]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_page.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Resident memory management module. | |
63 | */ | |
64 | ||
65 | #include <debug.h> | |
66 | #include <libkern/OSAtomic.h> | |
67 | ||
68 | #include <mach/clock_types.h> | |
69 | #include <mach/vm_prot.h> | |
70 | #include <mach/vm_statistics.h> | |
71 | #include <mach/sdt.h> | |
72 | #include <kern/counters.h> | |
73 | #include <kern/sched_prim.h> | |
74 | #include <kern/task.h> | |
75 | #include <kern/thread.h> | |
76 | #include <kern/zalloc.h> | |
77 | #include <kern/xpr.h> | |
78 | #include <vm/pmap.h> | |
79 | #include <vm/vm_init.h> | |
80 | #include <vm/vm_map.h> | |
81 | #include <vm/vm_page.h> | |
82 | #include <vm/vm_pageout.h> | |
83 | #include <vm/vm_kern.h> /* kernel_memory_allocate() */ | |
84 | #include <kern/misc_protos.h> | |
85 | #include <zone_debug.h> | |
86 | #include <vm/cpm.h> | |
87 | #include <ppc/mappings.h> /* (BRINGUP) */ | |
88 | #include <pexpert/pexpert.h> /* (BRINGUP) */ | |
89 | ||
90 | #include <vm/vm_protos.h> | |
91 | #include <vm/memory_object.h> | |
92 | #include <vm/vm_purgeable_internal.h> | |
93 | ||
94 | #if CONFIG_EMBEDDED | |
95 | #include <sys/kern_memorystatus.h> | |
96 | #endif | |
97 | ||
98 | int speculative_age_index = 0; | |
99 | int speculative_steal_index = 0; | |
100 | ||
101 | struct vm_speculative_age_q vm_page_queue_speculative[VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1]; | |
102 | ||
103 | ||
104 | /* | |
105 | * Associated with page of user-allocatable memory is a | |
106 | * page structure. | |
107 | */ | |
108 | ||
109 | /* | |
110 | * These variables record the values returned by vm_page_bootstrap, | |
111 | * for debugging purposes. The implementation of pmap_steal_memory | |
112 | * and pmap_startup here also uses them internally. | |
113 | */ | |
114 | ||
115 | vm_offset_t virtual_space_start; | |
116 | vm_offset_t virtual_space_end; | |
117 | int vm_page_pages; | |
118 | ||
119 | /* | |
120 | * The vm_page_lookup() routine, which provides for fast | |
121 | * (virtual memory object, offset) to page lookup, employs | |
122 | * the following hash table. The vm_page_{insert,remove} | |
123 | * routines install and remove associations in the table. | |
124 | * [This table is often called the virtual-to-physical, | |
125 | * or VP, table.] | |
126 | */ | |
127 | typedef struct { | |
128 | vm_page_t pages; | |
129 | #if MACH_PAGE_HASH_STATS | |
130 | int cur_count; /* current count */ | |
131 | int hi_count; /* high water mark */ | |
132 | #endif /* MACH_PAGE_HASH_STATS */ | |
133 | } vm_page_bucket_t; | |
134 | ||
135 | vm_page_bucket_t *vm_page_buckets; /* Array of buckets */ | |
136 | unsigned int vm_page_bucket_count = 0; /* How big is array? */ | |
137 | unsigned int vm_page_hash_mask; /* Mask for hash function */ | |
138 | unsigned int vm_page_hash_shift; /* Shift for hash function */ | |
139 | uint32_t vm_page_bucket_hash; /* Basic bucket hash */ | |
140 | decl_simple_lock_data(,vm_page_bucket_lock) | |
141 | ||
142 | ||
143 | #if MACH_PAGE_HASH_STATS | |
144 | /* This routine is only for debug. It is intended to be called by | |
145 | * hand by a developer using a kernel debugger. This routine prints | |
146 | * out vm_page_hash table statistics to the kernel debug console. | |
147 | */ | |
148 | void | |
149 | hash_debug(void) | |
150 | { | |
151 | int i; | |
152 | int numbuckets = 0; | |
153 | int highsum = 0; | |
154 | int maxdepth = 0; | |
155 | ||
156 | for (i = 0; i < vm_page_bucket_count; i++) { | |
157 | if (vm_page_buckets[i].hi_count) { | |
158 | numbuckets++; | |
159 | highsum += vm_page_buckets[i].hi_count; | |
160 | if (vm_page_buckets[i].hi_count > maxdepth) | |
161 | maxdepth = vm_page_buckets[i].hi_count; | |
162 | } | |
163 | } | |
164 | printf("Total number of buckets: %d\n", vm_page_bucket_count); | |
165 | printf("Number used buckets: %d = %d%%\n", | |
166 | numbuckets, 100*numbuckets/vm_page_bucket_count); | |
167 | printf("Number unused buckets: %d = %d%%\n", | |
168 | vm_page_bucket_count - numbuckets, | |
169 | 100*(vm_page_bucket_count-numbuckets)/vm_page_bucket_count); | |
170 | printf("Sum of bucket max depth: %d\n", highsum); | |
171 | printf("Average bucket depth: %d.%2d\n", | |
172 | highsum/vm_page_bucket_count, | |
173 | highsum%vm_page_bucket_count); | |
174 | printf("Maximum bucket depth: %d\n", maxdepth); | |
175 | } | |
176 | #endif /* MACH_PAGE_HASH_STATS */ | |
177 | ||
178 | /* | |
179 | * The virtual page size is currently implemented as a runtime | |
180 | * variable, but is constant once initialized using vm_set_page_size. | |
181 | * This initialization must be done in the machine-dependent | |
182 | * bootstrap sequence, before calling other machine-independent | |
183 | * initializations. | |
184 | * | |
185 | * All references to the virtual page size outside this | |
186 | * module must use the PAGE_SIZE, PAGE_MASK and PAGE_SHIFT | |
187 | * constants. | |
188 | */ | |
189 | vm_size_t page_size = PAGE_SIZE; | |
190 | vm_size_t page_mask = PAGE_MASK; | |
191 | int page_shift = PAGE_SHIFT; | |
192 | ||
193 | /* | |
194 | * Resident page structures are initialized from | |
195 | * a template (see vm_page_alloc). | |
196 | * | |
197 | * When adding a new field to the virtual memory | |
198 | * object structure, be sure to add initialization | |
199 | * (see vm_page_bootstrap). | |
200 | */ | |
201 | struct vm_page vm_page_template; | |
202 | ||
203 | vm_page_t vm_pages = VM_PAGE_NULL; | |
204 | unsigned int vm_pages_count = 0; | |
205 | ||
206 | /* | |
207 | * Resident pages that represent real memory | |
208 | * are allocated from a set of free lists, | |
209 | * one per color. | |
210 | */ | |
211 | unsigned int vm_colors; | |
212 | unsigned int vm_color_mask; /* mask is == (vm_colors-1) */ | |
213 | unsigned int vm_cache_geometry_colors = 0; /* set by hw dependent code during startup */ | |
214 | queue_head_t vm_page_queue_free[MAX_COLORS]; | |
215 | vm_page_t vm_page_queue_fictitious; | |
216 | unsigned int vm_page_free_wanted; | |
217 | unsigned int vm_page_free_wanted_privileged; | |
218 | unsigned int vm_page_free_count; | |
219 | unsigned int vm_page_fictitious_count; | |
220 | ||
221 | unsigned int vm_page_free_count_minimum; /* debugging */ | |
222 | ||
223 | /* | |
224 | * Occasionally, the virtual memory system uses | |
225 | * resident page structures that do not refer to | |
226 | * real pages, for example to leave a page with | |
227 | * important state information in the VP table. | |
228 | * | |
229 | * These page structures are allocated the way | |
230 | * most other kernel structures are. | |
231 | */ | |
232 | zone_t vm_page_zone; | |
233 | decl_mutex_data(,vm_page_alloc_lock) | |
234 | unsigned int io_throttle_zero_fill; | |
235 | ||
236 | /* | |
237 | * Fictitious pages don't have a physical address, | |
238 | * but we must initialize phys_page to something. | |
239 | * For debugging, this should be a strange value | |
240 | * that the pmap module can recognize in assertions. | |
241 | */ | |
242 | vm_offset_t vm_page_fictitious_addr = (vm_offset_t) -1; | |
243 | ||
244 | /* | |
245 | * Guard pages are not accessible so they don't | |
246 | * need a physical address, but we need to enter | |
247 | * one in the pmap. | |
248 | * Let's make it recognizable and make sure that | |
249 | * we don't use a real physical page with that | |
250 | * physical address. | |
251 | */ | |
252 | vm_offset_t vm_page_guard_addr = (vm_offset_t) -2; | |
253 | ||
254 | /* | |
255 | * Resident page structures are also chained on | |
256 | * queues that are used by the page replacement | |
257 | * system (pageout daemon). These queues are | |
258 | * defined here, but are shared by the pageout | |
259 | * module. The inactive queue is broken into | |
260 | * inactive and zf for convenience as the | |
261 | * pageout daemon often assignes a higher | |
262 | * affinity to zf pages | |
263 | */ | |
264 | queue_head_t vm_page_queue_active; | |
265 | queue_head_t vm_page_queue_inactive; | |
266 | queue_head_t vm_page_queue_zf; /* inactive memory queue for zero fill */ | |
267 | ||
268 | unsigned int vm_page_active_count; | |
269 | unsigned int vm_page_inactive_count; | |
270 | unsigned int vm_page_throttled_count; | |
271 | unsigned int vm_page_speculative_count; | |
272 | unsigned int vm_page_wire_count; | |
273 | unsigned int vm_page_gobble_count = 0; | |
274 | unsigned int vm_page_wire_count_warning = 0; | |
275 | unsigned int vm_page_gobble_count_warning = 0; | |
276 | ||
277 | unsigned int vm_page_purgeable_count = 0; /* # of pages purgeable now */ | |
278 | uint64_t vm_page_purged_count = 0; /* total count of purged pages */ | |
279 | ||
280 | unsigned int vm_page_speculative_recreated = 0; | |
281 | unsigned int vm_page_speculative_created = 0; | |
282 | unsigned int vm_page_speculative_used = 0; | |
283 | ||
284 | ppnum_t vm_lopage_poolstart = 0; | |
285 | ppnum_t vm_lopage_poolend = 0; | |
286 | int vm_lopage_poolsize = 0; | |
287 | uint64_t max_valid_dma_address = 0xffffffffffffffffULL; | |
288 | ||
289 | ||
290 | /* | |
291 | * Several page replacement parameters are also | |
292 | * shared with this module, so that page allocation | |
293 | * (done here in vm_page_alloc) can trigger the | |
294 | * pageout daemon. | |
295 | */ | |
296 | unsigned int vm_page_free_target = 0; | |
297 | unsigned int vm_page_free_min = 0; | |
298 | unsigned int vm_page_inactive_target = 0; | |
299 | unsigned int vm_page_inactive_min = 0; | |
300 | unsigned int vm_page_free_reserved = 0; | |
301 | unsigned int vm_page_zfill_throttle_count = 0; | |
302 | ||
303 | /* | |
304 | * The VM system has a couple of heuristics for deciding | |
305 | * that pages are "uninteresting" and should be placed | |
306 | * on the inactive queue as likely candidates for replacement. | |
307 | * These variables let the heuristics be controlled at run-time | |
308 | * to make experimentation easier. | |
309 | */ | |
310 | ||
311 | boolean_t vm_page_deactivate_hint = TRUE; | |
312 | ||
313 | /* | |
314 | * vm_set_page_size: | |
315 | * | |
316 | * Sets the page size, perhaps based upon the memory | |
317 | * size. Must be called before any use of page-size | |
318 | * dependent functions. | |
319 | * | |
320 | * Sets page_shift and page_mask from page_size. | |
321 | */ | |
322 | void | |
323 | vm_set_page_size(void) | |
324 | { | |
325 | page_mask = page_size - 1; | |
326 | ||
327 | if ((page_mask & page_size) != 0) | |
328 | panic("vm_set_page_size: page size not a power of two"); | |
329 | ||
330 | for (page_shift = 0; ; page_shift++) | |
331 | if ((1U << page_shift) == page_size) | |
332 | break; | |
333 | } | |
334 | ||
335 | ||
336 | /* Called once during statup, once the cache geometry is known. | |
337 | */ | |
338 | static void | |
339 | vm_page_set_colors( void ) | |
340 | { | |
341 | unsigned int n, override; | |
342 | ||
343 | if ( PE_parse_boot_arg("colors", &override) ) /* colors specified as a boot-arg? */ | |
344 | n = override; | |
345 | else if ( vm_cache_geometry_colors ) /* do we know what the cache geometry is? */ | |
346 | n = vm_cache_geometry_colors; | |
347 | else n = DEFAULT_COLORS; /* use default if all else fails */ | |
348 | ||
349 | if ( n == 0 ) | |
350 | n = 1; | |
351 | if ( n > MAX_COLORS ) | |
352 | n = MAX_COLORS; | |
353 | ||
354 | /* the count must be a power of 2 */ | |
355 | if ( ( n & (n - 1)) !=0 ) | |
356 | panic("vm_page_set_colors"); | |
357 | ||
358 | vm_colors = n; | |
359 | vm_color_mask = n - 1; | |
360 | } | |
361 | ||
362 | ||
363 | /* | |
364 | * vm_page_bootstrap: | |
365 | * | |
366 | * Initializes the resident memory module. | |
367 | * | |
368 | * Allocates memory for the page cells, and | |
369 | * for the object/offset-to-page hash table headers. | |
370 | * Each page cell is initialized and placed on the free list. | |
371 | * Returns the range of available kernel virtual memory. | |
372 | */ | |
373 | ||
374 | void | |
375 | vm_page_bootstrap( | |
376 | vm_offset_t *startp, | |
377 | vm_offset_t *endp) | |
378 | { | |
379 | register vm_page_t m; | |
380 | unsigned int i; | |
381 | unsigned int log1; | |
382 | unsigned int log2; | |
383 | unsigned int size; | |
384 | ||
385 | /* | |
386 | * Initialize the vm_page template. | |
387 | */ | |
388 | ||
389 | m = &vm_page_template; | |
390 | m->object = VM_OBJECT_NULL; /* reset later */ | |
391 | m->offset = (vm_object_offset_t) -1; /* reset later */ | |
392 | m->wire_count = 0; | |
393 | ||
394 | m->pageq.next = NULL; | |
395 | m->pageq.prev = NULL; | |
396 | m->listq.next = NULL; | |
397 | m->listq.prev = NULL; | |
398 | ||
399 | m->speculative = FALSE; | |
400 | m->throttled = FALSE; | |
401 | m->inactive = FALSE; | |
402 | m->active = FALSE; | |
403 | m->no_cache = FALSE; | |
404 | m->laundry = FALSE; | |
405 | m->free = FALSE; | |
406 | m->pmapped = FALSE; | |
407 | m->wpmapped = FALSE; | |
408 | m->reference = FALSE; | |
409 | m->pageout = FALSE; | |
410 | m->dump_cleaning = FALSE; | |
411 | m->list_req_pending = FALSE; | |
412 | ||
413 | m->busy = TRUE; | |
414 | m->wanted = FALSE; | |
415 | m->tabled = FALSE; | |
416 | m->fictitious = FALSE; | |
417 | m->private = FALSE; | |
418 | m->absent = FALSE; | |
419 | m->error = FALSE; | |
420 | m->dirty = FALSE; | |
421 | m->cleaning = FALSE; | |
422 | m->precious = FALSE; | |
423 | m->clustered = FALSE; | |
424 | m->unusual = FALSE; | |
425 | m->restart = FALSE; | |
426 | m->zero_fill = FALSE; | |
427 | m->encrypted = FALSE; | |
428 | m->encrypted_cleaning = FALSE; | |
429 | m->deactivated = FALSE; | |
430 | ||
431 | m->phys_page = 0; /* reset later */ | |
432 | ||
433 | /* | |
434 | * Initialize the page queues. | |
435 | */ | |
436 | ||
437 | mutex_init(&vm_page_queue_free_lock, 0); | |
438 | mutex_init(&vm_page_queue_lock, 0); | |
439 | ||
440 | mutex_init(&vm_purgeable_queue_lock, 0); | |
441 | ||
442 | for (i = 0; i < PURGEABLE_Q_TYPE_MAX; i++) { | |
443 | int group; | |
444 | ||
445 | purgeable_queues[i].token_q_head = 0; | |
446 | purgeable_queues[i].token_q_tail = 0; | |
447 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) | |
448 | queue_init(&purgeable_queues[i].objq[group]); | |
449 | ||
450 | purgeable_queues[i].type = i; | |
451 | purgeable_queues[i].new_pages = 0; | |
452 | #if MACH_ASSERT | |
453 | purgeable_queues[i].debug_count_tokens = 0; | |
454 | purgeable_queues[i].debug_count_objects = 0; | |
455 | #endif | |
456 | }; | |
457 | ||
458 | for (i = 0; i < MAX_COLORS; i++ ) | |
459 | queue_init(&vm_page_queue_free[i]); | |
460 | queue_init(&vm_lopage_queue_free); | |
461 | vm_page_queue_fictitious = VM_PAGE_NULL; | |
462 | queue_init(&vm_page_queue_active); | |
463 | queue_init(&vm_page_queue_inactive); | |
464 | queue_init(&vm_page_queue_throttled); | |
465 | queue_init(&vm_page_queue_zf); | |
466 | ||
467 | for ( i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++ ) { | |
468 | queue_init(&vm_page_queue_speculative[i].age_q); | |
469 | ||
470 | vm_page_queue_speculative[i].age_ts.tv_sec = 0; | |
471 | vm_page_queue_speculative[i].age_ts.tv_nsec = 0; | |
472 | } | |
473 | vm_page_free_wanted = 0; | |
474 | vm_page_free_wanted_privileged = 0; | |
475 | ||
476 | vm_page_set_colors(); | |
477 | ||
478 | ||
479 | /* | |
480 | * Steal memory for the map and zone subsystems. | |
481 | */ | |
482 | ||
483 | vm_map_steal_memory(); | |
484 | zone_steal_memory(); | |
485 | ||
486 | /* | |
487 | * Allocate (and initialize) the virtual-to-physical | |
488 | * table hash buckets. | |
489 | * | |
490 | * The number of buckets should be a power of two to | |
491 | * get a good hash function. The following computation | |
492 | * chooses the first power of two that is greater | |
493 | * than the number of physical pages in the system. | |
494 | */ | |
495 | ||
496 | simple_lock_init(&vm_page_bucket_lock, 0); | |
497 | ||
498 | if (vm_page_bucket_count == 0) { | |
499 | unsigned int npages = pmap_free_pages(); | |
500 | ||
501 | vm_page_bucket_count = 1; | |
502 | while (vm_page_bucket_count < npages) | |
503 | vm_page_bucket_count <<= 1; | |
504 | } | |
505 | ||
506 | vm_page_hash_mask = vm_page_bucket_count - 1; | |
507 | ||
508 | /* | |
509 | * Calculate object shift value for hashing algorithm: | |
510 | * O = log2(sizeof(struct vm_object)) | |
511 | * B = log2(vm_page_bucket_count) | |
512 | * hash shifts the object left by | |
513 | * B/2 - O | |
514 | */ | |
515 | size = vm_page_bucket_count; | |
516 | for (log1 = 0; size > 1; log1++) | |
517 | size /= 2; | |
518 | size = sizeof(struct vm_object); | |
519 | for (log2 = 0; size > 1; log2++) | |
520 | size /= 2; | |
521 | vm_page_hash_shift = log1/2 - log2 + 1; | |
522 | ||
523 | vm_page_bucket_hash = 1 << ((log1 + 1) >> 1); /* Get (ceiling of sqrt of table size) */ | |
524 | vm_page_bucket_hash |= 1 << ((log1 + 1) >> 2); /* Get (ceiling of quadroot of table size) */ | |
525 | vm_page_bucket_hash |= 1; /* Set bit and add 1 - always must be 1 to insure unique series */ | |
526 | ||
527 | if (vm_page_hash_mask & vm_page_bucket_count) | |
528 | printf("vm_page_bootstrap: WARNING -- strange page hash\n"); | |
529 | ||
530 | vm_page_buckets = (vm_page_bucket_t *) | |
531 | pmap_steal_memory(vm_page_bucket_count * | |
532 | sizeof(vm_page_bucket_t)); | |
533 | ||
534 | for (i = 0; i < vm_page_bucket_count; i++) { | |
535 | register vm_page_bucket_t *bucket = &vm_page_buckets[i]; | |
536 | ||
537 | bucket->pages = VM_PAGE_NULL; | |
538 | #if MACH_PAGE_HASH_STATS | |
539 | bucket->cur_count = 0; | |
540 | bucket->hi_count = 0; | |
541 | #endif /* MACH_PAGE_HASH_STATS */ | |
542 | } | |
543 | ||
544 | /* | |
545 | * Machine-dependent code allocates the resident page table. | |
546 | * It uses vm_page_init to initialize the page frames. | |
547 | * The code also returns to us the virtual space available | |
548 | * to the kernel. We don't trust the pmap module | |
549 | * to get the alignment right. | |
550 | */ | |
551 | ||
552 | pmap_startup(&virtual_space_start, &virtual_space_end); | |
553 | virtual_space_start = round_page(virtual_space_start); | |
554 | virtual_space_end = trunc_page(virtual_space_end); | |
555 | ||
556 | *startp = virtual_space_start; | |
557 | *endp = virtual_space_end; | |
558 | ||
559 | /* | |
560 | * Compute the initial "wire" count. | |
561 | * Up until now, the pages which have been set aside are not under | |
562 | * the VM system's control, so although they aren't explicitly | |
563 | * wired, they nonetheless can't be moved. At this moment, | |
564 | * all VM managed pages are "free", courtesy of pmap_startup. | |
565 | */ | |
566 | vm_page_wire_count = atop_64(max_mem) - vm_page_free_count; /* initial value */ | |
567 | vm_page_free_count_minimum = vm_page_free_count; | |
568 | ||
569 | printf("vm_page_bootstrap: %d free pages and %d wired pages\n", | |
570 | vm_page_free_count, vm_page_wire_count); | |
571 | ||
572 | simple_lock_init(&vm_paging_lock, 0); | |
573 | } | |
574 | ||
575 | #ifndef MACHINE_PAGES | |
576 | /* | |
577 | * We implement pmap_steal_memory and pmap_startup with the help | |
578 | * of two simpler functions, pmap_virtual_space and pmap_next_page. | |
579 | */ | |
580 | ||
581 | void * | |
582 | pmap_steal_memory( | |
583 | vm_size_t size) | |
584 | { | |
585 | vm_offset_t addr, vaddr; | |
586 | ppnum_t phys_page; | |
587 | ||
588 | /* | |
589 | * We round the size to a round multiple. | |
590 | */ | |
591 | ||
592 | size = (size + sizeof (void *) - 1) &~ (sizeof (void *) - 1); | |
593 | ||
594 | /* | |
595 | * If this is the first call to pmap_steal_memory, | |
596 | * we have to initialize ourself. | |
597 | */ | |
598 | ||
599 | if (virtual_space_start == virtual_space_end) { | |
600 | pmap_virtual_space(&virtual_space_start, &virtual_space_end); | |
601 | ||
602 | /* | |
603 | * The initial values must be aligned properly, and | |
604 | * we don't trust the pmap module to do it right. | |
605 | */ | |
606 | ||
607 | virtual_space_start = round_page(virtual_space_start); | |
608 | virtual_space_end = trunc_page(virtual_space_end); | |
609 | } | |
610 | ||
611 | /* | |
612 | * Allocate virtual memory for this request. | |
613 | */ | |
614 | ||
615 | addr = virtual_space_start; | |
616 | virtual_space_start += size; | |
617 | ||
618 | kprintf("pmap_steal_memory: %08X - %08X; size=%08X\n", addr, virtual_space_start, size); /* (TEST/DEBUG) */ | |
619 | ||
620 | /* | |
621 | * Allocate and map physical pages to back new virtual pages. | |
622 | */ | |
623 | ||
624 | for (vaddr = round_page(addr); | |
625 | vaddr < addr + size; | |
626 | vaddr += PAGE_SIZE) { | |
627 | if (!pmap_next_page(&phys_page)) | |
628 | panic("pmap_steal_memory"); | |
629 | ||
630 | /* | |
631 | * XXX Logically, these mappings should be wired, | |
632 | * but some pmap modules barf if they are. | |
633 | */ | |
634 | ||
635 | pmap_enter(kernel_pmap, vaddr, phys_page, | |
636 | VM_PROT_READ|VM_PROT_WRITE, | |
637 | VM_WIMG_USE_DEFAULT, FALSE); | |
638 | /* | |
639 | * Account for newly stolen memory | |
640 | */ | |
641 | vm_page_wire_count++; | |
642 | ||
643 | } | |
644 | ||
645 | return (void *) addr; | |
646 | } | |
647 | ||
648 | void | |
649 | pmap_startup( | |
650 | vm_offset_t *startp, | |
651 | vm_offset_t *endp) | |
652 | { | |
653 | unsigned int i, npages, pages_initialized, fill, fillval; | |
654 | ppnum_t phys_page; | |
655 | addr64_t tmpaddr; | |
656 | unsigned int num_of_lopages = 0; | |
657 | unsigned int last_index; | |
658 | ||
659 | /* | |
660 | * We calculate how many page frames we will have | |
661 | * and then allocate the page structures in one chunk. | |
662 | */ | |
663 | ||
664 | tmpaddr = (addr64_t)pmap_free_pages() * (addr64_t)PAGE_SIZE; /* Get the amount of memory left */ | |
665 | tmpaddr = tmpaddr + (addr64_t)(round_page_32(virtual_space_start) - virtual_space_start); /* Account for any slop */ | |
666 | npages = (unsigned int)(tmpaddr / (addr64_t)(PAGE_SIZE + sizeof(*vm_pages))); /* Figure size of all vm_page_ts, including enough to hold the vm_page_ts */ | |
667 | ||
668 | vm_pages = (vm_page_t) pmap_steal_memory(npages * sizeof *vm_pages); | |
669 | ||
670 | /* | |
671 | * Initialize the page frames. | |
672 | */ | |
673 | for (i = 0, pages_initialized = 0; i < npages; i++) { | |
674 | if (!pmap_next_page(&phys_page)) | |
675 | break; | |
676 | ||
677 | vm_page_init(&vm_pages[i], phys_page); | |
678 | vm_page_pages++; | |
679 | pages_initialized++; | |
680 | } | |
681 | vm_pages_count = pages_initialized; | |
682 | ||
683 | /* | |
684 | * Check if we want to initialize pages to a known value | |
685 | */ | |
686 | fill = 0; /* Assume no fill */ | |
687 | if (PE_parse_boot_arg("fill", &fillval)) fill = 1; /* Set fill */ | |
688 | ||
689 | ||
690 | /* | |
691 | * if vm_lopage_poolsize is non-zero, than we need to reserve | |
692 | * a pool of pages whose addresess are less than 4G... this pool | |
693 | * is used by drivers whose hardware can't DMA beyond 32 bits... | |
694 | * | |
695 | * note that I'm assuming that the page list is ascending and | |
696 | * ordered w/r to the physical address | |
697 | */ | |
698 | for (i = 0, num_of_lopages = vm_lopage_poolsize; num_of_lopages && i < pages_initialized; num_of_lopages--, i++) { | |
699 | vm_page_t m; | |
700 | ||
701 | m = &vm_pages[i]; | |
702 | ||
703 | if (m->phys_page >= (1 << (32 - PAGE_SHIFT))) | |
704 | panic("couldn't reserve the lopage pool: not enough lo pages\n"); | |
705 | ||
706 | if (m->phys_page < vm_lopage_poolend) | |
707 | panic("couldn't reserve the lopage pool: page list out of order\n"); | |
708 | ||
709 | vm_lopage_poolend = m->phys_page; | |
710 | ||
711 | if (vm_lopage_poolstart == 0) | |
712 | vm_lopage_poolstart = m->phys_page; | |
713 | else { | |
714 | if (m->phys_page < vm_lopage_poolstart) | |
715 | panic("couldn't reserve the lopage pool: page list out of order\n"); | |
716 | } | |
717 | ||
718 | if (fill) | |
719 | fillPage(m->phys_page, fillval); /* Fill the page with a know value if requested at boot */ | |
720 | ||
721 | vm_page_release(m); | |
722 | } | |
723 | last_index = i; | |
724 | ||
725 | // -debug code remove | |
726 | if (2 == vm_himemory_mode) { | |
727 | // free low -> high so high is preferred | |
728 | for (i = last_index + 1; i <= pages_initialized; i++) { | |
729 | if(fill) fillPage(vm_pages[i - 1].phys_page, fillval); /* Fill the page with a know value if requested at boot */ | |
730 | vm_page_release(&vm_pages[i - 1]); | |
731 | } | |
732 | } | |
733 | else | |
734 | // debug code remove- | |
735 | ||
736 | /* | |
737 | * Release pages in reverse order so that physical pages | |
738 | * initially get allocated in ascending addresses. This keeps | |
739 | * the devices (which must address physical memory) happy if | |
740 | * they require several consecutive pages. | |
741 | */ | |
742 | for (i = pages_initialized; i > last_index; i--) { | |
743 | if(fill) fillPage(vm_pages[i - 1].phys_page, fillval); /* Fill the page with a know value if requested at boot */ | |
744 | vm_page_release(&vm_pages[i - 1]); | |
745 | } | |
746 | ||
747 | #if 0 | |
748 | { | |
749 | vm_page_t xx, xxo, xxl; | |
750 | int i, j, k, l; | |
751 | ||
752 | j = 0; /* (BRINGUP) */ | |
753 | xxl = 0; | |
754 | ||
755 | for( i = 0; i < vm_colors; i++ ) { | |
756 | queue_iterate(&vm_page_queue_free[i], | |
757 | xx, | |
758 | vm_page_t, | |
759 | pageq) { /* BRINGUP */ | |
760 | j++; /* (BRINGUP) */ | |
761 | if(j > vm_page_free_count) { /* (BRINGUP) */ | |
762 | panic("pmap_startup: too many pages, xx = %08X, xxl = %08X\n", xx, xxl); | |
763 | } | |
764 | ||
765 | l = vm_page_free_count - j; /* (BRINGUP) */ | |
766 | k = 0; /* (BRINGUP) */ | |
767 | ||
768 | if(((j - 1) & 0xFFFF) == 0) kprintf("checking number %d of %d\n", j, vm_page_free_count); | |
769 | ||
770 | for(xxo = xx->pageq.next; xxo != &vm_page_queue_free[i]; xxo = xxo->pageq.next) { /* (BRINGUP) */ | |
771 | k++; | |
772 | if(k > l) panic("pmap_startup: too many in secondary check %d %d\n", k, l); | |
773 | if((xx->phys_page & 0xFFFFFFFF) == (xxo->phys_page & 0xFFFFFFFF)) { /* (BRINGUP) */ | |
774 | panic("pmap_startup: duplicate physaddr, xx = %08X, xxo = %08X\n", xx, xxo); | |
775 | } | |
776 | } | |
777 | ||
778 | xxl = xx; | |
779 | } | |
780 | } | |
781 | ||
782 | if(j != vm_page_free_count) { /* (BRINGUP) */ | |
783 | panic("pmap_startup: vm_page_free_count does not match, calc = %d, vm_page_free_count = %08X\n", j, vm_page_free_count); | |
784 | } | |
785 | } | |
786 | #endif | |
787 | ||
788 | ||
789 | /* | |
790 | * We have to re-align virtual_space_start, | |
791 | * because pmap_steal_memory has been using it. | |
792 | */ | |
793 | ||
794 | virtual_space_start = round_page_32(virtual_space_start); | |
795 | ||
796 | *startp = virtual_space_start; | |
797 | *endp = virtual_space_end; | |
798 | } | |
799 | #endif /* MACHINE_PAGES */ | |
800 | ||
801 | /* | |
802 | * Routine: vm_page_module_init | |
803 | * Purpose: | |
804 | * Second initialization pass, to be done after | |
805 | * the basic VM system is ready. | |
806 | */ | |
807 | void | |
808 | vm_page_module_init(void) | |
809 | { | |
810 | vm_page_zone = zinit((vm_size_t) sizeof(struct vm_page), | |
811 | 0, PAGE_SIZE, "vm pages"); | |
812 | ||
813 | #if ZONE_DEBUG | |
814 | zone_debug_disable(vm_page_zone); | |
815 | #endif /* ZONE_DEBUG */ | |
816 | ||
817 | zone_change(vm_page_zone, Z_EXPAND, FALSE); | |
818 | zone_change(vm_page_zone, Z_EXHAUST, TRUE); | |
819 | zone_change(vm_page_zone, Z_FOREIGN, TRUE); | |
820 | ||
821 | /* | |
822 | * Adjust zone statistics to account for the real pages allocated | |
823 | * in vm_page_create(). [Q: is this really what we want?] | |
824 | */ | |
825 | vm_page_zone->count += vm_page_pages; | |
826 | vm_page_zone->cur_size += vm_page_pages * vm_page_zone->elem_size; | |
827 | ||
828 | mutex_init(&vm_page_alloc_lock, 0); | |
829 | } | |
830 | ||
831 | /* | |
832 | * Routine: vm_page_create | |
833 | * Purpose: | |
834 | * After the VM system is up, machine-dependent code | |
835 | * may stumble across more physical memory. For example, | |
836 | * memory that it was reserving for a frame buffer. | |
837 | * vm_page_create turns this memory into available pages. | |
838 | */ | |
839 | ||
840 | void | |
841 | vm_page_create( | |
842 | ppnum_t start, | |
843 | ppnum_t end) | |
844 | { | |
845 | ppnum_t phys_page; | |
846 | vm_page_t m; | |
847 | ||
848 | for (phys_page = start; | |
849 | phys_page < end; | |
850 | phys_page++) { | |
851 | while ((m = (vm_page_t) vm_page_grab_fictitious()) | |
852 | == VM_PAGE_NULL) | |
853 | vm_page_more_fictitious(); | |
854 | ||
855 | vm_page_init(m, phys_page); | |
856 | vm_page_pages++; | |
857 | vm_page_release(m); | |
858 | } | |
859 | } | |
860 | ||
861 | /* | |
862 | * vm_page_hash: | |
863 | * | |
864 | * Distributes the object/offset key pair among hash buckets. | |
865 | * | |
866 | * NOTE: The bucket count must be a power of 2 | |
867 | */ | |
868 | #define vm_page_hash(object, offset) (\ | |
869 | ( (natural_t)((uint32_t)object * vm_page_bucket_hash) + ((uint32_t)atop_64(offset) ^ vm_page_bucket_hash))\ | |
870 | & vm_page_hash_mask) | |
871 | ||
872 | ||
873 | /* | |
874 | * vm_page_insert: [ internal use only ] | |
875 | * | |
876 | * Inserts the given mem entry into the object/object-page | |
877 | * table and object list. | |
878 | * | |
879 | * The object must be locked. | |
880 | */ | |
881 | void | |
882 | vm_page_insert( | |
883 | vm_page_t mem, | |
884 | vm_object_t object, | |
885 | vm_object_offset_t offset) | |
886 | { | |
887 | vm_page_insert_internal(mem, object, offset, FALSE); | |
888 | } | |
889 | ||
890 | ||
891 | void | |
892 | vm_page_insert_internal( | |
893 | vm_page_t mem, | |
894 | vm_object_t object, | |
895 | vm_object_offset_t offset, | |
896 | boolean_t queues_lock_held) | |
897 | { | |
898 | register vm_page_bucket_t *bucket; | |
899 | ||
900 | XPR(XPR_VM_PAGE, | |
901 | "vm_page_insert, object 0x%X offset 0x%X page 0x%X\n", | |
902 | (integer_t)object, (integer_t)offset, (integer_t)mem, 0,0); | |
903 | ||
904 | VM_PAGE_CHECK(mem); | |
905 | ||
906 | if (object == vm_submap_object) { | |
907 | /* the vm_submap_object is only a placeholder for submaps */ | |
908 | panic("vm_page_insert(vm_submap_object,0x%llx)\n", offset); | |
909 | } | |
910 | ||
911 | vm_object_lock_assert_exclusive(object); | |
912 | #if DEBUG | |
913 | if (mem->tabled || mem->object != VM_OBJECT_NULL) | |
914 | panic("vm_page_insert: page %p for (obj=%p,off=0x%llx) " | |
915 | "already in (obj=%p,off=0x%llx)", | |
916 | mem, object, offset, mem->object, mem->offset); | |
917 | #endif | |
918 | assert(!object->internal || offset < object->size); | |
919 | ||
920 | /* only insert "pageout" pages into "pageout" objects, | |
921 | * and normal pages into normal objects */ | |
922 | assert(object->pageout == mem->pageout); | |
923 | ||
924 | assert(vm_page_lookup(object, offset) == VM_PAGE_NULL); | |
925 | ||
926 | /* | |
927 | * Record the object/offset pair in this page | |
928 | */ | |
929 | ||
930 | mem->object = object; | |
931 | mem->offset = offset; | |
932 | ||
933 | /* | |
934 | * Insert it into the object_object/offset hash table | |
935 | */ | |
936 | ||
937 | bucket = &vm_page_buckets[vm_page_hash(object, offset)]; | |
938 | simple_lock(&vm_page_bucket_lock); | |
939 | mem->next = bucket->pages; | |
940 | bucket->pages = mem; | |
941 | #if MACH_PAGE_HASH_STATS | |
942 | if (++bucket->cur_count > bucket->hi_count) | |
943 | bucket->hi_count = bucket->cur_count; | |
944 | #endif /* MACH_PAGE_HASH_STATS */ | |
945 | simple_unlock(&vm_page_bucket_lock); | |
946 | ||
947 | /* | |
948 | * Now link into the object's list of backed pages. | |
949 | */ | |
950 | ||
951 | VM_PAGE_INSERT(mem, object); | |
952 | mem->tabled = TRUE; | |
953 | ||
954 | /* | |
955 | * Show that the object has one more resident page. | |
956 | */ | |
957 | ||
958 | object->resident_page_count++; | |
959 | ||
960 | if (object->purgable == VM_PURGABLE_VOLATILE || | |
961 | object->purgable == VM_PURGABLE_EMPTY) { | |
962 | if (queues_lock_held == FALSE) | |
963 | vm_page_lockspin_queues(); | |
964 | ||
965 | vm_page_purgeable_count++; | |
966 | ||
967 | if (queues_lock_held == FALSE) | |
968 | vm_page_unlock_queues(); | |
969 | } | |
970 | } | |
971 | ||
972 | /* | |
973 | * vm_page_replace: | |
974 | * | |
975 | * Exactly like vm_page_insert, except that we first | |
976 | * remove any existing page at the given offset in object. | |
977 | * | |
978 | * The object and page queues must be locked. | |
979 | */ | |
980 | ||
981 | void | |
982 | vm_page_replace( | |
983 | register vm_page_t mem, | |
984 | register vm_object_t object, | |
985 | register vm_object_offset_t offset) | |
986 | { | |
987 | vm_page_bucket_t *bucket; | |
988 | vm_page_t found_m = VM_PAGE_NULL; | |
989 | ||
990 | VM_PAGE_CHECK(mem); | |
991 | vm_object_lock_assert_exclusive(object); | |
992 | #if DEBUG | |
993 | _mutex_assert(&vm_page_queue_lock, MA_OWNED); | |
994 | ||
995 | if (mem->tabled || mem->object != VM_OBJECT_NULL) | |
996 | panic("vm_page_replace: page %p for (obj=%p,off=0x%llx) " | |
997 | "already in (obj=%p,off=0x%llx)", | |
998 | mem, object, offset, mem->object, mem->offset); | |
999 | #endif | |
1000 | /* | |
1001 | * Record the object/offset pair in this page | |
1002 | */ | |
1003 | ||
1004 | mem->object = object; | |
1005 | mem->offset = offset; | |
1006 | ||
1007 | /* | |
1008 | * Insert it into the object_object/offset hash table, | |
1009 | * replacing any page that might have been there. | |
1010 | */ | |
1011 | ||
1012 | bucket = &vm_page_buckets[vm_page_hash(object, offset)]; | |
1013 | simple_lock(&vm_page_bucket_lock); | |
1014 | ||
1015 | if (bucket->pages) { | |
1016 | vm_page_t *mp = &bucket->pages; | |
1017 | register vm_page_t m = *mp; | |
1018 | ||
1019 | do { | |
1020 | if (m->object == object && m->offset == offset) { | |
1021 | /* | |
1022 | * Remove old page from hash list | |
1023 | */ | |
1024 | *mp = m->next; | |
1025 | ||
1026 | found_m = m; | |
1027 | break; | |
1028 | } | |
1029 | mp = &m->next; | |
1030 | } while ((m = *mp)); | |
1031 | ||
1032 | mem->next = bucket->pages; | |
1033 | } else { | |
1034 | mem->next = VM_PAGE_NULL; | |
1035 | } | |
1036 | /* | |
1037 | * insert new page at head of hash list | |
1038 | */ | |
1039 | bucket->pages = mem; | |
1040 | ||
1041 | simple_unlock(&vm_page_bucket_lock); | |
1042 | ||
1043 | if (found_m) { | |
1044 | /* | |
1045 | * there was already a page at the specified | |
1046 | * offset for this object... remove it from | |
1047 | * the object and free it back to the free list | |
1048 | */ | |
1049 | VM_PAGE_REMOVE(found_m); | |
1050 | found_m->tabled = FALSE; | |
1051 | ||
1052 | found_m->object = VM_OBJECT_NULL; | |
1053 | found_m->offset = (vm_object_offset_t) -1; | |
1054 | object->resident_page_count--; | |
1055 | ||
1056 | if (object->purgable == VM_PURGABLE_VOLATILE || | |
1057 | object->purgable == VM_PURGABLE_EMPTY) { | |
1058 | assert(vm_page_purgeable_count > 0); | |
1059 | vm_page_purgeable_count--; | |
1060 | } | |
1061 | ||
1062 | /* | |
1063 | * Return page to the free list. | |
1064 | * Note the page is not tabled now | |
1065 | */ | |
1066 | vm_page_free(found_m); | |
1067 | } | |
1068 | /* | |
1069 | * Now link into the object's list of backed pages. | |
1070 | */ | |
1071 | ||
1072 | VM_PAGE_INSERT(mem, object); | |
1073 | mem->tabled = TRUE; | |
1074 | ||
1075 | /* | |
1076 | * And show that the object has one more resident | |
1077 | * page. | |
1078 | */ | |
1079 | ||
1080 | object->resident_page_count++; | |
1081 | ||
1082 | if (object->purgable == VM_PURGABLE_VOLATILE || | |
1083 | object->purgable == VM_PURGABLE_EMPTY) { | |
1084 | vm_page_purgeable_count++; | |
1085 | } | |
1086 | } | |
1087 | ||
1088 | /* | |
1089 | * vm_page_remove: [ internal use only ] | |
1090 | * | |
1091 | * Removes the given mem entry from the object/offset-page | |
1092 | * table and the object page list. | |
1093 | * | |
1094 | * The object and page queues must be locked. | |
1095 | */ | |
1096 | ||
1097 | void | |
1098 | vm_page_remove( | |
1099 | register vm_page_t mem) | |
1100 | { | |
1101 | register vm_page_bucket_t *bucket; | |
1102 | register vm_page_t this; | |
1103 | ||
1104 | XPR(XPR_VM_PAGE, | |
1105 | "vm_page_remove, object 0x%X offset 0x%X page 0x%X\n", | |
1106 | (integer_t)mem->object, (integer_t)mem->offset, | |
1107 | (integer_t)mem, 0,0); | |
1108 | #if DEBUG | |
1109 | _mutex_assert(&vm_page_queue_lock, MA_OWNED); | |
1110 | #endif | |
1111 | vm_object_lock_assert_exclusive(mem->object); | |
1112 | assert(mem->tabled); | |
1113 | assert(!mem->cleaning); | |
1114 | VM_PAGE_CHECK(mem); | |
1115 | ||
1116 | ||
1117 | /* | |
1118 | * Remove from the object_object/offset hash table | |
1119 | */ | |
1120 | ||
1121 | bucket = &vm_page_buckets[vm_page_hash(mem->object, mem->offset)]; | |
1122 | simple_lock(&vm_page_bucket_lock); | |
1123 | if ((this = bucket->pages) == mem) { | |
1124 | /* optimize for common case */ | |
1125 | ||
1126 | bucket->pages = mem->next; | |
1127 | } else { | |
1128 | register vm_page_t *prev; | |
1129 | ||
1130 | for (prev = &this->next; | |
1131 | (this = *prev) != mem; | |
1132 | prev = &this->next) | |
1133 | continue; | |
1134 | *prev = this->next; | |
1135 | } | |
1136 | #if MACH_PAGE_HASH_STATS | |
1137 | bucket->cur_count--; | |
1138 | #endif /* MACH_PAGE_HASH_STATS */ | |
1139 | simple_unlock(&vm_page_bucket_lock); | |
1140 | ||
1141 | /* | |
1142 | * Now remove from the object's list of backed pages. | |
1143 | */ | |
1144 | ||
1145 | VM_PAGE_REMOVE(mem); | |
1146 | ||
1147 | /* | |
1148 | * And show that the object has one fewer resident | |
1149 | * page. | |
1150 | */ | |
1151 | ||
1152 | mem->object->resident_page_count--; | |
1153 | ||
1154 | if (mem->object->purgable == VM_PURGABLE_VOLATILE || | |
1155 | mem->object->purgable == VM_PURGABLE_EMPTY) { | |
1156 | assert(vm_page_purgeable_count > 0); | |
1157 | vm_page_purgeable_count--; | |
1158 | } | |
1159 | mem->tabled = FALSE; | |
1160 | mem->object = VM_OBJECT_NULL; | |
1161 | mem->offset = (vm_object_offset_t) -1; | |
1162 | } | |
1163 | ||
1164 | /* | |
1165 | * vm_page_lookup: | |
1166 | * | |
1167 | * Returns the page associated with the object/offset | |
1168 | * pair specified; if none is found, VM_PAGE_NULL is returned. | |
1169 | * | |
1170 | * The object must be locked. No side effects. | |
1171 | */ | |
1172 | ||
1173 | unsigned long vm_page_lookup_hint = 0; | |
1174 | unsigned long vm_page_lookup_hint_next = 0; | |
1175 | unsigned long vm_page_lookup_hint_prev = 0; | |
1176 | unsigned long vm_page_lookup_hint_miss = 0; | |
1177 | unsigned long vm_page_lookup_bucket_NULL = 0; | |
1178 | unsigned long vm_page_lookup_miss = 0; | |
1179 | ||
1180 | ||
1181 | vm_page_t | |
1182 | vm_page_lookup( | |
1183 | register vm_object_t object, | |
1184 | register vm_object_offset_t offset) | |
1185 | { | |
1186 | register vm_page_t mem; | |
1187 | register vm_page_bucket_t *bucket; | |
1188 | queue_entry_t qe; | |
1189 | ||
1190 | vm_object_lock_assert_held(object); | |
1191 | mem = object->memq_hint; | |
1192 | ||
1193 | if (mem != VM_PAGE_NULL) { | |
1194 | assert(mem->object == object); | |
1195 | ||
1196 | if (mem->offset == offset) { | |
1197 | vm_page_lookup_hint++; | |
1198 | return mem; | |
1199 | } | |
1200 | qe = queue_next(&mem->listq); | |
1201 | ||
1202 | if (! queue_end(&object->memq, qe)) { | |
1203 | vm_page_t next_page; | |
1204 | ||
1205 | next_page = (vm_page_t) qe; | |
1206 | assert(next_page->object == object); | |
1207 | ||
1208 | if (next_page->offset == offset) { | |
1209 | vm_page_lookup_hint_next++; | |
1210 | object->memq_hint = next_page; /* new hint */ | |
1211 | return next_page; | |
1212 | } | |
1213 | } | |
1214 | qe = queue_prev(&mem->listq); | |
1215 | ||
1216 | if (! queue_end(&object->memq, qe)) { | |
1217 | vm_page_t prev_page; | |
1218 | ||
1219 | prev_page = (vm_page_t) qe; | |
1220 | assert(prev_page->object == object); | |
1221 | ||
1222 | if (prev_page->offset == offset) { | |
1223 | vm_page_lookup_hint_prev++; | |
1224 | object->memq_hint = prev_page; /* new hint */ | |
1225 | return prev_page; | |
1226 | } | |
1227 | } | |
1228 | } | |
1229 | /* | |
1230 | * Search the hash table for this object/offset pair | |
1231 | */ | |
1232 | bucket = &vm_page_buckets[vm_page_hash(object, offset)]; | |
1233 | ||
1234 | /* | |
1235 | * since we hold the object lock, we are guaranteed that no | |
1236 | * new pages can be inserted into this object... this in turn | |
1237 | * guarantess that the page we're looking for can't exist | |
1238 | * if the bucket it hashes to is currently NULL even when looked | |
1239 | * at outside the scope of the hash bucket lock... this is a | |
1240 | * really cheap optimiztion to avoid taking the lock | |
1241 | */ | |
1242 | if (bucket->pages == VM_PAGE_NULL) { | |
1243 | vm_page_lookup_bucket_NULL++; | |
1244 | ||
1245 | return (VM_PAGE_NULL); | |
1246 | } | |
1247 | simple_lock(&vm_page_bucket_lock); | |
1248 | ||
1249 | for (mem = bucket->pages; mem != VM_PAGE_NULL; mem = mem->next) { | |
1250 | VM_PAGE_CHECK(mem); | |
1251 | if ((mem->object == object) && (mem->offset == offset)) | |
1252 | break; | |
1253 | } | |
1254 | simple_unlock(&vm_page_bucket_lock); | |
1255 | ||
1256 | if (mem != VM_PAGE_NULL) { | |
1257 | if (object->memq_hint != VM_PAGE_NULL) { | |
1258 | vm_page_lookup_hint_miss++; | |
1259 | } | |
1260 | assert(mem->object == object); | |
1261 | object->memq_hint = mem; | |
1262 | } else | |
1263 | vm_page_lookup_miss++; | |
1264 | ||
1265 | return(mem); | |
1266 | } | |
1267 | ||
1268 | ||
1269 | /* | |
1270 | * vm_page_rename: | |
1271 | * | |
1272 | * Move the given memory entry from its | |
1273 | * current object to the specified target object/offset. | |
1274 | * | |
1275 | * The object must be locked. | |
1276 | */ | |
1277 | void | |
1278 | vm_page_rename( | |
1279 | register vm_page_t mem, | |
1280 | register vm_object_t new_object, | |
1281 | vm_object_offset_t new_offset, | |
1282 | boolean_t encrypted_ok) | |
1283 | { | |
1284 | assert(mem->object != new_object); | |
1285 | ||
1286 | /* | |
1287 | * ENCRYPTED SWAP: | |
1288 | * The encryption key is based on the page's memory object | |
1289 | * (aka "pager") and paging offset. Moving the page to | |
1290 | * another VM object changes its "pager" and "paging_offset" | |
1291 | * so it has to be decrypted first, or we would lose the key. | |
1292 | * | |
1293 | * One exception is VM object collapsing, where we transfer pages | |
1294 | * from one backing object to its parent object. This operation also | |
1295 | * transfers the paging information, so the <pager,paging_offset> info | |
1296 | * should remain consistent. The caller (vm_object_do_collapse()) | |
1297 | * sets "encrypted_ok" in this case. | |
1298 | */ | |
1299 | if (!encrypted_ok && mem->encrypted) { | |
1300 | panic("vm_page_rename: page %p is encrypted\n", mem); | |
1301 | } | |
1302 | ||
1303 | /* | |
1304 | * Changes to mem->object require the page lock because | |
1305 | * the pageout daemon uses that lock to get the object. | |
1306 | */ | |
1307 | ||
1308 | XPR(XPR_VM_PAGE, | |
1309 | "vm_page_rename, new object 0x%X, offset 0x%X page 0x%X\n", | |
1310 | (integer_t)new_object, (integer_t)new_offset, | |
1311 | (integer_t)mem, 0,0); | |
1312 | ||
1313 | vm_page_lockspin_queues(); | |
1314 | vm_page_remove(mem); | |
1315 | vm_page_insert(mem, new_object, new_offset); | |
1316 | vm_page_unlock_queues(); | |
1317 | } | |
1318 | ||
1319 | /* | |
1320 | * vm_page_init: | |
1321 | * | |
1322 | * Initialize the fields in a new page. | |
1323 | * This takes a structure with random values and initializes it | |
1324 | * so that it can be given to vm_page_release or vm_page_insert. | |
1325 | */ | |
1326 | void | |
1327 | vm_page_init( | |
1328 | vm_page_t mem, | |
1329 | ppnum_t phys_page) | |
1330 | { | |
1331 | assert(phys_page); | |
1332 | *mem = vm_page_template; | |
1333 | mem->phys_page = phys_page; | |
1334 | } | |
1335 | ||
1336 | /* | |
1337 | * vm_page_grab_fictitious: | |
1338 | * | |
1339 | * Remove a fictitious page from the free list. | |
1340 | * Returns VM_PAGE_NULL if there are no free pages. | |
1341 | */ | |
1342 | int c_vm_page_grab_fictitious = 0; | |
1343 | int c_vm_page_release_fictitious = 0; | |
1344 | int c_vm_page_more_fictitious = 0; | |
1345 | ||
1346 | extern vm_page_t vm_page_grab_fictitious_common(vm_offset_t phys_addr); | |
1347 | ||
1348 | vm_page_t | |
1349 | vm_page_grab_fictitious_common( | |
1350 | vm_offset_t phys_addr) | |
1351 | { | |
1352 | register vm_page_t m; | |
1353 | ||
1354 | m = (vm_page_t)zget(vm_page_zone); | |
1355 | if (m) { | |
1356 | vm_page_init(m, phys_addr); | |
1357 | m->fictitious = TRUE; | |
1358 | } | |
1359 | ||
1360 | c_vm_page_grab_fictitious++; | |
1361 | return m; | |
1362 | } | |
1363 | ||
1364 | vm_page_t | |
1365 | vm_page_grab_fictitious(void) | |
1366 | { | |
1367 | return vm_page_grab_fictitious_common(vm_page_fictitious_addr); | |
1368 | } | |
1369 | ||
1370 | vm_page_t | |
1371 | vm_page_grab_guard(void) | |
1372 | { | |
1373 | return vm_page_grab_fictitious_common(vm_page_guard_addr); | |
1374 | } | |
1375 | ||
1376 | /* | |
1377 | * vm_page_release_fictitious: | |
1378 | * | |
1379 | * Release a fictitious page to the free list. | |
1380 | */ | |
1381 | ||
1382 | void | |
1383 | vm_page_release_fictitious( | |
1384 | register vm_page_t m) | |
1385 | { | |
1386 | assert(!m->free); | |
1387 | assert(m->busy); | |
1388 | assert(m->fictitious); | |
1389 | assert(m->phys_page == vm_page_fictitious_addr || | |
1390 | m->phys_page == vm_page_guard_addr); | |
1391 | ||
1392 | c_vm_page_release_fictitious++; | |
1393 | #if DEBUG | |
1394 | if (m->free) | |
1395 | panic("vm_page_release_fictitious"); | |
1396 | #endif | |
1397 | m->free = TRUE; | |
1398 | zfree(vm_page_zone, m); | |
1399 | } | |
1400 | ||
1401 | /* | |
1402 | * vm_page_more_fictitious: | |
1403 | * | |
1404 | * Add more fictitious pages to the free list. | |
1405 | * Allowed to block. This routine is way intimate | |
1406 | * with the zones code, for several reasons: | |
1407 | * 1. we need to carve some page structures out of physical | |
1408 | * memory before zones work, so they _cannot_ come from | |
1409 | * the zone_map. | |
1410 | * 2. the zone needs to be collectable in order to prevent | |
1411 | * growth without bound. These structures are used by | |
1412 | * the device pager (by the hundreds and thousands), as | |
1413 | * private pages for pageout, and as blocking pages for | |
1414 | * pagein. Temporary bursts in demand should not result in | |
1415 | * permanent allocation of a resource. | |
1416 | * 3. To smooth allocation humps, we allocate single pages | |
1417 | * with kernel_memory_allocate(), and cram them into the | |
1418 | * zone. This also allows us to initialize the vm_page_t's | |
1419 | * on the way into the zone, so that zget() always returns | |
1420 | * an initialized structure. The zone free element pointer | |
1421 | * and the free page pointer are both the first item in the | |
1422 | * vm_page_t. | |
1423 | * 4. By having the pages in the zone pre-initialized, we need | |
1424 | * not keep 2 levels of lists. The garbage collector simply | |
1425 | * scans our list, and reduces physical memory usage as it | |
1426 | * sees fit. | |
1427 | */ | |
1428 | ||
1429 | void vm_page_more_fictitious(void) | |
1430 | { | |
1431 | register vm_page_t m; | |
1432 | vm_offset_t addr; | |
1433 | kern_return_t retval; | |
1434 | int i; | |
1435 | ||
1436 | c_vm_page_more_fictitious++; | |
1437 | ||
1438 | /* | |
1439 | * Allocate a single page from the zone_map. Do not wait if no physical | |
1440 | * pages are immediately available, and do not zero the space. We need | |
1441 | * our own blocking lock here to prevent having multiple, | |
1442 | * simultaneous requests from piling up on the zone_map lock. Exactly | |
1443 | * one (of our) threads should be potentially waiting on the map lock. | |
1444 | * If winner is not vm-privileged, then the page allocation will fail, | |
1445 | * and it will temporarily block here in the vm_page_wait(). | |
1446 | */ | |
1447 | mutex_lock(&vm_page_alloc_lock); | |
1448 | /* | |
1449 | * If another thread allocated space, just bail out now. | |
1450 | */ | |
1451 | if (zone_free_count(vm_page_zone) > 5) { | |
1452 | /* | |
1453 | * The number "5" is a small number that is larger than the | |
1454 | * number of fictitious pages that any single caller will | |
1455 | * attempt to allocate. Otherwise, a thread will attempt to | |
1456 | * acquire a fictitious page (vm_page_grab_fictitious), fail, | |
1457 | * release all of the resources and locks already acquired, | |
1458 | * and then call this routine. This routine finds the pages | |
1459 | * that the caller released, so fails to allocate new space. | |
1460 | * The process repeats infinitely. The largest known number | |
1461 | * of fictitious pages required in this manner is 2. 5 is | |
1462 | * simply a somewhat larger number. | |
1463 | */ | |
1464 | mutex_unlock(&vm_page_alloc_lock); | |
1465 | return; | |
1466 | } | |
1467 | ||
1468 | retval = kernel_memory_allocate(zone_map, | |
1469 | &addr, PAGE_SIZE, VM_PROT_ALL, | |
1470 | KMA_KOBJECT|KMA_NOPAGEWAIT); | |
1471 | if (retval != KERN_SUCCESS) { | |
1472 | /* | |
1473 | * No page was available. Tell the pageout daemon, drop the | |
1474 | * lock to give another thread a chance at it, and | |
1475 | * wait for the pageout daemon to make progress. | |
1476 | */ | |
1477 | mutex_unlock(&vm_page_alloc_lock); | |
1478 | vm_page_wait(THREAD_UNINT); | |
1479 | return; | |
1480 | } | |
1481 | /* | |
1482 | * Initialize as many vm_page_t's as will fit on this page. This | |
1483 | * depends on the zone code disturbing ONLY the first item of | |
1484 | * each zone element. | |
1485 | */ | |
1486 | m = (vm_page_t)addr; | |
1487 | for (i = PAGE_SIZE/sizeof(struct vm_page); i > 0; i--) { | |
1488 | vm_page_init(m, vm_page_fictitious_addr); | |
1489 | m->fictitious = TRUE; | |
1490 | m++; | |
1491 | } | |
1492 | zcram(vm_page_zone, (void *) addr, PAGE_SIZE); | |
1493 | mutex_unlock(&vm_page_alloc_lock); | |
1494 | } | |
1495 | ||
1496 | ||
1497 | /* | |
1498 | * vm_pool_low(): | |
1499 | * | |
1500 | * Return true if it is not likely that a non-vm_privileged thread | |
1501 | * can get memory without blocking. Advisory only, since the | |
1502 | * situation may change under us. | |
1503 | */ | |
1504 | int | |
1505 | vm_pool_low(void) | |
1506 | { | |
1507 | /* No locking, at worst we will fib. */ | |
1508 | return( vm_page_free_count < vm_page_free_reserved ); | |
1509 | } | |
1510 | ||
1511 | ||
1512 | ||
1513 | /* | |
1514 | * this is an interface to support bring-up of drivers | |
1515 | * on platforms with physical memory > 4G... | |
1516 | */ | |
1517 | int vm_himemory_mode = 0; | |
1518 | ||
1519 | ||
1520 | /* | |
1521 | * this interface exists to support hardware controllers | |
1522 | * incapable of generating DMAs with more than 32 bits | |
1523 | * of address on platforms with physical memory > 4G... | |
1524 | */ | |
1525 | unsigned int vm_lopage_free_count = 0; | |
1526 | unsigned int vm_lopage_max_count = 0; | |
1527 | queue_head_t vm_lopage_queue_free; | |
1528 | ||
1529 | vm_page_t | |
1530 | vm_page_grablo(void) | |
1531 | { | |
1532 | register vm_page_t mem; | |
1533 | unsigned int vm_lopage_alloc_count; | |
1534 | ||
1535 | if (vm_lopage_poolsize == 0) | |
1536 | return (vm_page_grab()); | |
1537 | ||
1538 | mutex_lock(&vm_page_queue_free_lock); | |
1539 | ||
1540 | if (! queue_empty(&vm_lopage_queue_free)) { | |
1541 | queue_remove_first(&vm_lopage_queue_free, | |
1542 | mem, | |
1543 | vm_page_t, | |
1544 | pageq); | |
1545 | assert(mem->free); | |
1546 | assert(mem->busy); | |
1547 | assert(!mem->pmapped); | |
1548 | assert(!mem->wpmapped); | |
1549 | ||
1550 | mem->pageq.next = NULL; | |
1551 | mem->pageq.prev = NULL; | |
1552 | mem->free = FALSE; | |
1553 | ||
1554 | vm_lopage_free_count--; | |
1555 | vm_lopage_alloc_count = (vm_lopage_poolend - vm_lopage_poolstart) - vm_lopage_free_count; | |
1556 | if (vm_lopage_alloc_count > vm_lopage_max_count) | |
1557 | vm_lopage_max_count = vm_lopage_alloc_count; | |
1558 | } else { | |
1559 | mem = VM_PAGE_NULL; | |
1560 | } | |
1561 | mutex_unlock(&vm_page_queue_free_lock); | |
1562 | ||
1563 | return (mem); | |
1564 | } | |
1565 | ||
1566 | ||
1567 | /* | |
1568 | * vm_page_grab: | |
1569 | * | |
1570 | * first try to grab a page from the per-cpu free list... | |
1571 | * this must be done while pre-emption is disabled... if | |
1572 | * a page is available, we're done... | |
1573 | * if no page is available, grab the vm_page_queue_free_lock | |
1574 | * and see if current number of free pages would allow us | |
1575 | * to grab at least 1... if not, return VM_PAGE_NULL as before... | |
1576 | * if there are pages available, disable preemption and | |
1577 | * recheck the state of the per-cpu free list... we could | |
1578 | * have been preempted and moved to a different cpu, or | |
1579 | * some other thread could have re-filled it... if still | |
1580 | * empty, figure out how many pages we can steal from the | |
1581 | * global free queue and move to the per-cpu queue... | |
1582 | * return 1 of these pages when done... only wakeup the | |
1583 | * pageout_scan thread if we moved pages from the global | |
1584 | * list... no need for the wakeup if we've satisfied the | |
1585 | * request from the per-cpu queue. | |
1586 | */ | |
1587 | ||
1588 | #define COLOR_GROUPS_TO_STEAL 4 | |
1589 | ||
1590 | ||
1591 | vm_page_t | |
1592 | vm_page_grab( void ) | |
1593 | { | |
1594 | vm_page_t mem; | |
1595 | ||
1596 | ||
1597 | disable_preemption(); | |
1598 | ||
1599 | if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) { | |
1600 | return_page_from_cpu_list: | |
1601 | PROCESSOR_DATA(current_processor(), page_grab_count) += 1; | |
1602 | PROCESSOR_DATA(current_processor(), free_pages) = mem->pageq.next; | |
1603 | mem->pageq.next = NULL; | |
1604 | ||
1605 | enable_preemption(); | |
1606 | ||
1607 | assert(mem->listq.next == NULL && mem->listq.prev == NULL); | |
1608 | assert(mem->tabled == FALSE); | |
1609 | assert(mem->object == VM_OBJECT_NULL); | |
1610 | assert(!mem->laundry); | |
1611 | assert(!mem->free); | |
1612 | assert(pmap_verify_free(mem->phys_page)); | |
1613 | assert(mem->busy); | |
1614 | assert(!mem->encrypted); | |
1615 | assert(!mem->pmapped); | |
1616 | assert(!mem->wpmapped); | |
1617 | ||
1618 | return mem; | |
1619 | } | |
1620 | enable_preemption(); | |
1621 | ||
1622 | ||
1623 | mutex_lock(&vm_page_queue_free_lock); | |
1624 | ||
1625 | /* | |
1626 | * Optionally produce warnings if the wire or gobble | |
1627 | * counts exceed some threshold. | |
1628 | */ | |
1629 | if (vm_page_wire_count_warning > 0 | |
1630 | && vm_page_wire_count >= vm_page_wire_count_warning) { | |
1631 | printf("mk: vm_page_grab(): high wired page count of %d\n", | |
1632 | vm_page_wire_count); | |
1633 | assert(vm_page_wire_count < vm_page_wire_count_warning); | |
1634 | } | |
1635 | if (vm_page_gobble_count_warning > 0 | |
1636 | && vm_page_gobble_count >= vm_page_gobble_count_warning) { | |
1637 | printf("mk: vm_page_grab(): high gobbled page count of %d\n", | |
1638 | vm_page_gobble_count); | |
1639 | assert(vm_page_gobble_count < vm_page_gobble_count_warning); | |
1640 | } | |
1641 | ||
1642 | /* | |
1643 | * Only let privileged threads (involved in pageout) | |
1644 | * dip into the reserved pool. | |
1645 | */ | |
1646 | if ((vm_page_free_count < vm_page_free_reserved) && | |
1647 | !(current_thread()->options & TH_OPT_VMPRIV)) { | |
1648 | mutex_unlock(&vm_page_queue_free_lock); | |
1649 | mem = VM_PAGE_NULL; | |
1650 | } | |
1651 | else { | |
1652 | vm_page_t head; | |
1653 | vm_page_t tail; | |
1654 | unsigned int pages_to_steal; | |
1655 | unsigned int color; | |
1656 | ||
1657 | while ( vm_page_free_count == 0 ) { | |
1658 | ||
1659 | mutex_unlock(&vm_page_queue_free_lock); | |
1660 | /* | |
1661 | * must be a privileged thread to be | |
1662 | * in this state since a non-privileged | |
1663 | * thread would have bailed if we were | |
1664 | * under the vm_page_free_reserved mark | |
1665 | */ | |
1666 | VM_PAGE_WAIT(); | |
1667 | mutex_lock(&vm_page_queue_free_lock); | |
1668 | } | |
1669 | ||
1670 | disable_preemption(); | |
1671 | ||
1672 | if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) { | |
1673 | mutex_unlock(&vm_page_queue_free_lock); | |
1674 | ||
1675 | /* | |
1676 | * we got preempted and moved to another processor | |
1677 | * or we got preempted and someone else ran and filled the cache | |
1678 | */ | |
1679 | goto return_page_from_cpu_list; | |
1680 | } | |
1681 | if (vm_page_free_count <= vm_page_free_reserved) | |
1682 | pages_to_steal = 1; | |
1683 | else { | |
1684 | pages_to_steal = COLOR_GROUPS_TO_STEAL * vm_colors; | |
1685 | ||
1686 | if (pages_to_steal > (vm_page_free_count - vm_page_free_reserved)) | |
1687 | pages_to_steal = (vm_page_free_count - vm_page_free_reserved); | |
1688 | } | |
1689 | color = PROCESSOR_DATA(current_processor(), start_color); | |
1690 | head = tail = NULL; | |
1691 | ||
1692 | while (pages_to_steal--) { | |
1693 | if (--vm_page_free_count < vm_page_free_count_minimum) | |
1694 | vm_page_free_count_minimum = vm_page_free_count; | |
1695 | ||
1696 | while (queue_empty(&vm_page_queue_free[color])) | |
1697 | color = (color + 1) & vm_color_mask; | |
1698 | ||
1699 | queue_remove_first(&vm_page_queue_free[color], | |
1700 | mem, | |
1701 | vm_page_t, | |
1702 | pageq); | |
1703 | mem->pageq.next = NULL; | |
1704 | mem->pageq.prev = NULL; | |
1705 | ||
1706 | color = (color + 1) & vm_color_mask; | |
1707 | ||
1708 | if (head == NULL) | |
1709 | head = mem; | |
1710 | else | |
1711 | tail->pageq.next = (queue_t)mem; | |
1712 | tail = mem; | |
1713 | ||
1714 | mem->pageq.prev = NULL; | |
1715 | assert(mem->listq.next == NULL && mem->listq.prev == NULL); | |
1716 | assert(mem->tabled == FALSE); | |
1717 | assert(mem->object == VM_OBJECT_NULL); | |
1718 | assert(!mem->laundry); | |
1719 | assert(mem->free); | |
1720 | mem->free = FALSE; | |
1721 | ||
1722 | assert(pmap_verify_free(mem->phys_page)); | |
1723 | assert(mem->busy); | |
1724 | assert(!mem->free); | |
1725 | assert(!mem->encrypted); | |
1726 | assert(!mem->pmapped); | |
1727 | assert(!mem->wpmapped); | |
1728 | } | |
1729 | PROCESSOR_DATA(current_processor(), free_pages) = head->pageq.next; | |
1730 | PROCESSOR_DATA(current_processor(), start_color) = color; | |
1731 | ||
1732 | /* | |
1733 | * satisfy this request | |
1734 | */ | |
1735 | PROCESSOR_DATA(current_processor(), page_grab_count) += 1; | |
1736 | mem = head; | |
1737 | mem->pageq.next = NULL; | |
1738 | ||
1739 | mutex_unlock(&vm_page_queue_free_lock); | |
1740 | ||
1741 | enable_preemption(); | |
1742 | } | |
1743 | /* | |
1744 | * Decide if we should poke the pageout daemon. | |
1745 | * We do this if the free count is less than the low | |
1746 | * water mark, or if the free count is less than the high | |
1747 | * water mark (but above the low water mark) and the inactive | |
1748 | * count is less than its target. | |
1749 | * | |
1750 | * We don't have the counts locked ... if they change a little, | |
1751 | * it doesn't really matter. | |
1752 | */ | |
1753 | if ((vm_page_free_count < vm_page_free_min) || | |
1754 | ((vm_page_free_count < vm_page_free_target) && | |
1755 | ((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_min))) | |
1756 | thread_wakeup((event_t) &vm_page_free_wanted); | |
1757 | ||
1758 | #if CONFIG_EMBEDDED | |
1759 | { | |
1760 | int percent_avail; | |
1761 | ||
1762 | /* | |
1763 | * Decide if we need to poke the memorystatus notification thread. | |
1764 | */ | |
1765 | percent_avail = | |
1766 | (vm_page_active_count + vm_page_inactive_count + | |
1767 | vm_page_speculative_count + vm_page_free_count + | |
1768 | (IP_VALID(memory_manager_default)?0:vm_page_purgeable_count) ) * 100 / | |
1769 | atop_64(max_mem); | |
1770 | if (percent_avail <= (kern_memorystatus_level - 5)) { | |
1771 | kern_memorystatus_level = percent_avail; | |
1772 | thread_wakeup((event_t)&kern_memorystatus_wakeup); | |
1773 | } | |
1774 | } | |
1775 | #endif | |
1776 | ||
1777 | // dbgLog(mem->phys_page, vm_page_free_count, vm_page_wire_count, 4); /* (TEST/DEBUG) */ | |
1778 | ||
1779 | return mem; | |
1780 | } | |
1781 | ||
1782 | /* | |
1783 | * vm_page_release: | |
1784 | * | |
1785 | * Return a page to the free list. | |
1786 | */ | |
1787 | ||
1788 | void | |
1789 | vm_page_release( | |
1790 | register vm_page_t mem) | |
1791 | { | |
1792 | unsigned int color; | |
1793 | #if 0 | |
1794 | unsigned int pindex; | |
1795 | phys_entry *physent; | |
1796 | ||
1797 | physent = mapping_phys_lookup(mem->phys_page, &pindex); /* (BRINGUP) */ | |
1798 | if(physent->ppLink & ppN) { /* (BRINGUP) */ | |
1799 | panic("vm_page_release: already released - %08X %08X\n", mem, mem->phys_page); | |
1800 | } | |
1801 | physent->ppLink = physent->ppLink | ppN; /* (BRINGUP) */ | |
1802 | #endif | |
1803 | assert(!mem->private && !mem->fictitious); | |
1804 | ||
1805 | // dbgLog(mem->phys_page, vm_page_free_count, vm_page_wire_count, 5); /* (TEST/DEBUG) */ | |
1806 | ||
1807 | mutex_lock(&vm_page_queue_free_lock); | |
1808 | #if DEBUG | |
1809 | if (mem->free) | |
1810 | panic("vm_page_release"); | |
1811 | #endif | |
1812 | mem->free = TRUE; | |
1813 | ||
1814 | assert(mem->busy); | |
1815 | assert(!mem->laundry); | |
1816 | assert(mem->object == VM_OBJECT_NULL); | |
1817 | assert(mem->pageq.next == NULL && | |
1818 | mem->pageq.prev == NULL); | |
1819 | assert(mem->listq.next == NULL && | |
1820 | mem->listq.prev == NULL); | |
1821 | ||
1822 | if (mem->phys_page <= vm_lopage_poolend && mem->phys_page >= vm_lopage_poolstart) { | |
1823 | /* | |
1824 | * this exists to support hardware controllers | |
1825 | * incapable of generating DMAs with more than 32 bits | |
1826 | * of address on platforms with physical memory > 4G... | |
1827 | */ | |
1828 | queue_enter_first(&vm_lopage_queue_free, | |
1829 | mem, | |
1830 | vm_page_t, | |
1831 | pageq); | |
1832 | vm_lopage_free_count++; | |
1833 | } else { | |
1834 | color = mem->phys_page & vm_color_mask; | |
1835 | queue_enter_first(&vm_page_queue_free[color], | |
1836 | mem, | |
1837 | vm_page_t, | |
1838 | pageq); | |
1839 | vm_page_free_count++; | |
1840 | /* | |
1841 | * Check if we should wake up someone waiting for page. | |
1842 | * But don't bother waking them unless they can allocate. | |
1843 | * | |
1844 | * We wakeup only one thread, to prevent starvation. | |
1845 | * Because the scheduling system handles wait queues FIFO, | |
1846 | * if we wakeup all waiting threads, one greedy thread | |
1847 | * can starve multiple niceguy threads. When the threads | |
1848 | * all wakeup, the greedy threads runs first, grabs the page, | |
1849 | * and waits for another page. It will be the first to run | |
1850 | * when the next page is freed. | |
1851 | * | |
1852 | * However, there is a slight danger here. | |
1853 | * The thread we wake might not use the free page. | |
1854 | * Then the other threads could wait indefinitely | |
1855 | * while the page goes unused. To forestall this, | |
1856 | * the pageout daemon will keep making free pages | |
1857 | * as long as vm_page_free_wanted is non-zero. | |
1858 | */ | |
1859 | ||
1860 | if ((vm_page_free_wanted_privileged > 0) && vm_page_free_count) { | |
1861 | vm_page_free_wanted_privileged--; | |
1862 | thread_wakeup_one((event_t) &vm_page_free_wanted_privileged); | |
1863 | } else if ((vm_page_free_wanted > 0) && | |
1864 | (vm_page_free_count >= vm_page_free_reserved)) { | |
1865 | vm_page_free_wanted--; | |
1866 | thread_wakeup_one((event_t) &vm_page_free_count); | |
1867 | } | |
1868 | } | |
1869 | mutex_unlock(&vm_page_queue_free_lock); | |
1870 | ||
1871 | #if CONFIG_EMBEDDED | |
1872 | { | |
1873 | int percent_avail; | |
1874 | ||
1875 | /* | |
1876 | * Decide if we need to poke the memorystatus notification thread. | |
1877 | * Locking is not a big issue, as only a single thread delivers these. | |
1878 | */ | |
1879 | percent_avail = | |
1880 | (vm_page_active_count + vm_page_inactive_count + | |
1881 | vm_page_speculative_count + vm_page_free_count + | |
1882 | (IP_VALID(memory_manager_default)?0:vm_page_purgeable_count) ) * 100 / | |
1883 | atop_64(max_mem); | |
1884 | if (percent_avail >= (kern_memorystatus_level + 5)) { | |
1885 | kern_memorystatus_level = percent_avail; | |
1886 | thread_wakeup((event_t)&kern_memorystatus_wakeup); | |
1887 | } | |
1888 | } | |
1889 | #endif | |
1890 | } | |
1891 | ||
1892 | /* | |
1893 | * vm_page_wait: | |
1894 | * | |
1895 | * Wait for a page to become available. | |
1896 | * If there are plenty of free pages, then we don't sleep. | |
1897 | * | |
1898 | * Returns: | |
1899 | * TRUE: There may be another page, try again | |
1900 | * FALSE: We were interrupted out of our wait, don't try again | |
1901 | */ | |
1902 | ||
1903 | boolean_t | |
1904 | vm_page_wait( | |
1905 | int interruptible ) | |
1906 | { | |
1907 | /* | |
1908 | * We can't use vm_page_free_reserved to make this | |
1909 | * determination. Consider: some thread might | |
1910 | * need to allocate two pages. The first allocation | |
1911 | * succeeds, the second fails. After the first page is freed, | |
1912 | * a call to vm_page_wait must really block. | |
1913 | */ | |
1914 | kern_return_t wait_result; | |
1915 | int need_wakeup = 0; | |
1916 | int is_privileged = current_thread()->options & TH_OPT_VMPRIV; | |
1917 | ||
1918 | mutex_lock(&vm_page_queue_free_lock); | |
1919 | ||
1920 | if (is_privileged && vm_page_free_count) { | |
1921 | mutex_unlock(&vm_page_queue_free_lock); | |
1922 | return TRUE; | |
1923 | } | |
1924 | if (vm_page_free_count < vm_page_free_target) { | |
1925 | ||
1926 | if (is_privileged) { | |
1927 | if (vm_page_free_wanted_privileged++ == 0) | |
1928 | need_wakeup = 1; | |
1929 | wait_result = assert_wait((event_t)&vm_page_free_wanted_privileged, interruptible); | |
1930 | } else { | |
1931 | if (vm_page_free_wanted++ == 0) | |
1932 | need_wakeup = 1; | |
1933 | wait_result = assert_wait((event_t)&vm_page_free_count, interruptible); | |
1934 | } | |
1935 | mutex_unlock(&vm_page_queue_free_lock); | |
1936 | counter(c_vm_page_wait_block++); | |
1937 | ||
1938 | if (need_wakeup) | |
1939 | thread_wakeup((event_t)&vm_page_free_wanted); | |
1940 | ||
1941 | if (wait_result == THREAD_WAITING) | |
1942 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1943 | ||
1944 | return(wait_result == THREAD_AWAKENED); | |
1945 | } else { | |
1946 | mutex_unlock(&vm_page_queue_free_lock); | |
1947 | return TRUE; | |
1948 | } | |
1949 | } | |
1950 | ||
1951 | /* | |
1952 | * vm_page_alloc: | |
1953 | * | |
1954 | * Allocate and return a memory cell associated | |
1955 | * with this VM object/offset pair. | |
1956 | * | |
1957 | * Object must be locked. | |
1958 | */ | |
1959 | ||
1960 | vm_page_t | |
1961 | vm_page_alloc( | |
1962 | vm_object_t object, | |
1963 | vm_object_offset_t offset) | |
1964 | { | |
1965 | register vm_page_t mem; | |
1966 | ||
1967 | vm_object_lock_assert_exclusive(object); | |
1968 | mem = vm_page_grab(); | |
1969 | if (mem == VM_PAGE_NULL) | |
1970 | return VM_PAGE_NULL; | |
1971 | ||
1972 | vm_page_insert(mem, object, offset); | |
1973 | ||
1974 | return(mem); | |
1975 | } | |
1976 | ||
1977 | vm_page_t | |
1978 | vm_page_alloclo( | |
1979 | vm_object_t object, | |
1980 | vm_object_offset_t offset) | |
1981 | { | |
1982 | register vm_page_t mem; | |
1983 | ||
1984 | vm_object_lock_assert_exclusive(object); | |
1985 | mem = vm_page_grablo(); | |
1986 | if (mem == VM_PAGE_NULL) | |
1987 | return VM_PAGE_NULL; | |
1988 | ||
1989 | vm_page_insert(mem, object, offset); | |
1990 | ||
1991 | return(mem); | |
1992 | } | |
1993 | ||
1994 | ||
1995 | /* | |
1996 | * vm_page_alloc_guard: | |
1997 | * | |
1998 | * Allocate a ficticious page which will be used | |
1999 | * as a guard page. The page will be inserted into | |
2000 | * the object and returned to the caller. | |
2001 | */ | |
2002 | ||
2003 | vm_page_t | |
2004 | vm_page_alloc_guard( | |
2005 | vm_object_t object, | |
2006 | vm_object_offset_t offset) | |
2007 | { | |
2008 | register vm_page_t mem; | |
2009 | ||
2010 | vm_object_lock_assert_exclusive(object); | |
2011 | mem = vm_page_grab_guard(); | |
2012 | if (mem == VM_PAGE_NULL) | |
2013 | return VM_PAGE_NULL; | |
2014 | ||
2015 | vm_page_insert(mem, object, offset); | |
2016 | ||
2017 | return(mem); | |
2018 | } | |
2019 | ||
2020 | ||
2021 | counter(unsigned int c_laundry_pages_freed = 0;) | |
2022 | ||
2023 | boolean_t vm_page_free_verify = TRUE; | |
2024 | /* | |
2025 | * vm_page_free: | |
2026 | * | |
2027 | * Returns the given page to the free list, | |
2028 | * disassociating it with any VM object. | |
2029 | * | |
2030 | * Object and page queues must be locked prior to entry. | |
2031 | */ | |
2032 | void | |
2033 | vm_page_free_prepare( | |
2034 | register vm_page_t mem) | |
2035 | { | |
2036 | VM_PAGE_CHECK(mem); | |
2037 | assert(!mem->free); | |
2038 | assert(!mem->cleaning); | |
2039 | assert(!mem->pageout); | |
2040 | ||
2041 | #if DEBUG | |
2042 | if (vm_page_free_verify && !mem->fictitious && !mem->private) { | |
2043 | assert(pmap_verify_free(mem->phys_page)); | |
2044 | } | |
2045 | if (mem->object) | |
2046 | vm_object_lock_assert_exclusive(mem->object); | |
2047 | _mutex_assert(&vm_page_queue_lock, MA_OWNED); | |
2048 | ||
2049 | if (mem->free) | |
2050 | panic("vm_page_free: freeing page on free list\n"); | |
2051 | #endif | |
2052 | ||
2053 | if (mem->laundry) { | |
2054 | /* | |
2055 | * We may have to free a page while it's being laundered | |
2056 | * if we lost its pager (due to a forced unmount, for example). | |
2057 | * We need to call vm_pageout_throttle_up() before removing | |
2058 | * the page from its VM object, so that we can find out on | |
2059 | * which pageout queue the page is. | |
2060 | */ | |
2061 | vm_pageout_throttle_up(mem); | |
2062 | counter(++c_laundry_pages_freed); | |
2063 | } | |
2064 | ||
2065 | if (mem->tabled) | |
2066 | vm_page_remove(mem); /* clears tabled, object, offset */ | |
2067 | ||
2068 | VM_PAGE_QUEUES_REMOVE(mem); /* clears active/inactive/throttled/speculative */ | |
2069 | ||
2070 | if (mem->wire_count) { | |
2071 | if (!mem->private && !mem->fictitious) | |
2072 | vm_page_wire_count--; | |
2073 | mem->wire_count = 0; | |
2074 | assert(!mem->gobbled); | |
2075 | } else if (mem->gobbled) { | |
2076 | if (!mem->private && !mem->fictitious) | |
2077 | vm_page_wire_count--; | |
2078 | vm_page_gobble_count--; | |
2079 | } | |
2080 | mem->gobbled = FALSE; | |
2081 | ||
2082 | PAGE_WAKEUP(mem); /* clears wanted */ | |
2083 | ||
2084 | /* Some of these may be unnecessary */ | |
2085 | mem->busy = TRUE; | |
2086 | mem->absent = FALSE; | |
2087 | mem->error = FALSE; | |
2088 | mem->dirty = FALSE; | |
2089 | mem->precious = FALSE; | |
2090 | mem->reference = FALSE; | |
2091 | mem->encrypted = FALSE; | |
2092 | mem->encrypted_cleaning = FALSE; | |
2093 | mem->deactivated = FALSE; | |
2094 | mem->pmapped = FALSE; | |
2095 | mem->wpmapped = FALSE; | |
2096 | ||
2097 | if (mem->private) { | |
2098 | mem->private = FALSE; | |
2099 | mem->fictitious = TRUE; | |
2100 | mem->phys_page = vm_page_fictitious_addr; | |
2101 | } | |
2102 | if (!mem->fictitious) { | |
2103 | if (mem->zero_fill == TRUE) { | |
2104 | mem->zero_fill = FALSE; | |
2105 | OSAddAtomic(-1, (SInt32 *)&vm_zf_count); | |
2106 | } | |
2107 | vm_page_init(mem, mem->phys_page); | |
2108 | } | |
2109 | } | |
2110 | ||
2111 | void | |
2112 | vm_page_free( | |
2113 | vm_page_t mem) | |
2114 | { | |
2115 | vm_page_free_prepare(mem); | |
2116 | if (mem->fictitious) { | |
2117 | vm_page_release_fictitious(mem); | |
2118 | } else { | |
2119 | vm_page_release(mem); | |
2120 | } | |
2121 | } | |
2122 | ||
2123 | /* | |
2124 | * Free a list of pages. The list can be up to several hundred pages, | |
2125 | * as blocked up by vm_pageout_scan(). | |
2126 | * The big win is not having to take the page q and free list locks once | |
2127 | * per page. We sort the incoming pages into n lists, one for | |
2128 | * each color. | |
2129 | * | |
2130 | * The page queues must be locked, and are kept locked. | |
2131 | */ | |
2132 | void | |
2133 | vm_page_free_list( | |
2134 | vm_page_t mem) | |
2135 | { | |
2136 | vm_page_t nxt; | |
2137 | int pg_count = 0; | |
2138 | int color; | |
2139 | int inuse_list_head = -1; | |
2140 | ||
2141 | queue_head_t free_list[MAX_COLORS]; | |
2142 | int inuse[MAX_COLORS]; | |
2143 | ||
2144 | for (color = 0; color < (signed) vm_colors; color++) { | |
2145 | queue_init(&free_list[color]); | |
2146 | } | |
2147 | ||
2148 | #if DEBUG | |
2149 | _mutex_assert(&vm_page_queue_lock, MA_OWNED); | |
2150 | #endif | |
2151 | while (mem) { | |
2152 | #if DEBUG | |
2153 | if (mem->tabled || mem->object) | |
2154 | panic("vm_page_free_list: freeing tabled page\n"); | |
2155 | if (mem->inactive || mem->active || mem->throttled || mem->free) | |
2156 | panic("vm_page_free_list: freeing page on list\n"); | |
2157 | if (vm_page_free_verify && !mem->fictitious && !mem->private) { | |
2158 | assert(pmap_verify_free(mem->phys_page)); | |
2159 | } | |
2160 | #endif | |
2161 | assert(mem->pageq.prev == NULL); | |
2162 | assert(mem->busy); | |
2163 | assert(!mem->free); | |
2164 | nxt = (vm_page_t)(mem->pageq.next); | |
2165 | ||
2166 | if (!mem->fictitious) { | |
2167 | mem->free = TRUE; | |
2168 | ||
2169 | color = mem->phys_page & vm_color_mask; | |
2170 | if (queue_empty(&free_list[color])) { | |
2171 | inuse[color] = inuse_list_head; | |
2172 | inuse_list_head = color; | |
2173 | } | |
2174 | queue_enter_first(&free_list[color], | |
2175 | mem, | |
2176 | vm_page_t, | |
2177 | pageq); | |
2178 | pg_count++; | |
2179 | } else { | |
2180 | assert(mem->phys_page == vm_page_fictitious_addr || | |
2181 | mem->phys_page == vm_page_guard_addr); | |
2182 | vm_page_release_fictitious(mem); | |
2183 | } | |
2184 | mem = nxt; | |
2185 | } | |
2186 | if (pg_count) { | |
2187 | unsigned int avail_free_count; | |
2188 | ||
2189 | mutex_lock(&vm_page_queue_free_lock); | |
2190 | ||
2191 | color = inuse_list_head; | |
2192 | ||
2193 | while( color != -1 ) { | |
2194 | vm_page_t first, last; | |
2195 | vm_page_t first_free; | |
2196 | ||
2197 | first = (vm_page_t) queue_first(&free_list[color]); | |
2198 | last = (vm_page_t) queue_last(&free_list[color]); | |
2199 | first_free = (vm_page_t) queue_first(&vm_page_queue_free[color]); | |
2200 | ||
2201 | if (queue_empty(&vm_page_queue_free[color])) { | |
2202 | queue_last(&vm_page_queue_free[color]) = | |
2203 | (queue_entry_t) last; | |
2204 | } else { | |
2205 | queue_prev(&first_free->pageq) = | |
2206 | (queue_entry_t) last; | |
2207 | } | |
2208 | queue_first(&vm_page_queue_free[color]) = | |
2209 | (queue_entry_t) first; | |
2210 | queue_prev(&first->pageq) = | |
2211 | (queue_entry_t) &vm_page_queue_free[color]; | |
2212 | queue_next(&last->pageq) = | |
2213 | (queue_entry_t) first_free; | |
2214 | color = inuse[color]; | |
2215 | } | |
2216 | ||
2217 | vm_page_free_count += pg_count; | |
2218 | avail_free_count = vm_page_free_count; | |
2219 | ||
2220 | while ((vm_page_free_wanted_privileged > 0) && avail_free_count) { | |
2221 | vm_page_free_wanted_privileged--; | |
2222 | avail_free_count--; | |
2223 | ||
2224 | thread_wakeup_one((event_t) &vm_page_free_wanted_privileged); | |
2225 | } | |
2226 | ||
2227 | if ((vm_page_free_wanted > 0) && | |
2228 | (avail_free_count >= vm_page_free_reserved)) { | |
2229 | unsigned int available_pages; | |
2230 | ||
2231 | if (avail_free_count >= vm_page_free_reserved) { | |
2232 | available_pages = (avail_free_count - vm_page_free_reserved); | |
2233 | } else { | |
2234 | available_pages = 0; | |
2235 | } | |
2236 | ||
2237 | if (available_pages >= vm_page_free_wanted) { | |
2238 | vm_page_free_wanted = 0; | |
2239 | thread_wakeup((event_t) &vm_page_free_count); | |
2240 | } else { | |
2241 | while (available_pages--) { | |
2242 | vm_page_free_wanted--; | |
2243 | thread_wakeup_one((event_t) &vm_page_free_count); | |
2244 | } | |
2245 | } | |
2246 | } | |
2247 | mutex_unlock(&vm_page_queue_free_lock); | |
2248 | ||
2249 | #if CONFIG_EMBEDDED | |
2250 | { | |
2251 | int percent_avail; | |
2252 | ||
2253 | /* | |
2254 | * Decide if we need to poke the memorystatus notification thread. | |
2255 | */ | |
2256 | percent_avail = | |
2257 | (vm_page_active_count + vm_page_inactive_count + | |
2258 | vm_page_speculative_count + vm_page_free_count + | |
2259 | (IP_VALID(memory_manager_default)?0:vm_page_purgeable_count) ) * 100 / | |
2260 | atop_64(max_mem); | |
2261 | if (percent_avail >= (kern_memorystatus_level + 5)) { | |
2262 | kern_memorystatus_level = percent_avail; | |
2263 | thread_wakeup((event_t)&kern_memorystatus_wakeup); | |
2264 | } | |
2265 | } | |
2266 | #endif | |
2267 | } | |
2268 | } | |
2269 | ||
2270 | ||
2271 | /* | |
2272 | * vm_page_wire: | |
2273 | * | |
2274 | * Mark this page as wired down by yet | |
2275 | * another map, removing it from paging queues | |
2276 | * as necessary. | |
2277 | * | |
2278 | * The page's object and the page queues must be locked. | |
2279 | */ | |
2280 | void | |
2281 | vm_page_wire( | |
2282 | register vm_page_t mem) | |
2283 | { | |
2284 | ||
2285 | // dbgLog(current_thread(), mem->offset, mem->object, 1); /* (TEST/DEBUG) */ | |
2286 | ||
2287 | VM_PAGE_CHECK(mem); | |
2288 | #if DEBUG | |
2289 | if (mem->object) | |
2290 | vm_object_lock_assert_exclusive(mem->object); | |
2291 | _mutex_assert(&vm_page_queue_lock, MA_OWNED); | |
2292 | #endif | |
2293 | if (mem->wire_count == 0) { | |
2294 | VM_PAGE_QUEUES_REMOVE(mem); | |
2295 | if (!mem->private && !mem->fictitious && !mem->gobbled) | |
2296 | vm_page_wire_count++; | |
2297 | if (mem->gobbled) | |
2298 | vm_page_gobble_count--; | |
2299 | mem->gobbled = FALSE; | |
2300 | if (mem->zero_fill == TRUE) { | |
2301 | mem->zero_fill = FALSE; | |
2302 | OSAddAtomic(-1, (SInt32 *)&vm_zf_count); | |
2303 | } | |
2304 | /* | |
2305 | * ENCRYPTED SWAP: | |
2306 | * The page could be encrypted, but | |
2307 | * We don't have to decrypt it here | |
2308 | * because we don't guarantee that the | |
2309 | * data is actually valid at this point. | |
2310 | * The page will get decrypted in | |
2311 | * vm_fault_wire() if needed. | |
2312 | */ | |
2313 | } | |
2314 | assert(!mem->gobbled); | |
2315 | mem->wire_count++; | |
2316 | } | |
2317 | ||
2318 | /* | |
2319 | * vm_page_gobble: | |
2320 | * | |
2321 | * Mark this page as consumed by the vm/ipc/xmm subsystems. | |
2322 | * | |
2323 | * Called only for freshly vm_page_grab()ed pages - w/ nothing locked. | |
2324 | */ | |
2325 | void | |
2326 | vm_page_gobble( | |
2327 | register vm_page_t mem) | |
2328 | { | |
2329 | vm_page_lockspin_queues(); | |
2330 | VM_PAGE_CHECK(mem); | |
2331 | ||
2332 | assert(!mem->gobbled); | |
2333 | assert(mem->wire_count == 0); | |
2334 | ||
2335 | if (!mem->gobbled && mem->wire_count == 0) { | |
2336 | if (!mem->private && !mem->fictitious) | |
2337 | vm_page_wire_count++; | |
2338 | } | |
2339 | vm_page_gobble_count++; | |
2340 | mem->gobbled = TRUE; | |
2341 | vm_page_unlock_queues(); | |
2342 | } | |
2343 | ||
2344 | /* | |
2345 | * vm_page_unwire: | |
2346 | * | |
2347 | * Release one wiring of this page, potentially | |
2348 | * enabling it to be paged again. | |
2349 | * | |
2350 | * The page's object and the page queues must be locked. | |
2351 | */ | |
2352 | void | |
2353 | vm_page_unwire( | |
2354 | register vm_page_t mem) | |
2355 | { | |
2356 | ||
2357 | // dbgLog(current_thread(), mem->offset, mem->object, 0); /* (TEST/DEBUG) */ | |
2358 | ||
2359 | VM_PAGE_CHECK(mem); | |
2360 | assert(mem->wire_count > 0); | |
2361 | #if DEBUG | |
2362 | if (mem->object) | |
2363 | vm_object_lock_assert_exclusive(mem->object); | |
2364 | _mutex_assert(&vm_page_queue_lock, MA_OWNED); | |
2365 | #endif | |
2366 | if (--mem->wire_count == 0) { | |
2367 | assert(!mem->private && !mem->fictitious); | |
2368 | vm_page_wire_count--; | |
2369 | assert(!mem->laundry); | |
2370 | assert(mem->object != kernel_object); | |
2371 | assert(mem->pageq.next == NULL && mem->pageq.prev == NULL); | |
2372 | if (!IP_VALID(memory_manager_default) && | |
2373 | mem->dirty && mem->object->internal && | |
2374 | (mem->object->purgable == VM_PURGABLE_DENY || | |
2375 | mem->object->purgable == VM_PURGABLE_NONVOLATILE || | |
2376 | mem->object->purgable == VM_PURGABLE_VOLATILE)) { | |
2377 | queue_enter(&vm_page_queue_throttled, mem, vm_page_t, pageq); | |
2378 | vm_page_throttled_count++; | |
2379 | mem->throttled = TRUE; | |
2380 | } else { | |
2381 | queue_enter(&vm_page_queue_active, mem, vm_page_t, pageq); | |
2382 | vm_page_active_count++; | |
2383 | mem->active = TRUE; | |
2384 | } | |
2385 | mem->reference = TRUE; | |
2386 | } | |
2387 | } | |
2388 | ||
2389 | ||
2390 | /* | |
2391 | * vm_page_deactivate: | |
2392 | * | |
2393 | * Returns the given page to the inactive list, | |
2394 | * indicating that no physical maps have access | |
2395 | * to this page. [Used by the physical mapping system.] | |
2396 | * | |
2397 | * The page queues must be locked. | |
2398 | */ | |
2399 | void | |
2400 | vm_page_deactivate( | |
2401 | register vm_page_t m) | |
2402 | { | |
2403 | boolean_t rapid_age = FALSE; | |
2404 | ||
2405 | VM_PAGE_CHECK(m); | |
2406 | assert(m->object != kernel_object); | |
2407 | assert(m->phys_page != vm_page_guard_addr); | |
2408 | ||
2409 | // dbgLog(m->phys_page, vm_page_free_count, vm_page_wire_count, 6); /* (TEST/DEBUG) */ | |
2410 | #if DEBUG | |
2411 | _mutex_assert(&vm_page_queue_lock, MA_OWNED); | |
2412 | #endif | |
2413 | /* | |
2414 | * This page is no longer very interesting. If it was | |
2415 | * interesting (active or inactive/referenced), then we | |
2416 | * clear the reference bit and (re)enter it in the | |
2417 | * inactive queue. Note wired pages should not have | |
2418 | * their reference bit cleared. | |
2419 | */ | |
2420 | if (m->gobbled) { /* can this happen? */ | |
2421 | assert(m->wire_count == 0); | |
2422 | ||
2423 | if (!m->private && !m->fictitious) | |
2424 | vm_page_wire_count--; | |
2425 | vm_page_gobble_count--; | |
2426 | m->gobbled = FALSE; | |
2427 | } | |
2428 | if (m->private || (m->wire_count != 0)) | |
2429 | return; | |
2430 | ||
2431 | if (m->active && m->deactivated == TRUE) { | |
2432 | if (!pmap_is_referenced(m->phys_page)) | |
2433 | rapid_age = TRUE; | |
2434 | } | |
2435 | if (rapid_age == FALSE && !m->fictitious && !m->absent) | |
2436 | pmap_clear_reference(m->phys_page); | |
2437 | ||
2438 | m->reference = FALSE; | |
2439 | m->deactivated = FALSE; | |
2440 | m->no_cache = FALSE; | |
2441 | ||
2442 | if (!m->inactive) { | |
2443 | VM_PAGE_QUEUES_REMOVE(m); | |
2444 | ||
2445 | assert(!m->laundry); | |
2446 | assert(m->pageq.next == NULL && m->pageq.prev == NULL); | |
2447 | ||
2448 | if (!IP_VALID(memory_manager_default) && | |
2449 | m->dirty && m->object->internal && | |
2450 | (m->object->purgable == VM_PURGABLE_DENY || | |
2451 | m->object->purgable == VM_PURGABLE_NONVOLATILE || | |
2452 | m->object->purgable == VM_PURGABLE_VOLATILE )) { | |
2453 | queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); | |
2454 | m->throttled = TRUE; | |
2455 | vm_page_throttled_count++; | |
2456 | } else { | |
2457 | if (rapid_age == TRUE || | |
2458 | (!m->fictitious && m->object->named && m->object->ref_count == 1)) { | |
2459 | vm_page_speculate(m, FALSE); | |
2460 | vm_page_speculative_recreated++; | |
2461 | return; | |
2462 | } else { | |
2463 | if (m->zero_fill) { | |
2464 | queue_enter(&vm_page_queue_zf, m, vm_page_t, pageq); | |
2465 | vm_zf_queue_count++; | |
2466 | } else { | |
2467 | queue_enter(&vm_page_queue_inactive, m, vm_page_t, pageq); | |
2468 | } | |
2469 | } | |
2470 | m->inactive = TRUE; | |
2471 | if (!m->fictitious) { | |
2472 | vm_page_inactive_count++; | |
2473 | token_new_pagecount++; | |
2474 | } | |
2475 | } | |
2476 | } | |
2477 | } | |
2478 | ||
2479 | /* | |
2480 | * vm_page_activate: | |
2481 | * | |
2482 | * Put the specified page on the active list (if appropriate). | |
2483 | * | |
2484 | * The page queues must be locked. | |
2485 | */ | |
2486 | ||
2487 | void | |
2488 | vm_page_activate( | |
2489 | register vm_page_t m) | |
2490 | { | |
2491 | VM_PAGE_CHECK(m); | |
2492 | #ifdef FIXME_4778297 | |
2493 | assert(m->object != kernel_object); | |
2494 | #endif | |
2495 | assert(m->phys_page != vm_page_guard_addr); | |
2496 | #if DEBUG | |
2497 | _mutex_assert(&vm_page_queue_lock, MA_OWNED); | |
2498 | #endif | |
2499 | if (m->gobbled) { | |
2500 | assert(m->wire_count == 0); | |
2501 | if (!m->private && !m->fictitious) | |
2502 | vm_page_wire_count--; | |
2503 | vm_page_gobble_count--; | |
2504 | m->gobbled = FALSE; | |
2505 | } | |
2506 | if (m->private) | |
2507 | return; | |
2508 | ||
2509 | #if DEBUG | |
2510 | if (m->active) | |
2511 | panic("vm_page_activate: already active"); | |
2512 | #endif | |
2513 | ||
2514 | if (m->speculative) { | |
2515 | DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL); | |
2516 | DTRACE_VM2(pgfrec, int, 1, (uint64_t *), NULL); | |
2517 | } | |
2518 | ||
2519 | VM_PAGE_QUEUES_REMOVE(m); | |
2520 | ||
2521 | if (m->wire_count == 0) { | |
2522 | assert(!m->laundry); | |
2523 | assert(m->pageq.next == NULL && m->pageq.prev == NULL); | |
2524 | if (!IP_VALID(memory_manager_default) && | |
2525 | !m->fictitious && m->dirty && m->object->internal && | |
2526 | (m->object->purgable == VM_PURGABLE_DENY || | |
2527 | m->object->purgable == VM_PURGABLE_NONVOLATILE || | |
2528 | m->object->purgable == VM_PURGABLE_VOLATILE )) { | |
2529 | queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); | |
2530 | m->throttled = TRUE; | |
2531 | vm_page_throttled_count++; | |
2532 | } else { | |
2533 | queue_enter(&vm_page_queue_active, m, vm_page_t, pageq); | |
2534 | m->active = TRUE; | |
2535 | if (!m->fictitious) | |
2536 | vm_page_active_count++; | |
2537 | } | |
2538 | m->reference = TRUE; | |
2539 | m->no_cache = FALSE; | |
2540 | } | |
2541 | } | |
2542 | ||
2543 | ||
2544 | /* | |
2545 | * vm_page_speculate: | |
2546 | * | |
2547 | * Put the specified page on the speculative list (if appropriate). | |
2548 | * | |
2549 | * The page queues must be locked. | |
2550 | */ | |
2551 | void | |
2552 | vm_page_speculate( | |
2553 | vm_page_t m, | |
2554 | boolean_t new) | |
2555 | { | |
2556 | struct vm_speculative_age_q *aq; | |
2557 | ||
2558 | VM_PAGE_CHECK(m); | |
2559 | assert(m->object != kernel_object); | |
2560 | assert(!m->speculative && !m->active && !m->inactive && !m->throttled); | |
2561 | assert(m->phys_page != vm_page_guard_addr); | |
2562 | assert(m->pageq.next == NULL && m->pageq.prev == NULL); | |
2563 | #if DEBUG | |
2564 | _mutex_assert(&vm_page_queue_lock, MA_OWNED); | |
2565 | #endif | |
2566 | if (m->wire_count == 0) { | |
2567 | mach_timespec_t ts; | |
2568 | ||
2569 | clock_get_system_nanotime(&ts.tv_sec, (unsigned *)&ts.tv_nsec); | |
2570 | ||
2571 | if (vm_page_speculative_count == 0) { | |
2572 | ||
2573 | speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
2574 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
2575 | ||
2576 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
2577 | ||
2578 | /* | |
2579 | * set the timer to begin a new group | |
2580 | */ | |
2581 | aq->age_ts.tv_sec = VM_PAGE_SPECULATIVE_Q_AGE_MS / 1000; | |
2582 | aq->age_ts.tv_nsec = (VM_PAGE_SPECULATIVE_Q_AGE_MS % 1000) * 1000 * NSEC_PER_USEC; | |
2583 | ||
2584 | ADD_MACH_TIMESPEC(&aq->age_ts, &ts); | |
2585 | } else { | |
2586 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
2587 | ||
2588 | if (CMP_MACH_TIMESPEC(&ts, &aq->age_ts) >= 0) { | |
2589 | ||
2590 | speculative_age_index++; | |
2591 | ||
2592 | if (speculative_age_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) | |
2593 | speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
2594 | if (speculative_age_index == speculative_steal_index) { | |
2595 | speculative_steal_index = speculative_age_index + 1; | |
2596 | ||
2597 | if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) | |
2598 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
2599 | } | |
2600 | aq = &vm_page_queue_speculative[speculative_age_index]; | |
2601 | ||
2602 | if (!queue_empty(&aq->age_q)) | |
2603 | vm_page_speculate_ageit(aq); | |
2604 | ||
2605 | aq->age_ts.tv_sec = VM_PAGE_SPECULATIVE_Q_AGE_MS / 1000; | |
2606 | aq->age_ts.tv_nsec = (VM_PAGE_SPECULATIVE_Q_AGE_MS % 1000) * 1000 * NSEC_PER_USEC; | |
2607 | ||
2608 | ADD_MACH_TIMESPEC(&aq->age_ts, &ts); | |
2609 | } | |
2610 | } | |
2611 | enqueue_tail(&aq->age_q, &m->pageq); | |
2612 | m->speculative = TRUE; | |
2613 | vm_page_speculative_count++; | |
2614 | ||
2615 | if (new == TRUE) { | |
2616 | m->object->pages_created++; | |
2617 | vm_page_speculative_created++; | |
2618 | } | |
2619 | } | |
2620 | } | |
2621 | ||
2622 | ||
2623 | /* | |
2624 | * move pages from the specified aging bin to | |
2625 | * the speculative bin that pageout_scan claims from | |
2626 | * | |
2627 | * The page queues must be locked. | |
2628 | */ | |
2629 | void | |
2630 | vm_page_speculate_ageit(struct vm_speculative_age_q *aq) | |
2631 | { | |
2632 | struct vm_speculative_age_q *sq; | |
2633 | vm_page_t t; | |
2634 | ||
2635 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; | |
2636 | ||
2637 | if (queue_empty(&sq->age_q)) { | |
2638 | sq->age_q.next = aq->age_q.next; | |
2639 | sq->age_q.prev = aq->age_q.prev; | |
2640 | ||
2641 | t = (vm_page_t)sq->age_q.next; | |
2642 | t->pageq.prev = &sq->age_q; | |
2643 | ||
2644 | t = (vm_page_t)sq->age_q.prev; | |
2645 | t->pageq.next = &sq->age_q; | |
2646 | } else { | |
2647 | t = (vm_page_t)sq->age_q.prev; | |
2648 | t->pageq.next = aq->age_q.next; | |
2649 | ||
2650 | t = (vm_page_t)aq->age_q.next; | |
2651 | t->pageq.prev = sq->age_q.prev; | |
2652 | ||
2653 | t = (vm_page_t)aq->age_q.prev; | |
2654 | t->pageq.next = &sq->age_q; | |
2655 | ||
2656 | sq->age_q.prev = aq->age_q.prev; | |
2657 | } | |
2658 | queue_init(&aq->age_q); | |
2659 | } | |
2660 | ||
2661 | ||
2662 | void | |
2663 | vm_page_lru( | |
2664 | vm_page_t m) | |
2665 | { | |
2666 | VM_PAGE_CHECK(m); | |
2667 | assert(m->object != kernel_object); | |
2668 | assert(m->phys_page != vm_page_guard_addr); | |
2669 | ||
2670 | #if DEBUG | |
2671 | _mutex_assert(&vm_page_queue_lock, MA_OWNED); | |
2672 | #endif | |
2673 | if (m->active || m->reference) | |
2674 | return; | |
2675 | ||
2676 | if (m->private || (m->wire_count != 0)) | |
2677 | return; | |
2678 | ||
2679 | m->no_cache = FALSE; | |
2680 | ||
2681 | VM_PAGE_QUEUES_REMOVE(m); | |
2682 | ||
2683 | assert(!m->laundry); | |
2684 | assert(m->pageq.next == NULL && m->pageq.prev == NULL); | |
2685 | ||
2686 | queue_enter(&vm_page_queue_inactive, m, vm_page_t, pageq); | |
2687 | m->inactive = TRUE; | |
2688 | ||
2689 | vm_page_inactive_count++; | |
2690 | token_new_pagecount++; | |
2691 | } | |
2692 | ||
2693 | ||
2694 | /* | |
2695 | * vm_page_part_zero_fill: | |
2696 | * | |
2697 | * Zero-fill a part of the page. | |
2698 | */ | |
2699 | void | |
2700 | vm_page_part_zero_fill( | |
2701 | vm_page_t m, | |
2702 | vm_offset_t m_pa, | |
2703 | vm_size_t len) | |
2704 | { | |
2705 | vm_page_t tmp; | |
2706 | ||
2707 | VM_PAGE_CHECK(m); | |
2708 | #ifdef PMAP_ZERO_PART_PAGE_IMPLEMENTED | |
2709 | pmap_zero_part_page(m->phys_page, m_pa, len); | |
2710 | #else | |
2711 | while (1) { | |
2712 | tmp = vm_page_grab(); | |
2713 | if (tmp == VM_PAGE_NULL) { | |
2714 | vm_page_wait(THREAD_UNINT); | |
2715 | continue; | |
2716 | } | |
2717 | break; | |
2718 | } | |
2719 | vm_page_zero_fill(tmp); | |
2720 | if(m_pa != 0) { | |
2721 | vm_page_part_copy(m, 0, tmp, 0, m_pa); | |
2722 | } | |
2723 | if((m_pa + len) < PAGE_SIZE) { | |
2724 | vm_page_part_copy(m, m_pa + len, tmp, | |
2725 | m_pa + len, PAGE_SIZE - (m_pa + len)); | |
2726 | } | |
2727 | vm_page_copy(tmp,m); | |
2728 | vm_page_lock_queues(); | |
2729 | vm_page_free(tmp); | |
2730 | vm_page_unlock_queues(); | |
2731 | #endif | |
2732 | ||
2733 | } | |
2734 | ||
2735 | /* | |
2736 | * vm_page_zero_fill: | |
2737 | * | |
2738 | * Zero-fill the specified page. | |
2739 | */ | |
2740 | void | |
2741 | vm_page_zero_fill( | |
2742 | vm_page_t m) | |
2743 | { | |
2744 | XPR(XPR_VM_PAGE, | |
2745 | "vm_page_zero_fill, object 0x%X offset 0x%X page 0x%X\n", | |
2746 | (integer_t)m->object, (integer_t)m->offset, (integer_t)m, 0,0); | |
2747 | ||
2748 | VM_PAGE_CHECK(m); | |
2749 | ||
2750 | // dbgTrace(0xAEAEAEAE, m->phys_page, 0); /* (BRINGUP) */ | |
2751 | pmap_zero_page(m->phys_page); | |
2752 | } | |
2753 | ||
2754 | /* | |
2755 | * vm_page_part_copy: | |
2756 | * | |
2757 | * copy part of one page to another | |
2758 | */ | |
2759 | ||
2760 | void | |
2761 | vm_page_part_copy( | |
2762 | vm_page_t src_m, | |
2763 | vm_offset_t src_pa, | |
2764 | vm_page_t dst_m, | |
2765 | vm_offset_t dst_pa, | |
2766 | vm_size_t len) | |
2767 | { | |
2768 | VM_PAGE_CHECK(src_m); | |
2769 | VM_PAGE_CHECK(dst_m); | |
2770 | ||
2771 | pmap_copy_part_page(src_m->phys_page, src_pa, | |
2772 | dst_m->phys_page, dst_pa, len); | |
2773 | } | |
2774 | ||
2775 | /* | |
2776 | * vm_page_copy: | |
2777 | * | |
2778 | * Copy one page to another | |
2779 | * | |
2780 | * ENCRYPTED SWAP: | |
2781 | * The source page should not be encrypted. The caller should | |
2782 | * make sure the page is decrypted first, if necessary. | |
2783 | */ | |
2784 | ||
2785 | int vm_page_copy_cs_validations = 0; | |
2786 | int vm_page_copy_cs_tainted = 0; | |
2787 | ||
2788 | void | |
2789 | vm_page_copy( | |
2790 | vm_page_t src_m, | |
2791 | vm_page_t dest_m) | |
2792 | { | |
2793 | XPR(XPR_VM_PAGE, | |
2794 | "vm_page_copy, object 0x%X offset 0x%X to object 0x%X offset 0x%X\n", | |
2795 | (integer_t)src_m->object, src_m->offset, | |
2796 | (integer_t)dest_m->object, dest_m->offset, | |
2797 | 0); | |
2798 | ||
2799 | VM_PAGE_CHECK(src_m); | |
2800 | VM_PAGE_CHECK(dest_m); | |
2801 | ||
2802 | /* | |
2803 | * ENCRYPTED SWAP: | |
2804 | * The source page should not be encrypted at this point. | |
2805 | * The destination page will therefore not contain encrypted | |
2806 | * data after the copy. | |
2807 | */ | |
2808 | if (src_m->encrypted) { | |
2809 | panic("vm_page_copy: source page %p is encrypted\n", src_m); | |
2810 | } | |
2811 | dest_m->encrypted = FALSE; | |
2812 | ||
2813 | if (src_m->object != VM_OBJECT_NULL && | |
2814 | src_m->object->code_signed) { | |
2815 | /* | |
2816 | * We're copying a page from a code-signed object. | |
2817 | * Whoever ends up mapping the copy page might care about | |
2818 | * the original page's integrity, so let's validate the | |
2819 | * source page now. | |
2820 | */ | |
2821 | vm_page_copy_cs_validations++; | |
2822 | vm_page_validate_cs(src_m); | |
2823 | } | |
2824 | /* | |
2825 | * Propagate the code-signing bits to the copy page. | |
2826 | */ | |
2827 | dest_m->cs_validated = src_m->cs_validated; | |
2828 | dest_m->cs_tainted = src_m->cs_tainted; | |
2829 | if (dest_m->cs_tainted) { | |
2830 | assert(dest_m->cs_validated); | |
2831 | vm_page_copy_cs_tainted++; | |
2832 | } | |
2833 | ||
2834 | pmap_copy_page(src_m->phys_page, dest_m->phys_page); | |
2835 | } | |
2836 | ||
2837 | #if MACH_ASSERT | |
2838 | /* | |
2839 | * Check that the list of pages is ordered by | |
2840 | * ascending physical address and has no holes. | |
2841 | */ | |
2842 | static int | |
2843 | vm_page_verify_contiguous( | |
2844 | vm_page_t pages, | |
2845 | unsigned int npages) | |
2846 | { | |
2847 | register vm_page_t m; | |
2848 | unsigned int page_count; | |
2849 | vm_offset_t prev_addr; | |
2850 | ||
2851 | prev_addr = pages->phys_page; | |
2852 | page_count = 1; | |
2853 | for (m = NEXT_PAGE(pages); m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { | |
2854 | if (m->phys_page != prev_addr + 1) { | |
2855 | printf("m %p prev_addr 0x%x, current addr 0x%x\n", | |
2856 | m, prev_addr, m->phys_page); | |
2857 | printf("pages %p page_count %d\n", pages, page_count); | |
2858 | panic("vm_page_verify_contiguous: not contiguous!"); | |
2859 | } | |
2860 | prev_addr = m->phys_page; | |
2861 | ++page_count; | |
2862 | } | |
2863 | if (page_count != npages) { | |
2864 | printf("pages %p actual count 0x%x but requested 0x%x\n", | |
2865 | pages, page_count, npages); | |
2866 | panic("vm_page_verify_contiguous: count error"); | |
2867 | } | |
2868 | return 1; | |
2869 | } | |
2870 | #endif /* MACH_ASSERT */ | |
2871 | ||
2872 | ||
2873 | #if MACH_ASSERT | |
2874 | /* | |
2875 | * Check the free lists for proper length etc. | |
2876 | */ | |
2877 | static void | |
2878 | vm_page_verify_free_lists( void ) | |
2879 | { | |
2880 | unsigned int color, npages; | |
2881 | vm_page_t m; | |
2882 | vm_page_t prev_m; | |
2883 | ||
2884 | npages = 0; | |
2885 | ||
2886 | mutex_lock(&vm_page_queue_free_lock); | |
2887 | ||
2888 | for( color = 0; color < vm_colors; color++ ) { | |
2889 | prev_m = (vm_page_t) &vm_page_queue_free[color]; | |
2890 | queue_iterate(&vm_page_queue_free[color], | |
2891 | m, | |
2892 | vm_page_t, | |
2893 | pageq) { | |
2894 | if ((vm_page_t) m->pageq.prev != prev_m) | |
2895 | panic("vm_page_verify_free_lists: corrupted prev ptr"); | |
2896 | if ( ! m->free ) | |
2897 | panic("vm_page_verify_free_lists: not free"); | |
2898 | if ( ! m->busy ) | |
2899 | panic("vm_page_verify_free_lists: not busy"); | |
2900 | if ( (m->phys_page & vm_color_mask) != color) | |
2901 | panic("vm_page_verify_free_lists: wrong color"); | |
2902 | ++npages; | |
2903 | prev_m = m; | |
2904 | } | |
2905 | } | |
2906 | if (npages != vm_page_free_count) | |
2907 | panic("vm_page_verify_free_lists: npages %u free_count %d", | |
2908 | npages, vm_page_free_count); | |
2909 | ||
2910 | mutex_unlock(&vm_page_queue_free_lock); | |
2911 | } | |
2912 | #endif /* MACH_ASSERT */ | |
2913 | ||
2914 | ||
2915 | ||
2916 | /* | |
2917 | * CONTIGUOUS PAGE ALLOCATION | |
2918 | * Additional levels of effort: | |
2919 | * + consider pages that are currently 'pmapped' | |
2920 | * this could be expensive since we'd have | |
2921 | * to ask the pmap layer about there state | |
2922 | * + consider dirty pages | |
2923 | * either clean them or | |
2924 | * copy them to other locations... | |
2925 | * | |
2926 | * Find a region large enough to contain at least n pages | |
2927 | * of contiguous physical memory. | |
2928 | * | |
2929 | * This is done by traversing the vm_page_t array in a linear fashion | |
2930 | * we assume that the vm_page_t array has the avaiable physical pages in an | |
2931 | * ordered, ascending list... this is currently true of all our implementations | |
2932 | * and must remain so... there can be 'holes' in the array... we also can | |
2933 | * no longer tolerate the vm_page_t's in the list being 'freed' and reclaimed | |
2934 | * which use to happen via 'vm_page_convert'... that function was no longer | |
2935 | * being called and was removed... | |
2936 | * | |
2937 | * The basic flow consists of stabilizing some of the interesting state of | |
2938 | * a vm_page_t behind the vm_page_queue and vm_page_free locks... we start our | |
2939 | * sweep at the beginning of the array looking for pages that meet our criterea | |
2940 | * for a 'stealable' page... currently we are pretty conservative... if the page | |
2941 | * meets this criterea and is physically contiguous to the previous page in the 'run' | |
2942 | * we keep developing it. If we hit a page that doesn't fit, we reset our state | |
2943 | * and start to develop a new run... if at this point we've already considered | |
2944 | * at least MAX_CONSIDERED_BEFORE_YIELD pages, we'll drop the 2 locks we hold, | |
2945 | * and mutex_pause (which will yield the processor), to keep the latency low w/r | |
2946 | * to other threads trying to acquire free pages (or move pages from q to q), | |
2947 | * and then continue from the spot we left off... we only make 1 pass through the | |
2948 | * array. Once we have a 'run' that is long enough, we'll go into the loop which | |
2949 | * which steals the pages from the queues they're currently on... pages on the free | |
2950 | * queue can be stolen directly... pages that are on any of the other queues | |
2951 | * must be removed from the object they are tabled on... this requires taking the | |
2952 | * object lock... we do this as a 'try' to prevent deadlocks... if the 'try' fails | |
2953 | * or if the state of the page behind the vm_object lock is no longer viable, we'll | |
2954 | * dump the pages we've currently stolen back to the free list, and pick up our | |
2955 | * scan from the point where we aborted the 'current' run. | |
2956 | * | |
2957 | * | |
2958 | * Requirements: | |
2959 | * - neither vm_page_queue nor vm_free_list lock can be held on entry | |
2960 | * | |
2961 | * Returns a pointer to a list of gobbled/wired pages or VM_PAGE_NULL. | |
2962 | * | |
2963 | * Algorithm: | |
2964 | */ | |
2965 | ||
2966 | #define MAX_CONSIDERED_BEFORE_YIELD 1000 | |
2967 | ||
2968 | ||
2969 | #define RESET_STATE_OF_RUN() \ | |
2970 | MACRO_BEGIN \ | |
2971 | prevcontaddr = -2; \ | |
2972 | free_considered = 0; \ | |
2973 | substitute_needed = 0; \ | |
2974 | npages = 0; \ | |
2975 | MACRO_END | |
2976 | ||
2977 | ||
2978 | static vm_page_t | |
2979 | vm_page_find_contiguous( | |
2980 | unsigned int contig_pages, | |
2981 | ppnum_t max_pnum, | |
2982 | boolean_t wire) | |
2983 | { | |
2984 | vm_page_t m = NULL; | |
2985 | ppnum_t prevcontaddr; | |
2986 | unsigned int npages, considered; | |
2987 | unsigned int page_idx, start_idx; | |
2988 | int free_considered, free_available; | |
2989 | int substitute_needed; | |
2990 | #if MACH_ASSERT | |
2991 | uint32_t tv_start_sec, tv_start_usec, tv_end_sec, tv_end_usec; | |
2992 | int yielded = 0; | |
2993 | int dumped_run = 0; | |
2994 | int stolen_pages = 0; | |
2995 | #endif | |
2996 | ||
2997 | if (contig_pages == 0) | |
2998 | return VM_PAGE_NULL; | |
2999 | ||
3000 | #if MACH_ASSERT | |
3001 | vm_page_verify_free_lists(); | |
3002 | ||
3003 | clock_get_system_microtime(&tv_start_sec, &tv_start_usec); | |
3004 | #endif | |
3005 | vm_page_lock_queues(); | |
3006 | mutex_lock(&vm_page_queue_free_lock); | |
3007 | ||
3008 | RESET_STATE_OF_RUN(); | |
3009 | ||
3010 | considered = 0; | |
3011 | free_available = vm_page_free_count - vm_page_free_reserved; | |
3012 | ||
3013 | for (page_idx = 0, start_idx = 0; | |
3014 | npages < contig_pages && page_idx < vm_pages_count; | |
3015 | page_idx++) { | |
3016 | retry: | |
3017 | m = &vm_pages[page_idx]; | |
3018 | ||
3019 | if (max_pnum && m->phys_page > max_pnum) { | |
3020 | /* no more low pages... */ | |
3021 | break; | |
3022 | } | |
3023 | if (m->phys_page <= vm_lopage_poolend && | |
3024 | m->phys_page >= vm_lopage_poolstart) { | |
3025 | /* | |
3026 | * don't want to take pages from our | |
3027 | * reserved pool of low memory | |
3028 | * so don't consider it which | |
3029 | * means starting a new run | |
3030 | */ | |
3031 | RESET_STATE_OF_RUN(); | |
3032 | ||
3033 | } else if (m->wire_count || m->gobbled || | |
3034 | m->encrypted || m->encrypted_cleaning || m->cs_validated || m->cs_tainted || | |
3035 | m->error || m->absent || m->pageout_queue || m->laundry || m->wanted || m->precious || | |
3036 | m->cleaning || m->overwriting || m->restart || m->unusual || m->list_req_pending) { | |
3037 | /* | |
3038 | * page is in a transient state | |
3039 | * or a state we don't want to deal | |
3040 | * with, so don't consider it which | |
3041 | * means starting a new run | |
3042 | */ | |
3043 | RESET_STATE_OF_RUN(); | |
3044 | ||
3045 | } else if (!m->free && !m->active && !m->inactive && !m->speculative && !m->throttled) { | |
3046 | /* | |
3047 | * page needs to be on one of our queues | |
3048 | * in order for it to be stable behind the | |
3049 | * locks we hold at this point... | |
3050 | * if not, don't consider it which | |
3051 | * means starting a new run | |
3052 | */ | |
3053 | RESET_STATE_OF_RUN(); | |
3054 | ||
3055 | } else if (!m->free && (!m->tabled || m->busy)) { | |
3056 | /* | |
3057 | * pages on the free list are always 'busy' | |
3058 | * so we couldn't test for 'busy' in the check | |
3059 | * for the transient states... pages that are | |
3060 | * 'free' are never 'tabled', so we also couldn't | |
3061 | * test for 'tabled'. So we check here to make | |
3062 | * sure that a non-free page is not busy and is | |
3063 | * tabled on an object... | |
3064 | * if not, don't consider it which | |
3065 | * means starting a new run | |
3066 | */ | |
3067 | RESET_STATE_OF_RUN(); | |
3068 | ||
3069 | } else { | |
3070 | if (m->phys_page != prevcontaddr + 1) { | |
3071 | npages = 1; | |
3072 | start_idx = page_idx; | |
3073 | } else { | |
3074 | npages++; | |
3075 | } | |
3076 | prevcontaddr = m->phys_page; | |
3077 | ||
3078 | if (m->pmapped || m->dirty) | |
3079 | substitute_needed++; | |
3080 | ||
3081 | if (m->free) { | |
3082 | free_considered++; | |
3083 | } | |
3084 | if ((free_considered + substitute_needed) > free_available) { | |
3085 | /* | |
3086 | * if we let this run continue | |
3087 | * we will end up dropping the vm_page_free_count | |
3088 | * below the reserve limit... we need to abort | |
3089 | * this run, but we can at least re-consider this | |
3090 | * page... thus the jump back to 'retry' | |
3091 | */ | |
3092 | RESET_STATE_OF_RUN(); | |
3093 | ||
3094 | if (free_available && considered <= MAX_CONSIDERED_BEFORE_YIELD) { | |
3095 | considered++; | |
3096 | goto retry; | |
3097 | } | |
3098 | /* | |
3099 | * free_available == 0 | |
3100 | * so can't consider any free pages... if | |
3101 | * we went to retry in this case, we'd | |
3102 | * get stuck looking at the same page | |
3103 | * w/o making any forward progress | |
3104 | * we also want to take this path if we've already | |
3105 | * reached our limit that controls the lock latency | |
3106 | */ | |
3107 | } | |
3108 | } | |
3109 | if (considered > MAX_CONSIDERED_BEFORE_YIELD && npages <= 1) { | |
3110 | ||
3111 | mutex_unlock(&vm_page_queue_free_lock); | |
3112 | vm_page_unlock_queues(); | |
3113 | ||
3114 | mutex_pause(0); | |
3115 | ||
3116 | vm_page_lock_queues(); | |
3117 | mutex_lock(&vm_page_queue_free_lock); | |
3118 | ||
3119 | RESET_STATE_OF_RUN(); | |
3120 | /* | |
3121 | * reset our free page limit since we | |
3122 | * dropped the lock protecting the vm_page_free_queue | |
3123 | */ | |
3124 | free_available = vm_page_free_count - vm_page_free_reserved; | |
3125 | considered = 0; | |
3126 | #if MACH_ASSERT | |
3127 | yielded++; | |
3128 | #endif | |
3129 | goto retry; | |
3130 | } | |
3131 | considered++; | |
3132 | } | |
3133 | m = VM_PAGE_NULL; | |
3134 | ||
3135 | if (npages != contig_pages) | |
3136 | mutex_unlock(&vm_page_queue_free_lock); | |
3137 | else { | |
3138 | vm_page_t m1; | |
3139 | vm_page_t m2; | |
3140 | unsigned int cur_idx; | |
3141 | unsigned int tmp_start_idx; | |
3142 | vm_object_t locked_object = VM_OBJECT_NULL; | |
3143 | boolean_t abort_run = FALSE; | |
3144 | ||
3145 | tmp_start_idx = start_idx; | |
3146 | ||
3147 | /* | |
3148 | * first pass through to pull the free pages | |
3149 | * off of the free queue so that in case we | |
3150 | * need substitute pages, we won't grab any | |
3151 | * of the free pages in the run... we'll clear | |
3152 | * the 'free' bit in the 2nd pass, and even in | |
3153 | * an abort_run case, we'll collect all of the | |
3154 | * free pages in this run and return them to the free list | |
3155 | */ | |
3156 | while (start_idx < page_idx) { | |
3157 | ||
3158 | m1 = &vm_pages[start_idx++]; | |
3159 | ||
3160 | if (m1->free) { | |
3161 | unsigned int color; | |
3162 | ||
3163 | color = m1->phys_page & vm_color_mask; | |
3164 | queue_remove(&vm_page_queue_free[color], | |
3165 | m1, | |
3166 | vm_page_t, | |
3167 | pageq); | |
3168 | ||
3169 | vm_page_free_count--; | |
3170 | } | |
3171 | } | |
3172 | /* | |
3173 | * adjust global freelist counts | |
3174 | */ | |
3175 | if (vm_page_free_count < vm_page_free_count_minimum) | |
3176 | vm_page_free_count_minimum = vm_page_free_count; | |
3177 | ||
3178 | /* | |
3179 | * we can drop the free queue lock at this point since | |
3180 | * we've pulled any 'free' candidates off of the list | |
3181 | * we need it dropped so that we can do a vm_page_grab | |
3182 | * when substituing for pmapped/dirty pages | |
3183 | */ | |
3184 | mutex_unlock(&vm_page_queue_free_lock); | |
3185 | ||
3186 | start_idx = tmp_start_idx; | |
3187 | cur_idx = page_idx - 1; | |
3188 | ||
3189 | while (start_idx++ < page_idx) { | |
3190 | /* | |
3191 | * must go through the list from back to front | |
3192 | * so that the page list is created in the | |
3193 | * correct order - low -> high phys addresses | |
3194 | */ | |
3195 | m1 = &vm_pages[cur_idx--]; | |
3196 | ||
3197 | if (m1->free) { | |
3198 | /* | |
3199 | * pages have already been removed from | |
3200 | * the free list in the 1st pass | |
3201 | */ | |
3202 | assert(m1->free); | |
3203 | assert(m1->busy); | |
3204 | assert(!m1->wanted); | |
3205 | assert(!m1->laundry); | |
3206 | m1->free = FALSE; | |
3207 | ||
3208 | } else { | |
3209 | vm_object_t object; | |
3210 | ||
3211 | if (abort_run == TRUE) | |
3212 | continue; | |
3213 | ||
3214 | object = m1->object; | |
3215 | ||
3216 | if (object != locked_object) { | |
3217 | if (locked_object) { | |
3218 | vm_object_unlock(locked_object); | |
3219 | locked_object = VM_OBJECT_NULL; | |
3220 | } | |
3221 | if (vm_object_lock_try(object)) | |
3222 | locked_object = object; | |
3223 | } | |
3224 | if (locked_object == VM_OBJECT_NULL || | |
3225 | (m1->wire_count || m1->gobbled || | |
3226 | m1->encrypted || m1->encrypted_cleaning || m1->cs_validated || m1->cs_tainted || | |
3227 | m1->error || m1->absent || m1->pageout_queue || m1->laundry || m1->wanted || m1->precious || | |
3228 | m1->cleaning || m1->overwriting || m1->restart || m1->unusual || m1->list_req_pending || m1->busy)) { | |
3229 | ||
3230 | if (locked_object) { | |
3231 | vm_object_unlock(locked_object); | |
3232 | locked_object = VM_OBJECT_NULL; | |
3233 | } | |
3234 | tmp_start_idx = cur_idx; | |
3235 | abort_run = TRUE; | |
3236 | continue; | |
3237 | } | |
3238 | if (m1->pmapped || m1->dirty) { | |
3239 | int refmod; | |
3240 | vm_object_offset_t offset; | |
3241 | ||
3242 | m2 = vm_page_grab(); | |
3243 | ||
3244 | if (m2 == VM_PAGE_NULL) { | |
3245 | if (locked_object) { | |
3246 | vm_object_unlock(locked_object); | |
3247 | locked_object = VM_OBJECT_NULL; | |
3248 | } | |
3249 | tmp_start_idx = cur_idx; | |
3250 | abort_run = TRUE; | |
3251 | continue; | |
3252 | } | |
3253 | if (m1->pmapped) | |
3254 | refmod = pmap_disconnect(m1->phys_page); | |
3255 | else | |
3256 | refmod = 0; | |
3257 | vm_page_copy(m1, m2); | |
3258 | ||
3259 | m2->reference = m1->reference; | |
3260 | m2->dirty = m1->dirty; | |
3261 | ||
3262 | if (refmod & VM_MEM_REFERENCED) | |
3263 | m2->reference = TRUE; | |
3264 | if (refmod & VM_MEM_MODIFIED) | |
3265 | m2->dirty = TRUE; | |
3266 | offset = m1->offset; | |
3267 | ||
3268 | /* | |
3269 | * completely cleans up the state | |
3270 | * of the page so that it is ready | |
3271 | * to be put onto the free list, or | |
3272 | * for this purpose it looks like it | |
3273 | * just came off of the free list | |
3274 | */ | |
3275 | vm_page_free_prepare(m1); | |
3276 | ||
3277 | /* | |
3278 | * make sure we clear the ref/mod state | |
3279 | * from the pmap layer... else we risk | |
3280 | * inheriting state from the last time | |
3281 | * this page was used... | |
3282 | */ | |
3283 | pmap_clear_refmod(m2->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); | |
3284 | /* | |
3285 | * now put the substitute page on the object | |
3286 | */ | |
3287 | vm_page_insert_internal(m2, locked_object, offset, TRUE); | |
3288 | ||
3289 | if (m2->reference) | |
3290 | vm_page_activate(m2); | |
3291 | else | |
3292 | vm_page_deactivate(m2); | |
3293 | ||
3294 | PAGE_WAKEUP_DONE(m2); | |
3295 | ||
3296 | } else { | |
3297 | /* | |
3298 | * completely cleans up the state | |
3299 | * of the page so that it is ready | |
3300 | * to be put onto the free list, or | |
3301 | * for this purpose it looks like it | |
3302 | * just came off of the free list | |
3303 | */ | |
3304 | vm_page_free_prepare(m1); | |
3305 | } | |
3306 | #if MACH_ASSERT | |
3307 | stolen_pages++; | |
3308 | #endif | |
3309 | } | |
3310 | m1->pageq.next = (queue_entry_t) m; | |
3311 | m1->pageq.prev = NULL; | |
3312 | m = m1; | |
3313 | } | |
3314 | if (locked_object) { | |
3315 | vm_object_unlock(locked_object); | |
3316 | locked_object = VM_OBJECT_NULL; | |
3317 | } | |
3318 | ||
3319 | if (abort_run == TRUE) { | |
3320 | if (m != VM_PAGE_NULL) { | |
3321 | vm_page_free_list(m); | |
3322 | } | |
3323 | #if MACH_ASSERT | |
3324 | dumped_run++; | |
3325 | #endif | |
3326 | /* | |
3327 | * want the index of the last | |
3328 | * page in this run that was | |
3329 | * successfully 'stolen', so back | |
3330 | * it up 1 for the auto-decrement on use | |
3331 | * and 1 more to bump back over this page | |
3332 | */ | |
3333 | page_idx = tmp_start_idx + 2; | |
3334 | ||
3335 | if (page_idx >= vm_pages_count) | |
3336 | goto done_scanning; | |
3337 | ||
3338 | mutex_lock(&vm_page_queue_free_lock); | |
3339 | ||
3340 | RESET_STATE_OF_RUN(); | |
3341 | ||
3342 | /* | |
3343 | * reset our free page limit since we | |
3344 | * dropped the lock protecting the vm_page_free_queue | |
3345 | */ | |
3346 | free_available = vm_page_free_count - vm_page_free_reserved; | |
3347 | ||
3348 | goto retry; | |
3349 | } | |
3350 | ||
3351 | for (m1 = m; m1 != VM_PAGE_NULL; m1 = NEXT_PAGE(m1)) { | |
3352 | ||
3353 | if (wire == TRUE) | |
3354 | m1->wire_count++; | |
3355 | else | |
3356 | m1->gobbled = TRUE; | |
3357 | } | |
3358 | if (wire == FALSE) | |
3359 | vm_page_gobble_count += npages; | |
3360 | ||
3361 | /* | |
3362 | * gobbled pages are also counted as wired pages | |
3363 | */ | |
3364 | vm_page_wire_count += npages; | |
3365 | ||
3366 | assert(vm_page_verify_contiguous(m, npages)); | |
3367 | } | |
3368 | done_scanning: | |
3369 | vm_page_unlock_queues(); | |
3370 | ||
3371 | #if MACH_ASSERT | |
3372 | clock_get_system_microtime(&tv_end_sec, &tv_end_usec); | |
3373 | ||
3374 | tv_end_sec -= tv_start_sec; | |
3375 | if (tv_end_usec < tv_start_usec) { | |
3376 | tv_end_sec--; | |
3377 | tv_end_usec += 1000000; | |
3378 | } | |
3379 | tv_end_usec -= tv_start_usec; | |
3380 | if (tv_end_usec >= 1000000) { | |
3381 | tv_end_sec++; | |
3382 | tv_end_sec -= 1000000; | |
3383 | } | |
3384 | printf("vm_find_page_contiguous(num=%d,low=%d): found %d pages in %d.%06ds... scanned %d pages... yielded %d times... dumped run %d times... stole %d pages\n", | |
3385 | contig_pages, max_pnum, npages, tv_end_sec, tv_end_usec, page_idx, yielded, dumped_run, stolen_pages); | |
3386 | ||
3387 | vm_page_verify_free_lists(); | |
3388 | #endif | |
3389 | return m; | |
3390 | } | |
3391 | ||
3392 | /* | |
3393 | * Allocate a list of contiguous, wired pages. | |
3394 | */ | |
3395 | kern_return_t | |
3396 | cpm_allocate( | |
3397 | vm_size_t size, | |
3398 | vm_page_t *list, | |
3399 | ppnum_t max_pnum, | |
3400 | boolean_t wire) | |
3401 | { | |
3402 | vm_page_t pages; | |
3403 | unsigned int npages; | |
3404 | ||
3405 | if (size % page_size != 0) | |
3406 | return KERN_INVALID_ARGUMENT; | |
3407 | ||
3408 | npages = size / page_size; | |
3409 | ||
3410 | /* | |
3411 | * Obtain a pointer to a subset of the free | |
3412 | * list large enough to satisfy the request; | |
3413 | * the region will be physically contiguous. | |
3414 | */ | |
3415 | pages = vm_page_find_contiguous(npages, max_pnum, wire); | |
3416 | ||
3417 | if (pages == VM_PAGE_NULL) | |
3418 | return KERN_NO_SPACE; | |
3419 | /* | |
3420 | * determine need for wakeups | |
3421 | */ | |
3422 | if ((vm_page_free_count < vm_page_free_min) || | |
3423 | ((vm_page_free_count < vm_page_free_target) && | |
3424 | ((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_min))) | |
3425 | thread_wakeup((event_t) &vm_page_free_wanted); | |
3426 | ||
3427 | #if CONFIG_EMBEDDED | |
3428 | { | |
3429 | int percent_avail; | |
3430 | ||
3431 | /* | |
3432 | * Decide if we need to poke the memorystatus notification thread. | |
3433 | */ | |
3434 | percent_avail = | |
3435 | (vm_page_active_count + vm_page_inactive_count + | |
3436 | vm_page_speculative_count + vm_page_free_count + | |
3437 | (IP_VALID(memory_manager_default)?0:vm_page_purgeable_count) ) * 100 / | |
3438 | atop_64(max_mem); | |
3439 | if (percent_avail <= (kern_memorystatus_level - 5)) { | |
3440 | kern_memorystatus_level = percent_avail; | |
3441 | thread_wakeup((event_t)&kern_memorystatus_wakeup); | |
3442 | } | |
3443 | } | |
3444 | #endif | |
3445 | /* | |
3446 | * The CPM pages should now be available and | |
3447 | * ordered by ascending physical address. | |
3448 | */ | |
3449 | assert(vm_page_verify_contiguous(pages, npages)); | |
3450 | ||
3451 | *list = pages; | |
3452 | return KERN_SUCCESS; | |
3453 | } | |
3454 | ||
3455 | ||
3456 | #include <mach_vm_debug.h> | |
3457 | #if MACH_VM_DEBUG | |
3458 | ||
3459 | #include <mach_debug/hash_info.h> | |
3460 | #include <vm/vm_debug.h> | |
3461 | ||
3462 | /* | |
3463 | * Routine: vm_page_info | |
3464 | * Purpose: | |
3465 | * Return information about the global VP table. | |
3466 | * Fills the buffer with as much information as possible | |
3467 | * and returns the desired size of the buffer. | |
3468 | * Conditions: | |
3469 | * Nothing locked. The caller should provide | |
3470 | * possibly-pageable memory. | |
3471 | */ | |
3472 | ||
3473 | unsigned int | |
3474 | vm_page_info( | |
3475 | hash_info_bucket_t *info, | |
3476 | unsigned int count) | |
3477 | { | |
3478 | unsigned int i; | |
3479 | ||
3480 | if (vm_page_bucket_count < count) | |
3481 | count = vm_page_bucket_count; | |
3482 | ||
3483 | for (i = 0; i < count; i++) { | |
3484 | vm_page_bucket_t *bucket = &vm_page_buckets[i]; | |
3485 | unsigned int bucket_count = 0; | |
3486 | vm_page_t m; | |
3487 | ||
3488 | simple_lock(&vm_page_bucket_lock); | |
3489 | for (m = bucket->pages; m != VM_PAGE_NULL; m = m->next) | |
3490 | bucket_count++; | |
3491 | simple_unlock(&vm_page_bucket_lock); | |
3492 | ||
3493 | /* don't touch pageable memory while holding locks */ | |
3494 | info[i].hib_count = bucket_count; | |
3495 | } | |
3496 | ||
3497 | return vm_page_bucket_count; | |
3498 | } | |
3499 | #endif /* MACH_VM_DEBUG */ | |
3500 | ||
3501 | #include <mach_kdb.h> | |
3502 | #if MACH_KDB | |
3503 | ||
3504 | #include <ddb/db_output.h> | |
3505 | #include <vm/vm_print.h> | |
3506 | #define printf kdbprintf | |
3507 | ||
3508 | /* | |
3509 | * Routine: vm_page_print [exported] | |
3510 | */ | |
3511 | void | |
3512 | vm_page_print( | |
3513 | db_addr_t db_addr) | |
3514 | { | |
3515 | vm_page_t p; | |
3516 | ||
3517 | p = (vm_page_t) (long) db_addr; | |
3518 | ||
3519 | iprintf("page 0x%x\n", p); | |
3520 | ||
3521 | db_indent += 2; | |
3522 | ||
3523 | iprintf("object=0x%x", p->object); | |
3524 | printf(", offset=0x%x", p->offset); | |
3525 | printf(", wire_count=%d", p->wire_count); | |
3526 | ||
3527 | iprintf("%sinactive, %sactive, %sthrottled, %sgobbled, %slaundry, %sfree, %sref, %sencrypted\n", | |
3528 | (p->inactive ? "" : "!"), | |
3529 | (p->active ? "" : "!"), | |
3530 | (p->throttled ? "" : "!"), | |
3531 | (p->gobbled ? "" : "!"), | |
3532 | (p->laundry ? "" : "!"), | |
3533 | (p->free ? "" : "!"), | |
3534 | (p->reference ? "" : "!"), | |
3535 | (p->encrypted ? "" : "!")); | |
3536 | iprintf("%sbusy, %swanted, %stabled, %sfictitious, %sprivate, %sprecious\n", | |
3537 | (p->busy ? "" : "!"), | |
3538 | (p->wanted ? "" : "!"), | |
3539 | (p->tabled ? "" : "!"), | |
3540 | (p->fictitious ? "" : "!"), | |
3541 | (p->private ? "" : "!"), | |
3542 | (p->precious ? "" : "!")); | |
3543 | iprintf("%sabsent, %serror, %sdirty, %scleaning, %spageout, %sclustered\n", | |
3544 | (p->absent ? "" : "!"), | |
3545 | (p->error ? "" : "!"), | |
3546 | (p->dirty ? "" : "!"), | |
3547 | (p->cleaning ? "" : "!"), | |
3548 | (p->pageout ? "" : "!"), | |
3549 | (p->clustered ? "" : "!")); | |
3550 | iprintf("%soverwriting, %srestart, %sunusual\n", | |
3551 | (p->overwriting ? "" : "!"), | |
3552 | (p->restart ? "" : "!"), | |
3553 | (p->unusual ? "" : "!")); | |
3554 | ||
3555 | iprintf("phys_page=0x%x", p->phys_page); | |
3556 | ||
3557 | db_indent -= 2; | |
3558 | } | |
3559 | #endif /* MACH_KDB */ |