]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995 | |
30 | * The Regents of the University of California. All rights reserved. | |
31 | * | |
32 | * Redistribution and use in source and binary forms, with or without | |
33 | * modification, are permitted provided that the following conditions | |
34 | * are met: | |
35 | * 1. Redistributions of source code must retain the above copyright | |
36 | * notice, this list of conditions and the following disclaimer. | |
37 | * 2. Redistributions in binary form must reproduce the above copyright | |
38 | * notice, this list of conditions and the following disclaimer in the | |
39 | * documentation and/or other materials provided with the distribution. | |
40 | * 3. All advertising materials mentioning features or use of this software | |
41 | * must display the following acknowledgement: | |
42 | * This product includes software developed by the University of | |
43 | * California, Berkeley and its contributors. | |
44 | * 4. Neither the name of the University nor the names of its contributors | |
45 | * may be used to endorse or promote products derived from this software | |
46 | * without specific prior written permission. | |
47 | * | |
48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
58 | * SUCH DAMAGE. | |
59 | * | |
60 | * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95 | |
61 | * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.16 2001/08/22 00:59:12 silby Exp $ | |
62 | */ | |
63 | /* | |
64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce | |
65 | * support for mandatory and extensible security protections. This notice | |
66 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
67 | * Version 2.0. | |
68 | */ | |
69 | ||
70 | #include <sys/param.h> | |
71 | #include <sys/systm.h> | |
72 | #include <sys/kernel.h> | |
73 | #include <sys/sysctl.h> | |
74 | #include <sys/malloc.h> | |
75 | #include <sys/mbuf.h> | |
76 | #include <sys/proc.h> /* for proc0 declaration */ | |
77 | #include <sys/protosw.h> | |
78 | #include <sys/socket.h> | |
79 | #include <sys/socketvar.h> | |
80 | #include <sys/syslog.h> | |
81 | ||
82 | #include <kern/cpu_number.h> /* before tcp_seq.h, for tcp_random18() */ | |
83 | ||
84 | #include <net/if.h> | |
85 | #include <net/if_types.h> | |
86 | #include <net/route.h> | |
87 | ||
88 | #include <netinet/in.h> | |
89 | #include <netinet/in_systm.h> | |
90 | #include <netinet/ip.h> | |
91 | #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */ | |
92 | #include <netinet/in_var.h> | |
93 | #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ | |
94 | #include <netinet/in_pcb.h> | |
95 | #include <netinet/ip_var.h> | |
96 | #if INET6 | |
97 | #include <netinet/ip6.h> | |
98 | #include <netinet/icmp6.h> | |
99 | #include <netinet6/nd6.h> | |
100 | #include <netinet6/ip6_var.h> | |
101 | #include <netinet6/in6_pcb.h> | |
102 | #endif | |
103 | #include <netinet/tcp.h> | |
104 | #include <netinet/tcp_fsm.h> | |
105 | #include <netinet/tcp_seq.h> | |
106 | #include <netinet/tcp_timer.h> | |
107 | #include <netinet/tcp_var.h> | |
108 | #if INET6 | |
109 | #include <netinet6/tcp6_var.h> | |
110 | #endif | |
111 | #include <netinet/tcpip.h> | |
112 | #if TCPDEBUG | |
113 | #include <netinet/tcp_debug.h> | |
114 | u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */ | |
115 | struct tcphdr tcp_savetcp; | |
116 | #endif /* TCPDEBUG */ | |
117 | ||
118 | #if IPSEC | |
119 | #include <netinet6/ipsec.h> | |
120 | #if INET6 | |
121 | #include <netinet6/ipsec6.h> | |
122 | #endif | |
123 | #include <netkey/key.h> | |
124 | #endif /*IPSEC*/ | |
125 | ||
126 | #if CONFIG_MACF_NET || CONFIG_MACF_SOCKET | |
127 | #include <security/mac_framework.h> | |
128 | #endif /* CONFIG_MACF_NET || CONFIG_MACF_SOCKET */ | |
129 | ||
130 | #include <sys/kdebug.h> | |
131 | ||
132 | #ifndef __APPLE__ | |
133 | MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry"); | |
134 | #endif | |
135 | ||
136 | #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETTCP, 0) | |
137 | #define DBG_LAYER_END NETDBG_CODE(DBG_NETTCP, 2) | |
138 | #define DBG_FNC_TCP_INPUT NETDBG_CODE(DBG_NETTCP, (3 << 8)) | |
139 | #define DBG_FNC_TCP_NEWCONN NETDBG_CODE(DBG_NETTCP, (7 << 8)) | |
140 | ||
141 | static int tcprexmtthresh = 2; | |
142 | tcp_cc tcp_ccgen; | |
143 | ||
144 | #if IPSEC | |
145 | extern int ipsec_bypass; | |
146 | #endif | |
147 | ||
148 | struct tcpstat tcpstat; | |
149 | ||
150 | static int log_in_vain = 0; | |
151 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW, | |
152 | &log_in_vain, 0, "Log all incoming TCP connections"); | |
153 | ||
154 | static int blackhole = 0; | |
155 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW, | |
156 | &blackhole, 0, "Do not send RST when dropping refused connections"); | |
157 | ||
158 | int tcp_delack_enabled = 3; | |
159 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW, | |
160 | &tcp_delack_enabled, 0, | |
161 | "Delay ACK to try and piggyback it onto a data packet"); | |
162 | ||
163 | int tcp_lq_overflow = 1; | |
164 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_lq_overflow, CTLFLAG_RW, | |
165 | &tcp_lq_overflow, 0, | |
166 | "Listen Queue Overflow"); | |
167 | ||
168 | #if TCP_DROP_SYNFIN | |
169 | static int drop_synfin = 1; | |
170 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW, | |
171 | &drop_synfin, 0, "Drop TCP packets with SYN+FIN set"); | |
172 | #endif | |
173 | ||
174 | SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW|CTLFLAG_LOCKED, 0, | |
175 | "TCP Segment Reassembly Queue"); | |
176 | ||
177 | __private_extern__ int tcp_reass_maxseg = 0; | |
178 | SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RW, | |
179 | &tcp_reass_maxseg, 0, | |
180 | "Global maximum number of TCP Segments in Reassembly Queue"); | |
181 | ||
182 | __private_extern__ int tcp_reass_qsize = 0; | |
183 | SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD, | |
184 | &tcp_reass_qsize, 0, | |
185 | "Global number of TCP Segments currently in Reassembly Queue"); | |
186 | ||
187 | static int tcp_reass_overflows = 0; | |
188 | SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD, | |
189 | &tcp_reass_overflows, 0, | |
190 | "Global number of TCP Segment Reassembly Queue Overflows"); | |
191 | ||
192 | ||
193 | __private_extern__ int slowlink_wsize = 8192; | |
194 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, slowlink_wsize, CTLFLAG_RW, | |
195 | &slowlink_wsize, 0, "Maximum advertised window size for slowlink"); | |
196 | ||
197 | static int maxseg_unacked = 8; | |
198 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, maxseg_unacked, CTLFLAG_RW, | |
199 | &maxseg_unacked, 0, "Maximum number of outstanding segments left unacked"); | |
200 | ||
201 | static int tcp_do_rfc3465 = 1; | |
202 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW, | |
203 | &tcp_do_rfc3465, 0, ""); | |
204 | extern int tcp_TCPTV_MIN; | |
205 | ||
206 | u_long tcp_now; | |
207 | ||
208 | struct inpcbhead tcb; | |
209 | #define tcb6 tcb /* for KAME src sync over BSD*'s */ | |
210 | struct inpcbinfo tcbinfo; | |
211 | ||
212 | static void tcp_dooptions(struct tcpcb *, | |
213 | u_char *, int, struct tcphdr *, struct tcpopt *); | |
214 | static void tcp_pulloutofband(struct socket *, | |
215 | struct tcphdr *, struct mbuf *, int); | |
216 | static int tcp_reass(struct tcpcb *, struct tcphdr *, int *, | |
217 | struct mbuf *); | |
218 | static void tcp_xmit_timer(struct tcpcb *, int); | |
219 | static inline unsigned int tcp_maxmtu(struct rtentry *); | |
220 | #if INET6 | |
221 | static inline unsigned int tcp_maxmtu6(struct rtentry *); | |
222 | #endif | |
223 | ||
224 | /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */ | |
225 | #if INET6 | |
226 | #define ND6_HINT(tp) \ | |
227 | do { \ | |
228 | if ((tp) && (tp)->t_inpcb && \ | |
229 | ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \ | |
230 | (tp)->t_inpcb->in6p_route.ro_rt) \ | |
231 | nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \ | |
232 | } while (0) | |
233 | #else | |
234 | #define ND6_HINT(tp) | |
235 | #endif | |
236 | ||
237 | extern u_long *delack_bitmask; | |
238 | ||
239 | extern void add_to_time_wait(struct tcpcb *); | |
240 | extern void postevent(struct socket *, struct sockbuf *, int); | |
241 | ||
242 | extern void ipfwsyslog( int level, const char *format,...); | |
243 | extern int ChkAddressOK( __uint32_t dstaddr, __uint32_t srcaddr ); | |
244 | extern int fw_verbose; | |
245 | __private_extern__ int tcp_sockthreshold; | |
246 | __private_extern__ int tcp_win_scale; | |
247 | ||
248 | #if IPFIREWALL | |
249 | #define log_in_vain_log( a ) { \ | |
250 | if ( (log_in_vain == 3 ) && (fw_verbose == 2)) { /* Apple logging, log to ipfw.log */ \ | |
251 | ipfwsyslog a ; \ | |
252 | } \ | |
253 | else log a ; \ | |
254 | } | |
255 | #else | |
256 | #define log_in_vain_log( a ) { log a; } | |
257 | #endif | |
258 | ||
259 | ||
260 | /* | |
261 | * Indicate whether this ack should be delayed. | |
262 | * We can delay the ack if: | |
263 | * - delayed acks are enabled (set to 1) and | |
264 | * - our last ack wasn't a 0-sized window. We never want to delay | |
265 | * the ack that opens up a 0-sized window. | |
266 | * - delayed acks are enabled (set to 2, "more compatible") and | |
267 | * - our last ack wasn't a 0-sized window. | |
268 | * - if the peer hasn't sent us a TH_PUSH data packet (this solves 3649245) | |
269 | * - the peer hasn't sent us a TH_PUSH data packet, if he did, take this as a clue that we | |
270 | * need to ACK with no delay. This helps higher level protocols who won't send | |
271 | * us more data even if the window is open because their last "segment" hasn't been ACKed | |
272 | * - delayed acks are enabled (set to 3, "streaming detection") and | |
273 | * - if we receive more than "maxseg_unacked" full packets per second on this socket | |
274 | * - if we don't have more than "maxseg_unacked" delayed so far | |
275 | * - if those criteria aren't met, acts like "2". Allowing faster acking while browsing for example. | |
276 | * | |
277 | */ | |
278 | #define DELAY_ACK(tp) \ | |
279 | (((tcp_delack_enabled == 1) && ((tp->t_flags & TF_RXWIN0SENT) == 0)) || \ | |
280 | (((tcp_delack_enabled == 2) && (tp->t_flags & TF_RXWIN0SENT) == 0) && \ | |
281 | ((thflags & TH_PUSH) == 0) && ((tp->t_flags & TF_DELACK) == 0)) || \ | |
282 | (((tcp_delack_enabled == 3) && (tp->t_flags & TF_RXWIN0SENT) == 0) && \ | |
283 | (tp->t_rcvtime == 0) && ((thflags & TH_PUSH) == 0) && \ | |
284 | (((tp->t_unacksegs == 0)) || \ | |
285 | ((tp->rcv_byps > (maxseg_unacked * tp->t_maxseg)) && (tp->t_unacksegs < maxseg_unacked))))) | |
286 | ||
287 | static int tcp_dropdropablreq(struct socket *head); | |
288 | static void tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th); | |
289 | ||
290 | ||
291 | static int | |
292 | tcp_reass(tp, th, tlenp, m) | |
293 | register struct tcpcb *tp; | |
294 | register struct tcphdr *th; | |
295 | int *tlenp; | |
296 | struct mbuf *m; | |
297 | { | |
298 | struct tseg_qent *q; | |
299 | struct tseg_qent *p = NULL; | |
300 | struct tseg_qent *nq; | |
301 | struct tseg_qent *te = NULL; | |
302 | struct socket *so = tp->t_inpcb->inp_socket; | |
303 | int flags; | |
304 | int dowakeup = 0; | |
305 | ||
306 | /* | |
307 | * Call with th==0 after become established to | |
308 | * force pre-ESTABLISHED data up to user socket. | |
309 | */ | |
310 | if (th == NULL) | |
311 | goto present; | |
312 | ||
313 | /* | |
314 | * Limit the number of segments in the reassembly queue to prevent | |
315 | * holding on to too many segments (and thus running out of mbufs). | |
316 | * Make sure to let the missing segment through which caused this | |
317 | * queue. Always keep one global queue entry spare to be able to | |
318 | * process the missing segment. | |
319 | */ | |
320 | if (th->th_seq != tp->rcv_nxt && | |
321 | tcp_reass_qsize + 1 >= tcp_reass_maxseg) { | |
322 | tcp_reass_overflows++; | |
323 | tcpstat.tcps_rcvmemdrop++; | |
324 | m_freem(m); | |
325 | *tlenp = 0; | |
326 | return (0); | |
327 | } | |
328 | ||
329 | /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */ | |
330 | MALLOC(te, struct tseg_qent *, sizeof (struct tseg_qent), M_TSEGQ, | |
331 | M_NOWAIT); | |
332 | if (te == NULL) { | |
333 | tcpstat.tcps_rcvmemdrop++; | |
334 | m_freem(m); | |
335 | return (0); | |
336 | } | |
337 | tcp_reass_qsize++; | |
338 | ||
339 | /* | |
340 | * Find a segment which begins after this one does. | |
341 | */ | |
342 | LIST_FOREACH(q, &tp->t_segq, tqe_q) { | |
343 | if (SEQ_GT(q->tqe_th->th_seq, th->th_seq)) | |
344 | break; | |
345 | p = q; | |
346 | } | |
347 | ||
348 | /* | |
349 | * If there is a preceding segment, it may provide some of | |
350 | * our data already. If so, drop the data from the incoming | |
351 | * segment. If it provides all of our data, drop us. | |
352 | */ | |
353 | if (p != NULL) { | |
354 | register int i; | |
355 | /* conversion to int (in i) handles seq wraparound */ | |
356 | i = p->tqe_th->th_seq + p->tqe_len - th->th_seq; | |
357 | if (i > 0) { | |
358 | if (i >= *tlenp) { | |
359 | tcpstat.tcps_rcvduppack++; | |
360 | tcpstat.tcps_rcvdupbyte += *tlenp; | |
361 | m_freem(m); | |
362 | FREE(te, M_TSEGQ); | |
363 | tcp_reass_qsize--; | |
364 | /* | |
365 | * Try to present any queued data | |
366 | * at the left window edge to the user. | |
367 | * This is needed after the 3-WHS | |
368 | * completes. | |
369 | */ | |
370 | goto present; /* ??? */ | |
371 | } | |
372 | m_adj(m, i); | |
373 | *tlenp -= i; | |
374 | th->th_seq += i; | |
375 | } | |
376 | } | |
377 | tcpstat.tcps_rcvoopack++; | |
378 | tcpstat.tcps_rcvoobyte += *tlenp; | |
379 | ||
380 | /* | |
381 | * While we overlap succeeding segments trim them or, | |
382 | * if they are completely covered, dequeue them. | |
383 | */ | |
384 | while (q) { | |
385 | register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq; | |
386 | if (i <= 0) | |
387 | break; | |
388 | if (i < q->tqe_len) { | |
389 | q->tqe_th->th_seq += i; | |
390 | q->tqe_len -= i; | |
391 | m_adj(q->tqe_m, i); | |
392 | break; | |
393 | } | |
394 | ||
395 | nq = LIST_NEXT(q, tqe_q); | |
396 | LIST_REMOVE(q, tqe_q); | |
397 | m_freem(q->tqe_m); | |
398 | FREE(q, M_TSEGQ); | |
399 | tcp_reass_qsize--; | |
400 | q = nq; | |
401 | } | |
402 | ||
403 | /* Insert the new segment queue entry into place. */ | |
404 | te->tqe_m = m; | |
405 | te->tqe_th = th; | |
406 | te->tqe_len = *tlenp; | |
407 | ||
408 | if (p == NULL) { | |
409 | LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q); | |
410 | } else { | |
411 | LIST_INSERT_AFTER(p, te, tqe_q); | |
412 | } | |
413 | ||
414 | present: | |
415 | /* | |
416 | * Present data to user, advancing rcv_nxt through | |
417 | * completed sequence space. | |
418 | */ | |
419 | if (!TCPS_HAVEESTABLISHED(tp->t_state)) | |
420 | return (0); | |
421 | q = LIST_FIRST(&tp->t_segq); | |
422 | if (!q || q->tqe_th->th_seq != tp->rcv_nxt) | |
423 | return (0); | |
424 | do { | |
425 | tp->rcv_nxt += q->tqe_len; | |
426 | flags = q->tqe_th->th_flags & TH_FIN; | |
427 | nq = LIST_NEXT(q, tqe_q); | |
428 | LIST_REMOVE(q, tqe_q); | |
429 | if (so->so_state & SS_CANTRCVMORE) | |
430 | m_freem(q->tqe_m); | |
431 | else { | |
432 | if (sbappendstream(&so->so_rcv, q->tqe_m)) | |
433 | dowakeup = 1; | |
434 | } | |
435 | FREE(q, M_TSEGQ); | |
436 | tcp_reass_qsize--; | |
437 | q = nq; | |
438 | } while (q && q->tqe_th->th_seq == tp->rcv_nxt); | |
439 | ND6_HINT(tp); | |
440 | ||
441 | #if INET6 | |
442 | if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { | |
443 | ||
444 | KERNEL_DEBUG(DBG_LAYER_BEG, | |
445 | ((tp->t_inpcb->inp_fport << 16) | tp->t_inpcb->inp_lport), | |
446 | (((tp->t_inpcb->in6p_laddr.s6_addr16[0] & 0xffff) << 16) | | |
447 | (tp->t_inpcb->in6p_faddr.s6_addr16[0] & 0xffff)), | |
448 | 0,0,0); | |
449 | } | |
450 | else | |
451 | #endif | |
452 | { | |
453 | KERNEL_DEBUG(DBG_LAYER_BEG, | |
454 | ((tp->t_inpcb->inp_fport << 16) | tp->t_inpcb->inp_lport), | |
455 | (((tp->t_inpcb->inp_laddr.s_addr & 0xffff) << 16) | | |
456 | (tp->t_inpcb->inp_faddr.s_addr & 0xffff)), | |
457 | 0,0,0); | |
458 | } | |
459 | if (dowakeup) | |
460 | sorwakeup(so); /* done with socket lock held */ | |
461 | return (flags); | |
462 | ||
463 | } | |
464 | ||
465 | /* | |
466 | * Reduce congestion window. | |
467 | */ | |
468 | static void | |
469 | tcp_reduce_congestion_window( | |
470 | struct tcpcb *tp) | |
471 | { | |
472 | u_int win; | |
473 | ||
474 | win = min(tp->snd_wnd, tp->snd_cwnd) / | |
475 | 2 / tp->t_maxseg; | |
476 | if (win < 2) | |
477 | win = 2; | |
478 | tp->snd_ssthresh = win * tp->t_maxseg; | |
479 | ENTER_FASTRECOVERY(tp); | |
480 | tp->snd_recover = tp->snd_max; | |
481 | tp->t_timer[TCPT_REXMT] = 0; | |
482 | tp->t_rtttime = 0; | |
483 | tp->ecn_flags |= TE_SENDCWR; | |
484 | tp->snd_cwnd = tp->snd_ssthresh + | |
485 | tp->t_maxseg * tcprexmtthresh; | |
486 | } | |
487 | ||
488 | ||
489 | /* | |
490 | * TCP input routine, follows pages 65-76 of the | |
491 | * protocol specification dated September, 1981 very closely. | |
492 | */ | |
493 | #if INET6 | |
494 | int | |
495 | tcp6_input(mp, offp) | |
496 | struct mbuf **mp; | |
497 | int *offp; | |
498 | { | |
499 | register struct mbuf *m = *mp; | |
500 | struct in6_ifaddr *ia6; | |
501 | ||
502 | IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), return IPPROTO_DONE); | |
503 | ||
504 | /* | |
505 | * draft-itojun-ipv6-tcp-to-anycast | |
506 | * better place to put this in? | |
507 | */ | |
508 | ia6 = ip6_getdstifaddr(m); | |
509 | if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) { | |
510 | struct ip6_hdr *ip6; | |
511 | ||
512 | ip6 = mtod(m, struct ip6_hdr *); | |
513 | icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, | |
514 | (caddr_t)&ip6->ip6_dst - (caddr_t)ip6); | |
515 | return IPPROTO_DONE; | |
516 | } | |
517 | ||
518 | tcp_input(m, *offp); | |
519 | return IPPROTO_DONE; | |
520 | } | |
521 | #endif | |
522 | ||
523 | void | |
524 | tcp_input(m, off0) | |
525 | struct mbuf *m; | |
526 | int off0; | |
527 | { | |
528 | register struct tcphdr *th; | |
529 | register struct ip *ip = NULL; | |
530 | register struct ipovly *ipov; | |
531 | register struct inpcb *inp; | |
532 | u_char *optp = NULL; | |
533 | int optlen = 0; | |
534 | int len, tlen, off; | |
535 | int drop_hdrlen; | |
536 | register struct tcpcb *tp = 0; | |
537 | register int thflags; | |
538 | struct socket *so = 0; | |
539 | int todrop, acked, ourfinisacked, needoutput = 0; | |
540 | struct in_addr laddr; | |
541 | #if INET6 | |
542 | struct in6_addr laddr6; | |
543 | #endif | |
544 | int dropsocket = 0; | |
545 | int iss = 0; | |
546 | int nosock = 0; | |
547 | u_long tiwin; | |
548 | struct tcpopt to; /* options in this segment */ | |
549 | struct sockaddr_in *next_hop = NULL; | |
550 | #if TCPDEBUG | |
551 | short ostate = 0; | |
552 | #endif | |
553 | struct m_tag *fwd_tag; | |
554 | u_char ip_ecn = IPTOS_ECN_NOTECT; | |
555 | ||
556 | /* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */ | |
557 | fwd_tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_IPFORWARD, NULL); | |
558 | if (fwd_tag != NULL) { | |
559 | struct ip_fwd_tag *ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1); | |
560 | ||
561 | next_hop = ipfwd_tag->next_hop; | |
562 | m_tag_delete(m, fwd_tag); | |
563 | } | |
564 | ||
565 | #if INET6 | |
566 | struct ip6_hdr *ip6 = NULL; | |
567 | int isipv6; | |
568 | #endif /* INET6 */ | |
569 | int rstreason; /* For badport_bandlim accounting purposes */ | |
570 | struct proc *proc0=current_proc(); | |
571 | ||
572 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_START,0,0,0,0,0); | |
573 | ||
574 | #if INET6 | |
575 | isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0; | |
576 | #endif | |
577 | bzero((char *)&to, sizeof(to)); | |
578 | ||
579 | tcpstat.tcps_rcvtotal++; | |
580 | ||
581 | ||
582 | ||
583 | #if INET6 | |
584 | if (isipv6) { | |
585 | /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */ | |
586 | ip6 = mtod(m, struct ip6_hdr *); | |
587 | tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0; | |
588 | if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) { | |
589 | tcpstat.tcps_rcvbadsum++; | |
590 | goto dropnosock; | |
591 | } | |
592 | th = (struct tcphdr *)((caddr_t)ip6 + off0); | |
593 | ||
594 | KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport), | |
595 | (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])), | |
596 | th->th_seq, th->th_ack, th->th_win); | |
597 | /* | |
598 | * Be proactive about unspecified IPv6 address in source. | |
599 | * As we use all-zero to indicate unbounded/unconnected pcb, | |
600 | * unspecified IPv6 address can be used to confuse us. | |
601 | * | |
602 | * Note that packets with unspecified IPv6 destination is | |
603 | * already dropped in ip6_input. | |
604 | */ | |
605 | if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { | |
606 | /* XXX stat */ | |
607 | goto dropnosock; | |
608 | } | |
609 | } else | |
610 | #endif /* INET6 */ | |
611 | { | |
612 | /* | |
613 | * Get IP and TCP header together in first mbuf. | |
614 | * Note: IP leaves IP header in first mbuf. | |
615 | */ | |
616 | if (off0 > sizeof (struct ip)) { | |
617 | ip_stripoptions(m, (struct mbuf *)0); | |
618 | off0 = sizeof(struct ip); | |
619 | if (m->m_pkthdr.csum_flags & CSUM_TCP_SUM16) | |
620 | m->m_pkthdr.csum_flags = 0; /* invalidate hwcksuming */ | |
621 | ||
622 | } | |
623 | if (m->m_len < sizeof (struct tcpiphdr)) { | |
624 | if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) { | |
625 | tcpstat.tcps_rcvshort++; | |
626 | return; | |
627 | } | |
628 | } | |
629 | ip = mtod(m, struct ip *); | |
630 | ipov = (struct ipovly *)ip; | |
631 | th = (struct tcphdr *)((caddr_t)ip + off0); | |
632 | tlen = ip->ip_len; | |
633 | ||
634 | KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport), | |
635 | (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)), | |
636 | th->th_seq, th->th_ack, th->th_win); | |
637 | ||
638 | if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { | |
639 | if (m->m_pkthdr.csum_flags & CSUM_TCP_SUM16) { | |
640 | u_short pseudo; | |
641 | char b[9]; | |
642 | *(uint32_t*)&b[0] = *(uint32_t*)&ipov->ih_x1[0]; | |
643 | *(uint32_t*)&b[4] = *(uint32_t*)&ipov->ih_x1[4]; | |
644 | *(uint8_t*)&b[8] = *(uint8_t*)&ipov->ih_x1[8]; | |
645 | ||
646 | bzero(ipov->ih_x1, sizeof(ipov->ih_x1)); | |
647 | ipov->ih_len = (u_short)tlen; | |
648 | HTONS(ipov->ih_len); | |
649 | pseudo = in_cksum(m, sizeof (struct ip)); | |
650 | ||
651 | *(uint32_t*)&ipov->ih_x1[0] = *(uint32_t*)&b[0]; | |
652 | *(uint32_t*)&ipov->ih_x1[4] = *(uint32_t*)&b[4]; | |
653 | *(uint8_t*)&ipov->ih_x1[8] = *(uint8_t*)&b[8]; | |
654 | ||
655 | th->th_sum = in_addword(pseudo, (m->m_pkthdr.csum_data & 0xFFFF)); | |
656 | } else { | |
657 | if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) | |
658 | th->th_sum = m->m_pkthdr.csum_data; | |
659 | else | |
660 | th->th_sum = in_pseudo(ip->ip_src.s_addr, | |
661 | ip->ip_dst.s_addr, htonl(m->m_pkthdr.csum_data + | |
662 | ip->ip_len + IPPROTO_TCP)); | |
663 | } | |
664 | th->th_sum ^= 0xffff; | |
665 | } else { | |
666 | char b[9]; | |
667 | /* | |
668 | * Checksum extended TCP header and data. | |
669 | */ | |
670 | *(uint32_t*)&b[0] = *(uint32_t*)&ipov->ih_x1[0]; | |
671 | *(uint32_t*)&b[4] = *(uint32_t*)&ipov->ih_x1[4]; | |
672 | *(uint8_t*)&b[8] = *(uint8_t*)&ipov->ih_x1[8]; | |
673 | ||
674 | len = sizeof (struct ip) + tlen; | |
675 | bzero(ipov->ih_x1, sizeof(ipov->ih_x1)); | |
676 | ipov->ih_len = (u_short)tlen; | |
677 | HTONS(ipov->ih_len); | |
678 | th->th_sum = in_cksum(m, len); | |
679 | ||
680 | *(uint32_t*)&ipov->ih_x1[0] = *(uint32_t*)&b[0]; | |
681 | *(uint32_t*)&ipov->ih_x1[4] = *(uint32_t*)&b[4]; | |
682 | *(uint8_t*)&ipov->ih_x1[8] = *(uint8_t*)&b[8]; | |
683 | ||
684 | tcp_in_cksum_stats(len); | |
685 | } | |
686 | if (th->th_sum) { | |
687 | tcpstat.tcps_rcvbadsum++; | |
688 | goto dropnosock; | |
689 | } | |
690 | #if INET6 | |
691 | /* Re-initialization for later version check */ | |
692 | ip->ip_v = IPVERSION; | |
693 | #endif | |
694 | ip_ecn = (ip->ip_tos & IPTOS_ECN_MASK); | |
695 | } | |
696 | ||
697 | /* | |
698 | * Check that TCP offset makes sense, | |
699 | * pull out TCP options and adjust length. XXX | |
700 | */ | |
701 | off = th->th_off << 2; | |
702 | if (off < sizeof (struct tcphdr) || off > tlen) { | |
703 | tcpstat.tcps_rcvbadoff++; | |
704 | goto dropnosock; | |
705 | } | |
706 | tlen -= off; /* tlen is used instead of ti->ti_len */ | |
707 | if (off > sizeof (struct tcphdr)) { | |
708 | #if INET6 | |
709 | if (isipv6) { | |
710 | IP6_EXTHDR_CHECK(m, off0, off, return); | |
711 | ip6 = mtod(m, struct ip6_hdr *); | |
712 | th = (struct tcphdr *)((caddr_t)ip6 + off0); | |
713 | } else | |
714 | #endif /* INET6 */ | |
715 | { | |
716 | if (m->m_len < sizeof(struct ip) + off) { | |
717 | if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) { | |
718 | tcpstat.tcps_rcvshort++; | |
719 | return; | |
720 | } | |
721 | ip = mtod(m, struct ip *); | |
722 | ipov = (struct ipovly *)ip; | |
723 | th = (struct tcphdr *)((caddr_t)ip + off0); | |
724 | } | |
725 | } | |
726 | optlen = off - sizeof (struct tcphdr); | |
727 | optp = (u_char *)(th + 1); | |
728 | /* | |
729 | * Do quick retrieval of timestamp options ("options | |
730 | * prediction?"). If timestamp is the only option and it's | |
731 | * formatted as recommended in RFC 1323 appendix A, we | |
732 | * quickly get the values now and not bother calling | |
733 | * tcp_dooptions(), etc. | |
734 | */ | |
735 | if ((optlen == TCPOLEN_TSTAMP_APPA || | |
736 | (optlen > TCPOLEN_TSTAMP_APPA && | |
737 | optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) && | |
738 | *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) && | |
739 | (th->th_flags & TH_SYN) == 0) { | |
740 | to.to_flags |= TOF_TS; | |
741 | to.to_tsval = ntohl(*(u_int32_t *)(optp + 4)); | |
742 | to.to_tsecr = ntohl(*(u_int32_t *)(optp + 8)); | |
743 | optp = NULL; /* we've parsed the options */ | |
744 | } | |
745 | } | |
746 | thflags = th->th_flags; | |
747 | ||
748 | #if TCP_DROP_SYNFIN | |
749 | /* | |
750 | * If the drop_synfin option is enabled, drop all packets with | |
751 | * both the SYN and FIN bits set. This prevents e.g. nmap from | |
752 | * identifying the TCP/IP stack. | |
753 | * | |
754 | * This is a violation of the TCP specification. | |
755 | */ | |
756 | if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN)) | |
757 | goto dropnosock; | |
758 | #endif | |
759 | ||
760 | /* | |
761 | * Convert TCP protocol specific fields to host format. | |
762 | */ | |
763 | NTOHL(th->th_seq); | |
764 | NTOHL(th->th_ack); | |
765 | NTOHS(th->th_win); | |
766 | NTOHS(th->th_urp); | |
767 | ||
768 | /* | |
769 | * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options, | |
770 | * until after ip6_savecontrol() is called and before other functions | |
771 | * which don't want those proto headers. | |
772 | * Because ip6_savecontrol() is going to parse the mbuf to | |
773 | * search for data to be passed up to user-land, it wants mbuf | |
774 | * parameters to be unchanged. | |
775 | */ | |
776 | drop_hdrlen = off0 + off; | |
777 | ||
778 | /* | |
779 | * Locate pcb for segment. | |
780 | */ | |
781 | findpcb: | |
782 | #if IPFIREWALL_FORWARD | |
783 | if (next_hop != NULL | |
784 | #if INET6 | |
785 | && isipv6 == 0 /* IPv6 support is not yet */ | |
786 | #endif /* INET6 */ | |
787 | ) { | |
788 | /* | |
789 | * Diverted. Pretend to be the destination. | |
790 | * already got one like this? | |
791 | */ | |
792 | inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport, | |
793 | ip->ip_dst, th->th_dport, 0, m->m_pkthdr.rcvif); | |
794 | if (!inp) { | |
795 | /* | |
796 | * No, then it's new. Try find the ambushing socket | |
797 | */ | |
798 | if (!next_hop->sin_port) { | |
799 | inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, | |
800 | th->th_sport, next_hop->sin_addr, | |
801 | th->th_dport, 1, m->m_pkthdr.rcvif); | |
802 | } else { | |
803 | inp = in_pcblookup_hash(&tcbinfo, | |
804 | ip->ip_src, th->th_sport, | |
805 | next_hop->sin_addr, | |
806 | ntohs(next_hop->sin_port), 1, | |
807 | m->m_pkthdr.rcvif); | |
808 | } | |
809 | } | |
810 | } else | |
811 | #endif /* IPFIREWALL_FORWARD */ | |
812 | { | |
813 | #if INET6 | |
814 | if (isipv6) | |
815 | inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport, | |
816 | &ip6->ip6_dst, th->th_dport, 1, | |
817 | m->m_pkthdr.rcvif); | |
818 | else | |
819 | #endif /* INET6 */ | |
820 | inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport, | |
821 | ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif); | |
822 | } | |
823 | ||
824 | #if IPSEC | |
825 | if (ipsec_bypass == 0) { | |
826 | #if INET6 | |
827 | if (isipv6) { | |
828 | if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) { | |
829 | IPSEC_STAT_INCREMENT(ipsec6stat.in_polvio); | |
830 | goto dropnosock; | |
831 | } | |
832 | } else | |
833 | #endif /* INET6 */ | |
834 | if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) { | |
835 | IPSEC_STAT_INCREMENT(ipsecstat.in_polvio); | |
836 | goto dropnosock; | |
837 | } | |
838 | } | |
839 | #endif /*IPSEC*/ | |
840 | ||
841 | /* | |
842 | * If the state is CLOSED (i.e., TCB does not exist) then | |
843 | * all data in the incoming segment is discarded. | |
844 | * If the TCB exists but is in CLOSED state, it is embryonic, | |
845 | * but should either do a listen or a connect soon. | |
846 | */ | |
847 | if (inp == NULL) { | |
848 | if (log_in_vain) { | |
849 | #if INET6 | |
850 | char dbuf[MAX_IPv6_STR_LEN], sbuf[MAX_IPv6_STR_LEN]; | |
851 | #else /* INET6 */ | |
852 | char dbuf[MAX_IPv4_STR_LEN], sbuf[MAX_IPv4_STR_LEN]; | |
853 | #endif /* INET6 */ | |
854 | ||
855 | #if INET6 | |
856 | if (isipv6) { | |
857 | inet_ntop(AF_INET6, &ip6->ip6_dst, dbuf, sizeof(dbuf)); | |
858 | inet_ntop(AF_INET6, &ip6->ip6_src, sbuf, sizeof(sbuf)); | |
859 | } else | |
860 | #endif | |
861 | { | |
862 | inet_ntop(AF_INET, &ip->ip_dst, dbuf, sizeof(dbuf)); | |
863 | inet_ntop(AF_INET, &ip->ip_src, sbuf, sizeof(sbuf)); | |
864 | } | |
865 | switch (log_in_vain) { | |
866 | case 1: | |
867 | if(thflags & TH_SYN) | |
868 | log(LOG_INFO, | |
869 | "Connection attempt to TCP %s:%d from %s:%d\n", | |
870 | dbuf, ntohs(th->th_dport), | |
871 | sbuf, | |
872 | ntohs(th->th_sport)); | |
873 | break; | |
874 | case 2: | |
875 | log(LOG_INFO, | |
876 | "Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n", | |
877 | dbuf, ntohs(th->th_dport), sbuf, | |
878 | ntohs(th->th_sport), thflags); | |
879 | break; | |
880 | case 3: | |
881 | if ((thflags & TH_SYN) && | |
882 | !(m->m_flags & (M_BCAST | M_MCAST)) && | |
883 | #if INET6 | |
884 | ((isipv6 && !IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) || | |
885 | (!isipv6 && ip->ip_dst.s_addr != ip->ip_src.s_addr)) | |
886 | #else | |
887 | ip->ip_dst.s_addr != ip->ip_src.s_addr | |
888 | #endif | |
889 | ) | |
890 | log_in_vain_log((LOG_INFO, | |
891 | "Stealth Mode connection attempt to TCP %s:%d from %s:%d\n", | |
892 | dbuf, ntohs(th->th_dport), | |
893 | sbuf, | |
894 | ntohs(th->th_sport))); | |
895 | break; | |
896 | default: | |
897 | break; | |
898 | } | |
899 | } | |
900 | if (blackhole) { | |
901 | if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type != IFT_LOOP) | |
902 | switch (blackhole) { | |
903 | case 1: | |
904 | if (thflags & TH_SYN) | |
905 | goto dropnosock; | |
906 | break; | |
907 | case 2: | |
908 | goto dropnosock; | |
909 | default: | |
910 | goto dropnosock; | |
911 | } | |
912 | } | |
913 | rstreason = BANDLIM_RST_CLOSEDPORT; | |
914 | goto dropwithresetnosock; | |
915 | } | |
916 | so = inp->inp_socket; | |
917 | if (so == NULL) { | |
918 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) | |
919 | inp = NULL; // pretend we didn't find it | |
920 | #if TEMPDEBUG | |
921 | printf("tcp_input: no more socket for inp=%x\n", inp); | |
922 | #endif | |
923 | goto dropnosock; | |
924 | } | |
925 | ||
926 | #ifdef __APPLE__ | |
927 | /* | |
928 | * Bogus state when listening port owned by SharedIP with loopback as the | |
929 | * only configured interface: BlueBox does not filters loopback | |
930 | */ | |
931 | if (so == &tcbinfo.nat_dummy_socket) | |
932 | goto drop; | |
933 | ||
934 | #endif | |
935 | tcp_lock(so, 1, 2); | |
936 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { | |
937 | tcp_unlock(so, 1, 2); | |
938 | inp = NULL; // pretend we didn't find it | |
939 | goto dropnosock; | |
940 | } | |
941 | ||
942 | tp = intotcpcb(inp); | |
943 | if (tp == 0) { | |
944 | rstreason = BANDLIM_RST_CLOSEDPORT; | |
945 | goto dropwithreset; | |
946 | } | |
947 | if (tp->t_state == TCPS_CLOSED) | |
948 | goto drop; | |
949 | ||
950 | /* Unscale the window into a 32-bit value. */ | |
951 | if ((thflags & TH_SYN) == 0) | |
952 | tiwin = th->th_win << tp->snd_scale; | |
953 | else | |
954 | tiwin = th->th_win; | |
955 | ||
956 | #if CONFIG_MACF_NET | |
957 | if (mac_inpcb_check_deliver(inp, m, AF_INET, SOCK_STREAM)) | |
958 | goto drop; | |
959 | #endif | |
960 | ||
961 | if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) { | |
962 | #if TCPDEBUG | |
963 | if (so->so_options & SO_DEBUG) { | |
964 | ostate = tp->t_state; | |
965 | #if INET6 | |
966 | if (isipv6) | |
967 | bcopy((char *)ip6, (char *)tcp_saveipgen, | |
968 | sizeof(*ip6)); | |
969 | else | |
970 | #endif /* INET6 */ | |
971 | bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip)); | |
972 | tcp_savetcp = *th; | |
973 | } | |
974 | #endif | |
975 | if (so->so_options & SO_ACCEPTCONN) { | |
976 | register struct tcpcb *tp0 = tp; | |
977 | struct socket *so2; | |
978 | struct socket *oso; | |
979 | struct sockaddr_storage from; | |
980 | #if INET6 | |
981 | struct inpcb *oinp = sotoinpcb(so); | |
982 | #endif /* INET6 */ | |
983 | int ogencnt = so->so_gencnt; | |
984 | ||
985 | #if !IPSEC | |
986 | /* | |
987 | * Current IPsec implementation makes incorrect IPsec | |
988 | * cache if this check is done here. | |
989 | * So delay this until duplicated socket is created. | |
990 | */ | |
991 | if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) { | |
992 | /* | |
993 | * Note: dropwithreset makes sure we don't | |
994 | * send a RST in response to a RST. | |
995 | */ | |
996 | if (thflags & TH_ACK) { | |
997 | tcpstat.tcps_badsyn++; | |
998 | rstreason = BANDLIM_RST_OPENPORT; | |
999 | goto dropwithreset; | |
1000 | } | |
1001 | goto drop; | |
1002 | } | |
1003 | #endif | |
1004 | KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_START,0,0,0,0,0); | |
1005 | ||
1006 | #if INET6 | |
1007 | /* | |
1008 | * If deprecated address is forbidden, | |
1009 | * we do not accept SYN to deprecated interface | |
1010 | * address to prevent any new inbound connection from | |
1011 | * getting established. | |
1012 | * When we do not accept SYN, we send a TCP RST, | |
1013 | * with deprecated source address (instead of dropping | |
1014 | * it). We compromise it as it is much better for peer | |
1015 | * to send a RST, and RST will be the final packet | |
1016 | * for the exchange. | |
1017 | * | |
1018 | * If we do not forbid deprecated addresses, we accept | |
1019 | * the SYN packet. RFC2462 does not suggest dropping | |
1020 | * SYN in this case. | |
1021 | * If we decipher RFC2462 5.5.4, it says like this: | |
1022 | * 1. use of deprecated addr with existing | |
1023 | * communication is okay - "SHOULD continue to be | |
1024 | * used" | |
1025 | * 2. use of it with new communication: | |
1026 | * (2a) "SHOULD NOT be used if alternate address | |
1027 | * with sufficient scope is available" | |
1028 | * (2b) nothing mentioned otherwise. | |
1029 | * Here we fall into (2b) case as we have no choice in | |
1030 | * our source address selection - we must obey the peer. | |
1031 | * | |
1032 | * The wording in RFC2462 is confusing, and there are | |
1033 | * multiple description text for deprecated address | |
1034 | * handling - worse, they are not exactly the same. | |
1035 | * I believe 5.5.4 is the best one, so we follow 5.5.4. | |
1036 | */ | |
1037 | if (isipv6 && !ip6_use_deprecated) { | |
1038 | struct in6_ifaddr *ia6; | |
1039 | ||
1040 | if ((ia6 = ip6_getdstifaddr(m)) && | |
1041 | (ia6->ia6_flags & IN6_IFF_DEPRECATED)) { | |
1042 | tp = NULL; | |
1043 | rstreason = BANDLIM_RST_OPENPORT; | |
1044 | goto dropwithreset; | |
1045 | } | |
1046 | } | |
1047 | #endif | |
1048 | if (so->so_filt) { | |
1049 | #if INET6 | |
1050 | if (isipv6) { | |
1051 | struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&from; | |
1052 | ||
1053 | sin6->sin6_len = sizeof(*sin6); | |
1054 | sin6->sin6_family = AF_INET6; | |
1055 | sin6->sin6_port = th->th_sport; | |
1056 | sin6->sin6_flowinfo = 0; | |
1057 | sin6->sin6_addr = ip6->ip6_src; | |
1058 | sin6->sin6_scope_id = 0; | |
1059 | } | |
1060 | else | |
1061 | #endif | |
1062 | { | |
1063 | struct sockaddr_in *sin = (struct sockaddr_in*)&from; | |
1064 | ||
1065 | sin->sin_len = sizeof(*sin); | |
1066 | sin->sin_family = AF_INET; | |
1067 | sin->sin_port = th->th_sport; | |
1068 | sin->sin_addr = ip->ip_src; | |
1069 | } | |
1070 | so2 = sonewconn(so, 0, (struct sockaddr*)&from); | |
1071 | } else { | |
1072 | so2 = sonewconn(so, 0, NULL); | |
1073 | } | |
1074 | if (so2 == 0) { | |
1075 | tcpstat.tcps_listendrop++; | |
1076 | if (tcp_dropdropablreq(so)) { | |
1077 | if (so->so_filt) | |
1078 | so2 = sonewconn(so, 0, (struct sockaddr*)&from); | |
1079 | else | |
1080 | so2 = sonewconn(so, 0, NULL); | |
1081 | } | |
1082 | if (!so2) | |
1083 | goto drop; | |
1084 | } | |
1085 | /* | |
1086 | * Make sure listening socket did not get closed during socket allocation, | |
1087 | * not only this is incorrect but it is know to cause panic | |
1088 | */ | |
1089 | if (so->so_gencnt != ogencnt) | |
1090 | goto drop; | |
1091 | ||
1092 | oso = so; | |
1093 | tcp_unlock(so, 0, 0); /* Unlock but keep a reference on listener for now */ | |
1094 | ||
1095 | so = so2; | |
1096 | tcp_lock(so, 1, 0); | |
1097 | /* | |
1098 | * This is ugly, but .... | |
1099 | * | |
1100 | * Mark socket as temporary until we're | |
1101 | * committed to keeping it. The code at | |
1102 | * ``drop'' and ``dropwithreset'' check the | |
1103 | * flag dropsocket to see if the temporary | |
1104 | * socket created here should be discarded. | |
1105 | * We mark the socket as discardable until | |
1106 | * we're committed to it below in TCPS_LISTEN. | |
1107 | */ | |
1108 | dropsocket++; | |
1109 | inp = (struct inpcb *)so->so_pcb; | |
1110 | #if INET6 | |
1111 | if (isipv6) | |
1112 | inp->in6p_laddr = ip6->ip6_dst; | |
1113 | else { | |
1114 | inp->inp_vflag &= ~INP_IPV6; | |
1115 | inp->inp_vflag |= INP_IPV4; | |
1116 | #endif /* INET6 */ | |
1117 | inp->inp_laddr = ip->ip_dst; | |
1118 | #if INET6 | |
1119 | } | |
1120 | #endif /* INET6 */ | |
1121 | inp->inp_lport = th->th_dport; | |
1122 | if (in_pcbinshash(inp, 0) != 0) { | |
1123 | /* | |
1124 | * Undo the assignments above if we failed to | |
1125 | * put the PCB on the hash lists. | |
1126 | */ | |
1127 | #if INET6 | |
1128 | if (isipv6) | |
1129 | inp->in6p_laddr = in6addr_any; | |
1130 | else | |
1131 | #endif /* INET6 */ | |
1132 | inp->inp_laddr.s_addr = INADDR_ANY; | |
1133 | inp->inp_lport = 0; | |
1134 | tcp_lock(oso, 0, 0); /* release ref on parent */ | |
1135 | tcp_unlock(oso, 1, 0); | |
1136 | goto drop; | |
1137 | } | |
1138 | #if IPSEC | |
1139 | /* | |
1140 | * To avoid creating incorrectly cached IPsec | |
1141 | * association, this is need to be done here. | |
1142 | * | |
1143 | * Subject: (KAME-snap 748) | |
1144 | * From: Wayne Knowles <w.knowles@niwa.cri.nz> | |
1145 | * ftp://ftp.kame.net/pub/mail-list/snap-users/748 | |
1146 | */ | |
1147 | if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) { | |
1148 | /* | |
1149 | * Note: dropwithreset makes sure we don't | |
1150 | * send a RST in response to a RST. | |
1151 | */ | |
1152 | tcp_lock(oso, 0, 0); /* release ref on parent */ | |
1153 | tcp_unlock(oso, 1, 0); | |
1154 | if (thflags & TH_ACK) { | |
1155 | tcpstat.tcps_badsyn++; | |
1156 | rstreason = BANDLIM_RST_OPENPORT; | |
1157 | goto dropwithreset; | |
1158 | } | |
1159 | goto drop; | |
1160 | } | |
1161 | #endif | |
1162 | #if INET6 | |
1163 | if (isipv6) { | |
1164 | /* | |
1165 | * Inherit socket options from the listening | |
1166 | * socket. | |
1167 | * Note that in6p_inputopts are not (even | |
1168 | * should not be) copied, since it stores | |
1169 | * previously received options and is used to | |
1170 | * detect if each new option is different than | |
1171 | * the previous one and hence should be passed | |
1172 | * to a user. | |
1173 | * If we copied in6p_inputopts, a user would | |
1174 | * not be able to receive options just after | |
1175 | * calling the accept system call. | |
1176 | */ | |
1177 | inp->inp_flags |= | |
1178 | oinp->inp_flags & INP_CONTROLOPTS; | |
1179 | if (oinp->in6p_outputopts) | |
1180 | inp->in6p_outputopts = | |
1181 | ip6_copypktopts(oinp->in6p_outputopts, | |
1182 | M_NOWAIT); | |
1183 | } else | |
1184 | #endif /* INET6 */ | |
1185 | inp->inp_options = ip_srcroute(); | |
1186 | tcp_lock(oso, 0, 0); | |
1187 | #if IPSEC | |
1188 | /* copy old policy into new socket's */ | |
1189 | if (sotoinpcb(oso)->inp_sp) | |
1190 | { | |
1191 | int error = 0; | |
1192 | /* Is it a security hole here to silently fail to copy the policy? */ | |
1193 | if (inp->inp_sp != NULL) | |
1194 | error = ipsec_init_policy(so, &inp->inp_sp); | |
1195 | if (error != 0 || ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp)) | |
1196 | printf("tcp_input: could not copy policy\n"); | |
1197 | } | |
1198 | #endif | |
1199 | tcp_unlock(oso, 1, 0); /* now drop the reference on the listener */ | |
1200 | tp = intotcpcb(inp); | |
1201 | tp->t_state = TCPS_LISTEN; | |
1202 | tp->t_flags |= tp0->t_flags & (TF_NOPUSH|TF_NOOPT|TF_NODELAY); | |
1203 | tp->t_inpcb->inp_ip_ttl = tp0->t_inpcb->inp_ip_ttl; | |
1204 | /* Compute proper scaling value from buffer space */ | |
1205 | if (inp->inp_pcbinfo->ipi_count < tcp_sockthreshold) { | |
1206 | tp->request_r_scale = max(tcp_win_scale, tp->request_r_scale); | |
1207 | so->so_rcv.sb_hiwat = lmin(TCP_MAXWIN << tp->request_r_scale, (sb_max / (MSIZE+MCLBYTES)) * MCLBYTES); | |
1208 | } | |
1209 | else { | |
1210 | while (tp->request_r_scale < TCP_MAX_WINSHIFT && | |
1211 | TCP_MAXWIN << tp->request_r_scale < | |
1212 | so->so_rcv.sb_hiwat) | |
1213 | tp->request_r_scale++; | |
1214 | } | |
1215 | ||
1216 | KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_END,0,0,0,0,0); | |
1217 | } | |
1218 | } | |
1219 | ||
1220 | #if 1 | |
1221 | lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED); | |
1222 | #endif | |
1223 | /* | |
1224 | * Radar 3529618 | |
1225 | * This is the second part of the MSS DoS prevention code (after | |
1226 | * minmss on the sending side) and it deals with too many too small | |
1227 | * tcp packets in a too short timeframe (1 second). | |
1228 | * | |
1229 | * For every full second we count the number of received packets | |
1230 | * and bytes. If we get a lot of packets per second for this connection | |
1231 | * (tcp_minmssoverload) we take a closer look at it and compute the | |
1232 | * average packet size for the past second. If that is less than | |
1233 | * tcp_minmss we get too many packets with very small payload which | |
1234 | * is not good and burdens our system (and every packet generates | |
1235 | * a wakeup to the process connected to our socket). We can reasonable | |
1236 | * expect this to be small packet DoS attack to exhaust our CPU | |
1237 | * cycles. | |
1238 | * | |
1239 | * Care has to be taken for the minimum packet overload value. This | |
1240 | * value defines the minimum number of packets per second before we | |
1241 | * start to worry. This must not be too low to avoid killing for | |
1242 | * example interactive connections with many small packets like | |
1243 | * telnet or SSH. | |
1244 | * | |
1245 | * Setting either tcp_minmssoverload or tcp_minmss to "0" disables | |
1246 | * this check. | |
1247 | * | |
1248 | * Account for packet if payload packet, skip over ACK, etc. | |
1249 | * | |
1250 | * The packet per second count is done all the time and is also used | |
1251 | * by "DELAY_ACK" to detect streaming situations. | |
1252 | * | |
1253 | */ | |
1254 | if (tp->t_state == TCPS_ESTABLISHED && tlen > 0) { | |
1255 | if (tp->rcv_reset > tcp_now) { | |
1256 | tp->rcv_pps++; | |
1257 | tp->rcv_byps += tlen + off; | |
1258 | if (tp->rcv_byps > tp->rcv_maxbyps) | |
1259 | tp->rcv_maxbyps = tp->rcv_byps; | |
1260 | /* | |
1261 | * Setting either tcp_minmssoverload or tcp_minmss to "0" disables | |
1262 | * the check. | |
1263 | */ | |
1264 | if (tcp_minmss && tcp_minmssoverload && tp->rcv_pps > tcp_minmssoverload) { | |
1265 | if ((tp->rcv_byps / tp->rcv_pps) < tcp_minmss) { | |
1266 | char ipstrbuf[MAX_IPv6_STR_LEN]; | |
1267 | printf("too many small tcp packets from " | |
1268 | "%s:%u, av. %lubyte/packet, " | |
1269 | "dropping connection\n", | |
1270 | #if INET6 | |
1271 | isipv6 ? | |
1272 | inet_ntop(AF_INET6, &inp->in6p_faddr, ipstrbuf, | |
1273 | sizeof(ipstrbuf)) : | |
1274 | #endif | |
1275 | inet_ntop(AF_INET, &inp->inp_faddr, ipstrbuf, | |
1276 | sizeof(ipstrbuf)), | |
1277 | inp->inp_fport, | |
1278 | tp->rcv_byps / tp->rcv_pps); | |
1279 | tp = tcp_drop(tp, ECONNRESET); | |
1280 | /* tcpstat.tcps_minmssdrops++; */ | |
1281 | goto drop; | |
1282 | } | |
1283 | } | |
1284 | } else { | |
1285 | tp->rcv_reset = tcp_now + TCP_RETRANSHZ; | |
1286 | tp->rcv_pps = 1; | |
1287 | tp->rcv_byps = tlen + off; | |
1288 | } | |
1289 | } | |
1290 | ||
1291 | #if TRAFFIC_MGT | |
1292 | if (so->so_traffic_mgt_flags & TRAFFIC_MGT_SO_BACKGROUND) { | |
1293 | tcpstat.tcps_bg_rcvtotal++; | |
1294 | ||
1295 | /* Take snapshots of pkts recv; | |
1296 | * tcpcb should have been initialized to 0 when allocated, | |
1297 | * so if 0 then this is the first time we're doing this | |
1298 | */ | |
1299 | if (!tp->tot_recv_snapshot) { | |
1300 | tp->tot_recv_snapshot = tcpstat.tcps_rcvtotal; | |
1301 | } | |
1302 | if (!tp->bg_recv_snapshot) { | |
1303 | tp->bg_recv_snapshot = tcpstat.tcps_bg_rcvtotal; | |
1304 | } | |
1305 | } | |
1306 | #endif /* TRAFFIC_MGT */ | |
1307 | ||
1308 | /* | |
1309 | Explicit Congestion Notification - Flag that we need to send ECT if | |
1310 | + The IP Congestion experienced flag was set. | |
1311 | + Socket is in established state | |
1312 | + We negotiated ECN in the TCP setup | |
1313 | + This isn't a pure ack (tlen > 0) | |
1314 | + The data is in the valid window | |
1315 | ||
1316 | TE_SENDECE will be cleared when we receive a packet with TH_CWR set. | |
1317 | */ | |
1318 | if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED && | |
1319 | (tp->ecn_flags & (TE_SETUPSENT | TE_SETUPRECEIVED)) == | |
1320 | (TE_SETUPSENT | TE_SETUPRECEIVED) && tlen > 0 && | |
1321 | SEQ_GEQ(th->th_seq, tp->last_ack_sent) && | |
1322 | SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) { | |
1323 | tp->ecn_flags |= TE_SENDECE; | |
1324 | } | |
1325 | ||
1326 | /* | |
1327 | Clear TE_SENDECE if TH_CWR is set. This is harmless, so we don't | |
1328 | bother doing extensive checks for state and whatnot. | |
1329 | */ | |
1330 | if ((thflags & TH_CWR) == TH_CWR) { | |
1331 | tp->ecn_flags &= ~TE_SENDECE; | |
1332 | } | |
1333 | ||
1334 | /* | |
1335 | * Segment received on connection. | |
1336 | * Reset idle time and keep-alive timer. | |
1337 | */ | |
1338 | tp->t_rcvtime = 0; | |
1339 | if (TCPS_HAVEESTABLISHED(tp->t_state)) | |
1340 | tp->t_timer[TCPT_KEEP] = TCP_KEEPIDLE(tp); | |
1341 | ||
1342 | /* | |
1343 | * Process options if not in LISTEN state, | |
1344 | * else do it below (after getting remote address). | |
1345 | */ | |
1346 | if (tp->t_state != TCPS_LISTEN && optp) | |
1347 | tcp_dooptions(tp, optp, optlen, th, &to); | |
1348 | ||
1349 | if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { | |
1350 | if (to.to_flags & TOF_SCALE) { | |
1351 | tp->t_flags |= TF_RCVD_SCALE; | |
1352 | tp->requested_s_scale = to.to_requested_s_scale; | |
1353 | tp->snd_wnd = th->th_win << tp->snd_scale; | |
1354 | tiwin = tp->snd_wnd; | |
1355 | } | |
1356 | if (to.to_flags & TOF_TS) { | |
1357 | tp->t_flags |= TF_RCVD_TSTMP; | |
1358 | tp->ts_recent = to.to_tsval; | |
1359 | tp->ts_recent_age = tcp_now; | |
1360 | } | |
1361 | if (to.to_flags & TOF_MSS) | |
1362 | tcp_mss(tp, to.to_mss); | |
1363 | if (tp->sack_enable) { | |
1364 | if (!(to.to_flags & TOF_SACK)) | |
1365 | tp->sack_enable = 0; | |
1366 | else | |
1367 | tp->t_flags |= TF_SACK_PERMIT; | |
1368 | } | |
1369 | } | |
1370 | ||
1371 | /* | |
1372 | * Header prediction: check for the two common cases | |
1373 | * of a uni-directional data xfer. If the packet has | |
1374 | * no control flags, is in-sequence, the window didn't | |
1375 | * change and we're not retransmitting, it's a | |
1376 | * candidate. If the length is zero and the ack moved | |
1377 | * forward, we're the sender side of the xfer. Just | |
1378 | * free the data acked & wake any higher level process | |
1379 | * that was blocked waiting for space. If the length | |
1380 | * is non-zero and the ack didn't move, we're the | |
1381 | * receiver side. If we're getting packets in-order | |
1382 | * (the reassembly queue is empty), add the data to | |
1383 | * the socket buffer and note that we need a delayed ack. | |
1384 | * Make sure that the hidden state-flags are also off. | |
1385 | * Since we check for TCPS_ESTABLISHED above, it can only | |
1386 | * be TH_NEEDSYN. | |
1387 | */ | |
1388 | if (tp->t_state == TCPS_ESTABLISHED && | |
1389 | (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK|TH_ECE)) == TH_ACK && | |
1390 | ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) && | |
1391 | ((to.to_flags & TOF_TS) == 0 || | |
1392 | TSTMP_GEQ(to.to_tsval, tp->ts_recent)) && | |
1393 | th->th_seq == tp->rcv_nxt && | |
1394 | tiwin && tiwin == tp->snd_wnd && | |
1395 | tp->snd_nxt == tp->snd_max) { | |
1396 | ||
1397 | /* | |
1398 | * If last ACK falls within this segment's sequence numbers, | |
1399 | * record the timestamp. | |
1400 | * NOTE that the test is modified according to the latest | |
1401 | * proposal of the tcplw@cray.com list (Braden 1993/04/26). | |
1402 | */ | |
1403 | if ((to.to_flags & TOF_TS) != 0 && | |
1404 | SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { | |
1405 | tp->ts_recent_age = tcp_now; | |
1406 | tp->ts_recent = to.to_tsval; | |
1407 | } | |
1408 | ||
1409 | if (tlen == 0) { | |
1410 | if (SEQ_GT(th->th_ack, tp->snd_una) && | |
1411 | SEQ_LEQ(th->th_ack, tp->snd_max) && | |
1412 | tp->snd_cwnd >= tp->snd_ssthresh && | |
1413 | ((!tcp_do_newreno && !tp->sack_enable && | |
1414 | tp->t_dupacks < tcprexmtthresh) || | |
1415 | ((tcp_do_newreno || tp->sack_enable) && | |
1416 | !IN_FASTRECOVERY(tp) && to.to_nsacks == 0 && | |
1417 | TAILQ_EMPTY(&tp->snd_holes)))) { | |
1418 | /* | |
1419 | * this is a pure ack for outstanding data. | |
1420 | */ | |
1421 | ++tcpstat.tcps_predack; | |
1422 | /* | |
1423 | * "bad retransmit" recovery | |
1424 | */ | |
1425 | if (tp->t_rxtshift == 1 && | |
1426 | tcp_now < tp->t_badrxtwin) { | |
1427 | ++tcpstat.tcps_sndrexmitbad; | |
1428 | tp->snd_cwnd = tp->snd_cwnd_prev; | |
1429 | tp->snd_ssthresh = | |
1430 | tp->snd_ssthresh_prev; | |
1431 | tp->snd_recover = tp->snd_recover_prev; | |
1432 | if (tp->t_flags & TF_WASFRECOVERY) | |
1433 | ENTER_FASTRECOVERY(tp); | |
1434 | tp->snd_nxt = tp->snd_max; | |
1435 | tp->t_badrxtwin = 0; | |
1436 | } | |
1437 | /* | |
1438 | * Recalculate the transmit timer / rtt. | |
1439 | * | |
1440 | * Some boxes send broken timestamp replies | |
1441 | * during the SYN+ACK phase, ignore | |
1442 | * timestamps of 0 or we could calculate a | |
1443 | * huge RTT and blow up the retransmit timer. | |
1444 | */ | |
1445 | if (((to.to_flags & TOF_TS) != 0) && (to.to_tsecr != 0)) { /* Makes sure we already have a TS */ | |
1446 | if (!tp->t_rttlow || | |
1447 | tp->t_rttlow > tcp_now - to.to_tsecr) | |
1448 | tp->t_rttlow = tcp_now - to.to_tsecr; | |
1449 | tcp_xmit_timer(tp, | |
1450 | tcp_now - to.to_tsecr); | |
1451 | } else if (tp->t_rtttime && | |
1452 | SEQ_GT(th->th_ack, tp->t_rtseq)) { | |
1453 | if (!tp->t_rttlow || | |
1454 | tp->t_rttlow > tcp_now - tp->t_rtttime) | |
1455 | tp->t_rttlow = tcp_now - tp->t_rtttime; | |
1456 | tcp_xmit_timer(tp, tp->t_rtttime); | |
1457 | } | |
1458 | acked = th->th_ack - tp->snd_una; | |
1459 | tcpstat.tcps_rcvackpack++; | |
1460 | tcpstat.tcps_rcvackbyte += acked; | |
1461 | /* | |
1462 | * Grow the congestion window, if the | |
1463 | * connection is cwnd bound. | |
1464 | */ | |
1465 | if (tp->snd_cwnd < tp->snd_wnd) { | |
1466 | tp->t_bytes_acked += acked; | |
1467 | if (tp->t_bytes_acked > tp->snd_cwnd) { | |
1468 | tp->t_bytes_acked -= tp->snd_cwnd; | |
1469 | tp->snd_cwnd += tp->t_maxseg; | |
1470 | } | |
1471 | } | |
1472 | sbdrop(&so->so_snd, acked); | |
1473 | if (SEQ_GT(tp->snd_una, tp->snd_recover) && | |
1474 | SEQ_LEQ(th->th_ack, tp->snd_recover)) | |
1475 | tp->snd_recover = th->th_ack - 1; | |
1476 | tp->snd_una = th->th_ack; | |
1477 | /* | |
1478 | * pull snd_wl2 up to prevent seq wrap relative | |
1479 | * to th_ack. | |
1480 | */ | |
1481 | tp->snd_wl2 = th->th_ack; | |
1482 | tp->t_dupacks = 0; | |
1483 | m_freem(m); | |
1484 | ND6_HINT(tp); /* some progress has been done */ | |
1485 | ||
1486 | /* | |
1487 | * If all outstanding data are acked, stop | |
1488 | * retransmit timer, otherwise restart timer | |
1489 | * using current (possibly backed-off) value. | |
1490 | * If process is waiting for space, | |
1491 | * wakeup/selwakeup/signal. If data | |
1492 | * are ready to send, let tcp_output | |
1493 | * decide between more output or persist. | |
1494 | */ | |
1495 | if (tp->snd_una == tp->snd_max) | |
1496 | tp->t_timer[TCPT_REXMT] = 0; | |
1497 | else if (tp->t_timer[TCPT_PERSIST] == 0) | |
1498 | tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; | |
1499 | ||
1500 | sowwakeup(so); /* has to be done with socket lock held */ | |
1501 | if ((so->so_snd.sb_cc) || (tp->t_flags & TF_ACKNOW)) { | |
1502 | tp->t_unacksegs = 0; | |
1503 | (void) tcp_output(tp); | |
1504 | } | |
1505 | tcp_unlock(so, 1, 0); | |
1506 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0); | |
1507 | return; | |
1508 | } | |
1509 | } else if (th->th_ack == tp->snd_una && | |
1510 | LIST_EMPTY(&tp->t_segq) && | |
1511 | tlen <= tcp_sbspace(tp)) { | |
1512 | /* | |
1513 | * this is a pure, in-sequence data packet | |
1514 | * with nothing on the reassembly queue and | |
1515 | * we have enough buffer space to take it. | |
1516 | */ | |
1517 | /* Clean receiver SACK report if present */ | |
1518 | if (tp->sack_enable && tp->rcv_numsacks) | |
1519 | tcp_clean_sackreport(tp); | |
1520 | ++tcpstat.tcps_preddat; | |
1521 | tp->rcv_nxt += tlen; | |
1522 | /* | |
1523 | * Pull snd_wl1 up to prevent seq wrap relative to | |
1524 | * th_seq. | |
1525 | */ | |
1526 | tp->snd_wl1 = th->th_seq; | |
1527 | /* | |
1528 | * Pull rcv_up up to prevent seq wrap relative to | |
1529 | * rcv_nxt. | |
1530 | */ | |
1531 | tp->rcv_up = tp->rcv_nxt; | |
1532 | tcpstat.tcps_rcvpack++; | |
1533 | tcpstat.tcps_rcvbyte += tlen; | |
1534 | ND6_HINT(tp); /* some progress has been done */ | |
1535 | /* | |
1536 | * Add data to socket buffer. | |
1537 | */ | |
1538 | m_adj(m, drop_hdrlen); /* delayed header drop */ | |
1539 | if (sbappendstream(&so->so_rcv, m)) | |
1540 | sorwakeup(so); | |
1541 | #if INET6 | |
1542 | if (isipv6) { | |
1543 | KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport), | |
1544 | (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])), | |
1545 | th->th_seq, th->th_ack, th->th_win); | |
1546 | } | |
1547 | else | |
1548 | #endif | |
1549 | { | |
1550 | KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport), | |
1551 | (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)), | |
1552 | th->th_seq, th->th_ack, th->th_win); | |
1553 | } | |
1554 | if (DELAY_ACK(tp)) { | |
1555 | tp->t_flags |= TF_DELACK; | |
1556 | tp->t_unacksegs++; | |
1557 | } else { | |
1558 | tp->t_unacksegs = 0; | |
1559 | tp->t_flags |= TF_ACKNOW; | |
1560 | tcp_output(tp); | |
1561 | } | |
1562 | tcp_unlock(so, 1, 0); | |
1563 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0); | |
1564 | return; | |
1565 | } | |
1566 | } | |
1567 | ||
1568 | /* | |
1569 | * Calculate amount of space in receive window, | |
1570 | * and then do TCP input processing. | |
1571 | * Receive window is amount of space in rcv queue, | |
1572 | * but not less than advertised window. | |
1573 | */ | |
1574 | #if 1 | |
1575 | lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED); | |
1576 | #endif | |
1577 | { int win; | |
1578 | ||
1579 | win = tcp_sbspace(tp); | |
1580 | ||
1581 | if (win < 0) | |
1582 | win = 0; | |
1583 | else { /* clip rcv window to 4K for modems */ | |
1584 | if (tp->t_flags & TF_SLOWLINK && slowlink_wsize > 0) | |
1585 | win = min(win, slowlink_wsize); | |
1586 | } | |
1587 | tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt)); | |
1588 | } | |
1589 | ||
1590 | switch (tp->t_state) { | |
1591 | ||
1592 | /* | |
1593 | * If the state is LISTEN then ignore segment if it contains an RST. | |
1594 | * If the segment contains an ACK then it is bad and send a RST. | |
1595 | * If it does not contain a SYN then it is not interesting; drop it. | |
1596 | * If it is from this socket, drop it, it must be forged. | |
1597 | * Don't bother responding if the destination was a broadcast. | |
1598 | * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial | |
1599 | * tp->iss, and send a segment: | |
1600 | * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK> | |
1601 | * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss. | |
1602 | * Fill in remote peer address fields if not previously specified. | |
1603 | * Enter SYN_RECEIVED state, and process any other fields of this | |
1604 | * segment in this state. | |
1605 | */ | |
1606 | case TCPS_LISTEN: { | |
1607 | register struct sockaddr_in *sin; | |
1608 | #if INET6 | |
1609 | register struct sockaddr_in6 *sin6; | |
1610 | #endif | |
1611 | ||
1612 | #if 1 | |
1613 | lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED); | |
1614 | #endif | |
1615 | if (thflags & TH_RST) | |
1616 | goto drop; | |
1617 | if (thflags & TH_ACK) { | |
1618 | rstreason = BANDLIM_RST_OPENPORT; | |
1619 | goto dropwithreset; | |
1620 | } | |
1621 | if ((thflags & TH_SYN) == 0) | |
1622 | goto drop; | |
1623 | if (th->th_dport == th->th_sport) { | |
1624 | #if INET6 | |
1625 | if (isipv6) { | |
1626 | if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, | |
1627 | &ip6->ip6_src)) | |
1628 | goto drop; | |
1629 | } else | |
1630 | #endif /* INET6 */ | |
1631 | if (ip->ip_dst.s_addr == ip->ip_src.s_addr) | |
1632 | goto drop; | |
1633 | } | |
1634 | /* | |
1635 | * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN | |
1636 | * in_broadcast() should never return true on a received | |
1637 | * packet with M_BCAST not set. | |
1638 | * | |
1639 | * Packets with a multicast source address should also | |
1640 | * be discarded. | |
1641 | */ | |
1642 | if (m->m_flags & (M_BCAST|M_MCAST)) | |
1643 | goto drop; | |
1644 | #if INET6 | |
1645 | if (isipv6) { | |
1646 | if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || | |
1647 | IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) | |
1648 | goto drop; | |
1649 | } else | |
1650 | #endif | |
1651 | if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || | |
1652 | IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || | |
1653 | ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || | |
1654 | in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) | |
1655 | goto drop; | |
1656 | #if INET6 | |
1657 | if (isipv6) { | |
1658 | MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6, | |
1659 | M_SONAME, M_NOWAIT); | |
1660 | if (sin6 == NULL) | |
1661 | goto drop; | |
1662 | bzero(sin6, sizeof(*sin6)); | |
1663 | sin6->sin6_family = AF_INET6; | |
1664 | sin6->sin6_len = sizeof(*sin6); | |
1665 | sin6->sin6_addr = ip6->ip6_src; | |
1666 | sin6->sin6_port = th->th_sport; | |
1667 | laddr6 = inp->in6p_laddr; | |
1668 | if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) | |
1669 | inp->in6p_laddr = ip6->ip6_dst; | |
1670 | if (in6_pcbconnect(inp, (struct sockaddr *)sin6, | |
1671 | proc0)) { | |
1672 | inp->in6p_laddr = laddr6; | |
1673 | FREE(sin6, M_SONAME); | |
1674 | goto drop; | |
1675 | } | |
1676 | FREE(sin6, M_SONAME); | |
1677 | } else | |
1678 | #endif | |
1679 | { | |
1680 | #if 0 | |
1681 | lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED); | |
1682 | #endif | |
1683 | MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, | |
1684 | M_NOWAIT); | |
1685 | if (sin == NULL) | |
1686 | goto drop; | |
1687 | sin->sin_family = AF_INET; | |
1688 | sin->sin_len = sizeof(*sin); | |
1689 | sin->sin_addr = ip->ip_src; | |
1690 | sin->sin_port = th->th_sport; | |
1691 | bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero)); | |
1692 | laddr = inp->inp_laddr; | |
1693 | if (inp->inp_laddr.s_addr == INADDR_ANY) | |
1694 | inp->inp_laddr = ip->ip_dst; | |
1695 | if (in_pcbconnect(inp, (struct sockaddr *)sin, proc0)) { | |
1696 | inp->inp_laddr = laddr; | |
1697 | FREE(sin, M_SONAME); | |
1698 | goto drop; | |
1699 | } | |
1700 | FREE(sin, M_SONAME); | |
1701 | } | |
1702 | ||
1703 | tcp_dooptions(tp, optp, optlen, th, &to); | |
1704 | ||
1705 | if (tp->sack_enable) { | |
1706 | if (!(to.to_flags & TOF_SACK)) | |
1707 | tp->sack_enable = 0; | |
1708 | else | |
1709 | tp->t_flags |= TF_SACK_PERMIT; | |
1710 | } | |
1711 | ||
1712 | if (iss) | |
1713 | tp->iss = iss; | |
1714 | else { | |
1715 | tp->iss = tcp_new_isn(tp); | |
1716 | } | |
1717 | tp->irs = th->th_seq; | |
1718 | tcp_sendseqinit(tp); | |
1719 | tcp_rcvseqinit(tp); | |
1720 | tp->snd_recover = tp->snd_una; | |
1721 | /* | |
1722 | * Initialization of the tcpcb for transaction; | |
1723 | * set SND.WND = SEG.WND, | |
1724 | * initialize CCsend and CCrecv. | |
1725 | */ | |
1726 | tp->snd_wnd = tiwin; /* initial send-window */ | |
1727 | tp->t_flags |= TF_ACKNOW; | |
1728 | tp->t_unacksegs = 0; | |
1729 | tp->t_state = TCPS_SYN_RECEIVED; | |
1730 | tp->t_timer[TCPT_KEEP] = tcp_keepinit; | |
1731 | dropsocket = 0; /* committed to socket */ | |
1732 | tcpstat.tcps_accepts++; | |
1733 | if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE | TH_CWR)) { | |
1734 | /* ECN-setup SYN */ | |
1735 | tp->ecn_flags |= (TE_SETUPRECEIVED | TE_SENDIPECT); | |
1736 | } | |
1737 | goto trimthenstep6; | |
1738 | } | |
1739 | ||
1740 | /* | |
1741 | * If the state is SYN_RECEIVED: | |
1742 | * if seg contains an ACK, but not for our SYN/ACK, send a RST. | |
1743 | */ | |
1744 | case TCPS_SYN_RECEIVED: | |
1745 | if ((thflags & TH_ACK) && | |
1746 | (SEQ_LEQ(th->th_ack, tp->snd_una) || | |
1747 | SEQ_GT(th->th_ack, tp->snd_max))) { | |
1748 | rstreason = BANDLIM_RST_OPENPORT; | |
1749 | goto dropwithreset; | |
1750 | } | |
1751 | break; | |
1752 | ||
1753 | /* | |
1754 | * If the state is SYN_SENT: | |
1755 | * if seg contains an ACK, but not for our SYN, drop the input. | |
1756 | * if seg contains a RST, then drop the connection. | |
1757 | * if seg does not contain SYN, then drop it. | |
1758 | * Otherwise this is an acceptable SYN segment | |
1759 | * initialize tp->rcv_nxt and tp->irs | |
1760 | * if seg contains ack then advance tp->snd_una | |
1761 | * if SYN has been acked change to ESTABLISHED else SYN_RCVD state | |
1762 | * arrange for segment to be acked (eventually) | |
1763 | * continue processing rest of data/controls, beginning with URG | |
1764 | */ | |
1765 | case TCPS_SYN_SENT: | |
1766 | if ((thflags & TH_ACK) && | |
1767 | (SEQ_LEQ(th->th_ack, tp->iss) || | |
1768 | SEQ_GT(th->th_ack, tp->snd_max))) { | |
1769 | rstreason = BANDLIM_UNLIMITED; | |
1770 | goto dropwithreset; | |
1771 | } | |
1772 | if (thflags & TH_RST) { | |
1773 | if ((thflags & TH_ACK) != 0) { | |
1774 | tp = tcp_drop(tp, ECONNREFUSED); | |
1775 | postevent(so, 0, EV_RESET); | |
1776 | } | |
1777 | goto drop; | |
1778 | } | |
1779 | if ((thflags & TH_SYN) == 0) | |
1780 | goto drop; | |
1781 | tp->snd_wnd = th->th_win; /* initial send window */ | |
1782 | ||
1783 | tp->irs = th->th_seq; | |
1784 | tcp_rcvseqinit(tp); | |
1785 | if (thflags & TH_ACK) { | |
1786 | tcpstat.tcps_connects++; | |
1787 | ||
1788 | if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE)) { | |
1789 | /* ECN-setup SYN-ACK */ | |
1790 | tp->ecn_flags |= TE_SETUPRECEIVED; | |
1791 | } | |
1792 | else { | |
1793 | /* non-ECN-setup SYN-ACK */ | |
1794 | tp->ecn_flags &= ~TE_SENDIPECT; | |
1795 | } | |
1796 | ||
1797 | #if CONFIG_MACF_NET && CONFIG_MACF_SOCKET | |
1798 | /* XXXMAC: recursive lock: SOCK_LOCK(so); */ | |
1799 | mac_socketpeer_label_associate_mbuf(m, so); | |
1800 | /* XXXMAC: SOCK_UNLOCK(so); */ | |
1801 | #endif | |
1802 | /* Do window scaling on this connection? */ | |
1803 | if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == | |
1804 | (TF_RCVD_SCALE|TF_REQ_SCALE)) { | |
1805 | tp->snd_scale = tp->requested_s_scale; | |
1806 | tp->rcv_scale = tp->request_r_scale; | |
1807 | } | |
1808 | tp->rcv_adv += tp->rcv_wnd; | |
1809 | tp->snd_una++; /* SYN is acked */ | |
1810 | /* | |
1811 | * If there's data, delay ACK; if there's also a FIN | |
1812 | * ACKNOW will be turned on later. | |
1813 | */ | |
1814 | if (DELAY_ACK(tp) && tlen != 0) { | |
1815 | tp->t_flags |= TF_DELACK; | |
1816 | tp->t_unacksegs++; | |
1817 | } | |
1818 | else { | |
1819 | tp->t_flags |= TF_ACKNOW; | |
1820 | tp->t_unacksegs = 0; | |
1821 | } | |
1822 | /* | |
1823 | * Received <SYN,ACK> in SYN_SENT[*] state. | |
1824 | * Transitions: | |
1825 | * SYN_SENT --> ESTABLISHED | |
1826 | * SYN_SENT* --> FIN_WAIT_1 | |
1827 | */ | |
1828 | tp->t_starttime = 0; | |
1829 | if (tp->t_flags & TF_NEEDFIN) { | |
1830 | tp->t_state = TCPS_FIN_WAIT_1; | |
1831 | tp->t_flags &= ~TF_NEEDFIN; | |
1832 | thflags &= ~TH_SYN; | |
1833 | } else { | |
1834 | tp->t_state = TCPS_ESTABLISHED; | |
1835 | tp->t_timer[TCPT_KEEP] = TCP_KEEPIDLE(tp); | |
1836 | } | |
1837 | /* soisconnected may lead to socket_unlock in case of upcalls, | |
1838 | * make sure this is done when everything is setup. | |
1839 | */ | |
1840 | soisconnected(so); | |
1841 | } else { | |
1842 | /* | |
1843 | * Received initial SYN in SYN-SENT[*] state => simul- | |
1844 | * taneous open. If segment contains CC option and there is | |
1845 | * a cached CC, apply TAO test; if it succeeds, connection is | |
1846 | * half-synchronized. Otherwise, do 3-way handshake: | |
1847 | * SYN-SENT -> SYN-RECEIVED | |
1848 | * SYN-SENT* -> SYN-RECEIVED* | |
1849 | */ | |
1850 | tp->t_flags |= TF_ACKNOW; | |
1851 | tp->t_timer[TCPT_REXMT] = 0; | |
1852 | tp->t_state = TCPS_SYN_RECEIVED; | |
1853 | ||
1854 | } | |
1855 | ||
1856 | trimthenstep6: | |
1857 | /* | |
1858 | * Advance th->th_seq to correspond to first data byte. | |
1859 | * If data, trim to stay within window, | |
1860 | * dropping FIN if necessary. | |
1861 | */ | |
1862 | th->th_seq++; | |
1863 | if (tlen > tp->rcv_wnd) { | |
1864 | todrop = tlen - tp->rcv_wnd; | |
1865 | m_adj(m, -todrop); | |
1866 | tlen = tp->rcv_wnd; | |
1867 | thflags &= ~TH_FIN; | |
1868 | tcpstat.tcps_rcvpackafterwin++; | |
1869 | tcpstat.tcps_rcvbyteafterwin += todrop; | |
1870 | } | |
1871 | tp->snd_wl1 = th->th_seq - 1; | |
1872 | tp->rcv_up = th->th_seq; | |
1873 | /* | |
1874 | * Client side of transaction: already sent SYN and data. | |
1875 | * If the remote host used T/TCP to validate the SYN, | |
1876 | * our data will be ACK'd; if so, enter normal data segment | |
1877 | * processing in the middle of step 5, ack processing. | |
1878 | * Otherwise, goto step 6. | |
1879 | */ | |
1880 | if (thflags & TH_ACK) | |
1881 | goto process_ACK; | |
1882 | goto step6; | |
1883 | /* | |
1884 | * If the state is LAST_ACK or CLOSING or TIME_WAIT: | |
1885 | * do normal processing. | |
1886 | * | |
1887 | * NB: Leftover from RFC1644 T/TCP. Cases to be reused later. | |
1888 | */ | |
1889 | case TCPS_LAST_ACK: | |
1890 | case TCPS_CLOSING: | |
1891 | case TCPS_TIME_WAIT: | |
1892 | break; /* continue normal processing */ | |
1893 | ||
1894 | /* Received a SYN while connection is already established. | |
1895 | * This is a "half open connection and other anomalies" described | |
1896 | * in RFC793 page 34, send an ACK so the remote reset the connection | |
1897 | * or recovers by adjusting its sequence numberering | |
1898 | */ | |
1899 | case TCPS_ESTABLISHED: | |
1900 | if (thflags & TH_SYN) | |
1901 | goto dropafterack; | |
1902 | break; | |
1903 | } | |
1904 | ||
1905 | /* | |
1906 | * States other than LISTEN or SYN_SENT. | |
1907 | * First check the RST flag and sequence number since reset segments | |
1908 | * are exempt from the timestamp and connection count tests. This | |
1909 | * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix | |
1910 | * below which allowed reset segments in half the sequence space | |
1911 | * to fall though and be processed (which gives forged reset | |
1912 | * segments with a random sequence number a 50 percent chance of | |
1913 | * killing a connection). | |
1914 | * Then check timestamp, if present. | |
1915 | * Then check the connection count, if present. | |
1916 | * Then check that at least some bytes of segment are within | |
1917 | * receive window. If segment begins before rcv_nxt, | |
1918 | * drop leading data (and SYN); if nothing left, just ack. | |
1919 | * | |
1920 | * | |
1921 | * If the RST bit is set, check the sequence number to see | |
1922 | * if this is a valid reset segment. | |
1923 | * RFC 793 page 37: | |
1924 | * In all states except SYN-SENT, all reset (RST) segments | |
1925 | * are validated by checking their SEQ-fields. A reset is | |
1926 | * valid if its sequence number is in the window. | |
1927 | * Note: this does not take into account delayed ACKs, so | |
1928 | * we should test against last_ack_sent instead of rcv_nxt. | |
1929 | * The sequence number in the reset segment is normally an | |
1930 | * echo of our outgoing acknowlegement numbers, but some hosts | |
1931 | * send a reset with the sequence number at the rightmost edge | |
1932 | * of our receive window, and we have to handle this case. | |
1933 | * Note 2: Paul Watson's paper "Slipping in the Window" has shown | |
1934 | * that brute force RST attacks are possible. To combat this, | |
1935 | * we use a much stricter check while in the ESTABLISHED state, | |
1936 | * only accepting RSTs where the sequence number is equal to | |
1937 | * last_ack_sent. In all other states (the states in which a | |
1938 | * RST is more likely), the more permissive check is used. | |
1939 | * If we have multiple segments in flight, the intial reset | |
1940 | * segment sequence numbers will be to the left of last_ack_sent, | |
1941 | * but they will eventually catch up. | |
1942 | * In any case, it never made sense to trim reset segments to | |
1943 | * fit the receive window since RFC 1122 says: | |
1944 | * 4.2.2.12 RST Segment: RFC-793 Section 3.4 | |
1945 | * | |
1946 | * A TCP SHOULD allow a received RST segment to include data. | |
1947 | * | |
1948 | * DISCUSSION | |
1949 | * It has been suggested that a RST segment could contain | |
1950 | * ASCII text that encoded and explained the cause of the | |
1951 | * RST. No standard has yet been established for such | |
1952 | * data. | |
1953 | * | |
1954 | * If the reset segment passes the sequence number test examine | |
1955 | * the state: | |
1956 | * SYN_RECEIVED STATE: | |
1957 | * If passive open, return to LISTEN state. | |
1958 | * If active open, inform user that connection was refused. | |
1959 | * ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES: | |
1960 | * Inform user that connection was reset, and close tcb. | |
1961 | * CLOSING, LAST_ACK STATES: | |
1962 | * Close the tcb. | |
1963 | * TIME_WAIT STATE: | |
1964 | * Drop the segment - see Stevens, vol. 2, p. 964 and | |
1965 | * RFC 1337. | |
1966 | * | |
1967 | * Radar 4803931: Allows for the case where we ACKed the FIN but | |
1968 | * there is already a RST in flight from the peer. | |
1969 | * In that case, accept the RST for non-established | |
1970 | * state if it's one off from last_ack_sent. | |
1971 | ||
1972 | */ | |
1973 | if (thflags & TH_RST) { | |
1974 | if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) && | |
1975 | SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) || | |
1976 | (tp->rcv_wnd == 0 && | |
1977 | ((tp->last_ack_sent == th->th_seq) || ((tp->last_ack_sent -1) == th->th_seq)))) { | |
1978 | switch (tp->t_state) { | |
1979 | ||
1980 | case TCPS_SYN_RECEIVED: | |
1981 | so->so_error = ECONNREFUSED; | |
1982 | goto close; | |
1983 | ||
1984 | case TCPS_ESTABLISHED: | |
1985 | if (tp->last_ack_sent != th->th_seq) { | |
1986 | tcpstat.tcps_badrst++; | |
1987 | goto drop; | |
1988 | } | |
1989 | case TCPS_FIN_WAIT_1: | |
1990 | case TCPS_CLOSE_WAIT: | |
1991 | /* | |
1992 | Drop through ... | |
1993 | */ | |
1994 | case TCPS_FIN_WAIT_2: | |
1995 | so->so_error = ECONNRESET; | |
1996 | close: | |
1997 | postevent(so, 0, EV_RESET); | |
1998 | tp->t_state = TCPS_CLOSED; | |
1999 | tcpstat.tcps_drops++; | |
2000 | tp = tcp_close(tp); | |
2001 | break; | |
2002 | ||
2003 | case TCPS_CLOSING: | |
2004 | case TCPS_LAST_ACK: | |
2005 | tp = tcp_close(tp); | |
2006 | break; | |
2007 | ||
2008 | case TCPS_TIME_WAIT: | |
2009 | break; | |
2010 | } | |
2011 | } | |
2012 | goto drop; | |
2013 | } | |
2014 | ||
2015 | #if 0 | |
2016 | lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED); | |
2017 | #endif | |
2018 | ||
2019 | /* | |
2020 | * RFC 1323 PAWS: If we have a timestamp reply on this segment | |
2021 | * and it's less than ts_recent, drop it. | |
2022 | */ | |
2023 | if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent && | |
2024 | TSTMP_LT(to.to_tsval, tp->ts_recent)) { | |
2025 | ||
2026 | /* Check to see if ts_recent is over 24 days old. */ | |
2027 | if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) { | |
2028 | /* | |
2029 | * Invalidate ts_recent. If this segment updates | |
2030 | * ts_recent, the age will be reset later and ts_recent | |
2031 | * will get a valid value. If it does not, setting | |
2032 | * ts_recent to zero will at least satisfy the | |
2033 | * requirement that zero be placed in the timestamp | |
2034 | * echo reply when ts_recent isn't valid. The | |
2035 | * age isn't reset until we get a valid ts_recent | |
2036 | * because we don't want out-of-order segments to be | |
2037 | * dropped when ts_recent is old. | |
2038 | */ | |
2039 | tp->ts_recent = 0; | |
2040 | } else { | |
2041 | tcpstat.tcps_rcvduppack++; | |
2042 | tcpstat.tcps_rcvdupbyte += tlen; | |
2043 | tcpstat.tcps_pawsdrop++; | |
2044 | if (tlen) | |
2045 | goto dropafterack; | |
2046 | goto drop; | |
2047 | } | |
2048 | } | |
2049 | ||
2050 | /* | |
2051 | * In the SYN-RECEIVED state, validate that the packet belongs to | |
2052 | * this connection before trimming the data to fit the receive | |
2053 | * window. Check the sequence number versus IRS since we know | |
2054 | * the sequence numbers haven't wrapped. This is a partial fix | |
2055 | * for the "LAND" DoS attack. | |
2056 | */ | |
2057 | if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) { | |
2058 | rstreason = BANDLIM_RST_OPENPORT; | |
2059 | goto dropwithreset; | |
2060 | } | |
2061 | ||
2062 | todrop = tp->rcv_nxt - th->th_seq; | |
2063 | if (todrop > 0) { | |
2064 | if (thflags & TH_SYN) { | |
2065 | thflags &= ~TH_SYN; | |
2066 | th->th_seq++; | |
2067 | if (th->th_urp > 1) | |
2068 | th->th_urp--; | |
2069 | else | |
2070 | thflags &= ~TH_URG; | |
2071 | todrop--; | |
2072 | } | |
2073 | /* | |
2074 | * Following if statement from Stevens, vol. 2, p. 960. | |
2075 | */ | |
2076 | if (todrop > tlen | |
2077 | || (todrop == tlen && (thflags & TH_FIN) == 0)) { | |
2078 | /* | |
2079 | * Any valid FIN must be to the left of the window. | |
2080 | * At this point the FIN must be a duplicate or out | |
2081 | * of sequence; drop it. | |
2082 | */ | |
2083 | thflags &= ~TH_FIN; | |
2084 | ||
2085 | /* | |
2086 | * Send an ACK to resynchronize and drop any data. | |
2087 | * But keep on processing for RST or ACK. | |
2088 | */ | |
2089 | tp->t_flags |= TF_ACKNOW; | |
2090 | tp->t_unacksegs = 0; | |
2091 | todrop = tlen; | |
2092 | tcpstat.tcps_rcvduppack++; | |
2093 | tcpstat.tcps_rcvdupbyte += todrop; | |
2094 | } else { | |
2095 | tcpstat.tcps_rcvpartduppack++; | |
2096 | tcpstat.tcps_rcvpartdupbyte += todrop; | |
2097 | } | |
2098 | drop_hdrlen += todrop; /* drop from the top afterwards */ | |
2099 | th->th_seq += todrop; | |
2100 | tlen -= todrop; | |
2101 | if (th->th_urp > todrop) | |
2102 | th->th_urp -= todrop; | |
2103 | else { | |
2104 | thflags &= ~TH_URG; | |
2105 | th->th_urp = 0; | |
2106 | } | |
2107 | } | |
2108 | ||
2109 | /* | |
2110 | * If new data are received on a connection after the | |
2111 | * user processes are gone, then RST the other end. | |
2112 | */ | |
2113 | if ((so->so_state & SS_NOFDREF) && | |
2114 | tp->t_state > TCPS_CLOSE_WAIT && tlen) { | |
2115 | tp = tcp_close(tp); | |
2116 | tcpstat.tcps_rcvafterclose++; | |
2117 | rstreason = BANDLIM_UNLIMITED; | |
2118 | goto dropwithreset; | |
2119 | } | |
2120 | ||
2121 | /* | |
2122 | * If segment ends after window, drop trailing data | |
2123 | * (and PUSH and FIN); if nothing left, just ACK. | |
2124 | */ | |
2125 | todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd); | |
2126 | if (todrop > 0) { | |
2127 | tcpstat.tcps_rcvpackafterwin++; | |
2128 | if (todrop >= tlen) { | |
2129 | tcpstat.tcps_rcvbyteafterwin += tlen; | |
2130 | /* | |
2131 | * If a new connection request is received | |
2132 | * while in TIME_WAIT, drop the old connection | |
2133 | * and start over if the sequence numbers | |
2134 | * are above the previous ones. | |
2135 | */ | |
2136 | if (thflags & TH_SYN && | |
2137 | tp->t_state == TCPS_TIME_WAIT && | |
2138 | SEQ_GT(th->th_seq, tp->rcv_nxt)) { | |
2139 | iss = tcp_new_isn(tp); | |
2140 | tp = tcp_close(tp); | |
2141 | tcp_unlock(so, 1, 0); | |
2142 | goto findpcb; | |
2143 | } | |
2144 | /* | |
2145 | * If window is closed can only take segments at | |
2146 | * window edge, and have to drop data and PUSH from | |
2147 | * incoming segments. Continue processing, but | |
2148 | * remember to ack. Otherwise, drop segment | |
2149 | * and ack. | |
2150 | */ | |
2151 | if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) { | |
2152 | tp->t_flags |= TF_ACKNOW; | |
2153 | tp->t_unacksegs = 0; | |
2154 | tcpstat.tcps_rcvwinprobe++; | |
2155 | } else | |
2156 | goto dropafterack; | |
2157 | } else | |
2158 | tcpstat.tcps_rcvbyteafterwin += todrop; | |
2159 | m_adj(m, -todrop); | |
2160 | tlen -= todrop; | |
2161 | thflags &= ~(TH_PUSH|TH_FIN); | |
2162 | } | |
2163 | ||
2164 | /* | |
2165 | * If last ACK falls within this segment's sequence numbers, | |
2166 | * record its timestamp. | |
2167 | * NOTE: | |
2168 | * 1) That the test incorporates suggestions from the latest | |
2169 | * proposal of the tcplw@cray.com list (Braden 1993/04/26). | |
2170 | * 2) That updating only on newer timestamps interferes with | |
2171 | * our earlier PAWS tests, so this check should be solely | |
2172 | * predicated on the sequence space of this segment. | |
2173 | * 3) That we modify the segment boundary check to be | |
2174 | * Last.ACK.Sent <= SEG.SEQ + SEG.Len | |
2175 | * instead of RFC1323's | |
2176 | * Last.ACK.Sent < SEG.SEQ + SEG.Len, | |
2177 | * This modified check allows us to overcome RFC1323's | |
2178 | * limitations as described in Stevens TCP/IP Illustrated | |
2179 | * Vol. 2 p.869. In such cases, we can still calculate the | |
2180 | * RTT correctly when RCV.NXT == Last.ACK.Sent. | |
2181 | */ | |
2182 | if ((to.to_flags & TOF_TS) != 0 && | |
2183 | SEQ_LEQ(th->th_seq, tp->last_ack_sent) && | |
2184 | SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + | |
2185 | ((thflags & (TH_SYN|TH_FIN)) != 0))) { | |
2186 | tp->ts_recent_age = tcp_now; | |
2187 | tp->ts_recent = to.to_tsval; | |
2188 | } | |
2189 | ||
2190 | /* | |
2191 | * If a SYN is in the window, then this is an | |
2192 | * error and we send an RST and drop the connection. | |
2193 | */ | |
2194 | if (thflags & TH_SYN) { | |
2195 | tp = tcp_drop(tp, ECONNRESET); | |
2196 | rstreason = BANDLIM_UNLIMITED; | |
2197 | postevent(so, 0, EV_RESET); | |
2198 | goto dropwithreset; | |
2199 | } | |
2200 | ||
2201 | /* | |
2202 | * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN | |
2203 | * flag is on (half-synchronized state), then queue data for | |
2204 | * later processing; else drop segment and return. | |
2205 | */ | |
2206 | if ((thflags & TH_ACK) == 0) { | |
2207 | if (tp->t_state == TCPS_SYN_RECEIVED || | |
2208 | (tp->t_flags & TF_NEEDSYN)) | |
2209 | goto step6; | |
2210 | else if (tp->t_flags & TF_ACKNOW) | |
2211 | goto dropafterack; | |
2212 | else | |
2213 | goto drop; | |
2214 | } | |
2215 | ||
2216 | /* | |
2217 | * Ack processing. | |
2218 | */ | |
2219 | switch (tp->t_state) { | |
2220 | ||
2221 | /* | |
2222 | * In SYN_RECEIVED state, the ack ACKs our SYN, so enter | |
2223 | * ESTABLISHED state and continue processing. | |
2224 | * The ACK was checked above. | |
2225 | */ | |
2226 | case TCPS_SYN_RECEIVED: | |
2227 | ||
2228 | tcpstat.tcps_connects++; | |
2229 | ||
2230 | /* Do window scaling? */ | |
2231 | if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == | |
2232 | (TF_RCVD_SCALE|TF_REQ_SCALE)) { | |
2233 | tp->snd_scale = tp->requested_s_scale; | |
2234 | tp->rcv_scale = tp->request_r_scale; | |
2235 | } | |
2236 | /* | |
2237 | * Make transitions: | |
2238 | * SYN-RECEIVED -> ESTABLISHED | |
2239 | * SYN-RECEIVED* -> FIN-WAIT-1 | |
2240 | */ | |
2241 | tp->t_starttime = 0; | |
2242 | if (tp->t_flags & TF_NEEDFIN) { | |
2243 | tp->t_state = TCPS_FIN_WAIT_1; | |
2244 | tp->t_flags &= ~TF_NEEDFIN; | |
2245 | } else { | |
2246 | tp->t_state = TCPS_ESTABLISHED; | |
2247 | tp->t_timer[TCPT_KEEP] = TCP_KEEPIDLE(tp); | |
2248 | } | |
2249 | /* | |
2250 | * If segment contains data or ACK, will call tcp_reass() | |
2251 | * later; if not, do so now to pass queued data to user. | |
2252 | */ | |
2253 | if (tlen == 0 && (thflags & TH_FIN) == 0) | |
2254 | (void) tcp_reass(tp, (struct tcphdr *)0, &tlen, | |
2255 | (struct mbuf *)0); | |
2256 | tp->snd_wl1 = th->th_seq - 1; | |
2257 | ||
2258 | /* FALLTHROUGH */ | |
2259 | ||
2260 | /* soisconnected may lead to socket_unlock in case of upcalls, | |
2261 | * make sure this is done when everything is setup. | |
2262 | */ | |
2263 | soisconnected(so); | |
2264 | ||
2265 | /* | |
2266 | * In ESTABLISHED state: drop duplicate ACKs; ACK out of range | |
2267 | * ACKs. If the ack is in the range | |
2268 | * tp->snd_una < th->th_ack <= tp->snd_max | |
2269 | * then advance tp->snd_una to th->th_ack and drop | |
2270 | * data from the retransmission queue. If this ACK reflects | |
2271 | * more up to date window information we update our window information. | |
2272 | */ | |
2273 | case TCPS_ESTABLISHED: | |
2274 | case TCPS_FIN_WAIT_1: | |
2275 | case TCPS_FIN_WAIT_2: | |
2276 | case TCPS_CLOSE_WAIT: | |
2277 | case TCPS_CLOSING: | |
2278 | case TCPS_LAST_ACK: | |
2279 | case TCPS_TIME_WAIT: | |
2280 | if (SEQ_GT(th->th_ack, tp->snd_max)) { | |
2281 | tcpstat.tcps_rcvacktoomuch++; | |
2282 | goto dropafterack; | |
2283 | } | |
2284 | if (tp->sack_enable && | |
2285 | (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes))) | |
2286 | tcp_sack_doack(tp, &to, th->th_ack); | |
2287 | if (SEQ_LEQ(th->th_ack, tp->snd_una)) { | |
2288 | if (tlen == 0 && tiwin == tp->snd_wnd) { | |
2289 | tcpstat.tcps_rcvdupack++; | |
2290 | /* | |
2291 | * If we have outstanding data (other than | |
2292 | * a window probe), this is a completely | |
2293 | * duplicate ack (ie, window info didn't | |
2294 | * change), the ack is the biggest we've | |
2295 | * seen and we've seen exactly our rexmt | |
2296 | * threshhold of them, assume a packet | |
2297 | * has been dropped and retransmit it. | |
2298 | * Kludge snd_nxt & the congestion | |
2299 | * window so we send only this one | |
2300 | * packet. | |
2301 | * | |
2302 | * We know we're losing at the current | |
2303 | * window size so do congestion avoidance | |
2304 | * (set ssthresh to half the current window | |
2305 | * and pull our congestion window back to | |
2306 | * the new ssthresh). | |
2307 | * | |
2308 | * Dup acks mean that packets have left the | |
2309 | * network (they're now cached at the receiver) | |
2310 | * so bump cwnd by the amount in the receiver | |
2311 | * to keep a constant cwnd packets in the | |
2312 | * network. | |
2313 | */ | |
2314 | if (tp->t_timer[TCPT_REXMT] == 0 || | |
2315 | th->th_ack != tp->snd_una) | |
2316 | tp->t_dupacks = 0; | |
2317 | else if (++tp->t_dupacks > tcprexmtthresh || | |
2318 | ((tcp_do_newreno || tp->sack_enable) && | |
2319 | IN_FASTRECOVERY(tp))) { | |
2320 | if (tp->sack_enable && IN_FASTRECOVERY(tp)) { | |
2321 | int awnd; | |
2322 | ||
2323 | /* | |
2324 | * Compute the amount of data in flight first. | |
2325 | * We can inject new data into the pipe iff | |
2326 | * we have less than 1/2 the original window's | |
2327 | * worth of data in flight. | |
2328 | */ | |
2329 | awnd = (tp->snd_nxt - tp->snd_fack) + | |
2330 | tp->sackhint.sack_bytes_rexmit; | |
2331 | if (awnd < tp->snd_ssthresh) { | |
2332 | tp->snd_cwnd += tp->t_maxseg; | |
2333 | if (tp->snd_cwnd > tp->snd_ssthresh) | |
2334 | tp->snd_cwnd = tp->snd_ssthresh; | |
2335 | } | |
2336 | } else | |
2337 | tp->snd_cwnd += tp->t_maxseg; | |
2338 | tp->t_unacksegs = 0; | |
2339 | (void) tcp_output(tp); | |
2340 | goto drop; | |
2341 | } else if (tp->t_dupacks == tcprexmtthresh) { | |
2342 | tcp_seq onxt = tp->snd_nxt; | |
2343 | u_int win; | |
2344 | ||
2345 | /* | |
2346 | * If we're doing sack, check to | |
2347 | * see if we're already in sack | |
2348 | * recovery. If we're not doing sack, | |
2349 | * check to see if we're in newreno | |
2350 | * recovery. | |
2351 | */ | |
2352 | if (tp->sack_enable) { | |
2353 | if (IN_FASTRECOVERY(tp)) { | |
2354 | tp->t_dupacks = 0; | |
2355 | break; | |
2356 | } | |
2357 | } else if (tcp_do_newreno) { | |
2358 | if (SEQ_LEQ(th->th_ack, | |
2359 | tp->snd_recover)) { | |
2360 | tp->t_dupacks = 0; | |
2361 | break; | |
2362 | } | |
2363 | } | |
2364 | win = min(tp->snd_wnd, tp->snd_cwnd) / | |
2365 | 2 / tp->t_maxseg; | |
2366 | if (win < 2) | |
2367 | win = 2; | |
2368 | tp->snd_ssthresh = win * tp->t_maxseg; | |
2369 | ENTER_FASTRECOVERY(tp); | |
2370 | tp->snd_recover = tp->snd_max; | |
2371 | tp->t_timer[TCPT_REXMT] = 0; | |
2372 | tp->t_rtttime = 0; | |
2373 | tp->ecn_flags |= TE_SENDCWR; | |
2374 | if (tp->sack_enable) { | |
2375 | tcpstat.tcps_sack_recovery_episode++; | |
2376 | tp->sack_newdata = tp->snd_nxt; | |
2377 | tp->snd_cwnd = tp->t_maxseg; | |
2378 | tp->t_unacksegs = 0; | |
2379 | (void) tcp_output(tp); | |
2380 | goto drop; | |
2381 | } | |
2382 | tp->snd_nxt = th->th_ack; | |
2383 | tp->snd_cwnd = tp->t_maxseg; | |
2384 | tp->t_unacksegs = 0; | |
2385 | (void) tcp_output(tp); | |
2386 | tp->snd_cwnd = tp->snd_ssthresh + | |
2387 | tp->t_maxseg * tp->t_dupacks; | |
2388 | if (SEQ_GT(onxt, tp->snd_nxt)) | |
2389 | tp->snd_nxt = onxt; | |
2390 | goto drop; | |
2391 | } | |
2392 | } else | |
2393 | tp->t_dupacks = 0; | |
2394 | break; | |
2395 | } | |
2396 | /* | |
2397 | * If the congestion window was inflated to account | |
2398 | * for the other side's cached packets, retract it. | |
2399 | */ | |
2400 | if (tcp_do_newreno || tp->sack_enable) { | |
2401 | if (IN_FASTRECOVERY(tp)) { | |
2402 | if (SEQ_LT(th->th_ack, tp->snd_recover)) { | |
2403 | if (tp->sack_enable) | |
2404 | tcp_sack_partialack(tp, th); | |
2405 | else | |
2406 | tcp_newreno_partial_ack(tp, th); | |
2407 | } else { | |
2408 | /* | |
2409 | * Out of fast recovery. | |
2410 | * Window inflation should have left us | |
2411 | * with approximately snd_ssthresh | |
2412 | * outstanding data. | |
2413 | * But in case we would be inclined to | |
2414 | * send a burst, better to do it via | |
2415 | * the slow start mechanism. | |
2416 | */ | |
2417 | if (SEQ_GT(th->th_ack + | |
2418 | tp->snd_ssthresh, | |
2419 | tp->snd_max)) | |
2420 | tp->snd_cwnd = tp->snd_max - | |
2421 | th->th_ack + | |
2422 | tp->t_maxseg; | |
2423 | else | |
2424 | tp->snd_cwnd = tp->snd_ssthresh; | |
2425 | } | |
2426 | } | |
2427 | } else { | |
2428 | if (tp->t_dupacks >= tcprexmtthresh && | |
2429 | tp->snd_cwnd > tp->snd_ssthresh) | |
2430 | tp->snd_cwnd = tp->snd_ssthresh; | |
2431 | } | |
2432 | tp->t_dupacks = 0; | |
2433 | tp->t_bytes_acked = 0; | |
2434 | /* | |
2435 | * If we reach this point, ACK is not a duplicate, | |
2436 | * i.e., it ACKs something we sent. | |
2437 | */ | |
2438 | if (tp->t_flags & TF_NEEDSYN) { | |
2439 | /* | |
2440 | * T/TCP: Connection was half-synchronized, and our | |
2441 | * SYN has been ACK'd (so connection is now fully | |
2442 | * synchronized). Go to non-starred state, | |
2443 | * increment snd_una for ACK of SYN, and check if | |
2444 | * we can do window scaling. | |
2445 | */ | |
2446 | tp->t_flags &= ~TF_NEEDSYN; | |
2447 | tp->snd_una++; | |
2448 | /* Do window scaling? */ | |
2449 | if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == | |
2450 | (TF_RCVD_SCALE|TF_REQ_SCALE)) { | |
2451 | tp->snd_scale = tp->requested_s_scale; | |
2452 | tp->rcv_scale = tp->request_r_scale; | |
2453 | } | |
2454 | } | |
2455 | ||
2456 | process_ACK: | |
2457 | acked = th->th_ack - tp->snd_una; | |
2458 | tcpstat.tcps_rcvackpack++; | |
2459 | tcpstat.tcps_rcvackbyte += acked; | |
2460 | ||
2461 | /* | |
2462 | * If we just performed our first retransmit, and the ACK | |
2463 | * arrives within our recovery window, then it was a mistake | |
2464 | * to do the retransmit in the first place. Recover our | |
2465 | * original cwnd and ssthresh, and proceed to transmit where | |
2466 | * we left off. | |
2467 | */ | |
2468 | if (tp->t_rxtshift == 1 && tcp_now < tp->t_badrxtwin) { | |
2469 | ++tcpstat.tcps_sndrexmitbad; | |
2470 | tp->snd_cwnd = tp->snd_cwnd_prev; | |
2471 | tp->snd_ssthresh = tp->snd_ssthresh_prev; | |
2472 | tp->snd_recover = tp->snd_recover_prev; | |
2473 | if (tp->t_flags & TF_WASFRECOVERY) | |
2474 | ENTER_FASTRECOVERY(tp); | |
2475 | tp->snd_nxt = tp->snd_max; | |
2476 | tp->t_badrxtwin = 0; /* XXX probably not required */ | |
2477 | } | |
2478 | ||
2479 | /* | |
2480 | * If we have a timestamp reply, update smoothed | |
2481 | * round trip time. If no timestamp is present but | |
2482 | * transmit timer is running and timed sequence | |
2483 | * number was acked, update smoothed round trip time. | |
2484 | * Since we now have an rtt measurement, cancel the | |
2485 | * timer backoff (cf., Phil Karn's retransmit alg.). | |
2486 | * Recompute the initial retransmit timer. | |
2487 | * Also makes sure we have a valid time stamp in hand | |
2488 | * | |
2489 | * Some boxes send broken timestamp replies | |
2490 | * during the SYN+ACK phase, ignore | |
2491 | * timestamps of 0 or we could calculate a | |
2492 | * huge RTT and blow up the retransmit timer. | |
2493 | */ | |
2494 | if (((to.to_flags & TOF_TS) != 0) && (to.to_tsecr != 0)) { | |
2495 | if (!tp->t_rttlow || tp->t_rttlow > tcp_now - to.to_tsecr) | |
2496 | tp->t_rttlow = tcp_now - to.to_tsecr; | |
2497 | tcp_xmit_timer(tp, tcp_now - to.to_tsecr); | |
2498 | } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) { | |
2499 | if (!tp->t_rttlow || tp->t_rttlow > tcp_now - tp->t_rtttime) | |
2500 | tp->t_rttlow = tcp_now - tp->t_rtttime; | |
2501 | tcp_xmit_timer(tp, tp->t_rtttime); | |
2502 | } | |
2503 | ||
2504 | /* | |
2505 | * If all outstanding data is acked, stop retransmit | |
2506 | * timer and remember to restart (more output or persist). | |
2507 | * If there is more data to be acked, restart retransmit | |
2508 | * timer, using current (possibly backed-off) value. | |
2509 | */ | |
2510 | if (th->th_ack == tp->snd_max) { | |
2511 | tp->t_timer[TCPT_REXMT] = 0; | |
2512 | needoutput = 1; | |
2513 | } else if (tp->t_timer[TCPT_PERSIST] == 0) | |
2514 | tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; | |
2515 | ||
2516 | /* | |
2517 | * If no data (only SYN) was ACK'd, | |
2518 | * skip rest of ACK processing. | |
2519 | */ | |
2520 | if (acked == 0) | |
2521 | goto step6; | |
2522 | ||
2523 | /* | |
2524 | * When new data is acked, open the congestion window. | |
2525 | */ | |
2526 | if ((thflags & TH_ECE) != 0 && | |
2527 | (tp->ecn_flags & TE_SETUPSENT) != 0) { | |
2528 | /* | |
2529 | * Reduce the congestion window if we haven't done so. | |
2530 | */ | |
2531 | if (!(tp->sack_enable && IN_FASTRECOVERY(tp)) && | |
2532 | !(tcp_do_newreno && SEQ_LEQ(th->th_ack, tp->snd_recover))) { | |
2533 | tcp_reduce_congestion_window(tp); | |
2534 | } | |
2535 | } else if ((!tcp_do_newreno && !tp->sack_enable) || | |
2536 | !IN_FASTRECOVERY(tp)) { | |
2537 | /* | |
2538 | * RFC 3465 - Appropriate Byte Counting. | |
2539 | * | |
2540 | * If the window is currently less than ssthresh, | |
2541 | * open the window by the number of bytes ACKed by | |
2542 | * the last ACK, however clamp the window increase | |
2543 | * to an upper limit "L". | |
2544 | * | |
2545 | * In congestion avoidance phase, open the window by | |
2546 | * one segment each time "bytes_acked" grows to be | |
2547 | * greater than or equal to the congestion window. | |
2548 | */ | |
2549 | ||
2550 | register u_int cw = tp->snd_cwnd; | |
2551 | register u_int incr = tp->t_maxseg; | |
2552 | ||
2553 | if (cw >= tp->snd_ssthresh) { | |
2554 | tp->t_bytes_acked += acked; | |
2555 | if (tp->t_bytes_acked >= cw) { | |
2556 | /* Time to increase the window. */ | |
2557 | tp->t_bytes_acked -= cw; | |
2558 | } else { | |
2559 | /* No need to increase yet. */ | |
2560 | incr = 0; | |
2561 | } | |
2562 | } else { | |
2563 | /* | |
2564 | * If the user explicitly enables RFC3465 | |
2565 | * use 2*SMSS for the "L" param. Otherwise | |
2566 | * use the more conservative 1*SMSS. | |
2567 | * | |
2568 | * (See RFC 3465 2.3 Choosing the Limit) | |
2569 | */ | |
2570 | u_int abc_lim; | |
2571 | ||
2572 | abc_lim = (tcp_do_rfc3465 == 0) ? | |
2573 | incr : incr * 2; | |
2574 | incr = min(acked, abc_lim); | |
2575 | } | |
2576 | ||
2577 | tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale); | |
2578 | } | |
2579 | if (acked > so->so_snd.sb_cc) { | |
2580 | tp->snd_wnd -= so->so_snd.sb_cc; | |
2581 | sbdrop(&so->so_snd, (int)so->so_snd.sb_cc); | |
2582 | ourfinisacked = 1; | |
2583 | } else { | |
2584 | sbdrop(&so->so_snd, acked); | |
2585 | tp->snd_wnd -= acked; | |
2586 | ourfinisacked = 0; | |
2587 | } | |
2588 | /* detect una wraparound */ | |
2589 | if ((tcp_do_newreno || tp->sack_enable) && | |
2590 | !IN_FASTRECOVERY(tp) && | |
2591 | SEQ_GT(tp->snd_una, tp->snd_recover) && | |
2592 | SEQ_LEQ(th->th_ack, tp->snd_recover)) | |
2593 | tp->snd_recover = th->th_ack - 1; | |
2594 | if ((tcp_do_newreno || tp->sack_enable) && | |
2595 | IN_FASTRECOVERY(tp) && | |
2596 | SEQ_GEQ(th->th_ack, tp->snd_recover)) | |
2597 | EXIT_FASTRECOVERY(tp); | |
2598 | tp->snd_una = th->th_ack; | |
2599 | if (tp->sack_enable) { | |
2600 | if (SEQ_GT(tp->snd_una, tp->snd_recover)) | |
2601 | tp->snd_recover = tp->snd_una; | |
2602 | } | |
2603 | if (SEQ_LT(tp->snd_nxt, tp->snd_una)) | |
2604 | tp->snd_nxt = tp->snd_una; | |
2605 | ||
2606 | /* | |
2607 | * sowwakeup must happen after snd_una, et al. are updated so that | |
2608 | * the sequence numbers are in sync with so_snd | |
2609 | */ | |
2610 | sowwakeup(so); | |
2611 | ||
2612 | switch (tp->t_state) { | |
2613 | ||
2614 | /* | |
2615 | * In FIN_WAIT_1 STATE in addition to the processing | |
2616 | * for the ESTABLISHED state if our FIN is now acknowledged | |
2617 | * then enter FIN_WAIT_2. | |
2618 | */ | |
2619 | case TCPS_FIN_WAIT_1: | |
2620 | if (ourfinisacked) { | |
2621 | /* | |
2622 | * If we can't receive any more | |
2623 | * data, then closing user can proceed. | |
2624 | * Starting the timer is contrary to the | |
2625 | * specification, but if we don't get a FIN | |
2626 | * we'll hang forever. | |
2627 | */ | |
2628 | if (so->so_state & SS_CANTRCVMORE) { | |
2629 | tp->t_timer[TCPT_2MSL] = tcp_maxidle; | |
2630 | add_to_time_wait(tp); | |
2631 | soisdisconnected(so); | |
2632 | } | |
2633 | tp->t_state = TCPS_FIN_WAIT_2; | |
2634 | goto drop; | |
2635 | } | |
2636 | break; | |
2637 | ||
2638 | /* | |
2639 | * In CLOSING STATE in addition to the processing for | |
2640 | * the ESTABLISHED state if the ACK acknowledges our FIN | |
2641 | * then enter the TIME-WAIT state, otherwise ignore | |
2642 | * the segment. | |
2643 | */ | |
2644 | case TCPS_CLOSING: | |
2645 | if (ourfinisacked) { | |
2646 | tp->t_state = TCPS_TIME_WAIT; | |
2647 | tcp_canceltimers(tp); | |
2648 | /* Shorten TIME_WAIT [RFC-1644, p.28] */ | |
2649 | if (tp->cc_recv != 0 && | |
2650 | tp->t_starttime < (u_long)tcp_msl) | |
2651 | tp->t_timer[TCPT_2MSL] = | |
2652 | tp->t_rxtcur * TCPTV_TWTRUNC; | |
2653 | else | |
2654 | tp->t_timer[TCPT_2MSL] = 2 * tcp_msl; | |
2655 | add_to_time_wait(tp); | |
2656 | soisdisconnected(so); | |
2657 | } | |
2658 | break; | |
2659 | ||
2660 | /* | |
2661 | * In LAST_ACK, we may still be waiting for data to drain | |
2662 | * and/or to be acked, as well as for the ack of our FIN. | |
2663 | * If our FIN is now acknowledged, delete the TCB, | |
2664 | * enter the closed state and return. | |
2665 | */ | |
2666 | case TCPS_LAST_ACK: | |
2667 | if (ourfinisacked) { | |
2668 | tp = tcp_close(tp); | |
2669 | goto drop; | |
2670 | } | |
2671 | break; | |
2672 | ||
2673 | /* | |
2674 | * In TIME_WAIT state the only thing that should arrive | |
2675 | * is a retransmission of the remote FIN. Acknowledge | |
2676 | * it and restart the finack timer. | |
2677 | */ | |
2678 | case TCPS_TIME_WAIT: | |
2679 | tp->t_timer[TCPT_2MSL] = 2 * tcp_msl; | |
2680 | add_to_time_wait(tp); | |
2681 | goto dropafterack; | |
2682 | } | |
2683 | } | |
2684 | ||
2685 | step6: | |
2686 | /* | |
2687 | * Update window information. | |
2688 | * Don't look at window if no ACK: TAC's send garbage on first SYN. | |
2689 | */ | |
2690 | if ((thflags & TH_ACK) && | |
2691 | (SEQ_LT(tp->snd_wl1, th->th_seq) || | |
2692 | (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || | |
2693 | (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { | |
2694 | /* keep track of pure window updates */ | |
2695 | if (tlen == 0 && | |
2696 | tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) | |
2697 | tcpstat.tcps_rcvwinupd++; | |
2698 | tp->snd_wnd = tiwin; | |
2699 | tp->snd_wl1 = th->th_seq; | |
2700 | tp->snd_wl2 = th->th_ack; | |
2701 | if (tp->snd_wnd > tp->max_sndwnd) | |
2702 | tp->max_sndwnd = tp->snd_wnd; | |
2703 | needoutput = 1; | |
2704 | } | |
2705 | ||
2706 | /* | |
2707 | * Process segments with URG. | |
2708 | */ | |
2709 | if ((thflags & TH_URG) && th->th_urp && | |
2710 | TCPS_HAVERCVDFIN(tp->t_state) == 0) { | |
2711 | /* | |
2712 | * This is a kludge, but if we receive and accept | |
2713 | * random urgent pointers, we'll crash in | |
2714 | * soreceive. It's hard to imagine someone | |
2715 | * actually wanting to send this much urgent data. | |
2716 | */ | |
2717 | if (th->th_urp + so->so_rcv.sb_cc > sb_max) { | |
2718 | th->th_urp = 0; /* XXX */ | |
2719 | thflags &= ~TH_URG; /* XXX */ | |
2720 | goto dodata; /* XXX */ | |
2721 | } | |
2722 | /* | |
2723 | * If this segment advances the known urgent pointer, | |
2724 | * then mark the data stream. This should not happen | |
2725 | * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since | |
2726 | * a FIN has been received from the remote side. | |
2727 | * In these states we ignore the URG. | |
2728 | * | |
2729 | * According to RFC961 (Assigned Protocols), | |
2730 | * the urgent pointer points to the last octet | |
2731 | * of urgent data. We continue, however, | |
2732 | * to consider it to indicate the first octet | |
2733 | * of data past the urgent section as the original | |
2734 | * spec states (in one of two places). | |
2735 | */ | |
2736 | if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) { | |
2737 | tp->rcv_up = th->th_seq + th->th_urp; | |
2738 | so->so_oobmark = so->so_rcv.sb_cc + | |
2739 | (tp->rcv_up - tp->rcv_nxt) - 1; | |
2740 | if (so->so_oobmark == 0) { | |
2741 | so->so_state |= SS_RCVATMARK; | |
2742 | postevent(so, 0, EV_OOB); | |
2743 | } | |
2744 | sohasoutofband(so); | |
2745 | tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); | |
2746 | } | |
2747 | /* | |
2748 | * Remove out of band data so doesn't get presented to user. | |
2749 | * This can happen independent of advancing the URG pointer, | |
2750 | * but if two URG's are pending at once, some out-of-band | |
2751 | * data may creep in... ick. | |
2752 | */ | |
2753 | if (th->th_urp <= (u_long)tlen | |
2754 | #if SO_OOBINLINE | |
2755 | && (so->so_options & SO_OOBINLINE) == 0 | |
2756 | #endif | |
2757 | ) | |
2758 | tcp_pulloutofband(so, th, m, | |
2759 | drop_hdrlen); /* hdr drop is delayed */ | |
2760 | } else | |
2761 | /* | |
2762 | * If no out of band data is expected, | |
2763 | * pull receive urgent pointer along | |
2764 | * with the receive window. | |
2765 | */ | |
2766 | if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) | |
2767 | tp->rcv_up = tp->rcv_nxt; | |
2768 | dodata: /* XXX */ | |
2769 | ||
2770 | /* | |
2771 | * Process the segment text, merging it into the TCP sequencing queue, | |
2772 | * and arranging for acknowledgment of receipt if necessary. | |
2773 | * This process logically involves adjusting tp->rcv_wnd as data | |
2774 | * is presented to the user (this happens in tcp_usrreq.c, | |
2775 | * case PRU_RCVD). If a FIN has already been received on this | |
2776 | * connection then we just ignore the text. | |
2777 | */ | |
2778 | if ((tlen || (thflags&TH_FIN)) && | |
2779 | TCPS_HAVERCVDFIN(tp->t_state) == 0) { | |
2780 | tcp_seq save_start = th->th_seq; | |
2781 | tcp_seq save_end = th->th_seq + tlen; | |
2782 | m_adj(m, drop_hdrlen); /* delayed header drop */ | |
2783 | /* | |
2784 | * Insert segment which includes th into TCP reassembly queue | |
2785 | * with control block tp. Set thflags to whether reassembly now | |
2786 | * includes a segment with FIN. This handles the common case | |
2787 | * inline (segment is the next to be received on an established | |
2788 | * connection, and the queue is empty), avoiding linkage into | |
2789 | * and removal from the queue and repetition of various | |
2790 | * conversions. | |
2791 | * Set DELACK for segments received in order, but ack | |
2792 | * immediately when segments are out of order (so | |
2793 | * fast retransmit can work). | |
2794 | */ | |
2795 | if (th->th_seq == tp->rcv_nxt && | |
2796 | LIST_EMPTY(&tp->t_segq) && | |
2797 | TCPS_HAVEESTABLISHED(tp->t_state)) { | |
2798 | if (DELAY_ACK(tp) && ((tp->t_flags & TF_ACKNOW) == 0)) { | |
2799 | tp->t_flags |= TF_DELACK; | |
2800 | tp->t_unacksegs++; | |
2801 | } | |
2802 | else { | |
2803 | tp->t_unacksegs = 0; | |
2804 | tp->t_flags |= TF_ACKNOW; | |
2805 | } | |
2806 | tp->rcv_nxt += tlen; | |
2807 | thflags = th->th_flags & TH_FIN; | |
2808 | tcpstat.tcps_rcvpack++; | |
2809 | tcpstat.tcps_rcvbyte += tlen; | |
2810 | ND6_HINT(tp); | |
2811 | if (sbappendstream(&so->so_rcv, m)) | |
2812 | sorwakeup(so); | |
2813 | } else { | |
2814 | thflags = tcp_reass(tp, th, &tlen, m); | |
2815 | tp->t_flags |= TF_ACKNOW; | |
2816 | tp->t_unacksegs = 0; | |
2817 | } | |
2818 | ||
2819 | if (tlen > 0 && tp->sack_enable) | |
2820 | tcp_update_sack_list(tp, save_start, save_end); | |
2821 | ||
2822 | if (tp->t_flags & TF_DELACK) | |
2823 | { | |
2824 | #if INET6 | |
2825 | if (isipv6) { | |
2826 | KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport), | |
2827 | (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])), | |
2828 | th->th_seq, th->th_ack, th->th_win); | |
2829 | } | |
2830 | else | |
2831 | #endif | |
2832 | { | |
2833 | KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport), | |
2834 | (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)), | |
2835 | th->th_seq, th->th_ack, th->th_win); | |
2836 | } | |
2837 | ||
2838 | } | |
2839 | /* | |
2840 | * Note the amount of data that peer has sent into | |
2841 | * our window, in order to estimate the sender's | |
2842 | * buffer size. | |
2843 | */ | |
2844 | len = (u_int)(so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt)); | |
2845 | if (len > so->so_rcv.sb_maxused) | |
2846 | so->so_rcv.sb_maxused = len; | |
2847 | } else { | |
2848 | m_freem(m); | |
2849 | thflags &= ~TH_FIN; | |
2850 | } | |
2851 | ||
2852 | /* | |
2853 | * If FIN is received ACK the FIN and let the user know | |
2854 | * that the connection is closing. | |
2855 | */ | |
2856 | if (thflags & TH_FIN) { | |
2857 | if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { | |
2858 | socantrcvmore(so); | |
2859 | postevent(so, 0, EV_FIN); | |
2860 | /* | |
2861 | * If connection is half-synchronized | |
2862 | * (ie NEEDSYN flag on) then delay ACK, | |
2863 | * If connection is half-synchronized | |
2864 | * (ie NEEDSYN flag on) then delay ACK, | |
2865 | * so it may be piggybacked when SYN is sent. | |
2866 | * Otherwise, since we received a FIN then no | |
2867 | * more input can be expected, send ACK now. | |
2868 | */ | |
2869 | if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) { | |
2870 | tp->t_flags |= TF_DELACK; | |
2871 | tp->t_unacksegs++; | |
2872 | } | |
2873 | else { | |
2874 | tp->t_flags |= TF_ACKNOW; | |
2875 | tp->t_unacksegs = 0; | |
2876 | } | |
2877 | tp->rcv_nxt++; | |
2878 | } | |
2879 | switch (tp->t_state) { | |
2880 | ||
2881 | /* | |
2882 | * In SYN_RECEIVED and ESTABLISHED STATES | |
2883 | * enter the CLOSE_WAIT state. | |
2884 | */ | |
2885 | case TCPS_SYN_RECEIVED: | |
2886 | tp->t_starttime = 0; | |
2887 | case TCPS_ESTABLISHED: | |
2888 | tp->t_state = TCPS_CLOSE_WAIT; | |
2889 | break; | |
2890 | ||
2891 | /* | |
2892 | * If still in FIN_WAIT_1 STATE FIN has not been acked so | |
2893 | * enter the CLOSING state. | |
2894 | */ | |
2895 | case TCPS_FIN_WAIT_1: | |
2896 | tp->t_state = TCPS_CLOSING; | |
2897 | break; | |
2898 | ||
2899 | /* | |
2900 | * In FIN_WAIT_2 state enter the TIME_WAIT state, | |
2901 | * starting the time-wait timer, turning off the other | |
2902 | * standard timers. | |
2903 | */ | |
2904 | case TCPS_FIN_WAIT_2: | |
2905 | tp->t_state = TCPS_TIME_WAIT; | |
2906 | tcp_canceltimers(tp); | |
2907 | /* Shorten TIME_WAIT [RFC-1644, p.28] */ | |
2908 | if (tp->cc_recv != 0 && | |
2909 | tp->t_starttime < (u_long)tcp_msl) { | |
2910 | tp->t_timer[TCPT_2MSL] = | |
2911 | tp->t_rxtcur * TCPTV_TWTRUNC; | |
2912 | /* For transaction client, force ACK now. */ | |
2913 | tp->t_flags |= TF_ACKNOW; | |
2914 | tp->t_unacksegs = 0; | |
2915 | } | |
2916 | else | |
2917 | tp->t_timer[TCPT_2MSL] = 2 * tcp_msl; | |
2918 | ||
2919 | add_to_time_wait(tp); | |
2920 | soisdisconnected(so); | |
2921 | break; | |
2922 | ||
2923 | /* | |
2924 | * In TIME_WAIT state restart the 2 MSL time_wait timer. | |
2925 | */ | |
2926 | case TCPS_TIME_WAIT: | |
2927 | tp->t_timer[TCPT_2MSL] = 2 * tcp_msl; | |
2928 | add_to_time_wait(tp); | |
2929 | break; | |
2930 | } | |
2931 | } | |
2932 | #if TCPDEBUG | |
2933 | if (so->so_options & SO_DEBUG) | |
2934 | tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, | |
2935 | &tcp_savetcp, 0); | |
2936 | #endif | |
2937 | ||
2938 | /* | |
2939 | * Return any desired output. | |
2940 | */ | |
2941 | if (needoutput || (tp->t_flags & TF_ACKNOW)) { | |
2942 | tp->t_unacksegs = 0; | |
2943 | (void) tcp_output(tp); | |
2944 | } | |
2945 | tcp_unlock(so, 1, 0); | |
2946 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0); | |
2947 | return; | |
2948 | ||
2949 | dropafterack: | |
2950 | /* | |
2951 | * Generate an ACK dropping incoming segment if it occupies | |
2952 | * sequence space, where the ACK reflects our state. | |
2953 | * | |
2954 | * We can now skip the test for the RST flag since all | |
2955 | * paths to this code happen after packets containing | |
2956 | * RST have been dropped. | |
2957 | * | |
2958 | * In the SYN-RECEIVED state, don't send an ACK unless the | |
2959 | * segment we received passes the SYN-RECEIVED ACK test. | |
2960 | * If it fails send a RST. This breaks the loop in the | |
2961 | * "LAND" DoS attack, and also prevents an ACK storm | |
2962 | * between two listening ports that have been sent forged | |
2963 | * SYN segments, each with the source address of the other. | |
2964 | */ | |
2965 | if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) && | |
2966 | (SEQ_GT(tp->snd_una, th->th_ack) || | |
2967 | SEQ_GT(th->th_ack, tp->snd_max)) ) { | |
2968 | rstreason = BANDLIM_RST_OPENPORT; | |
2969 | goto dropwithreset; | |
2970 | } | |
2971 | #if TCPDEBUG | |
2972 | if (so->so_options & SO_DEBUG) | |
2973 | tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, | |
2974 | &tcp_savetcp, 0); | |
2975 | #endif | |
2976 | m_freem(m); | |
2977 | tp->t_flags |= TF_ACKNOW; | |
2978 | tp->t_unacksegs = 0; | |
2979 | (void) tcp_output(tp); | |
2980 | tcp_unlock(so, 1, 0); | |
2981 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0); | |
2982 | return; | |
2983 | dropwithresetnosock: | |
2984 | nosock = 1; | |
2985 | dropwithreset: | |
2986 | /* | |
2987 | * Generate a RST, dropping incoming segment. | |
2988 | * Make ACK acceptable to originator of segment. | |
2989 | * Don't bother to respond if destination was broadcast/multicast. | |
2990 | */ | |
2991 | if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST)) | |
2992 | goto drop; | |
2993 | #if INET6 | |
2994 | if (isipv6) { | |
2995 | if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || | |
2996 | IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) | |
2997 | goto drop; | |
2998 | } else | |
2999 | #endif /* INET6 */ | |
3000 | if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || | |
3001 | IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || | |
3002 | ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || | |
3003 | in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) | |
3004 | goto drop; | |
3005 | /* IPv6 anycast check is done at tcp6_input() */ | |
3006 | ||
3007 | /* | |
3008 | * Perform bandwidth limiting. | |
3009 | */ | |
3010 | #if ICMP_BANDLIM | |
3011 | if (badport_bandlim(rstreason) < 0) | |
3012 | goto drop; | |
3013 | #endif | |
3014 | ||
3015 | #if TCPDEBUG | |
3016 | if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) | |
3017 | tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, | |
3018 | &tcp_savetcp, 0); | |
3019 | #endif | |
3020 | if (thflags & TH_ACK) | |
3021 | /* mtod() below is safe as long as hdr dropping is delayed */ | |
3022 | tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack, | |
3023 | TH_RST, m->m_pkthdr.rcvif); | |
3024 | else { | |
3025 | if (thflags & TH_SYN) | |
3026 | tlen++; | |
3027 | /* mtod() below is safe as long as hdr dropping is delayed */ | |
3028 | tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen, | |
3029 | (tcp_seq)0, TH_RST|TH_ACK, m->m_pkthdr.rcvif); | |
3030 | } | |
3031 | /* destroy temporarily created socket */ | |
3032 | if (dropsocket) { | |
3033 | (void) soabort(so); | |
3034 | tcp_unlock(so, 1, 0); | |
3035 | } | |
3036 | else | |
3037 | if ((inp != NULL) && (nosock == 0)) | |
3038 | tcp_unlock(so, 1, 0); | |
3039 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0); | |
3040 | return; | |
3041 | dropnosock: | |
3042 | nosock = 1; | |
3043 | drop: | |
3044 | /* | |
3045 | * Drop space held by incoming segment and return. | |
3046 | */ | |
3047 | #if TCPDEBUG | |
3048 | if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) | |
3049 | tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, | |
3050 | &tcp_savetcp, 0); | |
3051 | #endif | |
3052 | m_freem(m); | |
3053 | /* destroy temporarily created socket */ | |
3054 | if (dropsocket) { | |
3055 | (void) soabort(so); | |
3056 | tcp_unlock(so, 1, 0); | |
3057 | } | |
3058 | else | |
3059 | if (nosock == 0) | |
3060 | tcp_unlock(so, 1, 0); | |
3061 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0); | |
3062 | return; | |
3063 | } | |
3064 | ||
3065 | static void | |
3066 | tcp_dooptions(tp, cp, cnt, th, to) | |
3067 | /* | |
3068 | * Parse TCP options and place in tcpopt. | |
3069 | */ | |
3070 | struct tcpcb *tp; | |
3071 | u_char *cp; | |
3072 | int cnt; | |
3073 | struct tcphdr *th; | |
3074 | struct tcpopt *to; | |
3075 | { | |
3076 | u_short mss = 0; | |
3077 | int opt, optlen; | |
3078 | ||
3079 | for (; cnt > 0; cnt -= optlen, cp += optlen) { | |
3080 | opt = cp[0]; | |
3081 | if (opt == TCPOPT_EOL) | |
3082 | break; | |
3083 | if (opt == TCPOPT_NOP) | |
3084 | optlen = 1; | |
3085 | else { | |
3086 | if (cnt < 2) | |
3087 | break; | |
3088 | optlen = cp[1]; | |
3089 | if (optlen < 2 || optlen > cnt) | |
3090 | break; | |
3091 | } | |
3092 | switch (opt) { | |
3093 | ||
3094 | default: | |
3095 | continue; | |
3096 | ||
3097 | case TCPOPT_MAXSEG: | |
3098 | if (optlen != TCPOLEN_MAXSEG) | |
3099 | continue; | |
3100 | if (!(th->th_flags & TH_SYN)) | |
3101 | continue; | |
3102 | bcopy((char *) cp + 2, (char *) &mss, sizeof(mss)); | |
3103 | NTOHS(mss); | |
3104 | break; | |
3105 | ||
3106 | case TCPOPT_WINDOW: | |
3107 | if (optlen != TCPOLEN_WINDOW) | |
3108 | continue; | |
3109 | if (!(th->th_flags & TH_SYN)) | |
3110 | continue; | |
3111 | tp->t_flags |= TF_RCVD_SCALE; | |
3112 | tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT); | |
3113 | break; | |
3114 | ||
3115 | case TCPOPT_TIMESTAMP: | |
3116 | if (optlen != TCPOLEN_TIMESTAMP) | |
3117 | continue; | |
3118 | to->to_flags |= TOF_TS; | |
3119 | bcopy((char *)cp + 2, | |
3120 | (char *)&to->to_tsval, sizeof(to->to_tsval)); | |
3121 | NTOHL(to->to_tsval); | |
3122 | bcopy((char *)cp + 6, | |
3123 | (char *)&to->to_tsecr, sizeof(to->to_tsecr)); | |
3124 | NTOHL(to->to_tsecr); | |
3125 | ||
3126 | /* | |
3127 | * A timestamp received in a SYN makes | |
3128 | * it ok to send timestamp requests and replies. | |
3129 | */ | |
3130 | if (th->th_flags & TH_SYN) { | |
3131 | tp->t_flags |= TF_RCVD_TSTMP; | |
3132 | tp->ts_recent = to->to_tsval; | |
3133 | tp->ts_recent_age = tcp_now; | |
3134 | } | |
3135 | break; | |
3136 | case TCPOPT_SACK_PERMITTED: | |
3137 | if (!tcp_do_sack || | |
3138 | optlen != TCPOLEN_SACK_PERMITTED) | |
3139 | continue; | |
3140 | if (th->th_flags & TH_SYN) | |
3141 | to->to_flags |= TOF_SACK; | |
3142 | break; | |
3143 | case TCPOPT_SACK: | |
3144 | if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0) | |
3145 | continue; | |
3146 | to->to_nsacks = (optlen - 2) / TCPOLEN_SACK; | |
3147 | to->to_sacks = cp + 2; | |
3148 | tcpstat.tcps_sack_rcv_blocks++; | |
3149 | ||
3150 | break; | |
3151 | } | |
3152 | } | |
3153 | if (th->th_flags & TH_SYN) | |
3154 | tcp_mss(tp, mss); /* sets t_maxseg */ | |
3155 | } | |
3156 | ||
3157 | /* | |
3158 | * Pull out of band byte out of a segment so | |
3159 | * it doesn't appear in the user's data queue. | |
3160 | * It is still reflected in the segment length for | |
3161 | * sequencing purposes. | |
3162 | */ | |
3163 | static void | |
3164 | tcp_pulloutofband(so, th, m, off) | |
3165 | struct socket *so; | |
3166 | struct tcphdr *th; | |
3167 | register struct mbuf *m; | |
3168 | int off; /* delayed to be droped hdrlen */ | |
3169 | { | |
3170 | int cnt = off + th->th_urp - 1; | |
3171 | ||
3172 | while (cnt >= 0) { | |
3173 | if (m->m_len > cnt) { | |
3174 | char *cp = mtod(m, caddr_t) + cnt; | |
3175 | struct tcpcb *tp = sototcpcb(so); | |
3176 | ||
3177 | tp->t_iobc = *cp; | |
3178 | tp->t_oobflags |= TCPOOB_HAVEDATA; | |
3179 | bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1)); | |
3180 | m->m_len--; | |
3181 | if (m->m_flags & M_PKTHDR) | |
3182 | m->m_pkthdr.len--; | |
3183 | return; | |
3184 | } | |
3185 | cnt -= m->m_len; | |
3186 | m = m->m_next; | |
3187 | if (m == 0) | |
3188 | break; | |
3189 | } | |
3190 | panic("tcp_pulloutofband"); | |
3191 | } | |
3192 | ||
3193 | /* | |
3194 | * Collect new round-trip time estimate | |
3195 | * and update averages and current timeout. | |
3196 | */ | |
3197 | static void | |
3198 | tcp_xmit_timer(tp, rtt) | |
3199 | register struct tcpcb *tp; | |
3200 | int rtt; | |
3201 | { | |
3202 | register int delta; | |
3203 | ||
3204 | tcpstat.tcps_rttupdated++; | |
3205 | tp->t_rttupdated++; | |
3206 | if (tp->t_srtt != 0) { | |
3207 | /* | |
3208 | * srtt is stored as fixed point with 5 bits after the | |
3209 | * binary point (i.e., scaled by 8). The following magic | |
3210 | * is equivalent to the smoothing algorithm in rfc793 with | |
3211 | * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed | |
3212 | * point). Adjust rtt to origin 0. | |
3213 | */ | |
3214 | delta = ((rtt - 1) << TCP_DELTA_SHIFT) | |
3215 | - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)); | |
3216 | ||
3217 | if ((tp->t_srtt += delta) <= 0) | |
3218 | tp->t_srtt = 1; | |
3219 | ||
3220 | /* | |
3221 | * We accumulate a smoothed rtt variance (actually, a | |
3222 | * smoothed mean difference), then set the retransmit | |
3223 | * timer to smoothed rtt + 4 times the smoothed variance. | |
3224 | * rttvar is stored as fixed point with 4 bits after the | |
3225 | * binary point (scaled by 16). The following is | |
3226 | * equivalent to rfc793 smoothing with an alpha of .75 | |
3227 | * (rttvar = rttvar*3/4 + |delta| / 4). This replaces | |
3228 | * rfc793's wired-in beta. | |
3229 | */ | |
3230 | if (delta < 0) | |
3231 | delta = -delta; | |
3232 | delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT); | |
3233 | if ((tp->t_rttvar += delta) <= 0) | |
3234 | tp->t_rttvar = 1; | |
3235 | if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar) | |
3236 | tp->t_rttbest = tp->t_srtt + tp->t_rttvar; | |
3237 | } else { | |
3238 | /* | |
3239 | * No rtt measurement yet - use the unsmoothed rtt. | |
3240 | * Set the variance to half the rtt (so our first | |
3241 | * retransmit happens at 3*rtt). | |
3242 | */ | |
3243 | tp->t_srtt = rtt << TCP_RTT_SHIFT; | |
3244 | tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); | |
3245 | tp->t_rttbest = tp->t_srtt + tp->t_rttvar; | |
3246 | } | |
3247 | tp->t_rtttime = 0; | |
3248 | tp->t_rxtshift = 0; | |
3249 | ||
3250 | /* | |
3251 | * the retransmit should happen at rtt + 4 * rttvar. | |
3252 | * Because of the way we do the smoothing, srtt and rttvar | |
3253 | * will each average +1/2 tick of bias. When we compute | |
3254 | * the retransmit timer, we want 1/2 tick of rounding and | |
3255 | * 1 extra tick because of +-1/2 tick uncertainty in the | |
3256 | * firing of the timer. The bias will give us exactly the | |
3257 | * 1.5 tick we need. But, because the bias is | |
3258 | * statistical, we have to test that we don't drop below | |
3259 | * the minimum feasible timer (which is 2 ticks). | |
3260 | */ | |
3261 | TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), | |
3262 | max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX); | |
3263 | ||
3264 | /* | |
3265 | * We received an ack for a packet that wasn't retransmitted; | |
3266 | * it is probably safe to discard any error indications we've | |
3267 | * received recently. This isn't quite right, but close enough | |
3268 | * for now (a route might have failed after we sent a segment, | |
3269 | * and the return path might not be symmetrical). | |
3270 | */ | |
3271 | tp->t_softerror = 0; | |
3272 | } | |
3273 | ||
3274 | static inline unsigned int | |
3275 | tcp_maxmtu(struct rtentry *rt) | |
3276 | { | |
3277 | unsigned int maxmtu; | |
3278 | ||
3279 | if (rt->rt_rmx.rmx_mtu == 0) | |
3280 | maxmtu = rt->rt_ifp->if_mtu; | |
3281 | else | |
3282 | maxmtu = MIN(rt->rt_rmx.rmx_mtu, rt->rt_ifp->if_mtu); | |
3283 | ||
3284 | return (maxmtu); | |
3285 | } | |
3286 | ||
3287 | #if INET6 | |
3288 | static inline unsigned int | |
3289 | tcp_maxmtu6(struct rtentry *rt) | |
3290 | { | |
3291 | unsigned int maxmtu; | |
3292 | ||
3293 | if (rt->rt_rmx.rmx_mtu == 0) | |
3294 | maxmtu = IN6_LINKMTU(rt->rt_ifp); | |
3295 | else | |
3296 | maxmtu = MIN(rt->rt_rmx.rmx_mtu, IN6_LINKMTU(rt->rt_ifp)); | |
3297 | ||
3298 | return (maxmtu); | |
3299 | } | |
3300 | #endif | |
3301 | ||
3302 | /* | |
3303 | * Determine a reasonable value for maxseg size. | |
3304 | * If the route is known, check route for mtu. | |
3305 | * If none, use an mss that can be handled on the outgoing | |
3306 | * interface without forcing IP to fragment; if bigger than | |
3307 | * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES | |
3308 | * to utilize large mbufs. If no route is found, route has no mtu, | |
3309 | * or the destination isn't local, use a default, hopefully conservative | |
3310 | * size (usually 512 or the default IP max size, but no more than the mtu | |
3311 | * of the interface), as we can't discover anything about intervening | |
3312 | * gateways or networks. We also initialize the congestion/slow start | |
3313 | * window to be a single segment if the destination isn't local. | |
3314 | * While looking at the routing entry, we also initialize other path-dependent | |
3315 | * parameters from pre-set or cached values in the routing entry. | |
3316 | * | |
3317 | * Also take into account the space needed for options that we | |
3318 | * send regularly. Make maxseg shorter by that amount to assure | |
3319 | * that we can send maxseg amount of data even when the options | |
3320 | * are present. Store the upper limit of the length of options plus | |
3321 | * data in maxopd. | |
3322 | * | |
3323 | * NOTE that this routine is only called when we process an incoming | |
3324 | * segment, for outgoing segments only tcp_mssopt is called. | |
3325 | * | |
3326 | */ | |
3327 | void | |
3328 | tcp_mss(tp, offer) | |
3329 | struct tcpcb *tp; | |
3330 | int offer; | |
3331 | { | |
3332 | register struct rtentry *rt; | |
3333 | struct ifnet *ifp; | |
3334 | register int rtt, mss; | |
3335 | u_long bufsize; | |
3336 | struct inpcb *inp; | |
3337 | struct socket *so; | |
3338 | struct rmxp_tao *taop; | |
3339 | int origoffer = offer; | |
3340 | u_long sb_max_corrected; | |
3341 | int isnetlocal = 0; | |
3342 | #if INET6 | |
3343 | int isipv6; | |
3344 | int min_protoh; | |
3345 | #endif | |
3346 | ||
3347 | inp = tp->t_inpcb; | |
3348 | #if INET6 | |
3349 | isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0; | |
3350 | min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr) | |
3351 | : sizeof (struct tcpiphdr); | |
3352 | #else | |
3353 | #define min_protoh (sizeof (struct tcpiphdr)) | |
3354 | #endif | |
3355 | lck_mtx_lock(rt_mtx); | |
3356 | #if INET6 | |
3357 | if (isipv6) { | |
3358 | rt = tcp_rtlookup6(inp); | |
3359 | if (rt && (IN6_IS_ADDR_LOOPBACK(&inp->in6p_faddr) || IN6_IS_ADDR_LINKLOCAL(&inp->in6p_faddr) || rt->rt_gateway->sa_family == AF_LINK)) | |
3360 | isnetlocal = TRUE; | |
3361 | } | |
3362 | else | |
3363 | #endif /* INET6 */ | |
3364 | { | |
3365 | rt = tcp_rtlookup(inp); | |
3366 | if (rt && (rt->rt_gateway->sa_family == AF_LINK || | |
3367 | rt->rt_ifp->if_flags & IFF_LOOPBACK)) | |
3368 | isnetlocal = TRUE; | |
3369 | } | |
3370 | if (rt == NULL) { | |
3371 | tp->t_maxopd = tp->t_maxseg = | |
3372 | #if INET6 | |
3373 | isipv6 ? tcp_v6mssdflt : | |
3374 | #endif /* INET6 */ | |
3375 | tcp_mssdflt; | |
3376 | lck_mtx_unlock(rt_mtx); | |
3377 | return; | |
3378 | } | |
3379 | ifp = rt->rt_ifp; | |
3380 | /* | |
3381 | * Slower link window correction: | |
3382 | * If a value is specificied for slowlink_wsize use it for PPP links | |
3383 | * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as | |
3384 | * it is the default value adversized by pseudo-devices over ppp. | |
3385 | */ | |
3386 | if (ifp->if_type == IFT_PPP && slowlink_wsize > 0 && | |
3387 | ifp->if_baudrate > 9600 && ifp->if_baudrate <= 128000) { | |
3388 | tp->t_flags |= TF_SLOWLINK; | |
3389 | } | |
3390 | so = inp->inp_socket; | |
3391 | ||
3392 | taop = rmx_taop(rt->rt_rmx); | |
3393 | /* | |
3394 | * Offer == -1 means that we didn't receive SYN yet, | |
3395 | * use cached value in that case; | |
3396 | */ | |
3397 | if (offer == -1) | |
3398 | offer = taop->tao_mssopt; | |
3399 | /* | |
3400 | * Offer == 0 means that there was no MSS on the SYN segment, | |
3401 | * in this case we use tcp_mssdflt. | |
3402 | */ | |
3403 | if (offer == 0) | |
3404 | offer = | |
3405 | #if INET6 | |
3406 | isipv6 ? tcp_v6mssdflt : | |
3407 | #endif /* INET6 */ | |
3408 | tcp_mssdflt; | |
3409 | else { | |
3410 | /* | |
3411 | * Prevent DoS attack with too small MSS. Round up | |
3412 | * to at least minmss. | |
3413 | */ | |
3414 | offer = max(offer, tcp_minmss); | |
3415 | /* | |
3416 | * Sanity check: make sure that maxopd will be large | |
3417 | * enough to allow some data on segments even is the | |
3418 | * all the option space is used (40bytes). Otherwise | |
3419 | * funny things may happen in tcp_output. | |
3420 | */ | |
3421 | offer = max(offer, 64); | |
3422 | } | |
3423 | taop->tao_mssopt = offer; | |
3424 | ||
3425 | /* | |
3426 | * While we're here, check if there's an initial rtt | |
3427 | * or rttvar. Convert from the route-table units | |
3428 | * to scaled multiples of the slow timeout timer. | |
3429 | */ | |
3430 | if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) { | |
3431 | /* | |
3432 | * XXX the lock bit for RTT indicates that the value | |
3433 | * is also a minimum value; this is subject to time. | |
3434 | */ | |
3435 | if (rt->rt_rmx.rmx_locks & RTV_RTT) | |
3436 | tp->t_rttmin = rtt / (RTM_RTTUNIT / TCP_RETRANSHZ); | |
3437 | else | |
3438 | tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCP_RETRANSHZ; | |
3439 | tp->t_srtt = rtt / (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE)); | |
3440 | tcpstat.tcps_usedrtt++; | |
3441 | if (rt->rt_rmx.rmx_rttvar) { | |
3442 | tp->t_rttvar = rt->rt_rmx.rmx_rttvar / | |
3443 | (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE)); | |
3444 | tcpstat.tcps_usedrttvar++; | |
3445 | } else { | |
3446 | /* default variation is +- 1 rtt */ | |
3447 | tp->t_rttvar = | |
3448 | tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE; | |
3449 | } | |
3450 | TCPT_RANGESET(tp->t_rxtcur, | |
3451 | ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1, | |
3452 | tp->t_rttmin, TCPTV_REXMTMAX); | |
3453 | } | |
3454 | else | |
3455 | tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCP_RETRANSHZ; | |
3456 | ||
3457 | #if INET6 | |
3458 | mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt)); | |
3459 | #else | |
3460 | mss = tcp_maxmtu(rt); | |
3461 | #endif | |
3462 | mss -= min_protoh; | |
3463 | ||
3464 | if (rt->rt_rmx.rmx_mtu == 0) { | |
3465 | #if INET6 | |
3466 | if (isipv6) { | |
3467 | if (!isnetlocal) | |
3468 | mss = min(mss, tcp_v6mssdflt); | |
3469 | } else | |
3470 | #endif /* INET6 */ | |
3471 | if (!isnetlocal) | |
3472 | mss = min(mss, tcp_mssdflt); | |
3473 | } | |
3474 | ||
3475 | mss = min(mss, offer); | |
3476 | /* | |
3477 | * maxopd stores the maximum length of data AND options | |
3478 | * in a segment; maxseg is the amount of data in a normal | |
3479 | * segment. We need to store this value (maxopd) apart | |
3480 | * from maxseg, because now every segment carries options | |
3481 | * and thus we normally have somewhat less data in segments. | |
3482 | */ | |
3483 | tp->t_maxopd = mss; | |
3484 | ||
3485 | /* | |
3486 | * origoffer==-1 indicates, that no segments were received yet. | |
3487 | * In this case we just guess. | |
3488 | */ | |
3489 | if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP && | |
3490 | (origoffer == -1 || | |
3491 | (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)) | |
3492 | mss -= TCPOLEN_TSTAMP_APPA; | |
3493 | tp->t_maxseg = mss; | |
3494 | ||
3495 | /* | |
3496 | * Calculate corrected value for sb_max; ensure to upgrade the | |
3497 | * numerator for large sb_max values else it will overflow. | |
3498 | */ | |
3499 | sb_max_corrected = (sb_max * (u_int64_t)MCLBYTES) / (MSIZE + MCLBYTES); | |
3500 | ||
3501 | /* | |
3502 | * If there's a pipesize (ie loopback), change the socket | |
3503 | * buffer to that size only if it's bigger than the current | |
3504 | * sockbuf size. Make the socket buffers an integral | |
3505 | * number of mss units; if the mss is larger than | |
3506 | * the socket buffer, decrease the mss. | |
3507 | */ | |
3508 | #if RTV_SPIPE | |
3509 | bufsize = rt->rt_rmx.rmx_sendpipe; | |
3510 | if (bufsize < so->so_snd.sb_hiwat) | |
3511 | #endif | |
3512 | bufsize = so->so_snd.sb_hiwat; | |
3513 | if (bufsize < mss) | |
3514 | mss = bufsize; | |
3515 | else { | |
3516 | bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss); | |
3517 | if (bufsize > sb_max_corrected) | |
3518 | bufsize = sb_max_corrected; | |
3519 | (void)sbreserve(&so->so_snd, bufsize); | |
3520 | } | |
3521 | tp->t_maxseg = mss; | |
3522 | ||
3523 | #if RTV_RPIPE | |
3524 | bufsize = rt->rt_rmx.rmx_recvpipe; | |
3525 | if (bufsize < so->so_rcv.sb_hiwat) | |
3526 | #endif | |
3527 | bufsize = so->so_rcv.sb_hiwat; | |
3528 | if (bufsize > mss) { | |
3529 | bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss); | |
3530 | if (bufsize > sb_max_corrected) | |
3531 | bufsize = sb_max_corrected; | |
3532 | (void)sbreserve(&so->so_rcv, bufsize); | |
3533 | } | |
3534 | ||
3535 | /* | |
3536 | * Set the slow-start flight size depending on whether this | |
3537 | * is a local network or not. | |
3538 | */ | |
3539 | if (isnetlocal) | |
3540 | tp->snd_cwnd = mss * ss_fltsz_local; | |
3541 | else | |
3542 | tp->snd_cwnd = mss * ss_fltsz; | |
3543 | ||
3544 | if (rt->rt_rmx.rmx_ssthresh) { | |
3545 | /* | |
3546 | * There's some sort of gateway or interface | |
3547 | * buffer limit on the path. Use this to set | |
3548 | * the slow start threshhold, but set the | |
3549 | * threshold to no less than 2*mss. | |
3550 | */ | |
3551 | tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh); | |
3552 | tcpstat.tcps_usedssthresh++; | |
3553 | } | |
3554 | else | |
3555 | tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; | |
3556 | ||
3557 | lck_mtx_unlock(rt_mtx); | |
3558 | } | |
3559 | ||
3560 | /* | |
3561 | * Determine the MSS option to send on an outgoing SYN. | |
3562 | */ | |
3563 | int | |
3564 | tcp_mssopt(tp) | |
3565 | struct tcpcb *tp; | |
3566 | { | |
3567 | struct rtentry *rt; | |
3568 | int mss; | |
3569 | #if INET6 | |
3570 | int isipv6; | |
3571 | int min_protoh; | |
3572 | #endif | |
3573 | ||
3574 | #if INET6 | |
3575 | isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0; | |
3576 | min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr) | |
3577 | : sizeof (struct tcpiphdr); | |
3578 | #else | |
3579 | #define min_protoh (sizeof (struct tcpiphdr)) | |
3580 | #endif | |
3581 | lck_mtx_lock(rt_mtx); | |
3582 | #if INET6 | |
3583 | if (isipv6) | |
3584 | rt = tcp_rtlookup6(tp->t_inpcb); | |
3585 | else | |
3586 | #endif /* INET6 */ | |
3587 | rt = tcp_rtlookup(tp->t_inpcb); | |
3588 | if (rt == NULL) { | |
3589 | lck_mtx_unlock(rt_mtx); | |
3590 | return ( | |
3591 | #if INET6 | |
3592 | isipv6 ? tcp_v6mssdflt : | |
3593 | #endif /* INET6 */ | |
3594 | tcp_mssdflt); | |
3595 | } | |
3596 | /* | |
3597 | * Slower link window correction: | |
3598 | * If a value is specificied for slowlink_wsize use it for PPP links | |
3599 | * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as | |
3600 | * it is the default value adversized by pseudo-devices over ppp. | |
3601 | */ | |
3602 | if (rt->rt_ifp->if_type == IFT_PPP && slowlink_wsize > 0 && | |
3603 | rt->rt_ifp->if_baudrate > 9600 && rt->rt_ifp->if_baudrate <= 128000) { | |
3604 | tp->t_flags |= TF_SLOWLINK; | |
3605 | } | |
3606 | ||
3607 | #if INET6 | |
3608 | mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt)); | |
3609 | #else | |
3610 | mss = tcp_maxmtu(rt); | |
3611 | #endif | |
3612 | lck_mtx_unlock(rt_mtx); | |
3613 | return (mss - min_protoh); | |
3614 | } | |
3615 | ||
3616 | /* | |
3617 | * On a partial ack arrives, force the retransmission of the | |
3618 | * next unacknowledged segment. Do not clear tp->t_dupacks. | |
3619 | * By setting snd_nxt to ti_ack, this forces retransmission timer to | |
3620 | * be started again. | |
3621 | */ | |
3622 | static void | |
3623 | tcp_newreno_partial_ack(tp, th) | |
3624 | struct tcpcb *tp; | |
3625 | struct tcphdr *th; | |
3626 | { | |
3627 | tcp_seq onxt = tp->snd_nxt; | |
3628 | u_long ocwnd = tp->snd_cwnd; | |
3629 | tp->t_timer[TCPT_REXMT] = 0; | |
3630 | tp->t_rtttime = 0; | |
3631 | tp->snd_nxt = th->th_ack; | |
3632 | /* | |
3633 | * Set snd_cwnd to one segment beyond acknowledged offset | |
3634 | * (tp->snd_una has not yet been updated when this function | |
3635 | * is called) | |
3636 | */ | |
3637 | tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una); | |
3638 | tp->t_flags |= TF_ACKNOW; | |
3639 | tp->t_unacksegs = 0; | |
3640 | (void) tcp_output(tp); | |
3641 | tp->snd_cwnd = ocwnd; | |
3642 | if (SEQ_GT(onxt, tp->snd_nxt)) | |
3643 | tp->snd_nxt = onxt; | |
3644 | /* | |
3645 | * Partial window deflation. Relies on fact that tp->snd_una | |
3646 | * not updated yet. | |
3647 | */ | |
3648 | if (tp->snd_cwnd > th->th_ack - tp->snd_una) | |
3649 | tp->snd_cwnd -= th->th_ack - tp->snd_una; | |
3650 | else | |
3651 | tp->snd_cwnd = 0; | |
3652 | tp->snd_cwnd += tp->t_maxseg; | |
3653 | ||
3654 | } | |
3655 | ||
3656 | /* | |
3657 | * Drop a random TCP connection that hasn't been serviced yet and | |
3658 | * is eligible for discard. There is a one in qlen chance that | |
3659 | * we will return a null, saying that there are no dropable | |
3660 | * requests. In this case, the protocol specific code should drop | |
3661 | * the new request. This insures fairness. | |
3662 | * | |
3663 | * The listening TCP socket "head" must be locked | |
3664 | */ | |
3665 | static int | |
3666 | tcp_dropdropablreq(struct socket *head) | |
3667 | { | |
3668 | struct socket *so, *sonext; | |
3669 | unsigned int i, j, qlen; | |
3670 | static int rnd; | |
3671 | static struct timeval old_runtime; | |
3672 | static unsigned int cur_cnt, old_cnt; | |
3673 | struct timeval tv; | |
3674 | struct inpcb *inp = NULL; | |
3675 | struct tcpcb *tp; | |
3676 | ||
3677 | if ((head->so_options & SO_ACCEPTCONN) == 0) | |
3678 | return 0; | |
3679 | ||
3680 | so = TAILQ_FIRST(&head->so_incomp); | |
3681 | if (!so) | |
3682 | return 0; | |
3683 | ||
3684 | microtime(&tv); | |
3685 | if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) { | |
3686 | old_runtime = tv; | |
3687 | old_cnt = cur_cnt / i; | |
3688 | cur_cnt = 0; | |
3689 | } | |
3690 | ||
3691 | ||
3692 | qlen = head->so_incqlen; | |
3693 | if (++cur_cnt > qlen || old_cnt > qlen) { | |
3694 | rnd = (314159 * rnd + 66329) & 0xffff; | |
3695 | j = ((qlen + 1) * rnd) >> 16; | |
3696 | ||
3697 | while (j-- && so) | |
3698 | so = TAILQ_NEXT(so, so_list); | |
3699 | } | |
3700 | /* Find a connection that is not already closing (or being served) */ | |
3701 | while (so) { | |
3702 | inp = (struct inpcb *)so->so_pcb; | |
3703 | ||
3704 | sonext = TAILQ_NEXT(so, so_list); | |
3705 | ||
3706 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != WNT_STOPUSING) { | |
3707 | /* Avoid the issue of a socket being accepted by one input thread | |
3708 | * and being dropped by another input thread. | |
3709 | * If we can't get a hold on this mutex, then grab the next socket in line. | |
3710 | */ | |
3711 | if (lck_mtx_try_lock(inp->inpcb_mtx)) { | |
3712 | so->so_usecount++; | |
3713 | if ((so->so_usecount == 2) && so->so_state & SS_INCOMP) | |
3714 | break; | |
3715 | else {/* don't use if beeing accepted or used in any other way */ | |
3716 | in_pcb_checkstate(inp, WNT_RELEASE, 1); | |
3717 | tcp_unlock(so, 1, 0); | |
3718 | } | |
3719 | } | |
3720 | } | |
3721 | so = sonext; | |
3722 | ||
3723 | } | |
3724 | if (!so) | |
3725 | return 0; | |
3726 | ||
3727 | TAILQ_REMOVE(&head->so_incomp, so, so_list); | |
3728 | tcp_unlock(head, 0, 0); | |
3729 | ||
3730 | /* Makes sure socket is still in the right state to be discarded */ | |
3731 | ||
3732 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { | |
3733 | tcp_unlock(so, 1, 0); | |
3734 | tcp_lock(head, 0, 0); | |
3735 | return 0; | |
3736 | } | |
3737 | ||
3738 | if (so->so_usecount != 2 || !(so->so_state & SS_INCOMP)) { | |
3739 | /* do not discard: that socket is beeing accepted */ | |
3740 | tcp_unlock(so, 1, 0); | |
3741 | tcp_lock(head, 0, 0); | |
3742 | return 0; | |
3743 | } | |
3744 | ||
3745 | so->so_head = NULL; | |
3746 | ||
3747 | /* | |
3748 | * We do not want to lose track of the PCB right away in case we receive | |
3749 | * more segments from the peer | |
3750 | */ | |
3751 | tp = sototcpcb(so); | |
3752 | so->so_flags |= SOF_OVERFLOW; | |
3753 | tp->t_state = TCPS_TIME_WAIT; | |
3754 | (void) tcp_close(tp); | |
3755 | tp->t_unacksegs = 0; | |
3756 | tcpstat.tcps_drops++; | |
3757 | tcp_canceltimers(tp); | |
3758 | add_to_time_wait(tp); | |
3759 | ||
3760 | tcp_unlock(so, 1, 0); | |
3761 | tcp_lock(head, 0, 0); | |
3762 | head->so_incqlen--; | |
3763 | head->so_qlen--; | |
3764 | return 1; | |
3765 | } | |
3766 | ||
3767 | static int | |
3768 | tcp_getstat SYSCTL_HANDLER_ARGS | |
3769 | { | |
3770 | #pragma unused(oidp, arg1, arg2) | |
3771 | ||
3772 | int error; | |
3773 | ||
3774 | if (req->oldptr == 0) { | |
3775 | req->oldlen= (size_t)sizeof(struct tcpstat); | |
3776 | } | |
3777 | ||
3778 | error = SYSCTL_OUT(req, &tcpstat, MIN(sizeof (tcpstat), req->oldlen)); | |
3779 | ||
3780 | return (error); | |
3781 | ||
3782 | } | |
3783 | ||
3784 | SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RD, 0, 0, | |
3785 | tcp_getstat, "S,tcpstat", "TCP statistics (struct tcpstat, netinet/tcp_var.h)"); | |
3786 | ||
3787 | static int | |
3788 | sysctl_rexmtthresh SYSCTL_HANDLER_ARGS | |
3789 | { | |
3790 | #pragma unused(arg1, arg2) | |
3791 | ||
3792 | int error, val = tcprexmtthresh; | |
3793 | ||
3794 | error = sysctl_handle_int(oidp, &val, 0, req); | |
3795 | if (error || !req->newptr) | |
3796 | return (error); | |
3797 | ||
3798 | /* | |
3799 | * Constrain the number of duplicate ACKs | |
3800 | * to consider for TCP fast retransmit | |
3801 | * to either 2 or 3 | |
3802 | */ | |
3803 | ||
3804 | if (val < 2 || val > 3) | |
3805 | return (EINVAL); | |
3806 | ||
3807 | tcprexmtthresh = val; | |
3808 | ||
3809 | return (0); | |
3810 | } | |
3811 | ||
3812 | SYSCTL_PROC(_net_inet_tcp, OID_AUTO, rexmt_thresh, CTLTYPE_INT|CTLFLAG_RW, | |
3813 | &tcprexmtthresh, 0, &sysctl_rexmtthresh, "I", "Duplicate ACK Threshold for Fast Retransmit"); |