]> git.saurik.com Git - apple/xnu.git/blame_incremental - bsd/vfs/vfs_bio.c
xnu-4570.20.62.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_bio.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29/*-
30 * Copyright (c) 1994 Christopher G. Demetriou
31 * Copyright (c) 1982, 1986, 1989, 1993
32 * The Regents of the University of California. All rights reserved.
33 * (c) UNIX System Laboratories, Inc.
34 * All or some portions of this file are derived from material licensed
35 * to the University of California by American Telephone and Telegraph
36 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
37 * the permission of UNIX System Laboratories, Inc.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the University of
50 * California, Berkeley and its contributors.
51 * 4. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
68 */
69
70/*
71 * Some references:
72 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
73 * Leffler, et al.: The Design and Implementation of the 4.3BSD
74 * UNIX Operating System (Addison Welley, 1989)
75 */
76
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/proc_internal.h>
80#include <sys/buf_internal.h>
81#include <sys/vnode_internal.h>
82#include <sys/mount_internal.h>
83#include <sys/trace.h>
84#include <sys/malloc.h>
85#include <sys/resourcevar.h>
86#include <miscfs/specfs/specdev.h>
87#include <sys/ubc.h>
88#include <sys/kauth.h>
89#if DIAGNOSTIC
90#include <kern/assert.h>
91#endif /* DIAGNOSTIC */
92#include <kern/task.h>
93#include <kern/zalloc.h>
94#include <kern/locks.h>
95#include <kern/thread.h>
96
97#include <sys/fslog.h> /* fslog_io_error() */
98#include <sys/disk.h> /* dk_error_description_t */
99
100#include <mach/mach_types.h>
101#include <mach/memory_object_types.h>
102#include <kern/sched_prim.h> /* thread_block() */
103
104#include <vm/vm_kern.h>
105#include <vm/vm_pageout.h>
106
107#include <sys/kdebug.h>
108
109#include <libkern/OSAtomic.h>
110#include <libkern/OSDebug.h>
111#include <sys/ubc_internal.h>
112
113#include <sys/sdt.h>
114
115int bcleanbuf(buf_t bp, boolean_t discard);
116static int brecover_data(buf_t bp);
117static boolean_t incore(vnode_t vp, daddr64_t blkno);
118/* timeout is in msecs */
119static buf_t getnewbuf(int slpflag, int slptimeo, int *queue);
120static void bremfree_locked(buf_t bp);
121static void buf_reassign(buf_t bp, vnode_t newvp);
122static errno_t buf_acquire_locked(buf_t bp, int flags, int slpflag, int slptimeo);
123static int buf_iterprepare(vnode_t vp, struct buflists *, int flags);
124static void buf_itercomplete(vnode_t vp, struct buflists *, int flags);
125static boolean_t buffer_cache_gc(int);
126static buf_t buf_brelse_shadow(buf_t bp);
127static void buf_free_meta_store(buf_t bp);
128
129static buf_t buf_create_shadow_internal(buf_t bp, boolean_t force_copy,
130 uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg, int priv);
131
132
133int bdwrite_internal(buf_t, int);
134
135extern void disk_conditioner_delay(buf_t, int, int, uint64_t);
136
137/* zone allocated buffer headers */
138static void bufzoneinit(void);
139static void bcleanbuf_thread_init(void);
140static void bcleanbuf_thread(void);
141
142static zone_t buf_hdr_zone;
143static int buf_hdr_count;
144
145
146/*
147 * Definitions for the buffer hash lists.
148 */
149#define BUFHASH(dvp, lbn) \
150 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
151LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
152u_long bufhash;
153
154static buf_t incore_locked(vnode_t vp, daddr64_t blkno, struct bufhashhdr *dp);
155
156/* Definitions for the buffer stats. */
157struct bufstats bufstats;
158
159/* Number of delayed write buffers */
160long nbdwrite = 0;
161int blaundrycnt = 0;
162static int boot_nbuf_headers = 0;
163
164static TAILQ_HEAD(delayqueue, buf) delaybufqueue;
165
166static TAILQ_HEAD(ioqueue, buf) iobufqueue;
167static TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
168static int needbuffer;
169static int need_iobuffer;
170
171static lck_grp_t *buf_mtx_grp;
172static lck_attr_t *buf_mtx_attr;
173static lck_grp_attr_t *buf_mtx_grp_attr;
174static lck_mtx_t *iobuffer_mtxp;
175static lck_mtx_t *buf_mtxp;
176static lck_mtx_t *buf_gc_callout;
177
178static int buf_busycount;
179
180#define FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE 16
181typedef struct {
182 void (* callout)(int, void *);
183 void *context;
184} fs_buffer_cache_gc_callout_t;
185
186fs_buffer_cache_gc_callout_t fs_callouts[FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE] = { {NULL, NULL} };
187
188static __inline__ int
189buf_timestamp(void)
190{
191 struct timeval t;
192 microuptime(&t);
193 return (t.tv_sec);
194}
195
196/*
197 * Insq/Remq for the buffer free lists.
198 */
199#define binsheadfree(bp, dp, whichq) do { \
200 TAILQ_INSERT_HEAD(dp, bp, b_freelist); \
201 } while (0)
202
203#define binstailfree(bp, dp, whichq) do { \
204 TAILQ_INSERT_TAIL(dp, bp, b_freelist); \
205 } while (0)
206
207#define BHASHENTCHECK(bp) \
208 if ((bp)->b_hash.le_prev != (struct buf **)0xdeadbeef) \
209 panic("%p: b_hash.le_prev is not deadbeef", (bp));
210
211#define BLISTNONE(bp) \
212 (bp)->b_hash.le_next = (struct buf *)0; \
213 (bp)->b_hash.le_prev = (struct buf **)0xdeadbeef;
214
215/*
216 * Insq/Remq for the vnode usage lists.
217 */
218#define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs)
219#define bufremvn(bp) { \
220 LIST_REMOVE(bp, b_vnbufs); \
221 (bp)->b_vnbufs.le_next = NOLIST; \
222}
223
224/*
225 * Time in seconds before a buffer on a list is
226 * considered as a stale buffer
227 */
228#define LRU_IS_STALE 120 /* default value for the LRU */
229#define AGE_IS_STALE 60 /* default value for the AGE */
230#define META_IS_STALE 180 /* default value for the BQ_META */
231
232int lru_is_stale = LRU_IS_STALE;
233int age_is_stale = AGE_IS_STALE;
234int meta_is_stale = META_IS_STALE;
235
236#define MAXLAUNDRY 10
237
238/* LIST_INSERT_HEAD() with assertions */
239static __inline__ void
240blistenterhead(struct bufhashhdr * head, buf_t bp)
241{
242 if ((bp->b_hash.le_next = (head)->lh_first) != NULL)
243 (head)->lh_first->b_hash.le_prev = &(bp)->b_hash.le_next;
244 (head)->lh_first = bp;
245 bp->b_hash.le_prev = &(head)->lh_first;
246 if (bp->b_hash.le_prev == (struct buf **)0xdeadbeef)
247 panic("blistenterhead: le_prev is deadbeef");
248}
249
250static __inline__ void
251binshash(buf_t bp, struct bufhashhdr *dp)
252{
253#if DIAGNOSTIC
254 buf_t nbp;
255#endif /* DIAGNOSTIC */
256
257 BHASHENTCHECK(bp);
258
259#if DIAGNOSTIC
260 nbp = dp->lh_first;
261 for(; nbp != NULL; nbp = nbp->b_hash.le_next) {
262 if(nbp == bp)
263 panic("buf already in hashlist");
264 }
265#endif /* DIAGNOSTIC */
266
267 blistenterhead(dp, bp);
268}
269
270static __inline__ void
271bremhash(buf_t bp)
272{
273 if (bp->b_hash.le_prev == (struct buf **)0xdeadbeef)
274 panic("bremhash le_prev is deadbeef");
275 if (bp->b_hash.le_next == bp)
276 panic("bremhash: next points to self");
277
278 if (bp->b_hash.le_next != NULL)
279 bp->b_hash.le_next->b_hash.le_prev = bp->b_hash.le_prev;
280 *bp->b_hash.le_prev = (bp)->b_hash.le_next;
281}
282
283/*
284 * buf_mtxp held.
285 */
286static __inline__ void
287bmovelaundry(buf_t bp)
288{
289 bp->b_whichq = BQ_LAUNDRY;
290 bp->b_timestamp = buf_timestamp();
291 binstailfree(bp, &bufqueues[BQ_LAUNDRY], BQ_LAUNDRY);
292 blaundrycnt++;
293}
294
295static __inline__ void
296buf_release_credentials(buf_t bp)
297{
298 if (IS_VALID_CRED(bp->b_rcred)) {
299 kauth_cred_unref(&bp->b_rcred);
300 }
301 if (IS_VALID_CRED(bp->b_wcred)) {
302 kauth_cred_unref(&bp->b_wcred);
303 }
304}
305
306
307int
308buf_valid(buf_t bp) {
309
310 if ( (bp->b_flags & (B_DONE | B_DELWRI)) )
311 return 1;
312 return 0;
313}
314
315int
316buf_fromcache(buf_t bp) {
317
318 if ( (bp->b_flags & B_CACHE) )
319 return 1;
320 return 0;
321}
322
323void
324buf_markinvalid(buf_t bp) {
325
326 SET(bp->b_flags, B_INVAL);
327}
328
329void
330buf_markdelayed(buf_t bp) {
331
332 if (!ISSET(bp->b_flags, B_DELWRI)) {
333 SET(bp->b_flags, B_DELWRI);
334
335 OSAddAtomicLong(1, &nbdwrite);
336 buf_reassign(bp, bp->b_vp);
337 }
338 SET(bp->b_flags, B_DONE);
339}
340
341void
342buf_markclean(buf_t bp) {
343
344 if (ISSET(bp->b_flags, B_DELWRI)) {
345 CLR(bp->b_flags, B_DELWRI);
346
347 OSAddAtomicLong(-1, &nbdwrite);
348 buf_reassign(bp, bp->b_vp);
349 }
350}
351
352void
353buf_markeintr(buf_t bp) {
354
355 SET(bp->b_flags, B_EINTR);
356}
357
358
359void
360buf_markaged(buf_t bp) {
361
362 SET(bp->b_flags, B_AGE);
363}
364
365int
366buf_fua(buf_t bp) {
367
368 if ((bp->b_flags & B_FUA) == B_FUA)
369 return 1;
370 return 0;
371}
372
373void
374buf_markfua(buf_t bp) {
375
376 SET(bp->b_flags, B_FUA);
377}
378
379#if CONFIG_PROTECT
380cpx_t bufattr_cpx(bufattr_t bap)
381{
382 return bap->ba_cpx;
383}
384
385void bufattr_setcpx(bufattr_t bap, cpx_t cpx)
386{
387 bap->ba_cpx = cpx;
388}
389
390void
391buf_setcpoff (buf_t bp, uint64_t foffset) {
392 bp->b_attr.ba_cp_file_off = foffset;
393}
394
395uint64_t
396bufattr_cpoff(bufattr_t bap) {
397 return bap->ba_cp_file_off;
398}
399
400void
401bufattr_setcpoff(bufattr_t bap, uint64_t foffset) {
402 bap->ba_cp_file_off = foffset;
403}
404
405#else // !CONTECT_PROTECT
406
407uint64_t
408bufattr_cpoff(bufattr_t bap __unused) {
409 return 0;
410}
411
412void
413bufattr_setcpoff(__unused bufattr_t bap, __unused uint64_t foffset) {
414 return;
415}
416
417struct cpx *bufattr_cpx(__unused bufattr_t bap)
418{
419 return NULL;
420}
421
422void bufattr_setcpx(__unused bufattr_t bap, __unused struct cpx *cpx)
423{
424}
425
426#endif /* !CONFIG_PROTECT */
427
428bufattr_t
429bufattr_alloc() {
430 bufattr_t bap;
431 MALLOC(bap, bufattr_t, sizeof(struct bufattr), M_TEMP, M_WAITOK);
432 if (bap == NULL)
433 return NULL;
434
435 bzero(bap, sizeof(struct bufattr));
436 return bap;
437}
438
439void
440bufattr_free(bufattr_t bap) {
441 if (bap)
442 FREE(bap, M_TEMP);
443}
444
445bufattr_t
446bufattr_dup(bufattr_t bap) {
447 bufattr_t new_bufattr;
448 MALLOC(new_bufattr, bufattr_t, sizeof(struct bufattr), M_TEMP, M_WAITOK);
449 if (new_bufattr == NULL)
450 return NULL;
451
452 /* Copy the provided one into the new copy */
453 memcpy (new_bufattr, bap, sizeof(struct bufattr));
454 return new_bufattr;
455}
456
457int
458bufattr_rawencrypted(bufattr_t bap) {
459 if ( (bap->ba_flags & BA_RAW_ENCRYPTED_IO) )
460 return 1;
461 return 0;
462}
463
464int
465bufattr_throttled(bufattr_t bap) {
466 return (GET_BUFATTR_IO_TIER(bap));
467}
468
469int
470bufattr_passive(bufattr_t bap) {
471 if ( (bap->ba_flags & BA_PASSIVE) )
472 return 1;
473 return 0;
474}
475
476int
477bufattr_nocache(bufattr_t bap) {
478 if ( (bap->ba_flags & BA_NOCACHE) )
479 return 1;
480 return 0;
481}
482
483int
484bufattr_meta(bufattr_t bap) {
485 if ( (bap->ba_flags & BA_META) )
486 return 1;
487 return 0;
488}
489
490void
491bufattr_markmeta(bufattr_t bap) {
492 SET(bap->ba_flags, BA_META);
493}
494
495int
496#if !CONFIG_EMBEDDED
497bufattr_delayidlesleep(bufattr_t bap)
498#else /* !CONFIG_EMBEDDED */
499bufattr_delayidlesleep(__unused bufattr_t bap)
500#endif /* !CONFIG_EMBEDDED */
501{
502#if !CONFIG_EMBEDDED
503 if ( (bap->ba_flags & BA_DELAYIDLESLEEP) )
504 return 1;
505#endif /* !CONFIG_EMBEDDED */
506 return 0;
507}
508
509bufattr_t
510buf_attr(buf_t bp) {
511 return &bp->b_attr;
512}
513
514void
515buf_markstatic(buf_t bp __unused) {
516 SET(bp->b_flags, B_STATICCONTENT);
517}
518
519int
520buf_static(buf_t bp) {
521 if ( (bp->b_flags & B_STATICCONTENT) )
522 return 1;
523 return 0;
524}
525
526void
527bufattr_markgreedymode(bufattr_t bap) {
528 SET(bap->ba_flags, BA_GREEDY_MODE);
529}
530
531int
532bufattr_greedymode(bufattr_t bap) {
533 if ( (bap->ba_flags & BA_GREEDY_MODE) )
534 return 1;
535 return 0;
536}
537
538void
539bufattr_markisochronous(bufattr_t bap) {
540 SET(bap->ba_flags, BA_ISOCHRONOUS);
541}
542
543int
544bufattr_isochronous(bufattr_t bap) {
545 if ( (bap->ba_flags & BA_ISOCHRONOUS) )
546 return 1;
547 return 0;
548}
549
550void
551bufattr_markquickcomplete(bufattr_t bap) {
552 SET(bap->ba_flags, BA_QUICK_COMPLETE);
553}
554
555int
556bufattr_quickcomplete(bufattr_t bap) {
557 if ( (bap->ba_flags & BA_QUICK_COMPLETE) )
558 return 1;
559 return 0;
560}
561
562errno_t
563buf_error(buf_t bp) {
564
565 return (bp->b_error);
566}
567
568void
569buf_seterror(buf_t bp, errno_t error) {
570
571 if ((bp->b_error = error))
572 SET(bp->b_flags, B_ERROR);
573 else
574 CLR(bp->b_flags, B_ERROR);
575}
576
577void
578buf_setflags(buf_t bp, int32_t flags) {
579
580 SET(bp->b_flags, (flags & BUF_X_WRFLAGS));
581}
582
583void
584buf_clearflags(buf_t bp, int32_t flags) {
585
586 CLR(bp->b_flags, (flags & BUF_X_WRFLAGS));
587}
588
589int32_t
590buf_flags(buf_t bp) {
591
592 return ((bp->b_flags & BUF_X_RDFLAGS));
593}
594
595void
596buf_reset(buf_t bp, int32_t io_flags) {
597
598 CLR(bp->b_flags, (B_READ | B_WRITE | B_ERROR | B_DONE | B_INVAL | B_ASYNC | B_NOCACHE | B_FUA));
599 SET(bp->b_flags, (io_flags & (B_ASYNC | B_READ | B_WRITE | B_NOCACHE)));
600
601 bp->b_error = 0;
602}
603
604uint32_t
605buf_count(buf_t bp) {
606
607 return (bp->b_bcount);
608}
609
610void
611buf_setcount(buf_t bp, uint32_t bcount) {
612
613 bp->b_bcount = bcount;
614}
615
616uint32_t
617buf_size(buf_t bp) {
618
619 return (bp->b_bufsize);
620}
621
622void
623buf_setsize(buf_t bp, uint32_t bufsize) {
624
625 bp->b_bufsize = bufsize;
626}
627
628uint32_t
629buf_resid(buf_t bp) {
630
631 return (bp->b_resid);
632}
633
634void
635buf_setresid(buf_t bp, uint32_t resid) {
636
637 bp->b_resid = resid;
638}
639
640uint32_t
641buf_dirtyoff(buf_t bp) {
642
643 return (bp->b_dirtyoff);
644}
645
646uint32_t
647buf_dirtyend(buf_t bp) {
648
649 return (bp->b_dirtyend);
650}
651
652void
653buf_setdirtyoff(buf_t bp, uint32_t dirtyoff) {
654
655 bp->b_dirtyoff = dirtyoff;
656}
657
658void
659buf_setdirtyend(buf_t bp, uint32_t dirtyend) {
660
661 bp->b_dirtyend = dirtyend;
662}
663
664uintptr_t
665buf_dataptr(buf_t bp) {
666
667 return (bp->b_datap);
668}
669
670void
671buf_setdataptr(buf_t bp, uintptr_t data) {
672
673 bp->b_datap = data;
674}
675
676vnode_t
677buf_vnode(buf_t bp) {
678
679 return (bp->b_vp);
680}
681
682void
683buf_setvnode(buf_t bp, vnode_t vp) {
684
685 bp->b_vp = vp;
686}
687
688
689void *
690buf_callback(buf_t bp)
691{
692 if ( !(bp->b_flags & B_CALL) )
693 return ((void *) NULL);
694
695 return ((void *)bp->b_iodone);
696}
697
698
699errno_t
700buf_setcallback(buf_t bp, void (*callback)(buf_t, void *), void *transaction)
701{
702 assert(!ISSET(bp->b_flags, B_FILTER) && ISSET(bp->b_lflags, BL_BUSY));
703
704 if (callback)
705 bp->b_flags |= (B_CALL | B_ASYNC);
706 else
707 bp->b_flags &= ~B_CALL;
708 bp->b_transaction = transaction;
709 bp->b_iodone = callback;
710
711 return (0);
712}
713
714errno_t
715buf_setupl(buf_t bp, upl_t upl, uint32_t offset)
716{
717
718 if ( !(bp->b_lflags & BL_IOBUF) )
719 return (EINVAL);
720
721 if (upl)
722 bp->b_flags |= B_CLUSTER;
723 else
724 bp->b_flags &= ~B_CLUSTER;
725 bp->b_upl = upl;
726 bp->b_uploffset = offset;
727
728 return (0);
729}
730
731buf_t
732buf_clone(buf_t bp, int io_offset, int io_size, void (*iodone)(buf_t, void *), void *arg)
733{
734 buf_t io_bp;
735
736 if (io_offset < 0 || io_size < 0)
737 return (NULL);
738
739 if ((unsigned)(io_offset + io_size) > (unsigned)bp->b_bcount)
740 return (NULL);
741
742 if (bp->b_flags & B_CLUSTER) {
743 if (io_offset && ((bp->b_uploffset + io_offset) & PAGE_MASK))
744 return (NULL);
745
746 if (((bp->b_uploffset + io_offset + io_size) & PAGE_MASK) && ((io_offset + io_size) < bp->b_bcount))
747 return (NULL);
748 }
749 io_bp = alloc_io_buf(bp->b_vp, 0);
750
751 io_bp->b_flags = bp->b_flags & (B_COMMIT_UPL | B_META | B_PAGEIO | B_CLUSTER | B_PHYS | B_RAW | B_ASYNC | B_READ | B_FUA);
752
753 if (iodone) {
754 io_bp->b_transaction = arg;
755 io_bp->b_iodone = iodone;
756 io_bp->b_flags |= B_CALL;
757 }
758 if (bp->b_flags & B_CLUSTER) {
759 io_bp->b_upl = bp->b_upl;
760 io_bp->b_uploffset = bp->b_uploffset + io_offset;
761 } else {
762 io_bp->b_datap = (uintptr_t)(((char *)bp->b_datap) + io_offset);
763 }
764 io_bp->b_bcount = io_size;
765
766 return (io_bp);
767}
768
769
770int
771buf_shadow(buf_t bp)
772{
773 if (bp->b_lflags & BL_SHADOW)
774 return 1;
775 return 0;
776}
777
778
779buf_t
780buf_create_shadow_priv(buf_t bp, boolean_t force_copy, uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg)
781{
782 return (buf_create_shadow_internal(bp, force_copy, external_storage, iodone, arg, 1));
783}
784
785buf_t
786buf_create_shadow(buf_t bp, boolean_t force_copy, uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg)
787{
788 return (buf_create_shadow_internal(bp, force_copy, external_storage, iodone, arg, 0));
789}
790
791
792static buf_t
793buf_create_shadow_internal(buf_t bp, boolean_t force_copy, uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg, int priv)
794{
795 buf_t io_bp;
796
797 KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_START, bp, 0, 0, 0, 0);
798
799 if ( !(bp->b_flags & B_META) || (bp->b_lflags & BL_IOBUF)) {
800
801 KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_END, bp, 0, 0, 0, 0);
802 return (NULL);
803 }
804#ifdef BUF_MAKE_PRIVATE
805 if (bp->b_shadow_ref && bp->b_data_ref == 0 && external_storage == 0)
806 panic("buf_create_shadow: %p is in the private state (%d, %d)", bp, bp->b_shadow_ref, bp->b_data_ref);
807#endif
808 io_bp = alloc_io_buf(bp->b_vp, priv);
809
810 io_bp->b_flags = bp->b_flags & (B_META | B_ZALLOC | B_ASYNC | B_READ | B_FUA);
811 io_bp->b_blkno = bp->b_blkno;
812 io_bp->b_lblkno = bp->b_lblkno;
813
814 if (iodone) {
815 io_bp->b_transaction = arg;
816 io_bp->b_iodone = iodone;
817 io_bp->b_flags |= B_CALL;
818 }
819 if (force_copy == FALSE) {
820 io_bp->b_bcount = bp->b_bcount;
821 io_bp->b_bufsize = bp->b_bufsize;
822
823 if (external_storage) {
824 io_bp->b_datap = external_storage;
825#ifdef BUF_MAKE_PRIVATE
826 io_bp->b_data_store = NULL;
827#endif
828 } else {
829 io_bp->b_datap = bp->b_datap;
830#ifdef BUF_MAKE_PRIVATE
831 io_bp->b_data_store = bp;
832#endif
833 }
834 *(buf_t *)(&io_bp->b_orig) = bp;
835
836 lck_mtx_lock_spin(buf_mtxp);
837
838 io_bp->b_lflags |= BL_SHADOW;
839 io_bp->b_shadow = bp->b_shadow;
840 bp->b_shadow = io_bp;
841 bp->b_shadow_ref++;
842
843#ifdef BUF_MAKE_PRIVATE
844 if (external_storage)
845 io_bp->b_lflags |= BL_EXTERNAL;
846 else
847 bp->b_data_ref++;
848#endif
849 lck_mtx_unlock(buf_mtxp);
850 } else {
851 if (external_storage) {
852#ifdef BUF_MAKE_PRIVATE
853 io_bp->b_lflags |= BL_EXTERNAL;
854#endif
855 io_bp->b_bcount = bp->b_bcount;
856 io_bp->b_bufsize = bp->b_bufsize;
857 io_bp->b_datap = external_storage;
858 } else {
859 allocbuf(io_bp, bp->b_bcount);
860
861 io_bp->b_lflags |= BL_IOBUF_ALLOC;
862 }
863 bcopy((caddr_t)bp->b_datap, (caddr_t)io_bp->b_datap, bp->b_bcount);
864
865#ifdef BUF_MAKE_PRIVATE
866 io_bp->b_data_store = NULL;
867#endif
868 }
869 KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, io_bp, 0);
870
871 return (io_bp);
872}
873
874
875#ifdef BUF_MAKE_PRIVATE
876errno_t
877buf_make_private(buf_t bp)
878{
879 buf_t ds_bp;
880 buf_t t_bp;
881 struct buf my_buf;
882
883 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_START, bp, bp->b_shadow_ref, 0, 0, 0);
884
885 if (bp->b_shadow_ref == 0 || bp->b_data_ref == 0 || ISSET(bp->b_lflags, BL_SHADOW)) {
886
887 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, EINVAL, 0);
888 return (EINVAL);
889 }
890 my_buf.b_flags = B_META;
891 my_buf.b_datap = (uintptr_t)NULL;
892 allocbuf(&my_buf, bp->b_bcount);
893
894 bcopy((caddr_t)bp->b_datap, (caddr_t)my_buf.b_datap, bp->b_bcount);
895
896 lck_mtx_lock_spin(buf_mtxp);
897
898 for (t_bp = bp->b_shadow; t_bp; t_bp = t_bp->b_shadow) {
899 if ( !ISSET(bp->b_lflags, BL_EXTERNAL))
900 break;
901 }
902 ds_bp = t_bp;
903
904 if (ds_bp == NULL && bp->b_data_ref)
905 panic("buf_make_private: b_data_ref != 0 && ds_bp == NULL");
906
907 if (ds_bp && (bp->b_data_ref == 0 || bp->b_shadow_ref == 0))
908 panic("buf_make_private: ref_count == 0 && ds_bp != NULL");
909
910 if (ds_bp == NULL) {
911 lck_mtx_unlock(buf_mtxp);
912
913 buf_free_meta_store(&my_buf);
914
915 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, EINVAL, 0);
916 return (EINVAL);
917 }
918 for (t_bp = bp->b_shadow; t_bp; t_bp = t_bp->b_shadow) {
919 if ( !ISSET(t_bp->b_lflags, BL_EXTERNAL))
920 t_bp->b_data_store = ds_bp;
921 }
922 ds_bp->b_data_ref = bp->b_data_ref;
923
924 bp->b_data_ref = 0;
925 bp->b_datap = my_buf.b_datap;
926
927 lck_mtx_unlock(buf_mtxp);
928
929 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, 0, 0);
930 return (0);
931}
932#endif
933
934
935void
936buf_setfilter(buf_t bp, void (*filter)(buf_t, void *), void *transaction,
937 void (**old_iodone)(buf_t, void *), void **old_transaction)
938{
939 assert(ISSET(bp->b_lflags, BL_BUSY));
940
941 if (old_iodone)
942 *old_iodone = bp->b_iodone;
943 if (old_transaction)
944 *old_transaction = bp->b_transaction;
945
946 bp->b_transaction = transaction;
947 bp->b_iodone = filter;
948 if (filter)
949 bp->b_flags |= B_FILTER;
950 else
951 bp->b_flags &= ~B_FILTER;
952}
953
954
955daddr64_t
956buf_blkno(buf_t bp) {
957
958 return (bp->b_blkno);
959}
960
961daddr64_t
962buf_lblkno(buf_t bp) {
963
964 return (bp->b_lblkno);
965}
966
967void
968buf_setblkno(buf_t bp, daddr64_t blkno) {
969
970 bp->b_blkno = blkno;
971}
972
973void
974buf_setlblkno(buf_t bp, daddr64_t lblkno) {
975
976 bp->b_lblkno = lblkno;
977}
978
979dev_t
980buf_device(buf_t bp) {
981
982 return (bp->b_dev);
983}
984
985errno_t
986buf_setdevice(buf_t bp, vnode_t vp) {
987
988 if ((vp->v_type != VBLK) && (vp->v_type != VCHR))
989 return EINVAL;
990 bp->b_dev = vp->v_rdev;
991
992 return 0;
993}
994
995
996void *
997buf_drvdata(buf_t bp) {
998
999 return (bp->b_drvdata);
1000}
1001
1002void
1003buf_setdrvdata(buf_t bp, void *drvdata) {
1004
1005 bp->b_drvdata = drvdata;
1006}
1007
1008void *
1009buf_fsprivate(buf_t bp) {
1010
1011 return (bp->b_fsprivate);
1012}
1013
1014void
1015buf_setfsprivate(buf_t bp, void *fsprivate) {
1016
1017 bp->b_fsprivate = fsprivate;
1018}
1019
1020kauth_cred_t
1021buf_rcred(buf_t bp) {
1022
1023 return (bp->b_rcred);
1024}
1025
1026kauth_cred_t
1027buf_wcred(buf_t bp) {
1028
1029 return (bp->b_wcred);
1030}
1031
1032void *
1033buf_upl(buf_t bp) {
1034
1035 return (bp->b_upl);
1036}
1037
1038uint32_t
1039buf_uploffset(buf_t bp) {
1040
1041 return ((uint32_t)(bp->b_uploffset));
1042}
1043
1044proc_t
1045buf_proc(buf_t bp) {
1046
1047 return (bp->b_proc);
1048}
1049
1050
1051errno_t
1052buf_map(buf_t bp, caddr_t *io_addr)
1053{
1054 buf_t real_bp;
1055 vm_offset_t vaddr;
1056 kern_return_t kret;
1057
1058 if ( !(bp->b_flags & B_CLUSTER)) {
1059 *io_addr = (caddr_t)bp->b_datap;
1060 return (0);
1061 }
1062 real_bp = (buf_t)(bp->b_real_bp);
1063
1064 if (real_bp && real_bp->b_datap) {
1065 /*
1066 * b_real_bp is only valid if B_CLUSTER is SET
1067 * if it's non-zero, than someone did a cluster_bp call
1068 * if the backing physical pages were already mapped
1069 * in before the call to cluster_bp (non-zero b_datap),
1070 * than we just use that mapping
1071 */
1072 *io_addr = (caddr_t)real_bp->b_datap;
1073 return (0);
1074 }
1075 kret = ubc_upl_map(bp->b_upl, &vaddr); /* Map it in */
1076
1077 if (kret != KERN_SUCCESS) {
1078 *io_addr = NULL;
1079
1080 return(ENOMEM);
1081 }
1082 vaddr += bp->b_uploffset;
1083
1084 *io_addr = (caddr_t)vaddr;
1085
1086 return (0);
1087}
1088
1089errno_t
1090buf_unmap(buf_t bp)
1091{
1092 buf_t real_bp;
1093 kern_return_t kret;
1094
1095 if ( !(bp->b_flags & B_CLUSTER))
1096 return (0);
1097 /*
1098 * see buf_map for the explanation
1099 */
1100 real_bp = (buf_t)(bp->b_real_bp);
1101
1102 if (real_bp && real_bp->b_datap)
1103 return (0);
1104
1105 if ((bp->b_lflags & BL_IOBUF) &&
1106 ((bp->b_flags & (B_PAGEIO | B_READ)) != (B_PAGEIO | B_READ))) {
1107 /*
1108 * ignore pageins... the 'right' thing will
1109 * happen due to the way we handle speculative
1110 * clusters...
1111 *
1112 * when we commit these pages, we'll hit
1113 * it with UPL_COMMIT_INACTIVE which
1114 * will clear the reference bit that got
1115 * turned on when we touched the mapping
1116 */
1117 bp->b_flags |= B_AGE;
1118 }
1119 kret = ubc_upl_unmap(bp->b_upl);
1120
1121 if (kret != KERN_SUCCESS)
1122 return (EINVAL);
1123 return (0);
1124}
1125
1126
1127void
1128buf_clear(buf_t bp) {
1129 caddr_t baddr;
1130
1131 if (buf_map(bp, &baddr) == 0) {
1132 bzero(baddr, bp->b_bcount);
1133 buf_unmap(bp);
1134 }
1135 bp->b_resid = 0;
1136}
1137
1138/*
1139 * Read or write a buffer that is not contiguous on disk.
1140 * buffer is marked done/error at the conclusion
1141 */
1142static int
1143buf_strategy_fragmented(vnode_t devvp, buf_t bp, off_t f_offset, size_t contig_bytes)
1144{
1145 vnode_t vp = buf_vnode(bp);
1146 buf_t io_bp; /* For reading or writing a single block */
1147 int io_direction;
1148 int io_resid;
1149 size_t io_contig_bytes;
1150 daddr64_t io_blkno;
1151 int error = 0;
1152 int bmap_flags;
1153
1154 /*
1155 * save our starting point... the bp was already mapped
1156 * in buf_strategy before we got called
1157 * no sense doing it again.
1158 */
1159 io_blkno = bp->b_blkno;
1160 /*
1161 * Make sure we redo this mapping for the next I/O
1162 * i.e. this can never be a 'permanent' mapping
1163 */
1164 bp->b_blkno = bp->b_lblkno;
1165
1166 /*
1167 * Get an io buffer to do the deblocking
1168 */
1169 io_bp = alloc_io_buf(devvp, 0);
1170
1171 io_bp->b_lblkno = bp->b_lblkno;
1172 io_bp->b_datap = bp->b_datap;
1173 io_resid = bp->b_bcount;
1174 io_direction = bp->b_flags & B_READ;
1175 io_contig_bytes = contig_bytes;
1176
1177 if (bp->b_flags & B_READ)
1178 bmap_flags = VNODE_READ;
1179 else
1180 bmap_flags = VNODE_WRITE;
1181
1182 for (;;) {
1183 if (io_blkno == -1)
1184 /*
1185 * this is unexepected, but we'll allow for it
1186 */
1187 bzero((caddr_t)io_bp->b_datap, (int)io_contig_bytes);
1188 else {
1189 io_bp->b_bcount = io_contig_bytes;
1190 io_bp->b_bufsize = io_contig_bytes;
1191 io_bp->b_resid = io_contig_bytes;
1192 io_bp->b_blkno = io_blkno;
1193
1194 buf_reset(io_bp, io_direction);
1195
1196 /*
1197 * Call the device to do the I/O and wait for it. Make sure the appropriate party is charged for write
1198 */
1199
1200 if (!ISSET(bp->b_flags, B_READ))
1201 OSAddAtomic(1, &devvp->v_numoutput);
1202
1203 if ((error = VNOP_STRATEGY(io_bp)))
1204 break;
1205 if ((error = (int)buf_biowait(io_bp)))
1206 break;
1207 if (io_bp->b_resid) {
1208 io_resid -= (io_contig_bytes - io_bp->b_resid);
1209 break;
1210 }
1211 }
1212 if ((io_resid -= io_contig_bytes) == 0)
1213 break;
1214 f_offset += io_contig_bytes;
1215 io_bp->b_datap += io_contig_bytes;
1216
1217 /*
1218 * Map the current position to a physical block number
1219 */
1220 if ((error = VNOP_BLOCKMAP(vp, f_offset, io_resid, &io_blkno, &io_contig_bytes, NULL, bmap_flags, NULL)))
1221 break;
1222 }
1223 buf_free(io_bp);
1224
1225 if (error)
1226 buf_seterror(bp, error);
1227 bp->b_resid = io_resid;
1228 /*
1229 * This I/O is now complete
1230 */
1231 buf_biodone(bp);
1232
1233 return error;
1234}
1235
1236
1237/*
1238 * struct vnop_strategy_args {
1239 * struct buf *a_bp;
1240 * } *ap;
1241 */
1242errno_t
1243buf_strategy(vnode_t devvp, void *ap)
1244{
1245 buf_t bp = ((struct vnop_strategy_args *)ap)->a_bp;
1246 vnode_t vp = bp->b_vp;
1247 int bmap_flags;
1248 errno_t error;
1249#if CONFIG_DTRACE
1250 int dtrace_io_start_flag = 0; /* We only want to trip the io:::start
1251 * probe once, with the true physical
1252 * block in place (b_blkno)
1253 */
1254
1255#endif
1256
1257 if (vp == NULL || vp->v_type == VCHR || vp->v_type == VBLK)
1258 panic("buf_strategy: b_vp == NULL || vtype == VCHR | VBLK\n");
1259 /*
1260 * associate the physical device with
1261 * with this buf_t even if we don't
1262 * end up issuing the I/O...
1263 */
1264 bp->b_dev = devvp->v_rdev;
1265
1266 if (bp->b_flags & B_READ)
1267 bmap_flags = VNODE_READ;
1268 else
1269 bmap_flags = VNODE_WRITE;
1270
1271 if ( !(bp->b_flags & B_CLUSTER)) {
1272
1273 if ( (bp->b_upl) ) {
1274 /*
1275 * we have a UPL associated with this bp
1276 * go through cluster_bp which knows how
1277 * to deal with filesystem block sizes
1278 * that aren't equal to the page size
1279 */
1280 DTRACE_IO1(start, buf_t, bp);
1281 return (cluster_bp(bp));
1282 }
1283 if (bp->b_blkno == bp->b_lblkno) {
1284 off_t f_offset;
1285 size_t contig_bytes;
1286
1287 if ((error = VNOP_BLKTOOFF(vp, bp->b_lblkno, &f_offset))) {
1288 DTRACE_IO1(start, buf_t, bp);
1289 buf_seterror(bp, error);
1290 buf_biodone(bp);
1291
1292 return (error);
1293 }
1294
1295 if ((error = VNOP_BLOCKMAP(vp, f_offset, bp->b_bcount, &bp->b_blkno, &contig_bytes, NULL, bmap_flags, NULL))) {
1296 DTRACE_IO1(start, buf_t, bp);
1297 buf_seterror(bp, error);
1298 buf_biodone(bp);
1299
1300 return (error);
1301 }
1302
1303 DTRACE_IO1(start, buf_t, bp);
1304#if CONFIG_DTRACE
1305 dtrace_io_start_flag = 1;
1306#endif /* CONFIG_DTRACE */
1307
1308 if ((bp->b_blkno == -1) || (contig_bytes == 0)) {
1309 /* Set block number to force biodone later */
1310 bp->b_blkno = -1;
1311 buf_clear(bp);
1312 }
1313 else if ((long)contig_bytes < bp->b_bcount) {
1314 return (buf_strategy_fragmented(devvp, bp, f_offset, contig_bytes));
1315 }
1316 }
1317
1318#if CONFIG_DTRACE
1319 if (dtrace_io_start_flag == 0) {
1320 DTRACE_IO1(start, buf_t, bp);
1321 dtrace_io_start_flag = 1;
1322 }
1323#endif /* CONFIG_DTRACE */
1324
1325 if (bp->b_blkno == -1) {
1326 buf_biodone(bp);
1327 return (0);
1328 }
1329 }
1330
1331#if CONFIG_DTRACE
1332 if (dtrace_io_start_flag == 0)
1333 DTRACE_IO1(start, buf_t, bp);
1334#endif /* CONFIG_DTRACE */
1335
1336#if CONFIG_PROTECT
1337 /* Capture f_offset in the bufattr*/
1338 cpx_t cpx = bufattr_cpx(buf_attr(bp));
1339 if (cpx) {
1340 /* No need to go here for older EAs */
1341 if(cpx_use_offset_for_iv(cpx) && !cpx_synthetic_offset_for_iv(cpx)) {
1342 off_t f_offset;
1343 if ((error = VNOP_BLKTOOFF(bp->b_vp, bp->b_lblkno, &f_offset)))
1344 return error;
1345
1346 /*
1347 * Attach the file offset to this buffer. The
1348 * bufattr attributes will be passed down the stack
1349 * until they reach the storage driver (whether
1350 * IOFlashStorage, ASP, or IONVMe). The driver
1351 * will retain the offset in a local variable when it
1352 * issues its I/Os to the NAND controller.
1353 *
1354 * Note that LwVM may end up splitting this I/O
1355 * into sub-I/Os if it crosses a chunk boundary. In this
1356 * case, LwVM will update this field when it dispatches
1357 * each I/O to IOFlashStorage. But from our perspective
1358 * we have only issued a single I/O.
1359 *
1360 * In the case of APFS we do not bounce through another
1361 * intermediate layer (such as CoreStorage). APFS will
1362 * issue the I/Os directly to the block device / IOMedia
1363 * via buf_strategy on the specfs node.
1364 */
1365 buf_setcpoff(bp, f_offset);
1366 CP_DEBUG((CPDBG_OFFSET_IO | DBG_FUNC_NONE), (uint32_t) f_offset, (uint32_t) bp->b_lblkno, (uint32_t) bp->b_blkno, (uint32_t) bp->b_bcount, 0);
1367 }
1368 }
1369#endif
1370
1371 /*
1372 * we can issue the I/O because...
1373 * either B_CLUSTER is set which
1374 * means that the I/O is properly set
1375 * up to be a multiple of the page size, or
1376 * we were able to successfully set up the
1377 * physical block mapping
1378 */
1379 error = VOCALL(devvp->v_op, VOFFSET(vnop_strategy), ap);
1380 DTRACE_FSINFO(strategy, vnode_t, vp);
1381 return (error);
1382}
1383
1384
1385
1386buf_t
1387buf_alloc(vnode_t vp)
1388{
1389 return(alloc_io_buf(vp, is_vm_privileged()));
1390}
1391
1392void
1393buf_free(buf_t bp) {
1394
1395 free_io_buf(bp);
1396}
1397
1398
1399/*
1400 * iterate buffers for the specified vp.
1401 * if BUF_SCAN_DIRTY is set, do the dirty list
1402 * if BUF_SCAN_CLEAN is set, do the clean list
1403 * if neither flag is set, default to BUF_SCAN_DIRTY
1404 * if BUF_NOTIFY_BUSY is set, call the callout function using a NULL bp for busy pages
1405 */
1406
1407struct buf_iterate_info_t {
1408 int flag;
1409 struct buflists *listhead;
1410};
1411
1412void
1413buf_iterate(vnode_t vp, int (*callout)(buf_t, void *), int flags, void *arg)
1414{
1415 buf_t bp;
1416 int retval;
1417 struct buflists local_iterblkhd;
1418 int lock_flags = BAC_NOWAIT | BAC_REMOVE;
1419 int notify_busy = flags & BUF_NOTIFY_BUSY;
1420 struct buf_iterate_info_t list[2];
1421 int num_lists, i;
1422
1423 if (flags & BUF_SKIP_LOCKED)
1424 lock_flags |= BAC_SKIP_LOCKED;
1425 if (flags & BUF_SKIP_NONLOCKED)
1426 lock_flags |= BAC_SKIP_NONLOCKED;
1427
1428 if ( !(flags & (BUF_SCAN_DIRTY | BUF_SCAN_CLEAN)))
1429 flags |= BUF_SCAN_DIRTY;
1430
1431 num_lists = 0;
1432
1433 if (flags & BUF_SCAN_DIRTY) {
1434 list[num_lists].flag = VBI_DIRTY;
1435 list[num_lists].listhead = &vp->v_dirtyblkhd;
1436 num_lists++;
1437 }
1438 if (flags & BUF_SCAN_CLEAN) {
1439 list[num_lists].flag = VBI_CLEAN;
1440 list[num_lists].listhead = &vp->v_cleanblkhd;
1441 num_lists++;
1442 }
1443
1444 for (i = 0; i < num_lists; i++) {
1445 lck_mtx_lock(buf_mtxp);
1446
1447 if (buf_iterprepare(vp, &local_iterblkhd, list[i].flag)) {
1448 lck_mtx_unlock(buf_mtxp);
1449 continue;
1450 }
1451 while (!LIST_EMPTY(&local_iterblkhd)) {
1452 bp = LIST_FIRST(&local_iterblkhd);
1453 LIST_REMOVE(bp, b_vnbufs);
1454 LIST_INSERT_HEAD(list[i].listhead, bp, b_vnbufs);
1455
1456 if (buf_acquire_locked(bp, lock_flags, 0, 0)) {
1457 if (notify_busy) {
1458 bp = NULL;
1459 } else {
1460 continue;
1461 }
1462 }
1463
1464 lck_mtx_unlock(buf_mtxp);
1465
1466 retval = callout(bp, arg);
1467
1468 switch (retval) {
1469 case BUF_RETURNED:
1470 if (bp)
1471 buf_brelse(bp);
1472 break;
1473 case BUF_CLAIMED:
1474 break;
1475 case BUF_RETURNED_DONE:
1476 if (bp)
1477 buf_brelse(bp);
1478 lck_mtx_lock(buf_mtxp);
1479 goto out;
1480 case BUF_CLAIMED_DONE:
1481 lck_mtx_lock(buf_mtxp);
1482 goto out;
1483 }
1484 lck_mtx_lock(buf_mtxp);
1485 } /* while list has more nodes */
1486 out:
1487 buf_itercomplete(vp, &local_iterblkhd, list[i].flag);
1488 lck_mtx_unlock(buf_mtxp);
1489 } /* for each list */
1490} /* buf_iterate */
1491
1492
1493/*
1494 * Flush out and invalidate all buffers associated with a vnode.
1495 */
1496int
1497buf_invalidateblks(vnode_t vp, int flags, int slpflag, int slptimeo)
1498{
1499 buf_t bp;
1500 int aflags;
1501 int error = 0;
1502 int must_rescan = 1;
1503 struct buflists local_iterblkhd;
1504
1505
1506 if (LIST_EMPTY(&vp->v_cleanblkhd) && LIST_EMPTY(&vp->v_dirtyblkhd))
1507 return (0);
1508
1509 lck_mtx_lock(buf_mtxp);
1510
1511 for (;;) {
1512 if (must_rescan == 0)
1513 /*
1514 * the lists may not be empty, but all that's left at this
1515 * point are metadata or B_LOCKED buffers which are being
1516 * skipped... we know this because we made it through both
1517 * the clean and dirty lists without dropping buf_mtxp...
1518 * each time we drop buf_mtxp we bump "must_rescan"
1519 */
1520 break;
1521 if (LIST_EMPTY(&vp->v_cleanblkhd) && LIST_EMPTY(&vp->v_dirtyblkhd))
1522 break;
1523 must_rescan = 0;
1524 /*
1525 * iterate the clean list
1526 */
1527 if (buf_iterprepare(vp, &local_iterblkhd, VBI_CLEAN)) {
1528 goto try_dirty_list;
1529 }
1530 while (!LIST_EMPTY(&local_iterblkhd)) {
1531
1532 bp = LIST_FIRST(&local_iterblkhd);
1533
1534 LIST_REMOVE(bp, b_vnbufs);
1535 LIST_INSERT_HEAD(&vp->v_cleanblkhd, bp, b_vnbufs);
1536
1537 /*
1538 * some filesystems distinguish meta data blocks with a negative logical block #
1539 */
1540 if ((flags & BUF_SKIP_META) && (bp->b_lblkno < 0 || ISSET(bp->b_flags, B_META)))
1541 continue;
1542
1543 aflags = BAC_REMOVE;
1544
1545 if ( !(flags & BUF_INVALIDATE_LOCKED) )
1546 aflags |= BAC_SKIP_LOCKED;
1547
1548 if ( (error = (int)buf_acquire_locked(bp, aflags, slpflag, slptimeo)) ) {
1549 if (error == EDEADLK)
1550 /*
1551 * this buffer was marked B_LOCKED...
1552 * we didn't drop buf_mtxp, so we
1553 * we don't need to rescan
1554 */
1555 continue;
1556 if (error == EAGAIN) {
1557 /*
1558 * found a busy buffer... we blocked and
1559 * dropped buf_mtxp, so we're going to
1560 * need to rescan after this pass is completed
1561 */
1562 must_rescan++;
1563 continue;
1564 }
1565 /*
1566 * got some kind of 'real' error out of the msleep
1567 * in buf_acquire_locked, terminate the scan and return the error
1568 */
1569 buf_itercomplete(vp, &local_iterblkhd, VBI_CLEAN);
1570
1571 lck_mtx_unlock(buf_mtxp);
1572 return (error);
1573 }
1574 lck_mtx_unlock(buf_mtxp);
1575
1576 if (bp->b_flags & B_LOCKED)
1577 KERNEL_DEBUG(0xbbbbc038, bp, 0, 0, 0, 0);
1578
1579 CLR(bp->b_flags, B_LOCKED);
1580 SET(bp->b_flags, B_INVAL);
1581 buf_brelse(bp);
1582
1583 lck_mtx_lock(buf_mtxp);
1584
1585 /*
1586 * by dropping buf_mtxp, we allow new
1587 * buffers to be added to the vnode list(s)
1588 * we'll have to rescan at least once more
1589 * if the queues aren't empty
1590 */
1591 must_rescan++;
1592 }
1593 buf_itercomplete(vp, &local_iterblkhd, VBI_CLEAN);
1594
1595try_dirty_list:
1596 /*
1597 * Now iterate on dirty blks
1598 */
1599 if (buf_iterprepare(vp, &local_iterblkhd, VBI_DIRTY)) {
1600 continue;
1601 }
1602 while (!LIST_EMPTY(&local_iterblkhd)) {
1603 bp = LIST_FIRST(&local_iterblkhd);
1604
1605 LIST_REMOVE(bp, b_vnbufs);
1606 LIST_INSERT_HEAD(&vp->v_dirtyblkhd, bp, b_vnbufs);
1607
1608 /*
1609 * some filesystems distinguish meta data blocks with a negative logical block #
1610 */
1611 if ((flags & BUF_SKIP_META) && (bp->b_lblkno < 0 || ISSET(bp->b_flags, B_META)))
1612 continue;
1613
1614 aflags = BAC_REMOVE;
1615
1616 if ( !(flags & BUF_INVALIDATE_LOCKED) )
1617 aflags |= BAC_SKIP_LOCKED;
1618
1619 if ( (error = (int)buf_acquire_locked(bp, aflags, slpflag, slptimeo)) ) {
1620 if (error == EDEADLK)
1621 /*
1622 * this buffer was marked B_LOCKED...
1623 * we didn't drop buf_mtxp, so we
1624 * we don't need to rescan
1625 */
1626 continue;
1627 if (error == EAGAIN) {
1628 /*
1629 * found a busy buffer... we blocked and
1630 * dropped buf_mtxp, so we're going to
1631 * need to rescan after this pass is completed
1632 */
1633 must_rescan++;
1634 continue;
1635 }
1636 /*
1637 * got some kind of 'real' error out of the msleep
1638 * in buf_acquire_locked, terminate the scan and return the error
1639 */
1640 buf_itercomplete(vp, &local_iterblkhd, VBI_DIRTY);
1641
1642 lck_mtx_unlock(buf_mtxp);
1643 return (error);
1644 }
1645 lck_mtx_unlock(buf_mtxp);
1646
1647 if (bp->b_flags & B_LOCKED)
1648 KERNEL_DEBUG(0xbbbbc038, bp, 0, 0, 1, 0);
1649
1650 CLR(bp->b_flags, B_LOCKED);
1651 SET(bp->b_flags, B_INVAL);
1652
1653 if (ISSET(bp->b_flags, B_DELWRI) && (flags & BUF_WRITE_DATA))
1654 (void) VNOP_BWRITE(bp);
1655 else
1656 buf_brelse(bp);
1657
1658 lck_mtx_lock(buf_mtxp);
1659 /*
1660 * by dropping buf_mtxp, we allow new
1661 * buffers to be added to the vnode list(s)
1662 * we'll have to rescan at least once more
1663 * if the queues aren't empty
1664 */
1665 must_rescan++;
1666 }
1667 buf_itercomplete(vp, &local_iterblkhd, VBI_DIRTY);
1668 }
1669 lck_mtx_unlock(buf_mtxp);
1670
1671 return (0);
1672}
1673
1674void
1675buf_flushdirtyblks(vnode_t vp, int wait, int flags, const char *msg) {
1676
1677 (void) buf_flushdirtyblks_skipinfo(vp, wait, flags, msg);
1678 return;
1679}
1680
1681int
1682buf_flushdirtyblks_skipinfo(vnode_t vp, int wait, int flags, const char *msg) {
1683 buf_t bp;
1684 int writes_issued = 0;
1685 errno_t error;
1686 int busy = 0;
1687 struct buflists local_iterblkhd;
1688 int lock_flags = BAC_NOWAIT | BAC_REMOVE;
1689 int any_locked = 0;
1690
1691 if (flags & BUF_SKIP_LOCKED)
1692 lock_flags |= BAC_SKIP_LOCKED;
1693 if (flags & BUF_SKIP_NONLOCKED)
1694 lock_flags |= BAC_SKIP_NONLOCKED;
1695loop:
1696 lck_mtx_lock(buf_mtxp);
1697
1698 if (buf_iterprepare(vp, &local_iterblkhd, VBI_DIRTY) == 0) {
1699 while (!LIST_EMPTY(&local_iterblkhd)) {
1700 bp = LIST_FIRST(&local_iterblkhd);
1701 LIST_REMOVE(bp, b_vnbufs);
1702 LIST_INSERT_HEAD(&vp->v_dirtyblkhd, bp, b_vnbufs);
1703
1704 if ((error = buf_acquire_locked(bp, lock_flags, 0, 0)) == EBUSY) {
1705 busy++;
1706 }
1707 if (error) {
1708 /*
1709 * If we passed in BUF_SKIP_LOCKED or BUF_SKIP_NONLOCKED,
1710 * we may want to do somethign differently if a locked or unlocked
1711 * buffer was encountered (depending on the arg specified).
1712 * In this case, we know that one of those two was set, and the
1713 * buf acquisition failed above.
1714 *
1715 * If it failed with EDEADLK, then save state which can be emitted
1716 * later on to the caller. Most callers should not care.
1717 */
1718 if (error == EDEADLK) {
1719 any_locked++;
1720 }
1721 continue;
1722 }
1723 lck_mtx_unlock(buf_mtxp);
1724
1725 bp->b_flags &= ~B_LOCKED;
1726
1727 /*
1728 * Wait for I/O associated with indirect blocks to complete,
1729 * since there is no way to quickly wait for them below.
1730 */
1731 if ((bp->b_vp == vp) || (wait == 0))
1732 (void) buf_bawrite(bp);
1733 else
1734 (void) VNOP_BWRITE(bp);
1735 writes_issued++;
1736
1737 lck_mtx_lock(buf_mtxp);
1738 }
1739 buf_itercomplete(vp, &local_iterblkhd, VBI_DIRTY);
1740 }
1741 lck_mtx_unlock(buf_mtxp);
1742
1743 if (wait) {
1744 (void)vnode_waitforwrites(vp, 0, 0, 0, msg);
1745
1746 if (vp->v_dirtyblkhd.lh_first && busy) {
1747 /*
1748 * we had one or more BUSY buffers on
1749 * the dirtyblock list... most likely
1750 * these are due to delayed writes that
1751 * were moved to the bclean queue but
1752 * have not yet been 'written'.
1753 * if we issued some writes on the
1754 * previous pass, we try again immediately
1755 * if we didn't, we'll sleep for some time
1756 * to allow the state to change...
1757 */
1758 if (writes_issued == 0) {
1759 (void)tsleep((caddr_t)&vp->v_numoutput,
1760 PRIBIO + 1, "vnode_flushdirtyblks", hz/20);
1761 }
1762 writes_issued = 0;
1763 busy = 0;
1764
1765 goto loop;
1766 }
1767 }
1768
1769 return any_locked;
1770}
1771
1772
1773/*
1774 * called with buf_mtxp held...
1775 * this lock protects the queue manipulation
1776 */
1777static int
1778buf_iterprepare(vnode_t vp, struct buflists *iterheadp, int flags)
1779{
1780 struct buflists * listheadp;
1781
1782 if (flags & VBI_DIRTY)
1783 listheadp = &vp->v_dirtyblkhd;
1784 else
1785 listheadp = &vp->v_cleanblkhd;
1786
1787 while (vp->v_iterblkflags & VBI_ITER) {
1788 vp->v_iterblkflags |= VBI_ITERWANT;
1789 msleep(&vp->v_iterblkflags, buf_mtxp, 0, "buf_iterprepare", NULL);
1790 }
1791 if (LIST_EMPTY(listheadp)) {
1792 LIST_INIT(iterheadp);
1793 return(EINVAL);
1794 }
1795 vp->v_iterblkflags |= VBI_ITER;
1796
1797 iterheadp->lh_first = listheadp->lh_first;
1798 listheadp->lh_first->b_vnbufs.le_prev = &iterheadp->lh_first;
1799 LIST_INIT(listheadp);
1800
1801 return(0);
1802}
1803
1804/*
1805 * called with buf_mtxp held...
1806 * this lock protects the queue manipulation
1807 */
1808static void
1809buf_itercomplete(vnode_t vp, struct buflists *iterheadp, int flags)
1810{
1811 struct buflists * listheadp;
1812 buf_t bp;
1813
1814 if (flags & VBI_DIRTY)
1815 listheadp = &vp->v_dirtyblkhd;
1816 else
1817 listheadp = &vp->v_cleanblkhd;
1818
1819 while (!LIST_EMPTY(iterheadp)) {
1820 bp = LIST_FIRST(iterheadp);
1821 LIST_REMOVE(bp, b_vnbufs);
1822 LIST_INSERT_HEAD(listheadp, bp, b_vnbufs);
1823 }
1824 vp->v_iterblkflags &= ~VBI_ITER;
1825
1826 if (vp->v_iterblkflags & VBI_ITERWANT) {
1827 vp->v_iterblkflags &= ~VBI_ITERWANT;
1828 wakeup(&vp->v_iterblkflags);
1829 }
1830}
1831
1832
1833static void
1834bremfree_locked(buf_t bp)
1835{
1836 struct bqueues *dp = NULL;
1837 int whichq;
1838
1839 whichq = bp->b_whichq;
1840
1841 if (whichq == -1) {
1842 if (bp->b_shadow_ref == 0)
1843 panic("bremfree_locked: %p not on freelist", bp);
1844 /*
1845 * there are clones pointing to 'bp'...
1846 * therefore, it was not put on a freelist
1847 * when buf_brelse was last called on 'bp'
1848 */
1849 return;
1850 }
1851 /*
1852 * We only calculate the head of the freelist when removing
1853 * the last element of the list as that is the only time that
1854 * it is needed (e.g. to reset the tail pointer).
1855 *
1856 * NB: This makes an assumption about how tailq's are implemented.
1857 */
1858 if (bp->b_freelist.tqe_next == NULL) {
1859 dp = &bufqueues[whichq];
1860
1861 if (dp->tqh_last != &bp->b_freelist.tqe_next)
1862 panic("bremfree: lost tail");
1863 }
1864 TAILQ_REMOVE(dp, bp, b_freelist);
1865
1866 if (whichq == BQ_LAUNDRY)
1867 blaundrycnt--;
1868
1869 bp->b_whichq = -1;
1870 bp->b_timestamp = 0;
1871 bp->b_shadow = 0;
1872}
1873
1874/*
1875 * Associate a buffer with a vnode.
1876 * buf_mtxp must be locked on entry
1877 */
1878static void
1879bgetvp_locked(vnode_t vp, buf_t bp)
1880{
1881
1882 if (bp->b_vp != vp)
1883 panic("bgetvp_locked: not free");
1884
1885 if (vp->v_type == VBLK || vp->v_type == VCHR)
1886 bp->b_dev = vp->v_rdev;
1887 else
1888 bp->b_dev = NODEV;
1889 /*
1890 * Insert onto list for new vnode.
1891 */
1892 bufinsvn(bp, &vp->v_cleanblkhd);
1893}
1894
1895/*
1896 * Disassociate a buffer from a vnode.
1897 * buf_mtxp must be locked on entry
1898 */
1899static void
1900brelvp_locked(buf_t bp)
1901{
1902 /*
1903 * Delete from old vnode list, if on one.
1904 */
1905 if (bp->b_vnbufs.le_next != NOLIST)
1906 bufremvn(bp);
1907
1908 bp->b_vp = (vnode_t)NULL;
1909}
1910
1911/*
1912 * Reassign a buffer from one vnode to another.
1913 * Used to assign file specific control information
1914 * (indirect blocks) to the vnode to which they belong.
1915 */
1916static void
1917buf_reassign(buf_t bp, vnode_t newvp)
1918{
1919 struct buflists *listheadp;
1920
1921 if (newvp == NULL) {
1922 printf("buf_reassign: NULL");
1923 return;
1924 }
1925 lck_mtx_lock_spin(buf_mtxp);
1926
1927 /*
1928 * Delete from old vnode list, if on one.
1929 */
1930 if (bp->b_vnbufs.le_next != NOLIST)
1931 bufremvn(bp);
1932 /*
1933 * If dirty, put on list of dirty buffers;
1934 * otherwise insert onto list of clean buffers.
1935 */
1936 if (ISSET(bp->b_flags, B_DELWRI))
1937 listheadp = &newvp->v_dirtyblkhd;
1938 else
1939 listheadp = &newvp->v_cleanblkhd;
1940 bufinsvn(bp, listheadp);
1941
1942 lck_mtx_unlock(buf_mtxp);
1943}
1944
1945static __inline__ void
1946bufhdrinit(buf_t bp)
1947{
1948 bzero((char *)bp, sizeof *bp);
1949 bp->b_dev = NODEV;
1950 bp->b_rcred = NOCRED;
1951 bp->b_wcred = NOCRED;
1952 bp->b_vnbufs.le_next = NOLIST;
1953 bp->b_flags = B_INVAL;
1954
1955 return;
1956}
1957
1958/*
1959 * Initialize buffers and hash links for buffers.
1960 */
1961__private_extern__ void
1962bufinit(void)
1963{
1964 buf_t bp;
1965 struct bqueues *dp;
1966 int i;
1967
1968 nbuf_headers = 0;
1969 /* Initialize the buffer queues ('freelists') and the hash table */
1970 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
1971 TAILQ_INIT(dp);
1972 bufhashtbl = hashinit(nbuf_hashelements, M_CACHE, &bufhash);
1973
1974 buf_busycount = 0;
1975
1976 /* Initialize the buffer headers */
1977 for (i = 0; i < max_nbuf_headers; i++) {
1978 nbuf_headers++;
1979 bp = &buf_headers[i];
1980 bufhdrinit(bp);
1981
1982 BLISTNONE(bp);
1983 dp = &bufqueues[BQ_EMPTY];
1984 bp->b_whichq = BQ_EMPTY;
1985 bp->b_timestamp = buf_timestamp();
1986 binsheadfree(bp, dp, BQ_EMPTY);
1987 binshash(bp, &invalhash);
1988 }
1989 boot_nbuf_headers = nbuf_headers;
1990
1991 TAILQ_INIT(&iobufqueue);
1992 TAILQ_INIT(&delaybufqueue);
1993
1994 for (; i < nbuf_headers + niobuf_headers; i++) {
1995 bp = &buf_headers[i];
1996 bufhdrinit(bp);
1997 bp->b_whichq = -1;
1998 binsheadfree(bp, &iobufqueue, -1);
1999 }
2000
2001 /*
2002 * allocate lock group attribute and group
2003 */
2004 buf_mtx_grp_attr = lck_grp_attr_alloc_init();
2005 buf_mtx_grp = lck_grp_alloc_init("buffer cache", buf_mtx_grp_attr);
2006
2007 /*
2008 * allocate the lock attribute
2009 */
2010 buf_mtx_attr = lck_attr_alloc_init();
2011
2012 /*
2013 * allocate and initialize mutex's for the buffer and iobuffer pools
2014 */
2015 buf_mtxp = lck_mtx_alloc_init(buf_mtx_grp, buf_mtx_attr);
2016 iobuffer_mtxp = lck_mtx_alloc_init(buf_mtx_grp, buf_mtx_attr);
2017 buf_gc_callout = lck_mtx_alloc_init(buf_mtx_grp, buf_mtx_attr);
2018
2019 if (iobuffer_mtxp == NULL)
2020 panic("couldn't create iobuffer mutex");
2021
2022 if (buf_mtxp == NULL)
2023 panic("couldn't create buf mutex");
2024
2025 if (buf_gc_callout == NULL)
2026 panic("couldn't create buf_gc_callout mutex");
2027
2028 /*
2029 * allocate and initialize cluster specific global locks...
2030 */
2031 cluster_init();
2032
2033 printf("using %d buffer headers and %d cluster IO buffer headers\n",
2034 nbuf_headers, niobuf_headers);
2035
2036 /* Set up zones used by the buffer cache */
2037 bufzoneinit();
2038
2039 /* start the bcleanbuf() thread */
2040 bcleanbuf_thread_init();
2041
2042 /* Register a callout for relieving vm pressure */
2043 if (vm_set_buffer_cleanup_callout(buffer_cache_gc) != KERN_SUCCESS) {
2044 panic("Couldn't register buffer cache callout for vm pressure!\n");
2045 }
2046
2047}
2048
2049/*
2050 * Zones for the meta data buffers
2051 */
2052
2053#define MINMETA 512
2054#define MAXMETA 16384
2055
2056struct meta_zone_entry {
2057 zone_t mz_zone;
2058 vm_size_t mz_size;
2059 vm_size_t mz_max;
2060 const char *mz_name;
2061};
2062
2063struct meta_zone_entry meta_zones[] = {
2064 {NULL, (MINMETA * 1), 128 * (MINMETA * 1), "buf.512" },
2065 {NULL, (MINMETA * 2), 64 * (MINMETA * 2), "buf.1024" },
2066 {NULL, (MINMETA * 4), 16 * (MINMETA * 4), "buf.2048" },
2067 {NULL, (MINMETA * 8), 512 * (MINMETA * 8), "buf.4096" },
2068 {NULL, (MINMETA * 16), 512 * (MINMETA * 16), "buf.8192" },
2069 {NULL, (MINMETA * 32), 512 * (MINMETA * 32), "buf.16384" },
2070 {NULL, 0, 0, "" } /* End */
2071};
2072
2073/*
2074 * Initialize the meta data zones
2075 */
2076static void
2077bufzoneinit(void)
2078{
2079 int i;
2080
2081 for (i = 0; meta_zones[i].mz_size != 0; i++) {
2082 meta_zones[i].mz_zone =
2083 zinit(meta_zones[i].mz_size,
2084 meta_zones[i].mz_max,
2085 PAGE_SIZE,
2086 meta_zones[i].mz_name);
2087 zone_change(meta_zones[i].mz_zone, Z_CALLERACCT, FALSE);
2088 }
2089 buf_hdr_zone = zinit(sizeof(struct buf), 32, PAGE_SIZE, "buf headers");
2090 zone_change(buf_hdr_zone, Z_CALLERACCT, FALSE);
2091}
2092
2093static __inline__ zone_t
2094getbufzone(size_t size)
2095{
2096 int i;
2097
2098 if ((size % 512) || (size < MINMETA) || (size > MAXMETA))
2099 panic("getbufzone: incorect size = %lu", size);
2100
2101 for (i = 0; meta_zones[i].mz_size != 0; i++) {
2102 if (meta_zones[i].mz_size >= size)
2103 break;
2104 }
2105
2106 return (meta_zones[i].mz_zone);
2107}
2108
2109
2110
2111static struct buf *
2112bio_doread(vnode_t vp, daddr64_t blkno, int size, kauth_cred_t cred, int async, int queuetype)
2113{
2114 buf_t bp;
2115
2116 bp = buf_getblk(vp, blkno, size, 0, 0, queuetype);
2117
2118 /*
2119 * If buffer does not have data valid, start a read.
2120 * Note that if buffer is B_INVAL, buf_getblk() won't return it.
2121 * Therefore, it's valid if it's I/O has completed or been delayed.
2122 */
2123 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
2124 struct proc *p;
2125
2126 p = current_proc();
2127
2128 /* Start I/O for the buffer (keeping credentials). */
2129 SET(bp->b_flags, B_READ | async);
2130 if (IS_VALID_CRED(cred) && !IS_VALID_CRED(bp->b_rcred)) {
2131 kauth_cred_ref(cred);
2132 bp->b_rcred = cred;
2133 }
2134
2135 VNOP_STRATEGY(bp);
2136
2137 trace(TR_BREADMISS, pack(vp, size), blkno);
2138
2139 /* Pay for the read. */
2140 if (p && p->p_stats) {
2141 OSIncrementAtomicLong(&p->p_stats->p_ru.ru_inblock); /* XXX */
2142 }
2143
2144 if (async) {
2145 /*
2146 * since we asked for an ASYNC I/O
2147 * the biodone will do the brelse
2148 * we don't want to pass back a bp
2149 * that we don't 'own'
2150 */
2151 bp = NULL;
2152 }
2153 } else if (async) {
2154 buf_brelse(bp);
2155 bp = NULL;
2156 }
2157
2158 trace(TR_BREADHIT, pack(vp, size), blkno);
2159
2160 return (bp);
2161}
2162
2163/*
2164 * Perform the reads for buf_breadn() and buf_meta_breadn().
2165 * Trivial modification to the breada algorithm presented in Bach (p.55).
2166 */
2167static errno_t
2168do_breadn_for_type(vnode_t vp, daddr64_t blkno, int size, daddr64_t *rablks, int *rasizes,
2169 int nrablks, kauth_cred_t cred, buf_t *bpp, int queuetype)
2170{
2171 buf_t bp;
2172 int i;
2173
2174 bp = *bpp = bio_doread(vp, blkno, size, cred, 0, queuetype);
2175
2176 /*
2177 * For each of the read-ahead blocks, start a read, if necessary.
2178 */
2179 for (i = 0; i < nrablks; i++) {
2180 /* If it's in the cache, just go on to next one. */
2181 if (incore(vp, rablks[i]))
2182 continue;
2183
2184 /* Get a buffer for the read-ahead block */
2185 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC, queuetype);
2186 }
2187
2188 /* Otherwise, we had to start a read for it; wait until it's valid. */
2189 return (buf_biowait(bp));
2190}
2191
2192
2193/*
2194 * Read a disk block.
2195 * This algorithm described in Bach (p.54).
2196 */
2197errno_t
2198buf_bread(vnode_t vp, daddr64_t blkno, int size, kauth_cred_t cred, buf_t *bpp)
2199{
2200 buf_t bp;
2201
2202 /* Get buffer for block. */
2203 bp = *bpp = bio_doread(vp, blkno, size, cred, 0, BLK_READ);
2204
2205 /* Wait for the read to complete, and return result. */
2206 return (buf_biowait(bp));
2207}
2208
2209/*
2210 * Read a disk block. [bread() for meta-data]
2211 * This algorithm described in Bach (p.54).
2212 */
2213errno_t
2214buf_meta_bread(vnode_t vp, daddr64_t blkno, int size, kauth_cred_t cred, buf_t *bpp)
2215{
2216 buf_t bp;
2217
2218 /* Get buffer for block. */
2219 bp = *bpp = bio_doread(vp, blkno, size, cred, 0, BLK_META);
2220
2221 /* Wait for the read to complete, and return result. */
2222 return (buf_biowait(bp));
2223}
2224
2225/*
2226 * Read-ahead multiple disk blocks. The first is sync, the rest async.
2227 */
2228errno_t
2229buf_breadn(vnode_t vp, daddr64_t blkno, int size, daddr64_t *rablks, int *rasizes, int nrablks, kauth_cred_t cred, buf_t *bpp)
2230{
2231 return (do_breadn_for_type(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp, BLK_READ));
2232}
2233
2234/*
2235 * Read-ahead multiple disk blocks. The first is sync, the rest async.
2236 * [buf_breadn() for meta-data]
2237 */
2238errno_t
2239buf_meta_breadn(vnode_t vp, daddr64_t blkno, int size, daddr64_t *rablks, int *rasizes, int nrablks, kauth_cred_t cred, buf_t *bpp)
2240{
2241 return (do_breadn_for_type(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp, BLK_META));
2242}
2243
2244/*
2245 * Block write. Described in Bach (p.56)
2246 */
2247errno_t
2248buf_bwrite(buf_t bp)
2249{
2250 int sync, wasdelayed;
2251 errno_t rv;
2252 proc_t p = current_proc();
2253 vnode_t vp = bp->b_vp;
2254
2255 if (bp->b_datap == 0) {
2256 if (brecover_data(bp) == 0)
2257 return (0);
2258 }
2259 /* Remember buffer type, to switch on it later. */
2260 sync = !ISSET(bp->b_flags, B_ASYNC);
2261 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
2262 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
2263
2264 if (wasdelayed)
2265 OSAddAtomicLong(-1, &nbdwrite);
2266
2267 if (!sync) {
2268 /*
2269 * If not synchronous, pay for the I/O operation and make
2270 * sure the buf is on the correct vnode queue. We have
2271 * to do this now, because if we don't, the vnode may not
2272 * be properly notified that its I/O has completed.
2273 */
2274 if (wasdelayed)
2275 buf_reassign(bp, vp);
2276 else
2277 if (p && p->p_stats) {
2278 OSIncrementAtomicLong(&p->p_stats->p_ru.ru_oublock); /* XXX */
2279 }
2280 }
2281 trace(TR_BUFWRITE, pack(vp, bp->b_bcount), bp->b_lblkno);
2282
2283 /* Initiate disk write. Make sure the appropriate party is charged. */
2284
2285 OSAddAtomic(1, &vp->v_numoutput);
2286
2287 VNOP_STRATEGY(bp);
2288
2289 if (sync) {
2290 /*
2291 * If I/O was synchronous, wait for it to complete.
2292 */
2293 rv = buf_biowait(bp);
2294
2295 /*
2296 * Pay for the I/O operation, if it's not been paid for, and
2297 * make sure it's on the correct vnode queue. (async operatings
2298 * were payed for above.)
2299 */
2300 if (wasdelayed)
2301 buf_reassign(bp, vp);
2302 else
2303 if (p && p->p_stats) {
2304 OSIncrementAtomicLong(&p->p_stats->p_ru.ru_oublock); /* XXX */
2305 }
2306
2307 /* Release the buffer. */
2308 buf_brelse(bp);
2309
2310 return (rv);
2311 } else {
2312 return (0);
2313 }
2314}
2315
2316int
2317vn_bwrite(struct vnop_bwrite_args *ap)
2318{
2319 return (buf_bwrite(ap->a_bp));
2320}
2321
2322/*
2323 * Delayed write.
2324 *
2325 * The buffer is marked dirty, but is not queued for I/O.
2326 * This routine should be used when the buffer is expected
2327 * to be modified again soon, typically a small write that
2328 * partially fills a buffer.
2329 *
2330 * NB: magnetic tapes cannot be delayed; they must be
2331 * written in the order that the writes are requested.
2332 *
2333 * Described in Leffler, et al. (pp. 208-213).
2334 *
2335 * Note: With the ability to allocate additional buffer
2336 * headers, we can get in to the situation where "too" many
2337 * buf_bdwrite()s can create situation where the kernel can create
2338 * buffers faster than the disks can service. Doing a buf_bawrite() in
2339 * cases where we have "too many" outstanding buf_bdwrite()s avoids that.
2340 */
2341int
2342bdwrite_internal(buf_t bp, int return_error)
2343{
2344 proc_t p = current_proc();
2345 vnode_t vp = bp->b_vp;
2346
2347 /*
2348 * If the block hasn't been seen before:
2349 * (1) Mark it as having been seen,
2350 * (2) Charge for the write.
2351 * (3) Make sure it's on its vnode's correct block list,
2352 */
2353 if (!ISSET(bp->b_flags, B_DELWRI)) {
2354 SET(bp->b_flags, B_DELWRI);
2355 if (p && p->p_stats) {
2356 OSIncrementAtomicLong(&p->p_stats->p_ru.ru_oublock); /* XXX */
2357 }
2358 OSAddAtomicLong(1, &nbdwrite);
2359 buf_reassign(bp, vp);
2360 }
2361
2362 /*
2363 * if we're not LOCKED, but the total number of delayed writes
2364 * has climbed above 75% of the total buffers in the system
2365 * return an error if the caller has indicated that it can
2366 * handle one in this case, otherwise schedule the I/O now
2367 * this is done to prevent us from allocating tons of extra
2368 * buffers when dealing with virtual disks (i.e. DiskImages),
2369 * because additional buffers are dynamically allocated to prevent
2370 * deadlocks from occurring
2371 *
2372 * however, can't do a buf_bawrite() if the LOCKED bit is set because the
2373 * buffer is part of a transaction and can't go to disk until
2374 * the LOCKED bit is cleared.
2375 */
2376 if (!ISSET(bp->b_flags, B_LOCKED) && nbdwrite > ((nbuf_headers/4)*3)) {
2377 if (return_error)
2378 return (EAGAIN);
2379 /*
2380 * If the vnode has "too many" write operations in progress
2381 * wait for them to finish the IO
2382 */
2383 (void)vnode_waitforwrites(vp, VNODE_ASYNC_THROTTLE, 0, 0, "buf_bdwrite");
2384
2385 return (buf_bawrite(bp));
2386 }
2387
2388 /* Otherwise, the "write" is done, so mark and release the buffer. */
2389 SET(bp->b_flags, B_DONE);
2390 buf_brelse(bp);
2391 return (0);
2392}
2393
2394errno_t
2395buf_bdwrite(buf_t bp)
2396{
2397 return (bdwrite_internal(bp, 0));
2398}
2399
2400
2401/*
2402 * Asynchronous block write; just an asynchronous buf_bwrite().
2403 *
2404 * Note: With the abilitty to allocate additional buffer
2405 * headers, we can get in to the situation where "too" many
2406 * buf_bawrite()s can create situation where the kernel can create
2407 * buffers faster than the disks can service.
2408 * We limit the number of "in flight" writes a vnode can have to
2409 * avoid this.
2410 */
2411static int
2412bawrite_internal(buf_t bp, int throttle)
2413{
2414 vnode_t vp = bp->b_vp;
2415
2416 if (vp) {
2417 if (throttle)
2418 /*
2419 * If the vnode has "too many" write operations in progress
2420 * wait for them to finish the IO
2421 */
2422 (void)vnode_waitforwrites(vp, VNODE_ASYNC_THROTTLE, 0, 0, (const char *)"buf_bawrite");
2423 else if (vp->v_numoutput >= VNODE_ASYNC_THROTTLE)
2424 /*
2425 * return to the caller and
2426 * let him decide what to do
2427 */
2428 return (EWOULDBLOCK);
2429 }
2430 SET(bp->b_flags, B_ASYNC);
2431
2432 return (VNOP_BWRITE(bp));
2433}
2434
2435errno_t
2436buf_bawrite(buf_t bp)
2437{
2438 return (bawrite_internal(bp, 1));
2439}
2440
2441
2442
2443static void
2444buf_free_meta_store(buf_t bp)
2445{
2446 if (bp->b_bufsize) {
2447 if (ISSET(bp->b_flags, B_ZALLOC)) {
2448 zone_t z;
2449
2450 z = getbufzone(bp->b_bufsize);
2451 zfree(z, (void *)bp->b_datap);
2452 } else
2453 kmem_free(kernel_map, bp->b_datap, bp->b_bufsize);
2454
2455 bp->b_datap = (uintptr_t)NULL;
2456 bp->b_bufsize = 0;
2457 }
2458}
2459
2460
2461static buf_t
2462buf_brelse_shadow(buf_t bp)
2463{
2464 buf_t bp_head;
2465 buf_t bp_temp;
2466 buf_t bp_return = NULL;
2467#ifdef BUF_MAKE_PRIVATE
2468 buf_t bp_data;
2469 int data_ref = 0;
2470#endif
2471 int need_wakeup = 0;
2472
2473 lck_mtx_lock_spin(buf_mtxp);
2474
2475 __IGNORE_WCASTALIGN(bp_head = (buf_t)bp->b_orig);
2476
2477 if (bp_head->b_whichq != -1)
2478 panic("buf_brelse_shadow: bp_head on freelist %d\n", bp_head->b_whichq);
2479
2480#ifdef BUF_MAKE_PRIVATE
2481 if (bp_data = bp->b_data_store) {
2482 bp_data->b_data_ref--;
2483 /*
2484 * snapshot the ref count so that we can check it
2485 * outside of the lock... we only want the guy going
2486 * from 1 -> 0 to try and release the storage
2487 */
2488 data_ref = bp_data->b_data_ref;
2489 }
2490#endif
2491 KERNEL_DEBUG(0xbbbbc008 | DBG_FUNC_START, bp, bp_head, bp_head->b_shadow_ref, 0, 0);
2492
2493 bp_head->b_shadow_ref--;
2494
2495 for (bp_temp = bp_head; bp_temp && bp != bp_temp->b_shadow; bp_temp = bp_temp->b_shadow);
2496
2497 if (bp_temp == NULL)
2498 panic("buf_brelse_shadow: bp not on list %p", bp_head);
2499
2500 bp_temp->b_shadow = bp_temp->b_shadow->b_shadow;
2501
2502#ifdef BUF_MAKE_PRIVATE
2503 /*
2504 * we're about to free the current 'owner' of the data buffer and
2505 * there is at least one other shadow buf_t still pointing at it
2506 * so transfer it to the first shadow buf left in the chain
2507 */
2508 if (bp == bp_data && data_ref) {
2509 if ((bp_data = bp_head->b_shadow) == NULL)
2510 panic("buf_brelse_shadow: data_ref mismatch bp(%p)", bp);
2511
2512 for (bp_temp = bp_data; bp_temp; bp_temp = bp_temp->b_shadow)
2513 bp_temp->b_data_store = bp_data;
2514 bp_data->b_data_ref = data_ref;
2515 }
2516#endif
2517 if (bp_head->b_shadow_ref == 0 && bp_head->b_shadow)
2518 panic("buf_relse_shadow: b_shadow != NULL && b_shadow_ref == 0 bp(%p)", bp);
2519 if (bp_head->b_shadow_ref && bp_head->b_shadow == 0)
2520 panic("buf_relse_shadow: b_shadow == NULL && b_shadow_ref != 0 bp(%p)", bp);
2521
2522 if (bp_head->b_shadow_ref == 0) {
2523 if (!ISSET(bp_head->b_lflags, BL_BUSY)) {
2524
2525 CLR(bp_head->b_flags, B_AGE);
2526 bp_head->b_timestamp = buf_timestamp();
2527
2528 if (ISSET(bp_head->b_flags, B_LOCKED)) {
2529 bp_head->b_whichq = BQ_LOCKED;
2530 binstailfree(bp_head, &bufqueues[BQ_LOCKED], BQ_LOCKED);
2531 } else {
2532 bp_head->b_whichq = BQ_META;
2533 binstailfree(bp_head, &bufqueues[BQ_META], BQ_META);
2534 }
2535 } else if (ISSET(bp_head->b_lflags, BL_WAITSHADOW)) {
2536 CLR(bp_head->b_lflags, BL_WAITSHADOW);
2537
2538 bp_return = bp_head;
2539 }
2540 if (ISSET(bp_head->b_lflags, BL_WANTED_REF)) {
2541 CLR(bp_head->b_lflags, BL_WANTED_REF);
2542 need_wakeup = 1;
2543 }
2544 }
2545 lck_mtx_unlock(buf_mtxp);
2546
2547 if (need_wakeup)
2548 wakeup(bp_head);
2549
2550#ifdef BUF_MAKE_PRIVATE
2551 if (bp == bp_data && data_ref == 0)
2552 buf_free_meta_store(bp);
2553
2554 bp->b_data_store = NULL;
2555#endif
2556 KERNEL_DEBUG(0xbbbbc008 | DBG_FUNC_END, bp, 0, 0, 0, 0);
2557
2558 return (bp_return);
2559}
2560
2561
2562/*
2563 * Release a buffer on to the free lists.
2564 * Described in Bach (p. 46).
2565 */
2566void
2567buf_brelse(buf_t bp)
2568{
2569 struct bqueues *bufq;
2570 long whichq;
2571 upl_t upl;
2572 int need_wakeup = 0;
2573 int need_bp_wakeup = 0;
2574
2575
2576 if (bp->b_whichq != -1 || !(bp->b_lflags & BL_BUSY))
2577 panic("buf_brelse: bad buffer = %p\n", bp);
2578
2579#ifdef JOE_DEBUG
2580 (void) OSBacktrace(&bp->b_stackbrelse[0], 6);
2581
2582 bp->b_lastbrelse = current_thread();
2583 bp->b_tag = 0;
2584#endif
2585 if (bp->b_lflags & BL_IOBUF) {
2586 buf_t shadow_master_bp = NULL;
2587
2588 if (ISSET(bp->b_lflags, BL_SHADOW))
2589 shadow_master_bp = buf_brelse_shadow(bp);
2590 else if (ISSET(bp->b_lflags, BL_IOBUF_ALLOC))
2591 buf_free_meta_store(bp);
2592 free_io_buf(bp);
2593
2594 if (shadow_master_bp) {
2595 bp = shadow_master_bp;
2596 goto finish_shadow_master;
2597 }
2598 return;
2599 }
2600
2601 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 388)) | DBG_FUNC_START,
2602 bp->b_lblkno * PAGE_SIZE, bp, bp->b_datap,
2603 bp->b_flags, 0);
2604
2605 trace(TR_BRELSE, pack(bp->b_vp, bp->b_bufsize), bp->b_lblkno);
2606
2607 /*
2608 * if we're invalidating a buffer that has the B_FILTER bit
2609 * set then call the b_iodone function so it gets cleaned
2610 * up properly.
2611 *
2612 * the HFS journal code depends on this
2613 */
2614 if (ISSET(bp->b_flags, B_META) && ISSET(bp->b_flags, B_INVAL)) {
2615 if (ISSET(bp->b_flags, B_FILTER)) { /* if necessary, call out */
2616 void (*iodone_func)(struct buf *, void *) = bp->b_iodone;
2617 void *arg = bp->b_transaction;
2618
2619 CLR(bp->b_flags, B_FILTER); /* but note callout done */
2620 bp->b_iodone = NULL;
2621 bp->b_transaction = NULL;
2622
2623 if (iodone_func == NULL) {
2624 panic("brelse: bp @ %p has NULL b_iodone!\n", bp);
2625 }
2626 (*iodone_func)(bp, arg);
2627 }
2628 }
2629 /*
2630 * I/O is done. Cleanup the UPL state
2631 */
2632 upl = bp->b_upl;
2633
2634 if ( !ISSET(bp->b_flags, B_META) && UBCINFOEXISTS(bp->b_vp) && bp->b_bufsize) {
2635 kern_return_t kret;
2636 int upl_flags;
2637
2638 if (upl == NULL) {
2639 if ( !ISSET(bp->b_flags, B_INVAL)) {
2640 kret = ubc_create_upl_kernel(bp->b_vp,
2641 ubc_blktooff(bp->b_vp, bp->b_lblkno),
2642 bp->b_bufsize,
2643 &upl,
2644 NULL,
2645 UPL_PRECIOUS,
2646 VM_KERN_MEMORY_FILE);
2647
2648 if (kret != KERN_SUCCESS)
2649 panic("brelse: Failed to create UPL");
2650#if UPL_DEBUG
2651 upl_ubc_alias_set(upl, (uintptr_t) bp, (uintptr_t) 5);
2652#endif /* UPL_DEBUG */
2653 }
2654 } else {
2655 if (bp->b_datap) {
2656 kret = ubc_upl_unmap(upl);
2657
2658 if (kret != KERN_SUCCESS)
2659 panic("ubc_upl_unmap failed");
2660 bp->b_datap = (uintptr_t)NULL;
2661 }
2662 }
2663 if (upl) {
2664 if (bp->b_flags & (B_ERROR | B_INVAL)) {
2665 if (bp->b_flags & (B_READ | B_INVAL))
2666 upl_flags = UPL_ABORT_DUMP_PAGES;
2667 else
2668 upl_flags = 0;
2669
2670 ubc_upl_abort(upl, upl_flags);
2671 } else {
2672 if (ISSET(bp->b_flags, B_DELWRI | B_WASDIRTY))
2673 upl_flags = UPL_COMMIT_SET_DIRTY ;
2674 else
2675 upl_flags = UPL_COMMIT_CLEAR_DIRTY ;
2676
2677 ubc_upl_commit_range(upl, 0, bp->b_bufsize, upl_flags |
2678 UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
2679 }
2680 bp->b_upl = NULL;
2681 }
2682 } else {
2683 if ( (upl) )
2684 panic("brelse: UPL set for non VREG; vp=%p", bp->b_vp);
2685 }
2686
2687 /*
2688 * If it's locked, don't report an error; try again later.
2689 */
2690 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
2691 CLR(bp->b_flags, B_ERROR);
2692 /*
2693 * If it's not cacheable, or an error, mark it invalid.
2694 */
2695 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
2696 SET(bp->b_flags, B_INVAL);
2697
2698 if ((bp->b_bufsize <= 0) ||
2699 ISSET(bp->b_flags, B_INVAL) ||
2700 (ISSET(bp->b_lflags, BL_WANTDEALLOC) && !ISSET(bp->b_flags, B_DELWRI))) {
2701
2702 boolean_t delayed_buf_free_meta_store = FALSE;
2703
2704 /*
2705 * If it's invalid or empty, dissociate it from its vnode,
2706 * release its storage if B_META, and
2707 * clean it up a bit and put it on the EMPTY queue
2708 */
2709 if (ISSET(bp->b_flags, B_DELWRI))
2710 OSAddAtomicLong(-1, &nbdwrite);
2711
2712 if (ISSET(bp->b_flags, B_META)) {
2713 if (bp->b_shadow_ref)
2714 delayed_buf_free_meta_store = TRUE;
2715 else
2716 buf_free_meta_store(bp);
2717 }
2718 /*
2719 * nuke any credentials we were holding
2720 */
2721 buf_release_credentials(bp);
2722
2723 lck_mtx_lock_spin(buf_mtxp);
2724
2725 if (bp->b_shadow_ref) {
2726 SET(bp->b_lflags, BL_WAITSHADOW);
2727
2728 lck_mtx_unlock(buf_mtxp);
2729
2730 return;
2731 }
2732 if (delayed_buf_free_meta_store == TRUE) {
2733
2734 lck_mtx_unlock(buf_mtxp);
2735finish_shadow_master:
2736 buf_free_meta_store(bp);
2737
2738 lck_mtx_lock_spin(buf_mtxp);
2739 }
2740 CLR(bp->b_flags, (B_META | B_ZALLOC | B_DELWRI | B_LOCKED | B_AGE | B_ASYNC | B_NOCACHE | B_FUA));
2741
2742 if (bp->b_vp)
2743 brelvp_locked(bp);
2744
2745 bremhash(bp);
2746 BLISTNONE(bp);
2747 binshash(bp, &invalhash);
2748
2749 bp->b_whichq = BQ_EMPTY;
2750 binsheadfree(bp, &bufqueues[BQ_EMPTY], BQ_EMPTY);
2751 } else {
2752
2753 /*
2754 * It has valid data. Put it on the end of the appropriate
2755 * queue, so that it'll stick around for as long as possible.
2756 */
2757 if (ISSET(bp->b_flags, B_LOCKED))
2758 whichq = BQ_LOCKED; /* locked in core */
2759 else if (ISSET(bp->b_flags, B_META))
2760 whichq = BQ_META; /* meta-data */
2761 else if (ISSET(bp->b_flags, B_AGE))
2762 whichq = BQ_AGE; /* stale but valid data */
2763 else
2764 whichq = BQ_LRU; /* valid data */
2765 bufq = &bufqueues[whichq];
2766
2767 bp->b_timestamp = buf_timestamp();
2768
2769 lck_mtx_lock_spin(buf_mtxp);
2770
2771 /*
2772 * the buf_brelse_shadow routine doesn't take 'ownership'
2773 * of the parent buf_t... it updates state that is protected by
2774 * the buf_mtxp, and checks for BL_BUSY to determine whether to
2775 * put the buf_t back on a free list. b_shadow_ref is protected
2776 * by the lock, and since we have not yet cleared B_BUSY, we need
2777 * to check it while holding the lock to insure that one of us
2778 * puts this buf_t back on a free list when it is safe to do so
2779 */
2780 if (bp->b_shadow_ref == 0) {
2781 CLR(bp->b_flags, (B_AGE | B_ASYNC | B_NOCACHE));
2782 bp->b_whichq = whichq;
2783 binstailfree(bp, bufq, whichq);
2784 } else {
2785 /*
2786 * there are still cloned buf_t's pointing
2787 * at this guy... need to keep it off the
2788 * freelists until a buf_brelse is done on
2789 * the last clone
2790 */
2791 CLR(bp->b_flags, (B_ASYNC | B_NOCACHE));
2792 }
2793 }
2794 if (needbuffer) {
2795 /*
2796 * needbuffer is a global
2797 * we're currently using buf_mtxp to protect it
2798 * delay doing the actual wakeup until after
2799 * we drop buf_mtxp
2800 */
2801 needbuffer = 0;
2802 need_wakeup = 1;
2803 }
2804 if (ISSET(bp->b_lflags, BL_WANTED)) {
2805 /*
2806 * delay the actual wakeup until after we
2807 * clear BL_BUSY and we've dropped buf_mtxp
2808 */
2809 need_bp_wakeup = 1;
2810 }
2811 /*
2812 * Unlock the buffer.
2813 */
2814 CLR(bp->b_lflags, (BL_BUSY | BL_WANTED));
2815 buf_busycount--;
2816
2817 lck_mtx_unlock(buf_mtxp);
2818
2819 if (need_wakeup) {
2820 /*
2821 * Wake up any processes waiting for any buffer to become free.
2822 */
2823 wakeup(&needbuffer);
2824 }
2825 if (need_bp_wakeup) {
2826 /*
2827 * Wake up any proceeses waiting for _this_ buffer to become free.
2828 */
2829 wakeup(bp);
2830 }
2831 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 388)) | DBG_FUNC_END,
2832 bp, bp->b_datap, bp->b_flags, 0, 0);
2833}
2834
2835/*
2836 * Determine if a block is in the cache.
2837 * Just look on what would be its hash chain. If it's there, return
2838 * a pointer to it, unless it's marked invalid. If it's marked invalid,
2839 * we normally don't return the buffer, unless the caller explicitly
2840 * wants us to.
2841 */
2842static boolean_t
2843incore(vnode_t vp, daddr64_t blkno)
2844{
2845 boolean_t retval;
2846 struct bufhashhdr *dp;
2847
2848 dp = BUFHASH(vp, blkno);
2849
2850 lck_mtx_lock_spin(buf_mtxp);
2851
2852 if (incore_locked(vp, blkno, dp))
2853 retval = TRUE;
2854 else
2855 retval = FALSE;
2856 lck_mtx_unlock(buf_mtxp);
2857
2858 return (retval);
2859}
2860
2861
2862static buf_t
2863incore_locked(vnode_t vp, daddr64_t blkno, struct bufhashhdr *dp)
2864{
2865 struct buf *bp;
2866
2867 /* Search hash chain */
2868 for (bp = dp->lh_first; bp != NULL; bp = bp->b_hash.le_next) {
2869 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
2870 !ISSET(bp->b_flags, B_INVAL)) {
2871 return (bp);
2872 }
2873 }
2874 return (NULL);
2875}
2876
2877
2878void
2879buf_wait_for_shadow_io(vnode_t vp, daddr64_t blkno)
2880{
2881 buf_t bp;
2882 struct bufhashhdr *dp;
2883
2884 dp = BUFHASH(vp, blkno);
2885
2886 lck_mtx_lock_spin(buf_mtxp);
2887
2888 for (;;) {
2889 if ((bp = incore_locked(vp, blkno, dp)) == NULL)
2890 break;
2891
2892 if (bp->b_shadow_ref == 0)
2893 break;
2894
2895 SET(bp->b_lflags, BL_WANTED_REF);
2896
2897 (void) msleep(bp, buf_mtxp, PSPIN | (PRIBIO+1), "buf_wait_for_shadow", NULL);
2898 }
2899 lck_mtx_unlock(buf_mtxp);
2900}
2901
2902/* XXX FIXME -- Update the comment to reflect the UBC changes (please) -- */
2903/*
2904 * Get a block of requested size that is associated with
2905 * a given vnode and block offset. If it is found in the
2906 * block cache, mark it as having been found, make it busy
2907 * and return it. Otherwise, return an empty block of the
2908 * correct size. It is up to the caller to insure that the
2909 * cached blocks be of the correct size.
2910 */
2911buf_t
2912buf_getblk(vnode_t vp, daddr64_t blkno, int size, int slpflag, int slptimeo, int operation)
2913{
2914 buf_t bp;
2915 int err;
2916 upl_t upl;
2917 upl_page_info_t *pl;
2918 kern_return_t kret;
2919 int ret_only_valid;
2920 struct timespec ts;
2921 int upl_flags;
2922 struct bufhashhdr *dp;
2923
2924 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 386)) | DBG_FUNC_START,
2925 (uintptr_t)(blkno * PAGE_SIZE), size, operation, 0, 0);
2926
2927 ret_only_valid = operation & BLK_ONLYVALID;
2928 operation &= ~BLK_ONLYVALID;
2929 dp = BUFHASH(vp, blkno);
2930start:
2931 lck_mtx_lock_spin(buf_mtxp);
2932
2933 if ((bp = incore_locked(vp, blkno, dp))) {
2934 /*
2935 * Found in the Buffer Cache
2936 */
2937 if (ISSET(bp->b_lflags, BL_BUSY)) {
2938 /*
2939 * but is busy
2940 */
2941 switch (operation) {
2942 case BLK_READ:
2943 case BLK_WRITE:
2944 case BLK_META:
2945 SET(bp->b_lflags, BL_WANTED);
2946 bufstats.bufs_busyincore++;
2947
2948 /*
2949 * don't retake the mutex after being awakened...
2950 * the time out is in msecs
2951 */
2952 ts.tv_sec = (slptimeo/1000);
2953 ts.tv_nsec = (slptimeo % 1000) * 10 * NSEC_PER_USEC * 1000;
2954
2955 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 396)) | DBG_FUNC_NONE,
2956 (uintptr_t)blkno, size, operation, 0, 0);
2957
2958 err = msleep(bp, buf_mtxp, slpflag | PDROP | (PRIBIO + 1), "buf_getblk", &ts);
2959
2960 /*
2961 * Callers who call with PCATCH or timeout are
2962 * willing to deal with the NULL pointer
2963 */
2964 if (err && ((slpflag & PCATCH) || ((err == EWOULDBLOCK) && slptimeo)))
2965 return (NULL);
2966 goto start;
2967 /*NOTREACHED*/
2968
2969 default:
2970 /*
2971 * unknown operation requested
2972 */
2973 panic("getblk: paging or unknown operation for incore busy buffer - %x\n", operation);
2974 /*NOTREACHED*/
2975 break;
2976 }
2977 } else {
2978 int clear_bdone;
2979
2980 /*
2981 * buffer in core and not busy
2982 */
2983 SET(bp->b_lflags, BL_BUSY);
2984 SET(bp->b_flags, B_CACHE);
2985 buf_busycount++;
2986
2987 bremfree_locked(bp);
2988 bufstats.bufs_incore++;
2989
2990 lck_mtx_unlock(buf_mtxp);
2991#ifdef JOE_DEBUG
2992 bp->b_owner = current_thread();
2993 bp->b_tag = 1;
2994#endif
2995 if ( (bp->b_upl) )
2996 panic("buffer has UPL, but not marked BUSY: %p", bp);
2997
2998 clear_bdone = FALSE;
2999 if (!ret_only_valid) {
3000 /*
3001 * If the number bytes that are valid is going
3002 * to increase (even if we end up not doing a
3003 * reallocation through allocbuf) we have to read
3004 * the new size first.
3005 *
3006 * This is required in cases where we doing a read
3007 * modify write of a already valid data on disk but
3008 * in cases where the data on disk beyond (blkno + b_bcount)
3009 * is invalid, we may end up doing extra I/O.
3010 */
3011 if (operation == BLK_META && bp->b_bcount < size) {
3012 /*
3013 * Since we are going to read in the whole size first
3014 * we first have to ensure that any pending delayed write
3015 * is flushed to disk first.
3016 */
3017 if (ISSET(bp->b_flags, B_DELWRI)) {
3018 CLR(bp->b_flags, B_CACHE);
3019 buf_bwrite(bp);
3020 goto start;
3021 }
3022 /*
3023 * clear B_DONE before returning from
3024 * this function so that the caller can
3025 * can issue a read for the new size.
3026 */
3027 clear_bdone = TRUE;
3028 }
3029
3030 if (bp->b_bufsize != size)
3031 allocbuf(bp, size);
3032 }
3033
3034 upl_flags = 0;
3035 switch (operation) {
3036 case BLK_WRITE:
3037 /*
3038 * "write" operation: let the UPL subsystem
3039 * know that we intend to modify the buffer
3040 * cache pages we're gathering.
3041 */
3042 upl_flags |= UPL_WILL_MODIFY;
3043 case BLK_READ:
3044 upl_flags |= UPL_PRECIOUS;
3045 if (UBCINFOEXISTS(bp->b_vp) && bp->b_bufsize) {
3046 kret = ubc_create_upl_kernel(vp,
3047 ubc_blktooff(vp, bp->b_lblkno),
3048 bp->b_bufsize,
3049 &upl,
3050 &pl,
3051 upl_flags,
3052 VM_KERN_MEMORY_FILE);
3053 if (kret != KERN_SUCCESS)
3054 panic("Failed to create UPL");
3055
3056 bp->b_upl = upl;
3057
3058 if (upl_valid_page(pl, 0)) {
3059 if (upl_dirty_page(pl, 0))
3060 SET(bp->b_flags, B_WASDIRTY);
3061 else
3062 CLR(bp->b_flags, B_WASDIRTY);
3063 } else
3064 CLR(bp->b_flags, (B_DONE | B_CACHE | B_WASDIRTY | B_DELWRI));
3065
3066 kret = ubc_upl_map(upl, (vm_offset_t*)&(bp->b_datap));
3067
3068 if (kret != KERN_SUCCESS)
3069 panic("getblk: ubc_upl_map() failed with (%d)", kret);
3070 }
3071 break;
3072
3073 case BLK_META:
3074 /*
3075 * VM is not involved in IO for the meta data
3076 * buffer already has valid data
3077 */
3078 break;
3079
3080 default:
3081 panic("getblk: paging or unknown operation for incore buffer- %d\n", operation);
3082 /*NOTREACHED*/
3083 break;
3084 }
3085
3086 if (clear_bdone)
3087 CLR(bp->b_flags, B_DONE);
3088 }
3089 } else { /* not incore() */
3090 int queue = BQ_EMPTY; /* Start with no preference */
3091
3092 if (ret_only_valid) {
3093 lck_mtx_unlock(buf_mtxp);
3094 return (NULL);
3095 }
3096 if ((vnode_isreg(vp) == 0) || (UBCINFOEXISTS(vp) == 0) /*|| (vnode_issystem(vp) == 1)*/)
3097 operation = BLK_META;
3098
3099 if ((bp = getnewbuf(slpflag, slptimeo, &queue)) == NULL)
3100 goto start;
3101
3102 /*
3103 * getnewbuf may block for a number of different reasons...
3104 * if it does, it's then possible for someone else to
3105 * create a buffer for the same block and insert it into
3106 * the hash... if we see it incore at this point we dump
3107 * the buffer we were working on and start over
3108 */
3109 if (incore_locked(vp, blkno, dp)) {
3110 SET(bp->b_flags, B_INVAL);
3111 binshash(bp, &invalhash);
3112
3113 lck_mtx_unlock(buf_mtxp);
3114
3115 buf_brelse(bp);
3116 goto start;
3117 }
3118 /*
3119 * NOTE: YOU CAN NOT BLOCK UNTIL binshash() HAS BEEN
3120 * CALLED! BE CAREFUL.
3121 */
3122
3123 /*
3124 * mark the buffer as B_META if indicated
3125 * so that when buffer is released it will goto META queue
3126 */
3127 if (operation == BLK_META)
3128 SET(bp->b_flags, B_META);
3129
3130 bp->b_blkno = bp->b_lblkno = blkno;
3131 bp->b_vp = vp;
3132
3133 /*
3134 * Insert in the hash so that incore() can find it
3135 */
3136 binshash(bp, BUFHASH(vp, blkno));
3137
3138 bgetvp_locked(vp, bp);
3139
3140 lck_mtx_unlock(buf_mtxp);
3141
3142 allocbuf(bp, size);
3143
3144 upl_flags = 0;
3145 switch (operation) {
3146 case BLK_META:
3147 /*
3148 * buffer data is invalid...
3149 *
3150 * I don't want to have to retake buf_mtxp,
3151 * so the miss and vmhits counters are done
3152 * with Atomic updates... all other counters
3153 * in bufstats are protected with either
3154 * buf_mtxp or iobuffer_mtxp
3155 */
3156 OSAddAtomicLong(1, &bufstats.bufs_miss);
3157 break;
3158
3159 case BLK_WRITE:
3160 /*
3161 * "write" operation: let the UPL subsystem know
3162 * that we intend to modify the buffer cache pages
3163 * we're gathering.
3164 */
3165 upl_flags |= UPL_WILL_MODIFY;
3166 case BLK_READ:
3167 { off_t f_offset;
3168 size_t contig_bytes;
3169 int bmap_flags;
3170
3171#if DEVELOPMENT || DEBUG
3172 /*
3173 * Apple implemented file systems use UBC excludively; they should
3174 * not call in here."
3175 */
3176 const char* excldfs[] = {"hfs", "afpfs", "smbfs", "acfs",
3177 "exfat", "msdos", "webdav", NULL};
3178
3179 for (int i = 0; excldfs[i] != NULL; i++) {
3180 if (vp->v_mount &&
3181 !strcmp(vp->v_mount->mnt_vfsstat.f_fstypename,
3182 excldfs[i])) {
3183 panic("%s %s calls buf_getblk",
3184 excldfs[i],
3185 operation == BLK_READ ? "BLK_READ" : "BLK_WRITE");
3186 }
3187 }
3188#endif
3189
3190 if ( (bp->b_upl) )
3191 panic("bp already has UPL: %p",bp);
3192
3193 f_offset = ubc_blktooff(vp, blkno);
3194
3195 upl_flags |= UPL_PRECIOUS;
3196 kret = ubc_create_upl_kernel(vp,
3197 f_offset,
3198 bp->b_bufsize,
3199 &upl,
3200 &pl,
3201 upl_flags,
3202 VM_KERN_MEMORY_FILE);
3203
3204 if (kret != KERN_SUCCESS)
3205 panic("Failed to create UPL");
3206#if UPL_DEBUG
3207 upl_ubc_alias_set(upl, (uintptr_t) bp, (uintptr_t) 4);
3208#endif /* UPL_DEBUG */
3209 bp->b_upl = upl;
3210
3211 if (upl_valid_page(pl, 0)) {
3212
3213 if (operation == BLK_READ)
3214 bmap_flags = VNODE_READ;
3215 else
3216 bmap_flags = VNODE_WRITE;
3217
3218 SET(bp->b_flags, B_CACHE | B_DONE);
3219
3220 OSAddAtomicLong(1, &bufstats.bufs_vmhits);
3221
3222 bp->b_validoff = 0;
3223 bp->b_dirtyoff = 0;
3224
3225 if (upl_dirty_page(pl, 0)) {
3226 /* page is dirty */
3227 SET(bp->b_flags, B_WASDIRTY);
3228
3229 bp->b_validend = bp->b_bcount;
3230 bp->b_dirtyend = bp->b_bcount;
3231 } else {
3232 /* page is clean */
3233 bp->b_validend = bp->b_bcount;
3234 bp->b_dirtyend = 0;
3235 }
3236 /*
3237 * try to recreate the physical block number associated with
3238 * this buffer...
3239 */
3240 if (VNOP_BLOCKMAP(vp, f_offset, bp->b_bcount, &bp->b_blkno, &contig_bytes, NULL, bmap_flags, NULL))
3241 panic("getblk: VNOP_BLOCKMAP failed");
3242 /*
3243 * if the extent represented by this buffer
3244 * is not completely physically contiguous on
3245 * disk, than we can't cache the physical mapping
3246 * in the buffer header
3247 */
3248 if ((long)contig_bytes < bp->b_bcount)
3249 bp->b_blkno = bp->b_lblkno;
3250 } else {
3251 OSAddAtomicLong(1, &bufstats.bufs_miss);
3252 }
3253 kret = ubc_upl_map(upl, (vm_offset_t *)&(bp->b_datap));
3254
3255 if (kret != KERN_SUCCESS)
3256 panic("getblk: ubc_upl_map() failed with (%d)", kret);
3257 break;
3258 }
3259 default:
3260 panic("getblk: paging or unknown operation - %x", operation);
3261 /*NOTREACHED*/
3262 break;
3263 }
3264 }
3265 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 386)) | DBG_FUNC_END,
3266 bp, bp->b_datap, bp->b_flags, 3, 0);
3267
3268#ifdef JOE_DEBUG
3269 (void) OSBacktrace(&bp->b_stackgetblk[0], 6);
3270#endif
3271 return (bp);
3272}
3273
3274/*
3275 * Get an empty, disassociated buffer of given size.
3276 */
3277buf_t
3278buf_geteblk(int size)
3279{
3280 buf_t bp = NULL;
3281 int queue = BQ_EMPTY;
3282
3283 do {
3284 lck_mtx_lock_spin(buf_mtxp);
3285
3286 bp = getnewbuf(0, 0, &queue);
3287 } while (bp == NULL);
3288
3289 SET(bp->b_flags, (B_META|B_INVAL));
3290
3291#if DIAGNOSTIC
3292 assert(queue == BQ_EMPTY);
3293#endif /* DIAGNOSTIC */
3294 /* XXX need to implement logic to deal with other queues */
3295
3296 binshash(bp, &invalhash);
3297 bufstats.bufs_eblk++;
3298
3299 lck_mtx_unlock(buf_mtxp);
3300
3301 allocbuf(bp, size);
3302
3303 return (bp);
3304}
3305
3306uint32_t
3307buf_redundancy_flags(buf_t bp)
3308{
3309 return bp->b_redundancy_flags;
3310}
3311
3312void
3313buf_set_redundancy_flags(buf_t bp, uint32_t flags)
3314{
3315 SET(bp->b_redundancy_flags, flags);
3316}
3317
3318void
3319buf_clear_redundancy_flags(buf_t bp, uint32_t flags)
3320{
3321 CLR(bp->b_redundancy_flags, flags);
3322}
3323
3324
3325
3326static void *
3327recycle_buf_from_pool(int nsize)
3328{
3329 buf_t bp;
3330 void *ptr = NULL;
3331
3332 lck_mtx_lock_spin(buf_mtxp);
3333
3334 TAILQ_FOREACH(bp, &bufqueues[BQ_META], b_freelist) {
3335 if (ISSET(bp->b_flags, B_DELWRI) || bp->b_bufsize != nsize)
3336 continue;
3337 ptr = (void *)bp->b_datap;
3338 bp->b_bufsize = 0;
3339
3340 bcleanbuf(bp, TRUE);
3341 break;
3342 }
3343 lck_mtx_unlock(buf_mtxp);
3344
3345 return (ptr);
3346}
3347
3348
3349
3350int zalloc_nopagewait_failed = 0;
3351int recycle_buf_failed = 0;
3352
3353static void *
3354grab_memory_for_meta_buf(int nsize)
3355{
3356 zone_t z;
3357 void *ptr;
3358 boolean_t was_vmpriv;
3359
3360 z = getbufzone(nsize);
3361
3362 /*
3363 * make sure we're NOT priviliged so that
3364 * if a vm_page_grab is needed, it won't
3365 * block if we're out of free pages... if
3366 * it blocks, then we can't honor the
3367 * nopagewait request
3368 */
3369 was_vmpriv = set_vm_privilege(FALSE);
3370
3371 ptr = zalloc_nopagewait(z);
3372
3373 if (was_vmpriv == TRUE)
3374 set_vm_privilege(TRUE);
3375
3376 if (ptr == NULL) {
3377
3378 zalloc_nopagewait_failed++;
3379
3380 ptr = recycle_buf_from_pool(nsize);
3381
3382 if (ptr == NULL) {
3383
3384 recycle_buf_failed++;
3385
3386 if (was_vmpriv == FALSE)
3387 set_vm_privilege(TRUE);
3388
3389 ptr = zalloc(z);
3390
3391 if (was_vmpriv == FALSE)
3392 set_vm_privilege(FALSE);
3393 }
3394 }
3395 return (ptr);
3396}
3397
3398/*
3399 * With UBC, there is no need to expand / shrink the file data
3400 * buffer. The VM uses the same pages, hence no waste.
3401 * All the file data buffers can have one size.
3402 * In fact expand / shrink would be an expensive operation.
3403 *
3404 * Only exception to this is meta-data buffers. Most of the
3405 * meta data operations are smaller than PAGE_SIZE. Having the
3406 * meta-data buffers grow and shrink as needed, optimizes use
3407 * of the kernel wired memory.
3408 */
3409
3410int
3411allocbuf(buf_t bp, int size)
3412{
3413 vm_size_t desired_size;
3414
3415 desired_size = roundup(size, CLBYTES);
3416
3417 if (desired_size < PAGE_SIZE)
3418 desired_size = PAGE_SIZE;
3419 if (desired_size > MAXBSIZE)
3420 panic("allocbuf: buffer larger than MAXBSIZE requested");
3421
3422 if (ISSET(bp->b_flags, B_META)) {
3423 int nsize = roundup(size, MINMETA);
3424
3425 if (bp->b_datap) {
3426 vm_offset_t elem = (vm_offset_t)bp->b_datap;
3427
3428 if (ISSET(bp->b_flags, B_ZALLOC)) {
3429 if (bp->b_bufsize < nsize) {
3430 zone_t zprev;
3431
3432 /* reallocate to a bigger size */
3433
3434 zprev = getbufzone(bp->b_bufsize);
3435 if (nsize <= MAXMETA) {
3436 desired_size = nsize;
3437
3438 /* b_datap not really a ptr */
3439 *(void **)(&bp->b_datap) = grab_memory_for_meta_buf(nsize);
3440 } else {
3441 bp->b_datap = (uintptr_t)NULL;
3442 kmem_alloc_kobject(kernel_map, (vm_offset_t *)&bp->b_datap, desired_size, VM_KERN_MEMORY_FILE);
3443 CLR(bp->b_flags, B_ZALLOC);
3444 }
3445 bcopy((void *)elem, (caddr_t)bp->b_datap, bp->b_bufsize);
3446 zfree(zprev, (void *)elem);
3447 } else {
3448 desired_size = bp->b_bufsize;
3449 }
3450
3451 } else {
3452 if ((vm_size_t)bp->b_bufsize < desired_size) {
3453 /* reallocate to a bigger size */
3454 bp->b_datap = (uintptr_t)NULL;
3455 kmem_alloc_kobject(kernel_map, (vm_offset_t *)&bp->b_datap, desired_size, VM_KERN_MEMORY_FILE);
3456 bcopy((const void *)elem, (caddr_t)bp->b_datap, bp->b_bufsize);
3457 kmem_free(kernel_map, elem, bp->b_bufsize);
3458 } else {
3459 desired_size = bp->b_bufsize;
3460 }
3461 }
3462 } else {
3463 /* new allocation */
3464 if (nsize <= MAXMETA) {
3465 desired_size = nsize;
3466
3467 /* b_datap not really a ptr */
3468 *(void **)(&bp->b_datap) = grab_memory_for_meta_buf(nsize);
3469 SET(bp->b_flags, B_ZALLOC);
3470 } else
3471 kmem_alloc_kobject(kernel_map, (vm_offset_t *)&bp->b_datap, desired_size, VM_KERN_MEMORY_FILE);
3472 }
3473
3474 if (bp->b_datap == 0)
3475 panic("allocbuf: NULL b_datap");
3476 }
3477 bp->b_bufsize = desired_size;
3478 bp->b_bcount = size;
3479
3480 return (0);
3481}
3482
3483/*
3484 * Get a new buffer from one of the free lists.
3485 *
3486 * Request for a queue is passes in. The queue from which the buffer was taken
3487 * from is returned. Out of range queue requests get BQ_EMPTY. Request for
3488 * BQUEUE means no preference. Use heuristics in that case.
3489 * Heuristics is as follows:
3490 * Try BQ_AGE, BQ_LRU, BQ_EMPTY, BQ_META in that order.
3491 * If none available block till one is made available.
3492 * If buffers available on both BQ_AGE and BQ_LRU, check the timestamps.
3493 * Pick the most stale buffer.
3494 * If found buffer was marked delayed write, start the async. write
3495 * and restart the search.
3496 * Initialize the fields and disassociate the buffer from the vnode.
3497 * Remove the buffer from the hash. Return the buffer and the queue
3498 * on which it was found.
3499 *
3500 * buf_mtxp is held upon entry
3501 * returns with buf_mtxp locked if new buf available
3502 * returns with buf_mtxp UNlocked if new buf NOT available
3503 */
3504
3505static buf_t
3506getnewbuf(int slpflag, int slptimeo, int * queue)
3507{
3508 buf_t bp;
3509 buf_t lru_bp;
3510 buf_t age_bp;
3511 buf_t meta_bp;
3512 int age_time, lru_time, bp_time, meta_time;
3513 int req = *queue; /* save it for restarts */
3514 struct timespec ts;
3515
3516start:
3517 /*
3518 * invalid request gets empty queue
3519 */
3520 if ((*queue >= BQUEUES) || (*queue < 0)
3521 || (*queue == BQ_LAUNDRY) || (*queue == BQ_LOCKED))
3522 *queue = BQ_EMPTY;
3523
3524
3525 if (*queue == BQ_EMPTY && (bp = bufqueues[*queue].tqh_first))
3526 goto found;
3527
3528 /*
3529 * need to grow number of bufs, add another one rather than recycling
3530 */
3531 if (nbuf_headers < max_nbuf_headers) {
3532 /*
3533 * Increment count now as lock
3534 * is dropped for allocation.
3535 * That avoids over commits
3536 */
3537 nbuf_headers++;
3538 goto add_newbufs;
3539 }
3540 /* Try for the requested queue first */
3541 bp = bufqueues[*queue].tqh_first;
3542 if (bp)
3543 goto found;
3544
3545 /* Unable to use requested queue */
3546 age_bp = bufqueues[BQ_AGE].tqh_first;
3547 lru_bp = bufqueues[BQ_LRU].tqh_first;
3548 meta_bp = bufqueues[BQ_META].tqh_first;
3549
3550 if (!age_bp && !lru_bp && !meta_bp) {
3551 /*
3552 * Unavailble on AGE or LRU or META queues
3553 * Try the empty list first
3554 */
3555 bp = bufqueues[BQ_EMPTY].tqh_first;
3556 if (bp) {
3557 *queue = BQ_EMPTY;
3558 goto found;
3559 }
3560 /*
3561 * We have seen is this is hard to trigger.
3562 * This is an overcommit of nbufs but needed
3563 * in some scenarios with diskiamges
3564 */
3565
3566add_newbufs:
3567 lck_mtx_unlock(buf_mtxp);
3568
3569 /* Create a new temporary buffer header */
3570 bp = (struct buf *)zalloc(buf_hdr_zone);
3571
3572 if (bp) {
3573 bufhdrinit(bp);
3574 bp->b_whichq = BQ_EMPTY;
3575 bp->b_timestamp = buf_timestamp();
3576 BLISTNONE(bp);
3577 SET(bp->b_flags, B_HDRALLOC);
3578 *queue = BQ_EMPTY;
3579 }
3580 lck_mtx_lock_spin(buf_mtxp);
3581
3582 if (bp) {
3583 binshash(bp, &invalhash);
3584 binsheadfree(bp, &bufqueues[BQ_EMPTY], BQ_EMPTY);
3585 buf_hdr_count++;
3586 goto found;
3587 }
3588 /* subtract already accounted bufcount */
3589 nbuf_headers--;
3590
3591 bufstats.bufs_sleeps++;
3592
3593 /* wait for a free buffer of any kind */
3594 needbuffer = 1;
3595 /* hz value is 100 */
3596 ts.tv_sec = (slptimeo/1000);
3597 /* the hz value is 100; which leads to 10ms */
3598 ts.tv_nsec = (slptimeo % 1000) * NSEC_PER_USEC * 1000 * 10;
3599
3600 msleep(&needbuffer, buf_mtxp, slpflag | PDROP | (PRIBIO+1), "getnewbuf", &ts);
3601 return (NULL);
3602 }
3603
3604 /* Buffer available either on AGE or LRU or META */
3605 bp = NULL;
3606 *queue = -1;
3607
3608 /* Buffer available either on AGE or LRU */
3609 if (!age_bp) {
3610 bp = lru_bp;
3611 *queue = BQ_LRU;
3612 } else if (!lru_bp) {
3613 bp = age_bp;
3614 *queue = BQ_AGE;
3615 } else { /* buffer available on both AGE and LRU */
3616 int t = buf_timestamp();
3617
3618 age_time = t - age_bp->b_timestamp;
3619 lru_time = t - lru_bp->b_timestamp;
3620 if ((age_time < 0) || (lru_time < 0)) { /* time set backwards */
3621 bp = age_bp;
3622 *queue = BQ_AGE;
3623 /*
3624 * we should probably re-timestamp eveything in the
3625 * queues at this point with the current time
3626 */
3627 } else {
3628 if ((lru_time >= lru_is_stale) && (age_time < age_is_stale)) {
3629 bp = lru_bp;
3630 *queue = BQ_LRU;
3631 } else {
3632 bp = age_bp;
3633 *queue = BQ_AGE;
3634 }
3635 }
3636 }
3637
3638 if (!bp) { /* Neither on AGE nor on LRU */
3639 bp = meta_bp;
3640 *queue = BQ_META;
3641 } else if (meta_bp) {
3642 int t = buf_timestamp();
3643
3644 bp_time = t - bp->b_timestamp;
3645 meta_time = t - meta_bp->b_timestamp;
3646
3647 if (!(bp_time < 0) && !(meta_time < 0)) {
3648 /* time not set backwards */
3649 int bp_is_stale;
3650 bp_is_stale = (*queue == BQ_LRU) ?
3651 lru_is_stale : age_is_stale;
3652
3653 if ((meta_time >= meta_is_stale) &&
3654 (bp_time < bp_is_stale)) {
3655 bp = meta_bp;
3656 *queue = BQ_META;
3657 }
3658 }
3659 }
3660found:
3661 if (ISSET(bp->b_flags, B_LOCKED) || ISSET(bp->b_lflags, BL_BUSY))
3662 panic("getnewbuf: bp @ %p is LOCKED or BUSY! (flags 0x%x)\n", bp, bp->b_flags);
3663
3664 /* Clean it */
3665 if (bcleanbuf(bp, FALSE)) {
3666 /*
3667 * moved to the laundry thread, buffer not ready
3668 */
3669 *queue = req;
3670 goto start;
3671 }
3672 return (bp);
3673}
3674
3675
3676/*
3677 * Clean a buffer.
3678 * Returns 0 if buffer is ready to use,
3679 * Returns 1 if issued a buf_bawrite() to indicate
3680 * that the buffer is not ready.
3681 *
3682 * buf_mtxp is held upon entry
3683 * returns with buf_mtxp locked
3684 */
3685int
3686bcleanbuf(buf_t bp, boolean_t discard)
3687{
3688 /* Remove from the queue */
3689 bremfree_locked(bp);
3690
3691#ifdef JOE_DEBUG
3692 bp->b_owner = current_thread();
3693 bp->b_tag = 2;
3694#endif
3695 /*
3696 * If buffer was a delayed write, start the IO by queuing
3697 * it on the LAUNDRY queue, and return 1
3698 */
3699 if (ISSET(bp->b_flags, B_DELWRI)) {
3700 if (discard) {
3701 SET(bp->b_lflags, BL_WANTDEALLOC);
3702 }
3703
3704 bmovelaundry(bp);
3705
3706 lck_mtx_unlock(buf_mtxp);
3707
3708 wakeup(&bufqueues[BQ_LAUNDRY]);
3709 /*
3710 * and give it a chance to run
3711 */
3712 (void)thread_block(THREAD_CONTINUE_NULL);
3713
3714 lck_mtx_lock_spin(buf_mtxp);
3715
3716 return (1);
3717 }
3718#ifdef JOE_DEBUG
3719 bp->b_owner = current_thread();
3720 bp->b_tag = 8;
3721#endif
3722 /*
3723 * Buffer is no longer on any free list... we own it
3724 */
3725 SET(bp->b_lflags, BL_BUSY);
3726 buf_busycount++;
3727
3728 bremhash(bp);
3729
3730 /*
3731 * disassociate us from our vnode, if we had one...
3732 */
3733 if (bp->b_vp)
3734 brelvp_locked(bp);
3735
3736 lck_mtx_unlock(buf_mtxp);
3737
3738 BLISTNONE(bp);
3739
3740 if (ISSET(bp->b_flags, B_META))
3741 buf_free_meta_store(bp);
3742
3743 trace(TR_BRELSE, pack(bp->b_vp, bp->b_bufsize), bp->b_lblkno);
3744
3745 buf_release_credentials(bp);
3746
3747 /* If discarding, just move to the empty queue */
3748 if (discard) {
3749 lck_mtx_lock_spin(buf_mtxp);
3750 CLR(bp->b_flags, (B_META | B_ZALLOC | B_DELWRI | B_LOCKED | B_AGE | B_ASYNC | B_NOCACHE | B_FUA));
3751 bp->b_whichq = BQ_EMPTY;
3752 binshash(bp, &invalhash);
3753 binsheadfree(bp, &bufqueues[BQ_EMPTY], BQ_EMPTY);
3754 CLR(bp->b_lflags, BL_BUSY);
3755 buf_busycount--;
3756 } else {
3757 /* Not discarding: clean up and prepare for reuse */
3758 bp->b_bufsize = 0;
3759 bp->b_datap = (uintptr_t)NULL;
3760 bp->b_upl = (void *)NULL;
3761 bp->b_fsprivate = (void *)NULL;
3762 /*
3763 * preserve the state of whether this buffer
3764 * was allocated on the fly or not...
3765 * the only other flag that should be set at
3766 * this point is BL_BUSY...
3767 */
3768#ifdef JOE_DEBUG
3769 bp->b_owner = current_thread();
3770 bp->b_tag = 3;
3771#endif
3772 bp->b_lflags = BL_BUSY;
3773 bp->b_flags = (bp->b_flags & B_HDRALLOC);
3774 bp->b_redundancy_flags = 0;
3775 bp->b_dev = NODEV;
3776 bp->b_blkno = bp->b_lblkno = 0;
3777 bp->b_iodone = NULL;
3778 bp->b_error = 0;
3779 bp->b_resid = 0;
3780 bp->b_bcount = 0;
3781 bp->b_dirtyoff = bp->b_dirtyend = 0;
3782 bp->b_validoff = bp->b_validend = 0;
3783 bzero(&bp->b_attr, sizeof(struct bufattr));
3784
3785 lck_mtx_lock_spin(buf_mtxp);
3786 }
3787 return (0);
3788}
3789
3790
3791
3792errno_t
3793buf_invalblkno(vnode_t vp, daddr64_t lblkno, int flags)
3794{
3795 buf_t bp;
3796 errno_t error;
3797 struct bufhashhdr *dp;
3798
3799 dp = BUFHASH(vp, lblkno);
3800
3801relook:
3802 lck_mtx_lock_spin(buf_mtxp);
3803
3804 if ((bp = incore_locked(vp, lblkno, dp)) == (struct buf *)0) {
3805 lck_mtx_unlock(buf_mtxp);
3806 return (0);
3807 }
3808 if (ISSET(bp->b_lflags, BL_BUSY)) {
3809 if ( !ISSET(flags, BUF_WAIT)) {
3810 lck_mtx_unlock(buf_mtxp);
3811 return (EBUSY);
3812 }
3813 SET(bp->b_lflags, BL_WANTED);
3814
3815 error = msleep((caddr_t)bp, buf_mtxp, PDROP | (PRIBIO + 1), "buf_invalblkno", NULL);
3816
3817 if (error) {
3818 return (error);
3819 }
3820 goto relook;
3821 }
3822 bremfree_locked(bp);
3823 SET(bp->b_lflags, BL_BUSY);
3824 SET(bp->b_flags, B_INVAL);
3825 buf_busycount++;
3826#ifdef JOE_DEBUG
3827 bp->b_owner = current_thread();
3828 bp->b_tag = 4;
3829#endif
3830 lck_mtx_unlock(buf_mtxp);
3831 buf_brelse(bp);
3832
3833 return (0);
3834}
3835
3836
3837void
3838buf_drop(buf_t bp)
3839{
3840 int need_wakeup = 0;
3841
3842 lck_mtx_lock_spin(buf_mtxp);
3843
3844 if (ISSET(bp->b_lflags, BL_WANTED)) {
3845 /*
3846 * delay the actual wakeup until after we
3847 * clear BL_BUSY and we've dropped buf_mtxp
3848 */
3849 need_wakeup = 1;
3850 }
3851#ifdef JOE_DEBUG
3852 bp->b_owner = current_thread();
3853 bp->b_tag = 9;
3854#endif
3855 /*
3856 * Unlock the buffer.
3857 */
3858 CLR(bp->b_lflags, (BL_BUSY | BL_WANTED));
3859 buf_busycount--;
3860
3861 lck_mtx_unlock(buf_mtxp);
3862
3863 if (need_wakeup) {
3864 /*
3865 * Wake up any proceeses waiting for _this_ buffer to become free.
3866 */
3867 wakeup(bp);
3868 }
3869}
3870
3871
3872errno_t
3873buf_acquire(buf_t bp, int flags, int slpflag, int slptimeo) {
3874 errno_t error;
3875
3876 lck_mtx_lock_spin(buf_mtxp);
3877
3878 error = buf_acquire_locked(bp, flags, slpflag, slptimeo);
3879
3880 lck_mtx_unlock(buf_mtxp);
3881
3882 return (error);
3883}
3884
3885
3886static errno_t
3887buf_acquire_locked(buf_t bp, int flags, int slpflag, int slptimeo)
3888{
3889 errno_t error;
3890 struct timespec ts;
3891
3892 if (ISSET(bp->b_flags, B_LOCKED)) {
3893 if ((flags & BAC_SKIP_LOCKED))
3894 return (EDEADLK);
3895 } else {
3896 if ((flags & BAC_SKIP_NONLOCKED))
3897 return (EDEADLK);
3898 }
3899 if (ISSET(bp->b_lflags, BL_BUSY)) {
3900 /*
3901 * since the lck_mtx_lock may block, the buffer
3902 * may become BUSY, so we need to
3903 * recheck for a NOWAIT request
3904 */
3905 if (flags & BAC_NOWAIT)
3906 return (EBUSY);
3907 SET(bp->b_lflags, BL_WANTED);
3908
3909 /* the hz value is 100; which leads to 10ms */
3910 ts.tv_sec = (slptimeo/100);
3911 ts.tv_nsec = (slptimeo % 100) * 10 * NSEC_PER_USEC * 1000;
3912 error = msleep((caddr_t)bp, buf_mtxp, slpflag | (PRIBIO + 1), "buf_acquire", &ts);
3913
3914 if (error)
3915 return (error);
3916 return (EAGAIN);
3917 }
3918 if (flags & BAC_REMOVE)
3919 bremfree_locked(bp);
3920 SET(bp->b_lflags, BL_BUSY);
3921 buf_busycount++;
3922
3923#ifdef JOE_DEBUG
3924 bp->b_owner = current_thread();
3925 bp->b_tag = 5;
3926#endif
3927 return (0);
3928}
3929
3930
3931/*
3932 * Wait for operations on the buffer to complete.
3933 * When they do, extract and return the I/O's error value.
3934 */
3935errno_t
3936buf_biowait(buf_t bp)
3937{
3938 while (!ISSET(bp->b_flags, B_DONE)) {
3939
3940 lck_mtx_lock_spin(buf_mtxp);
3941
3942 if (!ISSET(bp->b_flags, B_DONE)) {
3943 DTRACE_IO1(wait__start, buf_t, bp);
3944 (void) msleep(bp, buf_mtxp, PDROP | (PRIBIO+1), "buf_biowait", NULL);
3945 DTRACE_IO1(wait__done, buf_t, bp);
3946 } else
3947 lck_mtx_unlock(buf_mtxp);
3948 }
3949 /* check for interruption of I/O (e.g. via NFS), then errors. */
3950 if (ISSET(bp->b_flags, B_EINTR)) {
3951 CLR(bp->b_flags, B_EINTR);
3952 return (EINTR);
3953 } else if (ISSET(bp->b_flags, B_ERROR))
3954 return (bp->b_error ? bp->b_error : EIO);
3955 else
3956 return (0);
3957}
3958
3959
3960/*
3961 * Mark I/O complete on a buffer.
3962 *
3963 * If a callback has been requested, e.g. the pageout
3964 * daemon, do so. Otherwise, awaken waiting processes.
3965 *
3966 * [ Leffler, et al., says on p.247:
3967 * "This routine wakes up the blocked process, frees the buffer
3968 * for an asynchronous write, or, for a request by the pagedaemon
3969 * process, invokes a procedure specified in the buffer structure" ]
3970 *
3971 * In real life, the pagedaemon (or other system processes) wants
3972 * to do async stuff to, and doesn't want the buffer buf_brelse()'d.
3973 * (for swap pager, that puts swap buffers on the free lists (!!!),
3974 * for the vn device, that puts malloc'd buffers on the free lists!)
3975 */
3976
3977void
3978buf_biodone(buf_t bp)
3979{
3980 mount_t mp;
3981 struct bufattr *bap;
3982 struct timeval real_elapsed;
3983 uint64_t real_elapsed_usec = 0;
3984
3985 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 387)) | DBG_FUNC_START,
3986 bp, bp->b_datap, bp->b_flags, 0, 0);
3987
3988 if (ISSET(bp->b_flags, B_DONE))
3989 panic("biodone already");
3990
3991 bap = &bp->b_attr;
3992
3993 if (bp->b_vp && bp->b_vp->v_mount) {
3994 mp = bp->b_vp->v_mount;
3995 } else {
3996 mp = NULL;
3997 }
3998
3999 if (ISSET(bp->b_flags, B_ERROR)) {
4000 if (mp && (MNT_ROOTFS & mp->mnt_flag)) {
4001 dk_error_description_t desc;
4002 bzero(&desc, sizeof(desc));
4003 desc.description = panic_disk_error_description;
4004 desc.description_size = panic_disk_error_description_size;
4005 VNOP_IOCTL(mp->mnt_devvp, DKIOCGETERRORDESCRIPTION, (caddr_t)&desc, 0, vfs_context_kernel());
4006 }
4007 }
4008
4009 if (mp && (bp->b_flags & B_READ) == 0) {
4010 update_last_io_time(mp);
4011 INCR_PENDING_IO(-(pending_io_t)buf_count(bp), mp->mnt_pending_write_size);
4012 } else if (mp) {
4013 INCR_PENDING_IO(-(pending_io_t)buf_count(bp), mp->mnt_pending_read_size);
4014 }
4015
4016 throttle_info_end_io(bp);
4017
4018 if (kdebug_enable) {
4019 int code = DKIO_DONE;
4020 int io_tier = GET_BUFATTR_IO_TIER(bap);
4021
4022 if (bp->b_flags & B_READ)
4023 code |= DKIO_READ;
4024 if (bp->b_flags & B_ASYNC)
4025 code |= DKIO_ASYNC;
4026
4027 if (bp->b_flags & B_META)
4028 code |= DKIO_META;
4029 else if (bp->b_flags & B_PAGEIO)
4030 code |= DKIO_PAGING;
4031
4032 if (io_tier != 0)
4033 code |= DKIO_THROTTLE;
4034
4035 code |= ((io_tier << DKIO_TIER_SHIFT) & DKIO_TIER_MASK);
4036
4037 if (bp->b_flags & B_PASSIVE)
4038 code |= DKIO_PASSIVE;
4039
4040 if (bap->ba_flags & BA_NOCACHE)
4041 code |= DKIO_NOCACHE;
4042
4043 if (bap->ba_flags & BA_IO_TIER_UPGRADE) {
4044 code |= DKIO_TIER_UPGRADE;
4045 }
4046
4047 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON, FSDBG_CODE(DBG_DKRW, code) | DBG_FUNC_NONE,
4048 buf_kernel_addrperm_addr(bp), (uintptr_t)VM_KERNEL_ADDRPERM(bp->b_vp), bp->b_resid, bp->b_error, 0);
4049 }
4050
4051 microuptime(&real_elapsed);
4052 timevalsub(&real_elapsed, &bp->b_timestamp_tv);
4053 real_elapsed_usec = real_elapsed.tv_sec * USEC_PER_SEC + real_elapsed.tv_usec;
4054 disk_conditioner_delay(bp, 1, bp->b_bcount, real_elapsed_usec);
4055
4056 /*
4057 * I/O was done, so don't believe
4058 * the DIRTY state from VM anymore...
4059 * and we need to reset the THROTTLED/PASSIVE
4060 * indicators
4061 */
4062 CLR(bp->b_flags, (B_WASDIRTY | B_PASSIVE));
4063 CLR(bap->ba_flags, (BA_META | BA_NOCACHE | BA_DELAYIDLESLEEP | BA_IO_TIER_UPGRADE));
4064
4065 SET_BUFATTR_IO_TIER(bap, 0);
4066
4067 DTRACE_IO1(done, buf_t, bp);
4068
4069 if (!ISSET(bp->b_flags, B_READ) && !ISSET(bp->b_flags, B_RAW))
4070 /*
4071 * wake up any writer's blocked
4072 * on throttle or waiting for I/O
4073 * to drain
4074 */
4075 vnode_writedone(bp->b_vp);
4076
4077 if (ISSET(bp->b_flags, (B_CALL | B_FILTER))) { /* if necessary, call out */
4078 void (*iodone_func)(struct buf *, void *) = bp->b_iodone;
4079 void *arg = bp->b_transaction;
4080 int callout = ISSET(bp->b_flags, B_CALL);
4081
4082 if (iodone_func == NULL)
4083 panic("biodone: bp @ %p has NULL b_iodone!\n", bp);
4084
4085 CLR(bp->b_flags, (B_CALL | B_FILTER)); /* filters and callouts are one-shot */
4086 bp->b_iodone = NULL;
4087 bp->b_transaction = NULL;
4088
4089 if (callout)
4090 SET(bp->b_flags, B_DONE); /* note that it's done */
4091
4092 (*iodone_func)(bp, arg);
4093
4094 if (callout) {
4095 /*
4096 * assumes that the callback function takes
4097 * ownership of the bp and deals with releasing it if necessary
4098 */
4099 goto biodone_done;
4100 }
4101 /*
4102 * in this case the call back function is acting
4103 * strictly as a filter... it does not take
4104 * ownership of the bp and is expecting us
4105 * to finish cleaning up... this is currently used
4106 * by the HFS journaling code
4107 */
4108 }
4109 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release it */
4110 SET(bp->b_flags, B_DONE); /* note that it's done */
4111
4112 buf_brelse(bp);
4113 } else { /* or just wakeup the buffer */
4114 /*
4115 * by taking the mutex, we serialize
4116 * the buf owner calling buf_biowait so that we'll
4117 * only see him in one of 2 states...
4118 * state 1: B_DONE wasn't set and he's
4119 * blocked in msleep
4120 * state 2: he's blocked trying to take the
4121 * mutex before looking at B_DONE
4122 * BL_WANTED is cleared in case anyone else
4123 * is blocked waiting for the buffer... note
4124 * that we haven't cleared B_BUSY yet, so if
4125 * they do get to run, their going to re-set
4126 * BL_WANTED and go back to sleep
4127 */
4128 lck_mtx_lock_spin(buf_mtxp);
4129
4130 CLR(bp->b_lflags, BL_WANTED);
4131 SET(bp->b_flags, B_DONE); /* note that it's done */
4132
4133 lck_mtx_unlock(buf_mtxp);
4134
4135 wakeup(bp);
4136 }
4137biodone_done:
4138 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 387)) | DBG_FUNC_END,
4139 (uintptr_t)bp, (uintptr_t)bp->b_datap, bp->b_flags, 0, 0);
4140}
4141
4142/*
4143 * Obfuscate buf pointers.
4144 */
4145vm_offset_t
4146buf_kernel_addrperm_addr(void * addr)
4147{
4148 if ((vm_offset_t)addr == 0)
4149 return 0;
4150 else
4151 return ((vm_offset_t)addr + buf_kernel_addrperm);
4152}
4153
4154/*
4155 * Return a count of buffers on the "locked" queue.
4156 */
4157int
4158count_lock_queue(void)
4159{
4160 buf_t bp;
4161 int n = 0;
4162
4163 lck_mtx_lock_spin(buf_mtxp);
4164
4165 for (bp = bufqueues[BQ_LOCKED].tqh_first; bp;
4166 bp = bp->b_freelist.tqe_next)
4167 n++;
4168 lck_mtx_unlock(buf_mtxp);
4169
4170 return (n);
4171}
4172
4173/*
4174 * Return a count of 'busy' buffers. Used at the time of shutdown.
4175 * note: This is also called from the mach side in debug context in kdp.c
4176 */
4177int
4178count_busy_buffers(void)
4179{
4180 return buf_busycount + bufstats.bufs_iobufinuse;
4181}
4182
4183#if DIAGNOSTIC
4184/*
4185 * Print out statistics on the current allocation of the buffer pool.
4186 * Can be enabled to print out on every ``sync'' by setting "syncprt"
4187 * in vfs_syscalls.c using sysctl.
4188 */
4189void
4190vfs_bufstats()
4191{
4192 int i, j, count;
4193 struct buf *bp;
4194 struct bqueues *dp;
4195 int counts[MAXBSIZE/CLBYTES+1];
4196 static char *bname[BQUEUES] =
4197 { "LOCKED", "LRU", "AGE", "EMPTY", "META", "LAUNDRY" };
4198
4199 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
4200 count = 0;
4201 for (j = 0; j <= MAXBSIZE/CLBYTES; j++)
4202 counts[j] = 0;
4203
4204 lck_mtx_lock(buf_mtxp);
4205
4206 for (bp = dp->tqh_first; bp; bp = bp->b_freelist.tqe_next) {
4207 counts[bp->b_bufsize/CLBYTES]++;
4208 count++;
4209 }
4210 lck_mtx_unlock(buf_mtxp);
4211
4212 printf("%s: total-%d", bname[i], count);
4213 for (j = 0; j <= MAXBSIZE/CLBYTES; j++)
4214 if (counts[j] != 0)
4215 printf(", %d-%d", j * CLBYTES, counts[j]);
4216 printf("\n");
4217 }
4218}
4219#endif /* DIAGNOSTIC */
4220
4221#define NRESERVEDIOBUFS 128
4222
4223#define MNT_VIRTUALDEV_MAX_IOBUFS 16
4224#define VIRTUALDEV_MAX_IOBUFS ((40*niobuf_headers)/100)
4225
4226buf_t
4227alloc_io_buf(vnode_t vp, int priv)
4228{
4229 buf_t bp;
4230 mount_t mp = NULL;
4231 int alloc_for_virtualdev = FALSE;
4232
4233 lck_mtx_lock_spin(iobuffer_mtxp);
4234
4235 /*
4236 * We subject iobuf requests for diskimages to additional restrictions.
4237 *
4238 * a) A single diskimage mount cannot use up more than
4239 * MNT_VIRTUALDEV_MAX_IOBUFS. However,vm privileged (pageout) requests
4240 * are not subject to this restriction.
4241 * b) iobuf headers used by all diskimage headers by all mount
4242 * points cannot exceed VIRTUALDEV_MAX_IOBUFS.
4243 */
4244 if (vp && ((mp = vp->v_mount)) && mp != dead_mountp &&
4245 mp->mnt_kern_flag & MNTK_VIRTUALDEV) {
4246 alloc_for_virtualdev = TRUE;
4247 while ((!priv && mp->mnt_iobufinuse > MNT_VIRTUALDEV_MAX_IOBUFS) ||
4248 bufstats.bufs_iobufinuse_vdev > VIRTUALDEV_MAX_IOBUFS) {
4249 bufstats.bufs_iobufsleeps++;
4250
4251 need_iobuffer = 1;
4252 (void)msleep(&need_iobuffer, iobuffer_mtxp,
4253 PSPIN | (PRIBIO+1), (const char *)"alloc_io_buf (1)",
4254 NULL);
4255 }
4256 }
4257
4258 while (((niobuf_headers - NRESERVEDIOBUFS < bufstats.bufs_iobufinuse) && !priv) ||
4259 (bp = iobufqueue.tqh_first) == NULL) {
4260 bufstats.bufs_iobufsleeps++;
4261
4262 need_iobuffer = 1;
4263 (void)msleep(&need_iobuffer, iobuffer_mtxp, PSPIN | (PRIBIO+1),
4264 (const char *)"alloc_io_buf (2)", NULL);
4265 }
4266 TAILQ_REMOVE(&iobufqueue, bp, b_freelist);
4267
4268 bufstats.bufs_iobufinuse++;
4269 if (bufstats.bufs_iobufinuse > bufstats.bufs_iobufmax)
4270 bufstats.bufs_iobufmax = bufstats.bufs_iobufinuse;
4271
4272 if (alloc_for_virtualdev) {
4273 mp->mnt_iobufinuse++;
4274 bufstats.bufs_iobufinuse_vdev++;
4275 }
4276
4277 lck_mtx_unlock(iobuffer_mtxp);
4278
4279 /*
4280 * initialize various fields
4281 * we don't need to hold the mutex since the buffer
4282 * is now private... the vp should have a reference
4283 * on it and is not protected by this mutex in any event
4284 */
4285 bp->b_timestamp = 0;
4286 bp->b_proc = NULL;
4287
4288 bp->b_datap = 0;
4289 bp->b_flags = 0;
4290 bp->b_lflags = BL_BUSY | BL_IOBUF;
4291 if (alloc_for_virtualdev)
4292 bp->b_lflags |= BL_IOBUF_VDEV;
4293 bp->b_redundancy_flags = 0;
4294 bp->b_blkno = bp->b_lblkno = 0;
4295#ifdef JOE_DEBUG
4296 bp->b_owner = current_thread();
4297 bp->b_tag = 6;
4298#endif
4299 bp->b_iodone = NULL;
4300 bp->b_error = 0;
4301 bp->b_resid = 0;
4302 bp->b_bcount = 0;
4303 bp->b_bufsize = 0;
4304 bp->b_upl = NULL;
4305 bp->b_fsprivate = (void *)NULL;
4306 bp->b_vp = vp;
4307 bzero(&bp->b_attr, sizeof(struct bufattr));
4308
4309 if (vp && (vp->v_type == VBLK || vp->v_type == VCHR))
4310 bp->b_dev = vp->v_rdev;
4311 else
4312 bp->b_dev = NODEV;
4313
4314 return (bp);
4315}
4316
4317
4318void
4319free_io_buf(buf_t bp)
4320{
4321 int need_wakeup = 0;
4322 int free_for_virtualdev = FALSE;
4323 mount_t mp = NULL;
4324
4325 /* Was this iobuf for a diskimage ? */
4326 if (bp->b_lflags & BL_IOBUF_VDEV) {
4327 free_for_virtualdev = TRUE;
4328 if (bp->b_vp)
4329 mp = bp->b_vp->v_mount;
4330 }
4331
4332 /*
4333 * put buffer back on the head of the iobufqueue
4334 */
4335 bp->b_vp = NULL;
4336 bp->b_flags = B_INVAL;
4337
4338 /* Zero out the bufattr and its flags before relinquishing this iobuf */
4339 bzero (&bp->b_attr, sizeof(struct bufattr));
4340
4341 lck_mtx_lock_spin(iobuffer_mtxp);
4342
4343 binsheadfree(bp, &iobufqueue, -1);
4344
4345 if (need_iobuffer) {
4346 /*
4347 * Wake up any processes waiting because they need an io buffer
4348 *
4349 * do the wakeup after we drop the mutex... it's possible that the
4350 * wakeup will be superfluous if need_iobuffer gets set again and
4351 * another thread runs this path, but it's highly unlikely, doesn't
4352 * hurt, and it means we don't hold up I/O progress if the wakeup blocks
4353 * trying to grab a task related lock...
4354 */
4355 need_iobuffer = 0;
4356 need_wakeup = 1;
4357 }
4358 if (bufstats.bufs_iobufinuse <= 0)
4359 panic("free_io_buf: bp(%p) - bufstats.bufs_iobufinuse < 0", bp);
4360
4361 bufstats.bufs_iobufinuse--;
4362
4363 if (free_for_virtualdev) {
4364 bufstats.bufs_iobufinuse_vdev--;
4365 if (mp && mp != dead_mountp)
4366 mp->mnt_iobufinuse--;
4367 }
4368
4369 lck_mtx_unlock(iobuffer_mtxp);
4370
4371 if (need_wakeup)
4372 wakeup(&need_iobuffer);
4373}
4374
4375
4376void
4377buf_list_lock(void)
4378{
4379 lck_mtx_lock_spin(buf_mtxp);
4380}
4381
4382void
4383buf_list_unlock(void)
4384{
4385 lck_mtx_unlock(buf_mtxp);
4386}
4387
4388/*
4389 * If getnewbuf() calls bcleanbuf() on the same thread
4390 * there is a potential for stack overrun and deadlocks.
4391 * So we always handoff the work to a worker thread for completion
4392 */
4393
4394
4395static void
4396bcleanbuf_thread_init(void)
4397{
4398 thread_t thread = THREAD_NULL;
4399
4400 /* create worker thread */
4401 kernel_thread_start((thread_continue_t)bcleanbuf_thread, NULL, &thread);
4402 thread_deallocate(thread);
4403}
4404
4405typedef int (*bcleanbufcontinuation)(int);
4406
4407__attribute__((noreturn))
4408static void
4409bcleanbuf_thread(void)
4410{
4411 struct buf *bp;
4412 int error = 0;
4413 int loopcnt = 0;
4414
4415 for (;;) {
4416 lck_mtx_lock_spin(buf_mtxp);
4417
4418 while ( (bp = TAILQ_FIRST(&bufqueues[BQ_LAUNDRY])) == NULL) {
4419 (void)msleep0(&bufqueues[BQ_LAUNDRY], buf_mtxp, PRIBIO|PDROP, "blaundry", 0, (bcleanbufcontinuation)bcleanbuf_thread);
4420 }
4421
4422 /*
4423 * Remove from the queue
4424 */
4425 bremfree_locked(bp);
4426
4427 /*
4428 * Buffer is no longer on any free list
4429 */
4430 SET(bp->b_lflags, BL_BUSY);
4431 buf_busycount++;
4432
4433#ifdef JOE_DEBUG
4434 bp->b_owner = current_thread();
4435 bp->b_tag = 10;
4436#endif
4437
4438 lck_mtx_unlock(buf_mtxp);
4439 /*
4440 * do the IO
4441 */
4442 error = bawrite_internal(bp, 0);
4443
4444 if (error) {
4445 bp->b_whichq = BQ_LAUNDRY;
4446 bp->b_timestamp = buf_timestamp();
4447
4448 lck_mtx_lock_spin(buf_mtxp);
4449
4450 binstailfree(bp, &bufqueues[BQ_LAUNDRY], BQ_LAUNDRY);
4451 blaundrycnt++;
4452
4453 /* we never leave a busy page on the laundry queue */
4454 CLR(bp->b_lflags, BL_BUSY);
4455 buf_busycount--;
4456#ifdef JOE_DEBUG
4457 bp->b_owner = current_thread();
4458 bp->b_tag = 11;
4459#endif
4460
4461 lck_mtx_unlock(buf_mtxp);
4462
4463 if (loopcnt > MAXLAUNDRY) {
4464 /*
4465 * bawrite_internal() can return errors if we're throttled. If we've
4466 * done several I/Os and failed, give the system some time to unthrottle
4467 * the vnode
4468 */
4469 (void)tsleep((void *)&bufqueues[BQ_LAUNDRY], PRIBIO, "blaundry", 1);
4470 loopcnt = 0;
4471 } else {
4472 /* give other threads a chance to run */
4473 (void)thread_block(THREAD_CONTINUE_NULL);
4474 loopcnt++;
4475 }
4476 }
4477 }
4478}
4479
4480
4481static int
4482brecover_data(buf_t bp)
4483{
4484 int upl_offset;
4485 upl_t upl;
4486 upl_page_info_t *pl;
4487 kern_return_t kret;
4488 vnode_t vp = bp->b_vp;
4489 int upl_flags;
4490
4491
4492 if ( !UBCINFOEXISTS(vp) || bp->b_bufsize == 0)
4493 goto dump_buffer;
4494
4495 upl_flags = UPL_PRECIOUS;
4496 if (! (buf_flags(bp) & B_READ)) {
4497 /*
4498 * "write" operation: let the UPL subsystem know
4499 * that we intend to modify the buffer cache pages we're
4500 * gathering.
4501 */
4502 upl_flags |= UPL_WILL_MODIFY;
4503 }
4504
4505 kret = ubc_create_upl_kernel(vp,
4506 ubc_blktooff(vp, bp->b_lblkno),
4507 bp->b_bufsize,
4508 &upl,
4509 &pl,
4510 upl_flags,
4511 VM_KERN_MEMORY_FILE);
4512 if (kret != KERN_SUCCESS)
4513 panic("Failed to create UPL");
4514
4515 for (upl_offset = 0; upl_offset < bp->b_bufsize; upl_offset += PAGE_SIZE) {
4516
4517 if (!upl_valid_page(pl, upl_offset / PAGE_SIZE) || !upl_dirty_page(pl, upl_offset / PAGE_SIZE)) {
4518 ubc_upl_abort(upl, 0);
4519 goto dump_buffer;
4520 }
4521 }
4522 bp->b_upl = upl;
4523
4524 kret = ubc_upl_map(upl, (vm_offset_t *)&(bp->b_datap));
4525
4526 if (kret != KERN_SUCCESS)
4527 panic("getblk: ubc_upl_map() failed with (%d)", kret);
4528 return (1);
4529
4530dump_buffer:
4531 bp->b_bufsize = 0;
4532 SET(bp->b_flags, B_INVAL);
4533 buf_brelse(bp);
4534
4535 return(0);
4536}
4537
4538int
4539fs_buffer_cache_gc_register(void (* callout)(int, void *), void *context)
4540{
4541 lck_mtx_lock(buf_gc_callout);
4542 for (int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
4543 if (fs_callouts[i].callout == NULL) {
4544 fs_callouts[i].callout = callout;
4545 fs_callouts[i].context = context;
4546 lck_mtx_unlock(buf_gc_callout);
4547 return 0;
4548 }
4549 }
4550
4551 lck_mtx_unlock(buf_gc_callout);
4552 return ENOMEM;
4553}
4554
4555int
4556fs_buffer_cache_gc_unregister(void (* callout)(int, void *), void *context)
4557{
4558 lck_mtx_lock(buf_gc_callout);
4559 for (int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
4560 if (fs_callouts[i].callout == callout &&
4561 fs_callouts[i].context == context) {
4562 fs_callouts[i].callout = NULL;
4563 fs_callouts[i].context = NULL;
4564 }
4565 }
4566 lck_mtx_unlock(buf_gc_callout);
4567 return 0;
4568}
4569
4570static void
4571fs_buffer_cache_gc_dispatch_callouts(int all)
4572{
4573 lck_mtx_lock(buf_gc_callout);
4574 for(int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
4575 if (fs_callouts[i].callout != NULL) {
4576 fs_callouts[i].callout(all, fs_callouts[i].context);
4577 }
4578 }
4579 lck_mtx_unlock(buf_gc_callout);
4580}
4581
4582boolean_t
4583buffer_cache_gc(int all)
4584{
4585 buf_t bp;
4586 boolean_t did_large_zfree = FALSE;
4587 boolean_t need_wakeup = FALSE;
4588 int now = buf_timestamp();
4589 uint32_t found = 0;
4590 struct bqueues privq;
4591 int thresh_hold = BUF_STALE_THRESHHOLD;
4592
4593 if (all)
4594 thresh_hold = 0;
4595 /*
4596 * We only care about metadata (incore storage comes from zalloc()).
4597 * Unless "all" is set (used to evict meta data buffers in preparation
4598 * for deep sleep), we only evict up to BUF_MAX_GC_BATCH_SIZE buffers
4599 * that have not been accessed in the last BUF_STALE_THRESHOLD seconds.
4600 * BUF_MAX_GC_BATCH_SIZE controls both the hold time of the global lock
4601 * "buf_mtxp" and the length of time we spend compute bound in the GC
4602 * thread which calls this function
4603 */
4604 lck_mtx_lock(buf_mtxp);
4605
4606 do {
4607 found = 0;
4608 TAILQ_INIT(&privq);
4609 need_wakeup = FALSE;
4610
4611 while (((bp = TAILQ_FIRST(&bufqueues[BQ_META]))) &&
4612 (now > bp->b_timestamp) &&
4613 (now - bp->b_timestamp > thresh_hold) &&
4614 (found < BUF_MAX_GC_BATCH_SIZE)) {
4615
4616 /* Remove from free list */
4617 bremfree_locked(bp);
4618 found++;
4619
4620#ifdef JOE_DEBUG
4621 bp->b_owner = current_thread();
4622 bp->b_tag = 12;
4623#endif
4624
4625 /* If dirty, move to laundry queue and remember to do wakeup */
4626 if (ISSET(bp->b_flags, B_DELWRI)) {
4627 SET(bp->b_lflags, BL_WANTDEALLOC);
4628
4629 bmovelaundry(bp);
4630 need_wakeup = TRUE;
4631
4632 continue;
4633 }
4634
4635 /*
4636 * Mark busy and put on private list. We could technically get
4637 * away without setting BL_BUSY here.
4638 */
4639 SET(bp->b_lflags, BL_BUSY);
4640 buf_busycount++;
4641
4642 /*
4643 * Remove from hash and dissociate from vp.
4644 */
4645 bremhash(bp);
4646 if (bp->b_vp) {
4647 brelvp_locked(bp);
4648 }
4649
4650 TAILQ_INSERT_TAIL(&privq, bp, b_freelist);
4651 }
4652
4653 if (found == 0) {
4654 break;
4655 }
4656
4657 /* Drop lock for batch processing */
4658 lck_mtx_unlock(buf_mtxp);
4659
4660 /* Wakeup and yield for laundry if need be */
4661 if (need_wakeup) {
4662 wakeup(&bufqueues[BQ_LAUNDRY]);
4663 (void)thread_block(THREAD_CONTINUE_NULL);
4664 }
4665
4666 /* Clean up every buffer on private list */
4667 TAILQ_FOREACH(bp, &privq, b_freelist) {
4668 /* Take note if we've definitely freed at least a page to a zone */
4669 if ((ISSET(bp->b_flags, B_ZALLOC)) && (buf_size(bp) >= PAGE_SIZE)) {
4670 did_large_zfree = TRUE;
4671 }
4672
4673 trace(TR_BRELSE, pack(bp->b_vp, bp->b_bufsize), bp->b_lblkno);
4674
4675 /* Free Storage */
4676 buf_free_meta_store(bp);
4677
4678 /* Release credentials */
4679 buf_release_credentials(bp);
4680
4681 /* Prepare for moving to empty queue */
4682 CLR(bp->b_flags, (B_META | B_ZALLOC | B_DELWRI | B_LOCKED
4683 | B_AGE | B_ASYNC | B_NOCACHE | B_FUA));
4684 bp->b_whichq = BQ_EMPTY;
4685 BLISTNONE(bp);
4686 }
4687 lck_mtx_lock(buf_mtxp);
4688
4689 /* Back under lock, move them all to invalid hash and clear busy */
4690 TAILQ_FOREACH(bp, &privq, b_freelist) {
4691 binshash(bp, &invalhash);
4692 CLR(bp->b_lflags, BL_BUSY);
4693 buf_busycount--;
4694
4695#ifdef JOE_DEBUG
4696 if (bp->b_owner != current_thread()) {
4697 panic("Buffer stolen from buffer_cache_gc()");
4698 }
4699 bp->b_owner = current_thread();
4700 bp->b_tag = 13;
4701#endif
4702 }
4703
4704 /* And do a big bulk move to the empty queue */
4705 TAILQ_CONCAT(&bufqueues[BQ_EMPTY], &privq, b_freelist);
4706
4707 } while (all && (found == BUF_MAX_GC_BATCH_SIZE));
4708
4709 lck_mtx_unlock(buf_mtxp);
4710
4711 fs_buffer_cache_gc_dispatch_callouts(all);
4712
4713 return did_large_zfree;
4714}
4715
4716
4717/*
4718 * disabled for now
4719 */
4720
4721#if FLUSH_QUEUES
4722
4723#define NFLUSH 32
4724
4725static int
4726bp_cmp(void *a, void *b)
4727{
4728 buf_t *bp_a = *(buf_t **)a,
4729 *bp_b = *(buf_t **)b;
4730 daddr64_t res;
4731
4732 // don't have to worry about negative block
4733 // numbers so this is ok to do.
4734 //
4735 res = (bp_a->b_blkno - bp_b->b_blkno);
4736
4737 return (int)res;
4738}
4739
4740
4741int
4742bflushq(int whichq, mount_t mp)
4743{
4744 buf_t bp, next;
4745 int i, buf_count;
4746 int total_writes = 0;
4747 static buf_t flush_table[NFLUSH];
4748
4749 if (whichq < 0 || whichq >= BQUEUES) {
4750 return (0);
4751 }
4752
4753 restart:
4754 lck_mtx_lock(buf_mtxp);
4755
4756 bp = TAILQ_FIRST(&bufqueues[whichq]);
4757
4758 for (buf_count = 0; bp; bp = next) {
4759 next = bp->b_freelist.tqe_next;
4760
4761 if (bp->b_vp == NULL || bp->b_vp->v_mount != mp) {
4762 continue;
4763 }
4764
4765 if (ISSET(bp->b_flags, B_DELWRI) && !ISSET(bp->b_lflags, BL_BUSY)) {
4766
4767 bremfree_locked(bp);
4768#ifdef JOE_DEBUG
4769 bp->b_owner = current_thread();
4770 bp->b_tag = 7;
4771#endif
4772 SET(bp->b_lflags, BL_BUSY);
4773 buf_busycount++;
4774
4775 flush_table[buf_count] = bp;
4776 buf_count++;
4777 total_writes++;
4778
4779 if (buf_count >= NFLUSH) {
4780 lck_mtx_unlock(buf_mtxp);
4781
4782 qsort(flush_table, buf_count, sizeof(struct buf *), bp_cmp);
4783
4784 for (i = 0; i < buf_count; i++) {
4785 buf_bawrite(flush_table[i]);
4786 }
4787 goto restart;
4788 }
4789 }
4790 }
4791 lck_mtx_unlock(buf_mtxp);
4792
4793 if (buf_count > 0) {
4794 qsort(flush_table, buf_count, sizeof(struct buf *), bp_cmp);
4795
4796 for (i = 0; i < buf_count; i++) {
4797 buf_bawrite(flush_table[i]);
4798 }
4799 }
4800
4801 return (total_writes);
4802}
4803#endif