard_addr); | |
1799 | break; | |
1800 | } | |
1801 | if (!p->dirty && p->wpmapped) | |
1802 | p->dirty = pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(p)); | |
1803 | ||
1804 | if ((p->dirty || p->precious) && !p->error && object->alive) { | |
1805 | ||
1806 | assert(!object->internal); | |
1807 | ||
1808 | p->free_when_done = TRUE; | |
1809 | ||
1810 | if (!p->laundry) { | |
1811 | vm_page_queues_remove(p, TRUE); | |
1812 | /* | |
1813 | * flush page... page will be freed | |
1814 | * upon completion of I/O | |
1815 | */ | |
1816 | vm_pageout_cluster(p); | |
1817 | } | |
1818 | vm_page_unlock_queues(); | |
1819 | /* | |
1820 | * free the pages reclaimed so far | |
1821 | */ | |
1822 | VM_OBJ_REAP_FREELIST(local_free_q, | |
1823 | disconnect_on_release); | |
1824 | ||
1825 | vm_object_paging_wait(object, THREAD_UNINT); | |
1826 | ||
1827 | goto restart_after_sleep; | |
1828 | } | |
1829 | break; | |
1830 | ||
1831 | case REAP_REAP: | |
1832 | break; | |
1833 | } | |
1834 | vm_page_free_prepare_queues(p); | |
1835 | assert(p->pageq.next == 0 && p->pageq.prev == 0); | |
1836 | /* | |
1837 | * Add this page to our list of reclaimed pages, | |
1838 | * to be freed later. | |
1839 | */ | |
1840 | p->snext = local_free_q; | |
1841 | local_free_q = p; | |
1842 | } | |
1843 | vm_page_unlock_queues(); | |
1844 | ||
1845 | /* | |
1846 | * Free the remaining reclaimed pages | |
1847 | */ | |
1848 | if (reap_type == REAP_PURGEABLE) | |
1849 | pmap_flush(&pmap_flush_context_storage); | |
1850 | ||
1851 | VM_OBJ_REAP_FREELIST(local_free_q, | |
1852 | disconnect_on_release); | |
1853 | } | |
1854 | ||
1855 | ||
1856 | void | |
1857 | vm_object_reap_async( | |
1858 | vm_object_t object) | |
1859 | { | |
1860 | vm_object_lock_assert_exclusive(object); | |
1861 | ||
1862 | vm_object_reaper_lock_spin(); | |
1863 | ||
1864 | vm_object_reap_count_async++; | |
1865 | ||
1866 | /* enqueue the VM object... */ | |
1867 | queue_enter(&vm_object_reaper_queue, object, | |
1868 | vm_object_t, cached_list); | |
1869 | ||
1870 | vm_object_reaper_unlock(); | |
1871 | ||
1872 | /* ... and wake up the reaper thread */ | |
1873 | thread_wakeup((event_t) &vm_object_reaper_queue); | |
1874 | } | |
1875 | ||
1876 | ||
1877 | void | |
1878 | vm_object_reaper_thread(void) | |
1879 | { | |
1880 | vm_object_t object, shadow_object; | |
1881 | ||
1882 | vm_object_reaper_lock_spin(); | |
1883 | ||
1884 | while (!queue_empty(&vm_object_reaper_queue)) { | |
1885 | queue_remove_first(&vm_object_reaper_queue, | |
1886 | object, | |
1887 | vm_object_t, | |
1888 | cached_list); | |
1889 | ||
1890 | vm_object_reaper_unlock(); | |
1891 | vm_object_lock(object); | |
1892 | ||
1893 | assert(object->terminating); | |
1894 | assert(!object->alive); | |
1895 | ||
1896 | /* | |
1897 | * The pageout daemon might be playing with our pages. | |
1898 | * Now that the object is dead, it won't touch any more | |
1899 | * pages, but some pages might already be on their way out. | |
1900 | * Hence, we wait until the active paging activities have | |
1901 | * ceased before we break the association with the pager | |
1902 | * itself. | |
1903 | */ | |
1904 | while (object->paging_in_progress != 0 || | |
1905 | object->activity_in_progress != 0) { | |
1906 | vm_object_wait(object, | |
1907 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
1908 | THREAD_UNINT); | |
1909 | vm_object_lock(object); | |
1910 | } | |
1911 | ||
1912 | shadow_object = | |
1913 | object->pageout ? VM_OBJECT_NULL : object->shadow; | |
1914 | ||
1915 | vm_object_reap(object); | |
1916 | /* cache is unlocked and object is no longer valid */ | |
1917 | object = VM_OBJECT_NULL; | |
1918 | ||
1919 | if (shadow_object != VM_OBJECT_NULL) { | |
1920 | /* | |
1921 | * Drop the reference "object" was holding on | |
1922 | * its shadow object. | |
1923 | */ | |
1924 | vm_object_deallocate(shadow_object); | |
1925 | shadow_object = VM_OBJECT_NULL; | |
1926 | } | |
1927 | vm_object_reaper_lock_spin(); | |
1928 | } | |
1929 | ||
1930 | /* wait for more work... */ | |
1931 | assert_wait((event_t) &vm_object_reaper_queue, THREAD_UNINT); | |
1932 | ||
1933 | vm_object_reaper_unlock(); | |
1934 | ||
1935 | thread_block((thread_continue_t) vm_object_reaper_thread); | |
1936 | /*NOTREACHED*/ | |
1937 | } | |
1938 | ||
1939 | /* | |
1940 | * Routine: vm_object_release_pager | |
1941 | * Purpose: Terminate the pager and, upon completion, | |
1942 | * release our last reference to it. | |
1943 | */ | |
1944 | static void | |
1945 | vm_object_release_pager( | |
1946 | memory_object_t pager) | |
1947 | { | |
1948 | ||
1949 | /* | |
1950 | * Terminate the pager. | |
1951 | */ | |
1952 | ||
1953 | (void) memory_object_terminate(pager); | |
1954 | ||
1955 | /* | |
1956 | * Release reference to pager. | |
1957 | */ | |
1958 | memory_object_deallocate(pager); | |
1959 | } | |
1960 | ||
1961 | /* | |
1962 | * Routine: vm_object_destroy | |
1963 | * Purpose: | |
1964 | * Shut down a VM object, despite the | |
1965 | * presence of address map (or other) references | |
1966 | * to the vm_object. | |
1967 | */ | |
1968 | kern_return_t | |
1969 | vm_object_destroy( | |
1970 | vm_object_t object, | |
1971 | __unused kern_return_t reason) | |
1972 | { | |
1973 | memory_object_t old_pager; | |
1974 | ||
1975 | if (object == VM_OBJECT_NULL) | |
1976 | return(KERN_SUCCESS); | |
1977 | ||
1978 | /* | |
1979 | * Remove the pager association immediately. | |
1980 | * | |
1981 | * This will prevent the memory manager from further | |
1982 | * meddling. [If it wanted to flush data or make | |
1983 | * other changes, it should have done so before performing | |
1984 | * the destroy call.] | |
1985 | */ | |
1986 | ||
1987 | vm_object_lock(object); | |
1988 | object->can_persist = FALSE; | |
1989 | object->named = FALSE; | |
1990 | object->alive = FALSE; | |
1991 | ||
1992 | old_pager = object->pager; | |
1993 | object->pager = MEMORY_OBJECT_NULL; | |
1994 | if (old_pager != MEMORY_OBJECT_NULL) | |
1995 | memory_object_control_disable(object->pager_control); | |
1996 | ||
1997 | /* | |
1998 | * Wait for the existing paging activity (that got | |
1999 | * through before we nulled out the pager) to subside. | |
2000 | */ | |
2001 | ||
2002 | vm_object_paging_wait(object, THREAD_UNINT); | |
2003 | vm_object_unlock(object); | |
2004 | ||
2005 | /* | |
2006 | * Terminate the object now. | |
2007 | */ | |
2008 | if (old_pager != MEMORY_OBJECT_NULL) { | |
2009 | vm_object_release_pager(old_pager); | |
2010 | ||
2011 | /* | |
2012 | * JMM - Release the caller's reference. This assumes the | |
2013 | * caller had a reference to release, which is a big (but | |
2014 | * currently valid) assumption if this is driven from the | |
2015 | * vnode pager (it is holding a named reference when making | |
2016 | * this call).. | |
2017 | */ | |
2018 | vm_object_deallocate(object); | |
2019 | ||
2020 | } | |
2021 | return(KERN_SUCCESS); | |
2022 | } | |
2023 | ||
2024 | /* | |
2025 | * The "chunk" macros are used by routines below when looking for pages to deactivate. These | |
2026 | * exist because of the need to handle shadow chains. When deactivating pages, we only | |
2027 | * want to deactive the ones at the top most level in the object chain. In order to do | |
2028 | * this efficiently, the specified address range is divided up into "chunks" and we use | |
2029 | * a bit map to keep track of which pages have already been processed as we descend down | |
2030 | * the shadow chain. These chunk macros hide the details of the bit map implementation | |
2031 | * as much as we can. | |
2032 | * | |
2033 | * For convenience, we use a 64-bit data type as the bit map, and therefore a chunk is | |
2034 | * set to 64 pages. The bit map is indexed from the low-order end, so that the lowest | |
2035 | * order bit represents page 0 in the current range and highest order bit represents | |
2036 | * page 63. | |
2037 | * | |
2038 | * For further convenience, we also use negative logic for the page state in the bit map. | |
2039 | * The bit is set to 1 to indicate it has not yet been seen, and to 0 to indicate it has | |
2040 | * been processed. This way we can simply test the 64-bit long word to see if it's zero | |
2041 | * to easily tell if the whole range has been processed. Therefore, the bit map starts | |
2042 | * out with all the bits set. The macros below hide all these details from the caller. | |
2043 | */ | |
2044 | ||
2045 | #define PAGES_IN_A_CHUNK 64 /* The number of pages in the chunk must */ | |
2046 | /* be the same as the number of bits in */ | |
2047 | /* the chunk_state_t type. We use 64 */ | |
2048 | /* just for convenience. */ | |
2049 | ||
2050 | #define CHUNK_SIZE (PAGES_IN_A_CHUNK * PAGE_SIZE_64) /* Size of a chunk in bytes */ | |
2051 | ||
2052 | typedef uint64_t chunk_state_t; | |
2053 | ||
2054 | /* | |
2055 | * The bit map uses negative logic, so we start out with all 64 bits set to indicate | |
2056 | * that no pages have been processed yet. Also, if len is less than the full CHUNK_SIZE, | |
2057 | * then we mark pages beyond the len as having been "processed" so that we don't waste time | |
2058 | * looking at pages in that range. This can save us from unnecessarily chasing down the | |
2059 | * shadow chain. | |
2060 | */ | |
2061 | ||
2062 | #define CHUNK_INIT(c, len) \ | |
2063 | MACRO_BEGIN \ | |
2064 | uint64_t p; \ | |
2065 | \ | |
2066 | (c) = 0xffffffffffffffffLL; \ | |
2067 | \ | |
2068 | for (p = (len) / PAGE_SIZE_64; p < PAGES_IN_A_CHUNK; p++) \ | |
2069 | MARK_PAGE_HANDLED(c, p); \ | |
2070 | MACRO_END | |
2071 | ||
2072 | ||
2073 | /* | |
2074 | * Return true if all pages in the chunk have not yet been processed. | |
2075 | */ | |
2076 | ||
2077 | #define CHUNK_NOT_COMPLETE(c) ((c) != 0) | |
2078 | ||
2079 | /* | |
2080 | * Return true if the page at offset 'p' in the bit map has already been handled | |
2081 | * while processing a higher level object in the shadow chain. | |
2082 | */ | |
2083 | ||
2084 | #define PAGE_ALREADY_HANDLED(c, p) (((c) & (1LL << (p))) == 0) | |
2085 | ||
2086 | /* | |
2087 | * Mark the page at offset 'p' in the bit map as having been processed. | |
2088 | */ | |
2089 | ||
2090 | #define MARK_PAGE_HANDLED(c, p) \ | |
2091 | MACRO_BEGIN \ | |
2092 | (c) = (c) & ~(1LL << (p)); \ | |
2093 | MACRO_END | |
2094 | ||
2095 | ||
2096 | /* | |
2097 | * Return true if the page at the given offset has been paged out. Object is | |
2098 | * locked upon entry and returned locked. | |
2099 | */ | |
2100 | ||
2101 | static boolean_t | |
2102 | page_is_paged_out( | |
2103 | vm_object_t object, | |
2104 | vm_object_offset_t offset) | |
2105 | { | |
2106 | if (object->internal && | |
2107 | object->alive && | |
2108 | !object->terminating && | |
2109 | object->pager_ready) { | |
2110 | ||
2111 | if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset) | |
2112 | == VM_EXTERNAL_STATE_EXISTS) { | |
2113 | return TRUE; | |
2114 | } | |
2115 | } | |
2116 | return FALSE; | |
2117 | } | |
2118 | ||
2119 | ||
2120 | ||
2121 | /* | |
2122 | * madvise_free_debug | |
2123 | * | |
2124 | * To help debug madvise(MADV_FREE*) mis-usage, this triggers a | |
2125 | * zero-fill as soon as a page is affected by a madvise(MADV_FREE*), to | |
2126 | * simulate the loss of the page's contents as if the page had been | |
2127 | * reclaimed and then re-faulted. | |
2128 | */ | |
2129 | #if DEVELOPMENT || DEBUG | |
2130 | int madvise_free_debug = 1; | |
2131 | #else /* DEBUG */ | |
2132 | int madvise_free_debug = 0; | |
2133 | #endif /* DEBUG */ | |
2134 | ||
2135 | /* | |
2136 | * Deactivate the pages in the specified object and range. If kill_page is set, also discard any | |
2137 | * page modified state from the pmap. Update the chunk_state as we go along. The caller must specify | |
2138 | * a size that is less than or equal to the CHUNK_SIZE. | |
2139 | */ | |
2140 | ||
2141 | static void | |
2142 | deactivate_pages_in_object( | |
2143 | vm_object_t object, | |
2144 | vm_object_offset_t offset, | |
2145 | vm_object_size_t size, | |
2146 | boolean_t kill_page, | |
2147 | boolean_t reusable_page, | |
2148 | boolean_t all_reusable, | |
2149 | chunk_state_t *chunk_state, | |
2150 | pmap_flush_context *pfc, | |
2151 | struct pmap *pmap, | |
2152 | vm_map_offset_t pmap_offset) | |
2153 | { | |
2154 | vm_page_t m; | |
2155 | int p; | |
2156 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; | |
2157 | struct vm_page_delayed_work *dwp; | |
2158 | int dw_count; | |
2159 | int dw_limit; | |
2160 | unsigned int reusable = 0; | |
2161 | ||
2162 | /* | |
2163 | * Examine each page in the chunk. The variable 'p' is the page number relative to the start of the | |
2164 | * chunk. Since this routine is called once for each level in the shadow chain, the chunk_state may | |
2165 | * have pages marked as having been processed already. We stop the loop early if we find we've handled | |
2166 | * all the pages in the chunk. | |
2167 | */ | |
2168 | ||
2169 | dwp = &dw_array[0]; | |
2170 | dw_count = 0; | |
2171 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); | |
2172 | ||
2173 | for(p = 0; size && CHUNK_NOT_COMPLETE(*chunk_state); p++, size -= PAGE_SIZE_64, offset += PAGE_SIZE_64, pmap_offset += PAGE_SIZE_64) { | |
2174 | ||
2175 | /* | |
2176 | * If this offset has already been found and handled in a higher level object, then don't | |
2177 | * do anything with it in the current shadow object. | |
2178 | */ | |
2179 | ||
2180 | if (PAGE_ALREADY_HANDLED(*chunk_state, p)) | |
2181 | continue; | |
2182 | ||
2183 | /* | |
2184 | * See if the page at this offset is around. First check to see if the page is resident, | |
2185 | * then if not, check the existence map or with the pager. | |
2186 | */ | |
2187 | ||
2188 | if ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { | |
2189 | ||
2190 | /* | |
2191 | * We found a page we were looking for. Mark it as "handled" now in the chunk_state | |
2192 | * so that we won't bother looking for a page at this offset again if there are more | |
2193 | * shadow objects. Then deactivate the page. | |
2194 | */ | |
2195 | ||
2196 | MARK_PAGE_HANDLED(*chunk_state, p); | |
2197 | ||
2198 | if (( !VM_PAGE_WIRED(m)) && (!m->private) && (!m->gobbled) && (!m->busy) && | |
2199 | (!m->laundry) && (!m->cleaning) && !(m->free_when_done)) { | |
2200 | int clear_refmod; | |
2201 | int pmap_options; | |
2202 | ||
2203 | dwp->dw_mask = 0; | |
2204 | ||
2205 | pmap_options = 0; | |
2206 | clear_refmod = VM_MEM_REFERENCED; | |
2207 | dwp->dw_mask |= DW_clear_reference; | |
2208 | ||
2209 | if ((kill_page) && (object->internal)) { | |
2210 | if (madvise_free_debug) { | |
2211 | /* | |
2212 | * zero-fill the page now | |
2213 | * to simulate it being | |
2214 | * reclaimed and re-faulted. | |
2215 | */ | |
2216 | pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(m)); | |
2217 | } | |
2218 | m->precious = FALSE; | |
2219 | m->dirty = FALSE; | |
2220 | ||
2221 | clear_refmod |= VM_MEM_MODIFIED; | |
2222 | if (m->vm_page_q_state == VM_PAGE_ON_THROTTLED_Q) { | |
2223 | /* | |
2224 | * This page is now clean and | |
2225 | * reclaimable. Move it out | |
2226 | * of the throttled queue, so | |
2227 | * that vm_pageout_scan() can | |
2228 | * find it. | |
2229 | */ | |
2230 | dwp->dw_mask |= DW_move_page; | |
2231 | } | |
2232 | ||
2233 | VM_COMPRESSOR_PAGER_STATE_CLR(object, offset); | |
2234 | ||
2235 | if (reusable_page && !m->reusable) { | |
2236 | assert(!all_reusable); | |
2237 | assert(!object->all_reusable); | |
2238 | m->reusable = TRUE; | |
2239 | object->reusable_page_count++; | |
2240 | assert(object->resident_page_count >= object->reusable_page_count); | |
2241 | reusable++; | |
2242 | /* | |
2243 | * Tell pmap this page is now | |
2244 | * "reusable" (to update pmap | |
2245 | * stats for all mappings). | |
2246 | */ | |
2247 | pmap_options |= PMAP_OPTIONS_SET_REUSABLE; | |
2248 | } | |
2249 | } | |
2250 | pmap_options |= PMAP_OPTIONS_NOFLUSH; | |
2251 | pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE(m), | |
2252 | clear_refmod, | |
2253 | pmap_options, | |
2254 | (void *)pfc); | |
2255 | ||
2256 | if ((m->vm_page_q_state != VM_PAGE_ON_THROTTLED_Q) && !(reusable_page || all_reusable)) | |
2257 | dwp->dw_mask |= DW_move_page; | |
2258 | ||
2259 | if (dwp->dw_mask) | |
2260 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, | |
2261 | dw_count); | |
2262 | ||
2263 | if (dw_count >= dw_limit) { | |
2264 | if (reusable) { | |
2265 | OSAddAtomic(reusable, | |
2266 | &vm_page_stats_reusable.reusable_count); | |
2267 | vm_page_stats_reusable.reusable += reusable; | |
2268 | reusable = 0; | |
2269 | } | |
2270 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count); | |
2271 | ||
2272 | dwp = &dw_array[0]; | |
2273 | dw_count = 0; | |
2274 | } | |
2275 | } | |
2276 | ||
2277 | } else { | |
2278 | ||
2279 | /* | |
2280 | * The page at this offset isn't memory resident, check to see if it's | |
2281 | * been paged out. If so, mark it as handled so we don't bother looking | |
2282 | * for it in the shadow chain. | |
2283 | */ | |
2284 | ||
2285 | if (page_is_paged_out(object, offset)) { | |
2286 | MARK_PAGE_HANDLED(*chunk_state, p); | |
2287 | ||
2288 | /* | |
2289 | * If we're killing a non-resident page, then clear the page in the existence | |
2290 | * map so we don't bother paging it back in if it's touched again in the future. | |
2291 | */ | |
2292 | ||
2293 | if ((kill_page) && (object->internal)) { | |
2294 | ||
2295 | VM_COMPRESSOR_PAGER_STATE_CLR(object, offset); | |
2296 | ||
2297 | if (pmap != PMAP_NULL) { | |
2298 | /* | |
2299 | * Tell pmap that this page | |
2300 | * is no longer mapped, to | |
2301 | * adjust the footprint ledger | |
2302 | * because this page is no | |
2303 | * longer compressed. | |
2304 | */ | |
2305 | pmap_remove_options( | |
2306 | pmap, | |
2307 | pmap_offset, | |
2308 | (pmap_offset + | |
2309 | PAGE_SIZE), | |
2310 | PMAP_OPTIONS_REMOVE); | |
2311 | } | |
2312 | } | |
2313 | } | |
2314 | } | |
2315 | } | |
2316 | ||
2317 | if (reusable) { | |
2318 | OSAddAtomic(reusable, &vm_page_stats_reusable.reusable_count); | |
2319 | vm_page_stats_reusable.reusable += reusable; | |
2320 | reusable = 0; | |
2321 | } | |
2322 | ||
2323 | if (dw_count) | |
2324 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count); | |
2325 | } | |
2326 | ||
2327 | ||
2328 | /* | |
2329 | * Deactive a "chunk" of the given range of the object starting at offset. A "chunk" | |
2330 | * will always be less than or equal to the given size. The total range is divided up | |
2331 | * into chunks for efficiency and performance related to the locks and handling the shadow | |
2332 | * chain. This routine returns how much of the given "size" it actually processed. It's | |
2333 | * up to the caler to loop and keep calling this routine until the entire range they want | |
2334 | * to process has been done. | |
2335 | */ | |
2336 | ||
2337 | static vm_object_size_t | |
2338 | deactivate_a_chunk( | |
2339 | vm_object_t orig_object, | |
2340 | vm_object_offset_t offset, | |
2341 | vm_object_size_t size, | |
2342 | boolean_t kill_page, | |
2343 | boolean_t reusable_page, | |
2344 | boolean_t all_reusable, | |
2345 | pmap_flush_context *pfc, | |
2346 | struct pmap *pmap, | |
2347 | vm_map_offset_t pmap_offset) | |
2348 | { | |
2349 | vm_object_t object; | |
2350 | vm_object_t tmp_object; | |
2351 | vm_object_size_t length; | |
2352 | chunk_state_t chunk_state; | |
2353 | ||
2354 | ||
2355 | /* | |
2356 | * Get set to do a chunk. We'll do up to CHUNK_SIZE, but no more than the | |
2357 | * remaining size the caller asked for. | |
2358 | */ | |
2359 | ||
2360 | length = MIN(size, CHUNK_SIZE); | |
2361 | ||
2362 | /* | |
2363 | * The chunk_state keeps track of which pages we've already processed if there's | |
2364 | * a shadow chain on this object. At this point, we haven't done anything with this | |
2365 | * range of pages yet, so initialize the state to indicate no pages processed yet. | |
2366 | */ | |
2367 | ||
2368 | CHUNK_INIT(chunk_state, length); | |
2369 | object = orig_object; | |
2370 | ||
2371 | /* | |
2372 | * Start at the top level object and iterate around the loop once for each object | |
2373 | * in the shadow chain. We stop processing early if we've already found all the pages | |
2374 | * in the range. Otherwise we stop when we run out of shadow objects. | |
2375 | */ | |
2376 | ||
2377 | while (object && CHUNK_NOT_COMPLETE(chunk_state)) { | |
2378 | vm_object_paging_begin(object); | |
2379 | ||
2380 | deactivate_pages_in_object(object, offset, length, kill_page, reusable_page, all_reusable, &chunk_state, pfc, pmap, pmap_offset); | |
2381 | ||
2382 | vm_object_paging_end(object); | |
2383 | ||
2384 | /* | |
2385 | * We've finished with this object, see if there's a shadow object. If | |
2386 | * there is, update the offset and lock the new object. We also turn off | |
2387 | * kill_page at this point since we only kill pages in the top most object. | |
2388 | */ | |
2389 | ||
2390 | tmp_object = object->shadow; | |
2391 | ||
2392 | if (tmp_object) { | |
2393 | kill_page = FALSE; | |
2394 | reusable_page = FALSE; | |
2395 | all_reusable = FALSE; | |
2396 | offset += object->vo_shadow_offset; | |
2397 | vm_object_lock(tmp_object); | |
2398 | } | |
2399 | ||
2400 | if (object != orig_object) | |
2401 | vm_object_unlock(object); | |
2402 | ||
2403 | object = tmp_object; | |
2404 | } | |
2405 | ||
2406 | if (object && object != orig_object) | |
2407 | vm_object_unlock(object); | |
2408 | ||
2409 | return length; | |
2410 | } | |
2411 | ||
2412 | ||
2413 | ||
2414 | /* | |
2415 | * Move any resident pages in the specified range to the inactive queue. If kill_page is set, | |
2416 | * we also clear the modified status of the page and "forget" any changes that have been made | |
2417 | * to the page. | |
2418 | */ | |
2419 | ||
2420 | __private_extern__ void | |
2421 | vm_object_deactivate_pages( | |
2422 | vm_object_t object, | |
2423 | vm_object_offset_t offset, | |
2424 | vm_object_size_t size, | |
2425 | boolean_t kill_page, | |
2426 | boolean_t reusable_page, | |
2427 | struct pmap *pmap, | |
2428 | vm_map_offset_t pmap_offset) | |
2429 | { | |
2430 | vm_object_size_t length; | |
2431 | boolean_t all_reusable; | |
2432 | pmap_flush_context pmap_flush_context_storage; | |
2433 | ||
2434 | /* | |
2435 | * We break the range up into chunks and do one chunk at a time. This is for | |
2436 | * efficiency and performance while handling the shadow chains and the locks. | |
2437 | * The deactivate_a_chunk() function returns how much of the range it processed. | |
2438 | * We keep calling this routine until the given size is exhausted. | |
2439 | */ | |
2440 | ||
2441 | ||
2442 | all_reusable = FALSE; | |
2443 | #if 11 | |
2444 | /* | |
2445 | * For the sake of accurate "reusable" pmap stats, we need | |
2446 | * to tell pmap about each page that is no longer "reusable", | |
2447 | * so we can't do the "all_reusable" optimization. | |
2448 | */ | |
2449 | #else | |
2450 | if (reusable_page && | |
2451 | object->internal && | |
2452 | object->vo_size != 0 && | |
2453 | object->vo_size == size && | |
2454 | object->reusable_page_count == 0) { | |
2455 | all_reusable = TRUE; | |
2456 | reusable_page = FALSE; | |
2457 | } | |
2458 | #endif | |
2459 | ||
2460 | if ((reusable_page || all_reusable) && object->all_reusable) { | |
2461 | /* This means MADV_FREE_REUSABLE has been called twice, which | |
2462 | * is probably illegal. */ | |
2463 | return; | |
2464 | } | |
2465 | ||
2466 | pmap_flush_context_init(&pmap_flush_context_storage); | |
2467 | ||
2468 | while (size) { | |
2469 | length = deactivate_a_chunk(object, offset, size, kill_page, reusable_page, all_reusable, &pmap_flush_context_storage, pmap, pmap_offset); | |
2470 | ||
2471 | size -= length; | |
2472 | offset += length; | |
2473 | pmap_offset += length; | |
2474 | } | |
2475 | pmap_flush(&pmap_flush_context_storage); | |
2476 | ||
2477 | if (all_reusable) { | |
2478 | if (!object->all_reusable) { | |
2479 | unsigned int reusable; | |
2480 | ||
2481 | object->all_reusable = TRUE; | |
2482 | assert(object->reusable_page_count == 0); | |
2483 | /* update global stats */ | |
2484 | reusable = object->resident_page_count; | |
2485 | OSAddAtomic(reusable, | |
2486 | &vm_page_stats_reusable.reusable_count); | |
2487 | vm_page_stats_reusable.reusable += reusable; | |
2488 | vm_page_stats_reusable.all_reusable_calls++; | |
2489 | } | |
2490 | } else if (reusable_page) { | |
2491 | vm_page_stats_reusable.partial_reusable_calls++; | |
2492 | } | |
2493 | } | |
2494 | ||
2495 | void | |
2496 | vm_object_reuse_pages( | |
2497 | vm_object_t object, | |
2498 | vm_object_offset_t start_offset, | |
2499 | vm_object_offset_t end_offset, | |
2500 | boolean_t allow_partial_reuse) | |
2501 | { | |
2502 | vm_object_offset_t cur_offset; | |
2503 | vm_page_t m; | |
2504 | unsigned int reused, reusable; | |
2505 | ||
2506 | #define VM_OBJECT_REUSE_PAGE(object, m, reused) \ | |
2507 | MACRO_BEGIN \ | |
2508 | if ((m) != VM_PAGE_NULL && \ | |
2509 | (m)->reusable) { \ | |
2510 | assert((object)->reusable_page_count <= \ | |
2511 | (object)->resident_page_count); \ | |
2512 | assert((object)->reusable_page_count > 0); \ | |
2513 | (object)->reusable_page_count--; \ | |
2514 | (m)->reusable = FALSE; \ | |
2515 | (reused)++; \ | |
2516 | /* \ | |
2517 | * Tell pmap that this page is no longer \ | |
2518 | * "reusable", to update the "reusable" stats \ | |
2519 | * for all the pmaps that have mapped this \ | |
2520 | * page. \ | |
2521 | */ \ | |
2522 | pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE((m)), \ | |
2523 | 0, /* refmod */ \ | |
2524 | (PMAP_OPTIONS_CLEAR_REUSABLE \ | |
2525 | | PMAP_OPTIONS_NOFLUSH), \ | |
2526 | NULL); \ | |
2527 | } \ | |
2528 | MACRO_END | |
2529 | ||
2530 | reused = 0; | |
2531 | reusable = 0; | |
2532 | ||
2533 | vm_object_lock_assert_exclusive(object); | |
2534 | ||
2535 | if (object->all_reusable) { | |
2536 | panic("object %p all_reusable: can't update pmap stats\n", | |
2537 | object); | |
2538 | assert(object->reusable_page_count == 0); | |
2539 | object->all_reusable = FALSE; | |
2540 | if (end_offset - start_offset == object->vo_size || | |
2541 | !allow_partial_reuse) { | |
2542 | vm_page_stats_reusable.all_reuse_calls++; | |
2543 | reused = object->resident_page_count; | |
2544 | } else { | |
2545 | vm_page_stats_reusable.partial_reuse_calls++; | |
2546 | vm_page_queue_iterate(&object->memq, m, vm_page_t, listq) { | |
2547 | if (m->offset < start_offset || | |
2548 | m->offset >= end_offset) { | |
2549 | m->reusable = TRUE; | |
2550 | object->reusable_page_count++; | |
2551 | assert(object->resident_page_count >= object->reusable_page_count); | |
2552 | continue; | |
2553 | } else { | |
2554 | assert(!m->reusable); | |
2555 | reused++; | |
2556 | } | |
2557 | } | |
2558 | } | |
2559 | } else if (object->resident_page_count > | |
2560 | ((end_offset - start_offset) >> PAGE_SHIFT)) { | |
2561 | vm_page_stats_reusable.partial_reuse_calls++; | |
2562 | for (cur_offset = start_offset; | |
2563 | cur_offset < end_offset; | |
2564 | cur_offset += PAGE_SIZE_64) { | |
2565 | if (object->reusable_page_count == 0) { | |
2566 | break; | |
2567 | } | |
2568 | m = vm_page_lookup(object, cur_offset); | |
2569 | VM_OBJECT_REUSE_PAGE(object, m, reused); | |
2570 | } | |
2571 | } else { | |
2572 | vm_page_stats_reusable.partial_reuse_calls++; | |
2573 | vm_page_queue_iterate(&object->memq, m, vm_page_t, listq) { | |
2574 | if (object->reusable_page_count == 0) { | |
2575 | break; | |
2576 | } | |
2577 | if (m->offset < start_offset || | |
2578 | m->offset >= end_offset) { | |
2579 | continue; | |
2580 | } | |
2581 | VM_OBJECT_REUSE_PAGE(object, m, reused); | |
2582 | } | |
2583 | } | |
2584 | ||
2585 | /* update global stats */ | |
2586 | OSAddAtomic(reusable-reused, &vm_page_stats_reusable.reusable_count); | |
2587 | vm_page_stats_reusable.reused += reused; | |
2588 | vm_page_stats_reusable.reusable += reusable; | |
2589 | } | |
2590 | ||
2591 | /* | |
2592 | * Routine: vm_object_pmap_protect | |
2593 | * | |
2594 | * Purpose: | |
2595 | * Reduces the permission for all physical | |
2596 | * pages in the specified object range. | |
2597 | * | |
2598 | * If removing write permission only, it is | |
2599 | * sufficient to protect only the pages in | |
2600 | * the top-level object; only those pages may | |
2601 | * have write permission. | |
2602 | * | |
2603 | * If removing all access, we must follow the | |
2604 | * shadow chain from the top-level object to | |
2605 | * remove access to all pages in shadowed objects. | |
2606 | * | |
2607 | * The object must *not* be locked. The object must | |
2608 | * be internal. | |
2609 | * | |
2610 | * If pmap is not NULL, this routine assumes that | |
2611 | * the only mappings for the pages are in that | |
2612 | * pmap. | |
2613 | */ | |
2614 | ||
2615 | __private_extern__ void | |
2616 | vm_object_pmap_protect( | |
2617 | vm_object_t object, | |
2618 | vm_object_offset_t offset, | |
2619 | vm_object_size_t size, | |
2620 | pmap_t pmap, | |
2621 | vm_map_offset_t pmap_start, | |
2622 | vm_prot_t prot) | |
2623 | { | |
2624 | vm_object_pmap_protect_options(object, offset, size, | |
2625 | pmap, pmap_start, prot, 0); | |
2626 | } | |
2627 | ||
2628 | __private_extern__ void | |
2629 | vm_object_pmap_protect_options( | |
2630 | vm_object_t object, | |
2631 | vm_object_offset_t offset, | |
2632 | vm_object_size_t size, | |
2633 | pmap_t pmap, | |
2634 | vm_map_offset_t pmap_start, | |
2635 | vm_prot_t prot, | |
2636 | int options) | |
2637 | { | |
2638 | pmap_flush_context pmap_flush_context_storage; | |
2639 | boolean_t delayed_pmap_flush = FALSE; | |
2640 | ||
2641 | if (object == VM_OBJECT_NULL) | |
2642 | return; | |
2643 | size = vm_object_round_page(size); | |
2644 | offset = vm_object_trunc_page(offset); | |
2645 | ||
2646 | vm_object_lock(object); | |
2647 | ||
2648 | if (object->phys_contiguous) { | |
2649 | if (pmap != NULL) { | |
2650 | vm_object_unlock(object); | |
2651 | pmap_protect_options(pmap, | |
2652 | pmap_start, | |
2653 | pmap_start + size, | |
2654 | prot, | |
2655 | options & ~PMAP_OPTIONS_NOFLUSH, | |
2656 | NULL); | |
2657 | } else { | |
2658 | vm_object_offset_t phys_start, phys_end, phys_addr; | |
2659 | ||
2660 | phys_start = object->vo_shadow_offset + offset; | |
2661 | phys_end = phys_start + size; | |
2662 | assert(phys_start <= phys_end); | |
2663 | assert(phys_end <= object->vo_shadow_offset + object->vo_size); | |
2664 | vm_object_unlock(object); | |
2665 | ||
2666 | pmap_flush_context_init(&pmap_flush_context_storage); | |
2667 | delayed_pmap_flush = FALSE; | |
2668 | ||
2669 | for (phys_addr = phys_start; | |
2670 | phys_addr < phys_end; | |
2671 | phys_addr += PAGE_SIZE_64) { | |
2672 | pmap_page_protect_options( | |
2673 | (ppnum_t) (phys_addr >> PAGE_SHIFT), | |
2674 | prot, | |
2675 | options | PMAP_OPTIONS_NOFLUSH, | |
2676 | (void *)&pmap_flush_context_storage); | |
2677 | delayed_pmap_flush = TRUE; | |
2678 | } | |
2679 | if (delayed_pmap_flush == TRUE) | |
2680 | pmap_flush(&pmap_flush_context_storage); | |
2681 | } | |
2682 | return; | |
2683 | } | |
2684 | ||
2685 | assert(object->internal); | |
2686 | ||
2687 | while (TRUE) { | |
2688 | if (ptoa_64(object->resident_page_count) > size/2 && pmap != PMAP_NULL) { | |
2689 | vm_object_unlock(object); | |
2690 | pmap_protect_options(pmap, pmap_start, pmap_start + size, prot, | |
2691 | options & ~PMAP_OPTIONS_NOFLUSH, NULL); | |
2692 | return; | |
2693 | } | |
2694 | ||
2695 | pmap_flush_context_init(&pmap_flush_context_storage); | |
2696 | delayed_pmap_flush = FALSE; | |
2697 | ||
2698 | /* | |
2699 | * if we are doing large ranges with respect to resident | |
2700 | * page count then we should interate over pages otherwise | |
2701 | * inverse page look-up will be faster | |
2702 | */ | |
2703 | if (ptoa_64(object->resident_page_count / 4) < size) { | |
2704 | vm_page_t p; | |
2705 | vm_object_offset_t end; | |
2706 | ||
2707 | end = offset + size; | |
2708 | ||
2709 | vm_page_queue_iterate(&object->memq, p, vm_page_t, listq) { | |
2710 | if (!p->fictitious && (offset <= p->offset) && (p->offset < end)) { | |
2711 | vm_map_offset_t start; | |
2712 | ||
2713 | start = pmap_start + p->offset - offset; | |
2714 | ||
2715 | if (pmap != PMAP_NULL) | |
2716 | pmap_protect_options( | |
2717 | pmap, | |
2718 | start, | |
2719 | start + PAGE_SIZE_64, | |
2720 | prot, | |
2721 | options | PMAP_OPTIONS_NOFLUSH, | |
2722 | &pmap_flush_context_storage); | |
2723 | else | |
2724 | pmap_page_protect_options( | |
2725 | VM_PAGE_GET_PHYS_PAGE(p), | |
2726 | prot, | |
2727 | options | PMAP_OPTIONS_NOFLUSH, | |
2728 | &pmap_flush_context_storage); | |
2729 | delayed_pmap_flush = TRUE; | |
2730 | } | |
2731 | } | |
2732 | ||
2733 | } else { | |
2734 | vm_page_t p; | |
2735 | vm_object_offset_t end; | |
2736 | vm_object_offset_t target_off; | |
2737 | ||
2738 | end = offset + size; | |
2739 | ||
2740 | for (target_off = offset; | |
2741 | target_off < end; target_off += PAGE_SIZE) { | |
2742 | ||
2743 | p = vm_page_lookup(object, target_off); | |
2744 | ||
2745 | if (p != VM_PAGE_NULL) { | |
2746 | vm_object_offset_t start; | |
2747 | ||
2748 | start = pmap_start + (p->offset - offset); | |
2749 | ||
2750 | if (pmap != PMAP_NULL) | |
2751 | pmap_protect_options( | |
2752 | pmap, | |
2753 | start, | |
2754 | start + PAGE_SIZE_64, | |
2755 | prot, | |
2756 | options | PMAP_OPTIONS_NOFLUSH, | |
2757 | &pmap_flush_context_storage); | |
2758 | else | |
2759 | pmap_page_protect_options( | |
2760 | VM_PAGE_GET_PHYS_PAGE(p), | |
2761 | prot, | |
2762 | options | PMAP_OPTIONS_NOFLUSH, | |
2763 | &pmap_flush_context_storage); | |
2764 | delayed_pmap_flush = TRUE; | |
2765 | } | |
2766 | } | |
2767 | } | |
2768 | if (delayed_pmap_flush == TRUE) | |
2769 | pmap_flush(&pmap_flush_context_storage); | |
2770 | ||
2771 | if (prot == VM_PROT_NONE) { | |
2772 | /* | |
2773 | * Must follow shadow chain to remove access | |
2774 | * to pages in shadowed objects. | |
2775 | */ | |
2776 | vm_object_t next_object; | |
2777 | ||
2778 | next_object = object->shadow; | |
2779 | if (next_object != VM_OBJECT_NULL) { | |
2780 | offset += object->vo_shadow_offset; | |
2781 | vm_object_lock(next_object); | |
2782 | vm_object_unlock(object); | |
2783 | object = next_object; | |
2784 | } | |
2785 | else { | |
2786 | /* | |
2787 | * End of chain - we are done. | |
2788 | */ | |
2789 | break; | |
2790 | } | |
2791 | } | |
2792 | else { | |
2793 | /* | |
2794 | * Pages in shadowed objects may never have | |
2795 | * write permission - we may stop here. | |
2796 | */ | |
2797 | break; | |
2798 | } | |
2799 | } | |
2800 | ||
2801 | vm_object_unlock(object); | |
2802 | } | |
2803 | ||
2804 | /* | |
2805 | * Routine: vm_object_copy_slowly | |
2806 | * | |
2807 | * Description: | |
2808 | * Copy the specified range of the source | |
2809 | * virtual memory object without using | |
2810 | * protection-based optimizations (such | |
2811 | * as copy-on-write). The pages in the | |
2812 | * region are actually copied. | |
2813 | * | |
2814 | * In/out conditions: | |
2815 | * The caller must hold a reference and a lock | |
2816 | * for the source virtual memory object. The source | |
2817 | * object will be returned *unlocked*. | |
2818 | * | |
2819 | * Results: | |
2820 | * If the copy is completed successfully, KERN_SUCCESS is | |
2821 | * returned. If the caller asserted the interruptible | |
2822 | * argument, and an interruption occurred while waiting | |
2823 | * for a user-generated event, MACH_SEND_INTERRUPTED is | |
2824 | * returned. Other values may be returned to indicate | |
2825 | * hard errors during the copy operation. | |
2826 | * | |
2827 | * A new virtual memory object is returned in a | |
2828 | * parameter (_result_object). The contents of this | |
2829 | * new object, starting at a zero offset, are a copy | |
2830 | * of the source memory region. In the event of | |
2831 | * an error, this parameter will contain the value | |
2832 | * VM_OBJECT_NULL. | |
2833 | */ | |
2834 | __private_extern__ kern_return_t | |
2835 | vm_object_copy_slowly( | |
2836 | vm_object_t src_object, | |
2837 | vm_object_offset_t src_offset, | |
2838 | vm_object_size_t size, | |
2839 | boolean_t interruptible, | |
2840 | vm_object_t *_result_object) /* OUT */ | |
2841 | { | |
2842 | vm_object_t new_object; | |
2843 | vm_object_offset_t new_offset; | |
2844 | ||
2845 | struct vm_object_fault_info fault_info; | |
2846 | ||
2847 | XPR(XPR_VM_OBJECT, "v_o_c_slowly obj 0x%x off 0x%x size 0x%x\n", | |
2848 | src_object, src_offset, size, 0, 0); | |
2849 | ||
2850 | if (size == 0) { | |
2851 | vm_object_unlock(src_object); | |
2852 | *_result_object = VM_OBJECT_NULL; | |
2853 | return(KERN_INVALID_ARGUMENT); | |
2854 | } | |
2855 | ||
2856 | /* | |
2857 | * Prevent destruction of the source object while we copy. | |
2858 | */ | |
2859 | ||
2860 | vm_object_reference_locked(src_object); | |
2861 | vm_object_unlock(src_object); | |
2862 | ||
2863 | /* | |
2864 | * Create a new object to hold the copied pages. | |
2865 | * A few notes: | |
2866 | * We fill the new object starting at offset 0, | |
2867 | * regardless of the input offset. | |
2868 | * We don't bother to lock the new object within | |
2869 | * this routine, since we have the only reference. | |
2870 | */ | |
2871 | ||
2872 | new_object = vm_object_allocate(size); | |
2873 | new_offset = 0; | |
2874 | ||
2875 | assert(size == trunc_page_64(size)); /* Will the loop terminate? */ | |
2876 | ||
2877 | fault_info.interruptible = interruptible; | |
2878 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
2879 | fault_info.user_tag = 0; | |
2880 | fault_info.pmap_options = 0; | |
2881 | fault_info.lo_offset = src_offset; | |
2882 | fault_info.hi_offset = src_offset + size; | |
2883 | fault_info.no_cache = FALSE; | |
2884 | fault_info.stealth = TRUE; | |
2885 | fault_info.io_sync = FALSE; | |
2886 | fault_info.cs_bypass = FALSE; | |
2887 | fault_info.mark_zf_absent = FALSE; | |
2888 | fault_info.batch_pmap_op = FALSE; | |
2889 | ||
2890 | for ( ; | |
2891 | size != 0 ; | |
2892 | src_offset += PAGE_SIZE_64, | |
2893 | new_offset += PAGE_SIZE_64, size -= PAGE_SIZE_64 | |
2894 | ) { | |
2895 | vm_page_t new_page; | |
2896 | vm_fault_return_t result; | |
2897 | ||
2898 | vm_object_lock(new_object); | |
2899 | ||
2900 | while ((new_page = vm_page_alloc(new_object, new_offset)) | |
2901 | == VM_PAGE_NULL) { | |
2902 | ||
2903 | vm_object_unlock(new_object); | |
2904 | ||
2905 | if (!vm_page_wait(interruptible)) { | |
2906 | vm_object_deallocate(new_object); | |
2907 | vm_object_deallocate(src_object); | |
2908 | *_result_object = VM_OBJECT_NULL; | |
2909 | return(MACH_SEND_INTERRUPTED); | |
2910 | } | |
2911 | vm_object_lock(new_object); | |
2912 | } | |
2913 | vm_object_unlock(new_object); | |
2914 | ||
2915 | do { | |
2916 | vm_prot_t prot = VM_PROT_READ; | |
2917 | vm_page_t _result_page; | |
2918 | vm_page_t top_page; | |
2919 | vm_page_t result_page; | |
2920 | kern_return_t error_code; | |
2921 | vm_object_t result_page_object; | |
2922 | ||
2923 | ||
2924 | vm_object_lock(src_object); | |
2925 | ||
2926 | if (src_object->internal && | |
2927 | src_object->shadow == VM_OBJECT_NULL && | |
2928 | (vm_page_lookup(src_object, | |
2929 | src_offset) == VM_PAGE_NULL) && | |
2930 | (src_object->pager == NULL || | |
2931 | (VM_COMPRESSOR_PAGER_STATE_GET(src_object, | |
2932 | src_offset) == | |
2933 | VM_EXTERNAL_STATE_ABSENT))) { | |
2934 | /* | |
2935 | * This page is neither resident nor compressed | |
2936 | * and there's no shadow object below | |
2937 | * "src_object", so this page is really missing. | |
2938 | * There's no need to zero-fill it just to copy | |
2939 | * it: let's leave it missing in "new_object" | |
2940 | * and get zero-filled on demand. | |
2941 | */ | |
2942 | vm_object_unlock(src_object); | |
2943 | /* free the unused "new_page"... */ | |
2944 | vm_object_lock(new_object); | |
2945 | VM_PAGE_FREE(new_page); | |
2946 | new_page = VM_PAGE_NULL; | |
2947 | vm_object_unlock(new_object); | |
2948 | /* ...and go to next page in "src_object" */ | |
2949 | result = VM_FAULT_SUCCESS; | |
2950 | break; | |
2951 | } | |
2952 | ||
2953 | vm_object_paging_begin(src_object); | |
2954 | ||
2955 | if (size > (vm_size_t) -1) { | |
2956 | /* 32-bit overflow */ | |
2957 | fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE); | |
2958 | } else { | |
2959 | fault_info.cluster_size = (vm_size_t) size; | |
2960 | assert(fault_info.cluster_size == size); | |
2961 | } | |
2962 | ||
2963 | XPR(XPR_VM_FAULT,"vm_object_copy_slowly -> vm_fault_page",0,0,0,0,0); | |
2964 | _result_page = VM_PAGE_NULL; | |
2965 | result = vm_fault_page(src_object, src_offset, | |
2966 | VM_PROT_READ, FALSE, | |
2967 | FALSE, /* page not looked up */ | |
2968 | &prot, &_result_page, &top_page, | |
2969 | (int *)0, | |
2970 | &error_code, FALSE, FALSE, &fault_info); | |
2971 | ||
2972 | switch(result) { | |
2973 | case VM_FAULT_SUCCESS: | |
2974 | result_page = _result_page; | |
2975 | result_page_object = VM_PAGE_OBJECT(result_page); | |
2976 | ||
2977 | /* | |
2978 | * Copy the page to the new object. | |
2979 | * | |
2980 | * POLICY DECISION: | |
2981 | * If result_page is clean, | |
2982 | * we could steal it instead | |
2983 | * of copying. | |
2984 | */ | |
2985 | ||
2986 | vm_page_copy(result_page, new_page); | |
2987 | vm_object_unlock(result_page_object); | |
2988 | ||
2989 | /* | |
2990 | * Let go of both pages (make them | |
2991 | * not busy, perform wakeup, activate). | |
2992 | */ | |
2993 | vm_object_lock(new_object); | |
2994 | SET_PAGE_DIRTY(new_page, FALSE); | |
2995 | PAGE_WAKEUP_DONE(new_page); | |
2996 | vm_object_unlock(new_object); | |
2997 | ||
2998 | vm_object_lock(result_page_object); | |
2999 | PAGE_WAKEUP_DONE(result_page); | |
3000 | ||
3001 | vm_page_lockspin_queues(); | |
3002 | if ((result_page->vm_page_q_state == VM_PAGE_ON_SPECULATIVE_Q) || | |
3003 | (result_page->vm_page_q_state == VM_PAGE_NOT_ON_Q)) { | |
3004 | vm_page_activate(result_page); | |
3005 | } | |
3006 | vm_page_activate(new_page); | |
3007 | vm_page_unlock_queues(); | |
3008 | ||
3009 | /* | |
3010 | * Release paging references and | |
3011 | * top-level placeholder page, if any. | |
3012 | */ | |
3013 | ||
3014 | vm_fault_cleanup(result_page_object, | |
3015 | top_page); | |
3016 | ||
3017 | break; | |
3018 | ||
3019 | case VM_FAULT_RETRY: | |
3020 | break; | |
3021 | ||
3022 | case VM_FAULT_MEMORY_SHORTAGE: | |
3023 | if (vm_page_wait(interruptible)) | |
3024 | break; | |
3025 | /* fall thru */ | |
3026 | ||
3027 | case VM_FAULT_INTERRUPTED: | |
3028 | vm_object_lock(new_object); | |
3029 | VM_PAGE_FREE(new_page); | |
3030 | vm_object_unlock(new_object); | |
3031 | ||
3032 | vm_object_deallocate(new_object); | |
3033 | vm_object_deallocate(src_object); | |
3034 | *_result_object = VM_OBJECT_NULL; | |
3035 | return(MACH_SEND_INTERRUPTED); | |
3036 | ||
3037 | case VM_FAULT_SUCCESS_NO_VM_PAGE: | |
3038 | /* success but no VM page: fail */ | |
3039 | vm_object_paging_end(src_object); | |
3040 | vm_object_unlock(src_object); | |
3041 | /*FALLTHROUGH*/ | |
3042 | case VM_FAULT_MEMORY_ERROR: | |
3043 | /* | |
3044 | * A policy choice: | |
3045 | * (a) ignore pages that we can't | |
3046 | * copy | |
3047 | * (b) return the null object if | |
3048 | * any page fails [chosen] | |
3049 | */ | |
3050 | ||
3051 | vm_object_lock(new_object); | |
3052 | VM_PAGE_FREE(new_page); | |
3053 | vm_object_unlock(new_object); | |
3054 | ||
3055 | vm_object_deallocate(new_object); | |
3056 | vm_object_deallocate(src_object); | |
3057 | *_result_object = VM_OBJECT_NULL; | |
3058 | return(error_code ? error_code: | |
3059 | KERN_MEMORY_ERROR); | |
3060 | ||
3061 | default: | |
3062 | panic("vm_object_copy_slowly: unexpected error" | |
3063 | " 0x%x from vm_fault_page()\n", result); | |
3064 | } | |
3065 | } while (result != VM_FAULT_SUCCESS); | |
3066 | } | |
3067 | ||
3068 | /* | |
3069 | * Lose the extra reference, and return our object. | |
3070 | */ | |
3071 | vm_object_deallocate(src_object); | |
3072 | *_result_object = new_object; | |
3073 | return(KERN_SUCCESS); | |
3074 | } | |
3075 | ||
3076 | /* | |
3077 | * Routine: vm_object_copy_quickly | |
3078 | * | |
3079 | * Purpose: | |
3080 | * Copy the specified range of the source virtual | |
3081 | * memory object, if it can be done without waiting | |
3082 | * for user-generated events. | |
3083 | * | |
3084 | * Results: | |
3085 | * If the copy is successful, the copy is returned in | |
3086 | * the arguments; otherwise, the arguments are not | |
3087 | * affected. | |
3088 | * | |
3089 | * In/out conditions: | |
3090 | * The object should be unlocked on entry and exit. | |
3091 | */ | |
3092 | ||
3093 | /*ARGSUSED*/ | |
3094 | __private_extern__ boolean_t | |
3095 | vm_object_copy_quickly( | |
3096 | vm_object_t *_object, /* INOUT */ | |
3097 | __unused vm_object_offset_t offset, /* IN */ | |
3098 | __unused vm_object_size_t size, /* IN */ | |
3099 | boolean_t *_src_needs_copy, /* OUT */ | |
3100 | boolean_t *_dst_needs_copy) /* OUT */ | |
3101 | { | |
3102 | vm_object_t object = *_object; | |
3103 | memory_object_copy_strategy_t copy_strategy; | |
3104 | ||
3105 | XPR(XPR_VM_OBJECT, "v_o_c_quickly obj 0x%x off 0x%x size 0x%x\n", | |
3106 | *_object, offset, size, 0, 0); | |
3107 | if (object == VM_OBJECT_NULL) { | |
3108 | *_src_needs_copy = FALSE; | |
3109 | *_dst_needs_copy = FALSE; | |
3110 | return(TRUE); | |
3111 | } | |
3112 | ||
3113 | vm_object_lock(object); | |
3114 | ||
3115 | copy_strategy = object->copy_strategy; | |
3116 | ||
3117 | switch (copy_strategy) { | |
3118 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
3119 | ||
3120 | /* | |
3121 | * Symmetric copy strategy. | |
3122 | * Make another reference to the object. | |
3123 | * Leave object/offset unchanged. | |
3124 | */ | |
3125 | ||
3126 | vm_object_reference_locked(object); | |
3127 | object->shadowed = TRUE; | |
3128 | vm_object_unlock(object); | |
3129 | ||
3130 | /* | |
3131 | * Both source and destination must make | |
3132 | * shadows, and the source must be made | |
3133 | * read-only if not already. | |
3134 | */ | |
3135 | ||
3136 | *_src_needs_copy = TRUE; | |
3137 | *_dst_needs_copy = TRUE; | |
3138 | ||
3139 | break; | |
3140 | ||
3141 | case MEMORY_OBJECT_COPY_DELAY: | |
3142 | vm_object_unlock(object); | |
3143 | return(FALSE); | |
3144 | ||
3145 | default: | |
3146 | vm_object_unlock(object); | |
3147 | return(FALSE); | |
3148 | } | |
3149 | return(TRUE); | |
3150 | } | |
3151 | ||
3152 | static int copy_call_count = 0; | |
3153 | static int copy_call_sleep_count = 0; | |
3154 | static int copy_call_restart_count = 0; | |
3155 | ||
3156 | /* | |
3157 | * Routine: vm_object_copy_call [internal] | |
3158 | * | |
3159 | * Description: | |
3160 | * Copy the source object (src_object), using the | |
3161 | * user-managed copy algorithm. | |
3162 | * | |
3163 | * In/out conditions: | |
3164 | * The source object must be locked on entry. It | |
3165 | * will be *unlocked* on exit. | |
3166 | * | |
3167 | * Results: | |
3168 | * If the copy is successful, KERN_SUCCESS is returned. | |
3169 | * A new object that represents the copied virtual | |
3170 | * memory is returned in a parameter (*_result_object). | |
3171 | * If the return value indicates an error, this parameter | |
3172 | * is not valid. | |
3173 | */ | |
3174 | static kern_return_t | |
3175 | vm_object_copy_call( | |
3176 | vm_object_t src_object, | |
3177 | vm_object_offset_t src_offset, | |
3178 | vm_object_size_t size, | |
3179 | vm_object_t *_result_object) /* OUT */ | |
3180 | { | |
3181 | kern_return_t kr; | |
3182 | vm_object_t copy; | |
3183 | boolean_t check_ready = FALSE; | |
3184 | uint32_t try_failed_count = 0; | |
3185 | ||
3186 | /* | |
3187 | * If a copy is already in progress, wait and retry. | |
3188 | * | |
3189 | * XXX | |
3190 | * Consider making this call interruptable, as Mike | |
3191 | * intended it to be. | |
3192 | * | |
3193 | * XXXO | |
3194 | * Need a counter or version or something to allow | |
3195 | * us to use the copy that the currently requesting | |
3196 | * thread is obtaining -- is it worth adding to the | |
3197 | * vm object structure? Depends how common this case it. | |
3198 | */ | |
3199 | copy_call_count++; | |
3200 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
3201 | vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL, | |
3202 | THREAD_UNINT); | |
3203 | copy_call_restart_count++; | |
3204 | } | |
3205 | ||
3206 | /* | |
3207 | * Indicate (for the benefit of memory_object_create_copy) | |
3208 | * that we want a copy for src_object. (Note that we cannot | |
3209 | * do a real assert_wait before calling memory_object_copy, | |
3210 | * so we simply set the flag.) | |
3211 | */ | |
3212 | ||
3213 | vm_object_set_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL); | |
3214 | vm_object_unlock(src_object); | |
3215 | ||
3216 | /* | |
3217 | * Ask the memory manager to give us a memory object | |
3218 | * which represents a copy of the src object. | |
3219 | * The memory manager may give us a memory object | |
3220 | * which we already have, or it may give us a | |
3221 | * new memory object. This memory object will arrive | |
3222 | * via memory_object_create_copy. | |
3223 | */ | |
3224 | ||
3225 | kr = KERN_FAILURE; /* XXX need to change memory_object.defs */ | |
3226 | if (kr != KERN_SUCCESS) { | |
3227 | return kr; | |
3228 | } | |
3229 | ||
3230 | /* | |
3231 | * Wait for the copy to arrive. | |
3232 | */ | |
3233 | vm_object_lock(src_object); | |
3234 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
3235 | vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL, | |
3236 | THREAD_UNINT); | |
3237 | copy_call_sleep_count++; | |
3238 | } | |
3239 | Retry: | |
3240 | assert(src_object->copy != VM_OBJECT_NULL); | |
3241 | copy = src_object->copy; | |
3242 | if (!vm_object_lock_try(copy)) { | |
3243 | vm_object_unlock(src_object); | |
3244 | ||
3245 | try_failed_count++; | |
3246 | mutex_pause(try_failed_count); /* wait a bit */ | |
3247 | ||
3248 | vm_object_lock(src_object); | |
3249 | goto Retry; | |
3250 | } | |
3251 | if (copy->vo_size < src_offset+size) | |
3252 | copy->vo_size = src_offset+size; | |
3253 | ||
3254 | if (!copy->pager_ready) | |
3255 | check_ready = TRUE; | |
3256 | ||
3257 | /* | |
3258 | * Return the copy. | |
3259 | */ | |
3260 | *_result_object = copy; | |
3261 | vm_object_unlock(copy); | |
3262 | vm_object_unlock(src_object); | |
3263 | ||
3264 | /* Wait for the copy to be ready. */ | |
3265 | if (check_ready == TRUE) { | |
3266 | vm_object_lock(copy); | |
3267 | while (!copy->pager_ready) { | |
3268 | vm_object_sleep(copy, VM_OBJECT_EVENT_PAGER_READY, THREAD_UNINT); | |
3269 | } | |
3270 | vm_object_unlock(copy); | |
3271 | } | |
3272 | ||
3273 | return KERN_SUCCESS; | |
3274 | } | |
3275 | ||
3276 | static int copy_delayed_lock_collisions = 0; | |
3277 | static int copy_delayed_max_collisions = 0; | |
3278 | static int copy_delayed_lock_contention = 0; | |
3279 | static int copy_delayed_protect_iterate = 0; | |
3280 | ||
3281 | /* | |
3282 | * Routine: vm_object_copy_delayed [internal] | |
3283 | * | |
3284 | * Description: | |
3285 | * Copy the specified virtual memory object, using | |
3286 | * the asymmetric copy-on-write algorithm. | |
3287 | * | |
3288 | * In/out conditions: | |
3289 | * The src_object must be locked on entry. It will be unlocked | |
3290 | * on exit - so the caller must also hold a reference to it. | |
3291 | * | |
3292 | * This routine will not block waiting for user-generated | |
3293 | * events. It is not interruptible. | |
3294 | */ | |
3295 | __private_extern__ vm_object_t | |
3296 | vm_object_copy_delayed( | |
3297 | vm_object_t src_object, | |
3298 | vm_object_offset_t src_offset, | |
3299 | vm_object_size_t size, | |
3300 | boolean_t src_object_shared) | |
3301 | { | |
3302 | vm_object_t new_copy = VM_OBJECT_NULL; | |
3303 | vm_object_t old_copy; | |
3304 | vm_page_t p; | |
3305 | vm_object_size_t copy_size = src_offset + size; | |
3306 | pmap_flush_context pmap_flush_context_storage; | |
3307 | boolean_t delayed_pmap_flush = FALSE; | |
3308 | ||
3309 | ||
3310 | int collisions = 0; | |
3311 | /* | |
3312 | * The user-level memory manager wants to see all of the changes | |
3313 | * to this object, but it has promised not to make any changes on | |
3314 | * its own. | |
3315 | * | |
3316 | * Perform an asymmetric copy-on-write, as follows: | |
3317 | * Create a new object, called a "copy object" to hold | |
3318 | * pages modified by the new mapping (i.e., the copy, | |
3319 | * not the original mapping). | |
3320 | * Record the original object as the backing object for | |
3321 | * the copy object. If the original mapping does not | |
3322 | * change a page, it may be used read-only by the copy. | |
3323 | * Record the copy object in the original object. | |
3324 | * When the original mapping causes a page to be modified, | |
3325 | * it must be copied to a new page that is "pushed" to | |
3326 | * the copy object. | |
3327 | * Mark the new mapping (the copy object) copy-on-write. | |
3328 | * This makes the copy object itself read-only, allowing | |
3329 | * it to be reused if the original mapping makes no | |
3330 | * changes, and simplifying the synchronization required | |
3331 | * in the "push" operation described above. | |
3332 | * | |
3333 | * The copy-on-write is said to be assymetric because the original | |
3334 | * object is *not* marked copy-on-write. A copied page is pushed | |
3335 | * to the copy object, regardless which party attempted to modify | |
3336 | * the page. | |
3337 | * | |
3338 | * Repeated asymmetric copy operations may be done. If the | |
3339 | * original object has not been changed since the last copy, its | |
3340 | * copy object can be reused. Otherwise, a new copy object can be | |
3341 | * inserted between the original object and its previous copy | |
3342 | * object. Since any copy object is read-only, this cannot affect | |
3343 | * affect the contents of the previous copy object. | |
3344 | * | |
3345 | * Note that a copy object is higher in the object tree than the | |
3346 | * original object; therefore, use of the copy object recorded in | |
3347 | * the original object must be done carefully, to avoid deadlock. | |
3348 | */ | |
3349 | ||
3350 | copy_size = vm_object_round_page(copy_size); | |
3351 | Retry: | |
3352 | ||
3353 | /* | |
3354 | * Wait for paging in progress. | |
3355 | */ | |
3356 | if (!src_object->true_share && | |
3357 | (src_object->paging_in_progress != 0 || | |
3358 | src_object->activity_in_progress != 0)) { | |
3359 | if (src_object_shared == TRUE) { | |
3360 | vm_object_unlock(src_object); | |
3361 | vm_object_lock(src_object); | |
3362 | src_object_shared = FALSE; | |
3363 | goto Retry; | |
3364 | } | |
3365 | vm_object_paging_wait(src_object, THREAD_UNINT); | |
3366 | } | |
3367 | /* | |
3368 | * See whether we can reuse the result of a previous | |
3369 | * copy operation. | |
3370 | */ | |
3371 | ||
3372 | old_copy = src_object->copy; | |
3373 | if (old_copy != VM_OBJECT_NULL) { | |
3374 | int lock_granted; | |
3375 | ||
3376 | /* | |
3377 | * Try to get the locks (out of order) | |
3378 | */ | |
3379 | if (src_object_shared == TRUE) | |
3380 | lock_granted = vm_object_lock_try_shared(old_copy); | |
3381 | else | |
3382 | lock_granted = vm_object_lock_try(old_copy); | |
3383 | ||
3384 | if (!lock_granted) { | |
3385 | vm_object_unlock(src_object); | |
3386 | ||
3387 | if (collisions++ == 0) | |
3388 | copy_delayed_lock_contention++; | |
3389 | mutex_pause(collisions); | |
3390 | ||
3391 | /* Heisenberg Rules */ | |
3392 | copy_delayed_lock_collisions++; | |
3393 | ||
3394 | if (collisions > copy_delayed_max_collisions) | |
3395 | copy_delayed_max_collisions = collisions; | |
3396 | ||
3397 | if (src_object_shared == TRUE) | |
3398 | vm_object_lock_shared(src_object); | |
3399 | else | |
3400 | vm_object_lock(src_object); | |
3401 | ||
3402 | goto Retry; | |
3403 | } | |
3404 | ||
3405 | /* | |
3406 | * Determine whether the old copy object has | |
3407 | * been modified. | |
3408 | */ | |
3409 | ||
3410 | if (old_copy->resident_page_count == 0 && | |
3411 | !old_copy->pager_created) { | |
3412 | /* | |
3413 | * It has not been modified. | |
3414 | * | |
3415 | * Return another reference to | |
3416 | * the existing copy-object if | |
3417 | * we can safely grow it (if | |
3418 | * needed). | |
3419 | */ | |
3420 | ||
3421 | if (old_copy->vo_size < copy_size) { | |
3422 | if (src_object_shared == TRUE) { | |
3423 | vm_object_unlock(old_copy); | |
3424 | vm_object_unlock(src_object); | |
3425 | ||
3426 | vm_object_lock(src_object); | |
3427 | src_object_shared = FALSE; | |
3428 | goto Retry; | |
3429 | } | |
3430 | /* | |
3431 | * We can't perform a delayed copy if any of the | |
3432 | * pages in the extended range are wired (because | |
3433 | * we can't safely take write permission away from | |
3434 | * wired pages). If the pages aren't wired, then | |
3435 | * go ahead and protect them. | |
3436 | */ | |
3437 | copy_delayed_protect_iterate++; | |
3438 | ||
3439 | pmap_flush_context_init(&pmap_flush_context_storage); | |
3440 | delayed_pmap_flush = FALSE; | |
3441 | ||
3442 | vm_page_queue_iterate(&src_object->memq, p, vm_page_t, listq) { | |
3443 | if (!p->fictitious && | |
3444 | p->offset >= old_copy->vo_size && | |
3445 | p->offset < copy_size) { | |
3446 | if (VM_PAGE_WIRED(p)) { | |
3447 | vm_object_unlock(old_copy); | |
3448 | vm_object_unlock(src_object); | |
3449 | ||
3450 | if (new_copy != VM_OBJECT_NULL) { | |
3451 | vm_object_unlock(new_copy); | |
3452 | vm_object_deallocate(new_copy); | |
3453 | } | |
3454 | if (delayed_pmap_flush == TRUE) | |
3455 | pmap_flush(&pmap_flush_context_storage); | |
3456 | ||
3457 | return VM_OBJECT_NULL; | |
3458 | } else { | |
3459 | pmap_page_protect_options(VM_PAGE_GET_PHYS_PAGE(p), (VM_PROT_ALL & ~VM_PROT_WRITE), | |
3460 | PMAP_OPTIONS_NOFLUSH, (void *)&pmap_flush_context_storage); | |
3461 | delayed_pmap_flush = TRUE; | |
3462 | } | |
3463 | } | |
3464 | } | |
3465 | if (delayed_pmap_flush == TRUE) | |
3466 | pmap_flush(&pmap_flush_context_storage); | |
3467 | ||
3468 | old_copy->vo_size = copy_size; | |
3469 | } | |
3470 | if (src_object_shared == TRUE) | |
3471 | vm_object_reference_shared(old_copy); | |
3472 | else | |
3473 | vm_object_reference_locked(old_copy); | |
3474 | vm_object_unlock(old_copy); | |
3475 | vm_object_unlock(src_object); | |
3476 | ||
3477 | if (new_copy != VM_OBJECT_NULL) { | |
3478 | vm_object_unlock(new_copy); | |
3479 | vm_object_deallocate(new_copy); | |
3480 | } | |
3481 | return(old_copy); | |
3482 | } | |
3483 | ||
3484 | ||
3485 | ||
3486 | /* | |
3487 | * Adjust the size argument so that the newly-created | |
3488 | * copy object will be large enough to back either the | |
3489 | * old copy object or the new mapping. | |
3490 | */ | |
3491 | if (old_copy->vo_size > copy_size) | |
3492 | copy_size = old_copy->vo_size; | |
3493 | ||
3494 | if (new_copy == VM_OBJECT_NULL) { | |
3495 | vm_object_unlock(old_copy); | |
3496 | vm_object_unlock(src_object); | |
3497 | new_copy = vm_object_allocate(copy_size); | |
3498 | vm_object_lock(src_object); | |
3499 | vm_object_lock(new_copy); | |
3500 | ||
3501 | src_object_shared = FALSE; | |
3502 | goto Retry; | |
3503 | } | |
3504 | new_copy->vo_size = copy_size; | |
3505 | ||
3506 | /* | |
3507 | * The copy-object is always made large enough to | |
3508 | * completely shadow the original object, since | |
3509 | * it may have several users who want to shadow | |
3510 | * the original object at different points. | |
3511 | */ | |
3512 | ||
3513 | assert((old_copy->shadow == src_object) && | |
3514 | (old_copy->vo_shadow_offset == (vm_object_offset_t) 0)); | |
3515 | ||
3516 | } else if (new_copy == VM_OBJECT_NULL) { | |
3517 | vm_object_unlock(src_object); | |
3518 | new_copy = vm_object_allocate(copy_size); | |
3519 | vm_object_lock(src_object); | |
3520 | vm_object_lock(new_copy); | |
3521 | ||
3522 | src_object_shared = FALSE; | |
3523 | goto Retry; | |
3524 | } | |
3525 | ||
3526 | /* | |
3527 | * We now have the src object locked, and the new copy object | |
3528 | * allocated and locked (and potentially the old copy locked). | |
3529 | * Before we go any further, make sure we can still perform | |
3530 | * a delayed copy, as the situation may have changed. | |
3531 | * | |
3532 | * Specifically, we can't perform a delayed copy if any of the | |
3533 | * pages in the range are wired (because we can't safely take | |
3534 | * write permission away from wired pages). If the pages aren't | |
3535 | * wired, then go ahead and protect them. | |
3536 | */ | |
3537 | copy_delayed_protect_iterate++; | |
3538 | ||
3539 | pmap_flush_context_init(&pmap_flush_context_storage); | |
3540 | delayed_pmap_flush = FALSE; | |
3541 | ||
3542 | vm_page_queue_iterate(&src_object->memq, p, vm_page_t, listq) { | |
3543 | if (!p->fictitious && p->offset < copy_size) { | |
3544 | if (VM_PAGE_WIRED(p)) { | |
3545 | if (old_copy) | |
3546 | vm_object_unlock(old_copy); | |
3547 | vm_object_unlock(src_object); | |
3548 | vm_object_unlock(new_copy); | |
3549 | vm_object_deallocate(new_copy); | |
3550 | ||
3551 | if (delayed_pmap_flush == TRUE) | |
3552 | pmap_flush(&pmap_flush_context_storage); | |
3553 | ||
3554 | return VM_OBJECT_NULL; | |
3555 | } else { | |
3556 | pmap_page_protect_options(VM_PAGE_GET_PHYS_PAGE(p), (VM_PROT_ALL & ~VM_PROT_WRITE), | |
3557 | PMAP_OPTIONS_NOFLUSH, (void *)&pmap_flush_context_storage); | |
3558 | delayed_pmap_flush = TRUE; | |
3559 | } | |
3560 | } | |
3561 | } | |
3562 | if (delayed_pmap_flush == TRUE) | |
3563 | pmap_flush(&pmap_flush_context_storage); | |
3564 | ||
3565 | if (old_copy != VM_OBJECT_NULL) { | |
3566 | /* | |
3567 | * Make the old copy-object shadow the new one. | |
3568 | * It will receive no more pages from the original | |
3569 | * object. | |
3570 | */ | |
3571 | ||
3572 | /* remove ref. from old_copy */ | |
3573 | vm_object_lock_assert_exclusive(src_object); | |
3574 | src_object->ref_count--; | |
3575 | assert(src_object->ref_count > 0); | |
3576 | vm_object_lock_assert_exclusive(old_copy); | |
3577 | old_copy->shadow = new_copy; | |
3578 | vm_object_lock_assert_exclusive(new_copy); | |
3579 | assert(new_copy->ref_count > 0); | |
3580 | new_copy->ref_count++; /* for old_copy->shadow ref. */ | |
3581 | ||
3582 | #if TASK_SWAPPER | |
3583 | if (old_copy->res_count) { | |
3584 | VM_OBJ_RES_INCR(new_copy); | |
3585 | VM_OBJ_RES_DECR(src_object); | |
3586 | } | |
3587 | #endif | |
3588 | ||
3589 | vm_object_unlock(old_copy); /* done with old_copy */ | |
3590 | } | |
3591 | ||
3592 | /* | |
3593 | * Point the new copy at the existing object. | |
3594 | */ | |
3595 | vm_object_lock_assert_exclusive(new_copy); | |
3596 | new_copy->shadow = src_object; | |
3597 | new_copy->vo_shadow_offset = 0; | |
3598 | new_copy->shadowed = TRUE; /* caller must set needs_copy */ | |
3599 | ||
3600 | vm_object_lock_assert_exclusive(src_object); | |
3601 | vm_object_reference_locked(src_object); | |
3602 | src_object->copy = new_copy; | |
3603 | vm_object_unlock(src_object); | |
3604 | vm_object_unlock(new_copy); | |
3605 | ||
3606 | XPR(XPR_VM_OBJECT, | |
3607 | "vm_object_copy_delayed: used copy object %X for source %X\n", | |
3608 | new_copy, src_object, 0, 0, 0); | |
3609 | ||
3610 | return new_copy; | |
3611 | } | |
3612 | ||
3613 | /* | |
3614 | * Routine: vm_object_copy_strategically | |
3615 | * | |
3616 | * Purpose: | |
3617 | * Perform a copy according to the source object's | |
3618 | * declared strategy. This operation may block, | |
3619 | * and may be interrupted. | |
3620 | */ | |
3621 | __private_extern__ kern_return_t | |
3622 | vm_object_copy_strategically( | |
3623 | vm_object_t src_object, | |
3624 | vm_object_offset_t src_offset, | |
3625 | vm_object_size_t size, | |
3626 | vm_object_t *dst_object, /* OUT */ | |
3627 | vm_object_offset_t *dst_offset, /* OUT */ | |
3628 | boolean_t *dst_needs_copy) /* OUT */ | |
3629 | { | |
3630 | boolean_t result; | |
3631 | boolean_t interruptible = THREAD_ABORTSAFE; /* XXX */ | |
3632 | boolean_t object_lock_shared = FALSE; | |
3633 | memory_object_copy_strategy_t copy_strategy; | |
3634 | ||
3635 | assert(src_object != VM_OBJECT_NULL); | |
3636 | ||
3637 | copy_strategy = src_object->copy_strategy; | |
3638 | ||
3639 | if (copy_strategy == MEMORY_OBJECT_COPY_DELAY) { | |
3640 | vm_object_lock_shared(src_object); | |
3641 | object_lock_shared = TRUE; | |
3642 | } else | |
3643 | vm_object_lock(src_object); | |
3644 | ||
3645 | /* | |
3646 | * The copy strategy is only valid if the memory manager | |
3647 | * is "ready". Internal objects are always ready. | |
3648 | */ | |
3649 | ||
3650 | while (!src_object->internal && !src_object->pager_ready) { | |
3651 | wait_result_t wait_result; | |
3652 | ||
3653 | if (object_lock_shared == TRUE) { | |
3654 | vm_object_unlock(src_object); | |
3655 | vm_object_lock(src_object); | |
3656 | object_lock_shared = FALSE; | |
3657 | continue; | |
3658 | } | |
3659 | wait_result = vm_object_sleep( src_object, | |
3660 | VM_OBJECT_EVENT_PAGER_READY, | |
3661 | interruptible); | |
3662 | if (wait_result != THREAD_AWAKENED) { | |
3663 | vm_object_unlock(src_object); | |
3664 | *dst_object = VM_OBJECT_NULL; | |
3665 | *dst_offset = 0; | |
3666 | *dst_needs_copy = FALSE; | |
3667 | return(MACH_SEND_INTERRUPTED); | |
3668 | } | |
3669 | } | |
3670 | ||
3671 | /* | |
3672 | * Use the appropriate copy strategy. | |
3673 | */ | |
3674 | ||
3675 | switch (copy_strategy) { | |
3676 | case MEMORY_OBJECT_COPY_DELAY: | |
3677 | *dst_object = vm_object_copy_delayed(src_object, | |
3678 | src_offset, size, object_lock_shared); | |
3679 | if (*dst_object != VM_OBJECT_NULL) { | |
3680 | *dst_offset = src_offset; | |
3681 | *dst_needs_copy = TRUE; | |
3682 | result = KERN_SUCCESS; | |
3683 | break; | |
3684 | } | |
3685 | vm_object_lock(src_object); | |
3686 | /* fall thru when delayed copy not allowed */ | |
3687 | ||
3688 | case MEMORY_OBJECT_COPY_NONE: | |
3689 | result = vm_object_copy_slowly(src_object, src_offset, size, | |
3690 | interruptible, dst_object); | |
3691 | if (result == KERN_SUCCESS) { | |
3692 | *dst_offset = 0; | |
3693 | *dst_needs_copy = FALSE; | |
3694 | } | |
3695 | break; | |
3696 | ||
3697 | case MEMORY_OBJECT_COPY_CALL: | |
3698 | result = vm_object_copy_call(src_object, src_offset, size, | |
3699 | dst_object); | |
3700 | if (result == KERN_SUCCESS) { | |
3701 | *dst_offset = src_offset; | |
3702 | *dst_needs_copy = TRUE; | |
3703 | } | |
3704 | break; | |
3705 | ||
3706 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
3707 | XPR(XPR_VM_OBJECT, "v_o_c_strategically obj 0x%x off 0x%x size 0x%x\n", src_object, src_offset, size, 0, 0); | |
3708 | vm_object_unlock(src_object); | |
3709 | result = KERN_MEMORY_RESTART_COPY; | |
3710 | break; | |
3711 | ||
3712 | default: | |
3713 | panic("copy_strategically: bad strategy"); | |
3714 | result = KERN_INVALID_ARGUMENT; | |
3715 | } | |
3716 | return(result); | |
3717 | } | |
3718 | ||
3719 | /* | |
3720 | * vm_object_shadow: | |
3721 | * | |
3722 | * Create a new object which is backed by the | |
3723 | * specified existing object range. The source | |
3724 | * object reference is deallocated. | |
3725 | * | |
3726 | * The new object and offset into that object | |
3727 | * are returned in the source parameters. | |
3728 | */ | |
3729 | boolean_t vm_object_shadow_check = TRUE; | |
3730 | ||
3731 | __private_extern__ boolean_t | |
3732 | vm_object_shadow( | |
3733 | vm_object_t *object, /* IN/OUT */ | |
3734 | vm_object_offset_t *offset, /* IN/OUT */ | |
3735 | vm_object_size_t length) | |
3736 | { | |
3737 | vm_object_t source; | |
3738 | vm_object_t result; | |
3739 | ||
3740 | source = *object; | |
3741 | assert(source != VM_OBJECT_NULL); | |
3742 | if (source == VM_OBJECT_NULL) | |
3743 | return FALSE; | |
3744 | ||
3745 | #if 0 | |
3746 | /* | |
3747 | * XXX FBDP | |
3748 | * This assertion is valid but it gets triggered by Rosetta for example | |
3749 | * due to a combination of vm_remap() that changes a VM object's | |
3750 | * copy_strategy from SYMMETRIC to DELAY and vm_protect(VM_PROT_COPY) | |
3751 | * that then sets "needs_copy" on its map entry. This creates a | |
3752 | * mapping situation that VM should never see and doesn't know how to | |
3753 | * handle. | |
3754 | * It's not clear if this can create any real problem but we should | |
3755 | * look into fixing this, probably by having vm_protect(VM_PROT_COPY) | |
3756 | * do more than just set "needs_copy" to handle the copy-on-write... | |
3757 | * In the meantime, let's disable the assertion. | |
3758 | */ | |
3759 | assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC); | |
3760 | #endif | |
3761 | ||
3762 | /* | |
3763 | * Determine if we really need a shadow. | |
3764 | * | |
3765 | * If the source object is larger than what we are trying | |
3766 | * to create, then force the shadow creation even if the | |
3767 | * ref count is 1. This will allow us to [potentially] | |
3768 | * collapse the underlying object away in the future | |
3769 | * (freeing up the extra data it might contain and that | |
3770 | * we don't need). | |
3771 | */ | |
3772 | ||
3773 | assert(source->copy_strategy != MEMORY_OBJECT_COPY_NONE); /* Purgeable objects shouldn't have shadow objects. */ | |
3774 | ||
3775 | if (vm_object_shadow_check && | |
3776 | source->vo_size == length && | |
3777 | source->ref_count == 1 && | |
3778 | (source->shadow == VM_OBJECT_NULL || | |
3779 | source->shadow->copy == VM_OBJECT_NULL) ) | |
3780 | { | |
3781 | /* lock the object and check again */ | |
3782 | vm_object_lock(source); | |
3783 | if (source->vo_size == length && | |
3784 | source->ref_count == 1 && | |
3785 | (source->shadow == VM_OBJECT_NULL || | |
3786 | source->shadow->copy == VM_OBJECT_NULL)) | |
3787 | { | |
3788 | source->shadowed = FALSE; | |
3789 | vm_object_unlock(source); | |
3790 | return FALSE; | |
3791 | } | |
3792 | /* things changed while we were locking "source"... */ | |
3793 | vm_object_unlock(source); | |
3794 | } | |
3795 | ||
3796 | /* | |
3797 | * Allocate a new object with the given length | |
3798 | */ | |
3799 | ||
3800 | if ((result = vm_object_allocate(length)) == VM_OBJECT_NULL) | |
3801 | panic("vm_object_shadow: no object for shadowing"); | |
3802 | ||
3803 | /* | |
3804 | * The new object shadows the source object, adding | |
3805 | * a reference to it. Our caller changes his reference | |
3806 | * to point to the new object, removing a reference to | |
3807 | * the source object. Net result: no change of reference | |
3808 | * count. | |
3809 | */ | |
3810 | result->shadow = source; | |
3811 | ||
3812 | /* | |
3813 | * Store the offset into the source object, | |
3814 | * and fix up the offset into the new object. | |
3815 | */ | |
3816 | ||
3817 | result->vo_shadow_offset = *offset; | |
3818 | ||
3819 | /* | |
3820 | * Return the new things | |
3821 | */ | |
3822 | ||
3823 | *offset = 0; | |
3824 | *object = result; | |
3825 | return TRUE; | |
3826 | } | |
3827 | ||
3828 | /* | |
3829 | * The relationship between vm_object structures and | |
3830 | * the memory_object requires careful synchronization. | |
3831 | * | |
3832 | * All associations are created by memory_object_create_named | |
3833 | * for external pagers and vm_object_compressor_pager_create for internal | |
3834 | * objects as follows: | |
3835 | * | |
3836 | * pager: the memory_object itself, supplied by | |
3837 | * the user requesting a mapping (or the kernel, | |
3838 | * when initializing internal objects); the | |
3839 | * kernel simulates holding send rights by keeping | |
3840 | * a port reference; | |
3841 | * | |
3842 | * pager_request: | |
3843 | * the memory object control port, | |
3844 | * created by the kernel; the kernel holds | |
3845 | * receive (and ownership) rights to this | |
3846 | * port, but no other references. | |
3847 | * | |
3848 | * When initialization is complete, the "initialized" field | |
3849 | * is asserted. Other mappings using a particular memory object, | |
3850 | * and any references to the vm_object gained through the | |
3851 | * port association must wait for this initialization to occur. | |
3852 | * | |
3853 | * In order to allow the memory manager to set attributes before | |
3854 | * requests (notably virtual copy operations, but also data or | |
3855 | * unlock requests) are made, a "ready" attribute is made available. | |
3856 | * Only the memory manager may affect the value of this attribute. | |
3857 | * Its value does not affect critical kernel functions, such as | |
3858 | * internal object initialization or destruction. [Furthermore, | |
3859 | * memory objects created by the kernel are assumed to be ready | |
3860 | * immediately; the default memory manager need not explicitly | |
3861 | * set the "ready" attribute.] | |
3862 | * | |
3863 | * [Both the "initialized" and "ready" attribute wait conditions | |
3864 | * use the "pager" field as the wait event.] | |
3865 | * | |
3866 | * The port associations can be broken down by any of the | |
3867 | * following routines: | |
3868 | * vm_object_terminate: | |
3869 | * No references to the vm_object remain, and | |
3870 | * the object cannot (or will not) be cached. | |
3871 | * This is the normal case, and is done even | |
3872 | * though one of the other cases has already been | |
3873 | * done. | |
3874 | * memory_object_destroy: | |
3875 | * The memory manager has requested that the | |
3876 | * kernel relinquish references to the memory | |
3877 | * object. [The memory manager may not want to | |
3878 | * destroy the memory object, but may wish to | |
3879 | * refuse or tear down existing memory mappings.] | |
3880 | * | |
3881 | * Each routine that breaks an association must break all of | |
3882 | * them at once. At some later time, that routine must clear | |
3883 | * the pager field and release the memory object references. | |
3884 | * [Furthermore, each routine must cope with the simultaneous | |
3885 | * or previous operations of the others.] | |
3886 | * | |
3887 | * Because the pager field may be cleared spontaneously, it | |
3888 | * cannot be used to determine whether a memory object has | |
3889 | * ever been associated with a particular vm_object. [This | |
3890 | * knowledge is important to the shadow object mechanism.] | |
3891 | * For this reason, an additional "created" attribute is | |
3892 | * provided. | |
3893 | * | |
3894 | * During various paging operations, the pager reference found in the | |
3895 | * vm_object must be valid. To prevent this from being released, | |
3896 | * (other than being removed, i.e., made null), routines may use | |
3897 | * the vm_object_paging_begin/end routines [actually, macros]. | |
3898 | * The implementation uses the "paging_in_progress" and "wanted" fields. | |
3899 | * [Operations that alter the validity of the pager values include the | |
3900 | * termination routines and vm_object_collapse.] | |
3901 | */ | |
3902 | ||
3903 | ||
3904 | /* | |
3905 | * Routine: vm_object_memory_object_associate | |
3906 | * Purpose: | |
3907 | * Associate a VM object to the given pager. | |
3908 | * If a VM object is not provided, create one. | |
3909 | * Initialize the pager. | |
3910 | */ | |
3911 | vm_object_t | |
3912 | vm_object_memory_object_associate( | |
3913 | memory_object_t pager, | |
3914 | vm_object_t object, | |
3915 | vm_object_size_t size, | |
3916 | boolean_t named) | |
3917 | { | |
3918 | memory_object_control_t control; | |
3919 | ||
3920 | assert(pager != MEMORY_OBJECT_NULL); | |
3921 | ||
3922 | if (object != VM_OBJECT_NULL) { | |
3923 | assert(object->internal); | |
3924 | assert(object->pager_created); | |
3925 | assert(!object->pager_initialized); | |
3926 | assert(!object->pager_ready); | |
3927 | } else { | |
3928 | object = vm_object_allocate(size); | |
3929 | assert(object != VM_OBJECT_NULL); | |
3930 | object->internal = FALSE; | |
3931 | object->pager_trusted = FALSE; | |
3932 | /* copy strategy invalid until set by memory manager */ | |
3933 | object->copy_strategy = MEMORY_OBJECT_COPY_INVALID; | |
3934 | } | |
3935 | ||
3936 | /* | |
3937 | * Allocate request port. | |
3938 | */ | |
3939 | ||
3940 | control = memory_object_control_allocate(object); | |
3941 | assert (control != MEMORY_OBJECT_CONTROL_NULL); | |
3942 | ||
3943 | vm_object_lock(object); | |
3944 | ||
3945 | assert(!object->pager_ready); | |
3946 | assert(!object->pager_initialized); | |
3947 | assert(object->pager == NULL); | |
3948 | assert(object->pager_control == NULL); | |
3949 | ||
3950 | /* | |
3951 | * Copy the reference we were given. | |
3952 | */ | |
3953 | ||
3954 | memory_object_reference(pager); | |
3955 | object->pager_created = TRUE; | |
3956 | object->pager = pager; | |
3957 | object->pager_control = control; | |
3958 | object->pager_ready = FALSE; | |
3959 | ||
3960 | vm_object_unlock(object); | |
3961 | ||
3962 | /* | |
3963 | * Let the pager know we're using it. | |
3964 | */ | |
3965 | ||
3966 | (void) memory_object_init(pager, | |
3967 | object->pager_control, | |
3968 | PAGE_SIZE); | |
3969 | ||
3970 | vm_object_lock(object); | |
3971 | if (named) | |
3972 | object->named = TRUE; | |
3973 | if (object->internal) { | |
3974 | object->pager_ready = TRUE; | |
3975 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
3976 | } | |
3977 | ||
3978 | object->pager_initialized = TRUE; | |
3979 | vm_object_wakeup(object, VM_OBJECT_EVENT_INITIALIZED); | |
3980 | ||
3981 | vm_object_unlock(object); | |
3982 | ||
3983 | return object; | |
3984 | } | |
3985 | ||
3986 | /* | |
3987 | * Routine: vm_object_compressor_pager_create | |
3988 | * Purpose: | |
3989 | * Create a memory object for an internal object. | |
3990 | * In/out conditions: | |
3991 | * The object is locked on entry and exit; | |
3992 | * it may be unlocked within this call. | |
3993 | * Limitations: | |
3994 | * Only one thread may be performing a | |
3995 | * vm_object_compressor_pager_create on an object at | |
3996 | * a time. Presumably, only the pageout | |
3997 | * daemon will be using this routine. | |
3998 | */ | |
3999 | ||
4000 | void | |
4001 | vm_object_compressor_pager_create( | |
4002 | vm_object_t object) | |
4003 | { | |
4004 | memory_object_t pager; | |
4005 | vm_object_t pager_object = VM_OBJECT_NULL; | |
4006 | ||
4007 | assert(object != kernel_object); | |
4008 | ||
4009 | /* | |
4010 | * Prevent collapse or termination by holding a paging reference | |
4011 | */ | |
4012 | ||
4013 | vm_object_paging_begin(object); | |
4014 | if (object->pager_created) { | |
4015 | /* | |
4016 | * Someone else got to it first... | |
4017 | * wait for them to finish initializing the ports | |
4018 | */ | |
4019 | while (!object->pager_initialized) { | |
4020 | vm_object_sleep(object, | |
4021 | VM_OBJECT_EVENT_INITIALIZED, | |
4022 | THREAD_UNINT); | |
4023 | } | |
4024 | vm_object_paging_end(object); | |
4025 | return; | |
4026 | } | |
4027 | ||
4028 | if ((uint32_t) (object->vo_size/PAGE_SIZE) != | |
4029 | (object->vo_size/PAGE_SIZE)) { | |
4030 | #if DEVELOPMENT || DEBUG | |
4031 | printf("vm_object_compressor_pager_create(%p): " | |
4032 | "object size 0x%llx >= 0x%llx\n", | |
4033 | object, | |
4034 | (uint64_t) object->vo_size, | |
4035 | 0x0FFFFFFFFULL*PAGE_SIZE); | |
4036 | #endif /* DEVELOPMENT || DEBUG */ | |
4037 | vm_object_paging_end(object); | |
4038 | return; | |
4039 | } | |
4040 | ||
4041 | /* | |
4042 | * Indicate that a memory object has been assigned | |
4043 | * before dropping the lock, to prevent a race. | |
4044 | */ | |
4045 | ||
4046 | object->pager_created = TRUE; | |
4047 | object->paging_offset = 0; | |
4048 | ||
4049 | vm_object_unlock(object); | |
4050 | ||
4051 | /* | |
4052 | * Create the [internal] pager, and associate it with this object. | |
4053 | * | |
4054 | * We make the association here so that vm_object_enter() | |
4055 | * can look up the object to complete initializing it. No | |
4056 | * user will ever map this object. | |
4057 | */ | |
4058 | { | |
4059 | /* create our new memory object */ | |
4060 | assert((uint32_t) (object->vo_size/PAGE_SIZE) == | |
4061 | (object->vo_size/PAGE_SIZE)); | |
4062 | (void) compressor_memory_object_create( | |
4063 | (memory_object_size_t) object->vo_size, | |
4064 | &pager); | |
4065 | if (pager == NULL) { | |
4066 | panic("vm_object_compressor_pager_create(): " | |
4067 | "no pager for object %p size 0x%llx\n", | |
4068 | object, (uint64_t) object->vo_size); | |
4069 | } | |
4070 | } | |
4071 | ||
4072 | /* | |
4073 | * A reference was returned by | |
4074 | * memory_object_create(), and it is | |
4075 | * copied by vm_object_memory_object_associate(). | |
4076 | */ | |
4077 | ||
4078 | pager_object = vm_object_memory_object_associate(pager, | |
4079 | object, | |
4080 | object->vo_size, | |
4081 | FALSE); | |
4082 | if (pager_object != object) { | |
4083 | panic("vm_object_compressor_pager_create: mismatch (pager: %p, pager_object: %p, orig_object: %p, orig_object size: 0x%llx)\n", pager, pager_object, object, (uint64_t) object->vo_size); | |
4084 | } | |
4085 | ||
4086 | /* | |
4087 | * Drop the reference we were passed. | |
4088 | */ | |
4089 | memory_object_deallocate(pager); | |
4090 | ||
4091 | vm_object_lock(object); | |
4092 | ||
4093 | /* | |
4094 | * Release the paging reference | |
4095 | */ | |
4096 | vm_object_paging_end(object); | |
4097 | } | |
4098 | ||
4099 | /* | |
4100 | * Global variables for vm_object_collapse(): | |
4101 | * | |
4102 | * Counts for normal collapses and bypasses. | |
4103 | * Debugging variables, to watch or disable collapse. | |
4104 | */ | |
4105 | static long object_collapses = 0; | |
4106 | static long object_bypasses = 0; | |
4107 | ||
4108 | static boolean_t vm_object_collapse_allowed = TRUE; | |
4109 | static boolean_t vm_object_bypass_allowed = TRUE; | |
4110 | ||
4111 | void vm_object_do_collapse_compressor(vm_object_t object, | |
4112 | vm_object_t backing_object); | |
4113 | void | |
4114 | vm_object_do_collapse_compressor( | |
4115 | vm_object_t object, | |
4116 | vm_object_t backing_object) | |
4117 | { | |
4118 | vm_object_offset_t new_offset, backing_offset; | |
4119 | vm_object_size_t size; | |
4120 | ||
4121 | vm_counters.do_collapse_compressor++; | |
4122 | ||
4123 | vm_object_lock_assert_exclusive(object); | |
4124 | vm_object_lock_assert_exclusive(backing_object); | |
4125 | ||
4126 | size = object->vo_size; | |
4127 | ||
4128 | /* | |
4129 | * Move all compressed pages from backing_object | |
4130 | * to the parent. | |
4131 | */ | |
4132 | ||
4133 | for (backing_offset = object->vo_shadow_offset; | |
4134 | backing_offset < object->vo_shadow_offset + object->vo_size; | |
4135 | backing_offset += PAGE_SIZE) { | |
4136 | memory_object_offset_t backing_pager_offset; | |
4137 | ||
4138 | /* find the next compressed page at or after this offset */ | |
4139 | backing_pager_offset = (backing_offset + | |
4140 | backing_object->paging_offset); | |
4141 | backing_pager_offset = vm_compressor_pager_next_compressed( | |
4142 | backing_object->pager, | |
4143 | backing_pager_offset); | |
4144 | if (backing_pager_offset == (memory_object_offset_t) -1) { | |
4145 | /* no more compressed pages */ | |
4146 | break; | |
4147 | } | |
4148 | backing_offset = (backing_pager_offset - | |
4149 | backing_object->paging_offset); | |
4150 | ||
4151 | new_offset = backing_offset - object->vo_shadow_offset; | |
4152 | ||
4153 | if (new_offset >= object->vo_size) { | |
4154 | /* we're out of the scope of "object": done */ | |
4155 | break; | |
4156 | } | |
4157 | ||
4158 | if ((vm_page_lookup(object, new_offset) != VM_PAGE_NULL) || | |
4159 | (vm_compressor_pager_state_get(object->pager, | |
4160 | (new_offset + | |
4161 | object->paging_offset)) == | |
4162 | VM_EXTERNAL_STATE_EXISTS)) { | |
4163 | /* | |
4164 | * This page already exists in object, resident or | |
4165 | * compressed. | |
4166 | * We don't need this compressed page in backing_object | |
4167 | * and it will be reclaimed when we release | |
4168 | * backing_object. | |
4169 | */ | |
4170 | continue; | |
4171 | } | |
4172 | ||
4173 | /* | |
4174 | * backing_object has this page in the VM compressor and | |
4175 | * we need to transfer it to object. | |
4176 | */ | |
4177 | vm_counters.do_collapse_compressor_pages++; | |
4178 | vm_compressor_pager_transfer( | |
4179 | /* destination: */ | |
4180 | object->pager, | |
4181 | (new_offset + object->paging_offset), | |
4182 | /* source: */ | |
4183 | backing_object->pager, | |
4184 | (backing_offset + backing_object->paging_offset)); | |
4185 | } | |
4186 | } | |
4187 | ||
4188 | /* | |
4189 | * Routine: vm_object_do_collapse | |
4190 | * Purpose: | |
4191 | * Collapse an object with the object backing it. | |
4192 | * Pages in the backing object are moved into the | |
4193 | * parent, and the backing object is deallocated. | |
4194 | * Conditions: | |
4195 | * Both objects and the cache are locked; the page | |
4196 | * queues are unlocked. | |
4197 | * | |
4198 | */ | |
4199 | static void | |
4200 | vm_object_do_collapse( | |
4201 | vm_object_t object, | |
4202 | vm_object_t backing_object) | |
4203 | { | |
4204 | vm_page_t p, pp; | |
4205 | vm_object_offset_t new_offset, backing_offset; | |
4206 | vm_object_size_t size; | |
4207 | ||
4208 | vm_object_lock_assert_exclusive(object); | |
4209 | vm_object_lock_assert_exclusive(backing_object); | |
4210 | ||
4211 | assert(object->purgable == VM_PURGABLE_DENY); | |
4212 | assert(backing_object->purgable == VM_PURGABLE_DENY); | |
4213 | ||
4214 | backing_offset = object->vo_shadow_offset; | |
4215 | size = object->vo_size; | |
4216 | ||
4217 | /* | |
4218 | * Move all in-memory pages from backing_object | |
4219 | * to the parent. Pages that have been paged out | |
4220 | * will be overwritten by any of the parent's | |
4221 | * pages that shadow them. | |
4222 | */ | |
4223 | ||
4224 | while (!vm_page_queue_empty(&backing_object->memq)) { | |
4225 | ||
4226 | p = (vm_page_t) vm_page_queue_first(&backing_object->memq); | |
4227 | ||
4228 | new_offset = (p->offset - backing_offset); | |
4229 | ||
4230 | assert(!p->busy || p->absent); | |
4231 | ||
4232 | /* | |
4233 | * If the parent has a page here, or if | |
4234 | * this page falls outside the parent, | |
4235 | * dispose of it. | |
4236 | * | |
4237 | * Otherwise, move it as planned. | |
4238 | */ | |
4239 | ||
4240 | if (p->offset < backing_offset || new_offset >= size) { | |
4241 | VM_PAGE_FREE(p); | |
4242 | } else { | |
4243 | pp = vm_page_lookup(object, new_offset); | |
4244 | if (pp == VM_PAGE_NULL) { | |
4245 | ||
4246 | if (VM_COMPRESSOR_PAGER_STATE_GET(object, | |
4247 | new_offset) | |
4248 | == VM_EXTERNAL_STATE_EXISTS) { | |
4249 | /* | |
4250 | * Parent object has this page | |
4251 | * in the VM compressor. | |
4252 | * Throw away the backing | |
4253 | * object's page. | |
4254 | */ | |
4255 | VM_PAGE_FREE(p); | |
4256 | } else { | |
4257 | /* | |
4258 | * Parent now has no page. | |
4259 | * Move the backing object's page | |
4260 | * up. | |
4261 | */ | |
4262 | vm_page_rename(p, object, new_offset); | |
4263 | } | |
4264 | } else { | |
4265 | assert(! pp->absent); | |
4266 | ||
4267 | /* | |
4268 | * Parent object has a real page. | |
4269 | * Throw away the backing object's | |
4270 | * page. | |
4271 | */ | |
4272 | VM_PAGE_FREE(p); | |
4273 | } | |
4274 | } | |
4275 | } | |
4276 | ||
4277 | if (vm_object_collapse_compressor_allowed && | |
4278 | object->pager != MEMORY_OBJECT_NULL && | |
4279 | backing_object->pager != MEMORY_OBJECT_NULL) { | |
4280 | ||
4281 | /* move compressed pages from backing_object to object */ | |
4282 | vm_object_do_collapse_compressor(object, backing_object); | |
4283 | ||
4284 | } else if (backing_object->pager != MEMORY_OBJECT_NULL) { | |
4285 | ||
4286 | assert((!object->pager_created && | |
4287 | (object->pager == MEMORY_OBJECT_NULL)) || | |
4288 | (!backing_object->pager_created && | |
4289 | (backing_object->pager == MEMORY_OBJECT_NULL))); | |
4290 | /* | |
4291 | * Move the pager from backing_object to object. | |
4292 | * | |
4293 | * XXX We're only using part of the paging space | |
4294 | * for keeps now... we ought to discard the | |
4295 | * unused portion. | |
4296 | */ | |
4297 | ||
4298 | assert(!object->paging_in_progress); | |
4299 | assert(!object->activity_in_progress); | |
4300 | assert(!object->pager_created); | |
4301 | assert(object->pager == NULL); | |
4302 | object->pager = backing_object->pager; | |
4303 | ||
4304 | object->pager_created = backing_object->pager_created; | |
4305 | object->pager_control = backing_object->pager_control; | |
4306 | object->pager_ready = backing_object->pager_ready; | |
4307 | object->pager_initialized = backing_object->pager_initialized; | |
4308 | object->paging_offset = | |
4309 | backing_object->paging_offset + backing_offset; | |
4310 | if (object->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
4311 | memory_object_control_collapse(object->pager_control, | |
4312 | object); | |
4313 | } | |
4314 | /* the backing_object has lost its pager: reset all fields */ | |
4315 | backing_object->pager_created = FALSE; | |
4316 | backing_object->pager_control = NULL; | |
4317 | backing_object->pager_ready = FALSE; | |
4318 | backing_object->paging_offset = 0; | |
4319 | backing_object->pager = NULL; | |
4320 | } | |
4321 | /* | |
4322 | * Object now shadows whatever backing_object did. | |
4323 | * Note that the reference to backing_object->shadow | |
4324 | * moves from within backing_object to within object. | |
4325 | */ | |
4326 | ||
4327 | assert(!object->phys_contiguous); | |
4328 | assert(!backing_object->phys_contiguous); | |
4329 | object->shadow = backing_object->shadow; | |
4330 | if (object->shadow) { | |
4331 | object->vo_shadow_offset += backing_object->vo_shadow_offset; | |
4332 | /* "backing_object" gave its shadow to "object" */ | |
4333 | backing_object->shadow = VM_OBJECT_NULL; | |
4334 | backing_object->vo_shadow_offset = 0; | |
4335 | } else { | |
4336 | /* no shadow, therefore no shadow offset... */ | |
4337 | object->vo_shadow_offset = 0; | |
4338 | } | |
4339 | assert((object->shadow == VM_OBJECT_NULL) || | |
4340 | (object->shadow->copy != backing_object)); | |
4341 | ||
4342 | /* | |
4343 | * Discard backing_object. | |
4344 | * | |
4345 | * Since the backing object has no pages, no | |
4346 | * pager left, and no object references within it, | |
4347 | * all that is necessary is to dispose of it. | |
4348 | */ | |
4349 | object_collapses++; | |
4350 | ||
4351 | assert(backing_object->ref_count == 1); | |
4352 | assert(backing_object->resident_page_count == 0); | |
4353 | assert(backing_object->paging_in_progress == 0); | |
4354 | assert(backing_object->activity_in_progress == 0); | |
4355 | assert(backing_object->shadow == VM_OBJECT_NULL); | |
4356 | assert(backing_object->vo_shadow_offset == 0); | |
4357 | ||
4358 | if (backing_object->pager != MEMORY_OBJECT_NULL) { | |
4359 | /* ... unless it has a pager; need to terminate pager too */ | |
4360 | vm_counters.do_collapse_terminate++; | |
4361 | if (vm_object_terminate(backing_object) != KERN_SUCCESS) { | |
4362 | vm_counters.do_collapse_terminate_failure++; | |
4363 | } | |
4364 | return; | |
4365 | } | |
4366 | ||
4367 | assert(backing_object->pager == NULL); | |
4368 | ||
4369 | backing_object->alive = FALSE; | |
4370 | vm_object_unlock(backing_object); | |
4371 | ||
4372 | XPR(XPR_VM_OBJECT, "vm_object_collapse, collapsed 0x%X\n", | |
4373 | backing_object, 0,0,0,0); | |
4374 | ||
4375 | #if VM_OBJECT_TRACKING | |
4376 | if (vm_object_tracking_inited) { | |
4377 | btlog_remove_entries_for_element(vm_object_tracking_btlog, | |
4378 | backing_object); | |
4379 | } | |
4380 | #endif /* VM_OBJECT_TRACKING */ | |
4381 | ||
4382 | vm_object_lock_destroy(backing_object); | |
4383 | ||
4384 | zfree(vm_object_zone, backing_object); | |
4385 | ||
4386 | } | |
4387 | ||
4388 | static void | |
4389 | vm_object_do_bypass( | |
4390 | vm_object_t object, | |
4391 | vm_object_t backing_object) | |
4392 | { | |
4393 | /* | |
4394 | * Make the parent shadow the next object | |
4395 | * in the chain. | |
4396 | */ | |
4397 | ||
4398 | vm_object_lock_assert_exclusive(object); | |
4399 | vm_object_lock_assert_exclusive(backing_object); | |
4400 | ||
4401 | #if TASK_SWAPPER | |
4402 | /* | |
4403 | * Do object reference in-line to | |
4404 | * conditionally increment shadow's | |
4405 | * residence count. If object is not | |
4406 | * resident, leave residence count | |
4407 | * on shadow alone. | |
4408 | */ | |
4409 | if (backing_object->shadow != VM_OBJECT_NULL) { | |
4410 | vm_object_lock(backing_object->shadow); | |
4411 | vm_object_lock_assert_exclusive(backing_object->shadow); | |
4412 | backing_object->shadow->ref_count++; | |
4413 | if (object->res_count != 0) | |
4414 | vm_object_res_reference(backing_object->shadow); | |
4415 | vm_object_unlock(backing_object->shadow); | |
4416 | } | |
4417 | #else /* TASK_SWAPPER */ | |
4418 | vm_object_reference(backing_object->shadow); | |
4419 | #endif /* TASK_SWAPPER */ | |
4420 | ||
4421 | assert(!object->phys_contiguous); | |
4422 | assert(!backing_object->phys_contiguous); | |
4423 | object->shadow = backing_object->shadow; | |
4424 | if (object->shadow) { | |
4425 | object->vo_shadow_offset += backing_object->vo_shadow_offset; | |
4426 | } else { | |
4427 | /* no shadow, therefore no shadow offset... */ | |
4428 | object->vo_shadow_offset = 0; | |
4429 | } | |
4430 | ||
4431 | /* | |
4432 | * Backing object might have had a copy pointer | |
4433 | * to us. If it did, clear it. | |
4434 | */ | |
4435 | if (backing_object->copy == object) { | |
4436 | backing_object->copy = VM_OBJECT_NULL; | |
4437 | } | |
4438 | ||
4439 | /* | |
4440 | * Drop the reference count on backing_object. | |
4441 | #if TASK_SWAPPER | |
4442 | * Since its ref_count was at least 2, it | |
4443 | * will not vanish; so we don't need to call | |
4444 | * vm_object_deallocate. | |
4445 | * [with a caveat for "named" objects] | |
4446 | * | |
4447 | * The res_count on the backing object is | |
4448 | * conditionally decremented. It's possible | |
4449 | * (via vm_pageout_scan) to get here with | |
4450 | * a "swapped" object, which has a 0 res_count, | |
4451 | * in which case, the backing object res_count | |
4452 | * is already down by one. | |
4453 | #else | |
4454 | * Don't call vm_object_deallocate unless | |
4455 | * ref_count drops to zero. | |
4456 | * | |
4457 | * The ref_count can drop to zero here if the | |
4458 | * backing object could be bypassed but not | |
4459 | * collapsed, such as when the backing object | |
4460 | * is temporary and cachable. | |
4461 | #endif | |
4462 | */ | |
4463 | if (backing_object->ref_count > 2 || | |
4464 | (!backing_object->named && backing_object->ref_count > 1)) { | |
4465 | vm_object_lock_assert_exclusive(backing_object); | |
4466 | backing_object->ref_count--; | |
4467 | #if TASK_SWAPPER | |
4468 | if (object->res_count != 0) | |
4469 | vm_object_res_deallocate(backing_object); | |
4470 | assert(backing_object->ref_count > 0); | |
4471 | #endif /* TASK_SWAPPER */ | |
4472 | vm_object_unlock(backing_object); | |
4473 | } else { | |
4474 | ||
4475 | /* | |
4476 | * Drop locks so that we can deallocate | |
4477 | * the backing object. | |
4478 | */ | |
4479 | ||
4480 | #if TASK_SWAPPER | |
4481 | if (object->res_count == 0) { | |
4482 | /* XXX get a reference for the deallocate below */ | |
4483 | vm_object_res_reference(backing_object); | |
4484 | } | |
4485 | #endif /* TASK_SWAPPER */ | |
4486 | /* | |
4487 | * vm_object_collapse (the caller of this function) is | |
4488 | * now called from contexts that may not guarantee that a | |
4489 | * valid reference is held on the object... w/o a valid | |
4490 | * reference, it is unsafe and unwise (you will definitely | |
4491 | * regret it) to unlock the object and then retake the lock | |
4492 | * since the object may be terminated and recycled in between. | |
4493 | * The "activity_in_progress" reference will keep the object | |
4494 | * 'stable'. | |
4495 | */ | |
4496 | vm_object_activity_begin(object); | |
4497 | vm_object_unlock(object); | |
4498 | ||
4499 | vm_object_unlock(backing_object); | |
4500 | vm_object_deallocate(backing_object); | |
4501 | ||
4502 | /* | |
4503 | * Relock object. We don't have to reverify | |
4504 | * its state since vm_object_collapse will | |
4505 | * do that for us as it starts at the | |
4506 | * top of its loop. | |
4507 | */ | |
4508 | ||
4509 | vm_object_lock(object); | |
4510 | vm_object_activity_end(object); | |
4511 | } | |
4512 | ||
4513 | object_bypasses++; | |
4514 | } | |
4515 | ||
4516 | ||
4517 | /* | |
4518 | * vm_object_collapse: | |
4519 | * | |
4520 | * Perform an object collapse or an object bypass if appropriate. | |
4521 | * The real work of collapsing and bypassing is performed in | |
4522 | * the routines vm_object_do_collapse and vm_object_do_bypass. | |
4523 | * | |
4524 | * Requires that the object be locked and the page queues be unlocked. | |
4525 | * | |
4526 | */ | |
4527 | static unsigned long vm_object_collapse_calls = 0; | |
4528 | static unsigned long vm_object_collapse_objects = 0; | |
4529 | static unsigned long vm_object_collapse_do_collapse = 0; | |
4530 | static unsigned long vm_object_collapse_do_bypass = 0; | |
4531 | ||
4532 | __private_extern__ void | |
4533 | vm_object_collapse( | |
4534 | vm_object_t object, | |
4535 | vm_object_offset_t hint_offset, | |
4536 | boolean_t can_bypass) | |
4537 | { | |
4538 | vm_object_t backing_object; | |
4539 | unsigned int rcount; | |
4540 | unsigned int size; | |
4541 | vm_object_t original_object; | |
4542 | int object_lock_type; | |
4543 | int backing_object_lock_type; | |
4544 | ||
4545 | vm_object_collapse_calls++; | |
4546 | ||
4547 | if (! vm_object_collapse_allowed && | |
4548 | ! (can_bypass && vm_object_bypass_allowed)) { | |
4549 | return; | |
4550 | } | |
4551 | ||
4552 | XPR(XPR_VM_OBJECT, "vm_object_collapse, obj 0x%X\n", | |
4553 | object, 0,0,0,0); | |
4554 | ||
4555 | if (object == VM_OBJECT_NULL) | |
4556 | return; | |
4557 | ||
4558 | original_object = object; | |
4559 | ||
4560 | /* | |
4561 | * The top object was locked "exclusive" by the caller. | |
4562 | * In the first pass, to determine if we can collapse the shadow chain, | |
4563 | * take a "shared" lock on the shadow objects. If we can collapse, | |
4564 | * we'll have to go down the chain again with exclusive locks. | |
4565 | */ | |
4566 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4567 | backing_object_lock_type = OBJECT_LOCK_SHARED; | |
4568 | ||
4569 | retry: | |
4570 | object = original_object; | |
4571 | vm_object_lock_assert_exclusive(object); | |
4572 | ||
4573 | while (TRUE) { | |
4574 | vm_object_collapse_objects++; | |
4575 | /* | |
4576 | * Verify that the conditions are right for either | |
4577 | * collapse or bypass: | |
4578 | */ | |
4579 | ||
4580 | /* | |
4581 | * There is a backing object, and | |
4582 | */ | |
4583 | ||
4584 | backing_object = object->shadow; | |
4585 | if (backing_object == VM_OBJECT_NULL) { | |
4586 | if (object != original_object) { | |
4587 | vm_object_unlock(object); | |
4588 | } | |
4589 | return; | |
4590 | } | |
4591 | if (backing_object_lock_type == OBJECT_LOCK_SHARED) { | |
4592 | vm_object_lock_shared(backing_object); | |
4593 | } else { | |
4594 | vm_object_lock(backing_object); | |
4595 | } | |
4596 | ||
4597 | /* | |
4598 | * No pages in the object are currently | |
4599 | * being paged out, and | |
4600 | */ | |
4601 | if (object->paging_in_progress != 0 || | |
4602 | object->activity_in_progress != 0) { | |
4603 | /* try and collapse the rest of the shadow chain */ | |
4604 | if (object != original_object) { | |
4605 | vm_object_unlock(object); | |
4606 | } | |
4607 | object = backing_object; | |
4608 | object_lock_type = backing_object_lock_type; | |
4609 | continue; | |
4610 | } | |
4611 | ||
4612 | /* | |
4613 | * ... | |
4614 | * The backing object is not read_only, | |
4615 | * and no pages in the backing object are | |
4616 | * currently being paged out. | |
4617 | * The backing object is internal. | |
4618 | * | |
4619 | */ | |
4620 | ||
4621 | if (!backing_object->internal || | |
4622 | backing_object->paging_in_progress != 0 || | |
4623 | backing_object->activity_in_progress != 0) { | |
4624 | /* try and collapse the rest of the shadow chain */ | |
4625 | if (object != original_object) { | |
4626 | vm_object_unlock(object); | |
4627 | } | |
4628 | object = backing_object; | |
4629 | object_lock_type = backing_object_lock_type; | |
4630 | continue; | |
4631 | } | |
4632 | ||
4633 | /* | |
4634 | * Purgeable objects are not supposed to engage in | |
4635 | * copy-on-write activities, so should not have | |
4636 | * any shadow objects or be a shadow object to another | |
4637 | * object. | |
4638 | * Collapsing a purgeable object would require some | |
4639 | * updates to the purgeable compressed ledgers. | |
4640 | */ | |
4641 | if (object->purgable != VM_PURGABLE_DENY || | |
4642 | backing_object->purgable != VM_PURGABLE_DENY) { | |
4643 | panic("vm_object_collapse() attempting to collapse " | |
4644 | "purgeable object: %p(%d) %p(%d)\n", | |
4645 | object, object->purgable, | |
4646 | backing_object, backing_object->purgable); | |
4647 | /* try and collapse the rest of the shadow chain */ | |
4648 | if (object != original_object) { | |
4649 | vm_object_unlock(object); | |
4650 | } | |
4651 | object = backing_object; | |
4652 | object_lock_type = backing_object_lock_type; | |
4653 | continue; | |
4654 | } | |
4655 | ||
4656 | /* | |
4657 | * The backing object can't be a copy-object: | |
4658 | * the shadow_offset for the copy-object must stay | |
4659 | * as 0. Furthermore (for the 'we have all the | |
4660 | * pages' case), if we bypass backing_object and | |
4661 | * just shadow the next object in the chain, old | |
4662 | * pages from that object would then have to be copied | |
4663 | * BOTH into the (former) backing_object and into the | |
4664 | * parent object. | |
4665 | */ | |
4666 | if (backing_object->shadow != VM_OBJECT_NULL && | |
4667 | backing_object->shadow->copy == backing_object) { | |
4668 | /* try and collapse the rest of the shadow chain */ | |
4669 | if (object != original_object) { | |
4670 | vm_object_unlock(object); | |
4671 | } | |
4672 | object = backing_object; | |
4673 | object_lock_type = backing_object_lock_type; | |
4674 | continue; | |
4675 | } | |
4676 | ||
4677 | /* | |
4678 | * We can now try to either collapse the backing | |
4679 | * object (if the parent is the only reference to | |
4680 | * it) or (perhaps) remove the parent's reference | |
4681 | * to it. | |
4682 | * | |
4683 | * If there is exactly one reference to the backing | |
4684 | * object, we may be able to collapse it into the | |
4685 | * parent. | |
4686 | * | |
4687 | * As long as one of the objects is still not known | |
4688 | * to the pager, we can collapse them. | |
4689 | */ | |
4690 | if (backing_object->ref_count == 1 && | |
4691 | (vm_object_collapse_compressor_allowed || | |
4692 | !object->pager_created | |
4693 | || (!backing_object->pager_created) | |
4694 | ) && vm_object_collapse_allowed) { | |
4695 | ||
4696 | /* | |
4697 | * We need the exclusive lock on the VM objects. | |
4698 | */ | |
4699 | if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) { | |
4700 | /* | |
4701 | * We have an object and its shadow locked | |
4702 | * "shared". We can't just upgrade the locks | |
4703 | * to "exclusive", as some other thread might | |
4704 | * also have these objects locked "shared" and | |
4705 | * attempt to upgrade one or the other to | |
4706 | * "exclusive". The upgrades would block | |
4707 | * forever waiting for the other "shared" locks | |
4708 | * to get released. | |
4709 | * So we have to release the locks and go | |
4710 | * down the shadow chain again (since it could | |
4711 | * have changed) with "exclusive" locking. | |
4712 | */ | |
4713 | vm_object_unlock(backing_object); | |
4714 | if (object != original_object) | |
4715 | vm_object_unlock(object); | |
4716 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4717 | backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4718 | goto retry; | |
4719 | } | |
4720 | ||
4721 | XPR(XPR_VM_OBJECT, | |
4722 | "vm_object_collapse: %x to %x, pager %x, pager_control %x\n", | |
4723 | backing_object, object, | |
4724 | backing_object->pager, | |
4725 | backing_object->pager_control, 0); | |
4726 | ||
4727 | /* | |
4728 | * Collapse the object with its backing | |
4729 | * object, and try again with the object's | |
4730 | * new backing object. | |
4731 | */ | |
4732 | ||
4733 | vm_object_do_collapse(object, backing_object); | |
4734 | vm_object_collapse_do_collapse++; | |
4735 | continue; | |
4736 | } | |
4737 | ||
4738 | /* | |
4739 | * Collapsing the backing object was not possible | |
4740 | * or permitted, so let's try bypassing it. | |
4741 | */ | |
4742 | ||
4743 | if (! (can_bypass && vm_object_bypass_allowed)) { | |
4744 | /* try and collapse the rest of the shadow chain */ | |
4745 | if (object != original_object) { | |
4746 | vm_object_unlock(object); | |
4747 | } | |
4748 | object = backing_object; | |
4749 | object_lock_type = backing_object_lock_type; | |
4750 | continue; | |
4751 | } | |
4752 | ||
4753 | ||
4754 | /* | |
4755 | * If the object doesn't have all its pages present, | |
4756 | * we have to make sure no pages in the backing object | |
4757 | * "show through" before bypassing it. | |
4758 | */ | |
4759 | size = (unsigned int)atop(object->vo_size); | |
4760 | rcount = object->resident_page_count; | |
4761 | ||
4762 | if (rcount != size) { | |
4763 | vm_object_offset_t offset; | |
4764 | vm_object_offset_t backing_offset; | |
4765 | unsigned int backing_rcount; | |
4766 | ||
4767 | /* | |
4768 | * If the backing object has a pager but no pagemap, | |
4769 | * then we cannot bypass it, because we don't know | |
4770 | * what pages it has. | |
4771 | */ | |
4772 | if (backing_object->pager_created) { | |
4773 | /* try and collapse the rest of the shadow chain */ | |
4774 | if (object != original_object) { | |
4775 | vm_object_unlock(object); | |
4776 | } | |
4777 | object = backing_object; | |
4778 | object_lock_type = backing_object_lock_type; | |
4779 | continue; | |
4780 | } | |
4781 | ||
4782 | /* | |
4783 | * If the object has a pager but no pagemap, | |
4784 | * then we cannot bypass it, because we don't know | |
4785 | * what pages it has. | |
4786 | */ | |
4787 | if (object->pager_created) { | |
4788 | /* try and collapse the rest of the shadow chain */ | |
4789 | if (object != original_object) { | |
4790 | vm_object_unlock(object); | |
4791 | } | |
4792 | object = backing_object; | |
4793 | object_lock_type = backing_object_lock_type; | |
4794 | continue; | |
4795 | } | |
4796 | ||
4797 | backing_offset = object->vo_shadow_offset; | |
4798 | backing_rcount = backing_object->resident_page_count; | |
4799 | ||
4800 | if ( (int)backing_rcount - (int)(atop(backing_object->vo_size) - size) > (int)rcount) { | |
4801 | /* | |
4802 | * we have enough pages in the backing object to guarantee that | |
4803 | * at least 1 of them must be 'uncovered' by a resident page | |
4804 | * in the object we're evaluating, so move on and | |
4805 | * try to collapse the rest of the shadow chain | |
4806 | */ | |
4807 | if (object != original_object) { | |
4808 | vm_object_unlock(object); | |
4809 | } | |
4810 | object = backing_object; | |
4811 | object_lock_type = backing_object_lock_type; | |
4812 | continue; | |
4813 | } | |
4814 | ||
4815 | /* | |
4816 | * If all of the pages in the backing object are | |
4817 | * shadowed by the parent object, the parent | |
4818 | * object no longer has to shadow the backing | |
4819 | * object; it can shadow the next one in the | |
4820 | * chain. | |
4821 | * | |
4822 | * If the backing object has existence info, | |
4823 | * we must check examine its existence info | |
4824 | * as well. | |
4825 | * | |
4826 | */ | |
4827 | ||
4828 | #define EXISTS_IN_OBJECT(obj, off, rc) \ | |
4829 | ((VM_COMPRESSOR_PAGER_STATE_GET((obj), (off)) \ | |
4830 | == VM_EXTERNAL_STATE_EXISTS) || \ | |
4831 | ((rc) && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--)) | |
4832 | ||
4833 | /* | |
4834 | * Check the hint location first | |
4835 | * (since it is often the quickest way out of here). | |
4836 | */ | |
4837 | if (object->cow_hint != ~(vm_offset_t)0) | |
4838 | hint_offset = (vm_object_offset_t)object->cow_hint; | |
4839 | else | |
4840 | hint_offset = (hint_offset > 8 * PAGE_SIZE_64) ? | |
4841 | (hint_offset - 8 * PAGE_SIZE_64) : 0; | |
4842 | ||
4843 | if (EXISTS_IN_OBJECT(backing_object, hint_offset + | |
4844 | backing_offset, backing_rcount) && | |
4845 | !EXISTS_IN_OBJECT(object, hint_offset, rcount)) { | |
4846 | /* dependency right at the hint */ | |
4847 | object->cow_hint = (vm_offset_t) hint_offset; /* atomic */ | |
4848 | /* try and collapse the rest of the shadow chain */ | |
4849 | if (object != original_object) { | |
4850 | vm_object_unlock(object); | |
4851 | } | |
4852 | object = backing_object; | |
4853 | object_lock_type = backing_object_lock_type; | |
4854 | continue; | |
4855 | } | |
4856 | ||
4857 | /* | |
4858 | * If the object's window onto the backing_object | |
4859 | * is large compared to the number of resident | |
4860 | * pages in the backing object, it makes sense to | |
4861 | * walk the backing_object's resident pages first. | |
4862 | * | |
4863 | * NOTE: Pages may be in both the existence map and/or | |
4864 | * resident, so if we don't find a dependency while | |
4865 | * walking the backing object's resident page list | |
4866 | * directly, and there is an existence map, we'll have | |
4867 | * to run the offset based 2nd pass. Because we may | |
4868 | * have to run both passes, we need to be careful | |
4869 | * not to decrement 'rcount' in the 1st pass | |
4870 | */ | |
4871 | if (backing_rcount && backing_rcount < (size / 8)) { | |
4872 | unsigned int rc = rcount; | |
4873 | vm_page_t p; | |
4874 | ||
4875 | backing_rcount = backing_object->resident_page_count; | |
4876 | p = (vm_page_t)vm_page_queue_first(&backing_object->memq); | |
4877 | do { | |
4878 | offset = (p->offset - backing_offset); | |
4879 | ||
4880 | if (offset < object->vo_size && | |
4881 | offset != hint_offset && | |
4882 | !EXISTS_IN_OBJECT(object, offset, rc)) { | |
4883 | /* found a dependency */ | |
4884 | object->cow_hint = (vm_offset_t) offset; /* atomic */ | |
4885 | ||
4886 | break; | |
4887 | } | |
4888 | p = (vm_page_t) vm_page_queue_next(&p->listq); | |
4889 | ||
4890 | } while (--backing_rcount); | |
4891 | if (backing_rcount != 0 ) { | |
4892 | /* try and collapse the rest of the shadow chain */ | |
4893 | if (object != original_object) { | |
4894 | vm_object_unlock(object); | |
4895 | } | |
4896 | object = backing_object; | |
4897 | object_lock_type = backing_object_lock_type; | |
4898 | continue; | |
4899 | } | |
4900 | } | |
4901 | ||
4902 | /* | |
4903 | * Walk through the offsets looking for pages in the | |
4904 | * backing object that show through to the object. | |
4905 | */ | |
4906 | if (backing_rcount) { | |
4907 | offset = hint_offset; | |
4908 | ||
4909 | while((offset = | |
4910 | (offset + PAGE_SIZE_64 < object->vo_size) ? | |
4911 | (offset + PAGE_SIZE_64) : 0) != hint_offset) { | |
4912 | ||
4913 | if (EXISTS_IN_OBJECT(backing_object, offset + | |
4914 | backing_offset, backing_rcount) && | |
4915 | !EXISTS_IN_OBJECT(object, offset, rcount)) { | |
4916 | /* found a dependency */ | |
4917 | object->cow_hint = (vm_offset_t) offset; /* atomic */ | |
4918 | break; | |
4919 | } | |
4920 | } | |
4921 | if (offset != hint_offset) { | |
4922 | /* try and collapse the rest of the shadow chain */ | |
4923 | if (object != original_object) { | |
4924 | vm_object_unlock(object); | |
4925 | } | |
4926 | object = backing_object; | |
4927 | object_lock_type = backing_object_lock_type; | |
4928 | continue; | |
4929 | } | |
4930 | } | |
4931 | } | |
4932 | ||
4933 | /* | |
4934 | * We need "exclusive" locks on the 2 VM objects. | |
4935 | */ | |
4936 | if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) { | |
4937 | vm_object_unlock(backing_object); | |
4938 | if (object != original_object) | |
4939 | vm_object_unlock(object); | |
4940 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4941 | backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4942 | goto retry; | |
4943 | } | |
4944 | ||
4945 | /* reset the offset hint for any objects deeper in the chain */ | |
4946 | object->cow_hint = (vm_offset_t)0; | |
4947 | ||
4948 | /* | |
4949 | * All interesting pages in the backing object | |
4950 | * already live in the parent or its pager. | |
4951 | * Thus we can bypass the backing object. | |
4952 | */ | |
4953 | ||
4954 | vm_object_do_bypass(object, backing_object); | |
4955 | vm_object_collapse_do_bypass++; | |
4956 | ||
4957 | /* | |
4958 | * Try again with this object's new backing object. | |
4959 | */ | |
4960 | ||
4961 | continue; | |
4962 | } | |
4963 | ||
4964 | /* NOT REACHED */ | |
4965 | /* | |
4966 | if (object != original_object) { | |
4967 | vm_object_unlock(object); | |
4968 | } | |
4969 | */ | |
4970 | } | |
4971 | ||
4972 | /* | |
4973 | * Routine: vm_object_page_remove: [internal] | |
4974 | * Purpose: | |
4975 | * Removes all physical pages in the specified | |
4976 | * object range from the object's list of pages. | |
4977 | * | |
4978 | * In/out conditions: | |
4979 | * The object must be locked. | |
4980 | * The object must not have paging_in_progress, usually | |
4981 | * guaranteed by not having a pager. | |
4982 | */ | |
4983 | unsigned int vm_object_page_remove_lookup = 0; | |
4984 | unsigned int vm_object_page_remove_iterate = 0; | |
4985 | ||
4986 | __private_extern__ void | |
4987 | vm_object_page_remove( | |
4988 | vm_object_t object, | |
4989 | vm_object_offset_t start, | |
4990 | vm_object_offset_t end) | |
4991 | { | |
4992 | vm_page_t p, next; | |
4993 | ||
4994 | /* | |
4995 | * One and two page removals are most popular. | |
4996 | * The factor of 16 here is somewhat arbitrary. | |
4997 | * It balances vm_object_lookup vs iteration. | |
4998 | */ | |
4999 | ||
5000 | if (atop_64(end - start) < (unsigned)object->resident_page_count/16) { | |
5001 | vm_object_page_remove_lookup++; | |
5002 | ||
5003 | for (; start < end; start += PAGE_SIZE_64) { | |
5004 | p = vm_page_lookup(object, start); | |
5005 | if (p != VM_PAGE_NULL) { | |
5006 | assert(!p->cleaning && !p->laundry); | |
5007 | if (!p->fictitious && p->pmapped) | |
5008 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p)); | |
5009 | VM_PAGE_FREE(p); | |
5010 | } | |
5011 | } | |
5012 | } else { | |
5013 | vm_object_page_remove_iterate++; | |
5014 | ||
5015 | p = (vm_page_t) vm_page_queue_first(&object->memq); | |
5016 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t) p)) { | |
5017 | next = (vm_page_t) vm_page_queue_next(&p->listq); | |
5018 | if ((start <= p->offset) && (p->offset < end)) { | |
5019 | assert(!p->cleaning && !p->laundry); | |
5020 | if (!p->fictitious && p->pmapped) | |
5021 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p)); | |
5022 | VM_PAGE_FREE(p); | |
5023 | } | |
5024 | p = next; | |
5025 | } | |
5026 | } | |
5027 | } | |
5028 | ||
5029 | ||
5030 | /* | |
5031 | * Routine: vm_object_coalesce | |
5032 | * Function: Coalesces two objects backing up adjoining | |
5033 | * regions of memory into a single object. | |
5034 | * | |
5035 | * returns TRUE if objects were combined. | |
5036 | * | |
5037 | * NOTE: Only works at the moment if the second object is NULL - | |
5038 | * if it's not, which object do we lock first? | |
5039 | * | |
5040 | * Parameters: | |
5041 | * prev_object First object to coalesce | |
5042 | * prev_offset Offset into prev_object | |
5043 | * next_object Second object into coalesce | |
5044 | * next_offset Offset into next_object | |
5045 | * | |
5046 | * prev_size Size of reference to prev_object | |
5047 | * next_size Size of reference to next_object | |
5048 | * | |
5049 | * Conditions: | |
5050 | * The object(s) must *not* be locked. The map must be locked | |
5051 | * to preserve the reference to the object(s). | |
5052 | */ | |
5053 | static int vm_object_coalesce_count = 0; | |
5054 | ||
5055 | __private_extern__ boolean_t | |
5056 | vm_object_coalesce( | |
5057 | vm_object_t prev_object, | |
5058 | vm_object_t next_object, | |
5059 | vm_object_offset_t prev_offset, | |
5060 | __unused vm_object_offset_t next_offset, | |
5061 | vm_object_size_t prev_size, | |
5062 | vm_object_size_t next_size) | |
5063 | { | |
5064 | vm_object_size_t newsize; | |
5065 | ||
5066 | #ifdef lint | |
5067 | next_offset++; | |
5068 | #endif /* lint */ | |
5069 | ||
5070 | if (next_object != VM_OBJECT_NULL) { | |
5071 | return(FALSE); | |
5072 | } | |
5073 | ||
5074 | if (prev_object == VM_OBJECT_NULL) { | |
5075 | return(TRUE); | |
5076 | } | |
5077 | ||
5078 | XPR(XPR_VM_OBJECT, | |
5079 | "vm_object_coalesce: 0x%X prev_off 0x%X prev_size 0x%X next_size 0x%X\n", | |
5080 | prev_object, prev_offset, prev_size, next_size, 0); | |
5081 | ||
5082 | vm_object_lock(prev_object); | |
5083 | ||
5084 | /* | |
5085 | * Try to collapse the object first | |
5086 | */ | |
5087 | vm_object_collapse(prev_object, prev_offset, TRUE); | |
5088 | ||
5089 | /* | |
5090 | * Can't coalesce if pages not mapped to | |
5091 | * prev_entry may be in use any way: | |
5092 | * . more than one reference | |
5093 | * . paged out | |
5094 | * . shadows another object | |
5095 | * . has a copy elsewhere | |
5096 | * . is purgeable | |
5097 | * . paging references (pages might be in page-list) | |
5098 | */ | |
5099 | ||
5100 | if ((prev_object->ref_count > 1) || | |
5101 | prev_object->pager_created || | |
5102 | (prev_object->shadow != VM_OBJECT_NULL) || | |
5103 | (prev_object->copy != VM_OBJECT_NULL) || | |
5104 | (prev_object->true_share != FALSE) || | |
5105 | (prev_object->purgable != VM_PURGABLE_DENY) || | |
5106 | (prev_object->paging_in_progress != 0) || | |
5107 | (prev_object->activity_in_progress != 0)) { | |
5108 | vm_object_unlock(prev_object); | |
5109 | return(FALSE); | |
5110 | } | |
5111 | ||
5112 | vm_object_coalesce_count++; | |
5113 | ||
5114 | /* | |
5115 | * Remove any pages that may still be in the object from | |
5116 | * a previous deallocation. | |
5117 | */ | |
5118 | vm_object_page_remove(prev_object, | |
5119 | prev_offset + prev_size, | |
5120 | prev_offset + prev_size + next_size); | |
5121 | ||
5122 | /* | |
5123 | * Extend the object if necessary. | |
5124 | */ | |
5125 | newsize = prev_offset + prev_size + next_size; | |
5126 | if (newsize > prev_object->vo_size) { | |
5127 | prev_object->vo_size = newsize; | |
5128 | } | |
5129 | ||
5130 | vm_object_unlock(prev_object); | |
5131 | return(TRUE); | |
5132 | } | |
5133 | ||
5134 | kern_return_t | |
5135 | vm_object_populate_with_private( | |
5136 | vm_object_t object, | |
5137 | vm_object_offset_t offset, | |
5138 | ppnum_t phys_page, | |
5139 | vm_size_t size) | |
5140 | { | |
5141 | ppnum_t base_page; | |
5142 | vm_object_offset_t base_offset; | |
5143 | ||
5144 | ||
5145 | if (!object->private) | |
5146 | return KERN_FAILURE; | |
5147 | ||
5148 | base_page = phys_page; | |
5149 | ||
5150 | vm_object_lock(object); | |
5151 | ||
5152 | if (!object->phys_contiguous) { | |
5153 | vm_page_t m; | |
5154 | ||
5155 | if ((base_offset = trunc_page_64(offset)) != offset) { | |
5156 | vm_object_unlock(object); | |
5157 | return KERN_FAILURE; | |
5158 | } | |
5159 | base_offset += object->paging_offset; | |
5160 | ||
5161 | while (size) { | |
5162 | m = vm_page_lookup(object, base_offset); | |
5163 | ||
5164 | if (m != VM_PAGE_NULL) { | |
5165 | if (m->fictitious) { | |
5166 | if (VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr) { | |
5167 | ||
5168 | vm_page_lockspin_queues(); | |
5169 | m->private = TRUE; | |
5170 | vm_page_unlock_queues(); | |
5171 | ||
5172 | m->fictitious = FALSE; | |
5173 | VM_PAGE_SET_PHYS_PAGE(m, base_page); | |
5174 | } | |
5175 | } else if (VM_PAGE_GET_PHYS_PAGE(m) != base_page) { | |
5176 | ||
5177 | if ( !m->private) { | |
5178 | /* | |
5179 | * we'd leak a real page... that can't be right | |
5180 | */ | |
5181 | panic("vm_object_populate_with_private - %p not private", m); | |
5182 | } | |
5183 | if (m->pmapped) { | |
5184 | /* | |
5185 | * pmap call to clear old mapping | |
5186 | */ | |
5187 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); | |
5188 | } | |
5189 | VM_PAGE_SET_PHYS_PAGE(m, base_page); | |
5190 | } | |
5191 | ||
5192 | } else { | |
5193 | while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL) | |
5194 | vm_page_more_fictitious(); | |
5195 | ||
5196 | /* | |
5197 | * private normally requires lock_queues but since we | |
5198 | * are initializing the page, its not necessary here | |
5199 | */ | |
5200 | m->private = TRUE; | |
5201 | m->fictitious = FALSE; | |
5202 | VM_PAGE_SET_PHYS_PAGE(m, base_page); | |
5203 | m->unusual = TRUE; | |
5204 | m->busy = FALSE; | |
5205 | ||
5206 | vm_page_insert(m, object, base_offset); | |
5207 | } | |
5208 | base_page++; /* Go to the next physical page */ | |
5209 | base_offset += PAGE_SIZE; | |
5210 | size -= PAGE_SIZE; | |
5211 | } | |
5212 | } else { | |
5213 | /* NOTE: we should check the original settings here */ | |
5214 | /* if we have a size > zero a pmap call should be made */ | |
5215 | /* to disable the range */ | |
5216 | ||
5217 | /* pmap_? */ | |
5218 | ||
5219 | /* shadows on contiguous memory are not allowed */ | |
5220 | /* we therefore can use the offset field */ | |
5221 | object->vo_shadow_offset = (vm_object_offset_t)phys_page << PAGE_SHIFT; | |
5222 | object->vo_size = size; | |
5223 | } | |
5224 | vm_object_unlock(object); | |
5225 | ||
5226 | return KERN_SUCCESS; | |
5227 | } | |
5228 | ||
5229 | ||
5230 | kern_return_t | |
5231 | memory_object_create_named( | |
5232 | memory_object_t pager, | |
5233 | memory_object_offset_t size, | |
5234 | memory_object_control_t *control) | |
5235 | { | |
5236 | vm_object_t object; | |
5237 | ||
5238 | *control = MEMORY_OBJECT_CONTROL_NULL; | |
5239 | if (pager == MEMORY_OBJECT_NULL) | |
5240 | return KERN_INVALID_ARGUMENT; | |
5241 | ||
5242 | object = vm_object_memory_object_associate(pager, | |
5243 | VM_OBJECT_NULL, | |
5244 | size, | |
5245 | TRUE); | |
5246 | if (object == VM_OBJECT_NULL) { | |
5247 | return KERN_INVALID_OBJECT; | |
5248 | } | |
5249 | ||
5250 | /* wait for object (if any) to be ready */ | |
5251 | if (object != VM_OBJECT_NULL) { | |
5252 | vm_object_lock(object); | |
5253 | object->named = TRUE; | |
5254 | while (!object->pager_ready) { | |
5255 | vm_object_sleep(object, | |
5256 | VM_OBJECT_EVENT_PAGER_READY, | |
5257 | THREAD_UNINT); | |
5258 | } | |
5259 | *control = object->pager_control; | |
5260 | vm_object_unlock(object); | |
5261 | } | |
5262 | return (KERN_SUCCESS); | |
5263 | } | |
5264 | ||
5265 | ||
5266 | /* | |
5267 | * Routine: memory_object_recover_named [user interface] | |
5268 | * Purpose: | |
5269 | * Attempt to recover a named reference for a VM object. | |
5270 | * VM will verify that the object has not already started | |
5271 | * down the termination path, and if it has, will optionally | |
5272 | * wait for that to finish. | |
5273 | * Returns: | |
5274 | * KERN_SUCCESS - we recovered a named reference on the object | |
5275 | * KERN_FAILURE - we could not recover a reference (object dead) | |
5276 | * KERN_INVALID_ARGUMENT - bad memory object control | |
5277 | */ | |
5278 | kern_return_t | |
5279 | memory_object_recover_named( | |
5280 | memory_object_control_t control, | |
5281 | boolean_t wait_on_terminating) | |
5282 | { | |
5283 | vm_object_t object; | |
5284 | ||
5285 | object = memory_object_control_to_vm_object(control); | |
5286 | if (object == VM_OBJECT_NULL) { | |
5287 | return (KERN_INVALID_ARGUMENT); | |
5288 | } | |
5289 | restart: | |
5290 | vm_object_lock(object); | |
5291 | ||
5292 | if (object->terminating && wait_on_terminating) { | |
5293 | vm_object_wait(object, | |
5294 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
5295 | THREAD_UNINT); | |
5296 | goto restart; | |
5297 | } | |
5298 | ||
5299 | if (!object->alive) { | |
5300 | vm_object_unlock(object); | |
5301 | return KERN_FAILURE; | |
5302 | } | |
5303 | ||
5304 | if (object->named == TRUE) { | |
5305 | vm_object_unlock(object); | |
5306 | return KERN_SUCCESS; | |
5307 | } | |
5308 | object->named = TRUE; | |
5309 | vm_object_lock_assert_exclusive(object); | |
5310 | object->ref_count++; | |
5311 | vm_object_res_reference(object); | |
5312 | while (!object->pager_ready) { | |
5313 | vm_object_sleep(object, | |
5314 | VM_OBJECT_EVENT_PAGER_READY, | |
5315 | THREAD_UNINT); | |
5316 | } | |
5317 | vm_object_unlock(object); | |
5318 | return (KERN_SUCCESS); | |
5319 | } | |
5320 | ||
5321 | ||
5322 | /* | |
5323 | * vm_object_release_name: | |
5324 | * | |
5325 | * Enforces name semantic on memory_object reference count decrement | |
5326 | * This routine should not be called unless the caller holds a name | |
5327 | * reference gained through the memory_object_create_named. | |
5328 | * | |
5329 | * If the TERMINATE_IDLE flag is set, the call will return if the | |
5330 | * reference count is not 1. i.e. idle with the only remaining reference | |
5331 | * being the name. | |
5332 | * If the decision is made to proceed the name field flag is set to | |
5333 | * false and the reference count is decremented. If the RESPECT_CACHE | |
5334 | * flag is set and the reference count has gone to zero, the | |
5335 | * memory_object is checked to see if it is cacheable otherwise when | |
5336 | * the reference count is zero, it is simply terminated. | |
5337 | */ | |
5338 | ||
5339 | __private_extern__ kern_return_t | |
5340 | vm_object_release_name( | |
5341 | vm_object_t object, | |
5342 | int flags) | |
5343 | { | |
5344 | vm_object_t shadow; | |
5345 | boolean_t original_object = TRUE; | |
5346 | ||
5347 | while (object != VM_OBJECT_NULL) { | |
5348 | ||
5349 | vm_object_lock(object); | |
5350 | ||
5351 | assert(object->alive); | |
5352 | if (original_object) | |
5353 | assert(object->named); | |
5354 | assert(object->ref_count > 0); | |
5355 | ||
5356 | /* | |
5357 | * We have to wait for initialization before | |
5358 | * destroying or caching the object. | |
5359 | */ | |
5360 | ||
5361 | if (object->pager_created && !object->pager_initialized) { | |
5362 | assert(!object->can_persist); | |
5363 | vm_object_assert_wait(object, | |
5364 | VM_OBJECT_EVENT_INITIALIZED, | |
5365 | THREAD_UNINT); | |
5366 | vm_object_unlock(object); | |
5367 | thread_block(THREAD_CONTINUE_NULL); | |
5368 | continue; | |
5369 | } | |
5370 | ||
5371 | if (((object->ref_count > 1) | |
5372 | && (flags & MEMORY_OBJECT_TERMINATE_IDLE)) | |
5373 | || (object->terminating)) { | |
5374 | vm_object_unlock(object); | |
5375 | return KERN_FAILURE; | |
5376 | } else { | |
5377 | if (flags & MEMORY_OBJECT_RELEASE_NO_OP) { | |
5378 | vm_object_unlock(object); | |
5379 | return KERN_SUCCESS; | |
5380 | } | |
5381 | } | |
5382 | ||
5383 | if ((flags & MEMORY_OBJECT_RESPECT_CACHE) && | |
5384 | (object->ref_count == 1)) { | |
5385 | if (original_object) | |
5386 | object->named = FALSE; | |
5387 | vm_object_unlock(object); | |
5388 | /* let vm_object_deallocate push this thing into */ | |
5389 | /* the cache, if that it is where it is bound */ | |
5390 | vm_object_deallocate(object); | |
5391 | return KERN_SUCCESS; | |
5392 | } | |
5393 | VM_OBJ_RES_DECR(object); | |
5394 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
5395 | ||
5396 | if (object->ref_count == 1) { | |
5397 | if (vm_object_terminate(object) != KERN_SUCCESS) { | |
5398 | if (original_object) { | |
5399 | return KERN_FAILURE; | |
5400 | } else { | |
5401 | return KERN_SUCCESS; | |
5402 | } | |
5403 | } | |
5404 | if (shadow != VM_OBJECT_NULL) { | |
5405 | original_object = FALSE; | |
5406 | object = shadow; | |
5407 | continue; | |
5408 | } | |
5409 | return KERN_SUCCESS; | |
5410 | } else { | |
5411 | vm_object_lock_assert_exclusive(object); | |
5412 | object->ref_count--; | |
5413 | assert(object->ref_count > 0); | |
5414 | if(original_object) | |
5415 | object->named = FALSE; | |
5416 | vm_object_unlock(object); | |
5417 | return KERN_SUCCESS; | |
5418 | } | |
5419 | } | |
5420 | /*NOTREACHED*/ | |
5421 | assert(0); | |
5422 | return KERN_FAILURE; | |
5423 | } | |
5424 | ||
5425 | ||
5426 | __private_extern__ kern_return_t | |
5427 | vm_object_lock_request( | |
5428 | vm_object_t object, | |
5429 | vm_object_offset_t offset, | |
5430 | vm_object_size_t size, | |
5431 | memory_object_return_t should_return, | |
5432 | int flags, | |
5433 | vm_prot_t prot) | |
5434 | { | |
5435 | __unused boolean_t should_flush; | |
5436 | ||
5437 | should_flush = flags & MEMORY_OBJECT_DATA_FLUSH; | |
5438 | ||
5439 | XPR(XPR_MEMORY_OBJECT, | |
5440 | "vm_o_lock_request, obj 0x%X off 0x%X size 0x%X flags %X prot %X\n", | |
5441 | object, offset, size, | |
5442 | (((should_return&1)<<1)|should_flush), prot); | |
5443 | ||
5444 | /* | |
5445 | * Check for bogus arguments. | |
5446 | */ | |
5447 | if (object == VM_OBJECT_NULL) | |
5448 | return (KERN_INVALID_ARGUMENT); | |
5449 | ||
5450 | if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) | |
5451 | return (KERN_INVALID_ARGUMENT); | |
5452 | ||
5453 | size = round_page_64(size); | |
5454 | ||
5455 | /* | |
5456 | * Lock the object, and acquire a paging reference to | |
5457 | * prevent the memory_object reference from being released. | |
5458 | */ | |
5459 | vm_object_lock(object); | |
5460 | vm_object_paging_begin(object); | |
5461 | ||
5462 | (void)vm_object_update(object, | |
5463 | offset, size, NULL, NULL, should_return, flags, prot); | |
5464 | ||
5465 | vm_object_paging_end(object); | |
5466 | vm_object_unlock(object); | |
5467 | ||
5468 | return (KERN_SUCCESS); | |
5469 | } | |
5470 | ||
5471 | /* | |
5472 | * Empty a purgeable object by grabbing the physical pages assigned to it and | |
5473 | * putting them on the free queue without writing them to backing store, etc. | |
5474 | * When the pages are next touched they will be demand zero-fill pages. We | |
5475 | * skip pages which are busy, being paged in/out, wired, etc. We do _not_ | |
5476 | * skip referenced/dirty pages, pages on the active queue, etc. We're more | |
5477 | * than happy to grab these since this is a purgeable object. We mark the | |
5478 | * object as "empty" after reaping its pages. | |
5479 | * | |
5480 | * On entry the object must be locked and it must be | |
5481 | * purgeable with no delayed copies pending. | |
5482 | */ | |
5483 | uint64_t | |
5484 | vm_object_purge(vm_object_t object, int flags) | |
5485 | { | |
5486 | unsigned int object_page_count = 0, pgcount = 0; | |
5487 | uint64_t total_purged_pgcount = 0; | |
5488 | boolean_t skipped_object = FALSE; | |
5489 | ||
5490 | vm_object_lock_assert_exclusive(object); | |
5491 | ||
5492 | if (object->purgable == VM_PURGABLE_DENY) | |
5493 | return 0; | |
5494 | ||
5495 | assert(object->copy == VM_OBJECT_NULL); | |
5496 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); | |
5497 | ||
5498 | /* | |
5499 | * We need to set the object's state to VM_PURGABLE_EMPTY *before* | |
5500 | * reaping its pages. We update vm_page_purgeable_count in bulk | |
5501 | * and we don't want vm_page_remove() to update it again for each | |
5502 | * page we reap later. | |
5503 | * | |
5504 | * For the purgeable ledgers, pages from VOLATILE and EMPTY objects | |
5505 | * are all accounted for in the "volatile" ledgers, so this does not | |
5506 | * make any difference. | |
5507 | * If we transitioned directly from NONVOLATILE to EMPTY, | |
5508 | * vm_page_purgeable_count must have been updated when the object | |
5509 | * was dequeued from its volatile queue and the purgeable ledgers | |
5510 | * must have also been updated accordingly at that time (in | |
5511 | * vm_object_purgable_control()). | |
5512 | */ | |
5513 | if (object->purgable == VM_PURGABLE_VOLATILE) { | |
5514 | unsigned int delta; | |
5515 | assert(object->resident_page_count >= | |
5516 | object->wired_page_count); | |
5517 | delta = (object->resident_page_count - | |
5518 | object->wired_page_count); | |
5519 | if (delta != 0) { | |
5520 | assert(vm_page_purgeable_count >= | |
5521 | delta); | |
5522 | OSAddAtomic(-delta, | |
5523 | (SInt32 *)&vm_page_purgeable_count); | |
5524 | } | |
5525 | if (object->wired_page_count != 0) { | |
5526 | assert(vm_page_purgeable_wired_count >= | |
5527 | object->wired_page_count); | |
5528 | OSAddAtomic(-object->wired_page_count, | |
5529 | (SInt32 *)&vm_page_purgeable_wired_count); | |
5530 | } | |
5531 | object->purgable = VM_PURGABLE_EMPTY; | |
5532 | } | |
5533 | assert(object->purgable == VM_PURGABLE_EMPTY); | |
5534 | ||
5535 | object_page_count = object->resident_page_count; | |
5536 | ||
5537 | vm_object_reap_pages(object, REAP_PURGEABLE); | |
5538 | ||
5539 | if (object->resident_page_count >= object_page_count) { | |
5540 | total_purged_pgcount = 0; | |
5541 | } else { | |
5542 | total_purged_pgcount = object_page_count - object->resident_page_count; | |
5543 | } | |
5544 | ||
5545 | if (object->pager != NULL) { | |
5546 | ||
5547 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); | |
5548 | ||
5549 | if (object->activity_in_progress == 0 && | |
5550 | object->paging_in_progress == 0) { | |
5551 | /* | |
5552 | * Also reap any memory coming from this object | |
5553 | * in the VM compressor. | |
5554 | * | |
5555 | * There are no operations in progress on the VM object | |
5556 | * and no operation can start while we're holding the | |
5557 | * VM object lock, so it's safe to reap the compressed | |
5558 | * pages and update the page counts. | |
5559 | */ | |
5560 | pgcount = vm_compressor_pager_get_count(object->pager); | |
5561 | if (pgcount) { | |
5562 | pgcount = vm_compressor_pager_reap_pages(object->pager, flags); | |
5563 | vm_compressor_pager_count(object->pager, | |
5564 | -pgcount, | |
5565 | FALSE, /* shared */ | |
5566 | object); | |
5567 | vm_purgeable_compressed_update(object, | |
5568 | -pgcount); | |
5569 | } | |
5570 | if ( !(flags & C_DONT_BLOCK)) { | |
5571 | assert(vm_compressor_pager_get_count(object->pager) | |
5572 | == 0); | |
5573 | } | |
5574 | } else { | |
5575 | /* | |
5576 | * There's some kind of paging activity in progress | |
5577 | * for this object, which could result in a page | |
5578 | * being compressed or decompressed, possibly while | |
5579 | * the VM object is not locked, so it could race | |
5580 | * with us. | |
5581 | * | |
5582 | * We can't really synchronize this without possibly | |
5583 | * causing a deadlock when the compressor needs to | |
5584 | * allocate or free memory while compressing or | |
5585 | * decompressing a page from a purgeable object | |
5586 | * mapped in the kernel_map... | |
5587 | * | |
5588 | * So let's not attempt to purge the compressor | |
5589 | * pager if there's any kind of operation in | |
5590 | * progress on the VM object. | |
5591 | */ | |
5592 | skipped_object = TRUE; | |
5593 | } | |
5594 | } | |
5595 | ||
5596 | vm_object_lock_assert_exclusive(object); | |
5597 | ||
5598 | total_purged_pgcount += pgcount; | |
5599 | ||
5600 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE_ONE)), | |
5601 | VM_KERNEL_UNSLIDE_OR_PERM(object), /* purged object */ | |
5602 | object_page_count, | |
5603 | total_purged_pgcount, | |
5604 | skipped_object, | |
5605 | 0); | |
5606 | ||
5607 | return total_purged_pgcount; | |
5608 | } | |
5609 | ||
5610 | ||
5611 | /* | |
5612 | * vm_object_purgeable_control() allows the caller to control and investigate the | |
5613 | * state of a purgeable object. A purgeable object is created via a call to | |
5614 | * vm_allocate() with VM_FLAGS_PURGABLE specified. A purgeable object will | |
5615 | * never be coalesced with any other object -- even other purgeable objects -- | |
5616 | * and will thus always remain a distinct object. A purgeable object has | |
5617 | * special semantics when its reference count is exactly 1. If its reference | |
5618 | * count is greater than 1, then a purgeable object will behave like a normal | |
5619 | * object and attempts to use this interface will result in an error return | |
5620 | * of KERN_INVALID_ARGUMENT. | |
5621 | * | |
5622 | * A purgeable object may be put into a "volatile" state which will make the | |
5623 | * object's pages elligable for being reclaimed without paging to backing | |
5624 | * store if the system runs low on memory. If the pages in a volatile | |
5625 | * purgeable object are reclaimed, the purgeable object is said to have been | |
5626 | * "emptied." When a purgeable object is emptied the system will reclaim as | |
5627 | * many pages from the object as it can in a convenient manner (pages already | |
5628 | * en route to backing store or busy for other reasons are left as is). When | |
5629 | * a purgeable object is made volatile, its pages will generally be reclaimed | |
5630 | * before other pages in the application's working set. This semantic is | |
5631 | * generally used by applications which can recreate the data in the object | |
5632 | * faster than it can be paged in. One such example might be media assets | |
5633 | * which can be reread from a much faster RAID volume. | |
5634 | * | |
5635 | * A purgeable object may be designated as "non-volatile" which means it will | |
5636 | * behave like all other objects in the system with pages being written to and | |
5637 | * read from backing store as needed to satisfy system memory needs. If the | |
5638 | * object was emptied before the object was made non-volatile, that fact will | |
5639 | * be returned as the old state of the purgeable object (see | |
5640 | * VM_PURGABLE_SET_STATE below). In this case, any pages of the object which | |
5641 | * were reclaimed as part of emptying the object will be refaulted in as | |
5642 | * zero-fill on demand. It is up to the application to note that an object | |
5643 | * was emptied and recreate the objects contents if necessary. When a | |
5644 | * purgeable object is made non-volatile, its pages will generally not be paged | |
5645 | * out to backing store in the immediate future. A purgeable object may also | |
5646 | * be manually emptied. | |
5647 | * | |
5648 | * Finally, the current state (non-volatile, volatile, volatile & empty) of a | |
5649 | * volatile purgeable object may be queried at any time. This information may | |
5650 | * be used as a control input to let the application know when the system is | |
5651 | * experiencing memory pressure and is reclaiming memory. | |
5652 | * | |
5653 | * The specified address may be any address within the purgeable object. If | |
5654 | * the specified address does not represent any object in the target task's | |
5655 | * virtual address space, then KERN_INVALID_ADDRESS will be returned. If the | |
5656 | * object containing the specified address is not a purgeable object, then | |
5657 | * KERN_INVALID_ARGUMENT will be returned. Otherwise, KERN_SUCCESS will be | |
5658 | * returned. | |
5659 | * | |
5660 | * The control parameter may be any one of VM_PURGABLE_SET_STATE or | |
5661 | * VM_PURGABLE_GET_STATE. For VM_PURGABLE_SET_STATE, the in/out parameter | |
5662 | * state is used to set the new state of the purgeable object and return its | |
5663 | * old state. For VM_PURGABLE_GET_STATE, the current state of the purgeable | |
5664 | * object is returned in the parameter state. | |
5665 | * | |
5666 | * The in/out parameter state may be one of VM_PURGABLE_NONVOLATILE, | |
5667 | * VM_PURGABLE_VOLATILE or VM_PURGABLE_EMPTY. These, respectively, represent | |
5668 | * the non-volatile, volatile and volatile/empty states described above. | |
5669 | * Setting the state of a purgeable object to VM_PURGABLE_EMPTY will | |
5670 | * immediately reclaim as many pages in the object as can be conveniently | |
5671 | * collected (some may have already been written to backing store or be | |
5672 | * otherwise busy). | |
5673 | * | |
5674 | * The process of making a purgeable object non-volatile and determining its | |
5675 | * previous state is atomic. Thus, if a purgeable object is made | |
5676 | * VM_PURGABLE_NONVOLATILE and the old state is returned as | |
5677 | * VM_PURGABLE_VOLATILE, then the purgeable object's previous contents are | |
5678 | * completely intact and will remain so until the object is made volatile | |
5679 | * again. If the old state is returned as VM_PURGABLE_EMPTY then the object | |
5680 | * was reclaimed while it was in a volatile state and its previous contents | |
5681 | * have been lost. | |
5682 | */ | |
5683 | /* | |
5684 | * The object must be locked. | |
5685 | */ | |
5686 | kern_return_t | |
5687 | vm_object_purgable_control( | |
5688 | vm_object_t object, | |
5689 | vm_purgable_t control, | |
5690 | int *state) | |
5691 | { | |
5692 | int old_state; | |
5693 | int new_state; | |
5694 | ||
5695 | if (object == VM_OBJECT_NULL) { | |
5696 | /* | |
5697 | * Object must already be present or it can't be purgeable. | |
5698 | */ | |
5699 | return KERN_INVALID_ARGUMENT; | |
5700 | } | |
5701 | ||
5702 | vm_object_lock_assert_exclusive(object); | |
5703 | ||
5704 | /* | |
5705 | * Get current state of the purgeable object. | |
5706 | */ | |
5707 | old_state = object->purgable; | |
5708 | if (old_state == VM_PURGABLE_DENY) | |
5709 | return KERN_INVALID_ARGUMENT; | |
5710 | ||
5711 | /* purgeable cant have delayed copies - now or in the future */ | |
5712 | assert(object->copy == VM_OBJECT_NULL); | |
5713 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); | |
5714 | ||
5715 | /* | |
5716 | * Execute the desired operation. | |
5717 | */ | |
5718 | if (control == VM_PURGABLE_GET_STATE) { | |
5719 | *state = old_state; | |
5720 | return KERN_SUCCESS; | |
5721 | } | |
5722 | ||
5723 | if (control == VM_PURGABLE_SET_STATE && | |
5724 | object->purgeable_only_by_kernel) { | |
5725 | return KERN_PROTECTION_FAILURE; | |
5726 | } | |
5727 | ||
5728 | if (control != VM_PURGABLE_SET_STATE && | |
5729 | control != VM_PURGABLE_SET_STATE_FROM_KERNEL) { | |
5730 | return KERN_INVALID_ARGUMENT; | |
5731 | } | |
5732 | ||
5733 | if ((*state) & VM_PURGABLE_DEBUG_EMPTY) { | |
5734 | object->volatile_empty = TRUE; | |
5735 | } | |
5736 | if ((*state) & VM_PURGABLE_DEBUG_FAULT) { | |
5737 | object->volatile_fault = TRUE; | |
5738 | } | |
5739 | ||
5740 | new_state = *state & VM_PURGABLE_STATE_MASK; | |
5741 | if (new_state == VM_PURGABLE_VOLATILE) { | |
5742 | if (old_state == VM_PURGABLE_EMPTY) { | |
5743 | /* what's been emptied must stay empty */ | |
5744 | new_state = VM_PURGABLE_EMPTY; | |
5745 | } | |
5746 | if (object->volatile_empty) { | |
5747 | /* debugging mode: go straight to empty */ | |
5748 | new_state = VM_PURGABLE_EMPTY; | |
5749 | } | |
5750 | } | |
5751 | ||
5752 | switch (new_state) { | |
5753 | case VM_PURGABLE_DENY: | |
5754 | /* | |
5755 | * Attempting to convert purgeable memory to non-purgeable: | |
5756 | * not allowed. | |
5757 | */ | |
5758 | return KERN_INVALID_ARGUMENT; | |
5759 | case VM_PURGABLE_NONVOLATILE: | |
5760 | object->purgable = new_state; | |
5761 | ||
5762 | if (old_state == VM_PURGABLE_VOLATILE) { | |
5763 | unsigned int delta; | |
5764 | ||
5765 | assert(object->resident_page_count >= | |
5766 | object->wired_page_count); | |
5767 | delta = (object->resident_page_count - | |
5768 | object->wired_page_count); | |
5769 | ||
5770 | assert(vm_page_purgeable_count >= delta); | |
5771 | ||
5772 | if (delta != 0) { | |
5773 | OSAddAtomic(-delta, | |
5774 | (SInt32 *)&vm_page_purgeable_count); | |
5775 | } | |
5776 | if (object->wired_page_count != 0) { | |
5777 | assert(vm_page_purgeable_wired_count >= | |
5778 | object->wired_page_count); | |
5779 | OSAddAtomic(-object->wired_page_count, | |
5780 | (SInt32 *)&vm_page_purgeable_wired_count); | |
5781 | } | |
5782 | ||
5783 | vm_page_lock_queues(); | |
5784 | ||
5785 | /* object should be on a queue */ | |
5786 | assert(object->objq.next != NULL && | |
5787 | object->objq.prev != NULL); | |
5788 | purgeable_q_t queue; | |
5789 | ||
5790 | /* | |
5791 | * Move object from its volatile queue to the | |
5792 | * non-volatile queue... | |
5793 | */ | |
5794 | queue = vm_purgeable_object_remove(object); | |
5795 | assert(queue); | |
5796 | ||
5797 | if (object->purgeable_when_ripe) { | |
5798 | vm_purgeable_token_delete_last(queue); | |
5799 | } | |
5800 | assert(queue->debug_count_objects>=0); | |
5801 | ||
5802 | vm_page_unlock_queues(); | |
5803 | } | |
5804 | if (old_state == VM_PURGABLE_VOLATILE || | |
5805 | old_state == VM_PURGABLE_EMPTY) { | |
5806 | /* | |
5807 | * Transfer the object's pages from the volatile to | |
5808 | * non-volatile ledgers. | |
5809 | */ | |
5810 | vm_purgeable_accounting(object, VM_PURGABLE_VOLATILE, | |
5811 | FALSE, /* disown */ | |
5812 | FALSE); /* task_objq locked? */ | |
5813 | } | |
5814 | ||
5815 | break; | |
5816 | ||
5817 | case VM_PURGABLE_VOLATILE: | |
5818 | if (object->volatile_fault) { | |
5819 | vm_page_t p; | |
5820 | int refmod; | |
5821 | ||
5822 | vm_page_queue_iterate(&object->memq, p, vm_page_t, listq) { | |
5823 | if (p->busy || | |
5824 | VM_PAGE_WIRED(p) || | |
5825 | p->fictitious) { | |
5826 | continue; | |
5827 | } | |
5828 | refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p)); | |
5829 | if ((refmod & VM_MEM_MODIFIED) && | |
5830 | !p->dirty) { | |
5831 | SET_PAGE_DIRTY(p, FALSE); | |
5832 | } | |
5833 | } | |
5834 | } | |
5835 | ||
5836 | assert(old_state != VM_PURGABLE_EMPTY); | |
5837 | ||
5838 | purgeable_q_t queue; | |
5839 | ||
5840 | /* find the correct queue */ | |
5841 | if ((*state&VM_PURGABLE_ORDERING_MASK) == VM_PURGABLE_ORDERING_OBSOLETE) | |
5842 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE]; | |
5843 | else { | |
5844 | if ((*state&VM_PURGABLE_BEHAVIOR_MASK) == VM_PURGABLE_BEHAVIOR_FIFO) | |
5845 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; | |
5846 | else | |
5847 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; | |
5848 | } | |
5849 | ||
5850 | if (old_state == VM_PURGABLE_NONVOLATILE || | |
5851 | old_state == VM_PURGABLE_EMPTY) { | |
5852 | unsigned int delta; | |
5853 | ||
5854 | if ((*state & VM_PURGABLE_NO_AGING_MASK) == | |
5855 | VM_PURGABLE_NO_AGING) { | |
5856 | object->purgeable_when_ripe = FALSE; | |
5857 | } else { | |
5858 | object->purgeable_when_ripe = TRUE; | |
5859 | } | |
5860 | ||
5861 | if (object->purgeable_when_ripe) { | |
5862 | kern_return_t result; | |
5863 | ||
5864 | /* try to add token... this can fail */ | |
5865 | vm_page_lock_queues(); | |
5866 | ||
5867 | result = vm_purgeable_token_add(queue); | |
5868 | if (result != KERN_SUCCESS) { | |
5869 | vm_page_unlock_queues(); | |
5870 | return result; | |
5871 | } | |
5872 | vm_page_unlock_queues(); | |
5873 | } | |
5874 | ||
5875 | assert(object->resident_page_count >= | |
5876 | object->wired_page_count); | |
5877 | delta = (object->resident_page_count - | |
5878 | object->wired_page_count); | |
5879 | ||
5880 | if (delta != 0) { | |
5881 | OSAddAtomic(delta, | |
5882 | &vm_page_purgeable_count); | |
5883 | } | |
5884 | if (object->wired_page_count != 0) { | |
5885 | OSAddAtomic(object->wired_page_count, | |
5886 | &vm_page_purgeable_wired_count); | |
5887 | } | |
5888 | ||
5889 | object->purgable = new_state; | |
5890 | ||
5891 | /* object should be on "non-volatile" queue */ | |
5892 | assert(object->objq.next != NULL); | |
5893 | assert(object->objq.prev != NULL); | |
5894 | } | |
5895 | else if (old_state == VM_PURGABLE_VOLATILE) { | |
5896 | purgeable_q_t old_queue; | |
5897 | boolean_t purgeable_when_ripe; | |
5898 | ||
5899 | /* | |
5900 | * if reassigning priorities / purgeable groups, we don't change the | |
5901 | * token queue. So moving priorities will not make pages stay around longer. | |
5902 | * Reasoning is that the algorithm gives most priority to the most important | |
5903 | * object. If a new token is added, the most important object' priority is boosted. | |
5904 | * This biases the system already for purgeable queues that move a lot. | |
5905 | * It doesn't seem more biasing is neccessary in this case, where no new object is added. | |
5906 | */ | |
5907 | assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */ | |
5908 | ||
5909 | old_queue = vm_purgeable_object_remove(object); | |
5910 | assert(old_queue); | |
5911 | ||
5912 | if ((*state & VM_PURGABLE_NO_AGING_MASK) == | |
5913 | VM_PURGABLE_NO_AGING) { | |
5914 | purgeable_when_ripe = FALSE; | |
5915 | } else { | |
5916 | purgeable_when_ripe = TRUE; | |
5917 | } | |
5918 | ||
5919 | if (old_queue != queue || | |
5920 | (purgeable_when_ripe != | |
5921 | object->purgeable_when_ripe)) { | |
5922 | kern_return_t result; | |
5923 | ||
5924 | /* Changing queue. Have to move token. */ | |
5925 | vm_page_lock_queues(); | |
5926 | if (object->purgeable_when_ripe) { | |
5927 | vm_purgeable_token_delete_last(old_queue); | |
5928 | } | |
5929 | object->purgeable_when_ripe = purgeable_when_ripe; | |
5930 | if (object->purgeable_when_ripe) { | |
5931 | result = vm_purgeable_token_add(queue); | |
5932 | assert(result==KERN_SUCCESS); /* this should never fail since we just freed a token */ | |
5933 | } | |
5934 | vm_page_unlock_queues(); | |
5935 | ||
5936 | } | |
5937 | }; | |
5938 | vm_purgeable_object_add(object, queue, (*state&VM_VOLATILE_GROUP_MASK)>>VM_VOLATILE_GROUP_SHIFT ); | |
5939 | if (old_state == VM_PURGABLE_NONVOLATILE) { | |
5940 | vm_purgeable_accounting(object, | |
5941 | VM_PURGABLE_NONVOLATILE, | |
5942 | FALSE, /* disown */ | |
5943 | FALSE); /* task_objq locked? */ | |
5944 | } | |
5945 | ||
5946 | assert(queue->debug_count_objects>=0); | |
5947 | ||
5948 | break; | |
5949 | ||
5950 | ||
5951 | case VM_PURGABLE_EMPTY: | |
5952 | if (object->volatile_fault) { | |
5953 | vm_page_t p; | |
5954 | int refmod; | |
5955 | ||
5956 | vm_page_queue_iterate(&object->memq, p, vm_page_t, listq) { | |
5957 | if (p->busy || | |
5958 | VM_PAGE_WIRED(p) || | |
5959 | p->fictitious) { | |
5960 | continue; | |
5961 | } | |
5962 | refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p)); | |
5963 | if ((refmod & VM_MEM_MODIFIED) && | |
5964 | !p->dirty) { | |
5965 | SET_PAGE_DIRTY(p, FALSE); | |
5966 | } | |
5967 | } | |
5968 | } | |
5969 | ||
5970 | if (old_state == VM_PURGABLE_VOLATILE) { | |
5971 | purgeable_q_t old_queue; | |
5972 | ||
5973 | /* object should be on a queue */ | |
5974 | assert(object->objq.next != NULL && | |
5975 | object->objq.prev != NULL); | |
5976 | ||
5977 | old_queue = vm_purgeable_object_remove(object); | |
5978 | assert(old_queue); | |
5979 | if (object->purgeable_when_ripe) { | |
5980 | vm_page_lock_queues(); | |
5981 | vm_purgeable_token_delete_first(old_queue); | |
5982 | vm_page_unlock_queues(); | |
5983 | } | |
5984 | } | |
5985 | ||
5986 | if (old_state == VM_PURGABLE_NONVOLATILE) { | |
5987 | /* | |
5988 | * This object's pages were previously accounted as | |
5989 | * "non-volatile" and now need to be accounted as | |
5990 | * "volatile". | |
5991 | */ | |
5992 | vm_purgeable_accounting(object, | |
5993 | VM_PURGABLE_NONVOLATILE, | |
5994 | FALSE, /* disown */ | |
5995 | FALSE); /* task_objq locked? */ | |
5996 | /* | |
5997 | * Set to VM_PURGABLE_EMPTY because the pages are no | |
5998 | * longer accounted in the "non-volatile" ledger | |
5999 | * and are also not accounted for in | |
6000 | * "vm_page_purgeable_count". | |
6001 | */ | |
6002 | object->purgable = VM_PURGABLE_EMPTY; | |
6003 | } | |
6004 | ||
6005 | (void) vm_object_purge(object, 0); | |
6006 | assert(object->purgable == VM_PURGABLE_EMPTY); | |
6007 | ||
6008 | break; | |
6009 | } | |
6010 | ||
6011 | *state = old_state; | |
6012 | ||
6013 | vm_object_lock_assert_exclusive(object); | |
6014 | ||
6015 | return KERN_SUCCESS; | |
6016 | } | |
6017 | ||
6018 | kern_return_t | |
6019 | vm_object_get_page_counts( | |
6020 | vm_object_t object, | |
6021 | vm_object_offset_t offset, | |
6022 | vm_object_size_t size, | |
6023 | unsigned int *resident_page_count, | |
6024 | unsigned int *dirty_page_count) | |
6025 | { | |
6026 | ||
6027 | kern_return_t kr = KERN_SUCCESS; | |
6028 | boolean_t count_dirty_pages = FALSE; | |
6029 | vm_page_t p = VM_PAGE_NULL; | |
6030 | unsigned int local_resident_count = 0; | |
6031 | unsigned int local_dirty_count = 0; | |
6032 | vm_object_offset_t cur_offset = 0; | |
6033 | vm_object_offset_t end_offset = 0; | |
6034 | ||
6035 | if (object == VM_OBJECT_NULL) | |
6036 | return KERN_INVALID_ARGUMENT; | |
6037 | ||
6038 | ||
6039 | cur_offset = offset; | |
6040 | ||
6041 | end_offset = offset + size; | |
6042 | ||
6043 | vm_object_lock_assert_exclusive(object); | |
6044 | ||
6045 | if (dirty_page_count != NULL) { | |
6046 | ||
6047 | count_dirty_pages = TRUE; | |
6048 | } | |
6049 | ||
6050 | if (resident_page_count != NULL && count_dirty_pages == FALSE) { | |
6051 | /* | |
6052 | * Fast path when: | |
6053 | * - we only want the resident page count, and, | |
6054 | * - the entire object is exactly covered by the request. | |
6055 | */ | |
6056 | if (offset == 0 && (object->vo_size == size)) { | |
6057 | ||
6058 | *resident_page_count = object->resident_page_count; | |
6059 | goto out; | |
6060 | } | |
6061 | } | |
6062 | ||
6063 | if (object->resident_page_count <= (size >> PAGE_SHIFT)) { | |
6064 | ||
6065 | vm_page_queue_iterate(&object->memq, p, vm_page_t, listq) { | |
6066 | ||
6067 | if (p->offset >= cur_offset && p->offset < end_offset) { | |
6068 | ||
6069 | local_resident_count++; | |
6070 | ||
6071 | if (count_dirty_pages) { | |
6072 | ||
6073 | if (p->dirty || (p->wpmapped && pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(p)))) { | |
6074 | ||
6075 | local_dirty_count++; | |
6076 | } | |
6077 | } | |
6078 | } | |
6079 | } | |
6080 | } else { | |
6081 | ||
6082 | for (cur_offset = offset; cur_offset < end_offset; cur_offset += PAGE_SIZE_64) { | |
6083 | ||
6084 | p = vm_page_lookup(object, cur_offset); | |
6085 | ||
6086 | if (p != VM_PAGE_NULL) { | |
6087 | ||
6088 | local_resident_count++; | |
6089 | ||
6090 | if (count_dirty_pages) { | |
6091 | ||
6092 | if (p->dirty || (p->wpmapped && pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(p)))) { | |
6093 | ||
6094 | local_dirty_count++; | |
6095 | } | |
6096 | } | |
6097 | } | |
6098 | } | |
6099 | ||
6100 | } | |
6101 | ||
6102 | if (resident_page_count != NULL) { | |
6103 | *resident_page_count = local_resident_count; | |
6104 | } | |
6105 | ||
6106 | if (dirty_page_count != NULL) { | |
6107 | *dirty_page_count = local_dirty_count; | |
6108 | } | |
6109 | ||
6110 | out: | |
6111 | return kr; | |
6112 | } | |
6113 | ||
6114 | ||
6115 | #if TASK_SWAPPER | |
6116 | /* | |
6117 | * vm_object_res_deallocate | |
6118 | * | |
6119 | * (recursively) decrement residence counts on vm objects and their shadows. | |
6120 | * Called from vm_object_deallocate and when swapping out an object. | |
6121 | * | |
6122 | * The object is locked, and remains locked throughout the function, | |
6123 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
6124 | * will be dropped, but not the original object. | |
6125 | * | |
6126 | * NOTE: this function used to use recursion, rather than iteration. | |
6127 | */ | |
6128 | ||
6129 | __private_extern__ void | |
6130 | vm_object_res_deallocate( | |
6131 | vm_object_t object) | |
6132 | { | |
6133 | vm_object_t orig_object = object; | |
6134 | /* | |
6135 | * Object is locked so it can be called directly | |
6136 | * from vm_object_deallocate. Original object is never | |
6137 | * unlocked. | |
6138 | */ | |
6139 | assert(object->res_count > 0); | |
6140 | while (--object->res_count == 0) { | |
6141 | assert(object->ref_count >= object->res_count); | |
6142 | vm_object_deactivate_all_pages(object); | |
6143 | /* iterate on shadow, if present */ | |
6144 | if (object->shadow != VM_OBJECT_NULL) { | |
6145 | vm_object_t tmp_object = object->shadow; | |
6146 | vm_object_lock(tmp_object); | |
6147 | if (object != orig_object) | |
6148 | vm_object_unlock(object); | |
6149 | object = tmp_object; | |
6150 | assert(object->res_count > 0); | |
6151 | } else | |
6152 | break; | |
6153 | } | |
6154 | if (object != orig_object) | |
6155 | vm_object_unlock(object); | |
6156 | } | |
6157 | ||
6158 | /* | |
6159 | * vm_object_res_reference | |
6160 | * | |
6161 | * Internal function to increment residence count on a vm object | |
6162 | * and its shadows. It is called only from vm_object_reference, and | |
6163 | * when swapping in a vm object, via vm_map_swap. | |
6164 | * | |
6165 | * The object is locked, and remains locked throughout the function, | |
6166 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
6167 | * will be dropped, but not the original object. | |
6168 | * | |
6169 | * NOTE: this function used to use recursion, rather than iteration. | |
6170 | */ | |
6171 | ||
6172 | __private_extern__ void | |
6173 | vm_object_res_reference( | |
6174 | vm_object_t object) | |
6175 | { | |
6176 | vm_object_t orig_object = object; | |
6177 | /* | |
6178 | * Object is locked, so this can be called directly | |
6179 | * from vm_object_reference. This lock is never released. | |
6180 | */ | |
6181 | while ((++object->res_count == 1) && | |
6182 | (object->shadow != VM_OBJECT_NULL)) { | |
6183 | vm_object_t tmp_object = object->shadow; | |
6184 | ||
6185 | assert(object->ref_count >= object->res_count); | |
6186 | vm_object_lock(tmp_object); | |
6187 | if (object != orig_object) | |
6188 | vm_object_unlock(object); | |
6189 | object = tmp_object; | |
6190 | } | |
6191 | if (object != orig_object) | |
6192 | vm_object_unlock(object); | |
6193 | assert(orig_object->ref_count >= orig_object->res_count); | |
6194 | } | |
6195 | #endif /* TASK_SWAPPER */ | |
6196 | ||
6197 | /* | |
6198 | * vm_object_reference: | |
6199 | * | |
6200 | * Gets another reference to the given object. | |
6201 | */ | |
6202 | #ifdef vm_object_reference | |
6203 | #undef vm_object_reference | |
6204 | #endif | |
6205 | __private_extern__ void | |
6206 | vm_object_reference( | |
6207 | vm_object_t object) | |
6208 | { | |
6209 | if (object == VM_OBJECT_NULL) | |
6210 | return; | |
6211 | ||
6212 | vm_object_lock(object); | |
6213 | assert(object->ref_count > 0); | |
6214 | vm_object_reference_locked(object); | |
6215 | vm_object_unlock(object); | |
6216 | } | |
6217 | ||
6218 | /* | |
6219 | * vm_object_transpose | |
6220 | * | |
6221 | * This routine takes two VM objects of the same size and exchanges | |
6222 | * their backing store. | |
6223 | * The objects should be "quiesced" via a UPL operation with UPL_SET_IO_WIRE | |
6224 | * and UPL_BLOCK_ACCESS if they are referenced anywhere. | |
6225 | * | |
6226 | * The VM objects must not be locked by caller. | |
6227 | */ | |
6228 | unsigned int vm_object_transpose_count = 0; | |
6229 | kern_return_t | |
6230 | vm_object_transpose( | |
6231 | vm_object_t object1, | |
6232 | vm_object_t object2, | |
6233 | vm_object_size_t transpose_size) | |
6234 | { | |
6235 | vm_object_t tmp_object; | |
6236 | kern_return_t retval; | |
6237 | boolean_t object1_locked, object2_locked; | |
6238 | vm_page_t page; | |
6239 | vm_object_offset_t page_offset; | |
6240 | ||
6241 | tmp_object = VM_OBJECT_NULL; | |
6242 | object1_locked = FALSE; object2_locked = FALSE; | |
6243 | ||
6244 | if (object1 == object2 || | |
6245 | object1 == VM_OBJECT_NULL || | |
6246 | object2 == VM_OBJECT_NULL) { | |
6247 | /* | |
6248 | * If the 2 VM objects are the same, there's | |
6249 | * no point in exchanging their backing store. | |
6250 | */ | |
6251 | retval = KERN_INVALID_VALUE; | |
6252 | goto done; | |
6253 | } | |
6254 | ||
6255 | /* | |
6256 | * Since we need to lock both objects at the same time, | |
6257 | * make sure we always lock them in the same order to | |
6258 | * avoid deadlocks. | |
6259 | */ | |
6260 | if (object1 > object2) { | |
6261 | tmp_object = object1; | |
6262 | object1 = object2; | |
6263 | object2 = tmp_object; | |
6264 | } | |
6265 | ||
6266 | /* | |
6267 | * Allocate a temporary VM object to hold object1's contents | |
6268 | * while we copy object2 to object1. | |
6269 | */ | |
6270 | tmp_object = vm_object_allocate(transpose_size); | |
6271 | vm_object_lock(tmp_object); | |
6272 | tmp_object->can_persist = FALSE; | |
6273 | ||
6274 | ||
6275 | /* | |
6276 | * Grab control of the 1st VM object. | |
6277 | */ | |
6278 | vm_object_lock(object1); | |
6279 | object1_locked = TRUE; | |
6280 | if (!object1->alive || object1->terminating || | |
6281 | object1->copy || object1->shadow || object1->shadowed || | |
6282 | object1->purgable != VM_PURGABLE_DENY) { | |
6283 | /* | |
6284 | * We don't deal with copy or shadow objects (yet). | |
6285 | */ | |
6286 | retval = KERN_INVALID_VALUE; | |
6287 | goto done; | |
6288 | } | |
6289 | /* | |
6290 | * We're about to mess with the object's backing store and | |
6291 | * taking a "paging_in_progress" reference wouldn't be enough | |
6292 | * to prevent any paging activity on this object, so the caller should | |
6293 | * have "quiesced" the objects beforehand, via a UPL operation with | |
6294 | * UPL_SET_IO_WIRE (to make sure all the pages are there and wired) | |
6295 | * and UPL_BLOCK_ACCESS (to mark the pages "busy"). | |
6296 | * | |
6297 | * Wait for any paging operation to complete (but only paging, not | |
6298 | * other kind of activities not linked to the pager). After we're | |
6299 | * statisfied that there's no more paging in progress, we keep the | |
6300 | * object locked, to guarantee that no one tries to access its pager. | |
6301 | */ | |
6302 | vm_object_paging_only_wait(object1, THREAD_UNINT); | |
6303 | ||
6304 | /* | |
6305 | * Same as above for the 2nd object... | |
6306 | */ | |
6307 | vm_object_lock(object2); | |
6308 | object2_locked = TRUE; | |
6309 | if (! object2->alive || object2->terminating || | |
6310 | object2->copy || object2->shadow || object2->shadowed || | |
6311 | object2->purgable != VM_PURGABLE_DENY) { | |
6312 | retval = KERN_INVALID_VALUE; | |
6313 | goto done; | |
6314 | } | |
6315 | vm_object_paging_only_wait(object2, THREAD_UNINT); | |
6316 | ||
6317 | ||
6318 | if (object1->vo_size != object2->vo_size || | |
6319 | object1->vo_size != transpose_size) { | |
6320 | /* | |
6321 | * If the 2 objects don't have the same size, we can't | |
6322 | * exchange their backing stores or one would overflow. | |
6323 | * If their size doesn't match the caller's | |
6324 | * "transpose_size", we can't do it either because the | |
6325 | * transpose operation will affect the entire span of | |
6326 | * the objects. | |
6327 | */ | |
6328 | retval = KERN_INVALID_VALUE; | |
6329 | goto done; | |
6330 | } | |
6331 | ||
6332 | ||
6333 | /* | |
6334 | * Transpose the lists of resident pages. | |
6335 | * This also updates the resident_page_count and the memq_hint. | |
6336 | */ | |
6337 | if (object1->phys_contiguous || vm_page_queue_empty(&object1->memq)) { | |
6338 | /* | |
6339 | * No pages in object1, just transfer pages | |
6340 | * from object2 to object1. No need to go through | |
6341 | * an intermediate object. | |
6342 | */ | |
6343 | while (!vm_page_queue_empty(&object2->memq)) { | |
6344 | page = (vm_page_t) vm_page_queue_first(&object2->memq); | |
6345 | vm_page_rename(page, object1, page->offset); | |
6346 | } | |
6347 | assert(vm_page_queue_empty(&object2->memq)); | |
6348 | } else if (object2->phys_contiguous || vm_page_queue_empty(&object2->memq)) { | |
6349 | /* | |
6350 | * No pages in object2, just transfer pages | |
6351 | * from object1 to object2. No need to go through | |
6352 | * an intermediate object. | |
6353 | */ | |
6354 | while (!vm_page_queue_empty(&object1->memq)) { | |
6355 | page = (vm_page_t) vm_page_queue_first(&object1->memq); | |
6356 | vm_page_rename(page, object2, page->offset); | |
6357 | } | |
6358 | assert(vm_page_queue_empty(&object1->memq)); | |
6359 | } else { | |
6360 | /* transfer object1's pages to tmp_object */ | |
6361 | while (!vm_page_queue_empty(&object1->memq)) { | |
6362 | page = (vm_page_t) vm_page_queue_first(&object1->memq); | |
6363 | page_offset = page->offset; | |
6364 | vm_page_remove(page, TRUE); | |
6365 | page->offset = page_offset; | |
6366 | vm_page_queue_enter(&tmp_object->memq, page, vm_page_t, listq); | |
6367 | } | |
6368 | assert(vm_page_queue_empty(&object1->memq)); | |
6369 | /* transfer object2's pages to object1 */ | |
6370 | while (!vm_page_queue_empty(&object2->memq)) { | |
6371 | page = (vm_page_t) vm_page_queue_first(&object2->memq); | |
6372 | vm_page_rename(page, object1, page->offset); | |
6373 | } | |
6374 | assert(vm_page_queue_empty(&object2->memq)); | |
6375 | /* transfer tmp_object's pages to object2 */ | |
6376 | while (!vm_page_queue_empty(&tmp_object->memq)) { | |
6377 | page = (vm_page_t) vm_page_queue_first(&tmp_object->memq); | |
6378 | vm_page_queue_remove(&tmp_object->memq, page, | |
6379 | vm_page_t, listq); | |
6380 | vm_page_insert(page, object2, page->offset); | |
6381 | } | |
6382 | assert(vm_page_queue_empty(&tmp_object->memq)); | |
6383 | } | |
6384 | ||
6385 | #define __TRANSPOSE_FIELD(field) \ | |
6386 | MACRO_BEGIN \ | |
6387 | tmp_object->field = object1->field; \ | |
6388 | object1->field = object2->field; \ | |
6389 | object2->field = tmp_object->field; \ | |
6390 | MACRO_END | |
6391 | ||
6392 | /* "Lock" refers to the object not its contents */ | |
6393 | /* "size" should be identical */ | |
6394 | assert(object1->vo_size == object2->vo_size); | |
6395 | /* "memq_hint" was updated above when transposing pages */ | |
6396 | /* "ref_count" refers to the object not its contents */ | |
6397 | assert(object1->ref_count >= 1); | |
6398 | assert(object2->ref_count >= 1); | |
6399 | #if TASK_SWAPPER | |
6400 | /* "res_count" refers to the object not its contents */ | |
6401 | #endif | |
6402 | /* "resident_page_count" was updated above when transposing pages */ | |
6403 | /* "wired_page_count" was updated above when transposing pages */ | |
6404 | /* "reusable_page_count" was updated above when transposing pages */ | |
6405 | /* there should be no "copy" */ | |
6406 | assert(!object1->copy); | |
6407 | assert(!object2->copy); | |
6408 | /* there should be no "shadow" */ | |
6409 | assert(!object1->shadow); | |
6410 | assert(!object2->shadow); | |
6411 | __TRANSPOSE_FIELD(vo_shadow_offset); /* used by phys_contiguous objects */ | |
6412 | __TRANSPOSE_FIELD(pager); | |
6413 | __TRANSPOSE_FIELD(paging_offset); | |
6414 | __TRANSPOSE_FIELD(pager_control); | |
6415 | /* update the memory_objects' pointers back to the VM objects */ | |
6416 | if (object1->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
6417 | memory_object_control_collapse(object1->pager_control, | |
6418 | object1); | |
6419 | } | |
6420 | if (object2->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
6421 | memory_object_control_collapse(object2->pager_control, | |
6422 | object2); | |
6423 | } | |
6424 | __TRANSPOSE_FIELD(copy_strategy); | |
6425 | /* "paging_in_progress" refers to the object not its contents */ | |
6426 | assert(!object1->paging_in_progress); | |
6427 | assert(!object2->paging_in_progress); | |
6428 | assert(object1->activity_in_progress); | |
6429 | assert(object2->activity_in_progress); | |
6430 | /* "all_wanted" refers to the object not its contents */ | |
6431 | __TRANSPOSE_FIELD(pager_created); | |
6432 | __TRANSPOSE_FIELD(pager_initialized); | |
6433 | __TRANSPOSE_FIELD(pager_ready); | |
6434 | __TRANSPOSE_FIELD(pager_trusted); | |
6435 | __TRANSPOSE_FIELD(can_persist); | |
6436 | __TRANSPOSE_FIELD(internal); | |
6437 | __TRANSPOSE_FIELD(private); | |
6438 | __TRANSPOSE_FIELD(pageout); | |
6439 | /* "alive" should be set */ | |
6440 | assert(object1->alive); | |
6441 | assert(object2->alive); | |
6442 | /* "purgeable" should be non-purgeable */ | |
6443 | assert(object1->purgable == VM_PURGABLE_DENY); | |
6444 | assert(object2->purgable == VM_PURGABLE_DENY); | |
6445 | /* "shadowed" refers to the the object not its contents */ | |
6446 | __TRANSPOSE_FIELD(purgeable_when_ripe); | |
6447 | __TRANSPOSE_FIELD(true_share); | |
6448 | /* "terminating" should not be set */ | |
6449 | assert(!object1->terminating); | |
6450 | assert(!object2->terminating); | |
6451 | /* transfer "named" reference if needed */ | |
6452 | if (object1->named && !object2->named) { | |
6453 | assert(object1->ref_count >= 2); | |
6454 | assert(object2->ref_count >= 1); | |
6455 | object1->ref_count--; | |
6456 | object2->ref_count++; | |
6457 | } else if (!object1->named && object2->named) { | |
6458 | assert(object1->ref_count >= 1); | |
6459 | assert(object2->ref_count >= 2); | |
6460 | object1->ref_count++; | |
6461 | object2->ref_count--; | |
6462 | } | |
6463 | __TRANSPOSE_FIELD(named); | |
6464 | /* "shadow_severed" refers to the object not its contents */ | |
6465 | __TRANSPOSE_FIELD(phys_contiguous); | |
6466 | __TRANSPOSE_FIELD(nophyscache); | |
6467 | /* "cached_list.next" points to transposed object */ | |
6468 | object1->cached_list.next = (queue_entry_t) object2; | |
6469 | object2->cached_list.next = (queue_entry_t) object1; | |
6470 | /* "cached_list.prev" should be NULL */ | |
6471 | assert(object1->cached_list.prev == NULL); | |
6472 | assert(object2->cached_list.prev == NULL); | |
6473 | __TRANSPOSE_FIELD(last_alloc); | |
6474 | __TRANSPOSE_FIELD(sequential); | |
6475 | __TRANSPOSE_FIELD(pages_created); | |
6476 | __TRANSPOSE_FIELD(pages_used); | |
6477 | __TRANSPOSE_FIELD(scan_collisions); | |
6478 | __TRANSPOSE_FIELD(cow_hint); | |
6479 | __TRANSPOSE_FIELD(wimg_bits); | |
6480 | __TRANSPOSE_FIELD(set_cache_attr); | |
6481 | __TRANSPOSE_FIELD(code_signed); | |
6482 | object1->transposed = TRUE; | |
6483 | object2->transposed = TRUE; | |
6484 | __TRANSPOSE_FIELD(mapping_in_progress); | |
6485 | __TRANSPOSE_FIELD(volatile_empty); | |
6486 | __TRANSPOSE_FIELD(volatile_fault); | |
6487 | __TRANSPOSE_FIELD(all_reusable); | |
6488 | assert(object1->blocked_access); | |
6489 | assert(object2->blocked_access); | |
6490 | assert(object1->__object2_unused_bits == 0); | |
6491 | assert(object2->__object2_unused_bits == 0); | |
6492 | #if UPL_DEBUG | |
6493 | /* "uplq" refers to the object not its contents (see upl_transpose()) */ | |
6494 | #endif | |
6495 | assert((object1->purgable == VM_PURGABLE_DENY) || (object1->objq.next == NULL)); | |
6496 | assert((object1->purgable == VM_PURGABLE_DENY) || (object1->objq.prev == NULL)); | |
6497 | assert((object2->purgable == VM_PURGABLE_DENY) || (object2->objq.next == NULL)); | |
6498 | assert((object2->purgable == VM_PURGABLE_DENY) || (object2->objq.prev == NULL)); | |
6499 | ||
6500 | #undef __TRANSPOSE_FIELD | |
6501 | ||
6502 | retval = KERN_SUCCESS; | |
6503 | ||
6504 | done: | |
6505 | /* | |
6506 | * Cleanup. | |
6507 | */ | |
6508 | if (tmp_object != VM_OBJECT_NULL) { | |
6509 | vm_object_unlock(tmp_object); | |
6510 | /* | |
6511 | * Re-initialize the temporary object to avoid | |
6512 | * deallocating a real pager. | |
6513 | */ | |
6514 | _vm_object_allocate(transpose_size, tmp_object); | |
6515 | vm_object_deallocate(tmp_object); | |
6516 | tmp_object = VM_OBJECT_NULL; | |
6517 | } | |
6518 | ||
6519 | if (object1_locked) { | |
6520 | vm_object_unlock(object1); | |
6521 | object1_locked = FALSE; | |
6522 | } | |
6523 | if (object2_locked) { | |
6524 | vm_object_unlock(object2); | |
6525 | object2_locked = FALSE; | |
6526 | } | |
6527 | ||
6528 | vm_object_transpose_count++; | |
6529 | ||
6530 | return retval; | |
6531 | } | |
6532 | ||
6533 | ||
6534 | /* | |
6535 | * vm_object_cluster_size | |
6536 | * | |
6537 | * Determine how big a cluster we should issue an I/O for... | |
6538 | * | |
6539 | * Inputs: *start == offset of page needed | |
6540 | * *length == maximum cluster pager can handle | |
6541 | * Outputs: *start == beginning offset of cluster | |
6542 | * *length == length of cluster to try | |
6543 | * | |
6544 | * The original *start will be encompassed by the cluster | |
6545 | * | |
6546 | */ | |
6547 | extern int speculative_reads_disabled; | |
6548 | ||
6549 | /* | |
6550 | * Try to always keep these values an even multiple of PAGE_SIZE. We use these values | |
6551 | * to derive min_ph_bytes and max_ph_bytes (IMP: bytes not # of pages) and expect those values to | |
6552 | * always be page-aligned. The derivation could involve operations (e.g. division) | |
6553 | * that could give us non-page-size aligned values if we start out with values that | |
6554 | * are odd multiples of PAGE_SIZE. | |
6555 | */ | |
6556 | #if CONFIG_EMBEDDED | |
6557 | unsigned int preheat_max_bytes = (1024 * 512); | |
6558 | #else /* CONFIG_EMBEDDED */ | |
6559 | unsigned int preheat_max_bytes = MAX_UPL_TRANSFER_BYTES; | |
6560 | #endif /* CONFIG_EMBEDDED */ | |
6561 | unsigned int preheat_min_bytes = (1024 * 32); | |
6562 | ||
6563 | ||
6564 | __private_extern__ void | |
6565 | vm_object_cluster_size(vm_object_t object, vm_object_offset_t *start, | |
6566 | vm_size_t *length, vm_object_fault_info_t fault_info, uint32_t *io_streaming) | |
6567 | { | |
6568 | vm_size_t pre_heat_size; | |
6569 | vm_size_t tail_size; | |
6570 | vm_size_t head_size; | |
6571 | vm_size_t max_length; | |
6572 | vm_size_t cluster_size; | |
6573 | vm_object_offset_t object_size; | |
6574 | vm_object_offset_t orig_start; | |
6575 | vm_object_offset_t target_start; | |
6576 | vm_object_offset_t offset; | |
6577 | vm_behavior_t behavior; | |
6578 | boolean_t look_behind = TRUE; | |
6579 | boolean_t look_ahead = TRUE; | |
6580 | boolean_t isSSD = FALSE; | |
6581 | uint32_t throttle_limit; | |
6582 | int sequential_run; | |
6583 | int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
6584 | vm_size_t max_ph_size; | |
6585 | vm_size_t min_ph_size; | |
6586 | ||
6587 | assert( !(*length & PAGE_MASK)); | |
6588 | assert( !(*start & PAGE_MASK_64)); | |
6589 | ||
6590 | /* | |
6591 | * remember maxiumum length of run requested | |
6592 | */ | |
6593 | max_length = *length; | |
6594 | /* | |
6595 | * we'll always return a cluster size of at least | |
6596 | * 1 page, since the original fault must always | |
6597 | * be processed | |
6598 | */ | |
6599 | *length = PAGE_SIZE; | |
6600 | *io_streaming = 0; | |
6601 | ||
6602 | if (speculative_reads_disabled || fault_info == NULL) { | |
6603 | /* | |
6604 | * no cluster... just fault the page in | |
6605 | */ | |
6606 | return; | |
6607 | } | |
6608 | orig_start = *start; | |
6609 | target_start = orig_start; | |
6610 | cluster_size = round_page(fault_info->cluster_size); | |
6611 | behavior = fault_info->behavior; | |
6612 | ||
6613 | vm_object_lock(object); | |
6614 | ||
6615 | if (object->pager == MEMORY_OBJECT_NULL) | |
6616 | goto out; /* pager is gone for this object, nothing more to do */ | |
6617 | ||
6618 | vnode_pager_get_isSSD(object->pager, &isSSD); | |
6619 | ||
6620 | min_ph_size = round_page(preheat_min_bytes); | |
6621 | max_ph_size = round_page(preheat_max_bytes); | |
6622 | ||
6623 | #if !CONFIG_EMBEDDED | |
6624 | if (isSSD) { | |
6625 | min_ph_size /= 2; | |
6626 | max_ph_size /= 8; | |
6627 | ||
6628 | if (min_ph_size & PAGE_MASK_64) { | |
6629 | min_ph_size = trunc_page(min_ph_size); | |
6630 | } | |
6631 | ||
6632 | if (max_ph_size & PAGE_MASK_64) { | |
6633 | max_ph_size = trunc_page(max_ph_size); | |
6634 | } | |
6635 | } | |
6636 | #endif /* !CONFIG_EMBEDDED */ | |
6637 | ||
6638 | if (min_ph_size < PAGE_SIZE) | |
6639 | min_ph_size = PAGE_SIZE; | |
6640 | ||
6641 | if (max_ph_size < PAGE_SIZE) | |
6642 | max_ph_size = PAGE_SIZE; | |
6643 | else if (max_ph_size > MAX_UPL_TRANSFER_BYTES) | |
6644 | max_ph_size = MAX_UPL_TRANSFER_BYTES; | |
6645 | ||
6646 | if (max_length > max_ph_size) | |
6647 | max_length = max_ph_size; | |
6648 | ||
6649 | if (max_length <= PAGE_SIZE) | |
6650 | goto out; | |
6651 | ||
6652 | if (object->internal) | |
6653 | object_size = object->vo_size; | |
6654 | else | |
6655 | vnode_pager_get_object_size(object->pager, &object_size); | |
6656 | ||
6657 | object_size = round_page_64(object_size); | |
6658 | ||
6659 | if (orig_start >= object_size) { | |
6660 | /* | |
6661 | * fault occurred beyond the EOF... | |
6662 | * we need to punt w/o changing the | |
6663 | * starting offset | |
6664 | */ | |
6665 | goto out; | |
6666 | } | |
6667 | if (object->pages_used > object->pages_created) { | |
6668 | /* | |
6669 | * must have wrapped our 32 bit counters | |
6670 | * so reset | |
6671 | */ | |
6672 | object->pages_used = object->pages_created = 0; | |
6673 | } | |
6674 | if ((sequential_run = object->sequential)) { | |
6675 | if (sequential_run < 0) { | |
6676 | sequential_behavior = VM_BEHAVIOR_RSEQNTL; | |
6677 | sequential_run = 0 - sequential_run; | |
6678 | } else { | |
6679 | sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
6680 | } | |
6681 | ||
6682 | } | |
6683 | switch (behavior) { | |
6684 | ||
6685 | default: | |
6686 | behavior = VM_BEHAVIOR_DEFAULT; | |
6687 | ||
6688 | case VM_BEHAVIOR_DEFAULT: | |
6689 | if (object->internal && fault_info->user_tag == VM_MEMORY_STACK) | |
6690 | goto out; | |
6691 | ||
6692 | if (sequential_run >= (3 * PAGE_SIZE)) { | |
6693 | pre_heat_size = sequential_run + PAGE_SIZE; | |
6694 | ||
6695 | if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) | |
6696 | look_behind = FALSE; | |
6697 | else | |
6698 | look_ahead = FALSE; | |
6699 | ||
6700 | *io_streaming = 1; | |
6701 | } else { | |
6702 | ||
6703 | if (object->pages_created < (20 * (min_ph_size >> PAGE_SHIFT))) { | |
6704 | /* | |
6705 | * prime the pump | |
6706 | */ | |
6707 | pre_heat_size = min_ph_size; | |
6708 | } else { | |
6709 | /* | |
6710 | * Linear growth in PH size: The maximum size is max_length... | |
6711 | * this cacluation will result in a size that is neither a | |
6712 | * power of 2 nor a multiple of PAGE_SIZE... so round | |
6713 | * it up to the nearest PAGE_SIZE boundary | |
6714 | */ | |
6715 | pre_heat_size = (max_length * (uint64_t)object->pages_used) / object->pages_created; | |
6716 | ||
6717 | if (pre_heat_size < min_ph_size) | |
6718 | pre_heat_size = min_ph_size; | |
6719 | else | |
6720 | pre_heat_size = round_page(pre_heat_size); | |
6721 | } | |
6722 | } | |
6723 | break; | |
6724 | ||
6725 | case VM_BEHAVIOR_RANDOM: | |
6726 | if ((pre_heat_size = cluster_size) <= PAGE_SIZE) | |
6727 | goto out; | |
6728 | break; | |
6729 | ||
6730 | case VM_BEHAVIOR_SEQUENTIAL: | |
6731 | if ((pre_heat_size = cluster_size) == 0) | |
6732 | pre_heat_size = sequential_run + PAGE_SIZE; | |
6733 | look_behind = FALSE; | |
6734 | *io_streaming = 1; | |
6735 | ||
6736 | break; | |
6737 | ||
6738 | case VM_BEHAVIOR_RSEQNTL: | |
6739 | if ((pre_heat_size = cluster_size) == 0) | |
6740 | pre_heat_size = sequential_run + PAGE_SIZE; | |
6741 | look_ahead = FALSE; | |
6742 | *io_streaming = 1; | |
6743 | ||
6744 | break; | |
6745 | ||
6746 | } | |
6747 | throttle_limit = (uint32_t) max_length; | |
6748 | assert(throttle_limit == max_length); | |
6749 | ||
6750 | if (vnode_pager_get_throttle_io_limit(object->pager, &throttle_limit) == KERN_SUCCESS) { | |
6751 | if (max_length > throttle_limit) | |
6752 | max_length = throttle_limit; | |
6753 | } | |
6754 | if (pre_heat_size > max_length) | |
6755 | pre_heat_size = max_length; | |
6756 | ||
6757 | if (behavior == VM_BEHAVIOR_DEFAULT && (pre_heat_size > min_ph_size)) { | |
6758 | ||
6759 | unsigned int consider_free = vm_page_free_count + vm_page_cleaned_count; | |
6760 | ||
6761 | if (consider_free < vm_page_throttle_limit) { | |
6762 | pre_heat_size = trunc_page(pre_heat_size / 16); | |
6763 | } else if (consider_free < vm_page_free_target) { | |
6764 | pre_heat_size = trunc_page(pre_heat_size / 4); | |
6765 | } | |
6766 | ||
6767 | if (pre_heat_size < min_ph_size) | |
6768 | pre_heat_size = min_ph_size; | |
6769 | } | |
6770 | if (look_ahead == TRUE) { | |
6771 | if (look_behind == TRUE) { | |
6772 | /* | |
6773 | * if we get here its due to a random access... | |
6774 | * so we want to center the original fault address | |
6775 | * within the cluster we will issue... make sure | |
6776 | * to calculate 'head_size' as a multiple of PAGE_SIZE... | |
6777 | * 'pre_heat_size' is a multiple of PAGE_SIZE but not | |
6778 | * necessarily an even number of pages so we need to truncate | |
6779 | * the result to a PAGE_SIZE boundary | |
6780 | */ | |
6781 | head_size = trunc_page(pre_heat_size / 2); | |
6782 | ||
6783 | if (target_start > head_size) | |
6784 | target_start -= head_size; | |
6785 | else | |
6786 | target_start = 0; | |
6787 | ||
6788 | /* | |
6789 | * 'target_start' at this point represents the beginning offset | |
6790 | * of the cluster we are considering... 'orig_start' will be in | |
6791 | * the center of this cluster if we didn't have to clip the start | |
6792 | * due to running into the start of the file | |
6793 | */ | |
6794 | } | |
6795 | if ((target_start + pre_heat_size) > object_size) | |
6796 | pre_heat_size = (vm_size_t)(round_page_64(object_size - target_start)); | |
6797 | /* | |
6798 | * at this point caclulate the number of pages beyond the original fault | |
6799 | * address that we want to consider... this is guaranteed not to extend beyond | |
6800 | * the current EOF... | |
6801 | */ | |
6802 | assert((vm_size_t)(orig_start - target_start) == (orig_start - target_start)); | |
6803 | tail_size = pre_heat_size - (vm_size_t)(orig_start - target_start) - PAGE_SIZE; | |
6804 | } else { | |
6805 | if (pre_heat_size > target_start) { | |
6806 | /* | |
6807 | * since pre_heat_size is always smaller then 2^32, | |
6808 | * if it is larger then target_start (a 64 bit value) | |
6809 | * it is safe to clip target_start to 32 bits | |
6810 | */ | |
6811 | pre_heat_size = (vm_size_t) target_start; | |
6812 | } | |
6813 | tail_size = 0; | |
6814 | } | |
6815 | assert( !(target_start & PAGE_MASK_64)); | |
6816 | assert( !(pre_heat_size & PAGE_MASK_64)); | |
6817 | ||
6818 | if (pre_heat_size <= PAGE_SIZE) | |
6819 | goto out; | |
6820 | ||
6821 | if (look_behind == TRUE) { | |
6822 | /* | |
6823 | * take a look at the pages before the original | |
6824 | * faulting offset... recalculate this in case | |
6825 | * we had to clip 'pre_heat_size' above to keep | |
6826 | * from running past the EOF. | |
6827 | */ | |
6828 | head_size = pre_heat_size - tail_size - PAGE_SIZE; | |
6829 | ||
6830 | for (offset = orig_start - PAGE_SIZE_64; head_size; offset -= PAGE_SIZE_64, head_size -= PAGE_SIZE) { | |
6831 | /* | |
6832 | * don't poke below the lowest offset | |
6833 | */ | |
6834 | if (offset < fault_info->lo_offset) | |
6835 | break; | |
6836 | /* | |
6837 | * for external objects or internal objects w/o a pager, | |
6838 | * VM_COMPRESSOR_PAGER_STATE_GET will return VM_EXTERNAL_STATE_UNKNOWN | |
6839 | */ | |
6840 | if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset) == VM_EXTERNAL_STATE_ABSENT) { | |
6841 | break; | |
6842 | } | |
6843 | if (vm_page_lookup(object, offset) != VM_PAGE_NULL) { | |
6844 | /* | |
6845 | * don't bridge resident pages | |
6846 | */ | |
6847 | break; | |
6848 | } | |
6849 | *start = offset; | |
6850 | *length += PAGE_SIZE; | |
6851 | } | |
6852 | } | |
6853 | if (look_ahead == TRUE) { | |
6854 | for (offset = orig_start + PAGE_SIZE_64; tail_size; offset += PAGE_SIZE_64, tail_size -= PAGE_SIZE) { | |
6855 | /* | |
6856 | * don't poke above the highest offset | |
6857 | */ | |
6858 | if (offset >= fault_info->hi_offset) | |
6859 | break; | |
6860 | assert(offset < object_size); | |
6861 | ||
6862 | /* | |
6863 | * for external objects or internal objects w/o a pager, | |
6864 | * VM_COMPRESSOR_PAGER_STATE_GET will return VM_EXTERNAL_STATE_UNKNOWN | |
6865 | */ | |
6866 | if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset) == VM_EXTERNAL_STATE_ABSENT) { | |
6867 | break; | |
6868 | } | |
6869 | if (vm_page_lookup(object, offset) != VM_PAGE_NULL) { | |
6870 | /* | |
6871 | * don't bridge resident pages | |
6872 | */ | |
6873 | break; | |
6874 | } | |
6875 | *length += PAGE_SIZE; | |
6876 | } | |
6877 | } | |
6878 | out: | |
6879 | if (*length > max_length) | |
6880 | *length = max_length; | |
6881 | ||
6882 | vm_object_unlock(object); | |
6883 | ||
6884 | DTRACE_VM1(clustersize, vm_size_t, *length); | |
6885 | } | |
6886 | ||
6887 | ||
6888 | /* | |
6889 | * Allow manipulation of individual page state. This is actually part of | |
6890 | * the UPL regimen but takes place on the VM object rather than on a UPL | |
6891 | */ | |
6892 | ||
6893 | kern_return_t | |
6894 | vm_object_page_op( | |
6895 | vm_object_t object, | |
6896 | vm_object_offset_t offset, | |
6897 | int ops, | |
6898 | ppnum_t *phys_entry, | |
6899 | int *flags) | |
6900 | { | |
6901 | vm_page_t dst_page; | |
6902 | ||
6903 | vm_object_lock(object); | |
6904 | ||
6905 | if(ops & UPL_POP_PHYSICAL) { | |
6906 | if(object->phys_contiguous) { | |
6907 | if (phys_entry) { | |
6908 | *phys_entry = (ppnum_t) | |
6909 | (object->vo_shadow_offset >> PAGE_SHIFT); | |
6910 | } | |
6911 | vm_object_unlock(object); | |
6912 | return KERN_SUCCESS; | |
6913 | } else { | |
6914 | vm_object_unlock(object); | |
6915 | return KERN_INVALID_OBJECT; | |
6916 | } | |
6917 | } | |
6918 | if(object->phys_contiguous) { | |
6919 | vm_object_unlock(object); | |
6920 | return KERN_INVALID_OBJECT; | |
6921 | } | |
6922 | ||
6923 | while(TRUE) { | |
6924 | if((dst_page = vm_page_lookup(object,offset)) == VM_PAGE_NULL) { | |
6925 | vm_object_unlock(object); | |
6926 | return KERN_FAILURE; | |
6927 | } | |
6928 | ||
6929 | /* Sync up on getting the busy bit */ | |
6930 | if((dst_page->busy || dst_page->cleaning) && | |
6931 | (((ops & UPL_POP_SET) && | |
6932 | (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) { | |
6933 | /* someone else is playing with the page, we will */ | |
6934 | /* have to wait */ | |
6935 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
6936 | continue; | |
6937 | } | |
6938 | ||
6939 | if (ops & UPL_POP_DUMP) { | |
6940 | if (dst_page->pmapped == TRUE) | |
6941 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(dst_page)); | |
6942 | ||
6943 | VM_PAGE_FREE(dst_page); | |
6944 | break; | |
6945 | } | |
6946 | ||
6947 | if (flags) { | |
6948 | *flags = 0; | |
6949 | ||
6950 | /* Get the condition of flags before requested ops */ | |
6951 | /* are undertaken */ | |
6952 | ||
6953 | if(dst_page->dirty) *flags |= UPL_POP_DIRTY; | |
6954 | if(dst_page->free_when_done) *flags |= UPL_POP_PAGEOUT; | |
6955 | if(dst_page->precious) *flags |= UPL_POP_PRECIOUS; | |
6956 | if(dst_page->absent) *flags |= UPL_POP_ABSENT; | |
6957 | if(dst_page->busy) *flags |= UPL_POP_BUSY; | |
6958 | } | |
6959 | ||
6960 | /* The caller should have made a call either contingent with */ | |
6961 | /* or prior to this call to set UPL_POP_BUSY */ | |
6962 | if(ops & UPL_POP_SET) { | |
6963 | /* The protection granted with this assert will */ | |
6964 | /* not be complete. If the caller violates the */ | |
6965 | /* convention and attempts to change page state */ | |
6966 | /* without first setting busy we may not see it */ | |
6967 | /* because the page may already be busy. However */ | |
6968 | /* if such violations occur we will assert sooner */ | |
6969 | /* or later. */ | |
6970 | assert(dst_page->busy || (ops & UPL_POP_BUSY)); | |
6971 | if (ops & UPL_POP_DIRTY) { | |
6972 | SET_PAGE_DIRTY(dst_page, FALSE); | |
6973 | } | |
6974 | if (ops & UPL_POP_PAGEOUT) dst_page->free_when_done = TRUE; | |
6975 | if (ops & UPL_POP_PRECIOUS) dst_page->precious = TRUE; | |
6976 | if (ops & UPL_POP_ABSENT) dst_page->absent = TRUE; | |
6977 | if (ops & UPL_POP_BUSY) dst_page->busy = TRUE; | |
6978 | } | |
6979 | ||
6980 | if(ops & UPL_POP_CLR) { | |
6981 | assert(dst_page->busy); | |
6982 | if (ops & UPL_POP_DIRTY) dst_page->dirty = FALSE; | |
6983 | if (ops & UPL_POP_PAGEOUT) dst_page->free_when_done = FALSE; | |
6984 | if (ops & UPL_POP_PRECIOUS) dst_page->precious = FALSE; | |
6985 | if (ops & UPL_POP_ABSENT) dst_page->absent = FALSE; | |
6986 | if (ops & UPL_POP_BUSY) { | |
6987 | dst_page->busy = FALSE; | |
6988 | PAGE_WAKEUP(dst_page); | |
6989 | } | |
6990 | } | |
6991 | if (phys_entry) { | |
6992 | /* | |
6993 | * The physical page number will remain valid | |
6994 | * only if the page is kept busy. | |
6995 | */ | |
6996 | assert(dst_page->busy); | |
6997 | *phys_entry = VM_PAGE_GET_PHYS_PAGE(dst_page); | |
6998 | } | |
6999 | ||
7000 | break; | |
7001 | } | |
7002 | ||
7003 | vm_object_unlock(object); | |
7004 | return KERN_SUCCESS; | |
7005 | ||
7006 | } | |
7007 | ||
7008 | /* | |
7009 | * vm_object_range_op offers performance enhancement over | |
7010 | * vm_object_page_op for page_op functions which do not require page | |
7011 | * level state to be returned from the call. Page_op was created to provide | |
7012 | * a low-cost alternative to page manipulation via UPLs when only a single | |
7013 | * page was involved. The range_op call establishes the ability in the _op | |
7014 | * family of functions to work on multiple pages where the lack of page level | |
7015 | * state handling allows the caller to avoid the overhead of the upl structures. | |
7016 | */ | |
7017 | ||
7018 | kern_return_t | |
7019 | vm_object_range_op( | |
7020 | vm_object_t object, | |
7021 | vm_object_offset_t offset_beg, | |
7022 | vm_object_offset_t offset_end, | |
7023 | int ops, | |
7024 | uint32_t *range) | |
7025 | { | |
7026 | vm_object_offset_t offset; | |
7027 | vm_page_t dst_page; | |
7028 | ||
7029 | if (offset_end - offset_beg > (uint32_t) -1) { | |
7030 | /* range is too big and would overflow "*range" */ | |
7031 | return KERN_INVALID_ARGUMENT; | |
7032 | } | |
7033 | if (object->resident_page_count == 0) { | |
7034 | if (range) { | |
7035 | if (ops & UPL_ROP_PRESENT) { | |
7036 | *range = 0; | |
7037 | } else { | |
7038 | *range = (uint32_t) (offset_end - offset_beg); | |
7039 | assert(*range == (offset_end - offset_beg)); | |
7040 | } | |
7041 | } | |
7042 | return KERN_SUCCESS; | |
7043 | } | |
7044 | vm_object_lock(object); | |
7045 | ||
7046 | if (object->phys_contiguous) { | |
7047 | vm_object_unlock(object); | |
7048 | return KERN_INVALID_OBJECT; | |
7049 | } | |
7050 | ||
7051 | offset = offset_beg & ~PAGE_MASK_64; | |
7052 | ||
7053 | while (offset < offset_end) { | |
7054 | dst_page = vm_page_lookup(object, offset); | |
7055 | if (dst_page != VM_PAGE_NULL) { | |
7056 | if (ops & UPL_ROP_DUMP) { | |
7057 | if (dst_page->busy || dst_page->cleaning) { | |
7058 | /* | |
7059 | * someone else is playing with the | |
7060 | * page, we will have to wait | |
7061 | */ | |
7062 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
7063 | /* | |
7064 | * need to relook the page up since it's | |
7065 | * state may have changed while we slept | |
7066 | * it might even belong to a different object | |
7067 | * at this point | |
7068 | */ | |
7069 | continue; | |
7070 | } | |
7071 | if (dst_page->laundry) | |
7072 | vm_pageout_steal_laundry(dst_page, FALSE); | |
7073 | ||
7074 | if (dst_page->pmapped == TRUE) | |
7075 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(dst_page)); | |
7076 | ||
7077 | VM_PAGE_FREE(dst_page); | |
7078 | ||
7079 | } else if ((ops & UPL_ROP_ABSENT) | |
7080 | && (!dst_page->absent || dst_page->busy)) { | |
7081 | break; | |
7082 | } | |
7083 | } else if (ops & UPL_ROP_PRESENT) | |
7084 | break; | |
7085 | ||
7086 | offset += PAGE_SIZE; | |
7087 | } | |
7088 | vm_object_unlock(object); | |
7089 | ||
7090 | if (range) { | |
7091 | if (offset > offset_end) | |
7092 | offset = offset_end; | |
7093 | if(offset > offset_beg) { | |
7094 | *range = (uint32_t) (offset - offset_beg); | |
7095 | assert(*range == (offset - offset_beg)); | |
7096 | } else { | |
7097 | *range = 0; | |
7098 | } | |
7099 | } | |
7100 | return KERN_SUCCESS; | |
7101 | } | |
7102 | ||
7103 | /* | |
7104 | * Used to point a pager directly to a range of memory (when the pager may be associated | |
7105 | * with a non-device vnode). Takes a virtual address, an offset, and a size. We currently | |
7106 | * expect that the virtual address will denote the start of a range that is physically contiguous. | |
7107 | */ | |
7108 | kern_return_t pager_map_to_phys_contiguous( | |
7109 | memory_object_control_t object, | |
7110 | memory_object_offset_t offset, | |
7111 | addr64_t base_vaddr, | |
7112 | vm_size_t size) | |
7113 | { | |
7114 | ppnum_t page_num; | |
7115 | boolean_t clobbered_private; | |
7116 | kern_return_t retval; | |
7117 | vm_object_t pager_object; | |
7118 | ||
7119 | page_num = pmap_find_phys(kernel_pmap, base_vaddr); | |
7120 | ||
7121 | if (!page_num) { | |
7122 | retval = KERN_FAILURE; | |
7123 | goto out; | |
7124 | } | |
7125 | ||
7126 | pager_object = memory_object_control_to_vm_object(object); | |
7127 | ||
7128 | if (!pager_object) { | |
7129 | retval = KERN_FAILURE; | |
7130 | goto out; | |
7131 | } | |
7132 | ||
7133 | clobbered_private = pager_object->private; | |
7134 | if (pager_object->private != TRUE) { | |
7135 | vm_object_lock(pager_object); | |
7136 | pager_object->private = TRUE; | |
7137 | vm_object_unlock(pager_object); | |
7138 | } | |
7139 | retval = vm_object_populate_with_private(pager_object, offset, page_num, size); | |
7140 | ||
7141 | if (retval != KERN_SUCCESS) { | |
7142 | if (pager_object->private != clobbered_private) { | |
7143 | vm_object_lock(pager_object); | |
7144 | pager_object->private = clobbered_private; | |
7145 | vm_object_unlock(pager_object); | |
7146 | } | |
7147 | } | |
7148 | ||
7149 | out: | |
7150 | return retval; | |
7151 | } | |
7152 | ||
7153 | uint32_t scan_object_collision = 0; | |
7154 | ||
7155 | void | |
7156 | vm_object_lock(vm_object_t object) | |
7157 | { | |
7158 | if (object == vm_pageout_scan_wants_object) { | |
7159 | scan_object_collision++; | |
7160 | mutex_pause(2); | |
7161 | } | |
7162 | lck_rw_lock_exclusive(&object->Lock); | |
7163 | #if DEVELOPMENT || DEBUG | |
7164 | object->Lock_owner = current_thread(); | |
7165 | #endif | |
7166 | } | |
7167 | ||
7168 | boolean_t | |
7169 | vm_object_lock_avoid(vm_object_t object) | |
7170 | { | |
7171 | if (object == vm_pageout_scan_wants_object) { | |
7172 | scan_object_collision++; | |
7173 | return TRUE; | |
7174 | } | |
7175 | return FALSE; | |
7176 | } | |
7177 | ||
7178 | boolean_t | |
7179 | _vm_object_lock_try(vm_object_t object) | |
7180 | { | |
7181 | boolean_t retval; | |
7182 | ||
7183 | retval = lck_rw_try_lock_exclusive(&object->Lock); | |
7184 | #if DEVELOPMENT || DEBUG | |
7185 | if (retval == TRUE) | |
7186 | object->Lock_owner = current_thread(); | |
7187 | #endif | |
7188 | return (retval); | |
7189 | } | |
7190 | ||
7191 | boolean_t | |
7192 | vm_object_lock_try(vm_object_t object) | |
7193 | { | |
7194 | /* | |
7195 | * Called from hibernate path so check before blocking. | |
7196 | */ | |
7197 | if (vm_object_lock_avoid(object) && ml_get_interrupts_enabled() && get_preemption_level()==0) { | |
7198 | mutex_pause(2); | |
7199 | } | |
7200 | return _vm_object_lock_try(object); | |
7201 | } | |
7202 | ||
7203 | void | |
7204 | vm_object_lock_shared(vm_object_t object) | |
7205 | { | |
7206 | if (vm_object_lock_avoid(object)) { | |
7207 | mutex_pause(2); | |
7208 | } | |
7209 | lck_rw_lock_shared(&object->Lock); | |
7210 | } | |
7211 | ||
7212 | boolean_t | |
7213 | vm_object_lock_yield_shared(vm_object_t object) | |
7214 | { | |
7215 | boolean_t retval = FALSE, force_yield = FALSE;; | |
7216 | ||
7217 | vm_object_lock_assert_shared(object); | |
7218 | ||
7219 | force_yield = vm_object_lock_avoid(object); | |
7220 | ||
7221 | retval = lck_rw_lock_yield_shared(&object->Lock, force_yield); | |
7222 | ||
7223 | return (retval); | |
7224 | } | |
7225 | ||
7226 | boolean_t | |
7227 | vm_object_lock_try_shared(vm_object_t object) | |
7228 | { | |
7229 | if (vm_object_lock_avoid(object)) { | |
7230 | mutex_pause(2); | |
7231 | } | |
7232 | return (lck_rw_try_lock_shared(&object->Lock)); | |
7233 | } | |
7234 | ||
7235 | boolean_t | |
7236 | vm_object_lock_upgrade(vm_object_t object) | |
7237 | { boolean_t retval; | |
7238 | ||
7239 | retval = lck_rw_lock_shared_to_exclusive(&object->Lock); | |
7240 | #if DEVELOPMENT || DEBUG | |
7241 | if (retval == TRUE) | |
7242 | object->Lock_owner = current_thread(); | |
7243 | #endif | |
7244 | return (retval); | |
7245 | } | |
7246 | ||
7247 | void | |
7248 | vm_object_unlock(vm_object_t object) | |
7249 | { | |
7250 | #if DEVELOPMENT || DEBUG | |
7251 | if (object->Lock_owner) { | |
7252 | if (object->Lock_owner != current_thread()) | |
7253 | panic("vm_object_unlock: not owner - %p\n", object); | |
7254 | object->Lock_owner = 0; | |
7255 | } | |
7256 | #endif | |
7257 | lck_rw_done(&object->Lock); | |
7258 | } | |
7259 | ||
7260 | ||
7261 | unsigned int vm_object_change_wimg_mode_count = 0; | |
7262 | ||
7263 | /* | |
7264 | * The object must be locked | |
7265 | */ | |
7266 | void | |
7267 | vm_object_change_wimg_mode(vm_object_t object, unsigned int wimg_mode) | |
7268 | { | |
7269 | vm_page_t p; | |
7270 | ||
7271 | vm_object_lock_assert_exclusive(object); | |
7272 | ||
7273 | vm_object_paging_wait(object, THREAD_UNINT); | |
7274 | ||
7275 | vm_page_queue_iterate(&object->memq, p, vm_page_t, listq) { | |
7276 | ||
7277 | if (!p->fictitious) | |
7278 | pmap_set_cache_attributes(VM_PAGE_GET_PHYS_PAGE(p), wimg_mode); | |
7279 | } | |
7280 | if (wimg_mode == VM_WIMG_USE_DEFAULT) | |
7281 | object->set_cache_attr = FALSE; | |
7282 | else | |
7283 | object->set_cache_attr = TRUE; | |
7284 | ||
7285 | object->wimg_bits = wimg_mode; | |
7286 | ||
7287 | vm_object_change_wimg_mode_count++; | |
7288 | } | |
7289 | ||
7290 | #if CONFIG_FREEZE | |
7291 | ||
7292 | /* | |
7293 | * This routine does the "relocation" of previously | |
7294 | * compressed pages belonging to this object that are | |
7295 | * residing in a number of compressed segments into | |
7296 | * a set of compressed segments dedicated to hold | |
7297 | * compressed pages belonging to this object. | |
7298 | */ | |
7299 | ||
7300 | extern void *freezer_chead; | |
7301 | extern char *freezer_compressor_scratch_buf; | |
7302 | extern int c_freezer_compression_count; | |
7303 | extern AbsoluteTime c_freezer_last_yield_ts; | |
7304 | ||
7305 | #define MAX_FREE_BATCH 32 | |
7306 | #define FREEZER_DUTY_CYCLE_ON_MS 5 | |
7307 | #define FREEZER_DUTY_CYCLE_OFF_MS 5 | |
7308 | ||
7309 | static int c_freezer_should_yield(void); | |
7310 | ||
7311 | ||
7312 | static int | |
7313 | c_freezer_should_yield() | |
7314 | { | |
7315 | AbsoluteTime cur_time; | |
7316 | uint64_t nsecs; | |
7317 | ||
7318 | assert(c_freezer_last_yield_ts); | |
7319 | clock_get_uptime(&cur_time); | |
7320 | ||
7321 | SUB_ABSOLUTETIME(&cur_time, &c_freezer_last_yield_ts); | |
7322 | absolutetime_to_nanoseconds(cur_time, &nsecs); | |
7323 | ||
7324 | if (nsecs > 1000 * 1000 * FREEZER_DUTY_CYCLE_ON_MS) | |
7325 | return (1); | |
7326 | return (0); | |
7327 | } | |
7328 | ||
7329 | ||
7330 | void | |
7331 | vm_object_compressed_freezer_done() | |
7332 | { | |
7333 | vm_compressor_finished_filling(&freezer_chead); | |
7334 | } | |
7335 | ||
7336 | ||
7337 | void | |
7338 | vm_object_compressed_freezer_pageout( | |
7339 | vm_object_t object) | |
7340 | { | |
7341 | vm_page_t p; | |
7342 | vm_page_t local_freeq = NULL; | |
7343 | int local_freed = 0; | |
7344 | kern_return_t retval = KERN_SUCCESS; | |
7345 | int obj_resident_page_count_snapshot = 0; | |
7346 | ||
7347 | assert(object != VM_OBJECT_NULL); | |
7348 | assert(object->internal); | |
7349 | ||
7350 | vm_object_lock(object); | |
7351 | ||
7352 | if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) { | |
7353 | ||
7354 | if (!object->pager_initialized) { | |
7355 | ||
7356 | vm_object_collapse(object, (vm_object_offset_t) 0, TRUE); | |
7357 | ||
7358 | if (!object->pager_initialized) | |
7359 | vm_object_compressor_pager_create(object); | |
7360 | } | |
7361 | ||
7362 | if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) { | |
7363 | vm_object_unlock(object); | |
7364 | return; | |
7365 | } | |
7366 | } | |
7367 | ||
7368 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { | |
7369 | vm_object_offset_t curr_offset = 0; | |
7370 | ||
7371 | /* | |
7372 | * Go through the object and make sure that any | |
7373 | * previously compressed pages are relocated into | |
7374 | * a compressed segment associated with our "freezer_chead". | |
7375 | */ | |
7376 | while (curr_offset < object->vo_size) { | |
7377 | ||
7378 | curr_offset = vm_compressor_pager_next_compressed(object->pager, curr_offset); | |
7379 | ||
7380 | if (curr_offset == (vm_object_offset_t) -1) | |
7381 | break; | |
7382 | ||
7383 | retval = vm_compressor_pager_relocate(object->pager, curr_offset, &freezer_chead); | |
7384 | ||
7385 | if (retval != KERN_SUCCESS) | |
7386 | break; | |
7387 | ||
7388 | curr_offset += PAGE_SIZE_64; | |
7389 | } | |
7390 | } | |
7391 | ||
7392 | /* | |
7393 | * We can't hold the object lock while heading down into the compressed pager | |
7394 | * layer because we might need the kernel map lock down there to allocate new | |
7395 | * compressor data structures. And if this same object is mapped in the kernel | |
7396 | * and there's a fault on it, then that thread will want the object lock while | |
7397 | * holding the kernel map lock. | |
7398 | * | |
7399 | * Since we are going to drop/grab the object lock repeatedly, we must make sure | |
7400 | * we won't be stuck in an infinite loop if the same page(s) keep getting | |
7401 | * decompressed. So we grab a snapshot of the number of pages in the object and | |
7402 | * we won't process any more than that number of pages. | |
7403 | */ | |
7404 | ||
7405 | obj_resident_page_count_snapshot = object->resident_page_count; | |
7406 | ||
7407 | vm_object_activity_begin(object); | |
7408 | ||
7409 | while ((obj_resident_page_count_snapshot--) && !vm_page_queue_empty(&object->memq)) { | |
7410 | ||
7411 | p = (vm_page_t)vm_page_queue_first(&object->memq); | |
7412 | ||
7413 | KERNEL_DEBUG(0xe0430004 | DBG_FUNC_START, object, local_freed, 0, 0, 0); | |
7414 | ||
7415 | vm_page_lockspin_queues(); | |
7416 | ||
7417 | if (p->cleaning || p->fictitious || p->busy || p->absent || p->unusual || p->error || VM_PAGE_WIRED(p)) { | |
7418 | ||
7419 | vm_page_unlock_queues(); | |
7420 | ||
7421 | KERNEL_DEBUG(0xe0430004 | DBG_FUNC_END, object, local_freed, 1, 0, 0); | |
7422 | ||
7423 | vm_page_queue_remove(&object->memq, p, vm_page_t, listq); | |
7424 | vm_page_queue_enter(&object->memq, p, vm_page_t, listq); | |
7425 | ||
7426 | continue; | |
7427 | } | |
7428 | ||
7429 | if (p->pmapped == TRUE) { | |
7430 | int refmod_state, pmap_flags; | |
7431 | ||
7432 | if (p->dirty || p->precious) { | |
7433 | pmap_flags = PMAP_OPTIONS_COMPRESSOR; | |
7434 | } else { | |
7435 | pmap_flags = PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED; | |
7436 | } | |
7437 | ||
7438 | refmod_state = pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(p), pmap_flags, NULL); | |
7439 | if (refmod_state & VM_MEM_MODIFIED) { | |
7440 | SET_PAGE_DIRTY(p, FALSE); | |
7441 | } | |
7442 | } | |
7443 | ||
7444 | if (p->dirty == FALSE && p->precious == FALSE) { | |
7445 | /* | |
7446 | * Clean and non-precious page. | |
7447 | */ | |
7448 | vm_page_unlock_queues(); | |
7449 | VM_PAGE_FREE(p); | |
7450 | ||
7451 | KERNEL_DEBUG(0xe0430004 | DBG_FUNC_END, object, local_freed, 2, 0, 0); | |
7452 | continue; | |
7453 | } | |
7454 | ||
7455 | if (p->laundry) | |
7456 | vm_pageout_steal_laundry(p, TRUE); | |
7457 | ||
7458 | vm_page_queues_remove(p, TRUE); | |
7459 | ||
7460 | vm_page_unlock_queues(); | |
7461 | ||
7462 | ||
7463 | /* | |
7464 | * In case the compressor fails to compress this page, we need it at | |
7465 | * the back of the object memq so that we don't keep trying to process it. | |
7466 | * Make the move here while we have the object lock held. | |
7467 | */ | |
7468 | ||
7469 | vm_page_queue_remove(&object->memq, p, vm_page_t, listq); | |
7470 | vm_page_queue_enter(&object->memq, p, vm_page_t, listq); | |
7471 | ||
7472 | /* | |
7473 | * Grab an activity_in_progress here for vm_pageout_compress_page() to consume. | |
7474 | * | |
7475 | * Mark the page busy so no one messes with it while we have the object lock dropped. | |
7476 | */ | |
7477 | ||
7478 | p->busy = TRUE; | |
7479 | ||
7480 | vm_object_activity_begin(object); | |
7481 | ||
7482 | vm_object_unlock(object); | |
7483 | ||
7484 | /* | |
7485 | * arg3 == FALSE tells vm_pageout_compress_page that we don't hold the object lock and the pager may not be initialized. | |
7486 | */ | |
7487 | if (vm_pageout_compress_page(&freezer_chead, freezer_compressor_scratch_buf, p, FALSE) == KERN_SUCCESS) { | |
7488 | /* | |
7489 | * page has already been un-tabled from the object via 'vm_page_remove' | |
7490 | */ | |
7491 | p->snext = local_freeq; | |
7492 | local_freeq = p; | |
7493 | local_freed++; | |
7494 | ||
7495 | if (local_freed >= MAX_FREE_BATCH) { | |
7496 | ||
7497 | vm_page_free_list(local_freeq, TRUE); | |
7498 | ||
7499 | local_freeq = NULL; | |
7500 | local_freed = 0; | |
7501 | } | |
7502 | c_freezer_compression_count++; | |
7503 | } | |
7504 | KERNEL_DEBUG(0xe0430004 | DBG_FUNC_END, object, local_freed, 0, 0, 0); | |
7505 | ||
7506 | if (local_freed == 0 && c_freezer_should_yield()) { | |
7507 | ||
7508 | thread_yield_internal(FREEZER_DUTY_CYCLE_OFF_MS); | |
7509 | clock_get_uptime(&c_freezer_last_yield_ts); | |
7510 | } | |
7511 | ||
7512 | vm_object_lock(object); | |
7513 | } | |
7514 | ||
7515 | if (local_freeq) { | |
7516 | vm_page_free_list(local_freeq, TRUE); | |
7517 | ||
7518 | local_freeq = NULL; | |
7519 | local_freed = 0; | |
7520 | } | |
7521 | ||
7522 | vm_object_activity_end(object); | |
7523 | ||
7524 | vm_object_unlock(object); | |
7525 | ||
7526 | if (c_freezer_should_yield()) { | |
7527 | ||
7528 | thread_yield_internal(FREEZER_DUTY_CYCLE_OFF_MS); | |
7529 | clock_get_uptime(&c_freezer_last_yield_ts); | |
7530 | } | |
7531 | } | |
7532 | ||
7533 | #endif /* CONFIG_FREEZE */ | |
7534 | ||
7535 | ||
7536 | void | |
7537 | vm_object_pageout( | |
7538 | vm_object_t object) | |
7539 | { | |
7540 | vm_page_t p, next; | |
7541 | struct vm_pageout_queue *iq; | |
7542 | ||
7543 | if (!VM_CONFIG_COMPRESSOR_IS_PRESENT) | |
7544 | return; | |
7545 | ||
7546 | iq = &vm_pageout_queue_internal; | |
7547 | ||
7548 | assert(object != VM_OBJECT_NULL ); | |
7549 | ||
7550 | vm_object_lock(object); | |
7551 | ||
7552 | if (!object->internal || | |
7553 | object->terminating || | |
7554 | !object->alive) { | |
7555 | vm_object_unlock(object); | |
7556 | return; | |
7557 | } | |
7558 | ||
7559 | if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) { | |
7560 | ||
7561 | if (!object->pager_initialized) { | |
7562 | ||
7563 | vm_object_collapse(object, (vm_object_offset_t) 0, TRUE); | |
7564 | ||
7565 | if (!object->pager_initialized) | |
7566 | vm_object_compressor_pager_create(object); | |
7567 | } | |
7568 | ||
7569 | if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) { | |
7570 | vm_object_unlock(object); | |
7571 | return; | |
7572 | } | |
7573 | } | |
7574 | ||
7575 | ReScan: | |
7576 | next = (vm_page_t)vm_page_queue_first(&object->memq); | |
7577 | ||
7578 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next)) { | |
7579 | p = next; | |
7580 | next = (vm_page_t)vm_page_queue_next(&next->listq); | |
7581 | ||
7582 | assert(p->vm_page_q_state != VM_PAGE_ON_FREE_Q); | |
7583 | ||
7584 | if ((p->vm_page_q_state == VM_PAGE_ON_THROTTLED_Q) || | |
7585 | p->cleaning || | |
7586 | p->laundry || | |
7587 | p->busy || | |
7588 | p->absent || | |
7589 | p->error || | |
7590 | p->fictitious || | |
7591 | VM_PAGE_WIRED(p)) { | |
7592 | /* | |
7593 | * Page is already being cleaned or can't be cleaned. | |
7594 | */ | |
7595 | continue; | |
7596 | } | |
7597 | ||
7598 | /* Throw to the pageout queue */ | |
7599 | ||
7600 | vm_page_lockspin_queues(); | |
7601 | ||
7602 | if (vm_compressor_low_on_space()) { | |
7603 | vm_page_unlock_queues(); | |
7604 | break; | |
7605 | } | |
7606 | ||
7607 | if (VM_PAGE_Q_THROTTLED(iq)) { | |
7608 | ||
7609 | iq->pgo_draining = TRUE; | |
7610 | ||
7611 | assert_wait((event_t) (&iq->pgo_laundry + 1), | |
7612 | THREAD_INTERRUPTIBLE); | |
7613 | vm_page_unlock_queues(); | |
7614 | vm_object_unlock(object); | |
7615 | ||
7616 | thread_block(THREAD_CONTINUE_NULL); | |
7617 | ||
7618 | vm_object_lock(object); | |
7619 | goto ReScan; | |
7620 | } | |
7621 | ||
7622 | assert(!p->fictitious); | |
7623 | assert(!p->busy); | |
7624 | assert(!p->absent); | |
7625 | assert(!p->unusual); | |
7626 | assert(!p->error); | |
7627 | assert(!VM_PAGE_WIRED(p)); | |
7628 | assert(!p->cleaning); | |
7629 | ||
7630 | if (p->pmapped == TRUE) { | |
7631 | int refmod_state; | |
7632 | int pmap_options; | |
7633 | ||
7634 | /* | |
7635 | * Tell pmap the page should be accounted | |
7636 | * for as "compressed" if it's been modified. | |
7637 | */ | |
7638 | pmap_options = | |
7639 | PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED; | |
7640 | if (p->dirty || p->precious) { | |
7641 | /* | |
7642 | * We already know it's been modified, | |
7643 | * so tell pmap to account for it | |
7644 | * as "compressed". | |
7645 | */ | |
7646 | pmap_options = PMAP_OPTIONS_COMPRESSOR; | |
7647 | } | |
7648 | refmod_state = pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(p), | |
7649 | pmap_options, | |
7650 | NULL); | |
7651 | if (refmod_state & VM_MEM_MODIFIED) { | |
7652 | SET_PAGE_DIRTY(p, FALSE); | |
7653 | } | |
7654 | } | |
7655 | ||
7656 | if (!p->dirty && !p->precious) { | |
7657 | vm_page_unlock_queues(); | |
7658 | VM_PAGE_FREE(p); | |
7659 | continue; | |
7660 | } | |
7661 | vm_page_queues_remove(p, TRUE); | |
7662 | ||
7663 | vm_pageout_cluster(p); | |
7664 | ||
7665 | vm_page_unlock_queues(); | |
7666 | } | |
7667 | vm_object_unlock(object); | |
7668 | } | |
7669 | ||
7670 | ||
7671 | #if CONFIG_IOSCHED | |
7672 | void | |
7673 | vm_page_request_reprioritize(vm_object_t o, uint64_t blkno, uint32_t len, int prio) | |
7674 | { | |
7675 | io_reprioritize_req_t req; | |
7676 | struct vnode *devvp = NULL; | |
7677 | ||
7678 | if(vnode_pager_get_object_devvp(o->pager, (uintptr_t *)&devvp) != KERN_SUCCESS) | |
7679 | return; | |
7680 | ||
7681 | /* | |
7682 | * Create the request for I/O reprioritization. | |
7683 | * We use the noblock variant of zalloc because we're holding the object | |
7684 | * lock here and we could cause a deadlock in low memory conditions. | |
7685 | */ | |
7686 | req = (io_reprioritize_req_t)zalloc_noblock(io_reprioritize_req_zone); | |
7687 | if (req == NULL) | |
7688 | return; | |
7689 | req->blkno = blkno; | |
7690 | req->len = len; | |
7691 | req->priority = prio; | |
7692 | req->devvp = devvp; | |
7693 | ||
7694 | /* Insert request into the reprioritization list */ | |
7695 | IO_REPRIORITIZE_LIST_LOCK(); | |
7696 | queue_enter(&io_reprioritize_list, req, io_reprioritize_req_t, io_reprioritize_list); | |
7697 | IO_REPRIORITIZE_LIST_UNLOCK(); | |
7698 | ||
7699 | /* Wakeup reprioritize thread */ | |
7700 | IO_REPRIO_THREAD_WAKEUP(); | |
7701 | ||
7702 | return; | |
7703 | } | |
7704 | ||
7705 | void | |
7706 | vm_decmp_upl_reprioritize(upl_t upl, int prio) | |
7707 | { | |
7708 | int offset; | |
7709 | vm_object_t object; | |
7710 | io_reprioritize_req_t req; | |
7711 | struct vnode *devvp = NULL; | |
7712 | uint64_t blkno; | |
7713 | uint32_t len; | |
7714 | upl_t io_upl; | |
7715 | uint64_t *io_upl_reprio_info; | |
7716 | int io_upl_size; | |
7717 | ||
7718 | if ((upl->flags & UPL_TRACKED_BY_OBJECT) == 0 || (upl->flags & UPL_EXPEDITE_SUPPORTED) == 0) | |
7719 | return; | |
7720 | ||
7721 | /* | |
7722 | * We dont want to perform any allocations with the upl lock held since that might | |
7723 | * result in a deadlock. If the system is low on memory, the pageout thread would | |
7724 | * try to pageout stuff and might wait on this lock. If we are waiting for the memory to | |
7725 | * be freed up by the pageout thread, it would be a deadlock. | |
7726 | */ | |
7727 | ||
7728 | ||
7729 | /* First step is just to get the size of the upl to find out how big the reprio info is */ | |
7730 | if(!upl_try_lock(upl)) | |
7731 | return; | |
7732 | ||
7733 | if (upl->decmp_io_upl == NULL) { | |
7734 | /* The real I/O upl was destroyed by the time we came in here. Nothing to do. */ | |
7735 | upl_unlock(upl); | |
7736 | return; | |
7737 | } | |
7738 | ||
7739 | io_upl = upl->decmp_io_upl; | |
7740 | assert((io_upl->flags & UPL_DECMP_REAL_IO) != 0); | |
7741 | io_upl_size = io_upl->size; | |
7742 | upl_unlock(upl); | |
7743 | ||
7744 | /* Now perform the allocation */ | |
7745 | io_upl_reprio_info = (uint64_t *)kalloc(sizeof(uint64_t) * (io_upl_size / PAGE_SIZE)); | |
7746 | if (io_upl_reprio_info == NULL) | |
7747 | return; | |
7748 | ||
7749 | /* Now again take the lock, recheck the state and grab out the required info */ | |
7750 | if(!upl_try_lock(upl)) | |
7751 | goto out; | |
7752 | ||
7753 | if (upl->decmp_io_upl == NULL || upl->decmp_io_upl != io_upl) { | |
7754 | /* The real I/O upl was destroyed by the time we came in here. Nothing to do. */ | |
7755 | upl_unlock(upl); | |
7756 | goto out; | |
7757 | } | |
7758 | memcpy(io_upl_reprio_info, io_upl->upl_reprio_info, sizeof(uint64_t) * (io_upl_size / PAGE_SIZE)); | |
7759 | ||
7760 | /* Get the VM object for this UPL */ | |
7761 | if (io_upl->flags & UPL_SHADOWED) { | |
7762 | object = io_upl->map_object->shadow; | |
7763 | } else { | |
7764 | object = io_upl->map_object; | |
7765 | } | |
7766 | ||
7767 | /* Get the dev vnode ptr for this object */ | |
7768 | if(!object || !object->pager || | |
7769 | vnode_pager_get_object_devvp(object->pager, (uintptr_t *)&devvp) != KERN_SUCCESS) { | |
7770 | upl_unlock(upl); | |
7771 | goto out; | |
7772 | } | |
7773 | ||
7774 | upl_unlock(upl); | |
7775 | ||
7776 | /* Now we have all the information needed to do the expedite */ | |
7777 | ||
7778 | offset = 0; | |
7779 | while (offset < io_upl_size) { | |
7780 | blkno = io_upl_reprio_info[(offset / PAGE_SIZE)] & UPL_REPRIO_INFO_MASK; | |
7781 | len = (io_upl_reprio_info[(offset / PAGE_SIZE)] >> UPL_REPRIO_INFO_SHIFT) & UPL_REPRIO_INFO_MASK; | |
7782 | ||
7783 | /* | |
7784 | * This implementation may cause some spurious expedites due to the | |
7785 | * fact that we dont cleanup the blkno & len from the upl_reprio_info | |
7786 | * even after the I/O is complete. | |
7787 | */ | |
7788 | ||
7789 | if (blkno != 0 && len != 0) { | |
7790 | /* Create the request for I/O reprioritization */ | |
7791 | req = (io_reprioritize_req_t)zalloc(io_reprioritize_req_zone); | |
7792 | assert(req != NULL); | |
7793 | req->blkno = blkno; | |
7794 | req->len = len; | |
7795 | req->priority = prio; | |
7796 | req->devvp = devvp; | |
7797 | ||
7798 | /* Insert request into the reprioritization list */ | |
7799 | IO_REPRIORITIZE_LIST_LOCK(); | |
7800 | queue_enter(&io_reprioritize_list, req, io_reprioritize_req_t, io_reprioritize_list); | |
7801 | IO_REPRIORITIZE_LIST_UNLOCK(); | |
7802 | ||
7803 | offset += len; | |
7804 | } else { | |
7805 | offset += PAGE_SIZE; | |
7806 | } | |
7807 | } | |
7808 | ||
7809 | /* Wakeup reprioritize thread */ | |
7810 | IO_REPRIO_THREAD_WAKEUP(); | |
7811 | ||
7812 | out: | |
7813 | kfree(io_upl_reprio_info, sizeof(uint64_t) * (io_upl_size / PAGE_SIZE)); | |
7814 | return; | |
7815 | } | |
7816 | ||
7817 | void | |
7818 | vm_page_handle_prio_inversion(vm_object_t o, vm_page_t m) | |
7819 | { | |
7820 | upl_t upl; | |
7821 | upl_page_info_t *pl; | |
7822 | unsigned int i, num_pages; | |
7823 | int cur_tier; | |
7824 | ||
7825 | cur_tier = proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO); | |
7826 | ||
7827 | /* | |
7828 | Scan through all UPLs associated with the object to find the | |
7829 | UPL containing the contended page. | |
7830 | */ | |
7831 | queue_iterate(&o->uplq, upl, upl_t, uplq) { | |
7832 | if (((upl->flags & UPL_EXPEDITE_SUPPORTED) == 0) || upl->upl_priority <= cur_tier) | |
7833 | continue; | |
7834 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
7835 | num_pages = (upl->size / PAGE_SIZE); | |
7836 | ||
7837 | /* | |
7838 | For each page in the UPL page list, see if it matches the contended | |
7839 | page and was issued as a low prio I/O. | |
7840 | */ | |
7841 | for(i=0; i < num_pages; i++) { | |
7842 | if(UPL_PAGE_PRESENT(pl,i) && VM_PAGE_GET_PHYS_PAGE(m) == pl[i].phys_addr) { | |
7843 | if ((upl->flags & UPL_DECMP_REQ) && upl->decmp_io_upl) { | |
7844 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_EXPEDITE)) | DBG_FUNC_NONE, VM_KERNEL_UNSLIDE_OR_PERM(upl->upl_creator), VM_KERNEL_UNSLIDE_OR_PERM(m), | |
7845 | VM_KERNEL_UNSLIDE_OR_PERM(upl), upl->upl_priority, 0); | |
7846 | vm_decmp_upl_reprioritize(upl, cur_tier); | |
7847 | break; | |
7848 | } | |
7849 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_EXPEDITE)) | DBG_FUNC_NONE, VM_KERNEL_UNSLIDE_OR_PERM(upl->upl_creator), VM_KERNEL_UNSLIDE_OR_PERM(m), | |
7850 | upl->upl_reprio_info[i], upl->upl_priority, 0); | |
7851 | if (UPL_REPRIO_INFO_BLKNO(upl, i) != 0 && UPL_REPRIO_INFO_LEN(upl, i) != 0) | |
7852 | vm_page_request_reprioritize(o, UPL_REPRIO_INFO_BLKNO(upl, i), UPL_REPRIO_INFO_LEN(upl, i), cur_tier); | |
7853 | break; | |
7854 | } | |
7855 | } | |
7856 | /* Check if we found any hits */ | |
7857 | if (i != num_pages) | |
7858 | break; | |
7859 | } | |
7860 | ||
7861 | return; | |
7862 | } | |
7863 | ||
7864 | wait_result_t | |
7865 | vm_page_sleep(vm_object_t o, vm_page_t m, int interruptible) | |
7866 | { | |
7867 | wait_result_t ret; | |
7868 | ||
7869 | KERNEL_DEBUG((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_SLEEP)) | DBG_FUNC_START, o, m, 0, 0, 0); | |
7870 | ||
7871 | if (o->io_tracking && ((m->busy == TRUE) || (m->cleaning == TRUE) || VM_PAGE_WIRED(m))) { | |
7872 | /* | |
7873 | Indicates page is busy due to an I/O. Issue a reprioritize request if necessary. | |
7874 | */ | |
7875 | vm_page_handle_prio_inversion(o,m); | |
7876 | } | |
7877 | m->wanted = TRUE; | |
7878 | ret = thread_sleep_vm_object(o, m, interruptible); | |
7879 | KERNEL_DEBUG((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_SLEEP)) | DBG_FUNC_END, o, m, 0, 0, 0); | |
7880 | return ret; | |
7881 | } | |
7882 | ||
7883 | static void | |
7884 | io_reprioritize_thread(void *param __unused, wait_result_t wr __unused) | |
7885 | { | |
7886 | io_reprioritize_req_t req = NULL; | |
7887 | ||
7888 | while(1) { | |
7889 | ||
7890 | IO_REPRIORITIZE_LIST_LOCK(); | |
7891 | if (queue_empty(&io_reprioritize_list)) { | |
7892 | IO_REPRIORITIZE_LIST_UNLOCK(); | |
7893 | break; | |
7894 | } | |
7895 | ||
7896 | queue_remove_first(&io_reprioritize_list, req, io_reprioritize_req_t, io_reprioritize_list); | |
7897 | IO_REPRIORITIZE_LIST_UNLOCK(); | |
7898 | ||
7899 | vnode_pager_issue_reprioritize_io(req->devvp, req->blkno, req->len, req->priority); | |
7900 | zfree(io_reprioritize_req_zone, req); | |
7901 | } | |
7902 | ||
7903 | IO_REPRIO_THREAD_CONTINUATION(); | |
7904 | } | |
7905 | #endif |