]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2007 Apple Inc. All rights reserved. | |
3 | */ | |
4 | /* | |
5 | * CDDL HEADER START | |
6 | * | |
7 | * The contents of this file are subject to the terms of the | |
8 | * Common Development and Distribution License, Version 1.0 only | |
9 | * (the "License"). You may not use this file except in compliance | |
10 | * with the License. | |
11 | * | |
12 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE | |
13 | * or http://www.opensolaris.org/os/licensing. | |
14 | * See the License for the specific language governing permissions | |
15 | * and limitations under the License. | |
16 | * | |
17 | * When distributing Covered Code, include this CDDL HEADER in each | |
18 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. | |
19 | * If applicable, add the following below this CDDL HEADER, with the | |
20 | * fields enclosed by brackets "[]" replaced with your own identifying | |
21 | * information: Portions Copyright [yyyy] [name of copyright owner] | |
22 | * | |
23 | * CDDL HEADER END | |
24 | */ | |
25 | /* | |
26 | * Copyright 2005 Sun Microsystems, Inc. All rights reserved. | |
27 | * Use is subject to license terms. | |
28 | */ | |
29 | ||
30 | /* | |
31 | * #pragma ident "@(#)fasttrap_isa.c 1.19 05/09/14 SMI" | |
32 | */ | |
33 | ||
34 | #ifdef KERNEL | |
35 | #ifndef _KERNEL | |
36 | #define _KERNEL /* Solaris vs. Darwin */ | |
37 | #endif | |
38 | #endif | |
39 | ||
40 | #include <sys/fasttrap_isa.h> | |
41 | #include <sys/fasttrap_impl.h> | |
42 | #include <sys/dtrace.h> | |
43 | #include <sys/dtrace_impl.h> | |
44 | #include <kern/task.h> | |
45 | #include <vm/pmap.h> | |
46 | #include <vm/vm_map.h> | |
47 | #include <mach/mach_vm.h> | |
48 | #include <arm/proc_reg.h> | |
49 | #include <arm/thread.h> | |
50 | #include <arm/caches_internal.h> | |
51 | ||
52 | #include <sys/dtrace_ptss.h> | |
53 | #include <kern/debug.h> | |
54 | ||
55 | #include <pexpert/pexpert.h> | |
56 | ||
57 | extern dtrace_id_t dtrace_probeid_error; | |
58 | ||
59 | /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */ | |
60 | #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */ | |
61 | ||
62 | extern int dtrace_decode_arm64(uint32_t instr); | |
63 | extern int dtrace_decode_arm(uint32_t instr); | |
64 | extern int dtrace_decode_thumb(uint32_t instr); | |
65 | ||
66 | /* | |
67 | * Lossless User-Land Tracing on ARM | |
68 | * --------------------------------- | |
69 | * | |
70 | * The details here will be fleshed out as more of this is implemented. The | |
71 | * basic design will be the same way as tracing works in x86. | |
72 | * | |
73 | * Some ARM specific issues: | |
74 | * | |
75 | * We need to patch differently for ARM instructions and Thumb instructions. | |
76 | * When we hit a probe, we check to see if the mode we're currently in is the | |
77 | * same as the mode we're patching for. If not, we remove the tracepoint and | |
78 | * abort. This ARM/Thumb information is pulled in from the arch specific | |
79 | * information in the fasttrap probe. | |
80 | * | |
81 | * On ARM, any instruction that uses registers can also use the pc as a | |
82 | * register. This presents problems during emulation because we have copied | |
83 | * the instruction and thus the pc can be different. Currently we've emulated | |
84 | * any instructions that use the pc if they can be used in a return probe. | |
85 | * Eventually we will want to support all instructions that use the pc, but | |
86 | * to do so requires disassembling the instruction and reconstituting it by | |
87 | * substituting a different register. | |
88 | * | |
89 | */ | |
90 | ||
91 | #define THUMB_INSTR(x) (*(uint16_t*) &(x)) | |
92 | ||
93 | #define SIGNEXTEND(x,v) ((((int) (x)) << (32-(v))) >> (32-(v))) | |
94 | #define ALIGNADDR(x,v) (((x) >> (v)) << (v)) | |
95 | #define GETITSTATE(x) ((((x) >> 8) & 0xFC) | (((x) >> 25) & 0x3)) | |
96 | #define ISLASTINIT(x) (((x) & 0xF) == 8) | |
97 | ||
98 | #define SET16(x,w) *((uint16_t*) (x)) = (w) | |
99 | #define SET32(x,w) *((uint32_t*) (x)) = (w) | |
100 | ||
101 | #define IS_ARM32_NOP(x) ((x) == 0xE1A00000) | |
102 | /* Marker for is-enabled probes */ | |
103 | #define IS_ARM32_IS_ENABLED(x) ((x) == 0xE0200000) | |
104 | ||
105 | #define IS_ARM64_NOP(x) ((x) == 0xD503201F) | |
106 | /* Marker for is-enabled probes */ | |
107 | #define IS_ARM64_IS_ENABLED(x) ((x) == 0xD2800000) | |
108 | ||
109 | #define IS_THUMB32_NOP(x) ((x) == 0x46C0) | |
110 | /* Marker for is-enabled probes */ | |
111 | #define IS_THUMB32_IS_ENABLED(x) ((x) == 0x4040) | |
112 | ||
113 | #define ARM_LDM_UF (1 << 23) | |
114 | #define ARM_LDM_PF (1 << 24) | |
115 | #define ARM_LDM_WF (1 << 21) | |
116 | ||
117 | #define ARM_LDR_UF (1 << 23) | |
118 | #define ARM_LDR_BF (1 << 22) | |
119 | ||
120 | static void | |
121 | flush_caches(void) | |
122 | { | |
123 | /* TODO There were some problems with flushing just the cache line that had been modified. | |
124 | * For now, we'll flush the entire cache, until we figure out how to flush just the patched block. | |
125 | */ | |
126 | FlushPoU_Dcache(); | |
127 | InvalidatePoU_Icache(); | |
128 | } | |
129 | ||
130 | ||
131 | static int fasttrap_tracepoint_init32 (proc_t *, fasttrap_tracepoint_t *, user_addr_t, fasttrap_probe_type_t); | |
132 | static int fasttrap_tracepoint_init64 (proc_t *, fasttrap_tracepoint_t *, user_addr_t, fasttrap_probe_type_t); | |
133 | ||
134 | int | |
135 | fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, | |
136 | user_addr_t pc, fasttrap_probe_type_t type) | |
137 | { | |
138 | if (proc_is64bit(p)) { | |
139 | return fasttrap_tracepoint_init64(p, tp, pc, type); | |
140 | } else { | |
141 | return fasttrap_tracepoint_init32(p, tp, pc, type); | |
142 | } | |
143 | } | |
144 | ||
145 | static int | |
146 | fasttrap_tracepoint_init32(proc_t *p, fasttrap_tracepoint_t *tp, | |
147 | user_addr_t pc, fasttrap_probe_type_t type) | |
148 | { | |
149 | #pragma unused(type) | |
150 | uint32_t instr; | |
151 | ||
152 | /* | |
153 | * Read the instruction at the given address out of the process's | |
154 | * address space. We don't have to worry about a debugger | |
155 | * changing this instruction before we overwrite it with our trap | |
156 | * instruction since P_PR_LOCK is set. Since instructions can span | |
157 | * pages, we potentially read the instruction in two parts. If the | |
158 | * second part fails, we just zero out that part of the instruction. | |
159 | */ | |
160 | /* | |
161 | * APPLE NOTE: Of course, we do not have a P_PR_LOCK, so this is racey... | |
162 | */ | |
163 | ||
164 | if (uread(p, &instr, 4, pc) != 0) | |
165 | return (-1); | |
166 | ||
167 | /* We want &instr to always point to the saved instruction, so just copy the | |
168 | * whole thing When cast to a pointer to a uint16_t, that will give us a | |
169 | * pointer to the first two bytes, which is the thumb instruction. | |
170 | */ | |
171 | tp->ftt_instr = instr; | |
172 | ||
173 | if (tp->ftt_fntype != FASTTRAP_FN_DONE_INIT) { | |
174 | switch(tp->ftt_fntype) { | |
175 | case FASTTRAP_FN_UNKNOWN: | |
176 | /* Can't instrument without any information. We can add some heuristics later if necessary. */ | |
177 | return (-1); | |
178 | ||
179 | case FASTTRAP_FN_USDT: | |
180 | if (IS_ARM32_NOP(instr) || IS_ARM32_IS_ENABLED(instr)) { | |
181 | tp->ftt_thumb = 0; | |
182 | } else if (IS_THUMB32_NOP(THUMB_INSTR(instr)) || IS_THUMB32_IS_ENABLED(THUMB_INSTR(instr))) { | |
183 | tp->ftt_thumb = 1; | |
184 | } else { | |
185 | /* Shouldn't reach here - this means we don't recognize | |
186 | * the instruction at one of the USDT probe locations | |
187 | */ | |
188 | return (-1); | |
189 | } | |
190 | tp->ftt_fntype = FASTTRAP_FN_DONE_INIT; | |
191 | break; | |
192 | ||
193 | case FASTTRAP_FN_ARM: | |
194 | tp->ftt_thumb = 0; | |
195 | tp->ftt_fntype = FASTTRAP_FN_DONE_INIT; | |
196 | break; | |
197 | ||
198 | case FASTTRAP_FN_THUMB: | |
199 | tp->ftt_thumb = 1; | |
200 | tp->ftt_fntype = FASTTRAP_FN_DONE_INIT; | |
201 | break; | |
202 | ||
203 | default: | |
204 | return (-1); | |
205 | } | |
206 | } | |
207 | ||
208 | if (tp->ftt_thumb) { | |
209 | tp->ftt_type = dtrace_decode_thumb(instr); | |
210 | } else { | |
211 | tp->ftt_type = dtrace_decode_arm(instr); | |
212 | } | |
213 | ||
214 | if (tp->ftt_type == FASTTRAP_T_INV) { | |
215 | /* This is an instruction we either don't recognize or can't instrument */ | |
216 | printf("dtrace: fasttrap init32: Unrecognized instruction: %08x at %08llx\n", | |
217 | (tp->ftt_thumb && dtrace_instr_size(tp->ftt_instr,tp->ftt_thumb) == 2) ? tp->ftt_instr1 : instr, pc); | |
218 | return (-1); | |
219 | } | |
220 | ||
221 | return (0); | |
222 | } | |
223 | ||
224 | ||
225 | static int | |
226 | fasttrap_tracepoint_init64(proc_t *p, fasttrap_tracepoint_t *tp, | |
227 | user_addr_t pc, fasttrap_probe_type_t type) | |
228 | { | |
229 | #pragma unused(type) | |
230 | uint32_t instr = 0; | |
231 | ||
232 | /* | |
233 | * Read the instruction at the given address out of the process's | |
234 | * address space. We don't have to worry about a debugger | |
235 | * changing this instruction before we overwrite it with our trap | |
236 | * instruction since P_PR_LOCK is set. Since instructions can span | |
237 | * pages, we potentially read the instruction in two parts. If the | |
238 | * second part fails, we just zero out that part of the instruction. | |
239 | */ | |
240 | /* | |
241 | * APPLE NOTE: Of course, we do not have a P_PR_LOCK, so this is racey... | |
242 | */ | |
243 | ||
244 | if (uread(p, &instr, 4, pc) != 0) | |
245 | return (-1); | |
246 | ||
247 | tp->ftt_instr = instr; | |
248 | tp->ftt_thumb = 0; /* Always zero on 64bit */ | |
249 | ||
250 | if (tp->ftt_fntype != FASTTRAP_FN_DONE_INIT) { | |
251 | switch(tp->ftt_fntype) { | |
252 | case FASTTRAP_FN_UNKNOWN: | |
253 | /* | |
254 | * On arm64 there is no distinction between | |
255 | * arm vs. thumb mode instruction types. | |
256 | */ | |
257 | tp->ftt_fntype = FASTTRAP_FN_DONE_INIT; | |
258 | break; | |
259 | ||
260 | case FASTTRAP_FN_USDT: | |
261 | if (IS_ARM64_NOP(instr) || IS_ARM64_IS_ENABLED(instr)) { | |
262 | tp->ftt_fntype = FASTTRAP_FN_DONE_INIT; | |
263 | } else { | |
264 | /* | |
265 | * Shouldn't reach here - this means we don't | |
266 | * recognize the instruction at one of the | |
267 | * USDT probe locations | |
268 | */ | |
269 | return (-1); | |
270 | } | |
271 | ||
272 | break; | |
273 | ||
274 | case FASTTRAP_FN_ARM: | |
275 | case FASTTRAP_FN_THUMB: | |
276 | default: | |
277 | /* | |
278 | * If we get an arm or thumb mode type | |
279 | * then we are clearly in the wrong path. | |
280 | */ | |
281 | return (-1); | |
282 | } | |
283 | } | |
284 | ||
285 | tp->ftt_type = dtrace_decode_arm64(instr); | |
286 | ||
287 | if (tp->ftt_type == FASTTRAP_T_ARM64_EXCLUSIVE_MEM) { | |
288 | kprintf("Detected attempt to place DTrace probe on exclusive memory instruction (pc = 0x%llx); refusing to trace (or exclusive operation could never succeed).\n", pc); | |
289 | tp->ftt_type = FASTTRAP_T_INV; | |
290 | return (-1); | |
291 | } | |
292 | ||
293 | if (tp->ftt_type == FASTTRAP_T_INV) { | |
294 | /* This is an instruction we either don't recognize or can't instrument */ | |
295 | printf("dtrace: fasttrap init64: Unrecognized instruction: %08x at %08llx\n", instr, pc); | |
296 | return (-1); | |
297 | } | |
298 | ||
299 | return (0); | |
300 | } | |
301 | ||
302 | // These are not exported from vm_map.h. | |
303 | extern kern_return_t vm_map_write_user(vm_map_t map, void *src_p, vm_map_address_t dst_addr, vm_size_t size); | |
304 | ||
305 | /* Patches the instructions. Almost like uwrite, but need special instructions on ARM to flush the caches. */ | |
306 | static | |
307 | int patchInst(proc_t *p, void *buf, user_size_t len, user_addr_t a) | |
308 | { | |
309 | kern_return_t ret; | |
310 | ||
311 | ASSERT(p != NULL); | |
312 | ASSERT(p->task != NULL); | |
313 | ||
314 | task_t task = p->task; | |
315 | ||
316 | /* | |
317 | * Grab a reference to the task vm_map_t to make sure | |
318 | * the map isn't pulled out from under us. | |
319 | * | |
320 | * Because the proc_lock is not held at all times on all code | |
321 | * paths leading here, it is possible for the proc to have | |
322 | * exited. If the map is null, fail. | |
323 | */ | |
324 | vm_map_t map = get_task_map_reference(task); | |
325 | if (map) { | |
326 | /* Find the memory permissions. */ | |
327 | uint32_t nestingDepth=999999; | |
328 | vm_region_submap_short_info_data_64_t info; | |
329 | mach_msg_type_number_t count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64; | |
330 | mach_vm_address_t address = (mach_vm_address_t)a; | |
331 | mach_vm_size_t sizeOfRegion = (mach_vm_size_t)len; | |
332 | ||
333 | ret = mach_vm_region_recurse(map, &address, &sizeOfRegion, &nestingDepth, (vm_region_recurse_info_t)&info, &count); | |
334 | if (ret != KERN_SUCCESS) | |
335 | goto done; | |
336 | ||
337 | vm_prot_t reprotect; | |
338 | ||
339 | if (!(info.protection & VM_PROT_WRITE)) { | |
340 | /* Save the original protection values for restoration later */ | |
341 | reprotect = info.protection; | |
342 | if (info.max_protection & VM_PROT_WRITE) { | |
343 | /* The memory is not currently writable, but can be made writable. */ | |
344 | /* Making it both writable and executable at the same time causes warning on embedded */ | |
345 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, (reprotect & ~VM_PROT_EXECUTE) | VM_PROT_WRITE); | |
346 | } else { | |
347 | /* | |
348 | * The memory is not currently writable, and cannot be made writable. We need to COW this memory. | |
349 | * | |
350 | * Strange, we can't just say "reprotect | VM_PROT_COPY", that fails. | |
351 | */ | |
352 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, VM_PROT_COPY | VM_PROT_READ | VM_PROT_WRITE); | |
353 | } | |
354 | ||
355 | if (ret != KERN_SUCCESS) | |
356 | goto done; | |
357 | ||
358 | } else { | |
359 | /* The memory was already writable. */ | |
360 | reprotect = VM_PROT_NONE; | |
361 | } | |
362 | ||
363 | ret = vm_map_write_user( map, | |
364 | buf, | |
365 | (vm_map_address_t)a, | |
366 | (vm_size_t)len); | |
367 | ||
368 | flush_caches(); | |
369 | ||
370 | if (ret != KERN_SUCCESS) | |
371 | goto done; | |
372 | ||
373 | if (reprotect != VM_PROT_NONE) { | |
374 | ASSERT(reprotect & VM_PROT_EXECUTE); | |
375 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect); | |
376 | } | |
377 | ||
378 | done: | |
379 | vm_map_deallocate(map); | |
380 | } else | |
381 | ret = KERN_TERMINATED; | |
382 | ||
383 | return (int)ret; | |
384 | } | |
385 | ||
386 | int | |
387 | fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp) | |
388 | { | |
389 | /* The thumb patch is a 2 byte instruction regardless of the size of the original instruction */ | |
390 | uint32_t instr; | |
391 | int size; | |
392 | ||
393 | if (proc_is64bit(p)) { | |
394 | size = 4; | |
395 | instr = FASTTRAP_ARM64_INSTR; | |
396 | } | |
397 | else { | |
398 | size = tp->ftt_thumb ? 2 : 4; | |
399 | if (tp->ftt_thumb) { | |
400 | *((uint16_t*) &instr) = FASTTRAP_THUMB32_INSTR; | |
401 | } else { | |
402 | instr = FASTTRAP_ARM32_INSTR; | |
403 | } | |
404 | } | |
405 | ||
406 | if (patchInst(p, &instr, size, tp->ftt_pc) != 0) | |
407 | return (-1); | |
408 | ||
409 | tp->ftt_installed = 1; | |
410 | ||
411 | return (0); | |
412 | } | |
413 | ||
414 | int | |
415 | fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp) | |
416 | { | |
417 | /* The thumb patch is a 2 byte instruction regardless of the size of the original instruction */ | |
418 | uint32_t instr; | |
419 | int size; | |
420 | ||
421 | if (proc_is64bit(p)) { | |
422 | /* | |
423 | * Distinguish between read or write failures and a changed | |
424 | * instruction. | |
425 | */ | |
426 | size = 4; | |
427 | if (uread(p, &instr, size, tp->ftt_pc) != 0) | |
428 | goto end; | |
429 | ||
430 | if (instr != FASTTRAP_ARM64_INSTR) | |
431 | goto end; | |
432 | } else { | |
433 | /* | |
434 | * Distinguish between read or write failures and a changed | |
435 | * instruction. | |
436 | */ | |
437 | size = tp->ftt_thumb ? 2 : 4; | |
438 | if (uread(p, &instr, size, tp->ftt_pc) != 0) | |
439 | goto end; | |
440 | ||
441 | if (tp->ftt_thumb) { | |
442 | if (*((uint16_t*) &instr) != FASTTRAP_THUMB32_INSTR) | |
443 | goto end; | |
444 | } else { | |
445 | if (instr != FASTTRAP_ARM32_INSTR) | |
446 | goto end; | |
447 | } | |
448 | } | |
449 | ||
450 | if (patchInst(p, &tp->ftt_instr, size, tp->ftt_pc) != 0) | |
451 | return (-1); | |
452 | ||
453 | end: | |
454 | tp->ftt_installed = 0; | |
455 | ||
456 | return (0); | |
457 | } | |
458 | ||
459 | static void | |
460 | fasttrap_return_common(proc_t *p, arm_saved_state_t *regs, user_addr_t pc, user_addr_t new_pc) | |
461 | { | |
462 | pid_t pid = p->p_pid; | |
463 | fasttrap_tracepoint_t *tp; | |
464 | fasttrap_bucket_t *bucket; | |
465 | fasttrap_id_t *id; | |
466 | lck_mtx_t *pid_mtx; | |
467 | int retire_tp = 1; | |
468 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; | |
469 | lck_mtx_lock(pid_mtx); | |
470 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; | |
471 | ||
472 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { | |
473 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && | |
474 | tp->ftt_proc->ftpc_acount != 0) | |
475 | break; | |
476 | } | |
477 | ||
478 | /* | |
479 | * Don't sweat it if we can't find the tracepoint again; unlike | |
480 | * when we're in fasttrap_pid_probe(), finding the tracepoint here | |
481 | * is not essential to the correct execution of the process. | |
482 | */ | |
483 | if (tp == NULL) { | |
484 | lck_mtx_unlock(pid_mtx); | |
485 | return; | |
486 | } | |
487 | ||
488 | for (id = tp->ftt_retids; id != NULL; id = id->fti_next) { | |
489 | fasttrap_probe_t *probe = id->fti_probe; | |
490 | /* | |
491 | * If there's a branch that could act as a return site, we | |
492 | * need to trace it, and check here if the program counter is | |
493 | * external to the function. | |
494 | */ | |
495 | if (is_saved_state32(regs)) | |
496 | { | |
497 | if (tp->ftt_type != FASTTRAP_T_LDM_PC && | |
498 | tp->ftt_type != FASTTRAP_T_POP_PC && | |
499 | new_pc - probe->ftp_faddr < probe->ftp_fsize) | |
500 | continue; | |
501 | } | |
502 | else { | |
503 | /* ARM64_TODO - check for FASTTRAP_T_RET */ | |
504 | if ((tp->ftt_type != FASTTRAP_T_ARM64_RET) && | |
505 | new_pc - probe->ftp_faddr < probe->ftp_fsize) | |
506 | continue; | |
507 | } | |
508 | if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) { | |
509 | uint8_t already_triggered = atomic_or_8(&probe->ftp_triggered, 1); | |
510 | if (already_triggered) { | |
511 | continue; | |
512 | } | |
513 | } | |
514 | /* | |
515 | * If we have at least one probe associated that | |
516 | * is not a oneshot probe, don't remove the | |
517 | * tracepoint | |
518 | */ | |
519 | else { | |
520 | retire_tp = 0; | |
521 | } | |
522 | ||
523 | #ifndef CONFIG_EMBEDDED | |
524 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { | |
525 | dtrace_probe(dtrace_probeid_error, 0 /* state */, id->fti_probe->ftp_id, | |
526 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); | |
527 | #else | |
528 | if (FALSE) { | |
529 | #endif | |
530 | } else { | |
531 | if (is_saved_state32(regs)) { | |
532 | dtrace_probe(probe->ftp_id, | |
533 | pc - id->fti_probe->ftp_faddr, | |
534 | saved_state32(regs)->r[0], 0, 0, 0); | |
535 | } else { | |
536 | dtrace_probe(probe->ftp_id, | |
537 | pc - id->fti_probe->ftp_faddr, | |
538 | saved_state64(regs)->x[0], 0, 0, 0); | |
539 | } | |
540 | } | |
541 | } | |
542 | if (retire_tp) { | |
543 | fasttrap_tracepoint_retire(p, tp); | |
544 | } | |
545 | ||
546 | lck_mtx_unlock(pid_mtx); | |
547 | } | |
548 | ||
549 | static void | |
550 | fasttrap_sigsegv(proc_t *p, uthread_t t, user_addr_t addr, arm_saved_state_t *regs) | |
551 | { | |
552 | /* TODO: This function isn't implemented yet. In debug mode, panic the system to | |
553 | * find out why we're hitting this point. In other modes, kill the process. | |
554 | */ | |
555 | #if DEBUG | |
556 | #pragma unused(p,t,addr,arm_saved_state) | |
557 | panic("fasttrap: sigsegv not yet implemented"); | |
558 | #else | |
559 | #pragma unused(p,t,addr) | |
560 | /* Kill the process */ | |
561 | set_saved_state_pc(regs, 0); | |
562 | #endif | |
563 | ||
564 | #if 0 | |
565 | proc_lock(p); | |
566 | ||
567 | /* Set fault address and mark signal */ | |
568 | t->uu_code = addr; | |
569 | t->uu_siglist |= sigmask(SIGSEGV); | |
570 | ||
571 | /* | |
572 | * XXX These two line may be redundant; if not, then we need | |
573 | * XXX to potentially set the data address in the machine | |
574 | * XXX specific thread state structure to indicate the address. | |
575 | */ | |
576 | t->uu_exception = KERN_INVALID_ADDRESS; /* SIGSEGV */ | |
577 | t->uu_subcode = 0; /* XXX pad */ | |
578 | ||
579 | proc_unlock(p); | |
580 | ||
581 | /* raise signal */ | |
582 | signal_setast(t->uu_context.vc_thread); | |
583 | #endif | |
584 | } | |
585 | ||
586 | static void | |
587 | fasttrap_usdt_args32(fasttrap_probe_t *probe, arm_saved_state32_t *regs32, int argc, | |
588 | uint64_t *argv) | |
589 | { | |
590 | int i, x, cap = MIN(argc, probe->ftp_nargs); | |
591 | ||
592 | for (i = 0; i < cap; i++) { | |
593 | x = probe->ftp_argmap[i]; | |
594 | ||
595 | /* Up to 4 args are passed in registers on arm */ | |
596 | if (x < 4) { | |
597 | argv[i] = regs32->r[x]; | |
598 | } else { | |
599 | uint32_t arg; | |
600 | fasttrap_fuword32_noerr(regs32->sp + (x - 4) * sizeof(uint32_t), &arg); | |
601 | ||
602 | argv[i] = arg; | |
603 | } | |
604 | } | |
605 | ||
606 | for (; i < argc; i++) { | |
607 | argv[i] = 0; | |
608 | } | |
609 | } | |
610 | ||
611 | static void | |
612 | fasttrap_usdt_args64(fasttrap_probe_t *probe, arm_saved_state64_t *regs64, int argc, | |
613 | uint64_t *argv) | |
614 | { | |
615 | int i, x, cap = MIN(argc, probe->ftp_nargs); | |
616 | ||
617 | for (i = 0; i < cap; i++) { | |
618 | x = probe->ftp_argmap[i]; | |
619 | ||
620 | /* Up to 8 args are passed in registers on arm64 */ | |
621 | if (x < 8) { | |
622 | argv[i] = regs64->x[x]; | |
623 | } else { | |
624 | fasttrap_fuword64_noerr(regs64->sp + (x - 8) * sizeof(uint64_t), &argv[i]); | |
625 | } | |
626 | } | |
627 | ||
628 | for (; i < argc; i++) { | |
629 | argv[i] = 0; | |
630 | } | |
631 | } | |
632 | ||
633 | static int condition_true(int cond, int cpsr) | |
634 | { | |
635 | int taken = 0; | |
636 | int zf = (cpsr & PSR_ZF) ? 1 : 0, | |
637 | nf = (cpsr & PSR_NF) ? 1 : 0, | |
638 | cf = (cpsr & PSR_CF) ? 1 : 0, | |
639 | vf = (cpsr & PSR_VF) ? 1 : 0; | |
640 | ||
641 | switch(cond) { | |
642 | case 0: taken = zf; break; | |
643 | case 1: taken = !zf; break; | |
644 | case 2: taken = cf; break; | |
645 | case 3: taken = !cf; break; | |
646 | case 4: taken = nf; break; | |
647 | case 5: taken = !nf; break; | |
648 | case 6: taken = vf; break; | |
649 | case 7: taken = !vf; break; | |
650 | case 8: taken = (cf && !zf); break; | |
651 | case 9: taken = (!cf || zf); break; | |
652 | case 10: taken = (nf == vf); break; | |
653 | case 11: taken = (nf != vf); break; | |
654 | case 12: taken = (!zf && (nf == vf)); break; | |
655 | case 13: taken = (zf || (nf != vf)); break; | |
656 | case 14: taken = 1; break; | |
657 | case 15: taken = 1; break; /* always "true" for ARM, unpredictable for THUMB. */ | |
658 | } | |
659 | ||
660 | return taken; | |
661 | } | |
662 | ||
663 | static void set_thumb_flag(arm_saved_state32_t *regs32, user_addr_t pc) | |
664 | { | |
665 | if (pc & 1) { | |
666 | regs32->cpsr |= PSR_TF; | |
667 | } else { | |
668 | regs32->cpsr &= ~PSR_TF; | |
669 | } | |
670 | } | |
671 | ||
672 | static int | |
673 | fasttrap_pid_probe_thumb_state_valid(arm_saved_state32_t *state32, fasttrap_tracepoint_t *tp) | |
674 | { | |
675 | uint32_t cpsr = state32->cpsr; | |
676 | uint32_t itstate = GETITSTATE(cpsr); | |
677 | ||
678 | /* If in IT block, make sure it's the last statement in the block */ | |
679 | if ((itstate != 0) && !ISLASTINIT(itstate)) { | |
680 | printf("dtrace: fasttrap: Tried to trace instruction %08x at %08x but not at end of IT block\n", | |
681 | (tp->ftt_thumb && dtrace_instr_size(tp->ftt_instr,tp->ftt_thumb) == 2) ? tp->ftt_instr1 : tp->ftt_instr, state32->pc); | |
682 | return 0; | |
683 | } | |
684 | ||
685 | if (!(cpsr & PSR_TF)) { | |
686 | return 0; | |
687 | } | |
688 | ||
689 | return 1; | |
690 | } | |
691 | ||
692 | static int | |
693 | fasttrap_get_condition_code(arm_saved_state32_t *regs32, fasttrap_tracepoint_t *tp) | |
694 | { | |
695 | /* Default to always execute */ | |
696 | int condition_code = 0xE; | |
697 | if (tp->ftt_thumb) { | |
698 | uint32_t itstate = GETITSTATE(regs32->cpsr); | |
699 | if (itstate != 0) { | |
700 | /* In IT block, make sure it's the last statement in the block */ | |
701 | assert(ISLASTINIT(itstate)); | |
702 | condition_code = itstate >> 4; | |
703 | } | |
704 | } else { | |
705 | condition_code = ARM_CONDCODE(tp->ftt_instr); | |
706 | } | |
707 | ||
708 | return condition_code; | |
709 | } | |
710 | ||
711 | static void | |
712 | fasttrap_pid_probe_handle_patched_instr32(arm_saved_state_t *state, fasttrap_tracepoint_t *tp, uthread_t uthread, | |
713 | proc_t *p, uint_t is_enabled, int *was_simulated) | |
714 | { | |
715 | arm_saved_state32_t *regs32 = saved_state32(state); | |
716 | uint32_t new_pc = 0; | |
717 | uint32_t pc = regs32->pc; | |
718 | int instr_size; | |
719 | int condition_code; | |
720 | ||
721 | *was_simulated = 1; | |
722 | ||
723 | /* | |
724 | * If there's an is-enabled probe connected to this tracepoint it | |
725 | * means that there was a 'eor r0,r0,r0' | |
726 | * instruction that was placed there by DTrace when the binary was | |
727 | * linked. As this probe is, in fact, enabled, we need to stuff 1 | |
728 | * into R0. Accordingly, we can bypass all the instruction | |
729 | * emulation logic since we know the inevitable result. It's possible | |
730 | * that a user could construct a scenario where the 'is-enabled' | |
731 | * probe was on some other instruction, but that would be a rather | |
732 | * exotic way to shoot oneself in the foot. | |
733 | */ | |
734 | ||
735 | if (is_enabled) { | |
736 | regs32->r[0] = 1; | |
737 | new_pc = regs32->pc + (tp->ftt_thumb ? 2 : 4); | |
738 | goto done; | |
739 | } | |
740 | ||
741 | /* For USDT probes, bypass all the emulation logic for the nop instruction */ | |
742 | if ((tp->ftt_thumb && IS_THUMB32_NOP(THUMB_INSTR(tp->ftt_instr))) || | |
743 | (!tp->ftt_thumb && IS_ARM32_NOP(tp->ftt_instr))) { | |
744 | new_pc = regs32->pc + (tp->ftt_thumb ? 2 : 4); | |
745 | goto done; | |
746 | } | |
747 | ||
748 | condition_code = fasttrap_get_condition_code(regs32, tp); | |
749 | instr_size = dtrace_instr_size(tp->ftt_instr,tp->ftt_thumb); | |
750 | ||
751 | switch (tp->ftt_type) { | |
752 | case FASTTRAP_T_MOV_PC_REG: | |
753 | case FASTTRAP_T_CPY_PC: | |
754 | { | |
755 | if (!condition_true(condition_code, regs32->cpsr)) { | |
756 | new_pc = pc + instr_size; | |
757 | break; | |
758 | } | |
759 | ||
760 | int rm; | |
761 | if (tp->ftt_thumb) { | |
762 | rm = THUMB16_HRM(tp->ftt_instr1); | |
763 | } else { | |
764 | rm = tp->ftt_instr & 0xF; | |
765 | } | |
766 | new_pc = regs32->r[rm]; | |
767 | ||
768 | /* This instruction does not change the Thumb state */ | |
769 | ||
770 | break; | |
771 | } | |
772 | ||
773 | case FASTTRAP_T_STM_LR: | |
774 | case FASTTRAP_T_PUSH_LR: | |
775 | { | |
776 | /* | |
777 | * This is a very common case, so we want to emulate this instruction if | |
778 | * possible. However, on a push, it is possible that we might reach the end | |
779 | * of a page and have to allocate a new page. Most of the time this will not | |
780 | * happen, and we know that the push instruction can store at most 16 words, | |
781 | * so check to see if we are far from the boundary, and if so, emulate. This | |
782 | * can be made more aggressive by checking the actual number of words being | |
783 | * pushed, but we won't do that for now. | |
784 | * | |
785 | * Some of the same issues that apply to POP_PC probably apply here also. | |
786 | */ | |
787 | ||
788 | int reglist; | |
789 | int ret; | |
790 | uint32_t base; | |
791 | ||
792 | if (!condition_true(condition_code, regs32->cpsr)) { | |
793 | new_pc = pc + instr_size; | |
794 | break; | |
795 | } | |
796 | ||
797 | base = regs32->sp; | |
798 | if (((base-16*4) >> PAGE_SHIFT) != (base >> PAGE_SHIFT)) { | |
799 | /* Crosses the page boundary, go to emulation */ | |
800 | goto instr_emulate; | |
801 | } | |
802 | ||
803 | if (tp->ftt_thumb) { | |
804 | if (instr_size == 4) { | |
805 | /* We know we have to push lr, never push sp or pc */ | |
806 | reglist = tp->ftt_instr2 & 0x1FFF; | |
807 | } else { | |
808 | reglist = tp->ftt_instr1 & 0xFF; | |
809 | } | |
810 | } else { | |
811 | /* We know we have to push lr, never push sp or pc */ | |
812 | reglist = tp->ftt_instr & 0x1FFF; | |
813 | } | |
814 | ||
815 | /* Push the link register */ | |
816 | base -= 4; | |
817 | ret = fasttrap_suword32(base, regs32->lr); | |
818 | if (ret == -1) { | |
819 | fasttrap_sigsegv(p, uthread, (user_addr_t) base, state); | |
820 | new_pc = regs32->pc; | |
821 | break; | |
822 | } | |
823 | ||
824 | /* Start pushing from $r12 */ | |
825 | int regmask = 1 << 12; | |
826 | int regnum = 12; | |
827 | ||
828 | while (regmask) { | |
829 | if (reglist & regmask) { | |
830 | base -= 4; | |
831 | ret = fasttrap_suword32(base, regs32->r[regnum]); | |
832 | if (ret == -1) { | |
833 | fasttrap_sigsegv(p, uthread, (user_addr_t) base, state); | |
834 | new_pc = regs32->pc; | |
835 | break; | |
836 | } | |
837 | } | |
838 | regmask >>= 1; | |
839 | regnum--; | |
840 | } | |
841 | ||
842 | regs32->sp = base; | |
843 | ||
844 | new_pc = pc + instr_size; | |
845 | ||
846 | break; | |
847 | } | |
848 | ||
849 | ||
850 | case FASTTRAP_T_LDM_PC: | |
851 | case FASTTRAP_T_POP_PC: | |
852 | { | |
853 | /* TODO Two issues that will eventually need to be resolved: | |
854 | * | |
855 | * 1. Understand what the hardware does if we have to segfault (data abort) in | |
856 | * the middle of a load multiple. We currently don't have a working segfault | |
857 | * handler anyway, and with no swapfile we should never segfault on this load. | |
858 | * If we do, we'll just kill the process by setting the pc to 0. | |
859 | * | |
860 | * 2. The emulation is no longer atomic. We currently only emulate pop for | |
861 | * function epilogues, and so we should never have a race here because one | |
862 | * thread should never be trying to manipulate another thread's stack frames. | |
863 | * That is almost certainly a bug in the program. | |
864 | * | |
865 | * This will need to be fixed if we ever: | |
866 | * a. Ship dtrace externally, as this could be a potential attack vector | |
867 | * b. Support instruction level tracing, as we might then pop/ldm non epilogues. | |
868 | * | |
869 | */ | |
870 | ||
871 | /* Assume ldmia! sp/pop ... pc */ | |
872 | ||
873 | int regnum = 0, reglist; | |
874 | int ret; | |
875 | uint32_t base; | |
876 | ||
877 | if (!condition_true(condition_code, regs32->cpsr)) { | |
878 | new_pc = pc + instr_size; | |
879 | break; | |
880 | } | |
881 | ||
882 | if (tp->ftt_thumb) { | |
883 | if (instr_size == 4) { | |
884 | /* We know we have to load the pc, don't do it twice */ | |
885 | reglist = tp->ftt_instr2 & 0x7FFF; | |
886 | } else { | |
887 | reglist = tp->ftt_instr1 & 0xFF; | |
888 | } | |
889 | } else { | |
890 | /* We know we have to load the pc, don't do it twice */ | |
891 | reglist = tp->ftt_instr & 0x7FFF; | |
892 | } | |
893 | ||
894 | base = regs32->sp; | |
895 | while (reglist) { | |
896 | if (reglist & 1) { | |
897 | ret = fasttrap_fuword32((user_addr_t)base, ®s32->r[regnum]); | |
898 | if (ret == -1) { | |
899 | fasttrap_sigsegv(p, uthread, (user_addr_t) base, state); | |
900 | new_pc = regs32->pc; | |
901 | break; | |
902 | } | |
903 | base += 4; | |
904 | } | |
905 | reglist >>= 1; | |
906 | regnum++; | |
907 | } | |
908 | ||
909 | ret = fasttrap_fuword32((user_addr_t)base, &new_pc); | |
910 | if (ret == -1) { | |
911 | fasttrap_sigsegv(p, uthread, (user_addr_t) base, state); | |
912 | new_pc = regs32->pc; | |
913 | break; | |
914 | } | |
915 | base += 4; | |
916 | ||
917 | regs32->sp = base; | |
918 | ||
919 | set_thumb_flag(regs32, new_pc); | |
920 | ||
921 | break; | |
922 | } | |
923 | ||
924 | case FASTTRAP_T_CB_N_Z: | |
925 | { | |
926 | /* Thumb mode instruction, and not permitted in IT block, so skip the condition code check */ | |
927 | int rn = tp->ftt_instr1 & 0x7; | |
928 | int offset = (((tp->ftt_instr1 & 0x00F8) >> 2) | ((tp->ftt_instr1 & 0x0200) >> 3)) + 4; | |
929 | int nonzero = tp->ftt_instr1 & 0x0800; | |
930 | if (!nonzero != !(regs32->r[rn] == 0)) { | |
931 | new_pc = pc + offset; | |
932 | } else { | |
933 | new_pc = pc + instr_size; | |
934 | } | |
935 | break; | |
936 | } | |
937 | ||
938 | case FASTTRAP_T_B_COND: | |
939 | { | |
940 | /* Use the condition code in the instruction and ignore the ITSTATE */ | |
941 | ||
942 | int code, offset; | |
943 | if (tp->ftt_thumb) { | |
944 | if (instr_size == 4) { | |
945 | code = (tp->ftt_instr1 >> 6) & 0xF; | |
946 | if (code == 14 || code == 15) { | |
947 | panic("fasttrap: Emulation of invalid branch"); | |
948 | } | |
949 | int S = (tp->ftt_instr1 >> 10) & 1, | |
950 | J1 = (tp->ftt_instr2 >> 13) & 1, | |
951 | J2 = (tp->ftt_instr2 >> 11) & 1; | |
952 | offset = 4 + SIGNEXTEND( | |
953 | (S << 20) | (J2 << 19) | (J1 << 18) | | |
954 | ((tp->ftt_instr1 & 0x003F) << 12) | | |
955 | ((tp->ftt_instr2 & 0x07FF) << 1), | |
956 | 21); | |
957 | } else { | |
958 | code = (tp->ftt_instr1 >> 8) & 0xF; | |
959 | if (code == 14 || code == 15) { | |
960 | panic("fasttrap: Emulation of invalid branch"); | |
961 | } | |
962 | offset = 4 + (SIGNEXTEND(tp->ftt_instr1 & 0xFF, 8) << 1); | |
963 | } | |
964 | } else { | |
965 | code = ARM_CONDCODE(tp->ftt_instr); | |
966 | if (code == 15) { | |
967 | panic("fasttrap: Emulation of invalid branch"); | |
968 | } | |
969 | offset = 8 + (SIGNEXTEND(tp->ftt_instr & 0x00FFFFFF, 24) << 2); | |
970 | } | |
971 | ||
972 | if (condition_true(code, regs32->cpsr)) { | |
973 | new_pc = pc + offset; | |
974 | } else { | |
975 | new_pc = pc + instr_size; | |
976 | } | |
977 | ||
978 | break; | |
979 | } | |
980 | ||
981 | case FASTTRAP_T_B_UNCOND: | |
982 | { | |
983 | int offset; | |
984 | ||
985 | /* Unconditional branches can only be taken from Thumb mode */ | |
986 | /* (This is different from an ARM branch with condition code "always") */ | |
987 | ASSERT(tp->ftt_thumb == 1); | |
988 | ||
989 | if (!condition_true(condition_code, regs32->cpsr)) { | |
990 | new_pc = pc + instr_size; | |
991 | break; | |
992 | } | |
993 | ||
994 | if (instr_size == 4) { | |
995 | int S = (tp->ftt_instr1 >> 10) & 1, | |
996 | J1 = (tp->ftt_instr2 >> 13) & 1, | |
997 | J2 = (tp->ftt_instr2 >> 11) & 1; | |
998 | int I1 = (J1 != S) ? 0 : 1, I2 = (J2 != S) ? 0 : 1; | |
999 | offset = 4 + SIGNEXTEND( | |
1000 | (S << 24) | (I1 << 23) | (I2 << 22) | | |
1001 | ((tp->ftt_instr1 & 0x03FF) << 12) | | |
1002 | ((tp->ftt_instr2 & 0x07FF) << 1), | |
1003 | 25); | |
1004 | } else { | |
1005 | uint32_t instr1 = tp->ftt_instr1; | |
1006 | offset = 4 + (SIGNEXTEND(instr1 & 0x7FF, 11) << 1); | |
1007 | } | |
1008 | ||
1009 | new_pc = pc + offset; | |
1010 | ||
1011 | break; | |
1012 | } | |
1013 | ||
1014 | case FASTTRAP_T_BX_REG: | |
1015 | { | |
1016 | int reg; | |
1017 | ||
1018 | if (!condition_true(condition_code, regs32->cpsr)) { | |
1019 | new_pc = pc + instr_size; | |
1020 | break; | |
1021 | } | |
1022 | ||
1023 | if (tp->ftt_thumb) { | |
1024 | reg = THUMB16_HRM(tp->ftt_instr1); | |
1025 | } else { | |
1026 | reg = ARM_RM(tp->ftt_instr); | |
1027 | } | |
1028 | new_pc = regs32->r[reg]; | |
1029 | set_thumb_flag(regs32, new_pc); | |
1030 | ||
1031 | break; | |
1032 | } | |
1033 | ||
1034 | case FASTTRAP_T_LDR_PC_IMMED: | |
1035 | case FASTTRAP_T_VLDR_PC_IMMED: | |
1036 | /* Handle these instructions by replacing the PC in the instruction with another | |
1037 | * register. They are common, so we'd like to support them, and this way we do so | |
1038 | * without any risk of having to simulate a segfault. | |
1039 | */ | |
1040 | ||
1041 | /* Fall through */ | |
1042 | ||
1043 | instr_emulate: | |
1044 | case FASTTRAP_T_COMMON: | |
1045 | { | |
1046 | user_addr_t addr; | |
1047 | uint8_t scratch[32]; | |
1048 | uint_t i = 0; | |
1049 | fasttrap_instr_t emul_instr; | |
1050 | emul_instr.instr32 = tp->ftt_instr; | |
1051 | int emul_instr_size; | |
1052 | ||
1053 | /* | |
1054 | * Unfortunately sometimes when we emulate the instruction and have to replace the | |
1055 | * PC, there is no longer a thumb mode equivalent. We end up having to run the | |
1056 | * modified instruction in ARM mode. We use this variable to keep track of which | |
1057 | * mode we should emulate in. We still use the original variable to determine | |
1058 | * what mode to return to. | |
1059 | */ | |
1060 | uint8_t emul_thumb = tp->ftt_thumb; | |
1061 | int save_reg = -1; | |
1062 | uint32_t save_val = 0; | |
1063 | ||
1064 | /* | |
1065 | * Dealing with condition codes and emulation: | |
1066 | * We can't just uniformly do a condition code check here because not all instructions | |
1067 | * have condition codes. We currently do not support an instruction by instruction trace, | |
1068 | * so we can assume that either: 1. We are executing a Thumb instruction, in which case | |
1069 | * we either are not in an IT block and should execute always, or we are last in an IT | |
1070 | * block. Either way, the traced instruction will run correctly, and we won't have any | |
1071 | * problems when we return to the original code, because we will no longer be in the IT | |
1072 | * block. 2. We are executing an ARM instruction, in which case we are ok as long as | |
1073 | * we don't attempt to change the condition code. | |
1074 | */ | |
1075 | if (tp->ftt_type == FASTTRAP_T_LDR_PC_IMMED) { | |
1076 | /* We know we always have a free register (the one we plan to write the | |
1077 | * result value to!). So we'll replace the pc with that one. | |
1078 | */ | |
1079 | int new_reg; | |
1080 | if (tp->ftt_thumb) { | |
1081 | /* Check to see if thumb or thumb2 */ | |
1082 | if (instr_size == 2) { | |
1083 | /* | |
1084 | * Sadness. We need to emulate this instruction in ARM mode | |
1085 | * because it has an 8 bit immediate offset. Instead of having | |
1086 | * to deal with condition codes in the ARM instruction, we'll | |
1087 | * just check the condition and abort if the condition is false. | |
1088 | */ | |
1089 | if (!condition_true(condition_code, regs32->cpsr)) { | |
1090 | new_pc = pc + instr_size; | |
1091 | break; | |
1092 | } | |
1093 | ||
1094 | new_reg = (tp->ftt_instr1 >> 8) & 0x7; | |
1095 | regs32->r[new_reg] = ALIGNADDR(regs32->pc + 4, 2); | |
1096 | emul_thumb = 0; | |
1097 | emul_instr.instr32 = 0xE5900000 | (new_reg << 16) | (new_reg << 12) | ((tp->ftt_instr1 & 0xFF) << 2); | |
1098 | } else { | |
1099 | /* Thumb2. Just replace the register. */ | |
1100 | new_reg = (tp->ftt_instr2 >> 12) & 0xF; | |
1101 | regs32->r[new_reg] = ALIGNADDR(regs32->pc + 4, 2); | |
1102 | emul_instr.instr16.instr1 &= ~0x000F; | |
1103 | emul_instr.instr16.instr1 |= new_reg; | |
1104 | } | |
1105 | } else { | |
1106 | /* ARM. Just replace the register. */ | |
1107 | new_reg = (tp->ftt_instr >> 12) & 0xF; | |
1108 | regs32->r[new_reg] = ALIGNADDR(regs32->pc + 8,2); | |
1109 | emul_instr.instr32 &= ~0x000F0000; | |
1110 | emul_instr.instr32 |= new_reg << 16; | |
1111 | } | |
1112 | } else if (tp->ftt_type == FASTTRAP_T_VLDR_PC_IMMED) { | |
1113 | /* This instruction only uses one register, and if we're here, we know | |
1114 | * it must be the pc. So we'll just replace it with R0. | |
1115 | */ | |
1116 | save_reg = 0; | |
1117 | save_val = regs32->r[0]; | |
1118 | regs32->r[save_reg] = ALIGNADDR(regs32->pc + (tp->ftt_thumb ? 4 : 8), 2); | |
1119 | if (tp->ftt_thumb) { | |
1120 | emul_instr.instr16.instr1 &= ~0x000F; | |
1121 | } else { | |
1122 | emul_instr.instr32 &= ~0x000F0000; | |
1123 | } | |
1124 | } | |
1125 | ||
1126 | emul_instr_size = dtrace_instr_size(emul_instr.instr32, emul_thumb); | |
1127 | ||
1128 | /* | |
1129 | * At this point: | |
1130 | * tp->ftt_thumb = thumb mode of original instruction | |
1131 | * emul_thumb = thumb mode for emulation | |
1132 | * emul_instr = instruction we are using to emulate original instruction | |
1133 | * emul_instr_size = size of emulating instruction | |
1134 | */ | |
1135 | ||
1136 | addr = uthread->t_dtrace_scratch->addr; | |
1137 | ||
1138 | if (addr == 0LL) { | |
1139 | fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc | |
1140 | new_pc = pc; | |
1141 | break; | |
1142 | } | |
1143 | ||
1144 | uthread->t_dtrace_scrpc = addr; | |
1145 | if (emul_thumb) { | |
1146 | /* | |
1147 | * No way to do an unconditional branch in Thumb mode, shove the address | |
1148 | * onto the user stack and go to the next location with a pop. This can | |
1149 | * segfault if this push happens to cross a stack page, but that's ok, since | |
1150 | * we are running in userland, and the kernel knows how to handle userland | |
1151 | * stack expansions correctly. | |
1152 | * | |
1153 | * Layout of scratch space for Thumb mode: | |
1154 | * Emulated instruction | |
1155 | * ldr save_reg, [pc, #16] (if necessary, restore any register we clobbered) | |
1156 | * push { r0, r1 } | |
1157 | * ldr r0, [pc, #4] | |
1158 | * str r0, [sp, #4] | |
1159 | * pop { r0, pc } | |
1160 | * Location we should return to in original program | |
1161 | * Saved value of clobbered register (if necessary) | |
1162 | */ | |
1163 | ||
1164 | bcopy(&emul_instr, &scratch[i], emul_instr_size); i += emul_instr_size; | |
1165 | ||
1166 | if (save_reg != -1) { | |
1167 | uint16_t restore_inst = 0x4803; | |
1168 | restore_inst |= (save_reg & 0x7) << 8; | |
1169 | SET16(scratch+i, restore_inst); i += 2; // ldr reg, [pc , #16] | |
1170 | } | |
1171 | ||
1172 | SET16(scratch+i, 0xB403); i += 2; // push { r0, r1 } | |
1173 | SET16(scratch+i, 0x4801); i += 2; // ldr r0, [pc, #4] | |
1174 | SET16(scratch+i, 0x9001); i += 2; // str r0, [sp, #4] | |
1175 | SET16(scratch+i, 0xBD01); i += 2; // pop { r0, pc } | |
1176 | ||
1177 | if (i % 4) { | |
1178 | SET16(scratch+i, 0); i += 2; // padding - saved 32 bit words must be aligned | |
1179 | } | |
1180 | SET32(scratch+i, pc + instr_size + (tp->ftt_thumb ? 1 : 0)); i += 4; // Return address | |
1181 | if (save_reg != -1) { | |
1182 | SET32(scratch+i, save_val); i += 4; // saved value of clobbered register | |
1183 | } | |
1184 | ||
1185 | uthread->t_dtrace_astpc = addr + i; | |
1186 | bcopy(&emul_instr, &scratch[i], emul_instr_size); i += emul_instr_size; | |
1187 | SET16(scratch+i, FASTTRAP_THUMB32_RET_INSTR); i += 2; | |
1188 | } else { | |
1189 | /* | |
1190 | * Layout of scratch space for ARM mode: | |
1191 | * Emulated instruction | |
1192 | * ldr save_reg, [pc, #12] (if necessary, restore any register we clobbered) | |
1193 | * ldr pc, [pc, #4] | |
1194 | * Location we should return to in original program | |
1195 | * Saved value of clobbered register (if necessary) | |
1196 | */ | |
1197 | ||
1198 | bcopy(&emul_instr, &scratch[i], emul_instr_size); i += emul_instr_size; | |
1199 | ||
1200 | if (save_reg != -1) { | |
1201 | uint32_t restore_inst = 0xE59F0004; | |
1202 | restore_inst |= save_reg << 12; | |
1203 | SET32(scratch+i, restore_inst); i += 4; // ldr reg, [pc, #12] | |
1204 | } | |
1205 | SET32(scratch+i, 0xE51FF004); i += 4; // ldr pc, [pc, #4] | |
1206 | ||
1207 | SET32(scratch+i, pc + instr_size + (tp->ftt_thumb ? 1 : 0)); i += 4; // Return address | |
1208 | if (save_reg != -1) { | |
1209 | SET32(scratch+i, save_val); i += 4; // Saved value of clobbered register | |
1210 | } | |
1211 | ||
1212 | uthread->t_dtrace_astpc = addr + i; | |
1213 | bcopy(&emul_instr, &scratch[i], emul_instr_size); i += emul_instr_size; | |
1214 | SET32(scratch+i, FASTTRAP_ARM32_RET_INSTR); i += 4; | |
1215 | } | |
1216 | ||
1217 | if (patchInst(p, scratch, i, uthread->t_dtrace_scratch->write_addr) != KERN_SUCCESS) { | |
1218 | fasttrap_sigtrap(p, uthread, pc); | |
1219 | new_pc = pc; | |
1220 | break; | |
1221 | } | |
1222 | ||
1223 | if (tp->ftt_retids != NULL) { | |
1224 | uthread->t_dtrace_step = 1; | |
1225 | uthread->t_dtrace_ret = 1; | |
1226 | new_pc = uthread->t_dtrace_astpc + (emul_thumb ? 1 : 0); | |
1227 | } else { | |
1228 | new_pc = uthread->t_dtrace_scrpc + (emul_thumb ? 1 : 0); | |
1229 | } | |
1230 | ||
1231 | uthread->t_dtrace_pc = pc; | |
1232 | uthread->t_dtrace_npc = pc + instr_size; | |
1233 | uthread->t_dtrace_on = 1; | |
1234 | *was_simulated = 0; | |
1235 | set_thumb_flag(regs32, new_pc); | |
1236 | break; | |
1237 | } | |
1238 | ||
1239 | default: | |
1240 | panic("fasttrap: mishandled an instruction"); | |
1241 | } | |
1242 | done: | |
1243 | set_saved_state_pc(state, new_pc); | |
1244 | return; | |
1245 | } | |
1246 | ||
1247 | /* | |
1248 | * Copy out an instruction for execution in userland. | |
1249 | * Trap back to kernel to handle return to original flow of execution, because | |
1250 | * direct branches don't have sufficient range (+/- 128MB) and we | |
1251 | * cannot clobber a GPR. Note that we have to specially handle PC-rel loads/stores | |
1252 | * as well, which have range +/- 1MB (convert to an indirect load). Instruction buffer | |
1253 | * layout: | |
1254 | * | |
1255 | * [ Thunked instruction sequence ] | |
1256 | * [ Trap for return to original code and return probe handling ] | |
1257 | * | |
1258 | * This *does* make it impossible for an ldxr/stxr pair to succeed if we trace on or between | |
1259 | * them... may need to get fancy at some point. | |
1260 | */ | |
1261 | static void | |
1262 | fasttrap_pid_probe_thunk_instr64(arm_saved_state_t *state, fasttrap_tracepoint_t *tp, proc_t *p, uthread_t uthread, | |
1263 | const uint32_t *instructions, uint32_t num_instrs, user_addr_t *pc_out) | |
1264 | { | |
1265 | uint32_t local_scratch[8]; | |
1266 | user_addr_t pc = get_saved_state_pc(state); | |
1267 | user_addr_t user_scratch_area; | |
1268 | ||
1269 | assert(num_instrs < 8); | |
1270 | ||
1271 | bcopy(instructions, local_scratch, num_instrs * sizeof(uint32_t)); | |
1272 | local_scratch[num_instrs] = FASTTRAP_ARM64_RET_INSTR; | |
1273 | ||
1274 | uthread->t_dtrace_astpc = uthread->t_dtrace_scrpc = uthread->t_dtrace_scratch->addr; | |
1275 | user_scratch_area = uthread->t_dtrace_scratch->write_addr; | |
1276 | ||
1277 | if (user_scratch_area == (user_addr_t)0) { | |
1278 | fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc | |
1279 | *pc_out = pc; | |
1280 | return; | |
1281 | } | |
1282 | ||
1283 | if (patchInst(p, local_scratch, (num_instrs + 1) * sizeof(uint32_t), user_scratch_area) != KERN_SUCCESS) { | |
1284 | fasttrap_sigtrap(p, uthread, pc); | |
1285 | *pc_out = pc; | |
1286 | return; | |
1287 | } | |
1288 | ||
1289 | /* We're stepping (come back to kernel to adjust PC for return to regular code). */ | |
1290 | uthread->t_dtrace_step = 1; | |
1291 | ||
1292 | /* We may or may not be about to run a return probe (but we wouldn't thunk ret lr)*/ | |
1293 | uthread->t_dtrace_ret = (tp->ftt_retids != NULL); | |
1294 | assert(tp->ftt_type != FASTTRAP_T_ARM64_RET); | |
1295 | ||
1296 | /* Set address of instruction we've patched */ | |
1297 | uthread->t_dtrace_pc = pc; | |
1298 | ||
1299 | /* Any branch would be emulated, next instruction should be one ahead */ | |
1300 | uthread->t_dtrace_npc = pc + 4; | |
1301 | ||
1302 | /* We are certainly handling a probe */ | |
1303 | uthread->t_dtrace_on = 1; | |
1304 | ||
1305 | /* Let's jump to the scratch area */ | |
1306 | *pc_out = uthread->t_dtrace_scratch->addr; | |
1307 | } | |
1308 | ||
1309 | /* | |
1310 | * Sign-extend bit "sign_bit_index" out to bit 64. | |
1311 | */ | |
1312 | static int64_t | |
1313 | sign_extend(int64_t input, uint32_t sign_bit_index) | |
1314 | { | |
1315 | assert(sign_bit_index < 63); | |
1316 | if (input & (1ULL << sign_bit_index)) { | |
1317 | /* All 1's & ~[1's from 0 to sign bit] */ | |
1318 | input |= ((~0ULL) & ~((1ULL << (sign_bit_index + 1)) - 1ULL)); | |
1319 | } | |
1320 | ||
1321 | return input; | |
1322 | } | |
1323 | ||
1324 | /* | |
1325 | * Handle xzr vs. sp, fp, lr, etc. Will *not* read the SP. | |
1326 | */ | |
1327 | static uint64_t | |
1328 | get_saved_state64_regno(arm_saved_state64_t *regs64, uint32_t regno, int use_xzr) | |
1329 | { | |
1330 | /* Set PC to register value */ | |
1331 | switch (regno) { | |
1332 | case 29: | |
1333 | return regs64->fp; | |
1334 | case 30: | |
1335 | return regs64->lr; | |
1336 | case 31: | |
1337 | /* xzr */ | |
1338 | if (use_xzr) { | |
1339 | return 0; | |
1340 | } else { | |
1341 | return regs64->sp; | |
1342 | } | |
1343 | default: | |
1344 | return regs64->x[regno]; | |
1345 | } | |
1346 | } | |
1347 | ||
1348 | static void | |
1349 | set_saved_state64_regno(arm_saved_state64_t *regs64, uint32_t regno, int use_xzr, register_t value) | |
1350 | { | |
1351 | /* Set PC to register value */ | |
1352 | switch (regno) { | |
1353 | case 29: | |
1354 | regs64->fp = value; | |
1355 | break; | |
1356 | case 30: | |
1357 | regs64->lr = value; | |
1358 | break; | |
1359 | case 31: | |
1360 | if (!use_xzr) { | |
1361 | regs64->sp = value; | |
1362 | } | |
1363 | break; | |
1364 | default: | |
1365 | regs64->x[regno] = value; | |
1366 | break; | |
1367 | } | |
1368 | } | |
1369 | ||
1370 | /* | |
1371 | * Common operation: extract sign-extended PC offset from instruction | |
1372 | * Left-shifts result by two bits. | |
1373 | */ | |
1374 | static uint64_t | |
1375 | extract_address_literal_sign_extended(uint32_t instr, uint32_t base, uint32_t numbits) | |
1376 | { | |
1377 | uint64_t offset; | |
1378 | ||
1379 | offset = (instr >> base) & ((1 << numbits) - 1); | |
1380 | offset = sign_extend(offset, numbits - 1); | |
1381 | offset = offset << 2; | |
1382 | ||
1383 | return offset; | |
1384 | } | |
1385 | ||
1386 | static void | |
1387 | do_cbz_cnbz(arm_saved_state64_t *regs64, uint32_t regwidth, uint32_t instr, int is_cbz, user_addr_t *pc_out) | |
1388 | { | |
1389 | uint32_t regno; | |
1390 | uint64_t regval; | |
1391 | uint64_t offset; | |
1392 | ||
1393 | /* Extract register */ | |
1394 | regno = (instr & 0x1f); | |
1395 | assert(regno <= 31); | |
1396 | regval = get_saved_state64_regno(regs64, regno, 1); | |
1397 | ||
1398 | /* Control for size */ | |
1399 | if (regwidth == 32) { | |
1400 | regval &= 0xFFFFFFFFULL; | |
1401 | } | |
1402 | ||
1403 | /* Extract offset */ | |
1404 | offset = extract_address_literal_sign_extended(instr, 5, 19); | |
1405 | ||
1406 | /* Do test */ | |
1407 | if ((is_cbz && regval == 0) || ((!is_cbz) && regval != 0)) { | |
1408 | /* Set PC from label */ | |
1409 | *pc_out = regs64->pc + offset; | |
1410 | } else { | |
1411 | /* Advance PC */ | |
1412 | *pc_out = regs64->pc + 4; | |
1413 | } | |
1414 | } | |
1415 | ||
1416 | static void | |
1417 | do_tbz_tbnz(arm_saved_state64_t *regs64, uint32_t instr, int is_tbz, user_addr_t *pc_out) | |
1418 | { | |
1419 | uint64_t offset, regval; | |
1420 | uint32_t bit_index, b5, b40, regno, bit_set; | |
1421 | ||
1422 | /* Compute offset */ | |
1423 | offset = extract_address_literal_sign_extended(instr, 5, 14); | |
1424 | ||
1425 | /* Extract bit index */ | |
1426 | b5 = (instr >> 31); | |
1427 | b40 = ((instr >> 19) & 0x1f); | |
1428 | bit_index = (b5 << 5) | b40; | |
1429 | assert(bit_index <= 63); | |
1430 | ||
1431 | /* Extract register */ | |
1432 | regno = (instr & 0x1f); | |
1433 | assert(regno <= 31); | |
1434 | regval = get_saved_state64_regno(regs64, regno, 1); | |
1435 | ||
1436 | /* Test bit */ | |
1437 | bit_set = ((regval & (1 << bit_index)) != 0); | |
1438 | ||
1439 | if ((is_tbz && (!bit_set)) || ((!is_tbz) && bit_set)) { | |
1440 | /* Branch: unsigned addition so overflow defined */ | |
1441 | *pc_out = regs64->pc + offset; | |
1442 | } else { | |
1443 | /* Advance PC */ | |
1444 | *pc_out = regs64->pc + 4; | |
1445 | } | |
1446 | } | |
1447 | ||
1448 | ||
1449 | static void | |
1450 | fasttrap_pid_probe_handle_patched_instr64(arm_saved_state_t *state, fasttrap_tracepoint_t *tp __unused, uthread_t uthread, | |
1451 | proc_t *p, uint_t is_enabled, int *was_simulated) | |
1452 | { | |
1453 | int res1, res2; | |
1454 | arm_saved_state64_t *regs64 = saved_state64(state); | |
1455 | uint32_t instr = tp->ftt_instr; | |
1456 | user_addr_t new_pc = 0; | |
1457 | ||
1458 | /* Neon state should be threaded throw, but hack it until we have better arm/arm64 integration */ | |
1459 | arm_neon_saved_state64_t *ns64 = &(get_user_neon_regs(uthread->uu_thread)->ns_64); | |
1460 | ||
1461 | /* is-enabled probe: set x0 to 1 and step forwards */ | |
1462 | if (is_enabled) { | |
1463 | regs64->x[0] = 1; | |
1464 | set_saved_state_pc(state, regs64->pc + 4); | |
1465 | return; | |
1466 | } | |
1467 | ||
1468 | /* For USDT probes, bypass all the emulation logic for the nop instruction */ | |
1469 | if (IS_ARM64_NOP(tp->ftt_instr)) { | |
1470 | set_saved_state_pc(state, regs64->pc + 4); | |
1471 | return; | |
1472 | } | |
1473 | ||
1474 | ||
1475 | /* Only one of many cases in the switch doesn't simulate */ | |
1476 | switch(tp->ftt_type) { | |
1477 | /* | |
1478 | * Function entry: emulate for speed. | |
1479 | * stp fp, lr, [sp, #-16]! | |
1480 | */ | |
1481 | case FASTTRAP_T_ARM64_STANDARD_FUNCTION_ENTRY: | |
1482 | { | |
1483 | /* Store values to stack */ | |
1484 | res1 = fasttrap_suword64(regs64->sp - 16, regs64->fp); | |
1485 | res2 = fasttrap_suword64(regs64->sp - 8, regs64->lr); | |
1486 | if (res1 != 0 || res2 != 0) { | |
1487 | fasttrap_sigsegv(p, uthread, regs64->sp - (res1 ? 16 : 8), state); | |
1488 | new_pc = regs64->pc; /* Bit of a hack */ | |
1489 | break; | |
1490 | } | |
1491 | ||
1492 | /* Move stack pointer */ | |
1493 | regs64->sp -= 16; | |
1494 | ||
1495 | /* Move PC forward */ | |
1496 | new_pc = regs64->pc + 4; | |
1497 | *was_simulated = 1; | |
1498 | break; | |
1499 | } | |
1500 | ||
1501 | /* | |
1502 | * PC-relative loads/stores: emulate for correctness. | |
1503 | * All loads are 32bits or greater (no need to handle byte or halfword accesses). | |
1504 | * LDR Wt, addr | |
1505 | * LDR Xt, addr | |
1506 | * LDRSW Xt, addr | |
1507 | * | |
1508 | * LDR St, addr | |
1509 | * LDR Dt, addr | |
1510 | * LDR Qt, addr | |
1511 | * PRFM label -> becomes a NOP | |
1512 | */ | |
1513 | case FASTTRAP_T_ARM64_LDR_S_PC_REL: | |
1514 | case FASTTRAP_T_ARM64_LDR_W_PC_REL: | |
1515 | case FASTTRAP_T_ARM64_LDR_D_PC_REL: | |
1516 | case FASTTRAP_T_ARM64_LDR_X_PC_REL: | |
1517 | case FASTTRAP_T_ARM64_LDR_Q_PC_REL: | |
1518 | case FASTTRAP_T_ARM64_LDRSW_PC_REL: | |
1519 | { | |
1520 | uint64_t offset; | |
1521 | uint32_t valsize, regno; | |
1522 | user_addr_t address; | |
1523 | union { | |
1524 | uint32_t val32; | |
1525 | uint64_t val64; | |
1526 | uint128_t val128; | |
1527 | } value; | |
1528 | ||
1529 | /* Extract 19-bit offset, add to pc */ | |
1530 | offset = extract_address_literal_sign_extended(instr, 5, 19); | |
1531 | address = regs64->pc + offset; | |
1532 | ||
1533 | /* Extract destination register */ | |
1534 | regno = (instr & 0x1f); | |
1535 | assert(regno <= 31); | |
1536 | ||
1537 | /* Read value of desired size from memory */ | |
1538 | switch (tp->ftt_type) { | |
1539 | case FASTTRAP_T_ARM64_LDR_S_PC_REL: | |
1540 | case FASTTRAP_T_ARM64_LDR_W_PC_REL: | |
1541 | case FASTTRAP_T_ARM64_LDRSW_PC_REL: | |
1542 | valsize = 4; | |
1543 | break; | |
1544 | case FASTTRAP_T_ARM64_LDR_D_PC_REL: | |
1545 | case FASTTRAP_T_ARM64_LDR_X_PC_REL: | |
1546 | valsize = 8; | |
1547 | break; | |
1548 | case FASTTRAP_T_ARM64_LDR_Q_PC_REL: | |
1549 | valsize = 16; | |
1550 | break; | |
1551 | default: | |
1552 | panic("Should never get here!"); | |
1553 | valsize = -1; | |
1554 | break; | |
1555 | } | |
1556 | ||
1557 | if (copyin(address, &value, valsize) != 0) { | |
1558 | fasttrap_sigsegv(p, uthread, address, state); | |
1559 | new_pc = regs64->pc; /* Bit of a hack, we know about update in fasttrap_sigsegv() */ | |
1560 | break; | |
1561 | } | |
1562 | ||
1563 | /* Stash in correct register slot */ | |
1564 | switch (tp->ftt_type) { | |
1565 | case FASTTRAP_T_ARM64_LDR_W_PC_REL: | |
1566 | set_saved_state64_regno(regs64, regno, 1, value.val32); | |
1567 | break; | |
1568 | case FASTTRAP_T_ARM64_LDRSW_PC_REL: | |
1569 | set_saved_state64_regno(regs64, regno, 1, sign_extend(value.val32, 31)); | |
1570 | break; | |
1571 | case FASTTRAP_T_ARM64_LDR_X_PC_REL: | |
1572 | set_saved_state64_regno(regs64, regno, 1, value.val64); | |
1573 | break; | |
1574 | case FASTTRAP_T_ARM64_LDR_S_PC_REL: | |
1575 | ns64->v.s[regno][0] = value.val32; | |
1576 | break; | |
1577 | case FASTTRAP_T_ARM64_LDR_D_PC_REL: | |
1578 | ns64->v.d[regno][0] = value.val64; | |
1579 | break; | |
1580 | case FASTTRAP_T_ARM64_LDR_Q_PC_REL: | |
1581 | ns64->v.q[regno] = value.val128; | |
1582 | break; | |
1583 | default: | |
1584 | panic("Should never get here!"); | |
1585 | } | |
1586 | ||
1587 | ||
1588 | /* Move PC forward */ | |
1589 | new_pc = regs64->pc + 4; | |
1590 | *was_simulated = 1; | |
1591 | break; | |
1592 | ||
1593 | } | |
1594 | ||
1595 | case FASTTRAP_T_ARM64_PRFM: | |
1596 | { | |
1597 | /* Becomes a NOP (architecturally permitted). Just move PC forward */ | |
1598 | new_pc = regs64->pc + 4; | |
1599 | *was_simulated = 1; | |
1600 | break; | |
1601 | } | |
1602 | ||
1603 | /* | |
1604 | * End explicit memory accesses. | |
1605 | */ | |
1606 | ||
1607 | /* | |
1608 | * Branches: parse condition codes if needed, emulate for correctness and | |
1609 | * in the case of the indirect branches, convenience | |
1610 | * B.cond | |
1611 | * CBNZ Wn, label | |
1612 | * CBNZ Xn, label | |
1613 | * CBZ Wn, label | |
1614 | * CBZ Xn, label | |
1615 | * TBNZ, Xn|Wn, #uimm16, label | |
1616 | * TBZ, Xn|Wn, #uimm16, label | |
1617 | * | |
1618 | * B label | |
1619 | * BL label | |
1620 | * | |
1621 | * BLR Xm | |
1622 | * BR Xm | |
1623 | * RET Xm | |
1624 | */ | |
1625 | case FASTTRAP_T_ARM64_B_COND: | |
1626 | { | |
1627 | int cond; | |
1628 | ||
1629 | /* Extract condition code */ | |
1630 | cond = (instr & 0xf); | |
1631 | ||
1632 | /* Determine if it passes */ | |
1633 | if (condition_true(cond, regs64->cpsr)) { | |
1634 | uint64_t offset; | |
1635 | ||
1636 | /* Extract 19-bit target offset, add to PC */ | |
1637 | offset = extract_address_literal_sign_extended(instr, 5, 19); | |
1638 | new_pc = regs64->pc + offset; | |
1639 | } else { | |
1640 | /* Move forwards */ | |
1641 | new_pc = regs64->pc + 4; | |
1642 | } | |
1643 | ||
1644 | *was_simulated = 1; | |
1645 | break; | |
1646 | } | |
1647 | ||
1648 | case FASTTRAP_T_ARM64_CBNZ_W: | |
1649 | { | |
1650 | do_cbz_cnbz(regs64, 32, instr, 0, &new_pc); | |
1651 | *was_simulated = 1; | |
1652 | break; | |
1653 | } | |
1654 | case FASTTRAP_T_ARM64_CBNZ_X: | |
1655 | { | |
1656 | do_cbz_cnbz(regs64, 64, instr, 0, &new_pc); | |
1657 | *was_simulated = 1; | |
1658 | break; | |
1659 | } | |
1660 | case FASTTRAP_T_ARM64_CBZ_W: | |
1661 | { | |
1662 | do_cbz_cnbz(regs64, 32, instr, 1, &new_pc); | |
1663 | *was_simulated = 1; | |
1664 | break; | |
1665 | } | |
1666 | case FASTTRAP_T_ARM64_CBZ_X: | |
1667 | { | |
1668 | do_cbz_cnbz(regs64, 64, instr, 1, &new_pc); | |
1669 | *was_simulated = 1; | |
1670 | break; | |
1671 | } | |
1672 | ||
1673 | case FASTTRAP_T_ARM64_TBNZ: | |
1674 | { | |
1675 | do_tbz_tbnz(regs64, instr, 0, &new_pc); | |
1676 | *was_simulated = 1; | |
1677 | break; | |
1678 | } | |
1679 | case FASTTRAP_T_ARM64_TBZ: | |
1680 | { | |
1681 | do_tbz_tbnz(regs64, instr, 1, &new_pc); | |
1682 | *was_simulated = 1; | |
1683 | break; | |
1684 | } | |
1685 | case FASTTRAP_T_ARM64_B: | |
1686 | case FASTTRAP_T_ARM64_BL: | |
1687 | { | |
1688 | uint64_t offset; | |
1689 | ||
1690 | /* Extract offset from instruction */ | |
1691 | offset = extract_address_literal_sign_extended(instr, 0, 26); | |
1692 | ||
1693 | /* Update LR if appropriate */ | |
1694 | if (tp->ftt_type == FASTTRAP_T_ARM64_BL) { | |
1695 | regs64->lr = regs64->pc + 4; | |
1696 | } | |
1697 | ||
1698 | /* Compute PC (unsigned addition for defined overflow) */ | |
1699 | new_pc = regs64->pc + offset; | |
1700 | *was_simulated = 1; | |
1701 | break; | |
1702 | } | |
1703 | ||
1704 | case FASTTRAP_T_ARM64_BLR: | |
1705 | case FASTTRAP_T_ARM64_BR: | |
1706 | { | |
1707 | uint32_t regno; | |
1708 | ||
1709 | /* Extract register from instruction */ | |
1710 | regno = ((instr >> 5) & 0x1f); | |
1711 | assert(regno <= 31); | |
1712 | ||
1713 | /* Update LR if appropriate */ | |
1714 | if (tp->ftt_type == FASTTRAP_T_ARM64_BLR) { | |
1715 | regs64->lr = regs64->pc + 4; | |
1716 | } | |
1717 | ||
1718 | /* Update PC in saved state */ | |
1719 | new_pc = get_saved_state64_regno(regs64, regno, 1); | |
1720 | *was_simulated = 1; | |
1721 | break; | |
1722 | } | |
1723 | ||
1724 | case FASTTRAP_T_ARM64_RET: | |
1725 | { | |
1726 | /* Extract register */ | |
1727 | unsigned regno = ((instr >> 5) & 0x1f); | |
1728 | assert(regno <= 31); | |
1729 | ||
1730 | /* Set PC to register value (xzr, not sp) */ | |
1731 | new_pc = get_saved_state64_regno(regs64, regno, 1); | |
1732 | *was_simulated = 1; | |
1733 | break; | |
1734 | } | |
1735 | ||
1736 | /* | |
1737 | * End branches. | |
1738 | */ | |
1739 | ||
1740 | /* | |
1741 | * Address calculations: emulate for correctness. | |
1742 | * | |
1743 | * ADRP Xd, label | |
1744 | * ADR Xd, label | |
1745 | */ | |
1746 | case FASTTRAP_T_ARM64_ADRP: | |
1747 | case FASTTRAP_T_ARM64_ADR: | |
1748 | { | |
1749 | uint64_t immhi, immlo, offset, result; | |
1750 | uint32_t regno; | |
1751 | ||
1752 | /* Extract destination register */ | |
1753 | regno = (instr & 0x1f); | |
1754 | assert(regno <= 31); | |
1755 | ||
1756 | /* Extract offset */ | |
1757 | immhi = ((instr & 0x00ffffe0) >> 5); /* bits [23,5]: 19 bits */ | |
1758 | immlo = ((instr & 0x60000000) >> 29); /* bits [30,29]: 2 bits */ | |
1759 | ||
1760 | /* Add to PC. Use unsigned addition so that overflow wraps (rather than being undefined). */ | |
1761 | if (tp->ftt_type == FASTTRAP_T_ARM64_ADRP) { | |
1762 | offset = (immhi << 14) | (immlo << 12); /* Concatenate bits into [32,12]*/ | |
1763 | offset = sign_extend(offset, 32); /* Sign extend from bit 32 */ | |
1764 | result = (regs64->pc & ~0xfffULL) + offset; /* And add to page of current pc */ | |
1765 | } else { | |
1766 | assert(tp->ftt_type == FASTTRAP_T_ARM64_ADR); | |
1767 | offset = (immhi << 2) | immlo; /* Concatenate bits into [20,0] */ | |
1768 | offset = sign_extend(offset, 20); /* Sign-extend */ | |
1769 | result = regs64->pc + offset; /* And add to page of current pc */ | |
1770 | } | |
1771 | ||
1772 | /* xzr, not sp */ | |
1773 | set_saved_state64_regno(regs64, regno, 1, result); | |
1774 | ||
1775 | /* Move PC forward */ | |
1776 | new_pc = regs64->pc + 4; | |
1777 | *was_simulated = 1; | |
1778 | break; | |
1779 | } | |
1780 | ||
1781 | /* | |
1782 | * End address calculations. | |
1783 | */ | |
1784 | ||
1785 | /* | |
1786 | * Everything else: thunk to userland | |
1787 | */ | |
1788 | case FASTTRAP_T_COMMON: | |
1789 | { | |
1790 | fasttrap_pid_probe_thunk_instr64(state, tp, p, uthread, &tp->ftt_instr, 1, &new_pc); | |
1791 | *was_simulated = 0; | |
1792 | break; | |
1793 | } | |
1794 | default: | |
1795 | { | |
1796 | panic("An instruction DTrace doesn't expect: %d\n", tp->ftt_type); | |
1797 | break; | |
1798 | } | |
1799 | } | |
1800 | ||
1801 | set_saved_state_pc(state, new_pc); | |
1802 | return; | |
1803 | } | |
1804 | ||
1805 | int | |
1806 | fasttrap_pid_probe(arm_saved_state_t *state) | |
1807 | { | |
1808 | proc_t *p = current_proc(); | |
1809 | fasttrap_bucket_t *bucket; | |
1810 | lck_mtx_t *pid_mtx; | |
1811 | fasttrap_tracepoint_t *tp, tp_local; | |
1812 | pid_t pid; | |
1813 | dtrace_icookie_t cookie; | |
1814 | uint_t is_enabled = 0; | |
1815 | int was_simulated, retire_tp = 1; | |
1816 | int is_64_bit = is_saved_state64(state); | |
1817 | ||
1818 | uint64_t pc = get_saved_state_pc(state); | |
1819 | ||
1820 | assert(is_64_bit || (pc <= UINT32_MAX)); | |
1821 | ||
1822 | uthread_t uthread = (uthread_t) get_bsdthread_info(current_thread()); | |
1823 | ||
1824 | /* | |
1825 | * It's possible that a user (in a veritable orgy of bad planning) | |
1826 | * could redirect this thread's flow of control before it reached the | |
1827 | * return probe fasttrap. In this case we need to kill the process | |
1828 | * since it's in a unrecoverable state. | |
1829 | */ | |
1830 | if (uthread->t_dtrace_step) { | |
1831 | ASSERT(uthread->t_dtrace_on); | |
1832 | fasttrap_sigtrap(p, uthread, (user_addr_t)pc); | |
1833 | return (0); | |
1834 | } | |
1835 | ||
1836 | /* | |
1837 | * Clear all user tracing flags. | |
1838 | */ | |
1839 | uthread->t_dtrace_ft = 0; | |
1840 | uthread->t_dtrace_pc = 0; | |
1841 | uthread->t_dtrace_npc = 0; | |
1842 | uthread->t_dtrace_scrpc = 0; | |
1843 | uthread->t_dtrace_astpc = 0; | |
1844 | uthread->t_dtrace_reg = 0; | |
1845 | ||
1846 | /* | |
1847 | * Treat a child created by a call to vfork(2) as if it were its | |
1848 | * parent. We know that there's only one thread of control in such a | |
1849 | * process: this one. | |
1850 | */ | |
1851 | if (p->p_lflag & P_LINVFORK) { | |
1852 | proc_list_lock(); | |
1853 | while (p->p_lflag & P_LINVFORK) | |
1854 | p = p->p_pptr; | |
1855 | proc_list_unlock(); | |
1856 | } | |
1857 | ||
1858 | pid = p->p_pid; | |
1859 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; | |
1860 | lck_mtx_lock(pid_mtx); | |
1861 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid,pc)]; | |
1862 | ||
1863 | /* | |
1864 | * Lookup the tracepoint that the process just hit. | |
1865 | */ | |
1866 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { | |
1867 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && | |
1868 | tp->ftt_proc->ftpc_acount != 0) | |
1869 | break; | |
1870 | } | |
1871 | ||
1872 | /* | |
1873 | * If we couldn't find a matching tracepoint, either a tracepoint has | |
1874 | * been inserted without using the pid<pid> ioctl interface (see | |
1875 | * fasttrap_ioctl), or somehow we have mislaid this tracepoint. | |
1876 | */ | |
1877 | if (tp == NULL) { | |
1878 | lck_mtx_unlock(pid_mtx); | |
1879 | return (-1); | |
1880 | } | |
1881 | ||
1882 | /* Validation of THUMB-related state */ | |
1883 | if (tp->ftt_thumb) { | |
1884 | if (!fasttrap_pid_probe_thumb_state_valid(saved_state32(state), tp)) { | |
1885 | fasttrap_tracepoint_remove(p, tp); | |
1886 | lck_mtx_unlock(pid_mtx); | |
1887 | return (-1); | |
1888 | } | |
1889 | } | |
1890 | ||
1891 | /* Execute the actual probe */ | |
1892 | if (tp->ftt_ids != NULL) { | |
1893 | fasttrap_id_t *id; | |
1894 | uint64_t arg4; | |
1895 | ||
1896 | if (is_saved_state64(state)) { | |
1897 | arg4 = get_saved_state_reg(state, 4); | |
1898 | } else { | |
1899 | uint32_t arg; | |
1900 | user_addr_t stack = (user_addr_t)get_saved_state_sp(state); | |
1901 | ||
1902 | fasttrap_fuword32_noerr(stack, &arg); | |
1903 | arg4 = arg; | |
1904 | } | |
1905 | ||
1906 | ||
1907 | /* First four parameters are passed in registers */ | |
1908 | ||
1909 | for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { | |
1910 | fasttrap_probe_t *probe = id->fti_probe; | |
1911 | ||
1912 | #ifndef CONFIG_EMBEDDED | |
1913 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { | |
1914 | dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id, | |
1915 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); | |
1916 | #else | |
1917 | if (FALSE) { | |
1918 | #endif | |
1919 | } else { | |
1920 | if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) { | |
1921 | uint8_t already_triggered = atomic_or_8(&probe->ftp_triggered, 1); | |
1922 | if (already_triggered) { | |
1923 | continue; | |
1924 | } | |
1925 | } | |
1926 | /* | |
1927 | * If we have at least one probe associated that | |
1928 | * is not a oneshot probe, don't remove the | |
1929 | * tracepoint | |
1930 | */ | |
1931 | else { | |
1932 | retire_tp = 0; | |
1933 | } | |
1934 | if (id->fti_ptype == DTFTP_ENTRY) { | |
1935 | /* | |
1936 | * We note that this was an entry | |
1937 | * probe to help ustack() find the | |
1938 | * first caller. | |
1939 | */ | |
1940 | cookie = dtrace_interrupt_disable(); | |
1941 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); | |
1942 | dtrace_probe(probe->ftp_id, | |
1943 | get_saved_state_reg(state, 0), | |
1944 | get_saved_state_reg(state, 1), | |
1945 | get_saved_state_reg(state, 2), | |
1946 | get_saved_state_reg(state, 3), | |
1947 | arg4); | |
1948 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); | |
1949 | dtrace_interrupt_enable(cookie); | |
1950 | } else if (id->fti_ptype == DTFTP_IS_ENABLED) { | |
1951 | /* | |
1952 | * Note that in this case, we don't | |
1953 | * call dtrace_probe() since it's only | |
1954 | * an artificial probe meant to change | |
1955 | * the flow of control so that it | |
1956 | * encounters the true probe. | |
1957 | */ | |
1958 | is_enabled = 1; | |
1959 | } else if (probe->ftp_argmap == NULL) { | |
1960 | dtrace_probe(probe->ftp_id, | |
1961 | get_saved_state_reg(state, 0), | |
1962 | get_saved_state_reg(state, 1), | |
1963 | get_saved_state_reg(state, 2), | |
1964 | get_saved_state_reg(state, 3), | |
1965 | arg4); | |
1966 | ||
1967 | } else { | |
1968 | uint64_t t[5]; | |
1969 | ||
1970 | if (is_64_bit) { | |
1971 | fasttrap_usdt_args64(probe, saved_state64(state), 5, t); | |
1972 | } else { | |
1973 | fasttrap_usdt_args32(probe, saved_state32(state), 5, t); | |
1974 | } | |
1975 | dtrace_probe(probe->ftp_id, t[0], t[1], t[2], t[3], t[4]); | |
1976 | } | |
1977 | } | |
1978 | } | |
1979 | if (retire_tp) { | |
1980 | fasttrap_tracepoint_retire(p, tp); | |
1981 | } | |
1982 | } | |
1983 | /* | |
1984 | * We're about to do a bunch of work so we cache a local copy of | |
1985 | * the tracepoint to emulate the instruction, and then find the | |
1986 | * tracepoint again later if we need to light up any return probes. | |
1987 | */ | |
1988 | tp_local = *tp; | |
1989 | lck_mtx_unlock(pid_mtx); | |
1990 | tp = &tp_local; | |
1991 | ||
1992 | /* | |
1993 | * APPLE NOTE: | |
1994 | * | |
1995 | * Subroutines should update PC. | |
1996 | * We're setting this earlier than Solaris does, to get a "correct" | |
1997 | * ustack() output. In the Sun code, a() -> b() -> c() -> d() is | |
1998 | * reported at: d, b, a. The new way gives c, b, a, which is closer | |
1999 | * to correct, as the return instruction has already exectued. | |
2000 | */ | |
2001 | if (is_64_bit) { | |
2002 | fasttrap_pid_probe_handle_patched_instr64(state, tp, uthread, p, is_enabled, &was_simulated); | |
2003 | } else { | |
2004 | fasttrap_pid_probe_handle_patched_instr32(state, tp, uthread, p, is_enabled, &was_simulated); | |
2005 | } | |
2006 | ||
2007 | /* | |
2008 | * If there were no return probes when we first found the tracepoint, | |
2009 | * we should feel no obligation to honor any return probes that were | |
2010 | * subsequently enabled -- they'll just have to wait until the next | |
2011 | * time around. | |
2012 | */ | |
2013 | if (tp->ftt_retids != NULL) { | |
2014 | /* | |
2015 | * We need to wait until the results of the instruction are | |
2016 | * apparent before invoking any return probes. If this | |
2017 | * instruction was emulated we can just call | |
2018 | * fasttrap_return_common(); if it needs to be executed, we | |
2019 | * need to wait until the user thread returns to the kernel. | |
2020 | */ | |
2021 | /* | |
2022 | * It used to be that only common instructions were simulated. | |
2023 | * For performance reasons, we now simulate some instructions | |
2024 | * when safe and go back to userland otherwise. The was_simulated | |
2025 | * flag means we don't need to go back to userland. | |
2026 | */ | |
2027 | if (was_simulated) { | |
2028 | fasttrap_return_common(p, state, (user_addr_t)pc, (user_addr_t)get_saved_state_pc(state)); | |
2029 | } else { | |
2030 | ASSERT(uthread->t_dtrace_ret != 0); | |
2031 | ASSERT(uthread->t_dtrace_pc == pc); | |
2032 | ASSERT(uthread->t_dtrace_scrpc != 0); | |
2033 | ASSERT(((user_addr_t)get_saved_state_pc(state)) == uthread->t_dtrace_astpc); | |
2034 | } | |
2035 | } | |
2036 | ||
2037 | return (0); | |
2038 | } | |
2039 | ||
2040 | int | |
2041 | fasttrap_return_probe(arm_saved_state_t *regs) | |
2042 | { | |
2043 | proc_t *p = current_proc(); | |
2044 | uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread()); | |
2045 | user_addr_t pc = uthread->t_dtrace_pc; | |
2046 | user_addr_t npc = uthread->t_dtrace_npc; | |
2047 | ||
2048 | uthread->t_dtrace_pc = 0; | |
2049 | uthread->t_dtrace_npc = 0; | |
2050 | uthread->t_dtrace_scrpc = 0; | |
2051 | uthread->t_dtrace_astpc = 0; | |
2052 | ||
2053 | /* | |
2054 | * Treat a child created by a call to vfork(2) as if it were its | |
2055 | * parent. We know that there's only one thread of control in such a | |
2056 | * process: this one. | |
2057 | */ | |
2058 | if (p->p_lflag & P_LINVFORK) { | |
2059 | proc_list_lock(); | |
2060 | while (p->p_lflag & P_LINVFORK) | |
2061 | p = p->p_pptr; | |
2062 | proc_list_unlock(); | |
2063 | } | |
2064 | ||
2065 | /* | |
2066 | * We set rp->r_pc to the address of the traced instruction so | |
2067 | * that it appears to dtrace_probe() that we're on the original | |
2068 | * instruction, and so that the user can't easily detect our | |
2069 | * complex web of lies. dtrace_return_probe() (our caller) | |
2070 | * will correctly set %pc after we return. | |
2071 | */ | |
2072 | set_saved_state_pc(regs, pc); | |
2073 | ||
2074 | fasttrap_return_common(p, regs, pc, npc); | |
2075 | ||
2076 | return (0); | |
2077 | } | |
2078 | ||
2079 | uint64_t | |
2080 | fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno, | |
2081 | int aframes) | |
2082 | { | |
2083 | #pragma unused(arg, id, parg, aframes) | |
2084 | arm_saved_state_t* regs = find_user_regs(current_thread()); | |
2085 | ||
2086 | if (is_saved_state32(regs)) { | |
2087 | /* First four arguments are in registers */ | |
2088 | if (argno < 4) | |
2089 | return saved_state32(regs)->r[argno]; | |
2090 | ||
2091 | /* Look on the stack for the rest */ | |
2092 | uint32_t value; | |
2093 | uint32_t* sp = (uint32_t*)(uintptr_t) saved_state32(regs)->sp; | |
2094 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
2095 | value = dtrace_fuword32((user_addr_t) (sp+argno-4)); | |
2096 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); | |
2097 | ||
2098 | return value; | |
2099 | } | |
2100 | else { | |
2101 | /* First eight arguments are in registers */ | |
2102 | if (argno < 8) | |
2103 | return saved_state64(regs)->x[argno]; | |
2104 | ||
2105 | /* Look on the stack for the rest */ | |
2106 | uint64_t value; | |
2107 | uint64_t* sp = (uint64_t*) saved_state64(regs)->sp; | |
2108 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
2109 | value = dtrace_fuword64((user_addr_t) (sp+argno-8)); | |
2110 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); | |
2111 | ||
2112 | return value; | |
2113 | } | |
2114 | ||
2115 | } | |
2116 | ||
2117 | uint64_t | |
2118 | fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno, int aframes) | |
2119 | { | |
2120 | #pragma unused(arg, id, parg, argno, aframes) | |
2121 | #if 0 | |
2122 | return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, 0, argno)); | |
2123 | #endif | |
2124 | ||
2125 | return 0; | |
2126 | } | |
2127 |