]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | ||
57 | /* | |
58 | */ | |
59 | ||
60 | #include <kern/cpu_number.h> | |
61 | #include <kern/kalloc.h> | |
62 | #include <kern/cpu_data.h> | |
63 | #include <mach/mach_types.h> | |
64 | #include <mach/machine.h> | |
65 | #include <mach/vm_map.h> | |
66 | #include <vm/vm_kern.h> | |
67 | #include <vm/vm_map.h> | |
68 | ||
69 | #include <i386/mp_desc.h> | |
70 | #include <i386/lock.h> | |
71 | #include <i386/misc_protos.h> | |
72 | #include <i386/mp.h> | |
73 | #include <i386/pmap.h> | |
74 | #include <i386/machine_check.h> | |
75 | ||
76 | #include <kern/misc_protos.h> | |
77 | ||
78 | #include <mach_kdb.h> | |
79 | ||
80 | /* | |
81 | * The i386 needs an interrupt stack to keep the PCB stack from being | |
82 | * overrun by interrupts. All interrupt stacks MUST lie at lower addresses | |
83 | * than any thread`s kernel stack. | |
84 | */ | |
85 | ||
86 | /* | |
87 | * First cpu`s interrupt stack. | |
88 | */ | |
89 | extern uint32_t low_intstack[]; /* bottom */ | |
90 | extern uint32_t low_eintstack[]; /* top */ | |
91 | ||
92 | /* | |
93 | * Per-cpu data area pointers. | |
94 | * The master cpu (cpu 0) has its data area statically allocated; | |
95 | * others are allocated dynamically and this array is updated at runtime. | |
96 | */ | |
97 | cpu_data_t cpu_data_master; | |
98 | cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] &cpu_data_master }; | |
99 | ||
100 | decl_simple_lock_data(,cpu_lock); /* protects real_ncpus */ | |
101 | unsigned int real_ncpus = 1; | |
102 | unsigned int max_ncpus = MAX_CPUS; | |
103 | ||
104 | extern void *hi_remap_text; | |
105 | #define HI_TEXT(lo_text) \ | |
106 | (((uint32_t)&lo_text - (uint32_t)&hi_remap_text) + HIGH_MEM_BASE) | |
107 | ||
108 | extern void hi_sysenter(void); | |
109 | extern void hi64_sysenter(void); | |
110 | extern void hi64_syscall(void); | |
111 | ||
112 | /* | |
113 | * Multiprocessor i386/i486 systems use a separate copy of the | |
114 | * GDT, IDT, LDT, and kernel TSS per processor. The first three | |
115 | * are separate to avoid lock contention: the i386 uses locked | |
116 | * memory cycles to access the descriptor tables. The TSS is | |
117 | * separate since each processor needs its own kernel stack, | |
118 | * and since using a TSS marks it busy. | |
119 | */ | |
120 | ||
121 | /* | |
122 | * Allocate and initialize the per-processor descriptor tables. | |
123 | */ | |
124 | ||
125 | struct fake_descriptor ldt_desc_pattern = { | |
126 | (unsigned int) 0, | |
127 | LDTSZ_MIN * sizeof(struct fake_descriptor) - 1, | |
128 | 0, | |
129 | ACC_P|ACC_PL_K|ACC_LDT | |
130 | }; | |
131 | ||
132 | struct fake_descriptor tss_desc_pattern = { | |
133 | (unsigned int) 0, | |
134 | sizeof(struct i386_tss) - 1, | |
135 | 0, | |
136 | ACC_P|ACC_PL_K|ACC_TSS | |
137 | }; | |
138 | ||
139 | struct fake_descriptor cpudata_desc_pattern = { | |
140 | (unsigned int) 0, | |
141 | sizeof(cpu_data_t)-1, | |
142 | SZ_32, | |
143 | ACC_P|ACC_PL_K|ACC_DATA_W | |
144 | }; | |
145 | ||
146 | struct fake_descriptor userwindow_desc_pattern = { | |
147 | (unsigned int) 0, | |
148 | ((NBPDE * NCOPY_WINDOWS) / PAGE_SIZE) - 1, | |
149 | SZ_32 | SZ_G, | |
150 | ACC_P|ACC_PL_U|ACC_DATA_W | |
151 | }; | |
152 | ||
153 | struct fake_descriptor physwindow_desc_pattern = { | |
154 | (unsigned int) 0, | |
155 | PAGE_SIZE - 1, | |
156 | SZ_32, | |
157 | ACC_P|ACC_PL_K|ACC_DATA_W | |
158 | }; | |
159 | ||
160 | /* | |
161 | * This is the expanded, 64-bit variant of the kernel LDT descriptor. | |
162 | * When switching to 64-bit mode this replaces KERNEL_LDT entry | |
163 | * and the following empty slot. This enables the LDT to be referenced | |
164 | * in the uber-space remapping window on the kernel. | |
165 | */ | |
166 | struct fake_descriptor64 kernel_ldt_desc64 = { | |
167 | FAKE_UBER64(&master_ldt), | |
168 | LDTSZ_MIN*sizeof(struct fake_descriptor)-1, | |
169 | 0, | |
170 | ACC_P|ACC_PL_K|ACC_LDT, | |
171 | 0 | |
172 | }; | |
173 | ||
174 | /* | |
175 | * This is the expanded, 64-bit variant of the kernel TSS descriptor. | |
176 | * It is follows pattern of the KERNEL_LDT. | |
177 | */ | |
178 | struct fake_descriptor64 kernel_tss_desc64 = { | |
179 | FAKE_UBER64(&master_ktss64), | |
180 | sizeof(struct x86_64_tss)-1, | |
181 | 0, | |
182 | ACC_P|ACC_PL_K|ACC_TSS, | |
183 | 0 | |
184 | }; | |
185 | ||
186 | void | |
187 | cpu_desc_init( | |
188 | cpu_data_t *cdp, | |
189 | boolean_t is_boot_cpu) | |
190 | { | |
191 | cpu_desc_table_t *cdt = cdp->cpu_desc_tablep; | |
192 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; | |
193 | ||
194 | if (is_boot_cpu) { | |
195 | /* | |
196 | * Master CPU uses the tables built at boot time. | |
197 | * Just set the index pointers to the high shared-mapping space. | |
198 | * Note that the sysenter stack uses empty space above the ktss | |
199 | * in the HIGH_FIXED_KTSS page. In this case we don't map the | |
200 | * the real master_sstk in low memory. | |
201 | */ | |
202 | cdi->cdi_ktss = (struct i386_tss *) | |
203 | pmap_index_to_virt(HIGH_FIXED_KTSS) ; | |
204 | cdi->cdi_sstk = (vm_offset_t) (cdi->cdi_ktss + 1) + | |
205 | (vm_offset_t) &master_sstk.top - | |
206 | (vm_offset_t) &master_sstk; | |
207 | #if MACH_KDB | |
208 | cdi->cdi_dbtss = (struct i386_tss *) | |
209 | pmap_index_to_virt(HIGH_FIXED_DBTSS); | |
210 | #endif /* MACH_KDB */ | |
211 | cdi->cdi_gdt = (struct fake_descriptor *) | |
212 | pmap_index_to_virt(HIGH_FIXED_GDT); | |
213 | cdi->cdi_idt = (struct fake_descriptor *) | |
214 | pmap_index_to_virt(HIGH_FIXED_IDT); | |
215 | cdi->cdi_ldt = (struct fake_descriptor *) | |
216 | pmap_index_to_virt(HIGH_FIXED_LDT_BEGIN); | |
217 | } else { | |
218 | ||
219 | vm_offset_t cpu_hi_desc; | |
220 | ||
221 | cpu_hi_desc = pmap_cpu_high_shared_remap(cdp->cpu_number, | |
222 | HIGH_CPU_DESC, | |
223 | (vm_offset_t) cdt, 1); | |
224 | ||
225 | /* | |
226 | * Per-cpu GDT, IDT, LDT, KTSS descriptors are allocated in one | |
227 | * block (cpu_desc_table) and double-mapped into high shared space | |
228 | * in one page window. | |
229 | * Also, a transient stack for the fast sysenter path. The top of | |
230 | * which is set at context switch time to point to the PCB using | |
231 | * the high address. | |
232 | */ | |
233 | cdi->cdi_gdt = (struct fake_descriptor *) (cpu_hi_desc + | |
234 | offsetof(cpu_desc_table_t, gdt[0])); | |
235 | cdi->cdi_idt = (struct fake_descriptor *) (cpu_hi_desc + | |
236 | offsetof(cpu_desc_table_t, idt[0])); | |
237 | cdi->cdi_ktss = (struct i386_tss *) (cpu_hi_desc + | |
238 | offsetof(cpu_desc_table_t, ktss)); | |
239 | cdi->cdi_sstk = cpu_hi_desc + | |
240 | offsetof(cpu_desc_table_t, sstk.top); | |
241 | ||
242 | /* | |
243 | * LDT descriptors are mapped into a seperate area. | |
244 | */ | |
245 | cdi->cdi_ldt = (struct fake_descriptor *) | |
246 | pmap_cpu_high_shared_remap( | |
247 | cdp->cpu_number, | |
248 | HIGH_CPU_LDT_BEGIN, | |
249 | (vm_offset_t) cdp->cpu_ldtp, | |
250 | HIGH_CPU_LDT_END - HIGH_CPU_LDT_BEGIN + 1); | |
251 | ||
252 | /* | |
253 | * Copy the tables | |
254 | */ | |
255 | bcopy((char *)master_idt, | |
256 | (char *)cdt->idt, | |
257 | sizeof(master_idt)); | |
258 | bcopy((char *)master_gdt, | |
259 | (char *)cdt->gdt, | |
260 | sizeof(master_gdt)); | |
261 | bcopy((char *)master_ldt, | |
262 | (char *)cdp->cpu_ldtp, | |
263 | sizeof(master_ldt)); | |
264 | bzero((char *)&cdt->ktss, | |
265 | sizeof(struct i386_tss)); | |
266 | ||
267 | #if MACH_KDB | |
268 | cdi->cdi_dbtss = (struct i386_tss *) (cpu_hi_desc + | |
269 | offsetof(cpu_desc_table_t, dbtss)); | |
270 | bcopy((char *)&master_dbtss, | |
271 | (char *)&cdt->dbtss, | |
272 | sizeof(struct i386_tss)); | |
273 | #endif /* MACH_KDB */ | |
274 | ||
275 | /* | |
276 | * Fix up the entries in the GDT to point to | |
277 | * this LDT and this TSS. | |
278 | */ | |
279 | cdt->gdt[sel_idx(KERNEL_LDT)] = ldt_desc_pattern; | |
280 | cdt->gdt[sel_idx(KERNEL_LDT)].offset = (vm_offset_t) cdi->cdi_ldt; | |
281 | fix_desc(&cdt->gdt[sel_idx(KERNEL_LDT)], 1); | |
282 | ||
283 | cdt->gdt[sel_idx(USER_LDT)] = ldt_desc_pattern; | |
284 | cdt->gdt[sel_idx(USER_LDT)].offset = (vm_offset_t) cdi->cdi_ldt; | |
285 | fix_desc(&cdt->gdt[sel_idx(USER_LDT)], 1); | |
286 | ||
287 | cdt->gdt[sel_idx(KERNEL_TSS)] = tss_desc_pattern; | |
288 | cdt->gdt[sel_idx(KERNEL_TSS)].offset = (vm_offset_t) cdi->cdi_ktss; | |
289 | fix_desc(&cdt->gdt[sel_idx(KERNEL_TSS)], 1); | |
290 | ||
291 | cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern; | |
292 | cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp; | |
293 | fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1); | |
294 | ||
295 | #if MACH_KDB | |
296 | cdt->gdt[sel_idx(DEBUG_TSS)] = tss_desc_pattern; | |
297 | cdt->gdt[sel_idx(DEBUG_TSS)].offset = (vm_offset_t) cdi->cdi_dbtss; | |
298 | fix_desc(&cdt->gdt[sel_idx(DEBUG_TSS)], 1); | |
299 | ||
300 | cdt->dbtss.esp0 = (int)(db_task_stack_store + | |
301 | (INTSTACK_SIZE * (cdp->cpu_number)) - sizeof (natural_t)); | |
302 | cdt->dbtss.esp = cdt->dbtss.esp0; | |
303 | cdt->dbtss.eip = (int)&db_task_start; | |
304 | #endif /* MACH_KDB */ | |
305 | ||
306 | cdt->ktss.ss0 = KERNEL_DS; | |
307 | cdt->ktss.io_bit_map_offset = 0x0FFF; /* no IO bitmap */ | |
308 | ||
309 | cpu_userwindow_init(cdp->cpu_number); | |
310 | cpu_physwindow_init(cdp->cpu_number); | |
311 | ||
312 | } | |
313 | ||
314 | } | |
315 | ||
316 | void | |
317 | cpu_desc_init64( | |
318 | cpu_data_t *cdp, | |
319 | boolean_t is_boot_cpu) | |
320 | { | |
321 | cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) | |
322 | cdp->cpu_desc_tablep; | |
323 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; | |
324 | ||
325 | if (is_boot_cpu) { | |
326 | /* | |
327 | * Master CPU uses the tables built at boot time. | |
328 | * Just set the index pointers to the low memory space. | |
329 | * Note that in 64-bit mode these are addressed in the | |
330 | * double-mapped window (uber-space). | |
331 | */ | |
332 | cdi->cdi_ktss = (struct i386_tss *) &master_ktss64; | |
333 | cdi->cdi_sstk = (vm_offset_t) &master_sstk.top; | |
334 | cdi->cdi_gdt = master_gdt; | |
335 | cdi->cdi_idt = (struct fake_descriptor *) &master_idt64; | |
336 | cdi->cdi_ldt = (struct fake_descriptor *) &master_ldt; | |
337 | ||
338 | /* Replace the expanded LDT and TSS slots in the GDT: */ | |
339 | *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] = | |
340 | kernel_ldt_desc64; | |
341 | *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] = | |
342 | kernel_tss_desc64; | |
343 | ||
344 | /* | |
345 | * Fix up the expanded descriptors for 64-bit. | |
346 | */ | |
347 | fix_desc64((void *) &master_idt64, IDTSZ); | |
348 | fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1); | |
349 | fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1); | |
350 | ||
351 | /* | |
352 | * Set the double-fault stack as IST1 in the 64-bit TSS | |
353 | */ | |
354 | master_ktss64.ist1 = UBER64(df_task_stack_end); | |
355 | ||
356 | } else { | |
357 | /* | |
358 | * Per-cpu GDT, IDT, KTSS descriptors are allocated in kernel | |
359 | * heap (cpu_desc_table) and double-mapped in uber-space | |
360 | * (over 4GB). | |
361 | * LDT descriptors are mapped into a separate area. | |
362 | */ | |
363 | cdi->cdi_gdt = (struct fake_descriptor *)cdt->gdt; | |
364 | cdi->cdi_idt = (struct fake_descriptor *)cdt->idt; | |
365 | cdi->cdi_ktss = (struct i386_tss *)&cdt->ktss; | |
366 | cdi->cdi_sstk = (vm_offset_t)&cdt->sstk.top; | |
367 | cdi->cdi_ldt = cdp->cpu_ldtp; | |
368 | ||
369 | /* | |
370 | * Copy the tables | |
371 | */ | |
372 | bcopy((char *)master_idt64, | |
373 | (char *)cdt->idt, | |
374 | sizeof(master_idt64)); | |
375 | bcopy((char *)master_gdt, | |
376 | (char *)cdt->gdt, | |
377 | sizeof(master_gdt)); | |
378 | bcopy((char *)master_ldt, | |
379 | (char *)cdp->cpu_ldtp, | |
380 | sizeof(master_ldt)); | |
381 | bcopy((char *)&master_ktss64, | |
382 | (char *)&cdt->ktss, | |
383 | sizeof(struct x86_64_tss)); | |
384 | ||
385 | /* | |
386 | * Fix up the entries in the GDT to point to | |
387 | * this LDT and this TSS. | |
388 | */ | |
389 | kernel_ldt_desc64.offset[0] = (vm_offset_t) cdi->cdi_ldt; | |
390 | *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] = | |
391 | kernel_ldt_desc64; | |
392 | fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1); | |
393 | ||
394 | kernel_ldt_desc64.offset[0] = (vm_offset_t) cdi->cdi_ldt; | |
395 | *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] = | |
396 | kernel_ldt_desc64; | |
397 | fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1); | |
398 | ||
399 | kernel_tss_desc64.offset[0] = (vm_offset_t) cdi->cdi_ktss; | |
400 | *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] = | |
401 | kernel_tss_desc64; | |
402 | fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1); | |
403 | ||
404 | cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern; | |
405 | cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp; | |
406 | fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1); | |
407 | ||
408 | /* Set double-fault stack as IST1 */ | |
409 | cdt->ktss.ist1 = UBER64((unsigned long)cdt->dfstk | |
410 | + sizeof(cdt->dfstk)); | |
411 | ||
412 | /* | |
413 | * Allocate copyio windows. | |
414 | */ | |
415 | cpu_userwindow_init(cdp->cpu_number); | |
416 | cpu_physwindow_init(cdp->cpu_number); | |
417 | } | |
418 | ||
419 | /* Require that the top of the sysenter stack is 16-byte aligned */ | |
420 | if ((cdi->cdi_sstk % 16) != 0) | |
421 | panic("cpu_desc_init64() sysenter stack not 16-byte aligned"); | |
422 | } | |
423 | ||
424 | /* | |
425 | * Set MSRs for sysenter/sysexit for 64-bit. | |
426 | */ | |
427 | static void | |
428 | fast_syscall_init64(void) | |
429 | { | |
430 | wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS); | |
431 | wrmsr64(MSR_IA32_SYSENTER_EIP, UBER64(hi64_sysenter)); | |
432 | wrmsr64(MSR_IA32_SYSENTER_ESP, UBER64(current_sstk())); | |
433 | ||
434 | /* Enable syscall/sysret */ | |
435 | wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE); | |
436 | ||
437 | /* | |
438 | * MSRs for 64-bit syscall/sysret | |
439 | * Note USER_CS because sysret uses this + 16 when returning to | |
440 | * 64-bit code. | |
441 | */ | |
442 | wrmsr64(MSR_IA32_LSTAR, UBER64(hi64_syscall)); | |
443 | wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) | | |
444 | (((uint64_t)KERNEL64_CS) << 32)); | |
445 | /* | |
446 | * Emulate eflags cleared by sysenter but note that | |
447 | * we also clear the trace trap to avoid the complications | |
448 | * of single-stepping into a syscall. The nested task bit | |
449 | * is also cleared to avoid a spurious "task switch" | |
450 | * should we choose to return via an IRET. | |
451 | */ | |
452 | wrmsr64(MSR_IA32_FMASK, EFL_DF|EFL_IF|EFL_TF|EFL_NT); | |
453 | ||
454 | /* | |
455 | * Set the Kernel GS base MSR to point to per-cpu data in uber-space. | |
456 | * The uber-space handler (hi64_syscall) uses the swapgs instruction. | |
457 | */ | |
458 | wrmsr64(MSR_IA32_KERNEL_GS_BASE, | |
459 | UBER64((unsigned long)current_cpu_datap())); | |
460 | ||
461 | #if ONLY_SAFE_FOR_LINDA_SERIAL | |
462 | kprintf("fast_syscall_init64() KERNEL_GS_BASE=0x%016llx\n", | |
463 | rdmsr64(MSR_IA32_KERNEL_GS_BASE)); | |
464 | #endif | |
465 | } | |
466 | ||
467 | /* | |
468 | * Set MSRs for sysenter/sysexit | |
469 | */ | |
470 | static void | |
471 | fast_syscall_init(void) | |
472 | { | |
473 | wrmsr(MSR_IA32_SYSENTER_CS, SYSENTER_CS, 0); | |
474 | wrmsr(MSR_IA32_SYSENTER_EIP, HI_TEXT(hi_sysenter), 0); | |
475 | wrmsr(MSR_IA32_SYSENTER_ESP, current_sstk(), 0); | |
476 | } | |
477 | ||
478 | cpu_data_t * | |
479 | cpu_data_alloc(boolean_t is_boot_cpu) | |
480 | { | |
481 | int ret; | |
482 | cpu_data_t *cdp; | |
483 | ||
484 | if (is_boot_cpu) { | |
485 | assert(real_ncpus == 1); | |
486 | simple_lock_init(&cpu_lock, 0); | |
487 | cdp = &cpu_data_master; | |
488 | if (cdp->cpu_processor == NULL) { | |
489 | cdp->cpu_processor = cpu_processor_alloc(TRUE); | |
490 | cdp->cpu_pmap = pmap_cpu_alloc(TRUE); | |
491 | cdp->cpu_this = cdp; | |
492 | cdp->cpu_is64bit = FALSE; | |
493 | cdp->cpu_int_stack_top = (vm_offset_t) low_eintstack; | |
494 | cpu_desc_init(cdp, TRUE); | |
495 | fast_syscall_init(); | |
496 | } | |
497 | return cdp; | |
498 | } | |
499 | ||
500 | /* Check count before making allocations */ | |
501 | if (real_ncpus >= max_ncpus) | |
502 | return NULL; | |
503 | ||
504 | /* | |
505 | * Allocate per-cpu data: | |
506 | */ | |
507 | ret = kmem_alloc(kernel_map, | |
508 | (vm_offset_t *) &cdp, sizeof(cpu_data_t)); | |
509 | if (ret != KERN_SUCCESS) { | |
510 | printf("cpu_data_alloc() failed, ret=%d\n", ret); | |
511 | goto abort; | |
512 | } | |
513 | bzero((void*) cdp, sizeof(cpu_data_t)); | |
514 | cdp->cpu_this = cdp; | |
515 | ||
516 | /* Propagate mode */ | |
517 | cdp->cpu_is64bit = cpu_mode_is64bit(); | |
518 | ||
519 | /* | |
520 | * Allocate interrupt stack: | |
521 | */ | |
522 | ret = kmem_alloc(kernel_map, | |
523 | (vm_offset_t *) &cdp->cpu_int_stack_top, | |
524 | INTSTACK_SIZE); | |
525 | if (ret != KERN_SUCCESS) { | |
526 | printf("cpu_data_alloc() int stack failed, ret=%d\n", ret); | |
527 | goto abort; | |
528 | } | |
529 | bzero((void*) cdp->cpu_int_stack_top, INTSTACK_SIZE); | |
530 | cdp->cpu_int_stack_top += INTSTACK_SIZE; | |
531 | ||
532 | /* | |
533 | * Allocate descriptor table: | |
534 | * Size depends on cpu mode. | |
535 | */ | |
536 | ret = kmem_alloc(kernel_map, | |
537 | (vm_offset_t *) &cdp->cpu_desc_tablep, | |
538 | cdp->cpu_is64bit ? sizeof(cpu_desc_table64_t) | |
539 | : sizeof(cpu_desc_table_t)); | |
540 | if (ret != KERN_SUCCESS) { | |
541 | printf("cpu_data_alloc() desc_table failed, ret=%d\n", ret); | |
542 | goto abort; | |
543 | } | |
544 | ||
545 | /* | |
546 | * Allocate LDT | |
547 | */ | |
548 | ret = kmem_alloc(kernel_map, | |
549 | (vm_offset_t *) &cdp->cpu_ldtp, | |
550 | sizeof(struct real_descriptor) * LDTSZ); | |
551 | if (ret != KERN_SUCCESS) { | |
552 | printf("cpu_data_alloc() ldt failed, ret=%d\n", ret); | |
553 | goto abort; | |
554 | } | |
555 | ||
556 | /* Machine-check shadow register allocation. */ | |
557 | mca_cpu_alloc(cdp); | |
558 | ||
559 | simple_lock(&cpu_lock); | |
560 | if (real_ncpus >= max_ncpus) { | |
561 | simple_unlock(&cpu_lock); | |
562 | goto abort; | |
563 | } | |
564 | cpu_data_ptr[real_ncpus] = cdp; | |
565 | cdp->cpu_number = real_ncpus; | |
566 | real_ncpus++; | |
567 | simple_unlock(&cpu_lock); | |
568 | ||
569 | kprintf("cpu_data_alloc(%d) %p desc_table: %p " | |
570 | "ldt: %p " | |
571 | "int_stack: 0x%x-0x%x\n", | |
572 | cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp, | |
573 | cdp->cpu_int_stack_top - INTSTACK_SIZE, cdp->cpu_int_stack_top); | |
574 | ||
575 | return cdp; | |
576 | ||
577 | abort: | |
578 | if (cdp) { | |
579 | if (cdp->cpu_desc_tablep) | |
580 | kfree((void *) cdp->cpu_desc_tablep, | |
581 | sizeof(*cdp->cpu_desc_tablep)); | |
582 | if (cdp->cpu_int_stack_top) | |
583 | kfree((void *) (cdp->cpu_int_stack_top - INTSTACK_SIZE), | |
584 | INTSTACK_SIZE); | |
585 | kfree((void *) cdp, sizeof(*cdp)); | |
586 | } | |
587 | return NULL; | |
588 | } | |
589 | ||
590 | boolean_t | |
591 | valid_user_segment_selectors(uint16_t cs, | |
592 | uint16_t ss, | |
593 | uint16_t ds, | |
594 | uint16_t es, | |
595 | uint16_t fs, | |
596 | uint16_t gs) | |
597 | { | |
598 | return valid_user_code_selector(cs) && | |
599 | valid_user_stack_selector(ss) && | |
600 | valid_user_data_selector(ds) && | |
601 | valid_user_data_selector(es) && | |
602 | valid_user_data_selector(fs) && | |
603 | valid_user_data_selector(gs); | |
604 | } | |
605 | ||
606 | ||
607 | static vm_offset_t user_window_base = 0; | |
608 | ||
609 | void | |
610 | cpu_userwindow_init(int cpu) | |
611 | { | |
612 | cpu_data_t *cdp = cpu_data_ptr[cpu]; | |
613 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; | |
614 | vm_offset_t user_window; | |
615 | vm_offset_t vaddr; | |
616 | int num_cpus; | |
617 | ||
618 | num_cpus = ml_get_max_cpus(); | |
619 | ||
620 | if (cpu >= num_cpus) | |
621 | panic("cpu_userwindow_init: cpu > num_cpus"); | |
622 | ||
623 | if (user_window_base == 0) { | |
624 | ||
625 | if (vm_allocate(kernel_map, &vaddr, | |
626 | (NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE, | |
627 | VM_FLAGS_ANYWHERE) != KERN_SUCCESS) | |
628 | panic("cpu_userwindow_init: " | |
629 | "couldn't allocate user map window"); | |
630 | ||
631 | /* | |
632 | * window must start on a page table boundary | |
633 | * in the virtual address space | |
634 | */ | |
635 | user_window_base = (vaddr + (NBPDE - 1)) & ~(NBPDE - 1); | |
636 | ||
637 | /* | |
638 | * get rid of any allocation leading up to our | |
639 | * starting boundary | |
640 | */ | |
641 | vm_deallocate(kernel_map, vaddr, user_window_base - vaddr); | |
642 | ||
643 | /* | |
644 | * get rid of tail that we don't need | |
645 | */ | |
646 | user_window = user_window_base + | |
647 | (NBPDE * NCOPY_WINDOWS * num_cpus); | |
648 | ||
649 | vm_deallocate(kernel_map, user_window, | |
650 | (vaddr + | |
651 | ((NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE)) - | |
652 | user_window); | |
653 | } | |
654 | ||
655 | user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE); | |
656 | ||
657 | cdp->cpu_copywindow_base = user_window; | |
658 | cdp->cpu_copywindow_pdp = pmap_pde(kernel_pmap, user_window); | |
659 | ||
660 | cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)] = userwindow_desc_pattern; | |
661 | cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)].offset = user_window; | |
662 | ||
663 | fix_desc(&cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)], 1); | |
664 | ||
665 | } | |
666 | ||
667 | void | |
668 | cpu_physwindow_init(int cpu) | |
669 | { | |
670 | cpu_data_t *cdp = cpu_data_ptr[cpu]; | |
671 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; | |
672 | vm_offset_t phys_window; | |
673 | ||
674 | if (vm_allocate(kernel_map, &phys_window, | |
675 | PAGE_SIZE, VM_FLAGS_ANYWHERE) | |
676 | != KERN_SUCCESS) | |
677 | panic("cpu_physwindow_init: couldn't allocate phys map window"); | |
678 | ||
679 | /* | |
680 | * make sure the page that encompasses the | |
681 | * pte pointer we're interested in actually | |
682 | * exists in the page table | |
683 | */ | |
684 | pmap_expand(kernel_pmap, phys_window); | |
685 | ||
686 | cdp->cpu_physwindow_base = phys_window; | |
687 | cdp->cpu_physwindow_ptep = vtopte(phys_window); | |
688 | ||
689 | cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)] = physwindow_desc_pattern; | |
690 | cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)].offset = phys_window; | |
691 | ||
692 | fix_desc(&cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)], 1); | |
693 | } | |
694 | ||
695 | ||
696 | typedef struct { | |
697 | uint16_t length; | |
698 | uint32_t offset[2]; | |
699 | } __attribute__((__packed__)) table_descriptor64_t; | |
700 | ||
701 | extern table_descriptor64_t gdtptr64; | |
702 | extern table_descriptor64_t idtptr64; | |
703 | /* | |
704 | * Load the segment descriptor tables for the current processor. | |
705 | */ | |
706 | void | |
707 | cpu_desc_load64(cpu_data_t *cdp) | |
708 | { | |
709 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; | |
710 | ||
711 | /* | |
712 | * Load up the new descriptors etc | |
713 | * ml_load_desc64() expects these global pseudo-descriptors: | |
714 | * gdtptr64 -> master_gdt | |
715 | * idtptr64 -> master_idt64 | |
716 | * These are 10-byte descriptors with 64-bit addresses into | |
717 | * uber-space. | |
718 | */ | |
719 | gdtptr64.length = sizeof(master_gdt) - 1; | |
720 | gdtptr64.offset[0] = (uint32_t) cdi->cdi_gdt; | |
721 | gdtptr64.offset[1] = KERNEL_UBER_BASE_HI32; | |
722 | idtptr64.length = sizeof(master_idt64) - 1; | |
723 | idtptr64.offset[0] = (uint32_t) cdi->cdi_idt; | |
724 | idtptr64.offset[1] = KERNEL_UBER_BASE_HI32; | |
725 | ||
726 | /* Make sure busy bit is cleared in the TSS */ | |
727 | gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY; | |
728 | ||
729 | ml_load_desc64(); | |
730 | ||
731 | #if ONLY_SAFE_FOR_LINDA_SERIAL | |
732 | kprintf("64-bit descriptor tables loaded\n"); | |
733 | #endif | |
734 | } | |
735 | ||
736 | void | |
737 | cpu_mode_init(cpu_data_t *cdp) | |
738 | { | |
739 | if (cpu_mode_is64bit()) { | |
740 | cpu_IA32e_enable(cdp); | |
741 | cpu_desc_load64(cdp); | |
742 | fast_syscall_init64(); | |
743 | } else { | |
744 | fast_syscall_init(); | |
745 | } | |
746 | ||
747 | /* Call for per-cpu pmap mode initialization */ | |
748 | pmap_cpu_init(); | |
749 | ||
750 | } | |
751 |