]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <vm/vm_page.h> | |
30 | #include <vm/vm_object.h> | |
31 | #include <vm/vm_kern.h> | |
32 | #include <vm/vm_pageout.h> | |
33 | #include <vm/vm_phantom_cache.h> | |
34 | #include <vm/vm_compressor.h> | |
35 | ||
36 | ||
37 | uint32_t phantom_cache_eval_period_in_msecs = 250; | |
38 | uint32_t phantom_cache_thrashing_threshold_ssd = 1000; | |
39 | #if CONFIG_EMBEDDED | |
40 | uint32_t phantom_cache_thrashing_threshold = 500; | |
41 | #else | |
42 | uint32_t phantom_cache_thrashing_threshold = 50; | |
43 | #endif | |
44 | ||
45 | /* | |
46 | * Number of consecutive thrashing periods required before | |
47 | * vm_phantom_cache_check_pressure() returns true. | |
48 | */ | |
49 | #if CONFIG_EMBEDDED | |
50 | unsigned phantom_cache_contiguous_periods = 4; | |
51 | #else | |
52 | unsigned phantom_cache_contiguous_periods = 2; | |
53 | #endif | |
54 | ||
55 | clock_sec_t pc_start_of_eval_period_sec = 0; | |
56 | clock_nsec_t pc_start_of_eval_period_nsec = 0; | |
57 | boolean_t pc_need_eval_reset = FALSE; | |
58 | ||
59 | /* One bit per recent sampling period. Bit 0 = current period. */ | |
60 | uint32_t pc_history = 0; | |
61 | ||
62 | uint32_t sample_period_ghost_added_count = 0; | |
63 | uint32_t sample_period_ghost_added_count_ssd = 0; | |
64 | uint32_t sample_period_ghost_found_count = 0; | |
65 | uint32_t sample_period_ghost_found_count_ssd = 0; | |
66 | ||
67 | uint32_t vm_phantom_object_id = 1; | |
68 | #define VM_PHANTOM_OBJECT_ID_AFTER_WRAP 1000000 | |
69 | ||
70 | vm_ghost_t vm_phantom_cache; | |
71 | uint32_t vm_phantom_cache_nindx = 1; | |
72 | uint32_t vm_phantom_cache_num_entries = 0; | |
73 | uint32_t vm_phantom_cache_size; | |
74 | ||
75 | typedef uint32_t vm_phantom_hash_entry_t; | |
76 | vm_phantom_hash_entry_t *vm_phantom_cache_hash; | |
77 | uint32_t vm_phantom_cache_hash_size; | |
78 | uint32_t vm_ghost_hash_mask; /* Mask for hash function */ | |
79 | uint32_t vm_ghost_bucket_hash; /* Basic bucket hash */ | |
80 | ||
81 | ||
82 | int pg_masks[4] = { | |
83 | 0x1, 0x2, 0x4, 0x8 | |
84 | }; | |
85 | ||
86 | ||
87 | #define vm_phantom_hash(obj_id, offset) (\ | |
88 | ( (natural_t)((uintptr_t)obj_id * vm_ghost_bucket_hash) + (offset ^ vm_ghost_bucket_hash)) & vm_ghost_hash_mask) | |
89 | ||
90 | ||
91 | struct phantom_cache_stats { | |
92 | uint32_t pcs_wrapped; | |
93 | uint32_t pcs_added_page_to_entry; | |
94 | uint32_t pcs_added_new_entry; | |
95 | uint32_t pcs_replaced_entry; | |
96 | ||
97 | uint32_t pcs_lookup_found_page_in_cache; | |
98 | uint32_t pcs_lookup_entry_not_in_cache; | |
99 | uint32_t pcs_lookup_page_not_in_entry; | |
100 | ||
101 | uint32_t pcs_updated_phantom_state; | |
102 | } phantom_cache_stats; | |
103 | ||
104 | ||
105 | ||
106 | void | |
107 | vm_phantom_cache_init() | |
108 | { | |
109 | unsigned int num_entries; | |
110 | unsigned int log1; | |
111 | unsigned int size; | |
112 | ||
113 | if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE) { | |
114 | return; | |
115 | } | |
116 | #if CONFIG_EMBEDDED | |
117 | num_entries = (uint32_t)(((max_mem / PAGE_SIZE) / 10) / VM_GHOST_PAGES_PER_ENTRY); | |
118 | #else | |
119 | num_entries = (uint32_t)(((max_mem / PAGE_SIZE) / 4) / VM_GHOST_PAGES_PER_ENTRY); | |
120 | #endif | |
121 | vm_phantom_cache_num_entries = 1; | |
122 | ||
123 | while (vm_phantom_cache_num_entries < num_entries) { | |
124 | vm_phantom_cache_num_entries <<= 1; | |
125 | } | |
126 | ||
127 | /* | |
128 | * We index this with g_next_index, so don't exceed the width of that bitfield. | |
129 | */ | |
130 | if (vm_phantom_cache_num_entries > (1 << VM_GHOST_INDEX_BITS)) { | |
131 | vm_phantom_cache_num_entries = (1 << VM_GHOST_INDEX_BITS); | |
132 | } | |
133 | ||
134 | vm_phantom_cache_size = sizeof(struct vm_ghost) * vm_phantom_cache_num_entries; | |
135 | vm_phantom_cache_hash_size = sizeof(vm_phantom_hash_entry_t) * vm_phantom_cache_num_entries; | |
136 | ||
137 | if (kernel_memory_allocate(kernel_map, (vm_offset_t *)(&vm_phantom_cache), vm_phantom_cache_size, 0, KMA_KOBJECT | KMA_PERMANENT, VM_KERN_MEMORY_PHANTOM_CACHE) != KERN_SUCCESS) { | |
138 | panic("vm_phantom_cache_init: kernel_memory_allocate failed\n"); | |
139 | } | |
140 | bzero(vm_phantom_cache, vm_phantom_cache_size); | |
141 | ||
142 | if (kernel_memory_allocate(kernel_map, (vm_offset_t *)(&vm_phantom_cache_hash), vm_phantom_cache_hash_size, 0, KMA_KOBJECT | KMA_PERMANENT, VM_KERN_MEMORY_PHANTOM_CACHE) != KERN_SUCCESS) { | |
143 | panic("vm_phantom_cache_init: kernel_memory_allocate failed\n"); | |
144 | } | |
145 | bzero(vm_phantom_cache_hash, vm_phantom_cache_hash_size); | |
146 | ||
147 | ||
148 | vm_ghost_hash_mask = vm_phantom_cache_num_entries - 1; | |
149 | ||
150 | /* | |
151 | * Calculate object_id shift value for hashing algorithm: | |
152 | * O = log2(sizeof(struct vm_object)) | |
153 | * B = log2(vm_page_bucket_count) | |
154 | * hash shifts the object_id left by | |
155 | * B/2 - O | |
156 | */ | |
157 | size = vm_phantom_cache_num_entries; | |
158 | for (log1 = 0; size > 1; log1++) { | |
159 | size /= 2; | |
160 | } | |
161 | ||
162 | vm_ghost_bucket_hash = 1 << ((log1 + 1) >> 1); /* Get (ceiling of sqrt of table size) */ | |
163 | vm_ghost_bucket_hash |= 1 << ((log1 + 1) >> 2); /* Get (ceiling of quadroot of table size) */ | |
164 | vm_ghost_bucket_hash |= 1; /* Set bit and add 1 - always must be 1 to insure unique series */ | |
165 | ||
166 | if (vm_ghost_hash_mask & vm_phantom_cache_num_entries) { | |
167 | printf("vm_phantom_cache_init: WARNING -- strange page hash\n"); | |
168 | } | |
169 | } | |
170 | ||
171 | ||
172 | void | |
173 | vm_phantom_cache_add_ghost(vm_page_t m) | |
174 | { | |
175 | vm_ghost_t vpce; | |
176 | vm_object_t object; | |
177 | int ghost_index; | |
178 | int pg_mask; | |
179 | boolean_t isSSD = FALSE; | |
180 | vm_phantom_hash_entry_t ghost_hash_index; | |
181 | ||
182 | object = VM_PAGE_OBJECT(m); | |
183 | ||
184 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
185 | vm_object_lock_assert_exclusive(object); | |
186 | ||
187 | if (vm_phantom_cache_num_entries == 0) { | |
188 | return; | |
189 | } | |
190 | ||
191 | pg_mask = pg_masks[(m->vmp_offset >> PAGE_SHIFT) & VM_GHOST_PAGE_MASK]; | |
192 | ||
193 | if (object->phantom_object_id == 0) { | |
194 | vnode_pager_get_isSSD(object->pager, &isSSD); | |
195 | ||
196 | if (isSSD == TRUE) { | |
197 | object->phantom_isssd = TRUE; | |
198 | } | |
199 | ||
200 | object->phantom_object_id = vm_phantom_object_id++; | |
201 | ||
202 | if (vm_phantom_object_id == 0) { | |
203 | vm_phantom_object_id = VM_PHANTOM_OBJECT_ID_AFTER_WRAP; | |
204 | } | |
205 | } else { | |
206 | if ((vpce = vm_phantom_cache_lookup_ghost(m, 0))) { | |
207 | vpce->g_pages_held |= pg_mask; | |
208 | ||
209 | phantom_cache_stats.pcs_added_page_to_entry++; | |
210 | goto done; | |
211 | } | |
212 | } | |
213 | /* | |
214 | * if we're here then the vm_ghost_t of this vm_page_t | |
215 | * is not present in the phantom cache... take the next | |
216 | * available entry in the LRU first evicting the existing | |
217 | * entry if we've wrapped the ring | |
218 | */ | |
219 | ghost_index = vm_phantom_cache_nindx++; | |
220 | ||
221 | if (vm_phantom_cache_nindx == vm_phantom_cache_num_entries) { | |
222 | vm_phantom_cache_nindx = 1; | |
223 | ||
224 | phantom_cache_stats.pcs_wrapped++; | |
225 | } | |
226 | vpce = &vm_phantom_cache[ghost_index]; | |
227 | ||
228 | if (vpce->g_obj_id) { | |
229 | /* | |
230 | * we're going to replace an existing entry | |
231 | * so first remove it from the hash | |
232 | */ | |
233 | vm_ghost_t nvpce; | |
234 | ||
235 | ghost_hash_index = vm_phantom_hash(vpce->g_obj_id, vpce->g_obj_offset); | |
236 | ||
237 | nvpce = &vm_phantom_cache[vm_phantom_cache_hash[ghost_hash_index]]; | |
238 | ||
239 | if (nvpce == vpce) { | |
240 | vm_phantom_cache_hash[ghost_hash_index] = vpce->g_next_index; | |
241 | } else { | |
242 | for (;;) { | |
243 | if (nvpce->g_next_index == 0) { | |
244 | panic("didn't find ghost in hash\n"); | |
245 | } | |
246 | ||
247 | if (&vm_phantom_cache[nvpce->g_next_index] == vpce) { | |
248 | nvpce->g_next_index = vpce->g_next_index; | |
249 | break; | |
250 | } | |
251 | nvpce = &vm_phantom_cache[nvpce->g_next_index]; | |
252 | } | |
253 | } | |
254 | phantom_cache_stats.pcs_replaced_entry++; | |
255 | } else { | |
256 | phantom_cache_stats.pcs_added_new_entry++; | |
257 | } | |
258 | ||
259 | vpce->g_pages_held = pg_mask; | |
260 | vpce->g_obj_offset = (m->vmp_offset >> (PAGE_SHIFT + VM_GHOST_PAGE_SHIFT)) & VM_GHOST_OFFSET_MASK; | |
261 | vpce->g_obj_id = object->phantom_object_id; | |
262 | ||
263 | ghost_hash_index = vm_phantom_hash(vpce->g_obj_id, vpce->g_obj_offset); | |
264 | vpce->g_next_index = vm_phantom_cache_hash[ghost_hash_index]; | |
265 | vm_phantom_cache_hash[ghost_hash_index] = ghost_index; | |
266 | ||
267 | done: | |
268 | vm_pageout_vminfo.vm_phantom_cache_added_ghost++; | |
269 | ||
270 | if (object->phantom_isssd) { | |
271 | OSAddAtomic(1, &sample_period_ghost_added_count_ssd); | |
272 | } else { | |
273 | OSAddAtomic(1, &sample_period_ghost_added_count); | |
274 | } | |
275 | } | |
276 | ||
277 | ||
278 | vm_ghost_t | |
279 | vm_phantom_cache_lookup_ghost(vm_page_t m, uint32_t pg_mask) | |
280 | { | |
281 | uint64_t g_obj_offset; | |
282 | uint32_t g_obj_id; | |
283 | uint32_t ghost_index; | |
284 | vm_object_t object; | |
285 | ||
286 | object = VM_PAGE_OBJECT(m); | |
287 | ||
288 | if ((g_obj_id = object->phantom_object_id) == 0) { | |
289 | /* | |
290 | * no entries in phantom cache for this object | |
291 | */ | |
292 | return NULL; | |
293 | } | |
294 | g_obj_offset = (m->vmp_offset >> (PAGE_SHIFT + VM_GHOST_PAGE_SHIFT)) & VM_GHOST_OFFSET_MASK; | |
295 | ||
296 | ghost_index = vm_phantom_cache_hash[vm_phantom_hash(g_obj_id, g_obj_offset)]; | |
297 | ||
298 | while (ghost_index) { | |
299 | vm_ghost_t vpce; | |
300 | ||
301 | vpce = &vm_phantom_cache[ghost_index]; | |
302 | ||
303 | if (vpce->g_obj_id == g_obj_id && vpce->g_obj_offset == g_obj_offset) { | |
304 | if (pg_mask == 0 || (vpce->g_pages_held & pg_mask)) { | |
305 | phantom_cache_stats.pcs_lookup_found_page_in_cache++; | |
306 | ||
307 | return vpce; | |
308 | } | |
309 | phantom_cache_stats.pcs_lookup_page_not_in_entry++; | |
310 | ||
311 | return NULL; | |
312 | } | |
313 | ghost_index = vpce->g_next_index; | |
314 | } | |
315 | phantom_cache_stats.pcs_lookup_entry_not_in_cache++; | |
316 | ||
317 | return NULL; | |
318 | } | |
319 | ||
320 | ||
321 | ||
322 | void | |
323 | vm_phantom_cache_update(vm_page_t m) | |
324 | { | |
325 | int pg_mask; | |
326 | vm_ghost_t vpce; | |
327 | vm_object_t object; | |
328 | ||
329 | object = VM_PAGE_OBJECT(m); | |
330 | ||
331 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
332 | vm_object_lock_assert_exclusive(object); | |
333 | ||
334 | if (vm_phantom_cache_num_entries == 0) { | |
335 | return; | |
336 | } | |
337 | ||
338 | pg_mask = pg_masks[(m->vmp_offset >> PAGE_SHIFT) & VM_GHOST_PAGE_MASK]; | |
339 | ||
340 | if ((vpce = vm_phantom_cache_lookup_ghost(m, pg_mask))) { | |
341 | vpce->g_pages_held &= ~pg_mask; | |
342 | ||
343 | phantom_cache_stats.pcs_updated_phantom_state++; | |
344 | vm_pageout_vminfo.vm_phantom_cache_found_ghost++; | |
345 | ||
346 | if (object->phantom_isssd) { | |
347 | OSAddAtomic(1, &sample_period_ghost_found_count_ssd); | |
348 | } else { | |
349 | OSAddAtomic(1, &sample_period_ghost_found_count); | |
350 | } | |
351 | } | |
352 | } | |
353 | ||
354 | ||
355 | #define PHANTOM_CACHE_DEBUG 1 | |
356 | ||
357 | #if PHANTOM_CACHE_DEBUG | |
358 | ||
359 | int sample_period_ghost_counts_indx = 0; | |
360 | ||
361 | struct { | |
362 | uint32_t added; | |
363 | uint32_t found; | |
364 | uint32_t added_ssd; | |
365 | uint32_t found_ssd; | |
366 | uint32_t elapsed_ms; | |
367 | boolean_t pressure_detected; | |
368 | } sample_period_ghost_counts[256]; | |
369 | ||
370 | #endif | |
371 | ||
372 | /* | |
373 | * Determine if the file cache is thrashing from sampling interval statistics. | |
374 | * | |
375 | * Pages added to the phantom cache = pages evicted from the file cache. | |
376 | * Pages found in the phantom cache = reads of pages that were recently evicted. | |
377 | * Threshold is the latency-dependent number of reads we consider thrashing. | |
378 | */ | |
379 | static boolean_t | |
380 | is_thrashing(uint32_t added, uint32_t found, uint32_t threshold) | |
381 | { | |
382 | /* Ignore normal activity below the threshold. */ | |
383 | if (added < threshold || found < threshold) { | |
384 | return FALSE; | |
385 | } | |
386 | ||
387 | /* | |
388 | * When thrashing in a way that we can mitigate, most of the pages read | |
389 | * into the file cache were recently evicted, and 'found' will be close | |
390 | * to 'added'. | |
391 | * | |
392 | * When replacing the current working set because a new app is | |
393 | * launched, we see very high read traffic with sporadic phantom cache | |
394 | * hits. | |
395 | * | |
396 | * This is not thrashing, or freeing up memory wouldn't help much | |
397 | * anyway. | |
398 | */ | |
399 | if (found < added / 2) { | |
400 | return FALSE; | |
401 | } | |
402 | ||
403 | return TRUE; | |
404 | } | |
405 | ||
406 | /* | |
407 | * the following function is never called | |
408 | * from multiple threads simultaneously due | |
409 | * to a condition variable used to serialize | |
410 | * at the compressor level... thus no need | |
411 | * to provide locking for the sample processing | |
412 | */ | |
413 | boolean_t | |
414 | vm_phantom_cache_check_pressure() | |
415 | { | |
416 | clock_sec_t cur_ts_sec; | |
417 | clock_nsec_t cur_ts_nsec; | |
418 | uint64_t elapsed_msecs_in_eval; | |
419 | boolean_t pressure_detected = FALSE; | |
420 | ||
421 | clock_get_system_nanotime(&cur_ts_sec, &cur_ts_nsec); | |
422 | ||
423 | elapsed_msecs_in_eval = vm_compressor_compute_elapsed_msecs(cur_ts_sec, cur_ts_nsec, pc_start_of_eval_period_sec, pc_start_of_eval_period_nsec); | |
424 | ||
425 | /* | |
426 | * Reset evaluation period after phantom_cache_eval_period_in_msecs or | |
427 | * whenever vm_phantom_cache_restart_sample has been called. | |
428 | */ | |
429 | if (elapsed_msecs_in_eval >= phantom_cache_eval_period_in_msecs) { | |
430 | pc_need_eval_reset = TRUE; | |
431 | } | |
432 | ||
433 | if (pc_need_eval_reset == TRUE) { | |
434 | #if PHANTOM_CACHE_DEBUG | |
435 | /* | |
436 | * maintain some info about the last 256 sample periods | |
437 | */ | |
438 | sample_period_ghost_counts[sample_period_ghost_counts_indx].added = sample_period_ghost_added_count; | |
439 | sample_period_ghost_counts[sample_period_ghost_counts_indx].found = sample_period_ghost_found_count; | |
440 | sample_period_ghost_counts[sample_period_ghost_counts_indx].added_ssd = sample_period_ghost_added_count_ssd; | |
441 | sample_period_ghost_counts[sample_period_ghost_counts_indx].found_ssd = sample_period_ghost_found_count_ssd; | |
442 | sample_period_ghost_counts[sample_period_ghost_counts_indx].elapsed_ms = (uint32_t)elapsed_msecs_in_eval; | |
443 | ||
444 | sample_period_ghost_counts_indx++; | |
445 | ||
446 | if (sample_period_ghost_counts_indx >= 256) { | |
447 | sample_period_ghost_counts_indx = 0; | |
448 | } | |
449 | #endif | |
450 | sample_period_ghost_added_count = 0; | |
451 | sample_period_ghost_found_count = 0; | |
452 | sample_period_ghost_added_count_ssd = 0; | |
453 | sample_period_ghost_found_count_ssd = 0; | |
454 | ||
455 | pc_start_of_eval_period_sec = cur_ts_sec; | |
456 | pc_start_of_eval_period_nsec = cur_ts_nsec; | |
457 | pc_history <<= 1; | |
458 | pc_need_eval_reset = FALSE; | |
459 | } else { | |
460 | /* | |
461 | * Since the trashing rate is really a function of the read latency of the disk | |
462 | * we have to consider both the SSD and spinning disk case since the file cache | |
463 | * could be backed by either or even both flavors. When the object is first | |
464 | * assigned a phantom_object_id, we query the pager to determine if the backing | |
465 | * backing media is an SSD and remember that answer in the vm_object. We use | |
466 | * that info to maintains counts for both the SSD and spinning disk cases. | |
467 | */ | |
468 | if (is_thrashing(sample_period_ghost_added_count, | |
469 | sample_period_ghost_found_count, | |
470 | phantom_cache_thrashing_threshold) || | |
471 | is_thrashing(sample_period_ghost_added_count_ssd, | |
472 | sample_period_ghost_found_count_ssd, | |
473 | phantom_cache_thrashing_threshold_ssd)) { | |
474 | /* Thrashing in the current period: Set bit 0. */ | |
475 | pc_history |= 1; | |
476 | } | |
477 | } | |
478 | ||
479 | /* | |
480 | * Declare pressure_detected after phantom_cache_contiguous_periods. | |
481 | * | |
482 | * Create a bitmask with the N low bits set. These bits must all be set | |
483 | * in pc_history. The high bits of pc_history are ignored. | |
484 | */ | |
485 | uint32_t bitmask = (1u << phantom_cache_contiguous_periods) - 1; | |
486 | if ((pc_history & bitmask) == bitmask) { | |
487 | pressure_detected = TRUE; | |
488 | } | |
489 | ||
490 | if (vm_page_external_count > ((AVAILABLE_MEMORY) * 50) / 100) { | |
491 | pressure_detected = FALSE; | |
492 | } | |
493 | ||
494 | #if PHANTOM_CACHE_DEBUG | |
495 | sample_period_ghost_counts[sample_period_ghost_counts_indx].pressure_detected = pressure_detected; | |
496 | #endif | |
497 | return pressure_detected; | |
498 | } | |
499 | ||
500 | /* | |
501 | * Restart the current sampling because conditions have changed significantly, | |
502 | * and we don't want to react to old data. | |
503 | * | |
504 | * This function can be called from any thread. | |
505 | */ | |
506 | void | |
507 | vm_phantom_cache_restart_sample(void) | |
508 | { | |
509 | pc_need_eval_reset = TRUE; | |
510 | } |